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Abstract

This paper introduces SPDE bridges with observation noise and contains an analysis of their spatially
emidiscrete approximations. The SPDEs are considered in the form of mild solutions in an abstract
ilbert space framework suitable for parabolic equations. They are assumed to be linear with additive
oise in the form of a cylindrical Wiener process. The observational noise is also cylindrical and SPDE
ridges are formulated via conditional distributions of Gaussian random variables in Hilbert spaces.

general framework for the spatial discretization of these bridge processes is introduced. Explicit
onvergence rates are derived for a spectral and a finite element based method. It is shown that for
ufficiently rough observation noise, the rates are essentially the same as those of the corresponding
iscretization of the original SPDE.
2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license

http://creativecommons.org/licenses/by/4.0/).
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1. Introduction

In the geophysical sciences, phenomena that involve time and space are ubiquitous and
odels describing their behavior grow, out of necessity, ever more complex. A common way

f capturing this complexity is to include randomness in the models. This could, for instance,
odel unknown past sources, measurement errors or effects on different physical scales. A

opular class of such models consist of stochastic partial differential equations (SPDEs). Apart
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from the geophysical sciences, such models occur in finance [13], cell biology [30] and many
other areas [10,27].

In this paper we consider, in an abstract setting, an example of an SPDE that captures
any important characteristics of more complex models: a linear stochastic reaction–diffusion

quation on a bounded domain D ⊂ Rd , d = 1, 2, 3. This is given by
∂ X
∂t

(t, ξ )+AX (t, ξ ) =
∂W
∂t

(t, ξ ) for t ∈ (0, T ], ξ ∈ D, T <∞,

X (0, ξ ) = x(ξ ), for ξ ∈ D.

(1)

ere A = −
∑d

i, j=1
∂

∂ξi
ai, j

∂
∂ξ j
+ a0 is an elliptic operator with sufficiently smooth coefficients

ai, j )i, j=1d , a0 along with suitable boundary conditions. The noise term denoted by ∂W/∂t
is Gaussian, white in time and (possibly) correlated in space, and x is the initial state of
he SPDE. This can be seen as a simplification of SPDEs used to model, e.g., the dynamics
f sea surface temperature anomalies [18,31,32]. We understand this equation as an infinite-
imensional stochastic differential equation (SDE) of Itô type in the framework of [10]. We
onsider its mild solution

X x (t) := S(t)x +
∫ t

0
S(t − s) dW (s), t ∈ [0, T ], (2)

s a stochastic process X x taking values in the Hilbert space H = L2(D). Here, W is a Wiener
rocess W in H with spatial covariance (operator) Q. The operator valued function S is an
nalytic C0-semigroup generated by −A. In the setting of (1), A is the operator A regarded as
n unbounded linear operator on H .

We are concerned with the SPDE bridge X x,y with observation noise associated to (1).
ormally, this is the process X x conditioned on having observed X x (T )+ Z = y, where Z is
Gaussian noise (the observation noise) in H , independent of W . We rigorously define such

ridge processes in a framework inspired by [15,16,36]. Therein, the authors consider SPDE
ridges without observation noise, also called pinned Ornstein–Uhlenbeck processes in infinite
imensions. They use the fact that (X x , X x (T )) is a pair of jointly Gaussian random variables
n L2([0, T ], H )⊕ H to derive an expression for X x conditioned on X x (T ) = y, see Section 3
or details. The resulting process is used to investigate the Markov transition semigroup for a
emilinear SPDE. Our first goal with this paper is to provide a rigorous theoretical framework
or SPDE bridges that includes observation noise.

For finite-dimensional SDEs, bridge processes are well understood. They are, for example,
sed in solving inverse problems related to SDEs, such as parameter estimation in a Bayesian
etting. This consists of sampling SDE bridges, either with or without observation noise, and
mploying these in a Markov Chain Monte Carlo algorithm [35]. Our work can be seen as
stepping stone towards such parameter estimation in an SPDE setting. In order to sample

DE bridges, they must be approximated numerically. More precisely, they are discretized in
ime, resulting in an error. This can be quantified (see, e.g., [29]), making sure that it does not
ffect the overall convergence of an algorithm such as the ones employed in [35]. If we want
o consider an analogous approach to parameter estimation in an SPDE setting, approximation
rrors have to be quantified for both a temporal and a spatial discretization. Our second, and
ajor, goal with this paper is to analyze spatially semidiscrete approximations of SPDE bridges
ith observation noise. This is the discretization direction unique to SPDEs.
Our extension of the framework of [15,16] to include observation noise provides three

dvantages. First, it is a more natural setting for the inclusion of measurement errors in the
171
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inverse problem, if we think of the observation of X x (T ) as a measurement. Moreover, it
llows for more general covariance operators Q, since these do not have to be assumed to
e injective, as in [15,16,36]. Finally, it allows us to derive convergence rates for the spatial
pproximations of X x,y that we consider. We consider both spectral and finite element type
ethods, cf. [21,24,26]. Applied to forward problems (i.e., approximating X x ), the theory of

uch spatial approximations is by now relatively mature. In contrast, it is still relatively rare to
nd numerical analyses of methods for solving inverse problems (such as parameter estimation)
elated to (2) [7]. In particular, to the best of our knowledge, the derivation of convergence rates
or spatial approximations of SPDE bridges (with our without observation noise) has not been
onsidered before in the literature.

The key assumption we have to make in order to obtain our result is that the covariance of
Z , denoted Q̃, commutes with the orthogonal projection associated to the given discretization

ethod we consider (equivalently, Q̃ is invariant on the corresponding discretization space,
ee Remark 4.8). As a special case, this includes the setting that Q̃ = ϵ I for some ϵ > 0,

with I denoting the identity operator. One of the main results of our paper is that in this case,
the convergence rate, measured uniformly in time, for an SPDE bridge with spatially white
observation noise is, asymptotically, no worse than the convergence rate for the corresponding
discretization of the mild solution (2). See Remark 5.4 for the spectral method and Remark 6.4
for the finite element method.

Next, we describe the structure of the paper. In Section 2 we give the necessary mathematical
background to our problem. We introduce Gaussian random variables in Banach spaces and
cylindrical Gaussian random variables in Hilbert spaces. In particular, we focus on the notions
of γ -radonifying measures and the reproducing kernel Hilbert spaces associated to Gaussian
measures. We also reiterate some well-known results regarding the conditional distribution
of Hilbert space valued Gaussian random variables with respect to another such variable.
Thereafter, we describe the functional analytic framework we employ. In Section 3 the SPDE
we consider is introduced, along with its mild solution. Thereafter, we introduce the bridge
process with observation noise Z that is our main object of study. The noise Z is considered
in an abstract Wiener space framework by treating it as a random variable in a possibly negative
order Hilbert space. Along with the Gaussian law of the data involved, this leads to an explicit
expression of the SPDE bridge with observation noise:

X x,y(t) := X x (t)− K (t)((Q(T )+ Q̃)Aη)−
1
2 (X x (T )+ Z − y).

ere Q(t) is the covariance of X (t), K (t) is a mapping related to a formula for the conditional
xpectation of Gaussian random variables in Hilbert spaces and Aη is a fractional power
f A. Two facts make the analysis particularly challenging. First: ((Q(T ) + Q̃)Aη)−

1
2 is

ecessarily an unbounded operator on the space on which X x (T ) + Z is considered as a
andom variable. Second: X x,y(t) is only well-defined for a.e. y on a typically negative order
pace. In Section 4 we introduce an abstract spatially semidiscrete approximation X x,y

V of
X x,y , which takes values in a finite-dimensional subspace V ⊂ H , and we derive two key
emmas related to the approximation of conditional expectations of X0. These are applied to
oncrete spatial approximations in the final two sections of the paper. In Section 5 we set

V = VN := span{e1, . . . , eN }, where (e j )∞j=1 is the eigenbasis associated to A, to obtain a
pectral approximation of X x,y . In Section 6 we set V = Vh , a space of piecewise linear
olynomials, and obtain a finite element approximation of X x,y . We derive convergence rates
or both types of approximations in the space L p(Ω , C([0, T ], H )) for p ≥ 1, as either N →∞

r h → 0.
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We adopt the notion of generic constants, which may vary from occurrence to occurrence
nd are independent of any parameter of interest, such as spatial step sizes. By the notation
≲ b we indicate the existence of a generic constant such that a ≤ Cb.

. Preliminaries

.1. Gaussian random variables in infinite dimensions

In this section we review basic results for covariance operators, conditional distributions and
aussian random variables in possibly infinite-dimensional spaces, starting with some operator

heory. All Banach spaces appearing in this paper are real and separable, so we assume this
or the Banach spaces in this section. Let (U1, U2) be a pair of such spaces with norm ∥ · ∥U j
nd duality pairing U j ⟨·, ·⟩U∗j , j = 1, 2. We denote by (L(U1, U2), ∥ · ∥L(U1,U2)) the space of
ounded linear operators from U1 to U2 equipped with the operator norm and write L(U ) for
his space when U1 = U2 = U . When (U1, U2) = (H1, H2) are Hilbert spaces with inner
roducts ⟨·, ·⟩H j

, j = 1, 2, we write L1(H1, H2) and L2(H1, H2) for the subspaces of trace
lass (or nuclear) and Hilbert–Schmidt operators, respectively. For H1 = H2 = H we use the
horthand notations L1(H ) and L2(H ). An operator Γ ∈ L1(H1, H2) if there are two sequences
a j )∞j=1 ⊂ H1, (b j )∞j=1 ⊂ H2 such that

Γ x =
∞∑
j=1

⟨x, a j ⟩H1
b j

or all x ∈ H1 and
∞∑
j=1

∥a j∥H1
∥b j∥H2

<∞.

he space L1(H1, H2) is a separable Banach space with norm

∥Γ∥L1(H1,H2) := inf
(a j )⊂H1
(b j )⊂H2

⎧⎨⎩
∞∑
j=1

∥a j∥H1
∥b j∥H2

: Γ =

∞∑
j=1

⟨·, a j ⟩H1
b j

⎫⎬⎭ ,

ee [33, Appendix B], while L2(H1, H2) is a separable Hilbert space with inner product

⟨Γ1,Γ2⟩L2(H1,H2) :=

∞∑
j=1

⟨Γ1e j ,Γ2e j ⟩H2

or Γ1,Γ2 ∈ L2(H1, H2) and an arbitrary orthonormal basis (e j )∞j=1 of H1. We have Γ ∈

i (H1, H2) if and only if Γ ∗ ∈ Li (H2, H1) with

∥Γ∥Li (H1,H2) = ∥Γ
∗
∥Li (H2,H1)

or i ∈ {1, 2}. Here Γ ∗ denotes the adjoint of Γ . Let (H3, H4) be another pair of Hilbert
paces. If Γ1 ∈ L(H1, H2), Γ3 ∈ L(H3, H4) and Γ2 ∈ Li (H2, H3) for some i ∈ {1, 2}, then
3Γ2Γ1 ∈ Li (H1, H4) and

∥Γ3Γ2Γ1∥Li (H1,H4) ≤ ∥Γ3∥L(H3,H4)∥Γ2∥Li (H2,H3)∥Γ1∥L(H1,H2). (3)

oreover, if Γ1 ∈ L2(H1, H2) and Γ2 ∈ L2(H2, H3), then Γ2Γ1 ∈ L1(H1, H3) and
∥Γ2Γ1∥L1(H1,H3) ≤ ∥Γ2∥L2(H2,H3)∥Γ1∥L2(H1,H2). (4)
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For Γ ∈ L(H1), the operator range Γ (H1) is a Hilbert space when equipped with the
nner product ⟨·, ·⟩Γ (H1) := ⟨Γ

−1
·,Γ−1

·⟩H1
. Here Γ−1 is the pseudo-inverse of Γ , i.e., Γ−1v

s for v ∈ Γ (H1) the unique element w ∈ ker(Γ )⊥, the orthogonal complement of ker(Γ ),
fulfilling Γw = v, see [33, Appendix C]. For Γ ∈ L1(H1), the trace of Γ is defined by

r(Γ ) :=
∑
∞

j=1 ⟨Γe j , e j ⟩H1
, for Γ ∈ L1(H1) and an arbitrary orthonormal basis (e j )∞j=1. It

olds that |Tr(Γ )| ≤ ∥Γ∥L1(H1), with equality if and only if Γ ∈ Σ+(H1), the space of positive
emidefinite symmetric operators on H1.

Let now (Ω ,A, (Ft )t∈[0,T ],P) be a complete filtered probability space satisfying the usual
onditions, which is to say that F0 contains all P-null sets and Ft = ∩s>tFs for all t ∈ [0, T ].

A measurable mapping X :Ω → U is called a U -valued random variable. Since U is separable,
this is equivalent to requiring that X is strongly measurable [19, Corollary 1.1.10]. By
L p(Ω , U ), p ∈ [1,∞), we denote the Banach space of all U -valued random variables X with
finite norm ∥X∥L p(Ω,U ) := (E[∥X∥p

U ])1/p. In the case of Hilbert space-valued random variables
X ∈ L2(Ω , H1), Y ∈ L2(Ω , H2), we define the cross-covariance (operator) Cov(X, Y ) : H2 →

H1 of X and Y by

Cov(X, Y )u := E[⟨(Y − E[Y ]), u⟩H2
(X − E[X ])]

nd the covariance (operator) of X by Cov(X ) := Cov(X, X ). Both operators are of trace
lass [5]. In particular, ∥Cov(X )∥L1(H1) = Tr(Cov(X )) = E[∥X − E[X ]∥2

H1
] whenever either

f these quantities are finite. Moreover, if (e j )∞j=1 is an arbitrary orthonormal basis of H1 we
ave by [39, Proposition I.1.10] that the σ -algebra σ (X ) generated by X fulfills

σ (X ) = σ ((⟨X, e j ⟩H1
)∞j=1). (5)

A Banach-space valued random variable X :Ω → U is said to be Gaussian if U ⟨X, u⟩U∗
s a Gaussian real-valued random variable for all u in the continuous dual space U ∗. Then
X ∈ L p(Ω , U ) for all p ≥ 1. Equivalently, the image measure P ◦ X−1 is Gaussian
n U . For such random variables, we define a covariance operator Cov(X ) :U ∗ → U by
ov(X )u := E[U ⟨X − E[X ], u⟩U∗ (X − E[X ])] for u ∈ U ∗. Let us denote by HX ⊂ U the

eproducing kernel Hilbert space of the Banach-space valued random variable X . This space is
iven by the completion of Cov(X )(U ∗) with respect to the norm induced by the inner product
Cov(X )u, Cov(X )v⟩HX

:= U ⟨Cov(X )u, v⟩U∗ . When U = H1 is a Hilbert space, the definition
f Cov(X ) coincides with the previously given definition. Since the operator Cov(X ) ∈ Σ+(H ),
t has a unique square root Cov(X )1/2

∈ Σ+(H ) and HX = Cov(X )1/2(H1). If H2 ⊂ H1 is
a subspace, continuously embedded into H1, and if ∥X∥L2(Ω,H2) < ∞, then the covariance
CovH2 (X ) of X as an H2-valued random variable is related to Cov(X ) = CovH1 (X ) through
the identity

Cov(X ) = IH2↪→H1CovH2 (X )I ∗H2↪→H1
. (6)

This follows from the fact that CovH1 (X )1/2(H1) = CovH2 (X )1/2(H2), along with the factor-
ization Cov(X ) = ICov(X )1/2(H1)↪→H1

I ∗Cov(X )1/2(H1)↪→H1
[34]. For more details on Banach-space

valued Gaussian random variables, see, e.g., [20,39].
We say that X is a cylindrical random variable in a Hilbert space H , if it is a linear map X

from H into the space of real-valued random variables. This is a generalization of the notion
of an H -valued random variable Y , since we may interpret Y as a cylindrical random variable
X by identifying X with the random linear functional ⟨Y, ·⟩H . If there, for a given cylindrical
random variable X , exists such a Y , X is said to be induced by Y . We say that X is a strongly

Gaussian cylindrical random variable with covariance Cov(X ) and zero mean if X (u) is a
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real-valued Gaussian random variable with zero mean for all u ∈ H and there is an operator
ov(X ) ∈ Σ+(H ) such that E[X (u)X (v)] = ⟨Cov(X )u, v⟩H for all u, v ∈ H . For all operators

in Σ+(H ), a linear map with the required properties can be constructed. Since we will not
deal with so called weakly Gaussian cylindrical random variables (see [34] for this, as well
as a general introduction to cylindrical measures), from here on we omit the word strongly.
Moreover, we introduce the formal notation ⟨X, u⟩H := X (u) for all u ∈ H .

