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Static wetting of a barrel-shaped droplet on a
soft-layer-coated fiber

Bo Xue Zheng, Christian Pedersen, Andreas Carlson and
Tak Shing Chan *

A droplet can deform a soft substrate due to capillary forces when they are in contact. We study the

static deformation of a soft solid layer coated on a rigid cylindrical fiber when an axisymmetric barrel-

shaped droplet is embracing it. We found that elastic deformation increases with a decreasing rigid fiber

radius. Significant disparities of deformation between the solid–liquid side and the solid–gas side are

found when their solid surface tensions are different. When the coated layer is soft enough and the rigid

fiber radius is less than the thickness of the coated layer, pronounced displacement oscillations are

observed. Such slow decay of deformation with distances from the contact line position suggests a pos-

sible long-range interaction between droplets on a soft-layer-coated fiber.

1. Introduction

A layer of a soft solid material such as gels and elastomers
coated on rigid solid substrates can be significantly deformed
by capillary forces, when a droplet is in contact with it.1,2 The
shape of deformation has been explored extensively in the last
few decades; however, those studies have mainly focussed on
situations of a droplet on a planar substrate.1–25 Although there
have been numerous studies of droplets on rigid fibers,26–31

wetting on a rigid fiber coated with a soft layer has been far less
investigated.32 How this geometry modifies the deformation of
the coated elastic layer remains unclear, which is the focus of
this study.

The wetting of droplets on fibers is ubiquitous in both
industrial and natural phenomena, and examples range from
the modulation of the mechanical properties of spider silk,33 to
the droplet transport on spines of cacti,34 to water collection by
fog nets. Compared to a planar surface, the slender geometry of
fibers modifies the droplet shape,27,31 and could induce direc-
tional motion of droplets.26,35–37 When it comes to droplet
wetting on soft fibers, most studies have focused on the
bending and buckling of flexible fibers which result in, for
instance, the winding around a droplet,38 the coiling inside a
droplet39 or the modification of droplet morphology by multi-
ple fibers.40 On the other hand, a soft fiber with a rigid core, i.e.
a soft-layer-coated fiber, can hardly bend. Hence, the inter-
action of droplets with a soft-layer-coated fiber is expected to be
different from that of a totally soft fiber.

Unlike droplets on planar surfaces, which appear in a
spherical-cap shape given that the Laplace pressure is the
dominant force (e.g. effects of gravity are neglected), the shape
of a droplet on a fiber is far more complex. Extensive studies in
the literature31,41,42 have shown that stable droplets can appear
in an axisymmetric barrel-shape or a non-axisymmetric clam-
shell shape. For small equilibrium contact angles y and large
droplet sizes relative to the fiber radius, axisymmetric barrel-
shaped droplets tend to be more stable. When the droplet size
(V1/3, here V is the droplet volume) is smaller than the fiber
radius, barrel-shaped droplets exist only for y t 101.31

In this study, we investigate the axisymmetric deformation
of a soft solid layer coated on a rigid cylindrical fiber when a
barrel-shaped droplet is embracing it. Previous studies of
elastic deformation by wetting often assume that y = 901, and
thus the solid surface tension of the soft-solid/liquid interface
gsg is the same as that of the soft-solid/gas interface gsl.

12,14 For
stable barrel-shaped droplets on a fiber, the contact angle has
to be smaller than 901. We hence consider generic situations
where the two solid surface tensions can be different, i.e. gsg a
gsl. Moreover, it is known that the solid surface tensions not
only determine the contact angle at the contact line, but also
play a crucial role in suppressing the deformation of a planar
soft solid layer.8,12 How the solid surface tensions affect the soft
solid deformation in fiber geometries is studied in detail below.

2. Formulation

A schematic of a droplet of volume V resting on a soft-layer-
coated fiber is shown in Fig. 1. We consider the droplet bond
number Bo� rgV2/3/g{ 1, where r is the liquid density, g is the
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gravitational acceleration and g is the liquid–air surface ten-
sion. Hence, the effects of gravity on the droplet shape are
negligible. The rigid fiber has a radius r0. A soft solid layer of
uniform thickness H at an undeformed state is coated on the
surface of the rigid fiber. Due to the axisymmetry of the
problem, we will use the cylindrical coordinate system (r, f,
and z) and the corresponding unit vectors are denoted as r̂ and
/̂, ẑ. The center of mass of the droplet is at the origin, i.e. r = 0
and z = 0. The soft layer is deformed by the droplet. The
displacement of the material of the soft layer is denoted as
U(r, z) = Urr̂ + Uf/̂ + Uzẑ. Due to symmetry, the displacement has
a property that U(r, z) = U(r, �z). Hence, we consider only z Z 0
in the following. The equilibrium contact angle y is defined as
the angle of the droplet liquid–air interface at the contact line
position z = R with respect to the z-axis as shown in Fig. 1. In
this study, we assume that y is determined by Young’s law,14

which reads

g cos y = gsg � gsl. (1)

