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A B S T R A C T

Accurate statistical description of extreme environmental conditions is needed for risk assessment and
management of marine structures and is a crucial input to design of any structure that need to withstand loads
from environmental forces. Such descriptions are essentially multivariate extreme value problems, where the
environmental loads are due to concurrent extreme combinations of several environmental variables. Typically,
in coastal and ocean engineering applications, the simultaneous joint behaviour of significant wave height
and wave period is of particular interest and is needed to describe the wave loads on marine structures.
Environmental contours are often used to explore the extreme wave loads, and essentially consider extreme
combinations of simultaneous significant wave height and wave period, and are based on a joint statistical
distribution fitted to relevant metocean data. However, typical applications of environmental contours do not
account for temporal dependencies in the environmental variables, and this may lead to an overestimation of
extreme conditions. In this paper, an approach for partially accounting for serial dependence in the construction
of environmental contours is proposed, based on simulating time-series of a primary variable which preserves
both its marginal distribution and auto-correlation structure. It is shown that this gives lower estimates of
extreme environmental conditions compared to conventional application of environmental contours that do not
account for serial dependence. Hence, more accurate description of the extreme environment can be available
for design and construction of structures exposed to environmental loads.
1. Introduction and background

Environmental contours are used to identify extreme environmental
conditions governed by the simultaneous behaviour of several corre-
lated environmental variables. Typical examples are extremes related
to the joint behaviour of waves, wind and current for ocean and
coastal engineering applications. Hence, environmental contours are
tools for multivariate extreme value analysis often used in long-term
extreme response analysis of marine structures, and represent a simple
and approximate alternative to more computationally demanding full
long-term analyses. One of the main advantages is that the structural
response is de-coupled from the environmental description so that only
a limited number of short term response calculations are required for a
long-term analysis. That is, the environmental contours describe critical
conditions for which short term analysis is performed [1].

Typically, environmental contours will be based on a set of envi-
ronmental data, for example metocean data, and the application of
environmental contours often consists of four main steps. The first
step relates to collecting and preparing such data. This also include

∗ Correspondence to: DNV Group Research and Development, Høvik, Norway.
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possible validation and pre-processing of the data. The second step is
to fit a joint statistical distribution to the data. Often, a hierarchical
conditional model will be assumed, where one variable deemed as
most influential on the structural response is selected as the primary
variable, and the other variables are modelled conditionally on this.
This approach has become an industry standard [2]. For example, a
three-parameter Weibull distribution is often used for the marginal
distribution of significant wave height (𝐻𝑆 ) and a conditional log-
normal distribution is often used for concurrent wave period [3,4].
Conditional models for several other metocean variables are proposed
in [5], the bivariate lognormal distribution is discussed in [6] and
copula-based methods are explored in [7–10]. The third step consist of
constructing environmental contours based on the fitted distributions
and the final step is to apply the environmental contours for extreme
response estimation. All the steps are associated with modelling choices
and uncertainties that may influence the results.

Multivariate extreme value analysis is not straightforward, and
there exist several definitions of what to understand as a multivariate
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extreme event. In the bivariate case, a quantile will typically be vector-
valued and can be expressed on the following form [11]

𝑄𝑋,𝑌 (𝑝, 𝜀) =
{

(𝑥, 𝑦) ∈ R2 ∶ 𝐹𝜀(𝑥, 𝑦) = 𝑝
}

, (1)

here 𝐹𝜀(𝑥, 𝑦) corresponds to some exceedance or non-exceedance
vent. Different definitions of such events yields different types of
xtremes. Some examples are illustrated in the bivariate case in [12–
4], i.e., cases where one of the variables is extreme, where both are
xtreme and where the value of one variable is extreme conditioned
n the value of the other variable. Environmental contours represent
ther definitions of multivariate extremes, often described in terms of
xceedance hyperplanes. However, there exist different definitions of
nvironmental contours that do not refer to hyperplanes.

Even with a given definition for multivariate extremes, correspond-
ng to a specific choice of 𝐹𝜀(𝑥, 𝑦), there will not be a unique solution to
he extreme quantile problem, and there is a continuum of solutions to
he extreme value problem in the multivariate case. For example, in the
ivariate case, if a solution (𝑥0, 𝑦0) to the extreme value problem exist,
ne could always find other solutions by slightly perturbing 𝑥0 and 𝑦0 so

that Eq. (1) is still fulfilled [15]. Thus, the solution will be a curve in the
variable space associated with a non-exceedance probability defined in
some way.

Environmental contours are one way of defining multivariate ex-
treme sets. Environmental contours were initially proposed in [16,17]
as equi-density lines, and the definition of environmental contours has
continued to be an area of active research. Contours based on the
inverse first order reliability method (IFORM) were introduced in [18,
19], and remain the most commonly used approach. Such contours
are based on exceedance hyperplanes in standard normal space and
transformed to physical variable space. More recently, environmental
contours defined in terms of exceedance hyperplanes in the physical
variable space based on Monte Carlo sampling were proposed in [20,
21]. These contours, often referred to as direct sampling contours,
have well-defined probabilistic properties, and will in some cases be
quite different from the IFORM-contours, see the comparison studies
in [22,23]. In particular, the direct sampling contours will always be
convex [24]. Other approached for defining environmental contours
exist [e.g.,15,25–31], and several studies have investigated uncertain-
ties associated with different aspects of environmental contours [23,32–
35]. In this paper, direct sampling contours will be used, which corre-
spond to exceedance regions in the form of exceedance hyperplanes.
According to common industry practice, environmental contours are
often based on a fitted joint distribution, fitted to all data and ignoring
serial correlation [2,36].

Most applications of environmental contours are for two-
dimensional problems, but extensions to higher dimensions are in
principle straightforward, see [37–39]. However, the study presented in
this paper is restricted to two dimensions and considers environmental
contours for significant wave height (𝐻𝑆 ) and zero up-crossing wave
eriod (𝑇𝑍 ).