Remark 2.1. The notation ⟨X, u⟩H := X (u) for a cylindrical random variable is only formal.
We emphasize that X /∈ H in a mean-square sense.

We note that

E[⟨X, u − v⟩2H ] = ∥Cov(X )
1
2 (u − v)∥

2

H ≤ ∥Cov(X )
1
2 ∥

2

L(H )∥u − v∥2
H

or u, v ∈ H . This is to say that ⟨X, ·⟩H is continuous on H with respect to L2(Ω ,R). When
ov(X ) = I , X is said to be a standard cylindrical random variable in H . An operator
: H → U , where U is a Banach space, is said to be γ -radonifying if, for a standard

ylindrical random variable X in H , there is a U -valued Gaussian random variable Y such
hat U ⟨Y, u⟩U∗ = ⟨X,Γ ∗u⟩H for all u ∈ U ∗. The space γ (H, U ) of γ -radonifying operators is
Banach space with norm

∥Γ∥2
γ (H,U ) := E

[ ∞∑
j=1

z jΓe j

2

U

]
, (7)

here (z j )∞j=1 is a sequence of iid Gaussian random variables and (e j )∞j=1 is an arbitrary
rthonormal basis of H [40, Corollary 3.21]. The sum inside this expression converges in

L2(Ω , U ) if and only if Γ ∈ γ (H, U ). When H = H1 and U = H2 is a Hilbert space,
γ (H1, H2) = L2(H1, H2) with equal norms [40, Proposition 13.5]. Like the space of Hilbert–
Schmidt operators, the space γ (H, U ) is an operator ideal [40, Theorem 6.2]. If X is a U -valued
Gaussian random variable, then, by [40, Proposition 8.6],

E
[
∥X∥2

U

]
= ∥IHX ↪→U∥

2
γ (HX ,U ) <∞. (8)

In fact, all moments of X are finite and can be bounded by a constant times the L2(Ω , U )-
norm [17, Proposition 3.14].

Gaussian cylindrical random variables X on H1 may be regarded as Gaussian H2-valued
random variables, for some larger Hilbert space H2 ⊃ H1. We can always construct a real
separable Hilbert space H2 ←↩ H1, where the embedding is dense and continuous, such that
IQ1/2(H1)↪→H2

∈ L2(Q1/2(H1), H2), cf. [33, Remark 2.5.1]. Let H2 be a Hilbert space with this
roperty. By [11, Lemma VI.1.8], the closure of Cov(X )(H1) in Cov(X )1/2(H1) is the set of all
ectors that are perpendicular to {v ∈ Cov(X )1/2(H1) : Cov(X )1/2v = 0} in Cov(X )1/2(H1).
ut since ⟨Cov(X )v, v⟩H1

= ∥Cov(X )1/2v∥
2
H1

for v ∈ H1, ker(Cov(X )) = ker(Cov(X )1/2).
herefore {v ∈ Cov(X )1/2(H1) : Cov(X )1/2v = 0} = {0} so that Cov(X )(H1) is dense

n Cov(X )1/2(H1). Since H1 is separable, so is Cov(X )1/2(H1). We may therefore pick an
rthonormal basis (e j )∞j=1 of Cov(X )1/2(H1) such that e j ∈ Cov(X )(H1) for all j ∈ N. Hence,
e may define

X̃ :=
∞∑
⟨X, Cov(X )−1e j ⟩H1

e j . (9)

j=1
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Note that, for any N ∈ N,

E

⎡⎣ N∑
j=1

⟨X, Cov(X )−1e j ⟩H1
e j

2

H2

⎤⎦
=

N∑
i, j=1

E
[
⟨X, Cov(X )−1ei ⟩H1

⟨X, Cov(X )−1e j ⟩H1

]
⟨ei , e j ⟩H2

=

N∑
i, j=1

⟨Cov(X )−
1
2 ei , Cov(X )−

1
2 e j ⟩H1

⟨ei , e j ⟩H2

=

N∑
i, j=1

⟨ei , e j ⟩
Cov(X )

1
2 (H1)
⟨ei , e j ⟩H2

=

N∑
i=1

∥ei∥
2
H2
≤ ∥I

Cov(X )
1
2 (H1)↪→H2

∥
2

L2(Cov(X )
1
2 (H1),H2)

,

so that X̃ is indeed well-defined in L2(Ω , H2). Since (⟨X, Cov(X )−1e j ⟩H1
)∞j=1 is a sequence of

independent and Gaussian random variables, X̃ is a Gaussian H2-valued random variable. Its
covariance is given by

⟨Cov(X̃ )u, v⟩H2
=

∞∑
j=1

⟨u, e j ⟩H2
⟨v, e j ⟩H2

=

∞∑
j=1

⟨
I ∗
Cov(X )

1
2 (H1)↪→H2

u, e j

⟩
Cov(X )

1
2 (H1)

×

⟨
I ∗
Cov(X )

1
2 (H1)↪→H2

v, e j

⟩
Cov(X )

1
2 (H1)

=

⟨
I
Cov(X )

1
2 (H1)↪→H2

I ∗
Cov(X )

1
2 (H1)↪→H2

u, v

⟩
H2

or u, v ∈ H2. It still holds that Cov(X ) = ICov(X )1/2(H1)↪→H1
I ∗Cov(X )1/2(H1)↪→H1

, whence

Cov(X̃ ) = I
Cov(X̃ )

1
2 (H2)↪→H2

I ∗
Cov(X̃ )

1
2 (H2)↪→H2

= I
Cov(X )

1
2 (H1)↪→H2

I ∗
Cov(X )

1
2 (H1)↪→H2

= IH1↪→H2Cov(X )I ∗H1↪→H2
.

(10)

In a certain sense, the distribution of X̃ is invariant with respect to the choice of the space
H2. Indeed, the reproducing kernel Hilbert space Cov(X̃ )1/2(H2) = Cov(X )1/2(H1) remains
the same regardless of what space H2 we use.

We can expand X as a cylindrical random variable in terms of X̃ in a converse version
of (9). This can be done using the fact that since H1 ↪→ H2 densely and continuously, there
s a linear, self-adjoint, densely defined and positive semidefinite operator B on H2 such that
u∥H1

= ∥B1/2u∥H2
for all u ∈ D(B1/2) = H1. We summarize the argument for this from [25,

ection 1.2]. Let D(B) be the set of all u ∈ H1 such that ⟨u, ·⟩H1
is continuous with respect

o the H2 norm. Then, since H1 is dense in H2, the identity ⟨u, v⟩H1
= ⟨Bu, v⟩H2

for all
v ∈ H defines an unbounded, self-adjoint and positive definite linear operator with domain
1
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D(B) (so fractional powers are well-defined). To see that D(B) is dense in H1, note that by
he Hahn–Banach theorem, this holds if and only if

⟨v, y⟩H1
= 0∀y ∈ D(B) H⇒ v = 0

or arbitrary v ∈ H1. Let v ∈ H1 be arbitrary and suppose that ⟨v, y⟩H1
= 0∀y ∈ D(B). In

particular, this holds for y = I ∗H1↪→H2
u, u ∈ H2, since ⟨y, ·⟩H1

= ⟨u, ·⟩H2
is continuous on H2.

Therefore ⟨v, u⟩H2
= 0 for all u ∈ H2, so v = 0. To see that D(B1/2) = H1, note that for

u ∈ D(B), ∥B1/2u∥2
H2
= ⟨Bu, u⟩H2

= ∥u∥2
H1

. By density, this extends to H1, which shows that
H1 ⊂ D(B1/2). If v ∈ D(B1/2) then

∥v∥H1
= sup

u∈H1
∥u∥H1

=1

|⟨v, u⟩H1
| ≤ sup

u∈D(B)
∥u∥H1

=1

|⟨v, u⟩H1
|

= sup
u∈D(B)
∥u∥H1

=1

|⟨v, Bu⟩H2
|

= sup
u∈D(B)
∥u∥H1

=1

|⟨B1/2v, B1/2u⟩H2
| ≤ ∥B1/2v∥H2

,

which shows that D(B1/2) ⊂ H1. Here we made use of the Cauchy–Schwarz inequality along
with the identity ∥B1/2u∥H2

= ∥u∥H1
for u ∈ H1, which we proved above. By density of D(B)

in D(B1/2), we may pick an orthonormal basis ( f j )∞j=1 of H1 contained in D(B). By definition
of the covariance, we find that for f j /∈ ker(Cov(X )),

E
[⏐⏐⏐⟨X, f j ⟩H1

−

N∑
k=1

⟨X, Cov(X )−1ek⟩H1
⟨ek, B f j ⟩H2

⏐⏐⏐2]
= E[⟨X, f j ⟩

2
H1

]− 2
N∑

k=1

⟨ f j , ek⟩H1
⟨ek, B f j ⟩H2

+

N∑
k,ℓ=1

⟨Cov(X )−1/2ek, Cov(X )−1/2eℓ⟩H1
⟨ek, B f j ⟩H2

⟨eℓ, B f j ⟩H2

= ∥Cov(X )1/2 f j∥
2
H1
− 2

N∑
k=1

⟨B f j , ek⟩H2
⟨ f j , ek⟩H1

+

N∑
k=1

⟨B f j , ek⟩
2
H2

= ∥Cov(X ) f j∥
2
Cov(X )1/2(H1) − 2

N∑
k=1

⟨ f j , ek⟩
2
H1
+

N∑
k=1

⟨ f j , ek⟩
2
H1

= ∥Cov(X ) f j∥
2
Cov(X )1/2(H1) −

N∑
k=1

⟨Cov(X ) f j , ek⟩
2
Cov(X )1/2(H1),

so that, in light of (9), ⟨X, f j ⟩H1
= ⟨X̃ , B f j ⟩H2

for f j /∈ ker(Cov(X )). This identity also holds
true for f j ∈ ker(Cov(X )), since then both sides are zero. Using this along with the continuity
of ⟨X, ·⟩H1

: H1 → L2(Ω ,R), it follows that

⟨X, u⟩H1
=

∞∑
⟨X, f j ⟩H1

⟨u, f j ⟩H1
=

∞∑
⟨X̃ , B f j ⟩H2

⟨u, f j ⟩H1
(11)
j=1 j=1
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for all u ∈ H1, where the convergence takes place in L2(Ω ,R). From here on, we make no
otational distinction between X and X̃ .

A pair (X, Y ) of random variables X and Y with values in two Hilbert spaces H1 and H2 is
aid to be jointly Gaussian if X ⊕ Y is an H1⊕ H2-valued Gaussian random variable. Then X
nd Y are independent if and only if Cov(X, Y ) = 0, cf. [28]. We quote a theorem regarding
he conditional distribution of Y given X from [16]. To make sense of it, we first need a
reliminary lemma [16, Lemma 2.2]. Since Cov(X ) is of trace class, it is also compact and
hus has an associated eigenbasis (e j )∞j=1 along with a sequence of eigenvalues (µ j )∞j=1 which
n this case is summable.

emma 2.2. Let X be an H1-valued Gaussian random variable with zero mean, image
easure µ = P ◦ X−1

: H1 → R and eigenpairs (µ j , e j )∞j=1. Let Γ ∈ L2(H1, H2). Then,
he sum defining the operator

ΓCov(X )−1/2
:=

∞∑
j=1

1
√

µ j
⟨·, e j ⟩H1

Γe j

converges in L2((H1, µ), H2) and

∥ΓCov(X )−1/2
∥

2
L2((H1,µ),H2) :=

∫
H1

∥ΓCov(X )−1/2x∥
2
H2

dµ(x) = ∥Γ∥2
L2(H1,H2).

Moreover, there exists a Borel subspace M ⊂ H1 with µ(M) = 1, the operator ΓCov(X )−1/2

s linear on M and

ΓCov(X )−1/2x =
∞∑
j=1

1
√

µ j
⟨x, e j ⟩H1

Γe j

for all x ∈M.

Note that in Lemma 2.2, it holds that Cov(X )1/2(H1) ⊂ M, see, e.g., [37, Lemma 3].
oreover, ΓCov(X )−1/2Cov(X )1/2x = Γ x for x ∈ H1. The mapping defined by

v ↦→

∞∑
j=1

1
√

µ j
⟨X, e j ⟩H1

⟨v, e j ⟩H1

efines a standard cylindrical Gaussian random variable in H1 with the sum converging
-a.s and in L2(Ω ,R). Since Γ ∈ L2(H1, H2), the cylindrical Gaussian random variable in

H2 defined by

u ↦→
∞∑
j=1

1
√

µ j
⟨X, e j ⟩H1

⟨Γ ∗u, e j ⟩H1

is induced by a Gaussian H2-valued random variable, which can be taken to be the random
variable ΓCov(X )−1/2 X with ΓCov(X )−1/2 defined as in Lemma 2.2. This operator shows up
in the next result, which is [16, Theorem 2.4].

Theorem 2.3. Let X and Y be jointly Gaussian random variables with values in H1 and H2
uch that Cov(X ) is an injective operator. Then

(i) Cov(X, Y )(H2) ⊂ Cov(X )1/2(H1) and Cov(X )−1/2Cov(X, Y ) ∈ L2(H2, H1),
(ii) E[Y |X ] = E[Y ]+ (Cov(X )−1/2Cov(X, Y ))∗Cov(X )−1/2(X − E[X ]),
178
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(iii) the conditional distribution of Y given X is Gaussian with (conditional) mean E[Y |X ]
and covariance Cov(Y )− (Cov(X )−1/2Cov(X, Y ))∗Cov(X )−1/2Cov(X, Y ).

We conclude this section by introducing a (strongly) cylindrical Wiener process in a Hilbert
pace H . It is, following [10,34], defined as a linear transformation H ∋ v ↦→ Wv whose values
re real-valued Wiener processes with respect to (Ω ,A, (Ft )t∈[0,T ],P) having the covariance
tructure E[Wu(s)Wv(t)] = min(s, t)⟨Qu, v⟩H for u, v ∈ H , s, t ∈ [0, T ] and some Q ∈
+(H ). The operator Q is referred to as the covariance operator of W . Itô integrals taking

values in H in the form of∫ t

0
Ψ (s) dW (s), (12)

t ∈ [0, T ], are well-defined for deterministic processes Ψ ∈ L2([0, T ],L2(Q1/2(H ), H ))
10, Section 4.2.1]. In particular, (12) defines an H -valued Gaussian random variable with
ean 0 and covariance

Cov
(∫ t

0
Ψ (s) dW (s)

)
=

∫ t

0
Ψ (s)Ψ ∗(s) ds, (13)

10, Proposition 4.28]. By (4), the integrand takes value in a separable Banach space so the
ntegral is well-defined in the Bochner sense.