Denoting the elastic stress tensor as r, the deformation of the
soft layer is governed by the force balance equation:

=�r = 0. (2)

As we only consider small slopes of the deformed soft-solid/
fluid interface, we employ a linear elastic constitutive model for
determining the relationship between the stress tensor and the
displacement, for which the tensor components are as follows:

srr ¼ �pþ
E

ð1þ nÞ
@Ur

@r
� 1

3
r �U

� �
; (3)

szz ¼ �pþ
E

ð1þ nÞ
@Uz

@z
� 1

3
r �U

� �
; (4)

sff ¼ �pþ
E

ð1þ nÞ
Ur

r
� 1

3
r �U

� �
; (5)

srz ¼
E

2ð1þ nÞ
@Ur

@z
þ @Uz

@r

� �
; (6)

where the isotropic part of the stress tensor (or the pressure) is:

p ¼ � E

3ð1� 2nÞr �U ; (7)

where E is the Young modulus and n is the Poisson ratio. Note
that Uf = 0 due to axisymmetry.

The boundary conditions for governing eqn (2) are as
follows. Consider that the length of the fiber 2L is much larger
than the droplet radius R, we impose the condition

U(r, z = L) = 0. (8)

Due to symmetry, at z = 0, we have

Uz(r, z = 0) = 0 (9)

and

@Urðr; z ¼ 0Þ
@z

¼ 0: (10)

At the interface where the soft layer is in contact with the rigid
solid, i.e. r = r0, the soft material is undeformed, so we have

U(r = r0, z) = 0. (11)

For the soft-solid/fluid boundary, i.e. r = r0 + H, we impose a
force balance condition. Here, we introduce all the tractions
(force per unit area) acting on the interface as the following. At
the contact line, the localized capillary traction f l = gd(R �
z)(sin yr̂ � cos yẑ) is pulling the soft layer,9,16 where d(z) is the
Dirac delta function. Second, the Laplace pressure inside the
droplet can also deform the soft layer. The traction f La due to
the Laplace pressure is given as f La = �gklHs(R � z)r̂, where kl is
the curvature of the droplet’s liquid–air interface and Hs(z) is
the Heaviside step function. Third, the elastic traction due to
soft solid deformation is f el = �(srrr̂ + srzẑ)|r=r0+H. Fourth, the
contribution from the soft solid surface tension gives a traction
f s = �gsksr̂ + qgs/qzẑ, where gs is the soft solid surface tension
and ks is the curvature of the deformed soft-solid/fluid interface.
We assume that the solid surface stress is the same as the solid
surface energy, and call them the solid surface tension. In other
words, we neglect the Shutter worth effect.21,43,44 Note that the
assumption of a small soft-solid/fluid interface slope has been
used to obtain the expression of f s. For small interface slopes,
the curvature can be simplified as ks = [1/(r0 + H + Ur) � q2Ur/
qz2]|r=r0+H. For the soft solid surface tension, there is a jump
across the contact line, meaning that gs = gsl + (gsg� gsl)Hs(R� z).
Thus, f s = �gsksr̂ + (gsg � gsl)d(R � z)ẑ. Balancing all the tractions
we have the following boundary conditions at r = r0 + H,

f l + f La + f el + f s = 0. (12)

Regarding the shape of the droplet’s liquid–air interface,
described by r = g(z), the profile is obtained by solving the
equation of uniform Laplace pressure, which implies kl has a
constant value, i.e. kl = kc. We describe the details of the
governing equation and the corresponding boundary condi-
tions at the later part of this section.