Given that environmental contours have been an active area of
esearch in recent years, a benchmark study was recently announced
here practitioners and researchers of environmental contours were
rovided with metocean data and invited to construct contours for
omparison [40]. Several contributions were submitted for this exer-
ise; results are presented in [41]. One important observation from
his benchmarking exercise is that serial correlation in the metocean
ariables is often neglected in the construction of environmental con-
ours, and that this may introduce notable biases. This point was
urther elaborated in [42], where it was shown that neglecting serial
ependence will lead to over-estimation of return values. Hence, this
aper offers an approach to take serial correlation into account in the
onstruction of environmental contours based on the direct sampling
pproach. This is done by establishing a statistical model that accounts
or serial dependence in the primary variable, which will yield more
471

ccurate estimates of the extremes.
In univariate extreme value analysis, the effect of serial corre-
ation is often accounted for by modelling the distribution of peak
alues, either using a block-maxima or peaks-over-threshold (POT)
pproach [43]. For the latter method, de-clustering techniques must be
pplied to ensure that the samples from the tail are reasonably indepen-
ent and identically distributed (IID) (see e.g. [43,44]). However, with
imited amount of data, such approaches are wasteful since it only uses

very few extreme data points in the analysis and disregard most of
he data. With the statistical model presented in this paper, all the data
an be exploited and the effect of serial dependence is accounted for
o reduce the bias. It is believed that this represents an advancement
n state of the art, with the benefit of more accurate extreme value
stimates.

Identifying peak events is not straightforward in the multivariate
ase, where combinations of the variables that may not be extreme in
ny one variable may be regarded as extreme when their joint probabil-
ty is considered. Indeed, environmental contours typically range over
oth extreme and non-extreme values of all variables involved (includ-
ng extremely small values). Moreover, the interest is in environmental
oads and responses, which means that the concurrent behaviour of the
nvironmental variables is needed. Hence, some multivariate extreme
alue methods based on component-wise extremes will not be appli-
able [45,46]. Some methods, such as the bivariate ACER model [47],
xplicitly account for the serial correlation in bivariate data.

An approach for defining environmental contours that accounts for
erial correlations in the observations was recently proposed in [48].
he method does not require fitting a joint distribution model. Since
efining exceedance regions in terms of hyperplanes is equivalent to
efining univariate exceedance regions under rotations of the axes [49],
he problem of estimating environmental contours can be reduced to
series of univariate problems under various rotations of the axes. A

tandard univariate POT approach with de-clustering is then applied to
he rotated data, to account for serial correlations.

This paper proposes an alternative approach to take serial cor-
elation into account in the construction of environmental contours,
ased on a direct sampling approach. This approach to construct en-
ironmental contours is based on Monte Carlo samples from the joint
istribution of environmental variables, where the data is projected in
elected directions and hyperplanes are defined in all directions based
n the target exceedance probability. The environmental contours are
hen constructed based on the intersection points of these hyperplanes;
ee [20,21] for details. Hence, this paper proposes to construct envi-
onmental contours on simulated data from a time-series model that
reserves the marginal distribution and the serial correlation in the
ata. A conditional modelling approach, in line with current industry
ractice, will be employed where the zero up-crossing wave period is
odelled conditionally on significant wave height, but significant wave
eight will be modelled by a time-series model with a fitted marginal
istribution and temporal correlation rather than independently from
he marginal distribution. In this way, environmental contours that
ccounts for serial correlation of significant wave height can be con-
tructed. The main challenge with this approach is to establish a
tatistical model that allows simulation from such a time series with
he desired properties.

The remainder of the paper is organized as follows: Section 2
eviews how return periods and return values are defined, and discusses
he biases caused by neglecting serial correlation. Section 3 presents
he metocean data used in this study and Section 4 presents the
tatistical models fitted to the data. This includes the time-series model
ith desired marginal and correlation structure for 𝐻𝑆 as well as the

onditional model for 𝑇𝑍 . Section 5 presents the resulting contours,
and a discussion of the results are given in 6. Finally, Section 7 gives a
summary and some concluding remarks.
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2. Return periods and return values for serially correlated data

Informally speaking, the return period of a value of a parameter
is the average time between exceedances of that value. The value
corresponding to a specific return period is called the return value. To
understand the effect that serial correlation has on estimates of return
periods and return values, consider two variables 𝑋 and 𝑋̃, with the
same marginal distribution, 𝐹𝑋 , but where observations of 𝑋 have some
level of serial correlation and observations of 𝑋̃ are independent. Serial
correlation effectively reduces the number of independent observations
in a sequence of a given length, and therefore reduces the probability of
large values. Since both 𝑋 and 𝑋̃ have the same marginal distribution,
but there is a lower probability of large values in 𝑋 in a given period,
we see that defining return values in terms of the marginal distribution
of all observations, 𝐹𝑋 , cannot be correct when serial correlation is
present.

For serially correlated data return periods can be defined in terms
of the distribution of peak values in the time series [43]. Suppose
that local peaks, 𝑋𝑝, have been identified in a time series, using some
declustering criteria, such that consecutive observations of 𝑋𝑝 are
pproximately independent. Then the return period of level 𝑥 is

(𝑥) = 1

𝑚
[

1 − 𝐹𝑋𝑝
(𝑥)

] , 𝑚𝑇 > 1, (2)

where 𝐹𝑋𝑝
is the distribution of the peaks and 𝑚 is the average number

of peaks per year. This definition is also applicable when annual
maxima are used instead of local peaks. In this case 𝐹𝑋𝑝

is replaced
y the distribution of annual maxima and we set 𝑚 = 1. Alternatively,
he 𝑇 -year return value can be defined as the solution of [50]