.2. Functional analytic framework

In this section, we introduce the functional analytic framework of [24, Appendix B] that we
onsider in the remainder of the paper. We fix a real, separable Hilbert space (H, ⟨·, ·⟩, ∥ · ∥)
nd let A : D(A) ⊂ H → H be a densely defined linear operator, which is self-adjoint and
ositive definite with a compact inverse. By the spectral theorem, we obtain a sequence (λ j )∞j=1
f positive non-decreasing eigenvalues of A with lim j→∞ λ j = ∞, along with an orthonormal
igenbasis (e j )∞j=1 in H . We define fractional powers of A by

A
r
2 v :=

∞∑
j=1

λ
r
2
j ⟨v, e j ⟩.

For r ≤ 0, this defines an operator in Σ+(H ). For r > 0, A
r
2 is a densely defined, positive

efinite, self-adjoint, and unbounded operator with domain

dom(A
r
2 ) =

⎧⎨⎩v ∈ H :
∞∑
j=1

λr
j |⟨v, e j ⟩|

2 <∞

⎫⎬⎭ .

e write Ḣ r
:= dom(Ar/2) with Ḣ 0

= H . This is a Hilbert space with respect to the inner
roduct

⟨u, v⟩Ḣr = ⟨Ar/2u, Ar/2v⟩ =

∞∑
j=1

λr
j ⟨u, e j ⟩⟨v, e j ⟩. (14)

or r < 0, we define Ḣ r to be the completion of H under the norm defined by (14). The
perator Ar/2 extends to a bounded operator on Ḣ r and we may write

Ḣ r
= dom(A

r
2 ) =

⎧⎨⎩x =
∞∑

x j e j : (x j )∞j=1 ⊂ R such that ∥x∥2
Ḣr =

∞∑
λr

j x
2
j <∞

⎫⎬⎭ .
j=1 j=1
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Regardless of the sign of r , Ḣ r is a Hilbert space with inner product ⟨u, v⟩Ḣr = ⟨Ar/2u, Ar/2v⟩.
For r > s, the embedding Ḣ r ↪→ Ḣ s is dense and compact. Moreover, Lemma 2.1 in [4] allows
us to, for all r, s ∈ R, extend As/2 to an isometric isomorphism from Ḣ r to Ḣ r−s , and we do
so without changing notation. This means in particular that Ḣ r−s

= As/2(Ḣ r ). Note also, that
since Ar−s is bounded on Ḣ s when s ≥ r , we have

⟨I ∗Ḣ s ↪→Ḣr u, v⟩
Ḣ s = ⟨u, v⟩Ḣr = ⟨A

r−s
2 u, A

r−s
2 v⟩Ḣ s = ⟨Ar−su, v⟩Ḣ s (15)

or all u, v ∈ Ḣ s , so that by density, I ∗
Ḣ s ↪→Ḣr = Ar−s on H r .

For an operator Γ ∈ L(H ) and all r ≥ 0, Γ ∈ L(H, Ḣ r ) if and only if Γ ∗ ∈ L(H ) can be
ontinuously extended to Ḣ−r , and ∥Γ∥L(H,Ḣr ) = ∥Γ

∗
∥L(Ḣ−r ,H ). Moreover, Γ ∈ L2(H, Ḣ r )

f and only if Γ ∗ ∈ L2(Ḣ−r , H ), and ∥Γ∥L2(H,Ḣr ) = ∥Γ
∗
∥L2(Ḣ−r ,H ). We assume that there is

ome ζ > 0 such that IḢζ ↪→H ∈ L2(Ḣ ζ , H ). We remark that then, for arbitrary s ∈ R,

∥IḢ s+ζ ↪→Ḣ s∥
2
L2(Ḣ s+ζ ,Ḣ s ) =

∞∑
j=1

∥A−
s+ζ

2 e j∥
2

Ḣ s =

∞∑
j=1

∥A−
ζ
2 e j∥

2
=∥IḢζ ↪→H∥

2
L2(Ḣζ ,H ) <∞.

(16)

The operator −A is the generator of an analytic C0-semigroup S := (S(t))t≥0 of bounded
inear operators on H that extends to Ḣ r for arbitrary r < 0 and is a C0-semigroup also on Ḣ r ,
∈ R. It has the spectral representation

S(t)v =
∞∑
j=1

e−λ j t
⟨v, e j ⟩e j

or v ∈ H , and we see that S(t)(H ) ⊂ Ḣ r for all r ∈ R and t > 0. In fact, for r ≥ 0, there
xists a constant C <∞ such that for all t > 0 and u ∈ H

∥S(t)u∥Ḣr = ∥A
r
2 S(t)u∥ ≤ Ct−r/2

∥u∥. (17)

ote that S(t) commutes with Ar/2, for all t ∈ [0, T ] and r ∈ R. We end this section with the
ntroduction of the canonical example of A as an elliptic operator.

xample 2.4. Let H = L2(D), the space of square-integrable functions on a bounded domain
⊂ Rd , d = 1, 2, 3, which is either convex or has boundary ∂D of class C2. The differential

perator

A = −
d∑

i, j=1

∂

∂ξi
ai, j

∂

∂ξ j
+ a0

s equipped with homogeneous boundary conditions, of either Dirichlet or Neumann type. The
oefficients ai, j , i, j = 1, . . . , d, are C1(D) functions fulfilling ai, j = a j,i . Moreover, we
ssume that there is a constant λ0 > 0 such that for all y ∈ Rd and almost all ξ ∈ D,

d
i, j=1 ai, j (ξ )yi y j ≥ λ0|y|2. The function a0 ∈ L∞(D) is non-negative almost everywhere on
. We denote by H m(D) = W m,2 the classical Sobolev space of order m ∈ N. Following

41, Chapters 1-2], we let a be a continuous, symmetric bilinear form

a(u, v) =
d∑ ∫

D
ai, j

∂u
∂ξi

∂v

∂ξ j
dξ +

∫
D

a0uv dξ,
i, j=1
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on V ⊂ H 1(D) ⊂ L2(D) = H . In the case of Dirichlet boundary conditions we take
V = H 1

0 (D) = {v ∈ H 1
: γ v = 0}, where γ is the trace operator. In the case of Neumann

boundary conditions, we take V = H 1, and assume in addition that there is a constant c0 > 0
such that a0 ≥ c0 a.e. on D. Then a is coercive and, with V ⊂ H ⊂ V ∗ being a Gelfand
triple, there exists a unique isomorphism L : V → V ∗ such that V ∗⟨Lu, v⟩V = a(u, v) for all
u, v ∈ V . Viewing L as an operator on V ∗, it is densely defined and closed. We let A = L|H
be its restriction to H with domain D(A) = {v ∈ V : Av = Lv ∈ H}. Then, A is densely
defined and positive definite. Since the embedding V ↪→ H is compact, its inverse is compact.

We can relate the spaces (Ḣ s)s∈[0,2] to the fractional Sobolev spaces (H s)s∈[0,2]. In the case
of Dirichlet boundary conditions, we have

Ḣ s
=

{
H s if s ∈ [0, 1/2),
{u ∈ H s

: γ u = 0} if s ∈ (1/2, 3/2) ∪ (3/2, 2],
(18)

with norm equivalence. In the case of Neumann boundary conditions,

Ḣ s
=

{
H s if s ∈ [0, 3/2),
{u ∈ H s

: ∂u/∂νΛ = 0} if s ∈ (3/2, 2],
(19)

where ∂v/∂νΛ =
∑d

i, j=1 ni ai, jγ D jv, with (n1, . . . , nd ) being the outward unit normal to ∂D.
If ∂D is of class C2, then (18) holds for s = 3/2 and for certain special domains, Ḣ 3/2 in (19)
can be characterized as those functions in H 3/2 that satisfy the boundary condition in a weak
sense. For these facts and further details on domains of powers of elliptic operators, we refer
to [41, Sections 16.4-6]. Since the embedding IH s ↪→H ∈ L2(H s, H ) if and only if s > d/2
(see [38, p. 286], [12, Theorem 3.3.4(ii)] for the case that ∂D ∈ C∞ but note that the result
holds also for our case, cf. [23, Lemma 2.3]), the identities (18) and (19) imply that we may
choose ζ > d/2 in this setting.

3. SPDE bridges with observation noise

In this section, we introduce the linear SPDE that we work with throughout the paper, along
with an assumption ensuring continuity of the mild solution X :Ω × [0, T ] → H . We then
define an SPDE bridge X x,y , which is the process X fulfilling X (0) = x conditioned, in a
certain sense, on X x (T )+ Z = y for a cylindrical Gaussian random variable Z .

With A fulfilling the assumptions of Section 2.2, we consider SPDEs of the form

dX x (t)+ AX x (t) dt = dW (s) for t ∈ (0, T ]
X x (0) = x,

(20)

for T < ∞. Here, the initial value x ∈ H is taken to be deterministic and W is a
cylindrical Wiener process in H with covariance operator Q ∈ Σ+(H ). A stochastic process
X x
∈ C([0, T ], L2(Ω , H )) is said to be a mild solution of (20) if

X x (t) = S(t)x +
∫ t

0
S(t − s) dW (s)

for all t ∈ [0, T ]. Recall that S is the semigroup generated by −A. For this solution to exist,
we need the following assumption.

Assumption 3.1. There is a parameter β > 0 such that

∥I 1
β−1
∥ 1 = ∥A

β−1
2 Q

1
2 ∥L2(H ) <∞.
Q 2 (H )↪→Ḣ L2(Q 2 (H ),Ḣβ−1)
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Example 3.2. Let us consider this assumption in the context of Example 2.4. For Q = I ,
he process W is usually referred to as space–time white noise. We obtain from (16) that
ssumption 3.1 is fulfilled for all β ≤ 1 − ζ , i.e., we must have d = 1, and we may choose
< 1/2. Another popular choice is to consider noise which is white in time and correlated,

ut spatially homogeneous, in D. In this case Q is given by

Qu(ξ ) =
∫
D

q(ξ − υ)u(υ) dυ.

ere, q : Rd
→ R is a positive definite, symmetric, continuous and integrable function. If

his function is sufficiently smooth, W (1) is a Gaussian random field on D and q(ξ − υ) =
ov(W (1, ξ ), W (1, υ)) for ξ, υ ∈ D. If we assume that the Fourier transform q̂ of q fulfills
ˆ(ξ ) ≤ C

(
1+ |ξ |2

)−σ
for some σ > d/2 and all ξ ∈ Rd , then Assumption 3.1 is fulfilled

or all β < 1 + min(σ − d/2, 1/2) in the case of Dirichlet boundary conditions and for all
β < 1+min(σ − d/2, 3/2) in the case of Neumann boundary conditions [23, Corollary 4.4].

In light of (17), it follows from Assumption 3.1 that for all r < β and ϵ ∈ (0, min(β−r, 1)),∫ T

0
t−ϵ
∥S(t)∥2

L2(Q1/2(H ),Ḣr ) dt =
∫ T

0
t−ϵ
∥A

r
2 S(t)Q1/2

∥
2
L2(H ) dt <∞.

sing this bound, we obtain existence and uniqueness of the solution X x [10, Chapters 5–6],
s well the existence of a continuous modification of this process [10, Theorem 5.11]. This
eans that we may regard X x

= X x (·) as a random variable in CT := C([0, T ], H ) as well as
HT := L2([0, T ], H ) [10, Proposition 3.18]. When x ∈ Ḣ r , the same statements hold with H
eplaced by Ḣ r , for arbitrary r ∈ [0, β). In particular,

sup
t∈[0,T ]

E
[
∥X0(t)∥

p
Ḣr

]
≤ E

[
sup

t∈[0,T ]
∥X0(t)∥

p
Ḣr

]
<∞

or all t ∈ (0, T ], p ≥ 1. As a consequence of the construction of the stochastic integral, the
aw of X x (t) is Gaussian for each t ∈ [0, T ] [10, Theorem 5.2]. It is therefore determined by
he mean of X x (t) and its covariance, which in light of (13) and the fact that S takes values in
+(H ) is given by

Q(t) := Cov(X x (t)) = Cov(X0(t)) =
∫ t

0
S(t − s)QS(t − s) ds =

∫ t

0
S(s)QS(s) ds.

s a consequence of X0(t), t ∈ [0, T ], being Ḣ r -valued, Q(t) extends to Ḣ−r with

sup
t∈[0,T ]

∥A
r
2 Q(t)A

r
2 ∥L1(H ) = sup

t∈[0,T ]
∥Q(t)∥L1(Ḣ−r ,Ḣr ) <∞

for all r < β. By [10, Theorem 5.2], the law of X x in HT is also Gaussian with mean S(·)x
and covariance Q̄ ∈ L1(HT ) given by

Q̄u := Cov(X x )u = Cov(X0)u =
∫ T

0

(∫ min(t,·)

0
S(· − s)QS(t − s) ds

)
u(t) dt (21)

or u ∈ HT . Since CT is dense in HT , HT = H∗T is weak-* dense in C∗T . Thus, there is a sequence
u j )∞j=1 ⊂ H∗T such that CT ⟨X, u⟩C∗T = lim j→∞ ⟨X, u j ⟩HT

P-a.s. Since the almost sure limit of
aussian random variables is Gaussian, it follows that the law of X x is Gaussian in CT , too.
he pair (X x , X x (T )), with X x

∈ L2(Ω , HT ), X x (T ) ∈ L2(Ω , H ), is jointly Gaussian [16].
his fact can, by Theorem 2.3, be used to define a bridge process by conditioning X x on the
182
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observation X x (T ) = y, in a certain sense. This is the approach taken in [15,16], where the
uthors define X x,y(t), for an appropriate y ∈ H and t ∈ [0, T ), by the formula

X x,y(t) = X x (t)−
(
Cov(X0(T ))−

1
2 Cov(X0(T ), X x (t))

)∗
Cov(X0(T ))−

1
2 (X x (T )− y).

heorem 2.14 in [16] provides a justification for this formula, see also Proposition 3.6. For this
o be well-defined, Cov(X0(T )) has to be injective, which is the reason for why Q is assumed
o be injective in [15,16]. Note that if H is finite-dimensional, Cov(X0(T )) is invertible and
he formula reduces (without any restrictions on y) to the familiar expression

X x,y(t) = X x (t)− Cov(X x (t), X0(T ))Cov(X0(T ))−1(X x (T )− y).

In many applications of stochastic spatio-temporal processes, which X x is a model of, the
rocess cannot be observed exactly. This motivates our generalization of the results of [16],
here we condition on X x (T )+ Z = y, with Z being a cylindrical Gaussian random variable
odeling observation noise. Under the following assumption, Cov(X0(T ) + Z ) becomes an

njective operator without any extra assumption on Q, so that we may treat a larger class
f SPDEs. Moreover, as is seen in the next sections, the addition of Z allows us to derive
onvergence rates for a spatially semidiscrete approximation of X x,y .

ssumption 3.3. The observation noise Z is a Gaussian cylindrical random variable in H ,
uch that

(i) its covariance is given by Cov(Z ) =: Q̃,
(ii) it is independent of W ,

(iii) there is some η ∈ (−∞, β) such that Z can be regarded as a Gaussian random variable
in Ḣη and

(iv) the embedding Ḣα ↪→ Q̃1/2(H ) holds true for some α ≥ max(η, 0).