Next, we non-dimensionalize the variables as the following.
We rescale the coordinates and displacements by H and the
pressure by E, namely

~r ¼ r

H
; ~z ¼ z

H
; ~Ur ¼

Ur

H
; ~Uz ¼

Uz

H
; ~p ¼ 3p

E
: (13)

Fig. 1 Schematic diagram of an axisymmetric barrel-shaped droplet
embracing a rigid cylindrical fiber of radius r0 coated with a soft (elastic)
solid layer of thickness H. The droplet makes an equilibrium contact angle
y with the fiber. The soft solid layer is deformed by the droplet due to
capillary forces.
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For the elastic deformation, the dimensionless forms of the
governing eqn (2) written in vector components are

~r2 ~Ur �
~Ur

~r2
� @~p

@~r
¼ 0 (14)

in the r-direction and

~r2 ~Uz �
@~p

@~z
¼ 0 (15)

in the z-direction. The dimensionless forms of the boundary
conditions (8)–(11) are

Ũ(r̃, z̃ = L̃) = 0, (16)

Ũz(r̃, z̃ = 0) = 0, (17)

@ ~Ur

@~z
ð~r; ~z ¼ 0Þ ¼ 0; (18)

and

Ũ(r̃ = r̃0, z̃) = 0, (19)

respectively, where r̃0 = r0/H and L̃ = L/H. In this study, we
consider L̃ c 1.

For the soft-solid/fluid interface, we first define ũr � Ũr(r̃ = r̃0

+ H̃, z̃) and ũz � Ũz(r̃ = r̃0 + H̃, z̃). The dimensionless form of the
force balance condition (12), written in vector components, is
given as follows. For r-components, we obtain

sin ydð ~R� ~zÞ � ~kcHsð ~R� ~zÞ þ
~E

3
~p� 3

1þ n
@~ur
@~r

� �

þ ~gsl þ ð~gsg � ~gslÞHsð ~R� ~zÞ
� � 1

~r0 þ 1þ ~ur
� @

2~ur
@~r2

� �
¼ 0;

(20)

where the dimensionless parameters are defined as

~E � EH

g
; ~gsl �

gsl
g
; ~gsg �

gsg
g
; ~kc � kcH; ~R � R

H
: (21)

For the z-components of the force balance (12), after using
Young’s law (1), �g cos yd(R � z) cancels out (gsg � gsl)d(R � z);
hence, we obtain the vanishing elastic shear stress condition

@~ur
@~z
þ @~uz
@~r
¼ 0: (22)

For the droplet profile, the dimensionless form of the uniform
curvature equation is

~kl �
1

~g

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @~g

@~z

� �2
s �

@2~g

@~z2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ @~g

@~z

� �2
s 3

¼ ~kc; (23)

where g̃ =g/H. The boundary conditions at the contact line are
as follows:

g̃(z̃ = R̃) = r̃0 + 1 + ũr(r̃ = r̃0 + 1, z̃ = R̃) (24)

and

@~gð~z ¼ ~RÞ
@~z

¼ � tan y: (25)

The droplet volume is given by:

~V � V

H3
¼ 2p

ð ~R

0

~g2 � ð~ro þ 1þ ~urÞ2d~z: (26)

In this study, we consider the soft material to be incompres-
sible, which means n = 0.5. The incompressibility condition
implies

~r � ~U ¼ 0: (27)

The governing eqn (14), (15), (23) and (27) are solved together
with the conditions (16)–(20), (22), (24)–(26) using the finite
element method for which the details are given in the Appendix.
The dimensionless control parameters are r̃0, Ẽ, ~gsl, ~gsg and Ṽ.

3. Results
3.1 Large droplet limit

First we look at situations in which the droplet length scale (R) is
much larger than the other length scales: H, r0, g/E, gsl/E and
gsg/E. The Laplace pressure f La is neglected in this limit, and
thus, the only external capillary force acting on the soft solid is
the localized force f l at the contact line. We will demonstrate
how the solid deformation varies with the change of r̃0, Ẽ and ~gsg

for both cases of gsg = gsl (i.e. y = 901) and gsg a gsl (i.e. y a 901).
3.1.1 Cases of csg = csl (i.e. h = 908). We look at two different

cases of softness, namely Ẽ = 1 and Ẽ = 10. In Fig. 2, the
displacements at the soft-solid/fluid interface ũr and ũz are
plotted as a function of z̃�R̃ for different values of r̃0. To
validate our computations, we first compare our results for a
large rigid fiber radius r̃0 = 10 with the analytical solution of the
2D plain strain case.12 In the insets of Fig. 2, we show that our
numerical results collapse with the analytical 2D solutions.
Next, we look at how the rigid fiber radius modifies the
deformation. When the layer is stiff (Ẽ = 10), as shown in
Fig. 2(a), the out-of-plane displacement ũr is insensitive to the
value of r̃0. Relatively, there is a stronger dependence of the in-
plane displacement ũz on r̃0 as shown in Fig. 2(b). In contrast,
for the softer case of Ẽ = 1 shown in Fig. 2(c) and (d), the
magnitude of displacements increases significantly with
decreasing r̃0 when r̃0 r 1. Moreover, unlike the stiff or large
rigid fiber radius cases, in which the magnitude of displace-
ment decays quickly with distances from the contact line, the
oscillations are significant for the case of Ẽ = 1 when r̃0 { 1.