𝑇 (𝑥) =
(

1 − 1
𝑇

)𝑇
≈ exp(−1), (3)

where 𝐹𝑇 is the distribution of the maximum value of 𝑋 in a 𝑇 -year
eriod. It can be shown that definitions (2) and (3) are asymptotically
quivalent (see e.g. [42,50]). For the sequence 𝑋̃, since all observations
re independent, the return value of level 𝑥 can be defined using (2) as

̃ (𝑥) = 1
𝑛
[

1 − 𝐹𝑋 (𝑥)
] , 𝑛𝑇 > 1, (4)

where 𝑛 is the (fixed) number of observations per year.
It was shown in [43] that the ratio of return periods for the inde-

endent and dependent sequences is less than or equal to 1. That is

𝑇 (𝑥) =
𝑇̃ (𝑥)
𝑇 (𝑥)

≤ 1, (5)

The ratio 𝜃𝑇 quantifies the bias introduced when (4) is used to define
return values for serially correlated data. It can be interpreted as a
sub-asymptotic extremal index, which converges to the usual extremal
index, which by definition is an asymptotic quantity, used to quantify
the effect of serial correlation in extreme events (see [43,51] for
details).

3. Metocean data description

The data used in this study are one of the datasets provided for the
recent benchmarking study on environmental contours, i.e., dataset A,
from [40]. Several environmental contours established based on these
data are presented in [41]. The data contains hourly observations of
significant wave height (𝐻𝑆 ) (in 𝑚) and zero upcrossing wave period
𝑇𝑍 ) (in 𝑠) over a 10-year period from 1996 to 2005. It is noted that

10 years of data is rather short for robust extreme value estimation,
and uncertainties will be large see e.g. the discussions in [52,53].

A scatterplot, trace plots and empirical densities for these data are
shown in Fig. 1, along with summary statistics in Table 1. These plots
and summary statistics reveal that 𝐻 and 𝑇 are positively correlated,
472

𝑆 𝑍
Table 1
Summary statistics for the metocean data.

𝐻𝑆 (m) 𝑇𝑍 (s) (𝐻𝑆 , 𝑇𝑍 )

Minimum 0.0981 2.3104
Median 0.7702 5.0742
Mean 0.9444 5.3409
0.90 quantile 1.6902 7.3226
0.99 quantile 3.4496 9.3891
0.99989 quantile 6.4867 12.6341
Maximum 7.0994 13.1326
Standard deviation 0.6419 1.4195
Skewness 2.4696 0.8619
Kurtosis 12.6331 3.7387
Pearson (linear) correlation coefficient 𝑟 0.3132
Kendall rank correlation coefficient 𝜏 0.1642
Spearman rank correlation coefficient 𝜌 0.2352

Table 2
10 year return value estimates from marginal extreme value analyses.

𝐻𝑆 (m) 𝑇𝑍 (s)

10 year return value (GPD) 7.1624 13.5059
10 year return value (GEV) 6.9630 13.0208

and that both marginal distributions are right skewed and leptokurtic,
i.e., that they have fatter tails than a normal distribution. The 0.99989
quantile of the data would correspond to the one-year return value if
not considering serial dependence, i.e. 1 − 1∕(365.24 ∗ 24) ≈ 0.99989.
The traceplots illustrate that there are notable serial dependencies in
the data. For further details and description of the data, reference
is made to [40,41]. For reference, results from two crude marginal
extreme value analyses are shown in Table 2, where the 10-year return
value is estimated for both variables. The first is obtained by fitting
a generalized Pareto distribution to peaks over threshold data with a
threshold of, respectively, 5 m for 𝐻𝑆 and 11 s for 𝑇𝑍 and a cluster
eparation distance of three days (denoted as GPD in the table). The
econd is based on fitting a generalized extreme value distribution to
emi-annual maxima (denoted as GEV in the table).

. Statistical modelling

For the purpose of structural reliability analysis and design of
arine structures, the joint distribution of governing environmental

ariables such as significant wave height and wave period is often
odelled by a conditional model. Thus, one variable is considered the
rimary variable, typically the one with the largest influence on the
nvironmental load. A joint distribution is constructed based on fitting
marginal distribution to the primary variable, and then conditional
odels to the other relevant variables [3–5]. Such a model was fitted to

he data used in this study, as reported in [54], but without considering
erial correlation.

In order to be able to construct environmental contours that ac-
ount for the serial correlation in the data using the direct sampling
pproach, one may fit a time series model with appropriate marginal
istribution and temporal correlation structure. This is not straightfor-
ard, and there are different approaches that could be used [55]. For
xample, [56] proposes a diffusion-type model with given marginal
istribution and autocorrelation function, and [57] describes a diffu-
ion model with Weibull marginals for modelling wind speed. Models
ased on stochastic differential equations are presented in [58,59].
eibull and gamma autoregressive processes are presented in [60],

nd Gaussian and non-Gaussian autoregressive models are discussed
n [61]. However, in this paper, an approach based on transform-
ng a Gaussian parent autoregressive time series to have the desired
arginal distribution and temporal correlation structure will be taken,

s suggested in [62]; see also [63–65]. In the following, a recipe
or constructed such a model is outlined. A joint statistical model is
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Fig. 1. Plots illustrating the 10-year metocean data used in this study; Scatterplot (top left), trace plots (top right) and empirical densities (bottom).
constructed by fitting a time-series model that preserves the marginal
distribution and the correlation structure for the primary variable –
significant wave height – and a conditional model for zero up-crossing
wave period conditioned on significant wave height. It should be noted
that with this approach, the serial correlation of 𝑇𝑍 is not modelled
directly but is a result of a conditional distribution conditioned on 𝐻𝑆
and would only be partially preserved.