Since the embedding IH ↪→Ḣ−ζ is Hilbert–Schmidt, the third assumption at least holds for
= −ζ . In the case that η ≥ 0, the observation noise Z is a Gaussian H -valued random

ariable and its covariance in Ḣη is by (6) and (15) given by Cov(Z )(I ∗
Ḣη↪→H

)−1
= Q̃ Aη

∈

1(Ḣη). Again we make no difference in notation between Q̃ and its extension to Ḣ−η. In the
ase that η ≤ 0, the same expression for the covariance is obtained from (10).

We write µT for the Gaussian image measure of X x (T )+ Z on Ḣη when x = 0. This sum
s interpreted as an Ḣη-valued random variable with covariance

Cov(X0(T )+ Z ) = (Q(T )+ Q̃)Aη
∈ L1(Ḣη) ∩ Σ+(Ḣη). (22)

his expression follows from the independence of Z and X , in turn a consequence of
ssumption 3.3 and the construction of the Itô integral. The reproducing kernel Hilbert space
ov(X0(T )+ Z )1/2(Ḣη) is dense in Ḣη. To see this, it suffices to show that Ḣα ↪→ ((Q(T )+

Q̃)Aη)1/2(Ḣη). This in turn follows from Assumption 3.3, Proposition A.1 and the fact that
A

η−α
2 (Ḣη) = Ḣα (see Section 2.2) since for all v ∈ Ḣ 2 max(η,0),

∥((Q(T )+ Q̃)Aη)
1
2 v∥

2

Ḣη=⟨Q(T )Aηv, v⟩Ḣη +⟨Q̃ Aηv, v⟩Ḣη≥∥Q̃
1
2 Aηv∥

2
≳ ∥A

η−α
2 v∥

2

Ḣη .

(23)

n the first equality we used the fact that ((Q(T )+ Q̃)Aη)
1
2 is symmetric on Ḣη, a consequence

f (22). By density, this extends to v ∈ Ḣη. This also shows injectivity of Cov(X0(T )+ Z ).
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Next, we introduce the operators that are used to define our bridge process X x,y . First, we
note that

Cov(X, X0(T )+ Z ) = Q(·)S(T − ·)Aη
∈ L1(Ḣη, HT ), (24)

here the operator Q(·)S(T − ·) is defined by (Q(·)S(T − ·)u)(t) = Q(t)S(T − t)u for u ∈ H ,
∈ [0, T ]. In light of the definition of Cov(X, X0(T )+ Z ) and the independence of Z and X ,

24) follows (for η ≤ 0) from the calculation

E
[
⟨X (T ), u⟩Ḣη ⟨X, v⟩HT

]
= E

[⟨∫ T

0
S(T − r ) dW (r ), u

⟩
Ḣη

(∫ T

0

⟨∫ t

0
S(t − r ) dW (r ), v(t)

⟩
dt
)]

=

∫ T

0
E
[⟨∫ t

0
A

η
2 S(T − r ) dW (r ), A

η
2 u
⟩⟨∫ t

0
S(t − r ) dW (r ), v(t)

⟩]
dt

=

∫ T

0

⟨(∫ t

0
S(t − r )(A

η
2 S(T − r ))∗ dr

)
A

η
2 u, v(t)

⟩
dt

=

∫ T

0
⟨Q(t)S(T − t)Aηu, v(t)⟩ dt = ⟨Q(·)S(T − ·)Aηu, v⟩HT

or arbitrary u ∈ Ḣη and v ∈ HT . Here, the second inequality follows from the independent
ncrement property of W , the third from (13) and the polarization identity, and the fourth
rom the semigroup property of S. For η > 0 a density argument can be used. Similarly,
ov(X (t), X0(T )+ Z ) = Q(t)S(T − t)Aη. For t ∈ [0, T ], we write

K (t) :=
(
Cov(X0(T )+ Z )−

1
2 Cov(X0(T )+ Z , X (t))

)∗
=

(
((Q(T )+ Q̃)Aη)−

1
2 S(T − t)Q(t)

)∗
∈ L2(Ḣη, H ).

e write K : Ḣη
→ CT ⊂ HT for the operator in L2(Ḣη, HT ) defined by

K :=
(
Cov(X0(T )+ Z )−

1
2 Cov(X0(T )+ Z , X )

)∗
. (25)

hese operators are well-defined as a consequence of Theorem 2.3. Note that for u ∈
Cov(X0(T )+ Z )

1
2 (Ḣη),

⟨Ku, v⟩HT
= ⟨Q(·)S(T − ·)Aη((Q(T )+ Q̃)Aη)−

1
2 u, v⟩HT

=

∫ T

0
⟨Q(t)S(T − t)Aη((Q(T )+ Q̃)Aη)−

1
2 u, v(t)⟩ =

∫ T

0
⟨K (t)u, v(t)⟩ dt

(26)

or all v ∈ HT . By density, this holds for all u ∈ Ḣη so that (Ku)(t) = K (t)u for almost every
∈ [0, T ]. This extends to all t ∈ [0, T ] since K maps into CT . In fact, the stronger claim that
is γ -radonifying holds true, which we formulate as a separate lemma. This technical result

llows us to show that the process X x,y is well-defined both as an element of HT and as a
ontinuous process with values in H . The proof is similar to that of [15, Lemma 3.2], but the
nclusion of the cylindrical random variable Z warrants a separate treatment.

emma 3.4. Under Assumptions 3.1 and 3.3, the operator K : Ḣη
→ C is γ -radonifying.
T
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Proof. First we note that for any v ∈ Ḣη

∥((Q(T )+ Q̃)Aη)
1
2 v∥

2

Ḣη = ∥(Q(T )Aη)
1
2 v∥

2

Ḣη + ∥(Q̃ Aη)
1
2 v∥

2

Ḣη .

Moreover, for v ∈ Ḣ 2 max(η,0)

∥(Q(T )Aη)
1
2 v∥

2

Ḣη = ⟨Q(T )Aηv, Aηv⟩ =

∫ T

0
∥Q

1
2 S(T − t)Aηv∥

2
dt.

y Assumption 3.1 and the density of Ḣ 2 max(η,0) ↪→ Ḣη, this identity extends to v ∈ Ḣη.
ence, for u ∈ Cov(X0(T ) + Z )

1
2 (Ḣη) = ((Q(T ) + Q̃)Aη)1/2(Ḣη) and v = ((Q(T ) +

Q̃)Aη)−1/2u ∈ Ḣη, we obtain from the previous two identities that∫ T

0
∥Q

1
2 S(T − t)Aη((Q(T )+ Q̃)Aη)−1/2u∥

2
dt ≤ ∥u∥2

Ḣη .

This inequality is true also for u ∈ Ḣη, by density of ((Q(T )+ Q̃)Aη)1/2(Ḣη) ↪→ Ḣη.
Summing up, what we have shown above is that the operator J 0 given by

(J 0v)(t) := Q
1
2 S(T − t)Aη((Q(T )+ Q̃)Aη)−1/2v

or v ∈ ((Q(T )+ Q̃)Aη)1/2(Ḣη) and almost every t ∈ [0, T ] is a well-defined contraction and
xtends to L(Ḣη, HT ). The operator K : Ḣη

→ HT can be factored into K = J 1J 0 where
1
: HT → CT ↪→ HT is given by

(J 1v)(t) :=
∫ t

0
S(t − s)Q

1
2 v(s) ds

for v ∈ HT , t ∈ [0, T ]. To see this, let v ∈ Ḣη be such that u = ((Q(T )+ Q̃)Aη)1/2v and note
that

(J 1J 0u)(t) =
∫ t

0
S(t − s)Q

1
2 (J 0u)(s) ds =

∫ t

0
S(t − s)QS(T − s)Aηv ds

=

∫ t

0
S(t − s)QS(t − s) ds S(T − t)Aηv

= Q(t)S(T − t)Aη((Q(T )+ Q̃)Aη)−
1
2 u

= K (t)u.

hus, in light of (26), Ku = J1J0u for u ∈ ((Q(T )+ Q̃)Aη)1/2(Ḣη) so by density, K = J 1J 0.
By [10, Corollary B.5] and (21), J 1(HT ) = Q̄1/2(HT ), the reproducing kernel Hilbert

pace of X x on HT . By [10, Propositions 1.7, 2.10], this is also the reproducing kernel
ilbert space of X x on CT , whence IQ̄1/2(HT )↪→CT

is γ -radonifying [40, Proposition 8.6]. Since
1
∈ L(HT , Q̄1/2(HT )), K = J 1J 0

= IQ̄1/2(HT )↪→CT
J 1J 0 is γ -radonifying by the ideal

roperty of these operators [40, Theorem 6.2]. □

We are now ready to introduce the SPDE bridge X x,y , the approximation of which is
he main topic of this paper. This we do in a separate proposition, in which we show that
his process has a continuous modification and therefore can be seen as a CT -valued random
ariable.

roposition 3.5. Under Assumption 3.1 and 3.3, there exists a Borel subspace M ⊂ Ḣη such
hat µT (M) = 1 and for all x ∈ H, y ∈M, the H-valued Gaussian process

x,y x ˜ η − 1
2 (X x (T )+ Z − y), (27)
X (t) := X (t)− K (t)((Q(T )+ Q)A )
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is well-defined for all t ∈ [0, T ] and has a continuous modification. Moreover, the representa-
ion

X x,y(t) = X x (t)+ K (t)((Q(T )+ Q̃)Aη)−
1
2 (y − S(T )x)− X̂0(t) (28)

olds true for all t ∈ [0, T ], P-a.s. Here

X̂0(t) := E[X0(t)|X0(T )+ Z ] = K (t)((Q(T )+ Q̃)Aη)−
1
2 (X0(T )+ Z ). (29)

for all t ∈ [0, T ].

Proof. We first note that the equality in (29) is a straightforward consequence of Theorem 2.3.
Next, by Lemma 2.2 there is a subspace M ⊂ Ḣη with µT (M) = 1 on which K((Q(T ) +
Q̃)Aη)−1/2 is well-defined and linear. To obtain a continuous process, we explicitly choose M
y

M =

⎧⎨⎩y ∈ Ḣη
:

∞∑
j=1

1
√

µ j
⟨y, f j ⟩ḢηK f j converges in CT

⎫⎬⎭
here (µ j , f j )∞j=1 are the eigenpairs of (Q(T )+Q̃)Aη. Note that this is indeed a Borel subspace

of Ḣη on which K((Q(T )+ Q̃)Aη)−1/2 is linear. That µT (M) = 1 is equivalent to the P-a.s.
convergence in CT of the sum

∞∑
j=1

1
√

µ j
⟨X (T )+ Z , f j ⟩ḢηK f j ,

hich holds as a consequence of K being γ -radonifying, since P-almost sure and mean square
convergence of series of independent mean zero Gaussian random variables in a Banach space
are equivalent [20, Corollary 6.4.4]. Moreover, as in [15, Section 4], that K is γ -radonifying
implies the existence of a continuous modification of X̂0. The proof is completed by noting
that S(t)(H ) ⊂M for all t > 0. This follows from the fact that S(t)(H ) ⊂ Ḣ r for t > 0 and
ll r ∈ R along with the embedding Ḣα ↪→ ((Q(T )+ Q̃)Aη)

1
2 (Ḣη). □

The next proposition justifies why we refer to X x,y as X x conditioned on X x (T )+Z = y. Its
roof is based on the second part of Theorem 2.3 and is essentially a word-by-word repetition
f that of [16, Theorem 2.14]. We therefore omit it.

roposition 3.6. Let Φ : L2([0, T ], H )→ R be an arbitrary functional for which E[|Φ(X x )|] <

. Under the same assumptions as Proposition 3.5,

E
[
Φ(X x )|X x (T )+ Z = y

]
= E[Φ(X x,y)]

or µT -a.e. y ∈ Ḣη. The left hand side of this equation is defined as a function gΦ ∈
L1((Ḣη, µT ),R) of y such that gΦ(X x (T )+ Z ) = E [Φ(X x )|X x (T )+ Z ] P-a.s.

emark 3.7. The proposition above is key to the approximation of the linear SPDE solution
X x conditioned on X x (T )+ Z = y. This is accomplished via the approximation of the bridge
rocess X x,y given by (27) by spectral or finite element methods in the next parts of the paper.
here is a large literature on such spatial approximations of SPDEs with nonlinearities (see,
.g., [1,2,8,9,22,24] for some examples as well as [21,26] for surveys of earlier literature).
owever, our approach cannot directly extend these results to the approximation of nonlinear
186
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SPDE solutions X x conditioned on X x (T ) + Z = y. The reason for this is that the proof of
Proposition 3.6 relies on the process X x being Gaussian, as does the analysis of approximations
of X x,y below. This only holds for linear SPDEs with additive noise.

However, in certain applications, our results might still be of interest to the nonlinear setting.
In finite dimensions, a linear SDE bridge process can be used in parameter estimation of a
nonlinear SDE model in a Markov chain Monte Carlo algorithm. This is in part accomplished
by showing equivalence of the laws of the linear and nonlinear SDE bridge processes and
approximating (a value proportional to) the Radon–Nikodym derivative [35]. We are not aware
of analogous results in the infinite-dimensional SPDE setting. However, in [15] conditions were
derived on a nonlinear stochastic reaction–diffusion equation such that its law at a fixed time is
equivalent to that of the corresponding linear equation, see [15, Proposition 5.1, Example 9.2]
for details. Moreover, the process X x,y (with Z = 0) was used in [15, Theorem 5.2] to derive
an expression for the corresponding Radon–Nikodym derivative. This is a tentative suggestion
that, as in the finite-dimensional setting, the approximation of linear SPDE bridge processes is
relevant also for parameter estimation in nonlinear SPDE models.

4. Spatial approximation of SPDE bridges with observation noise

In this section, we introduce an abstract, spatially semidiscrete approximation X x,y
V of the

SPDE bridge X x,y . We consider a sequence (Vi )i∈I of finite-dimensional Hilbert subspaces of
H , all equipped with the inner product of H . Here I is a general index set. We fix a subspace
V ∈ (Vi )i∈I and seek an approximation of the bridge process X x,y with values in V . We derive
three technical lemmas related to this process. These are used in subsequent sections, in which
we specify V to correspond to well-known spatial discretization methods: the spectral method
and the finite element method.

Since our observation noise Z is cylindrical, we need to make sense of projections of
cylindrical random variables onto V . This is covered by the following lemma. We write
PV : H → V for the orthogonal projection onto V but in the lemma, PV Y is only formally
the projection of a cylindrical random variable Y in H onto V . Recall that by the notation
⟨Y, v⟩ we refer to the evaluation of Y on v ∈ H , see Remark 2.1.

Lemma 4.1. Let V be a finite-dimensional subspace of H equipped with the inner product of
H and let Y be a cylindrical Gaussian random variable on H. Then, the V -valued Gaussian
random variable PV Y given by

⟨PV Y, v⟩ := ⟨Y, v⟩

for all v ∈ V is well-defined and σ (PV Y ) ⊂ σ (Y ).

