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Abstract

The d-dimensional Ornstein–Uhlenbeck process (OUP) describes the trajectory of a particle
in a d-dimensional, spherically symmetric, quadratic potential. The OUP is composed of a
drift term weighted by a constant ✓ � 0 and a diffusion coefficient weighted by � > 0. In the
absence of drift (i.e. ✓ = 0), the OUP simply becomes a standard Brownian motion (BM).
This paper is concerned with estimating the mean first-exit time (MFET) of the OUP from a
ball of finite radius L for large d � 0. We prove that, asymptotically for d ! 1, the OUP
takes (on average) no longer to exit than BM. In other words, the mean-reverting drift of
the OUP (scaled by ✓ � 0) has asymptotically no effect on its MFET. This finding might be
surprising because, for small d 2 N, the OUP exit time is significantly larger than BM by
a margin that depends on ✓. As it allows for the drift to be ignored, it might simplify the
analysis of high-dimensional exit-time problems in numerous areas.

Finally, our short proof for the non-asymptotic MFET of OUP, using the Andronov–Vitt–
Pontryagin formula, might be of independent interest.

1 Introduction

The d-dimensional Ornstein–Uhlenbeck process (OUP) is one of the most important stochastic
processes. It can be defined as a d-dimensional Brownian motion (aka. Wiener process) where a
drift is added which is proportional to the displacement from its mean. It is usually defined as the
solution of the following SDE:

dXt = �✓Xtdt+ �dBt, (1)

where ✓ 2 R and � > 0 are the drift and diffusion parameters and Bt is a d-dimensional Brownian
motion (BM). Alternatively, if X0 = 0, it can be defined as the unique d-dimensional zero-mean
Gaussian process with the covariance function

cov(Xi,s, Xj,t) = �ij ·
�
2

2✓
·
⇣
e
�✓|t�s| � e

�✓(t+s)
⌘
, (2)
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where �ij is the Kronecker delta and Xj,t are the independent components of Xt = (X1,t, . . . , Xd,t).
The OUP has been extensively studied (Borodin and Salminen, 2002, Part II, Section 7),

sometimes with the parameter � = ✓
�2 2 R instead of ✓. Many authors define the OUP only for

✓ > 0, while others allow for ✓ 2 R. If ✓ 2 R, one usually distinguishes between the positively
recurrent case (✓ > 0), the Brownian motion case (✓ = 0), and the transient case (✓ < 0); see
p. 137 in Borodin and Salminen (2002). Here, we will allow for ✓ 2 R and only restrict this range
if mathematically necessary.

In this paper, we are interested in the mean first exit time (aka. first passage time) of a
d-dimensional OUP from a ball of radius L, BL(0) = {x 2 Rd : kxk2 < L}. More specifically, we
study the expectation Ex

⌧L of the stopping time ⌧L = inft�0{kXtk2 = L}, where the x in Ex
⌧L

indicates that X0 2 Rd is chosen such that a.s. kX0k = x for some x 2 [0, L]. In particular, we
want to understand the asymptotics of Ex

⌧L in high dimensions, i.e. as d ! 1.
Such high-dimensional OUPs are important models in numerous applications ares. For instance

in biophysical sciences, high-dimensional OUPs are used to model the membrane potential of
multiple neurons (Ricciardi and Sacerdote, 1979; Faugeras et al., 2004), the phylogenetic dynamics
of quantitative traits (Butler and King, 2004; Rohlfs et al., 2014), and single-cell differentiation for
multiple cells (Matsumoto and Kiryu, 2016). In complex systems, many neurons, traits, or cells
have to be modeled – leading to high-dimensional OUP models, whose exit times mark when a
specific average variation over all components is reached.

High-dimensional OUPs are also important in other scientific fields. Grebenkov (2014, Section
3.4.) describes how MFETs matter in algorithmic trading, where the dimensionality depends on
the number of different assets in a portfolio (which can get very large, e.g. for exchange-traded
funds). In economics, such models can be used to model the wealth of trading agents in an economy
(Ciołek et al., 2020).

In non-convex optimization, high-dimensional Langevin equations are used as continuous-time
models for stochastic gradient descent methods; these models are Ornstein–Uhlenbeck processes
in local minima (Li et al., 2017) whose dimensionality can go up to d = 107 in modern machine-
learning problems. The first exit time of high-dimensional OUPs hence describe the time of escape
from a spurious local minimum (Nguyen et al., 2019; Lucchi et al., 2022).