The time-series of interest, 𝑋(𝑡), has a marginal distribution, 𝐹𝑋 (𝑥)
and an autocorrelation function, 𝜌𝑋 (𝜏) and it is assumed that this has a
parent Gaussian time-series, 𝑍(𝑡) with a standard Gaussian marginal
𝛷𝑍 (𝑧) and another autocorrelation function 𝜌𝑍 (𝜏). Hence, modelling
and simulation of the time-series 𝑋(𝑡) correspond to modelling and sim-
ulating the parent Gaussian time-series and finding the transformations
that transform the parent time-series to the desired one, i.e., determine
functions 𝑔 and  such that

𝑋(𝑡) = 𝑔 [𝑍(𝑡)]

𝜌𝑍 (𝜏) = 
[

𝜌𝑋 (𝜏)
] (6)

Simulating from a Gaussian time-series is straightforward, and the nor-
mal distribution have several well-known properties (see e.g. [62,66]).
Hence, if one can find a parent Gaussian time-series that can be trans-
formed into the time-series 𝑋(𝑡), simulation of 𝑋(𝑡) is straightforward.

As pointed out in [62], 𝑔 is easily identified as 𝑔(𝑍) = 𝐹−1
𝑋

(

𝛷𝑍 (𝑍)
)

,
which will give the desired marginal distribution. However, this trans-
formation of the marginal distribution does not preserve the autocor-
relation structure, which depends on the marginal distribution 𝐹𝑋 (𝑥).
Hence, one needs to establish the autocorrelation structure of the par-
ent Gaussian time-series, 𝜌𝑍 (𝜏) that yields the required autocorrelation
structure for the target time-series 𝑋(𝑡) after transformation.
473
In the bivariate case, it can be shown that for an arbitrary trans-
formation, the correlation between the transformed variables will be
smaller than the correlation between the initial standard normal vari-
ables (see [62]), i.e.,

𝜌𝑋 = cor
[

𝑔
{

𝑍(𝑡1)
}

, 𝑔
{

𝑍(𝑡2)
}]

≤ cor
[

𝑍(𝑡1), 𝑍(𝑡2)
]

= 𝜌𝑍 , (7)

meaning that the 𝜌𝑍 values needs to be inflated to obtain the target 𝜌𝑋 .
Moreover, the correlation coefficient of two lagged variables 𝑋(𝑡1) and
𝑋(𝑡2) can be expressed as

𝜌𝑋 (𝜏) =
𝐸
{

𝑋(𝑡1)𝑋(𝑡2)
}

− 𝜇2
𝑋

𝜎2𝑋
, (8)

where 𝐸 is the expectation operator, 𝜏 = 𝑡2 − 𝑡1 and 𝜇𝑥 and 𝜎𝑋 are
the mean and the standard deviation of 𝑋. Now, assuming that 𝑋(𝑡) =
𝑔 {𝑍(𝑡)} = 𝐹−1

𝑋
[

𝛷𝑍 {𝑍(𝑡)}
]

,

𝐸
{

𝑋(𝑡1)𝑋(𝑡2)
}

= 𝐸
{

𝐹−1
𝑋

(

𝛷𝑍
[

𝑍(𝑡1)
])

𝐹−1
𝑋

(

𝛷𝑍
[

𝑍(𝑡2)
])}

= ∫

∞

−∞ ∫

∞

−∞
𝐹−1
𝑋

{

𝛷𝑍 (𝑢)
}

𝐹−1
𝑋

{

𝛷𝑍 (𝑣)
}

× 𝜙𝑢,𝑣
[

𝑢, 𝑣; 𝜌𝑍 (𝑡2 − 𝑡1)
]

d𝑢d𝑣,

(9)

where 𝜙(𝑢, 𝑣; 𝜌) denotes the density function of the bivariate standard
normal distribution with correlation 𝜌. This gives a relationship be-
tween 𝜌𝑍 (𝜏) and 𝜌𝑋 (𝜏) and can be used to calculate 𝜌𝑋 (𝜏) from known
𝜌𝑍 (𝜏), i.e.

𝜌𝑋 (𝜏) =
∫ ∞
−∞ ∫ ∞

−∞ 𝐹−1
𝑋 (𝛷𝑍 (𝑢))𝐹−1

𝑋 (𝛷𝑍 (𝑣))𝜙𝑢,𝑣(𝑢, 𝑣; 𝜌𝑍 (𝜏))𝑑𝑢𝑑𝑣 − 𝜇2
𝑋

2
. (10)
𝜎𝑋
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Note however, that in order to model the time series with known 𝜌𝑋 (𝜏),
ne needs the inverse transformation to find 𝜌𝑍 (𝜏) from 𝜌𝑋 (𝜏). Even
hough the double integral above does not have an analytical solution
n general, its numerical estimation is straightforward.

Hence, the modelling problem is solved by defining a correlation
ransformation function to estimate the autocorrelation of the parent
aussian time-series from a given target autocorrelation structure that
ay be estimated from the data. The following parametric form of such

n autocorrelation transformation function is proposed in [62]:

𝑍 =  (𝜌𝑋 ) =
(1 + 𝜁𝜌𝑋 )1−𝜂 − 1
(1 + 𝜁 )1−𝜂 − 1

. (11)

his can be used to estimate a parametric autocorrelation function of
he parent Gaussian time-series, 𝜌𝑍 (𝜏) based on a parametric autocorre-
ation function for the target time-series, 𝜌𝑋 (𝜏). The parameters 𝜁 and 𝜂

can be estimated by calculating 𝜌𝑋 for 𝜌𝑍 = (0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7,
.8, 0.9, 0.95) according to Eq. (10) and then conducting a least-squares
inimization of the assumed model (11) to the set of (𝜌𝑋 , 𝜌𝑍 )-points

see [62] for details).
With this approach, modelling a time series with desired marginal

nd correlation structure involves fitting a marginal parametric dis-
ribution and estimating the empirical autocorrelation structure from
he time-series, fitting the parametric autocorrelation transformation
unction to obtain the autocorrelation structure of the parent Gaussian
ime-series, fit an autoregressive model, for example by solving the Yule

alker equations [e.g., 67], to generate the Gaussian parent time-series
nd transforming the Gaussian time-series using the transformation
(𝑡) = 𝑔 [𝑍(𝑡)] = 𝐹−1