Proof. Let (φ j )N
j=1 be an orthogonal basis of V with dim(V ) = N ∈ N. Setting

PV Y :=
N∑

j=1

⟨Y, φ j ⟩φ j

defines a V -valued random variable which for a given v ∈ V , fulfills ⟨PV Y, v⟩ = ⟨Y, v⟩ by
linearity of ⟨Y, ·⟩. To see that it is unique, suppose that P̃V Y is another random variable in
L2(Ω , V ) such that ⟨P̃V Y, v⟩ = ⟨Y, v⟩ for all v ∈ V . Then

E[∥PV Y − P̃V Y∥
2
] = E

[(
sup
v∈V
|⟨PV Y − P̃V Y, v⟩|

)2]
= 0.
∥v∥=1
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The fact that PV (Y ) is Gaussian is an immediate consequence of the equation ⟨PV Y, v⟩ =

⟨Y, v⟩. By (11), we obtain

⟨Y, φk⟩ =

∞∑
j=1

⟨Y, Aζ e j ⟩Ḣ−ζ ⟨φk, e j ⟩

for k = 1, . . . , N . Since σ (PV (Y )) = σ (⟨Y, φ1⟩, . . . , ⟨Y, φN ⟩), the fact that σ (PV (Y )) ⊂ σ (Y )
follows from (5). □

Remark 4.2. If Y1, Y2 are two independent cylindrical Gaussian random variables on H (in the
sense that ⟨Y1, u⟩ and ⟨Y2, v⟩ are independent for all u, v ∈ H ), then aY1+bY2 is a cylindrical
Gaussian random variable on H for all a, b ∈ R and PV (aY1 + bY2) = a PV Y1 + bPV Y2 P-a.s.
Note also, that if Y is an H -valued Gaussian random variable, PV Y (as defined above for the
cylindrical random variable induced by Y ) coincides with the usual orthogonal projection of Y
onto V .

Remark 4.3. Equivalently, we may define PV Y in Lemma 4.1 by

PV Y :=
∞∑
j=1

⟨Y, f j ⟩Ḣ−ζ PV f j , (30)

where we consider Y as a Gaussian random variable on Ḣ−ζ with ( f j )∞j=1 ⊂ Cov(Y )1/2(Ḣ−ζ ) ⊂
H being the eigenbasis of Ḣ−ζ corresponding to Cov(Y ) ∈ L1(Ḣ−ζ ). The sum converges to a
Gaussian random variable in L2(Ω , H ) with E[∥PV Y∥2] = ∥PV ∥

2
L2(Cov(Y )1/2(H ),H ) <∞, since

PV has finite-dimensional range. That this definition is equivalent to that of Lemma 4.1 can
be seen by an argument similar to that leading up to (11). Note that the Gaussian random
variables in the sum (30) are independent. Therefore, the convergence holds also P-almost
surely [20, Corollary 6.4.4]. With µY denoting the image measure of Y , we obtain a Borel
subspace MV,Y ⊂ Ḣ−ζ with µY (MV,Y ) = 1 such that PV is well-defined and linear on
MV,Y . When restricted to H , this operator coincides with the ordinary orthogonal projection
PV : H → V .

Next, we let SV = (SV (t))t∈[0,T ] be a C0-semigroup of symmetric linear operators on V . We
use this to define an approximation X x,y

V of X x,y by

X x,y
V (t) := X x

V (t)− QV (t)SV (T − t)(QV (T )+ Q̃V )−1(X x
V (T )+ PV Z − PV y) (31)

for t ∈ [0, T ] and y in Ḣη. Here

X x
V (t) := SV (t)PV x +

∫ t

0
SV (t − s)PV dW (s) (32)

is a spatially semidiscrete approximation of the solution X x (t) to the SPDE (20) at time
t ∈ [0, T ] started at x ∈ H . Since V is finite-dimensional, the stochastic integral is well-
defined and X x

V has a continuous modification. The operators Q̃V and QV (t) are given by
Q̃V = PV Q̃ PV and

QV (t) := Cov(X0
V (t)) =

∫ t

0
SV (s)PV QSV (s) ds

for t ∈ [0, T ]. The V -valued random variable PV Z is given by Lemma 4.1 and PV y is
well-defined for µ -a.e. y ∈ Ḣη, cf. Remark 4.3.
T
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The rest of this section consists of two lemmas that will help us obtain error rates for this
PDE approximation when the space V and semigroup approximation SV are further specified

n the following sections. To obtain higher convergence rates of the approximation X x,y
V , we

ust introduce another regularity parameter ρ.

ssumption 4.4. There is a ρ ≥ 0 such that∫ T

0
∥S(T − t)∥2

L(Q
1
2 (H ),Ḣρ )

dt =
∫ T

0
∥A

ρ
2 S(T − t)Q

1
2 ∥

2

L(H ) dt <∞

Under Assumption 3.1, this is fulfilled for all ρ ∈ [0, β) but, depending on the properties
f Q and A, it is often true for higher values of ρ. Note also, that under this assumption Q(T )
xtends to Ḣ−ρ and

∥Q(T )∥L(Ḣ−ρ ,Ḣρ ) = ∥A
ρ
2 Q(T )A

ρ
2 ∥ <∞. (33)

xample 4.5. We comment on this assumption in the setting of Example 3.2. In the case of
pace–time white noise, we directly see from (17) that Assumption 4.4 is satisfied for all ρ < 1.
ext, we consider spatially homogeneous noise, with a kernel q fulfilling the same condition
ith σ > d/2 as in Example 3.2. From the fact that Q1/2(H ) ↪→ Hσ , (18) and (19) we obtain

hat Assumption 4.4 is satisfied for all ρ < 1+min(σ, 1/2) in the case of Dirichlet boundary
onditions and for all ρ < 1+min(σ, 3/2) in the case of Neumann boundary conditions.

We also need an assumption that relates to the properties of the discrete spaces (Vi )i∈I .

ssumption 4.6. The following three statements hold true.

(i) There is a constant C <∞ such that

sup
V∈(Vi )i∈I

t∈[0,T ]

∥SV (t)PV ∥L(H ) < C.

(ii) There is a constant C <∞ such that

sup
V∈(Vi )i∈I

E[∥X0
V ∥

2
CT

] < C.

(iii) For all V ∈ (Vi )i∈I , the orthogonal projection PV commutes with Q̃.

emark 4.7. The estimate in Assumption 4.6(ii) holds with 2 replaced by any p ≥ 1, since
X0

V is Gaussian.

emark 4.8. Clearly, the commutativity of PV with Q̃ implies that Q̃(V ) ⊂ V . Since
Q̃(V ) ⊂ V if and only if Q̃(V⊥) ⊂ V⊥ (as Q̃ is assumed to be self-adjoint), one can use
he identity Q̃ = Q̃ PV + Q̃ PV⊥ to see that if Q̃(V ) ⊂ V , then PV and Q̃ commute. Therefore,
ssumption 4.6(iii) is equivalent to the statement: for all V ∈ (Vi )i∈I , Q̃(V ) ⊂ V .

The next two results, Lemmas 4.9 and 4.13, are key to our main results in Sections 5 and
. In both lemmas, we derive bounds on approximations of conditional expectations. These are
pplied to approximations of the term X̂0 in the decomposition (28).

In the first of these key lemmas, the expression PV (X0(T )+ Z ) should be understood in the
ense of Lemma 4.1 and X0(T )+ Z as a random variable in Ḣη. In the proof we make use of
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properties of the cross-covariance operator

QV,H (t) := Cov(X0
V (t), X0(t)) =

∫ t

0
SV (s)PV QS(s) ds,

nd we write Q H,V (t) := QV,H (t)∗ = Cov(X0(t), X0
V (t)) for t ∈ [0, T ].

emma 4.9. Let Assumption 3.1, 3.3, 4.4 and 4.6 be satisfied. If α ≤ ρ, then for all p ≥ 1,
here exists a constant C <∞ such that for all V ∈ (Vi )i∈I ,

∥E[X0
|X0(T )+ Z ]− E[X0

V |PV (X0(T )+ Z )]∥L p(Ω,CT )

≤ C
(∫ T

0
t−ϵ
∥S(t)− SV (t)PV ∥

2

L2(Q
1
2 (H ),H )

dt + sup
t∈[0,T ]

∥S(t)− SV (t)PV ∥
2
L(Ḣr ,H )

+ ∥I − PV ∥
2
L(Ḣ−α ,Ḣ−ρ )

) 1
2

.

Proof. For simplicity we assume η < 0, the proof for the case that η ≥ 0 is similar. The goal
is to obtain the stated bound on ∥EV ∥L p(Ω,CT ), where

EV = E[X0
|X0(T )+ Z ]− E[X0

V |PV (X0(T )+ Z )]

= E[X0
− E[X0

V |PV (X0(T )+ Z )]|X0(T )+ Z ].

Here, [39, Section 2.4.1] was used in the second equality, justified by (5) and the fact that
σ (PV (X0(T ) + Z )) ⊂ σ (X0(T ) + Z ). The proof is divided into several parts. In Part 1, we
establish that (X0

−E[X0
V |PV (X0(T )+ Z )], X0(T )+ Z ) are jointly Gaussian. By Theorem 2.3,

therefore, EV is an HT -valued Gaussian random variable. We show, in Parts 2 and 3, that
∥EV ∥L2(Ω,CT ) <∞. Then it follows that the law of EV is Gaussian in CT too, since CT is dense
in HT . Therefore, we only consider the bound on ∥EV ∥L p(Ω,CT ) for p = 2, since the L p(Ω , CT )-
norm of a CT -valued Gaussian random variable can be bounded by a constant, depending on
p, times the L2(Ω , CT ) norm [17, Proposition 3.14].

Part 1. By considering sequences of elementary integrands and arguing as in the proof
of [10, Theorem 5.2(iii)], it can be seen, using also the independence of Z and W , that
(X0

V , (X0(T ) + Z )) is a pair of jointly Gaussian random variables. From this it follows that
(X0
−E[X0

V |PV (X0(T )+ Z )], X0(T )+ Z ) are jointly Gaussian. To see this, first note that with

BV := Cov(X0
V , PV (X0(T )+ Z ))Cov(PV (X0(T )+ Z ))−1

∈ L(V, HT ),

we obtain from Theorem 2.3 that E[X0
V |PV (X0(T )+ Z )] = BV PV (X0(T )+ Z ). Therefore, for

(u, v) ∈ HT ⊕ Ḣη,

⟨X0
− E[X0

V |PV (X0(T )+ Z )], u⟩HT
+ ⟨X0(T )+ Z , v⟩Ḣη

= ⟨X0, u⟩HT
− ⟨PV (X0(T )+ Z ), B∗V u⟩ + ⟨X0(T )+ Z , v⟩Ḣη

= ⟨X0, u⟩HT
− ⟨X0(T ), B∗V u⟩ − ⟨Z , B∗V u⟩ + ⟨X0(T ), v⟩Ḣη + ⟨Z , v⟩Ḣη

= ⟨X0, u⟩HT
− ⟨X0(T ), B∗V u − Aηv⟩ −

∞∑
j=1

⟨Z , A−ηe j ⟩Ḣη ⟨e j , B∗V u⟩ + ⟨Z , v⟩Ḣη ,

o this claim follows from the fact that the pair (X0, X0(T )) is jointly Gaussian and independent
f Z . Here we made use of Lemma 4.1 and (11).
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Part 2. We apply a factorization argument to obtain a first bound on ∥EV ∥L2(Ω,CT ). We write

KV,H :=

(
Cov(X0(T )+ Z )−

1
2 Cov

(
X0(T )+ Z ,E[X0

V |PV (X0(T )+ Z )]
))∗

so that, by Theorem 2.3,

EV = E[X0
− E[X0

V |PV (X0(T )+ Z )]|X0(T )+ Z ]

= (K −KV,H )Cov(X0(T )+ Z )−
1
2 (X0(T )+ Z ).

In light of (11) and (22), we obtain for v ∈ V and u ∈ Ḣη,

⟨Cov(X0(T )+ Z , PV (X0(T )+ Z ))v, u⟩Ḣη

= E
[
⟨X0(T )+ Z , u⟩Ḣη ⟨X0(T )+ Z , v⟩

]
=

∞∑
j=1

E
[
⟨X0(T )+ Z , u⟩Ḣη ⟨X0(T )+ Z , A−ηe j ⟩Ḣη

]
⟨v, e j ⟩

=

∞∑
j=1

⟨(Q(T )+ Q̃)Aη A−ηe j , u⟩Ḣη ⟨v, e j ⟩

=

∞∑
j=1

⟨(Q(T )+ Q̃)e j , u⟩Ḣη ⟨v, e j ⟩

= ⟨(Q(T )+ Q̃)Aηu, v⟩ = ⟨(Q(T )+ Q̃)v, u⟩Ḣη

o that

Cov(X0(T )+ Z , PV (X0(T )+ Z )) = (Q(T )+ Q̃)|V ∈ L(V, Ḣη),

hich yields

Cov(PV (X0(T )+ Z ), X0(T )+ Z ) = PV (Q(T )+ Q̃)Aη
∈ L(Ḣη, V ).

he interchange of expectation and summation in the second step above is justified by the
onvergence in L2(Ω ,R) of the sum

∞∑
j=1

⟨X0(T )+ Z , A−ηe j ⟩Ḣη ⟨v, e j ⟩.

sing the first part of Proposition A.1 and the fact that Ḣα ↪→ Q̃1/2(H ), we now note that

∥(PV Q(T )PV + Q̃V )
1
2 PV v∥

2
= ∥Q(T )

1
2 PV v∥

2
+ ∥Q̃

1
2 PV v∥

2
≥ C∥A−

α
2 PV v∥

2
, (34)

or v ∈ H, where the constant C does not depend on the specific choice of V . Therefore, the
perators (PV Q(T )PV + Q̃V )1/2 and PV Q(T )PV + Q̃V are invertible on the finite-dimensional
pace L(V ). Hence, by an argument similar to the one for Cov(PV (X0(T )+ Z ), X0(T )+ Z ),
e see that

BV = QV,H (·)S(T − ·)(PV Q(T )PV + Q̃V )−1.

ere QV,H (·)S(T − ·) : H → HT is defined by (QV,H (·)S(T − ·)u)(t) = QV,H (t)S(T − t)u for
∈ H, t ∈ [0, T ]. This then implies that

KV,H =

(
((Q(T )+ Q̃)Aη)−

1
2 (Q(T )+ Q̃)(PV Q(T )PV + Q̃V )−1(QV,H (·)S(T − ·))∗

)∗
.
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Next, let ( f j )∞j=1 ⊂ Ḣη denote the eigenbasis of Cov(X0(T ) + Z ) and (z j )∞j=1 a sequence
of i.i.d. Gaussian random variables. Then, by Lemma 2.2 and (7),

∥EV ∥L2(Ω,CT ) = E
[ ∞∑

j=1

z j (K −KV,H ) f j

2

CT

]
= ∥K −KV,H∥

2
γ (Ḣη,CT ).