How do we understand the results? For r̃0 c 1, the deforma-
tion behaves the same as the 2D solution as one might expect.
The more interesting regime is when r̃0 t 1. When the material
is stiff, namely Ẽ c 1 (i.e. g/E { H), the dimensional out-of-
plane displacement ur scales as/E and weakly depends on H,7,12

meaning that the deformation is small compared to the thick-
ness of the soft layer. The displacements vanish at a short
distance from the soft-solid/fluid interface. Hence, the no-
displacement condition at r̃ = r̃0 only plays as a small correction
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to the displacements. On the other hand, when Ẽ t 1, the bulk
material deforms more significantly; hence, the boundary con-
ditions at r̃0 have a stronger effect. Furthermore, not only do the
bulk elastic stresses play a significant role, but also the traction
f s involving the azimuthal curvature of the soft solid interface,
i.e. 1/(r̃0 + 1 + ũr), is crucial for inducing strong displacement
oscillations. We found that removing the azimuthal curvature
term in eqn (20) results in the disappearance of displacement
oscillations. In Section 3.1.4, we will look at how the displace-
ment oscillations depend on the solid surface tension.

3.1.2 Cases of csg a csl (i.e. h a 908). We take ~gsl = 4.13,
~gsg = 5, and thus y = 301 using Young’s law (1). In Fig. 3, we plot
the displacements ũr and ũz as a function of z̃�R̃. For Ẽ = 10,
although the maximum of ũr is almost independent of r̃0, the
dimple (minimum) depends significantly on r̃0 as shown in
Fig. 3(a). When the rigid fiber radius is large, for example, for
r̃0 = 1000, the dimple on the solid–liquid side (left) is slightly
larger than the solid–gas side (right). This is consistent with the
finding of previous studies for plate cases that the solid surface
tension suppresses deformation.8 Note that ~gsl o ~gsg. However,
when decreasing r̃0, ũr increases on the solid/liquid side and
decreases on the solid/gas side. Hence, the dimple of the solid/
liquid interface decreases and disappears. On the other hand,
the dimple of the solid/gas interface becomes larger. This
disparity can be observed clearly for r̃0 = 0.1 in Fig. 3(a).

The in-plane displacement ũz shown in Fig. 3(b) also demon-
strates specific features when varying r̃0. For large r̃0, the
material around the contact line at the interface displaces
towards the contact line for both sides. When decreasing r̃0,
ũz decreases. For r̃0 t 1, ũz is negative for the whole interface,
meaning that all the material at the interface displaces towards
the side of interface with a smaller solid surface tension (left).

For a softer material (Ẽ = 1) shown in Fig. 3(c) and (d), the
behavior of ũr and ũz when decreasing r̃0 is similar to that of Ẽ =
10. Remarkably, when r̃0 is reduced to r̃0 = 0.1, ũr around the
contact line on the solid–liquid side increases to values larger
than ũr at the contact line. Hence, the maximum of ũr is not at
the contact line position but shifts to the solid/liquid side as
shown in Fig. 3(c). Similar to that we have seen for the case of
y = 901, pronounced oscillations of ũr and ũz appear when r̃0 { 1.

3.1.3 Dependence on the contact angle. We look at how the
features of deformation change when the contact angle is varied
from y = 901 to y = 01 for a fixed value of r̃0 = 0.1. According to
Young’s law, changing y also means that ~gsg � ~gsl is varied. We
keep ~gsg = 5 for all cases and change the value of ~gsl. We again
consider two different values of Ẽ. The displacements ũr and ũz

as a function of z̃�R̃ for different y (or ~gsl) are plotted in Fig. 4.
In Fig. 4(a), we can see that the maximum of ũr decreases

when y reduces due to the fact that the pulling contact line
force scales as g sin y. The sharp tip at the contact line dis-
appears for y = 01 as the pulling force vanishes. Interestingly,
there is still a significant deformation for y = 01. The deforma-
tion then comes from the traction f s generated by the solid
surface tensions. When ~gsl and ~gsg are different, the traction f s

involving the azimuthal curvature, i.e. 1/(r̃0 + 1 + ũr), gives
different stresses at the liquid side and the gas side.