𝑋 [𝛷 {𝑍(𝑡)}].
Hence, in the following, environmental contours for significant

ave height (𝐻𝑆 ) and zero up-crossing wave period (𝑇𝑍 ) will be
ased on simulated time-series for 𝐻𝑆 with prescribed marginals and

autocorrelation structure and concurrent values for 𝑇𝑍 simulated as in-
dependent values from a conditional model for 𝑇𝑍 given 𝐻𝑆 . Therefore,
ny serial correlation in 𝑇𝑍 is assumed to be, at least partly, accounted
or by the serial correlation in 𝐻𝑆 and the dependence structure
etween 𝐻𝑠 and 𝑇𝑧. The validity of this assumption is discussed in
ection 6.

.1. Joint distribution

First, a joint distribution will be fitted to the data disregarding
he serial correlation. In this study, a conditional model with a three-
arameter Weibull distribution for 𝐻𝑆 and a conditional log-normal
odel for concurrent 𝑇𝑍 will be assumed. That is,

𝐻,𝑇 (ℎ, 𝑡) = 𝑓𝐻𝑠
(ℎ𝑠)𝑓𝑇𝑍 |𝐻𝑠

(𝑡𝑧|ℎ𝑠) (12)

where

𝑓𝐻𝑠
(ℎ𝑠) =

𝛽
𝛼

(

ℎ𝑠 − 𝛾
𝛼

)𝛽−1
exp

[

−
(

ℎ𝑠 − 𝛾
𝛼

)𝛽
]

, (13)

𝑓𝑇𝑍 |𝐻𝑠
(𝑡𝑧|ℎ𝑠) =

1

𝜎(ℎ𝑠)𝑡𝑧
√

2𝜋
exp−

{

ln 𝑡𝑧 − 𝜇(ℎ𝑠)
}2

2𝜎(ℎ𝑠)2
(14)

and
𝜇(ℎ𝑠) = 𝐸(ln 𝑇𝑍 |𝐻𝑆 = ℎ𝑆 ) = 𝑎1 + 𝑎2ℎ

𝑎3
𝑠 ,

𝜎(ℎ𝑠) = std(ln 𝑇𝑍 |𝐻𝑆 = ℎ𝑆 ) = 𝑏1 + 𝑏2 𝑒𝑏3ℎ𝑠 .
(15)

This is the same model that was used in [54], where environmental
contours were established for this dataset without considering serial
correlation. Fitted model parameters are presented in Table 3. It is
noted that this particular model was fitted to the data by way of mini-
mizing the second order Anderson–Darling statistic. This is emphasizing
on the upper tail, and may not fit the body of the distribution as well as
more well-known methods as the maximum likelihood or the method
of moments (see e.g. [44]).
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4.2. Temporal correlation structure

The temporal correlation structure is estimated from the empirical
time series. Then, a number of alternative parametric autocorrelation
functions are fitted to this, and the one providing the best fit is se-
lected for further analysis. There are many parametric autocorrelation
functions to choose from, see e.g. [62] and in this study, six different
parametric functions are tried out, i.e. the Weibull, the Burr, the
logarithmic, the fGn, the generalized fGn (gfGn) and the Pareto auto-
correlation functions. The empirical autocorrelation function is shown
together with the fitted parametric candidate models in Fig. 2. The
functions are fitted by least squares, and the residual sum of squares
(RSS) are indicated for each candidate model in the plots. It is observed
that the 3-parameter Burr-type autocorrelation function fits best to the
data, and this would typically be preferred. However, it is noted that
this autocorrelation function is known to sometimes yield not positive
definite covariance matrices (see [68]), and therefore this model may
not always be appropriate. The preferred autocorrelation function must
be determined on a case-by-case manner, according to how well it fits
the data, and it is also possible to use the non-parametric empirical
autocorrelation function. The parametric forms of the autocorrelation
functions explored in this study are given in Eq. (16).

𝜌𝐵𝑢𝑟𝑟(𝜏; 𝜁, 𝜂, 𝜃) =
(

1 + 𝜃
(

𝜏
𝜁

)𝜂)− 1
𝜂𝜃

𝜌𝑊 𝑒𝑖𝑏𝑢𝑙𝑙(𝜏; 𝜁, 𝜂) = 𝑒
(

−
(

𝜏
𝜁

)𝜂)

𝜌𝐿𝑜𝑔(𝜏; 𝜁, 𝜂) =
(

1 + ln
(

1 + 𝜂 𝜏
𝜁

))− 1
𝜂

𝜌𝑓𝐺𝑛(𝜏; 𝜁 ) =
1
2
(

|𝜏 − 1|2𝜁 − 2|𝜏|2𝜁 + |𝜏 + 1|2𝜁
)

∼ 𝜏−2(1−𝜁 )

𝜌𝑔𝑓𝐺𝑛(𝜏; 𝜌1, 𝜁) = 𝜁 (2𝜁 − 1)

⎧

⎪

⎨

⎪

⎩

𝜏 − 1 +
[

𝜌1
𝜁 (2𝜁 − 1)

]− 1
2(1−𝜁 )

⎫

⎪

⎬

⎪

⎭

−2(1−𝜁 )

∼ 𝜏−2(1−𝜁 )

𝜌𝑃𝑎𝑟𝑒𝑡𝑜(𝜏; 𝜁, 𝜂) =
(

1 + 𝜂 𝜏
𝜁

)− 1
𝜂

(16)

It can be observed that most of the parametric autocorrelation
functions fit reasonably well to the data for lags up to 100, except for
two of the parametric alternatives. It is also noted that the choice of
autocorrelation function may influence return value estimates, as seen
in [65], so some efforts should be made to find the best possible fit to
the data. However, if a good fit cannot be found, it will be possible
to simply assume the non-parametric autocorrelation observed in the
data.