MFETs of the OUP have of course already been studied to some extent in the literature.
We refer the reader to the review paper by Grebenkov (2014) for an overview and detailed
literature review. Grebenkov proves a formula (see Eq. (75) in his paper) for the MFET of a
d-dimensional OUP for all d 2 N. Grebenkov’s proof makes use of the Fokker-Planck equation and
the eigenfunctions of the corresponding backward Laplace operator. Previously, for the special case
of � = 1 and ✓ � 0, Graczyk and Jakubowski (2008) proved the same formula in their Theorem
2.2 by deriving and solving a suitable boundary value problem (BVP); see their Theorem 2.1.
In this paper, we will re-prove and extend the formulas by Grebenkov (2014) and Graczyk and
Jakubowski (2008). We emphasize that our proof of Theorem 4 uses a strategy similar to Graczyk
and Jakubowski (2008); we refer the reader to our discussion in Remark 5 for a comparison.

While the previous formulas are satisfactory for finite d 2 N, our reformulation in terms of
the incomplete Gamma function enables us to get the asymptotic scaling for d ! 1. We will
find that, as d ! 1, the MFET of OUP is asymptotically equivalent to that of BM. The initial
motivation for this paper is illustrated Fig. 1: as d increases the first exit times of both BM and
OUP converge to zero at a rate that does not seem to differ between BM and OUP. Our theroetical
results and experiments (Fig. 2) will confirm this.
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Figure 1: Motivation of this paper : the scaling in d of the first-exit time of OUP (✓ > 0) and
BM (✓ = 0) from a ball of radius L. In each of the three plots, a d-dim. OUP and BM are run
until they exit a ball of radius L = 2.5 (visualized by the dotted black line). The point of the first
exits is marked by black stars. The three plots are for d = 2, d = 10 and d = 1000 respectively,
with parameters � = 1.0 and ✓ = 0.7. On the left (d = 2), the entire trajectory is plotted in
the 2-d plane, while in the other plots only kXtk is plotted against time. We can see for d = 2
how the trajectory of the OUP (i.e. the first-exit time) is much longer than of BM, due to the
mean-reverting drift of the OUP. For d = 10, this effect is already less pronounced, but still
significant. For d = 1000, the first exit times are almost the same. (For even larger d, the two
lines becomes indistinguishable.) This highlights what we will show in Corollary 8, namely that
(on average, for large d) OUP takes asymptotically no longer to exit than BM. Note that we can
already observe here that the exit times go to zero as d grows, but it is a-priori not obvious how
✓ impacts the asymptotic rate (see Section 5 for a discussion). Also, see Fig. 2, where the mean
asymptotics are depicted for the same parameters of L, �, and ✓.

Contributions In this paper, we

(i) reprove the known general formula for the MFET of a d-dimensional OUP (Theorem 4) by a
shorter proof using the Andronov–Vitt–Pontryagin formula (see Remark 5 for the relation to
prior work) and express this formula in terms of the incomplete Gamma function,

(ii) prove asymptotically sharp bounds for the MFET (Theorem 7), as d ! 1, by relying on
inequalities on the incomplete Gamma function from Neuman (2013), and

(iii) demonstrate that (perhaps surprisingly) the MFET of OUP is asymptotically equal to the
one of Brownian motion (Corollary 8).

Note that, while point (iii) might be initially surprising, it is much less surprising after careful
examination; see our Discussion in Section 5.

1.1 Structure of paper

The remainder of the paper is structured as follows. First, in Section 2, we explain how the MFET
of the d-dimensional OUP can be considered as a MFET of the radial Ornstein–Uhlenbeck (rOUP)
process. Second, in Section 3, we introduce the Andronov–Vitt–Pontryagin (AVP) formula and
its corresponding boundary value problem for the autonomous case. Third, in Section 4, we use
both the rOUP and AVP formula to derive an explicit expression for the MFET of OUP and
reformulate it in terms of the incomplete Gamma function. Fourth, in Section 4.1, we prove
asymptotically sharp bounds for MFET (as d ! 1) by exploiting inequalities from Neuman
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(2013) on the incomplete Gamma function. Fifth, in Corollary 8, we show that these bounds imply
that, as d ! 1, the OUP does (on average) take no longer than Brownian motion to exit balls
of arbitrary radius. Sixth, in Section 5, we discuss the intuitive reasons and implications of our
results. Finally, we summarize and conclude in Section 6.