Fig. 2 Rescaled displacements ũr and ũz as a function of z̃ � R̃ for
different values of r̃0 and Ẽ = 10 in (a) and (b) and Ẽ = 1 in (c) and (d).
Insets: The analytical solutions of the 2D plain strain case (solid lines)12 and
our numerical results for r̃0 = 10 (dotted lines). Other parameters are as
follows: ~gsl = ~gsg = 5.
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As y is decreased, the asymmetry of displacements between
the solid–liquid side and the solid–gas side becomes more

Fig. 3 Rescaled displacements ũr and ũz as a function of z̃�R̃ for different
values of r̃0 and Ẽ = 10 in (a) and (b) and Ẽ = 1 in (c) and (d). Other
parameters are as follows: ~gsl = 4.13 and ~gsg = 5.

Fig. 4 Rescaled displacements ũr and ũz as a function of z̃�R̃ for different
values of ~gsl and Ẽ = 10 in (a) and (b) and Ẽ = 1 in (c) and (d). Other
parameters are as follows: ~gsg = 5 and r̃0 = 0.1.
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apparent. When compared with the results in Fig. 3, we observe
that the enhancement of asymmetry when reducing y (for a

fixed value of r̃0) is similar to that of decreasing r̃0 (for a fixed
value of y). In the following, we point out some of these similar

Fig. 5 Rescaled displacements ũr and ũz as a function of z̃�R̃ for y = 901
in (a) and (b) and y = 301 in (c) and (d).

Fig. 6 Rescaled displacements ũr and ũz as a function of z̃�R̃ for different
values of Ṽ1/3 and Ẽ = 10 in (a) and (b) and Ẽ = 1 in (c) and (d). Other
parameters are as follows: ~gsl = 4.13 (y = 301), ~gsg = 5 and r̃0 = 0.1.
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trends. As shown in Fig. 3(a) or in Fig. 4(a) for Ẽ = 10, when
reducing r̃0 or y, the dimple of ũr on the solid–liquid side (with
a smaller solid surface tension) decreases and the dimple on
the solid–gas side becomes larger. For Ẽ = 1, the maximum of ũr

shifts from the contact line position to the solid–liquid side
when r̃0 or y is reduced to below a certain value as shown in
Fig. 3(c) or in Fig. 4(c). For the in-plane displacement shown in
Fig. 3(b) and (d) or Fig. 4(b) and (d), ũz around the contact line
decreases when reducing r̃0 or y. This means that the material
at the interface displaces more to the side of the interface with
a smaller solid surface tension (left).

3.1.4 Dependence on the solid surface tension. In Fig. 5,
we plot the dimensionless displacements ũr and ũz as a func-
tion of z̃�R̃ for y = 901 in (a) and (b) and y = 301 in (c) and (d).
We see that when ~gsg is reduced, ũr at the contact line enhances.
This is because the traction f s term involving the longitudinal
curvature, i.e. q2ũr/qr̃2, suppresses the sharp tip deformation at
the contact line.8,12 On the other hand, the displacement
oscillations and the displacement disparity (for y = 301) become
less pronounced when ~gsg is reduced. This can be understood
as follows. Away from the contact line, the azimuthal curvature
term, i.e. 1/(r̃0 + 1 + ũr), dominates over the longitudinal
curvature term. The displacement oscillations and displace-
ment disparity are due to the azimuthal curvature term in the
traction f s. Decreasing ~gsg thus reduces the effects of this

Fig. 7 Rescaled displacements ũr and ũz as a function of z̃�R̃ for different
values of Ṽ1/3 and Ẽ = 10 in (a) and (b) and Ẽ = 1 in (c) and (d). Other
parameters are as follows: ~gsl = 4 (y = 01), ~gsg = 5 and r̃0 = 0.1. Insets: Zoom
in view of Ṽ1/3 = 0.5.