4.3. Simulated time-series

Having estimated all model parameters, one may simulate time-
series from the statistical model corresponding to any desired number
of years. The simulated data would then have the desired marginal
distribution and the desired autocorrelation structure. One may also
simulate from the marginal distribution assuming IID. Fig. 3 shows
about 1 year of empirical data for 𝐻𝑆 and compares to simulated data
based on the time-series model and simulated data assuming IID. The
bottom plot in Fig. 3 contains first IID simulated data corresponding
to half the empirical data duration and then simulated time-series data
for the remainder of the empirical data length. It is clearly seen that
the data simulated when accounting for the serial correlation better
resemble the observed data.

One may also compare the densities of simulated data with the
density of the empirical data, as shown in Fig. 4, where 500 time

series of 10 years’ length are simulated, assuming IID and with the
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Table 3
Fitted model parameters for the joint distribution of 𝐻𝑆 and 𝑇𝑍 .
𝛼 𝛽 𝛾 𝑎1 𝑎2 𝑎3 𝑏1 𝑏2 𝑏3
0.4983 0.8573 0.4187 1.4306 0.2561 0.5556 0.0150 0.3004 −0.2884
Fig. 2. Fit of alternative autocorrelation functions.
time-series model that preserves the autocorrelation, respectively, and
the simulated densities are compared to the empirical density of the
observed data. The densities have been fitted based on a goodness-of-
fit measure that focuses on the upper tails of the distribution, i.e., the
second order Anderson–Darling statistic [44,69], and therefore there is
a notable mismatch for small values of 𝐻𝑆 . However, since the upper
tail of the significant wave height distribution is more important for
structural reliability of marine structures, the poor fit on the lower tail
is acceptable. It is noted, however, that better fit of this part of the
distribution could presumably be obtained if other fitting methods were
employed, and this is recommended in applications where the lower
tail of the distribution is of importance. Exceedance probabilities (on
logarithmic scale) are also compared to highlight tail behaviour. In the
upper plots, the densities and exceedance probabilities are estimated
from the complete simulated datasets of 5000 years, whereas the lower
plots show the densities and exceedance probabilities for individual
10-year periods of simulated data. The top plots clearly demonstrate
that the marginal distributions are the same, regardless of whether
data are simulated IID from the fitted distribution or from the time-
series model with the same marginal distribution. However, there are
some differences in the simulated individual 10-year datasets, due to
sampling effects.

The sampling uncertainty associated with the largest observation in
a sample is very large. As the observations in a sample are random
quantities, the return periods associated with each observation are also
random quantities. It can be shown that a 1 − 2𝛼 confidence interval
(CI) for the return period associated with the largest observation in
an 𝑁-year time series tends to (−𝑁∕ log(𝛼),−𝑁∕ log(1 − 𝛼)) as 𝑁 →
∞ [70], and the approximation is still reasonable for 𝑁 = 10 years.
So, for individual 10-year time series, a 95% confidence interval for the
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return period associated with the largest observation would be (2.7, 395)
years. The width of the confidence interval decreases as the ratio 𝑁∕𝑇
increases, where 𝑁 is the length of the time series and 𝑇 is the target
return period (see [70] for details).

Fig. 5 shows the distribution of the 10-year maxima from the 500
simulated 10-year time-series. The 10-year return values estimated
from these distributions are also shown, where the return values are
estimated as the (1 − 1∕10)10 ≈ 0.3487 quantiles of the maximum-
value distributions according to Eq. (3). It is observed that the return
values for the 10-year maxima are higher for the IID data compared to
the serially-correlated time series. The vertical lines for the combined
data correspond to ignoring serial correlation and estimating the return
value according to Eq. (4) as the quantile from the combined simulated
datasets from the IID and TS simulations, respectively. It is observed
that these generally agrees with the return value estimate from the
distribution of 10-year IID datasets, apart from small effects due to
sampling variability, and the difference can hardly be recognized in the
figure. It is also interesting to compare the return value estimates from
the simulated data with the summary statistics and the estimated return
values from classical extreme value methods presented in Tables 1–2:
10-year return value estimated from simulations assuming independent
and identically distributed data is 8.967 m whereas 10-year return
value estimate from simulated time series is 7.229 m. It is observed
that the return value estimated based on the simulated data from the
time series model is much closer to the return value estimates from
the classical extreme value analysis, and also closer to the maximum
value observed in the data. Hence, the positive bias from ignoring serial
correlation is avoided.
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Fig. 3. Empirical (top) and simulated (bottom) time-series of significant wave height. Index represents time in hours.

Fig. 4. Densities and exceedance probabilities of empirical and simulated data; based on combining all simulated data (top) and for individual simulated 10-year periods (bottom).
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Fig. 5. Distribution of extremes from individual 10-year sets of simulated data; IID and time-series simulations. The vertical lines correspond to different estimates of the 10-year
return value: Combined data correspond to return value estimates based on the combined datasets of 500 × 10 years of data and ignoring serial correlation according to Eq. (4);
the other return value estimates are based on the distribution of 10-year maxima, for simulated data assuming IID and the time-series model, respectively, according to Eq. (3).
The maximum observed values are also indicated by vertical line segments, illustrating that accounting for serial correlation effectively corresponds to simulating shorter time
periods compared to IID.
5. Environmental contours accounting for serial correlation