We now recall from the proof of Lemma 3.4 that K = J 1J 0. Similarly, KV,H can be factored
into KV,H = J 1

VJ 0
V,H , where J 1

V : HT → CT is given by

(J 1
V v)(t) :=

∫ t

0
SV (t − s)PV Q

1
2 v(s) ds (35)

hile J 0
V,H : Ḣ

η
→ HT is given by

(J 0
V,Hv)(t) :=Q

1
2 S(T − t)(PV Q(T )PV + Q̃V )−1 PV (Q(T )+ Q̃)Aη((Q(T )+ Q̃)Aη)−1/2v

=Q
1
2 S(T − t)(PV Q(T )PV + Q̃V )−1 PV ((Q(T )+ Q̃)Aη)1/2v

(36)

or v ∈ Ḣη and almost every t ∈ [0, T ]. By invariance of the reproducing kernel Hilbert
pace, ((Q(T )+ Q̃)Aη)1/2(Ḣη) = ((Q(T )+ Q̃))1/2(H ) ⊂ H, so that J 0

V,H is well-defined as an
perator in L(Ḣη, HT ). We use these factorizations and the ideal property of the γ -radonifying
orm to make the split

∥K −KV,H∥γ (Ḣη,CT ) ≤ ∥J
1
− J 1

V ∥γ (HT ,CT )∥J
0
∥L(Ḣη,HT )

+ ∥J 1
V ∥γ (HT ,CT )∥J

0
− J 0

V,H∥L(Ḣη,HT ). (37)

Part 3. We now derive bounds for the four terms of (37). Note that the fact that ∥J 0v∥HT
<∞

was shown in Lemma 3.4, we move on to show that supV∈(Vi )i∈I ∥J
1
V ∥γ (HT ,CT ) <∞. As in the

proof of Lemma 3.4, we have J 1
V (HT ) = Q̄1/2

V (HT ), where Q̄V is the covariance operator of
X0

V ∈ L2(Ω , HT ) and Q̄1/2
V (HT ) is the reproducing kernel Hilbert space of X0

V on CT . Thus,
y (8) and Assumption 4.6(ii), there exists a constant C < ∞, independent of the specific
hoice of V , such that

∥J 1
V ∥

2
γ (HT ,CT ) = E

[
∥X0

V (t)∥
2
CT

]
< C. (38)

For the term ∥J 1
− J 1

V ∥γ (HT ,CT ), we note that by a straightforward calculation along
ith [10, Corollary B.5], (J 1

− J 1
V )(HT ) = Cov(X0

− X0
V )1/2(H ). By the same arguments

s for the term ∥J 1
V ∥γ (HT ,CT ), we therefore obtain

∥J 1
− J 1

V ∥
2
γ (HT ,CT ) = E[∥X0

− X0
V ∥

2
CT

]

≲
∫ T

0
t−ϵ
∥S(t)− SV (t)PV ∥

2

L2(Q
1
2 (H ),H )

dt

+ sup
t∈[0,T ]

∥S(t)− SV (t)PV ∥
2
L(Ḣr ,H ),

where we made use of Proposition A.2 in the last step.
From (23) and Proposition A.1, we find that

∥
(
(Q(T )+ Q̃)Aη

)− 1
2 ∥ ≤ ∥A−

η−α
2 ∥ = 1. (39)
L(Ḣα ,Ḣη) L(Ḣα ,Ḣη)
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Using this result along with the symmetry of ((Q(T ) + Q̃)Aη)−
1
2 on Ḣη, we obtain that for

u ∈ Ḣα ,

∥((Q(T )+ Q̃)Aη)−
1
2 u∥Ḣ2η−α = sup

v∈Ḣ2η−α

∥v∥
Ḣ2η−α=1

⏐⏐⏐⟨((Q(T )+ Q̃)Aη)−
1
2 u, v⟩Ḣ2η−α

⏐⏐⏐
= sup

v∈Ḣ2η−α

∥v∥
Ḣ2η−α=1

⏐⏐⏐⟨u, ((Q(T )+ Q̃)Aη)−
1
2 A−α+ηv⟩Ḣη

⏐⏐⏐ (40)

≤ ∥u∥Ḣη∥((Q(T )+ Q̃)Aη)−
1
2 ∥L(Ḣα ,Ḣη).

Therefore, ((Q(T ) + Q̃)Aη)−1/2 extends to an operator in L(Ḣη, Ḣ 2η−α), and we retain its
otation. Finally, by (40) and the commutativity PV and Q̃ from Assumption 4.6(iii), we find
hat for v ∈ Ḣη,

∥(J 0
− J 0

V,H )v∥
2
HT
=

∫ T

0

Q
1
2 S(T − t)

(
(PV Q(T )PV + Q̃V )−1 PV (Q(T )+ Q̃)− I

)
× Aη((Q(T )+ Q̃)Aη)−1/2v

2

L(Ḣη,H )
dt

≲ (I+ II) ∥Aη− α
2 ((Q(T )+ Q̃)Aη)−

1
2 v∥

2
≲ (I+ II) ∥v∥2

Ḣη .

ere,

I :=
∫ T

0

Q
1
2 S(T − t)(PV Q(T )PV + Q̃V )−1 PV Q(T )(I − PV )A

α
2

2

L(H )
dt

nd

II :=
∫ T

0

Q
1
2 S(T − t)

(
I − PV

)
A

α
2

2

L(H )
dt.

For the first of these two terms, we note that (PV Q(T )PV + Q̃V )−1/2, the inverse of
(PV Q(T )PV + Q̃V )1/2

∈ L(V ), coincides with the pseudoinverse of (PV Q(T )PV + Q̃V )1/2 PV ∈

L(H ) when this is restricted to V . Since (A−
α
2 PV )∗ = PV A−

α
2 , it follows from (34) and

Proposition A.1 that

∥(PV Q(T )PV + Q̃V )−
1
2 PV A−

α
2 ∥L(H )

≤ C∥(PV A−
α
2 )−1 PV A−

α
2 ∥L(H ) = C∥P

ker(PV A−
α
2 )⊥
∥
L(H )
≤ C,

where P
ker(PV A−

α
2 )⊥
: H → ker(PV A−

α
2 )⊥ denotes the orthogonal projection onto ker(PV A−

α
2 )⊥.

s a consequence, by symmetry of the involved operators, we also have

∥A−
α
2 (PV Q(T )PV + Q̃V )−

1
2 PV ∥L(H ) = ∥(PV Q(T )PV + Q̃V )−

1
2 PV A−

α
2 ∥L(H ) ≤ C.

utting these two inequalities together, it follows that

∥(PV Q(T )PV + Q̃V )−1 PV ∥L(Ḣα ,Ḣ−α ) = ∥A−
α
2 (PV Q(T )PV + Q̃V )−1 PV A−

α
2 ∥L(H ) ≤ C2.

We use this result along with (33) and the fact that α ≤ ρ to see that

I ≲ ∥A
α
2 Q(T )(I − PV )A

α
2 ∥

2
L(H ) ≲ ∥A−

ρ
2 (I − PV )A

α
2 ∥

2
L(H ),

and by Assumption 4.4 we obtain the same bound for II. □
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Remark 4.10. An alternative way of treating the term ∥K −KV,H∥γ (Ḣη,CT ) above would be
to make the split

∥K −KV,H∥γ (Ḣη,CT )

≤ ∥J 1
− J 1

V ∥L(HT ,CT )∥J
0
∥L2(Ḣη,HT ) + ∥J 1

V ∥γ (HT ,CT )∥J
0
− J 0

V,H∥L(Ḣη,HT ).

It can be seen that ∥J 0
∥L2(Ḣη,HT ) < ∞ provided that α ≤ β. At the cost of this

additional assumption, the bound on the error in Lemma 4.9 can then be improved, since
∥J 1
− J 1

V ∥L(HT ,CT ) ≤ ∥J
1
− J 1

V ∥γ (HT ,CT ).

For the next lemma, we need an additional assumption. This lemma is only applied to the
finite element approximation of Section 6. For this approximation, the only natural example
of an operator Q̃ that fulfills Assumption 4.6(iii) is a multiple of the identity operator I . This
implies that α = 0. With α = 0, the assumption is already fulfilled and the proof of the lemma
below can be simplified, but we choose to prove the result also for α > 0, to allow for possible
generalizations to other approximation schemes.

Assumption 4.11. The following two statements hold true.

(i) For all V ∈ (Vi )i∈I , V ⊂ Ḣα and

sup
V∈(Vi )i∈I

∫ T

0
∥SV (T − t)PV ∥

2

L(Q
1
2 (H ),Ḣα )

dt

= sup
V∈(Vi )i∈I

∫ T

0
∥A

α
2 SV (T − t)PV Q

1
2 ∥

2

L(H ) dt <∞.

(ii) The orthogonal projection PV satisfies

sup
V∈(Vi )i∈I

∥PV ∥L(Ḣα ) = sup
V∈(Vi )i∈I

∥A
α
2 PV A−

α
2 ∥L(H ) <∞.

emark 4.12. Under Assumption 4.11(ii), it can be seen that PV extends to Ḣ−α . We make
no notational distinction between PV and its extension, which coincides with the generalized
orthogonal projection, defined by the equation ⟨PV u, v⟩ = ⟨A−α/2u, Aα/2v⟩ for all u ∈
Ḣ−α, v ∈ V , and fulfills ∥PV ∥L(Ḣ−α ) = ∥PV ∥L(Ḣα ).

emma 4.13. Let Assumptions 3.1, 3.3, 4.4, 4.6 and 4.11 be satisfied. If α ≤ ρ, then for all
p ≥ 1, there exists a constant C <∞ such that for all V ∈ (Vi )i∈I ,

∥E[X0
V |PV (X0(T )+ Z )]− E[X0

V |X
0
V + PV Z ]∥L p(Ω,CT )

≤ C
(∫ T

0
∥S(T − t)− SV (T − t)PV ∥

2

L(Q
1
2 (H ),Ḣα )

dt
) 1

2

.

roof. As in the proof of Lemma 4.9, we start by showing the first claim for p = 2, i.e., we
derive a bound on

EV := E[X0
V |PV (X0(T )+ Z )]− E[X0

V |X
0
V (T )+ PV Z ]

in L2(Ω , CT ). The general claim then follows from the Gaussian law of this random variable,
which follows from a similar argument as in the proof of Lemma 4.9. The proof is split into
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two parts. In the first part, we use a factorization argument to derive a bound on ∥EV ∥L2(Ω,CT )
hich we further analyze in the second part.

art 1. We recall from the proof of Lemma 4.9 that

E[X0
V |PV (X0(T )+ Z )] = QV,H (·)S(T − ·)(PV Q(T )PV + Q̃V )−1 PV (X0(T )+ Z ).

nd note that, as another consequence of Theorem 2.3,

E[X0
V |X

0
V (T )+ PV Z ] = Cov(X0

V , X0
V (T )+ PV Z )Cov(X0

V (T )+ PV Z )−1

= QV (·)SV (T − ·)(QV (T )+ Q̃V )−1(X0
V (T )+ PV Z ).

By the same factorization argument as in the proofs of Lemmas 3.4 and 4.9, we may write

E[X0
V |PV (X0(T )+ Z )] = J 1

VJ 0
V PV (X0(T )+ Z ).

and

E[X0
V |X

0
V (T )+ PV Z ] = J 1

V J̃ 0
V (X0

V (T )+ PV Z ).

Here J 1
V is given by (35) while J 0

V , J̃ 0
V ∈ L(H, HT ) are given by

(J 0
V v)(t) := Q

1
2 S(T − t)(PV Q(T )PV + Q̃V )−1 PV v

and

(J̃ 0
V v)(t) := Q

1
2 SV (T − t)(QV (T )+ Q̃V )−1 PV v

or v ∈ H and almost every t ∈ [0, T ]. The fact that V is finite-dimensional ensures that these
perators are well-defined. Let us write

ẼV := J̃ 0
V (X0

V (T )+ PV Z )− J 0
V PV (X0(T )+ Z )

= J̃ 0
V PV (X0

V (T )− X0(T ))+ (J̃ 0
V − J 0

V )PV (X0(T )+ Z ).

Since Cov(EV ) = (J 1
V Cov(ẼV )1/2)(J 1

V Cov(ẼV )1/2)∗, [10, Corollary B.5] implies that
1
V Cov(ẼV )1/2(HT ) = Cov(EV )1/2(HT ). Note also, that (J 1

V Cov(ẼV )1/2 f j )∞j=1 is an orthonor-
al basis of J 1

V Cov(ẼV )1/2(HT ) when ( f j )∞j=1 is an orthonormal basis of HT . Using this, along
ith (8), the ideal property of the γ -radonifying operators and the bound (38) obtained in the
roof of Lemma 4.9, we see that, for an arbitrary sequence (z j )∞j=1 of i.i.d. Gaussian random
ariables,

∥EV ∥
2
L2(Ω,CT ) = ∥ICov(EV )

1
2 (HT )↪→CT

∥
2

γ (Cov(EV )
1
2 (HT ),CT )

= ∥I
J 1

V Cov(ẼV )
1
2 (HT )↪→CT

∥
2

γ (J 1
V Cov(ẼV )

1
2 (HT ),CT )

= E
[ ∞∑

j=1

z jJ 1
V Cov(ẼV )

1
2 f j

2

CT

]
= ∥J 1Cov(ẼV )

1
2 ∥

2
≲ ∥Cov(ẼV )∥L(H ).
V γ (HT ,CT ) T

195



G. di Nunno, S. Ortiz–Latorre and A. Petersson Stochastic Processes and their Applications 158 (2023) 170–207

N

W

w
b

U

S
C

t

Part 2. We split the term ∥Cov(ẼV )∥L(HT ) using the independence of Z and W , by

∥Cov(ẼV )∥L(HT ) ≤ ∥J̃ 0
V Cov(X0

V (T )− X0(T ))(J̃ 0
V )∗∥L(HT )

+ 2∥J̃ 0
V Cov(X0

V (T )− X0(T ), X0(T ))(J̃ 0
V − J 0

V )∗∥L(HT )

+ ∥(J̃ 0
V − J 0

V )Cov(PV (X0(T )+ Z ))(J̃ 0
V − J 0

V )∗∥L(HT )

=: I+ II+ III.

ext, for v ∈ H, we may write

∥J̃ 0
V v − J 0

V v∥
2
HT
=

∫ T

0

Q
1
2

(
SV (T − t)(QV (T )+ Q̃V )−1(QV (T )− PV Q(T )PV )

−
(
S(T − t)− SV (T − t)

))
(PV Q(T )PV + Q̃V )−1 PV v

2 dt.

e already noted in the proof of Lemma 4.9 that as a consequence of Proposition A.1,

∥(PV Q(T )PV + Q̃V )−1 PV ∥L(Ḣα ,Ḣ−α ) ≤ C,

here the constant C does not depend on the choice of V . In a similar way, we obtain the
ound

∥(QV (T )+ Q̃V )−1 PV ∥L(Ḣα ,Ḣ−α ) ≤ C.

sing these two results along with Assumptions 4.4 and 4.11, it follows that

∥J̃ 0
V − J 0

V ∥
2
L(Ḣα ,HT ) ≲ ∥Q(T )− QV (T )∥2

L(Ḣ−α ,Ḣα )

+

∫ T

0
∥S(T − t)− SV (T − t)PV ∥

2

L(Q
1
2 (H ),Ḣα )

dt.

imilarly, there is a constant C <∞, independent on the choice of V , such that ∥J̃ 0
V ∥L(Ḣα ,HT ) <

.
With these estimates in place, we move on to estimate the terms I and II. Since

Cov(X0
V (T )− X0(T )) =

∫ T

0
(SV (t)PV − S(t))Q(SV (t)PV − S(t)) dt,

he previously obtained bounds imply that

I ≲
∫ T

0
∥Q

1
2 (SV (t)PV − S(t))A

α
2 ∥

2

L(H ) dt

=

∫ T

0
∥A

α
2 (S(T − t)− SV (T − t)PV )Q

1
2 ∥

2

L(H ) dt.