Fig. 8 Convergence of the mesh. The rescaled displacements ũr and ũz as
a function of z̃ � R̃ for different mesh sizes. Other parameters are as
follows: y = 901, ~gsl = ~gsg = 5, and r̃0 = 1000.
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traction. In Fig. 5, we also add the results for a smaller value of
Ẽ. As we demonstrate previously, reducing the value of Ẽ
enhances the displacement oscillations and displacement
disparity.

3.2 Dependence on the droplet size

For a droplet of the finite size, the traction term due to the
Laplace pressure f La is included in our computations. As small
stable barrel-shaped droplets exist only when the contact angle
is small, we choose two small contact angles, i.e. y = 301 and
y = 01, and investigate how the deformation depends on the
droplet size. We fix r̃0 = 0.1. In Fig. 6 and 7, the displacements ũr

and ũz are plotted as a function of z̃ � R̃ respectively for y = 301
and y = 01. We can see that for Ṽ1/3= 40, the results are the same
as those for the large droplet limit. When Ṽ1/3 decreases, ũr

decreases on the liquid side and increases on the gas side. This
is because the Laplace pressure pressing the soft layer on the
liquid side is stronger for smaller droplets. For ũz, the Laplace
pressure term reduces the magnitude of ũz on both the liquid
and gas sides. The magnitude of displacement oscillation is
also reduced when the droplet size decreases. Note that we
assume the contact angle follows Young’s relationship and is
independent of the droplet size. Hence, the contact angle
transition observed for small droplets on planar surfaces14,17

is not considered in our present study.

4. Conclusions

We study the elastic deformation of a soft layer coated on a
rigid cylindrical fiber when an axisymmetric barrel-shaped
droplet is embracing it. For a droplet contact angle of y = 901,
and thus gsl = gsg according to Young’s law, we found that the
magnitudes of both displacements ũr and ũz increase with a
decreasing r̃0. For y a 901 (i.e. gsl a gsg), the deformations on
the solid–liquid side and the solid–gas side are different. This
disparity of deformation is enhanced when decreasing r̃0 (for a
fixed value of y) or decreasing y (for a fixed value of r̃0). The
dimple of ũr on the side with a smaller solid surface tension
becomes smaller while the dimple becomes larger on the other
side. Interestingly, significant deformation is observed even for
y = 01 for which the pulling force at the contact line vanishes
and the Laplace pressure is neglected for large droplets. The
deformation is due to the part of traction f s involving the
azimuthal curvature term, i.e. 1/(r̃0 + 1 + ũr), which generates
different stresses on the liquid and the gas sides when the solid
surface tensions are different.

Pronounced oscillations of displacements are observed for
the cases of Ẽ o 1 and r̃0 t 1. This slow decay of deformation
with distances from the contact line position suggests a rela-
tively long-range interaction between droplets on a soft-layer-
coated fiber. Hence, it is expected that droplet migration and
interactions are significantly different from those observed on a
planar soft substrate or a purely rigid fiber, for example, the
inverted Cheerios effect45 and coalescence,37 which remain
open questions to be explored.
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Appendix: finite element method

The non-dimensional deformation of the soft layer of the fiber
and the droplet profile are computed by solving the governing
eqn (14), (15), (23) and (27) together with the conditions (16)–
(20), (22), and (24)–(26) by using a finite element method (FEM).
We discretize our non-dimensional variables with linear ele-
ments and solve the coupled equations using a Newton solver
from the FEM library FEniCS.46

For the Dirac delta function, we approximate it with
a Gaussian function as dðR� zÞ �WðR� zÞ ¼
exp½�ðR� zÞ2=ð2lm2Þ�=ðlm

ffiffiffiffiffiffi
2p
p
Þ, where lm can be interpreted as

a microscopic length (e.g. interface thickness) such that lm {
H. In the limit that lm - 0, d(R � z) = W(R� z). In this study, lm/
H = 10�5 is set for all the cases. We have used the adaptive mesh
sizing such that the smallest mesh size near the contact line is
dx1/H = 10�7 and the largest mesh size far away from the
contact line is dx0/H = 0.05.

The mesh convergence of the numerical solver is tested with
the case of the large droplet limit and the condition of r̃0 c 1.
In this limit, the deformation of the soft layer will converge
towards the 2D soft plate case. In Fig. 8, we compare our
numerical results with the analytical solution for the 2D soft
plate case by plotting the deformation of the soft solid for three
different mesh resolutions, namely dx0/H = 0.1, 0.05 and 0.025.
For all three mesh sizes, the numerical solutions are in good
agreement with the analytical solution.
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