Environmental contours are often used for describing extreme envi-
ronmental conditions. With current industry practice, such contours are
typically constructed from exceedance probabilities based on Eq. (4),
ignoring the effect of serial correlation. An alternative approach to
construct environmental contours that takes the effect of serial cor-
relation into account is proposed. With this approach, a total of 𝑀
𝑇 -year contour estimates can be obtained by simulating 𝑀 𝑇 -year time-
series from the statistical model and estimate the contours for the most
extreme conditions in each individual simulated 𝑇 -year period of data.
This will give a Monte Carlo distribution of 𝑇 -year contours which
can be used to construct environmental contours corresponding to 𝑇 -
year return values according to Eq. (3). The main steps involved in
estimating 𝑇 -year environmental contours using this approach are as
follows assuming an appropriate time-series model has been established
(see [20,21] for further details on how direct sampling contours are
constructed):

1. Simulate 𝑀 𝑇 -year time series from the statistical model
2. For selected angles of rotation 𝜃, get the 𝑀 angular maxima from

the simulated time-series to estimate the distribution of 𝑇 -year
angular maxima, 𝐹𝑇 (𝑥𝜃), where 𝑥𝜃 denotes the data projected in
direction 𝜃: 𝑋𝜃 = 𝑋 cos 𝜃 + 𝑌 sin 𝜃 for bivariate data (𝑋, 𝑌 ), see,
e.g., [20,21].

3. Calculate return values, in each direction, according to Eq. (3)
4. Calculate 𝑇 -year environmental contours from the angular re-

turn values by the direct sampling approach [20,21]

The results of simulating 𝑀 = 500 10-year time-series from the
statistical models described in Section 4 and calculating environmental
contours for the maxima in each individual time-series are shown
in Fig. 6. Results are shown for both data simulated from the joint
model assuming IID and for data simulated from the time-series model
accounting for autocorrelation. The results from the standard way of
constructing environmental contours (ignoring serial correlation) based
on the combined 5000-year datasets are also indicated in these plots
(referred to as ‘‘combined’’). Contours corresponding to the 10-year
return values, calculated from Eq. (3) based on the simulated 10-year
maxima, are also included in the figures, for both the IID and the time-
series simulated data, together with 95% confidence bounds of the
10-year maxima. Vertical lines indicate the corresponding values for
the estimated 10-year return values for 𝐻𝑆 by the different approaches.
It is observed that the results from the standard approach on the
combined data are the same as the results for the 10-year return value
based on individual 10-year datasets assuming IID. However, a notable
difference is observed for contours based on time-series simulations
taking autocorrelation into account. This corresponds to the bias in
neglecting serial correlation, and these results indicate that this bias is
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notable and may have practical consequences in design and assessment
of marine structures.

The environmental contours corresponding to the 10-year return
value are compared in the same plot as shown in Fig. 7. The contours
are based on the individual simulated 10-year periods and calculated
according to Eq. (3), assuming IID and autocorrelation. Again, a notable
difference can be seen, and in particular, contours accounting for serial
dependence correct for the positive bias under the IID assumption. This
is most pronounced in the primary variable, significant wave height,
and not in the secondary variable 𝑇𝑍 . This is presumably because
the serial correlation in the secondary variable is not well captured
by the statistical model (see also the discussion in Section 6 below).
Notwithstanding, it is suggested that the approach outlined in this
paper can be adopted when calculating environmental contours as one
way of accounting for serial dependence in observed data.

An alternative way of estimating environmental contours based
on time-series simulations would be to, rather than simulating 𝑀 𝑇 -
year time series and calculating 𝑇 -year contours from a distribution
of simulated 𝑇 -year maxima according to Eq. (3), to simulate 𝑁 one-
year time series from the statistical model and then calculate 𝑇 -year
contours from the distribution of simulated annual maxima according
to Eq. (2). Typically, 𝑁 > 𝑀 but since the individual time-series
would be much shorter this could be computationally more efficient.
Moreover, the simulated data could be used to estimate environmental
contours for any return period 𝑇 > 1. However, the overall idea is the
same and the results would presumably be similar. The uncertainty of
the return periods associated with the contours could then be calculated
explicitly as a function of 𝑁 and 𝑇 as described in [70]. Fig. 8 show
the distribution of maxima from 𝑁 = 1000 simulated 1-year time series,
assuming IID data and accounting for the autocorrelation, respectively.
Vertical bars in the plot indicate the estimated 1-year return values
from Eq. (3) as well as estimated 10- and 100-year return values from
Eq. (2). It is clearly seen that the IID assumption leads to a positive bias
in the return value estimates. The corresponding 1-, 10- and 100-year
environmental contours based on the 𝑁 = 1000 simulated yearly time
series are shown in Fig. 9

One advantage of the proposed compared to the approach proposed
in [48] is that no de-clustering is required. However, a disadvantage is
the need for fitting a time-series model, and the results will be depend
on how well such a time-series model capture the temporal correlations.
An alternative approach would be to use a block-resampling approach,
rather than a time-series model, as described in [71]. The same method
for constructing contours as described above could be used for time
series generated from any model or resampling approach.