Similarly, from the fact that

Cov(X0
V (T )− X0(T ), X0(T )) = QV,H (T )− Q(T ),

it follows that

II ≲ ∥Q(T )− QV,H (T )∥L(Ḣ−α ,Ḣα )

×

(
∥Q(T )− QV (T )∥2

L(Ḣ−α ,Ḣα ) +

∫ T

0
∥A

α
2 (S(T − t)− SV (T − t)PV )Q

1
2 ∥

2

L(H ) dt
) 1

2

.
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Finally, since Cov(PV (X0(T )+ Z )) = (PV Q(T )PV + Q̃V ), we note that for v ∈ H,

∥(J̃ 0
V − J 0

V )Cov(PV (X0(T )+ Z ))PV v∥
2
HT

=

∫ T

0

Q
1
2

(
SV (T − t)(QV (T )+ Q̃V )−1(QV (T )− PV Q(T )PV )

−
(
S(T − t)− SV (T − t)

))
PV v

2 dt.

Using the estimates obtained above, we therefore have

III ≲ ∥Q(T )− QV (T )∥2
L(Ḣ−α ,Ḣα ) +

∫ T

0
∥A

α
2 (S(T − t)− SV (T − t)PV )Q

1
2 ∥

2

L(H ) dt.

The proof is now completed by noting that, by Hölder’s inequality and Assumption 4.4,

∥Q(T )− QV,H (T )∥L(Ḣ−α ,Ḣα )

≤

∫ T

0
∥A

α
2 (S(T − t)− SV (T − t)PV )Q

1
2 ∥L(H )∥A

α
2 S(T − t)Q

1
2 ∥L(H ) dt

≲

(∫ T

0
∥A

α
2 (S(T − t)− SV (T − t)PV )Q

1
2 ∥

2

L(H ) dt
) 1

2

,

long with an analogous bound for the term ∥Q(T )− QV (T )∥L(Ḣ−α ,Ḣα ), where also Assump-
ion 4.11 is needed. □

. Spectral approximation under commutative observation noise

Next, we apply the results of the previous section to a spectral approximation of the SPDE
ridge X x,y . This is to say, for N ∈ N, we set V = VN := span{e1, . . . , eN }, SVN := SN :=

PN S = S PN , where we write PN for the projection PVN , QN := QVN , Q̃N := Q̃VN and we
let the approximation X x,y

N := X x,y
VN

be given by (31). Writing also X x
N for X x

VN
, the spectral

approximation (32) of X x , this has in this setting the special property that X x
N = PN X x for all

x ∈ H . Similarly, QN (t) = PN Q(t)PN for all t ∈ [0, T ].

Remark 5.1. In this setting, Assumption 4.6(i) is automatically satisfied, Assumption 4.6(ii)
is implied by Assumption 3.1 while Assumption 4.6(iii) is equivalent to Q̃ and A sharing a
common eigenbasis.

Remark 5.2. Under Assumption 4.6(iii), write (µ̃ j )∞j=1 for the sequence of eigenvalues of
Q̃ corresponding to the eigenbasis (e j )∞j=1. Then, by Proposition A.1, Assumption 3.3(iv) is
equivalent to the existence of a constant C > 0 such that inf j λα

j µ̃ j ≥ C .

We now derive error bounds for X x,y
N as N →∞. They are obtained from the fact that

∥(I − PN )A−r
∥L(H ) = ∥A−r (I − PN )∥L(H ) ≤ λ−r

N+1 (41)

for all r ≥ 0 and N ∈ N.

Theorem 5.3. Let Assumptions 3.1, 3.3, 4.4 and 4.6 be satisfied with α < ρ and let χ > 0.
Then, for a Borel subset M ⊂ Ḣη with µT (M) = 1 and all x ∈ Ḣχ , y ∈ M, p ≥ 1 and

< min(ρ − α, β, χ ), there is an M ∈ N and a constant C <∞ such that for all N ≥ M,

∥X x,y
− X x,y

∥ ≤ Cλ
−

r
2 .
N L p(Ω,CT ) N+1
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Proof. As in Lemma 4.9, the law of X x,y
N − X x,y can be seen to be Gaussian in HT and

therefore also in CT . Using (28) and the fact that X0
N (T ) = PN X0(T ), we split the error into

four parts,

∥X x,y
N − X x,y

∥L p(Ω,CT ) =: I+ II+ III+ IV+ V.

The first term is given by I = ∥S(·)x − SN (·)x∥CT
, the second by II =

X0
− PN X0


L p(Ω,CT ).

ith K given by (25) and KN : VN → C([0, T ], VN ) by

(KN v)(t) := QN (t)SN (T − t)(QN (T )+ Q̃N )−
1
2 v,

for v ∈ VN , t ∈ [0, T ], the third therm is given by

III =
K((Q(T )+ Q̃)Aη)−

1
2 y −KN (QN (T )+ Q̃N )−

1
2 PN y


CT

,

he fourth by

IV =
K((Q(T )+ Q̃)Aη)−

1
2 S(T )x −KN (QN (T )+ Q̃N )−

1
2 PN S(T )x


CT

,

nd the fifth by

V =
E[X0

|X0(T )+ Z ]− E[PN X0
|X0

N (T )+ PN Z ]


L p(Ω,CT )

=
E[X0

|X0(T )+ Z ]− E[PN X0
|PN (X0(T )+ Z )]


L p(Ω,CT )

= ∥K∥L p(Ω,CT ) ((Q(T )+ Q̃)Aη)−
1
2 (X0(T )+ Z )

− KN (QN (T )+ Q̃N )−
1
2 PN (X0(T )+ Z ).

By (41), the fact that x ∈ Ḣχ and the strong continuity of S, the first term is bounded by

I = sup
t∈[0,T ]

∥(I − PN )A−
χ
2 S(t)A

χ
2 x∥ ≤ ∥(I − PN )A−

χ
2 ∥ sup

t∈[0,T ]
∥S(t)A

χ
2 x∥ ≲ λ

−
χ
2

N+1.

For the second term, we use Proposition A.2, (3), Assumption 3.1, (17) and (41) to see that,
or arbitrary ϵ ∈ (0, β − r ),

II2
= ∥X0

− X0
N∥

2
L p(Ω,CT ) ≲

∫ T

0
t−ϵ
∥(I − PN )S(t)∥2

L2(Q
1
2 (H ),H )

dt

+ sup
t∈[0,T ]

∥(I − PN )S(t)∥2
L(Ḣr ,H )

≲ λ−r
N+1

∫ T

0
tβ−r−ϵ−1 dt + λ−r

N+1 ≲ λ−r
N+1.

It similarly follows by Lemma 4.9 and (41) that V ≲ λ
−min(ρ−α,r )/2
N+1 for arbitrary r < β.

Writing EN := K((Q(T ) + Q̃)Aη)−
1
2 (X0(T ) + Z ) − KN (QN (T ) + Q̃N )−

1
2 PN (X0(T ) + Z ),

e combine Chebyshev’s inequality with the bound on V in a Borel–Cantelli argument. We
btain for all ϵ > 0 and p > 1 the existence of a constant C > 0 such that for all N ∈ N

P(∥EN∥CT
≥ λ

(−min(ρ−α,r )+ϵ)/2
N+1 ) ≤ λ

(min(ρ−α,r )−ϵ)p/2
N+1 ∥EN∥

p
L p(Ω,CT ) ≤ Cλ

−ϵp
N+1.

ince IḢζ ↪→H ∈ L2(Ḣ ζ , H ),
∑
∞

j=1 λ
−ζ

j <∞. Hence, if we choose p ≥ ζ/ϵ, the corresponding
eries in the Borel–Cantelli lemma is convergent. Then, P-a.s., there is some M ∈ N such
hat ∥EN∥CT

< λ
(−min(ρ−α,r )+ϵ)/2
N+1 for all N ≥ M . Let now MN ,X0(T )+Z ⊂ Ḣη, with
T (MN ,X0(T )+Z ) = 1, be the Borel subspace on which PN is well-defined (see Remark 4.3).
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Then, by the same arguments, there is a Borel subset (not necessarily a subspace) M1 ⊂ Ḣη

ith µT (M1) = 1 such that for each y ∈M1 ∩N∈N MN ,X0(T )+Z , there is some M ∈ N such
hat K((Q(T )+ Q̃)Aη)−

1
2 y −KN (QN (T )+ Q̃N )−

1
2 PN y


CT

< λ
(−min(ρ−α,r )+ϵ)/2
N+1

or all N ≥ M . Let M0 be the Borel subspace of Proposition 3.5. By letting M :=

M0 ∩M1 ∩N∈N MN ,X0(T )+Z , we find that III < λ
(−min(ρ−α,r )+ϵ)/2
N+1 for all N ≥ M .

It remains to treat the fourth term. We first note that by (17) and (39),

∥((Q(T )+ Q̃)Aη)−
1
2 S(T )x∥Ḣη ≲ ∥S(T )x∥Ḣα ≲ T−max((α−χ ),0)/2

riting J 0
N ,H for the operator J 0

VN ,H defined in (36), we therefore obtain

IV = ∥J1J0 − PNJ1J 0
N ,H ((Q(T )+ Q̃)Aη)−

1
2 S(T )x∥CT

≲ ∥(I − PN )J1∥L(HT ,CT )∥J0∥L(Ḣη,HT ) + ∥J1∥L(HT ,CT )∥J0 − J 0
N ,H∥L(Ḣη,HT ).

In a similar way to the first term, we obtain from Assumption 4.4 and Hölder’s inequality that
∥(I − PN )J1∥L(HT ,CT ) ≲ λ

−
ρ
2

N . The term ∥J0 − J 0
N ,H∥L(Ḣη,HT ) has already been treated in the

roof of Lemma 4.9, and with this, the proof is completed. □

emark 5.4. For the unconditioned case y = Z = 0, the proof can be repeated to see
hat under the same assumptions, the convergence rate becomes r < min(β, ξ ). Hence, the
onvergence rate is the same if ρ ≥ α + min(β, ξ ) and since ρ ≥ β, this is in particular
ulfilled for α = 0.

emark 5.5. In the special case that not only Q̃ but also Q share an eigenbasis with A, we can
erive a lower bound on the error ∥X x,y

N − X x,y
∥L p(Ω,CT ) of Theorem 5.3 for p ≥ 2. Writing

µ j )∞j=1 for the eigenvalues of Q, we also need to assume that there is some ν > 1 and C > 0
uch that inf j λ−1

j µ j ≥ C j−ν . For simplicity, we let η = −ζ and set x = y = 0.
Note that Q(t)e j = µ j (1−e−2λ j t )/(2λ j )e j and, since e j ∈ Ḣα ↪→ Cov(X0(T )+ Z )1/2(Ḣη),

hat

K (t)e j = Q(t)S(T − t)Aη((Q(T )+ Q̃)Aη)−
1
2 e j =

µ j
2λ j

(1− e−2λ j t )e−λ j (T−t)λ
η/2
j√

µ j
2λ j

(1− e−2λ j T )+ µ̃ j

e j

for t ∈ [0, T ], j ∈ N. Since (λ−η/2e j )∞j=1 is an orthonormal basis of Ḣη, Lemma 2.2 yields

X̂0(t) =
∞∑
j=1

µ j

2λ
1+η
j

(1− e−2λ j t )e−λ j (T−t)

µ j
2λ j

(1− e−2λ j T )+ µ̃ j
⟨X (T )+ Z , e j ⟩Ḣηe j .

Writing X̂0
N (t) := QN (t)SN (T − t)(QN (T )+ Q̃N )−1(X0

N (T )+ PN Z ) we similarly obtain from
Remark 4.3,

X̂0
N (t) =

N+1∑ µ j

2λ
1+η
j

(1− e−2λ j t )e−λ j (T−t)

µ j (1− e−2λ j T )+ µ̃ j
⟨X (T )+ Z , e j ⟩Ḣηe j .
j=1 2λ j
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It follows that X̂0
N = PN X̂0. By the definition of Cov(X0(T )+ Z ) and Cov(X0(t), X0(T )+ Z ),

∈ [0, T ],

E[⟨X0(T )+ Z , e j ⟩
2
Ḣη ] = λ

2η

j ⟨(Q(T )+ Q̃)e j , e j ⟩ =
µ j

2λ
1−2η

j

(1− e−2λ j T )+ λ
2η

j µ̃ j

nd

E[⟨X0(t), e j ⟩⟨X0(T )+ Z , e j ⟩Ḣη ]=λ
η

j ⟨Q(t)S(T − t)e j , e j ⟩=
µ j

2λ
1−η

j

(1−e−2λ j t )e−λ j (T−t).

Now, for arbitrary t ∈ (0, T ], ∥X x,y
N − X x,y

∥
2
L p(Ω,CT ) ≥ ∥X

x,y
N − X x,y

∥
2
L2(Ω,CT ) ≥

∥X x,y
N (t)− X x,y(t)∥2

L2(Ω,H ). Therefore, we get a lower bound on ∥X0,0
N − X0,0

∥
2
L p(Ω,CT ) by first

noting that by definition of X0,0
N and X0,0,

∥X0,0
N (t)− X0,0(t)∥

2
L2(Ω,H ) = ∥(I − PN )(X0(t)− X̂0(t))∥

2
L2(Ω,H )

=

∞∑
j=N+1

E
[(
⟨X0(t), e j ⟩ − ⟨X̂0(t), e j ⟩

)2
]

=

∞∑
j=N+1

µ j (1− e−2λ j t )
2λ j

− 2

µ j

2λ
1+η
j

(1− e−2λ j t )e−λ j (T−t)

µ j
2λ j

(1− e−2λ j T )+ µ̃ j

µ j (1− e−2λ j t )e−λ j (T−t)

2λ
1−η

j

+

⎛⎜⎝
µ j

2λ
1+η
j

(1− e−2λ j t )e−λ j (T−t)

µ j
2λ j

(1− e−2λ j T )+ µ̃ j

⎞⎟⎠
2

×

(
µ j

2λ
1−2η

j

(1− e−2λ j T )+ λ
2η

j µ̃ j

)

=

∞∑
j=N+1

µ j (1− e−2λ j t )
2λ j

⎛⎝1−
e−2λ j (T−t)

− e−2λ j T

1− e−2λ j T
+

2µ̃ j λ j
µ j

⎞⎠ .

riting C1 for the constant of Remark 5.2, we have µ̃ jλ j ≥ C1λ
1−α
j for all j ∈ N. Moreover,

s a consequence of Assumption 4.4, the fact that α ≤ ρ and our assumption that µ j > 0 for
all j ∈ N, there is a constant C2 > 0 such that λ1−α

j /µ j ≥ (1 − e−2λ j T )/C2 for all j ∈ N.

Putting these facts together, it follows that for a constant C > 0, 2µ̃ j λ j
µ j
≥ C(1 − e−2λ j T ) for

all j ∈ N. Since the function x ↦→ x/(1+ x) is decreasing,

1−
e−2λ j (T−t)

− e−2λ j T

1− e−2λ j T
+

2µ̃ j λ j
µ j

≥ 1−
1− e−2λ j T

1− e−2λ j T
+

2µ̃ j λ j
µ j

=
1

1−e−2λ j T

2µ̃ j λ j
µ j

+ 1
≥

C
C + 1

.

y our assumption on inf j λ−1
j µ j , it follows that for some constant C > 0,

∥X x,y
N − X x,y

∥
2
L p(Ω,CT ) ≥ C

∞∑
j−ν ≳ N 1−ν .
j=N+1
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where we used the fact that λ j → ∞ as j → ∞ in the first inequality and an integral
nequality in the second, cf. the proof of [3, Lemma 2.5]. This implies that the bound on
X x,y

N − X x,y
∥

2
L p(Ω,CT ) is essentially sharp under appropriate conditions on λ j , j ∈ N. For

xample, we may consider the setting of space–time white noise (see Example 3.2) with
being an interval in R. Then µ j = 1 and λ j is proportional to j2 for all j , see, e.g.,

24, Chapter 6]. This means we may, for small ϵ > 0, take ν = 2 and β = 1/2 − ϵ, so that
X x,y

N − X x,y
∥L p(Ω,CT ) is bounded from below by a constant times λ

−(β+ϵ)/2
N+1 , and from above

see Theorem 5.3) by a constant times λ
−(β−ϵ)/2
N+1 .