6. Discussion

This paper has presented a way of defining environmental contours
that take serial correlation properly into account. Essentially, time
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Fig. 6. Contours for the 10-year return value based on simulated time series; assuming IID (left) and accounting for autocorrelation (right). The plots show M = 500 individual
environmental contours calculated from independent 10-year simulations as well as contours corresponding to the 10-year return value from all the simulations (dashed lines).
Direction-wise 95% confidence intervals are included (dotted lines). Contours calculated from the combined datasets ignoring serial correlation are also shown in the Figures.
Vertical lines correspond to return value estimates of the primary variable, 𝐻𝑆 and show results from the combined dataset (solid lines) as well as results based on the distribution
of 10-year maxima (dashed lines) from simulations assuming IID and accounting for serial dependence, respectively.
Fig. 7. Comparing contours based on time-series modelling, assuming IID or accounting for autocorrelation in the data; based on simulated 10-year time series.
series are simulated by transformation of a parent Gaussian autore-
gressive model to yield the target marginal distribution and serial
correlation. It has been demonstrated that this yields different contour
estimates compared to the commonly used IID assumption, and that
the positive bias in IID contours can be avoided. Even though this is
believed to be an improvement, some aspects have not been accounted
for.
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In the statistical models used to construct the environmental con-
tours, seasonal effects have been ignored. Possibly, such effects could
also be accounted for in more advanced time-series models, e.g. assum-
ing seasonal ARIMA models rather than simple autoregressive models
as the parent time-series. Alternatively, seasonal effects could be taken
into account by preprocessing of the data before the statistical models
are estimated, as suggested in e.g. [13]. Notwithstanding, seasonality
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Fig. 8. Distribution of maxima from simulated one-year time series.
Fig. 9. Environmental contours based on simulating 𝑁 = 1000 one-year series of data.
has not been considered in the current work, and remains an area
for further research and potential for improvement of the modelling.
Other deterministic components of the observed time-series, for exam-
ple possible long-term trends due to climate change [72,73], should
also ideally be filtered out before the autocorrelation function is esti-
mated [74–76] but this is left for further work. If climate change can be
expected to change the future environment, one may model this explic-
itly in the statistical models, or one may want to add additional safety
factors accounting for this to ensure the necessary conservatism and
safety level of the design [77]. At any rate, the effect of climate change
can potentially be included in the statistical models, for example as an
additive deterministic component.

It is noted that only 10 years of data have been available for this
study, and that this is generally too short to give robust estimates of
extreme conditions; there will be a need to extrapolate the probability
distributions beyond the support of the data. Hence, the actual 10-year
return values is not known, making it difficult to evaluate directly the
impact of accounting for serial correlation on the extreme estimates.
Notwithstanding, it is known that neglecting serial correlation yields
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a positive bias, and it is observed that return value estimates without
accounting for serial dependence gives higher return value estimates
than the ones obtained from the time series model accounting for it.
Therefore, it is assumed that accounting for serial dependence gives an
improved extreme value estimate that is closer to the true value, and
that corrects for this positive bias. However, exact quantification of this
improvement is difficult without longer datasets and knowledge of the
true return values.

The statistical model assumed in this paper consists of a time-
series model for the primary variable, 𝐻𝑆 , which preserves the desired
marginal distribution and autocorrelation structure, and a conditional
distribution for the concurrent value of 𝑇𝑍 . It is assumed that this
is sufficient and that preserving the autocorrelation structure of the
primary variable as well as the dependence between the primary and
secondary variable by way of the conditional distribution yields im-
proved description of the extreme environmental conditions. However,
it is acknowledged that the autocorrelation structure of the secondary
variable will not necessarily be preserved. Hence, further research can
be directed towards time series models that preserves all marginals,
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Fig. 10. Autocorrelation structure of observed and simulated time series for both primary and secondary variable.
Fig. 11. Comparing the extremogram of the data with that of simulated time-series data for selected quantile levels of significant wave height.
the joint distribution and the autocorrelation structures of multivariate
time-series (see, e.g., [78–80]). The empirical autocorrelations are
shown for the empirical and simulated data in Fig. 10 for both the
primary and the secondary variable. It is observed that the autocor-
relation is preserved reasonably well for the primary variable, but not
for the secondary. It is observed that some serial correlation is obtained
from the conditional modelling approach, but that this is far less than
in the observed time-series. Notwithstanding, in practical engineering
applications, the extremes of the primary variable, significant wave
height, will be most important, so it is believed that the model proposed
in this paper represent an improvement that is practically significant in
ocean engineering applications.

When the interest is in the extremes, it could be argued that it is not
necessarily the standard autocorrelation function that is of most rele-
vance, but rather the level-dependent serial correlation expressed by
the conditional probability 𝜒(𝑢, 𝜏) = 𝑃𝑟 (𝑋(𝑡 + 𝜏) > 𝑢|𝑋(𝑡) > 𝑢), which
may be illustrated by extremograms [81,82]. The correlation structure
for high levels, 𝑢, should also be preserved in the time series to ensure
the effect of serial correlation on extremes are properly accounted
for. In this study, the emphasis has been on simulating time-series
that preserves the marginal distribution and the autocorrelation struc-
ture, rather than preserving the extremogram, and further studies are
recommended to construct models that preserve also extremal serial
correlation. However, it is possible to compare the sample extremogram
of the data and the simulated time-series, as shown in Fig. 11 for
simulated significant wave height for levels corresponding to quantiles
𝑞 = 0.99, 0.999 and 0.9995. As can be seen in these plots, the simulated
time series preserves the extremal correlation quite well, and this is
clearly an improvement compared to assuming IID data.
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7. Summary and conclusions

This paper considers the construction of environmental contours
for the description of multivariate extreme environmental condition,
a practice that is often used in design and assessment of marine
structures. However, the effect of serial dependence is often neglected
in engineering practice, and this paper proposes a way to construct
contours while accounting for the serial dependence. A statistical model
constructed by a joint conditional model for the variables and a time-
series model preserving the autocorrelation structure for the primary
variable is established and applied to data of significant wave height
and zero up-crossing period. This latter time-series model is constructed
by transforming a parent Gaussian autoregressive model using appro-
priate transformations for the marginals and the autocorrelation struc-
ture. It has been demonstrated that environmental contours may be
constructed based on such statistical models, using the direct sampling
approach. Moreover, results indicate that the resulting environmental
contours avoid the positive bias one normally gets when ignoring serial
dependence, as is current industry practice. This again, means that a
more accurate description of the extreme environment is achieved that
can be used for more informed decisions in design and operation of
marine structures.

Further research could investigate how to account for seasonal ef-
fects and the serial correlation of secondary variables as well as models
that better capture the serial correlation of extremes. Notwithstanding,
the proposed approach represent a significant improvement compared
to current engineering practice of ignoring serial correlation and gives
more accurate environmental contours.
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