. Finite element approximation under white observation noise

In this section, we apply the results of Section 4 to a finite element approximation of the
PDE bridge X x,y , formulated in an abstract way. For a discretization parameter h ∈ (0, 1], let
Vh)h∈(0,1] be a net of finite-dimensional subspaces of Ḣ 1 equipped with the inner product of

H and let Ph : Ḣ−1
→ Vh denote the associated generalized orthogonal projection. We write,

or a cylindrical random variable Z in H , Ph Z for the Vh-valued random variable defined by
emma 4.1. Let us also write Sh := SV for a Vh-valued approximation of the semigroup S,

Qh := QVh and Q̃h := Q̃Vh . We write X x
h := X x

Vh
and X x,y

h := X x,y
Vh

for the discrete processes
iven by (31) and (32). We make the following assumption on Ph and Sh .

ssumption 6.1. The following two statements hold true.

(i) For all r ∈ [0, 2] and s ∈ [−r, min(1, 2 − r )], there is a constant C < ∞ such that for
all h ∈ (0, 1] and t ∈ [0, T ],

∥S(t)− Sh(t)Ph∥L(Ḣ−s ,H ) = ∥(S(t)− Sh(t)Ph)A
s
2 ∥L(H ) ≤ Chr t−

r+s
2 .

(ii) For all s ∈ [0, 2], there is a constant C <∞ such that for all h ∈ (0, 1],

∥I − Ph∥L(Ḣ s ,H ) = ∥(I − Ph)A−
s
2 ∥L(H ) = ∥A−

s
2 (I − Ph)∥L(H ) ≤ Chs .

xample 6.2. In the setting of Example 2.4, with the additional assumption that D is a convex
olygon, we consider the same approximation Sh of S as in [14]. We let (Vh)h∈(0,1] ⊂ H 1 be a
tandard family of finite element spaces consisting of piecewise linear polynomials with respect
o a regular family of triangulations of D with maximal mesh size h, vanishing on ∂D in the
irichlet case. We assume elliptic regularity, i.e., that A−1

∈ L(H, H 2). This is true when,
.g., the functions ai, j , i, j = 1, . . . , d are of class C1(D̄) [41, Theorems 2.6-2.7]. Then, the
o called Ritz projector Rh : Ḣ 1

→ Vh , defined as the orthogonal projection of Ḣ 1 onto Vh

ith respect to the inner product of Ḣ 1, satisfies the inequality ∥I − Rh∥L(Ḣr ,H ) ≤ Chr for
∈ {1, 2}, where the constant C < ∞ does not depend on h [14, p. 799]. This suffices for

24, Lemma 3.8] to be satisfied. Then, an interpolation argument as in [1, Lemma 5.1]
see, e.g., [6, Theorem A.4] for a justification) yields the expression in Assumption 6.1(i).
ssumption 6.1(ii) follows, in this setting, from an estimate on an interpolant operator (see,

.g., [14, p. 799]) combined with an interpolation argument.

We move on to derive a convergence result for the SPDE X x,y . In this setting, we cannot
ope to find an operator Q̃ other than Q̃ = I such that Assumption 4.6(iii) is satisfied. We
xplicitly make this choice in the theorem below.
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Theorem 6.3. Let Assumption 3.1, Assumption 3.3 with Q̃ = I and Assumption 6.1 be satisfied.
Let χ > 0 and let (hn)∞n=1 ⊂ (0, 1] be a sequence fulfilling hn = O(n−ω) for some ω > 0.

hen, for a Borel subset M ⊂ Ḣ−ζ with µT (M) = 1 and all x ∈ Ḣχ , y ∈M, p ≥ 1 and
< min(β, χ), there is an M ∈ N and a constant C <∞ such that for all N ≥ M,

∥X x,y
hN
− X x,y

∥
L p(Ω,CT )

≤ Ch−min(r,2)
N .

Proof. We first note that since Q̃ = I , we have η = −ζ and α = 0 in Assumption 3.3. Then
Assumption 4.11(ii) is trivially fulfilled. Moreover, Assumption 4.4 is satisfied with ρ < β.
Using Assumption 6.1(i) with r = 0 along with (17), we see that for all s ∈ [0, 1], there is a
constant C <∞ such that for all t > 0 and h ∈ (0, 1],

∥Sh(t)Ph∥L(Ḣ−s ,H ) = ∥Sh(t)Ph A
s
2 ∥L(H ) ≤ Ct−s/2.

This shows that Assumption 4.6(i) is satisfied. Using this result, it follows that for any
ϵ ∈ [0, min(β, 1)),

sup
h∈(0,1]

∫ T

0
t−ϵ
∥Sh(t)Ph∥

2
L2(Q1/2(H ),H ) dt <∞.

From this, we obtain that Assumption 4.6(ii) and 4.11(i) are satisfied, too.
Using the results above, we apply Lemmas 4.9 and 4.13 to see that, for r < β and p ≥ 1,

∥E[X0
|X0(T )+ Z ]− E[X0

h |X
0
h(T )+ Ph Z ]∥L p(Ω,CT )

≲

( ∫ T

0
t−ϵ
∥S(t)− Sh(t)Ph∥

2

L2(Q
1
2 (H ),H )

dt

+ sup
t∈[0,T ]

∥S(t)− Sh(t)Ph∥
2
L(Ḣr ,H ) + ∥I − Ph∥

2
L(Ḣr ,H )

)
1
2 ,

(42)

where we have also made use of the fact that the L(Q1/2(H ), H )-norm is bounded by the
2(Q1/2(H ), H )-norm for the error term of Lemma 4.13. Using Assumptions 3.1 and 6.1(i), it
ow follows that, for r < β and ϵ ∈ (0, min(β − r, 1)),∫ T

0
t−ϵ
∥S(t)− Sh(t)Ph∥

2

L2(Q
1
2 (H ),H )

dt

≤

∫ T

0
t−ϵ
∥S(t)− Sh(t)Ph∥

2
L(Ḣβ−1,H )∥A

β−1
2 Q

1
2 ∥

2

L2(H ) dt

≲ h2 min(r,2)
∫ T

0
t (β−r )−1−ϵ dt.

The two other terms can similarly, using Assumption 6.1, be bounded by a constant times
h2 min(r,2).

The proof of the claim is now similar to the proof of Theorem 5.3, and we make the same
split of the error. The treatment of the terms I and II are entirely analogous, while (42) is used
for the term V. In order to treat the term

III = ∥K(Q(T )+ Q̃)−
1
2 y −Kh(Qh(T )+ Q̃h)−

1
2 Ph y∥CT

,

here Kh : Vh → C([0, T ], Vh) is given by

(K v)(t) := Q (t)S (T − t)(Q (T )+ Q̃ )−
1
2 v,
h h h h h
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T

c

I

p
p

for v ∈ Vh, t ∈ [0, T ], we can, as before, use a Borel–Cantelli argument applied to

∥K(Q(T )+ Q̃)−
1
2 (X0(T )+ Z )−Kh(Qh(T )+ Q̃h)−

1
2 Ph(X0(T )+ Z )∥CT

.

his corresponding L p(Ω , CT )-bound is split into IIIa + IIIb, where

IIIa = ∥E[X0
|X0(T )+ Z ]− E[X0

h |Ph(X0(T )+ Z )]∥L p(Ω,CT )

an be treated by Lemma 4.9. The second term is given by

IIIb =∥ QVh ,H (·)S(T − ·)(Ph Q(T )Ph + Q̃h)−1 Ph(X (T )+ Z )

− Qh(·)S(T − ·)(Qh(T )+ Q̃h)−1 Ph(X (T )+ Z ) ∥L p(Ω,CT ) .

n the notation of the proof of Lemma 4.13, this can be written as

IIIb = ∥J 1
Vh

(J 0
Vh
− J̃ 0

Vh
)Ph(X (T )+ Z )∥

L p(Ω,CT )
,

and a bound on this can be found similarly to the proof of this lemma. In the same way as in
the proof of Theorem 5.3, we then, for each ϵ > 0, find a Borel subset M with µT (M) = 1,
such that for each y ∈M, there is some M ∈ N such that

∥K(Q(T )+ Q̃)−
1
2 y −KhN (QhN (T )+ Q̃hN )−

1
2 PhN y∥CT

< h−min(r,2)+ϵ
N

for all N ≥ M . The argument for the final term IV is similar to that of Theorem 5.3, using
some of the estimates in the proof of Lemma 4.13. We omit the details. □

Remark 6.4. As for the spectral approximation, the rate in the unconditioned case y = Z = 0
can again be seen to be r < min(β, ξ ), which coincides with the white observation noise case.

Remark 6.5. Clearly, the same conclusion holds with Q̃ = ϵ I for arbitrary ϵ > 0. However,
then the constant appearing in the error bound will depend on ϵ.
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Appendix

In this appendix, we derive some technical results not directly related to the approximation
of SPDE bridges. The first is a minor extension of [10, Proposition B.1]. This is used throughout
the main text to obtain bounds on operator inverses in certain negative norms. We recall that
the pseudoinverse A−1 of an operator A ∈ L(H, U ) between two Hilbert spaces H and U is the
linear (in general unbounded but closed) operator A−1

:= (A|ker(A)⊥ )−1
: A(H ) → ker(A)⊥ ⊂

H . As a straightforward consequence of the definition, A−1 A = Pker(A)⊥ , the orthogonal
rojection onto the orthogonal complement of ker(A). In the case that A is invertible, its
seudoinverse coincides with the usual inverse operator.
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Proposition A.1. Let H1, H2 and U be real Hilbert spaces and let A1 ∈ L(H1, U ),
A2 ∈ L(H2, U ). Then A1(H1) ⊂ A2(H2) if and only if there is a constant C < ∞ such
that ∥A∗1u∥H1

≤ C∥A∗2u∥H2
for all u ∈ U. If this holds, then ∥A−1

2 u∥H2
≤ C∥A−1

1 u∥H1
for all

∈ A1(H1).

roof. The first statement is [10, Proposition B.1 (i)]. We assume that A2 is injective as
therwise we can consider its restriction to the orthogonal complement of its kernel. For the
econd claim, let A1(H1) ⊂ A2(H2) and pick u ∈ A1(H1). Then there exist v ∈ H1, v′ ∈ H2
uch that u = A1v = A2v

′. We must show that ∥v′∥H2
≤ C∥v∥H1

. Suppose by contradiction
hat ∥v′∥H2

> C∥v∥H1
. We have

u
∥v∥H1

=
A1v

∥v∥H1

∈
{

A1w : ∥w∥H1
≤ 1

}
.

From the proof of [10, Proposition B.1 (i)], we see that the set on the right hand side must be
contained in{

A2w : ∥w∥H2
≤ C

}
.

But u
∥v∥H1

= A2
v′

∥v∥H1
with ∥v′∥H2

> C∥v∥H1
and A2 is injective, so ∥v′∥H2

≤ C∥v∥H1
. □

Next, we consider the same setting and notation as in Section 3. A Burkholder–Davis–Gundy
type inequality [10, Theorem 4.36] provides a simple error bound for X0(t)− X0

V (t). Namely,
or all p ≥ 1, t ∈ [0, T ], there is a constant C <∞ such that

E
[
∥X0(t)− X0

V (t)∥
p
]
≤ C

(∫ t

0
∥S(s)− SV (s)PV ∥

2

L2(Q
1
2 (H ),H )

ds
) p

2

.

owever, we need the following stronger result, which is obtained from a factorization
rgument similar to the proof of [10, Theorem 5.12].

roposition A.2. Suppose that Assumptions 3.1 and 4.6(i) are satisfied. Then, for all r < β,
∈ (0, min(β, 1)) and p ≥ 1, there is a constant C <∞ such that for all V ∈ (Vi )i∈I ,

∥X0
− X0

V ∥L p(Ω,CT ) ≤ C
(∫ T

0
t−ϵ
∥S(t)− SV (t)PV ∥

2

L2(Q
1
2 (H ),H )

dt

+ sup
t∈[0,T ]

∥S(t)− SV (t)PV ∥
2
L(Ḣr ,H )

) 1
2

.

roof. By 3.2 with r = 0, we may use [10, Theorem 5.10] to apply a factorization formula
nd obtain

X0(t) =
sin(ϵπ )

π

∫ t

0
(t − s)ϵ/2−1S(t − s)Y (s) ds

for t ∈ [0, T ], where

Y (t) :=
∫ t

0
(t − s)−ϵ/2S(t − s) dW (s)

or t ∈ [0, T ]. An analogous expression, with S replaced by SV , is obtained for X0
V using the

act that V is finite dimensional, with

YV (t) :=
∫ t

(t − s)−ϵ/2SV (t − s)PV dW (s)

0
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for t ∈ [0, T ]. Using these expressions, we make the split

X0(t)− X0
V (t) =

sin(ϵπ )
π

∫ t

0
(t − s)ϵ/2−1SV (t − s)PV (Y (s)− YV (s)) ds

+
sin(ϵπ )

π

∫ t

0
(t − s)ϵ/2−1(S(t − s)− SV (t − s)PV )Y (s) ds =: It + IIt .

e start with the second term, and let p > 2/ϵ so that its Hölder conjugate q fulfills
(ϵ/2− 1) > −1. Thus, by Hölder’s inequality,

∥IIt∥
p
≤

(∫ t

0
∥S(t − s)− SV (t − s)PV ∥

q
L(Ḣr ,H )

(t − s)q(ϵ/2−1) ds
) p

q
∫ t

0
∥Y (s)∥p

Ḣr ds

o that

∥II∥p
L p(Ω,CT ) ≲ sup

t∈[0,T ]
∥S(t)− SV (t)PV ∥

p
L(Ḣr ,H )

∫ T

0
E[∥Y (t)∥p

Ḣr ] dt.

y [10, Theorem 4.36],

E[∥Y (t)∥p
Ḣr ] ≲

∫ t

0
(t − s)−ϵ

∥S(t − s)∥2

L2(Q
1
2 (H ),H )

ds ≤
∫ T

0
s−ϵ
∥S(s)∥2

L2(Q
1
2 (H ),H )

ds

or t ∈ [0, T ], which, in light of 3.2, completes the bound on II. Next, by a similar Hölder
rgument,

∥I∥p
L p(Ω,CT ) ≲ sup

V∈(Vi )i∈I
t∈[0,T ]

∥SV (t)PV ∥
p
L(H )

∫ T

0
E[∥Y (t)− YV (t)∥p] dt.

nother application of [10, Theorem 4.36] yields that

E[∥Y (t)− YV (t)∥p] ≲
(∫ T

0
s−ϵ
∥S(s)− SV (s)PV ∥

2

L2(Q
1
2 (H ),H )

ds
) p

2

,

hich, along with Assumption 4.6(i), completes the proof. □
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