2 The radial Ornstein–Uhlenbeck process

Let Xt denote a d-dimensional OUP process, as defined in Eq. (1). We are concerned with the
first exit time

⌧L := inf
t�0

{kXtk2| {z }
=:⇢t

= L}. (3)

We can see that this stopping time only depends on Xt via ⇢t := kXtk2 = (
Pd

i=1X
2
i,t)

1/2. The
stochastic process ⇢t is called the radial Ornstein–Uhlenbeck process (rOUP). It (as well as its
square) can be represented by the following Itô diffusions (Borodin and Salminen, 2002, Appendices
1.25 and 1.26).

Lemma 1. Let d 2 N, ✓ 2 R and � > 0. Consider the d-dimensional OUP Xt from Eq. (1). Then,
⇢
2
t =

Pd
i=1X

2
i,t and ⇢t = (

Pd
i=1X

2
i,t)

1/2 follow the SDEs

d⇢2t = (�2
d� 2✓⇢2t ) dt+ 2�

q
⇢2t dBt (4)

and

d⇢t =


(d� 1)�2

2⇢t
� ✓⇢t

�
dt+ � dBt, (5)

respectively. (Nb: Here Bt is not the original BM, but another one (see proof). We however use
the same symbol to declutter the notation.)

Proof. First, note that the components of Xt = [X1,t, . . . , Xd,t] are independent OUPs of the form

dXi,t = �✓Xi,t + � dBi,t. (6)

Then, by ⇢
2
t =

Pd
i=1X

2
i,t, application of Itô’s lemma yields

d⇢2t = 2X|
t dXt +

1

2
tr(2Id

=�2Iddtz }| {
[dXtdX

|
t ]) (7)

= 2X|
t dXt + �

2
d dt. (8)

The remaining term to compute is

X
|
t dXt

(6)
= �✓⇢

2
t dt+ �

dX

i=1

Xt,i dB
(i)
t = �✓⇢

2
t dt+ �

q
⇢2t dYt, (9)

where

Yt :=
dX

i=1

Z t

0

Xi,sp
⇢2t

dB(i)
s . (10)
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But Yt is a continuous martingale with quadratic variation [Y, Y ]t = t. This means, by Lévy’s
characterization of BM, that Yt is another Brownian motion. To declutter notation, we denote Yt

by Bt, too. Now, insertion of Eq. (9) into Eq. (8) yields Eq. (4).
For the missing Eq. (5), we observe that ⇢t =

p
⇢2t . Then, application of Itô’s lemma and

insertion of Eq. (4) gives Eq. (5).

Now, we have derived the SDE for the rOUP in Eq. (5). To exploit it, we will need to solve its
Andronov–Vitt–Pontryagin formula which we will introduce next.

3 The Andronov–Vitt–Pontryagin formula

The Andronov–Vitt–Pontryagin (AVP) formula is a formula to compute the expected exit times of
an Itô diffusion by use of its Kolmogorov backward operator.

Consider the Itô SDE
dXt = a(Xt, t) dt+ b(Xt, t) dBt, (11)

where a : Rd ⇥ [0, T ] ! Rd, b : Rd ⇥ [0, T ] ! Rd⇥n, and Bt is an n-dimensional Brownian motion.
The associated backward Kolmogorov operator is defined as

L
⇤
xu(x, t) =

nX

i=1

ai(t)
@u(x, t)

@xi
+

1

2

nX

i=1

nX

j=1

[b(Xt, t)b(Xt, t)
|]ij

@
2
u(x, t)

@xi@xj
. (12)

For any bounded domain D ⇢ Rd, we define the first exit time from this domain:

⇡D := inf{t > 0 | x(t) 62 D}. (13)

Note that, if D is equal to a centered ball BL(0) of radius L, then ⇡D = ⌧L. The next theorem
characterizes the expected value of ⇡D.

Theorem 2 (The Andronov–Vitt–Pontryagin formula). Let D ⇢ Rd be a bounded set, and assume
that the following boundary value problem

@u(x, t)

@t
+ L

⇤
xu(x, t) = �1, for x 2 D and t 2 R,

u(x, t) = 0, for x 2 @D,

(14)

has a unique bounded solution u(x, t). Then, the mean first passage time Ex
⇡D is finite and takes

the form
Ex

⇡D = u(x, 0). (15)

Proof. See Theorem 4.4.3. in Schuss (2010).

Fortunately, in the autonomous case, the PDE (14) turns into an ODE which can be solved
analytically in many cases.

Corollary 3 (The Andronov–Vitt–Pontryagin boundary value problem for the autonomous case).
Under the assumptions of Theorem 2, if the coefficients a and b from Eq. (11) are independent of t,
the solution u of Eq. (14) is also independent of t and therefore solves the ODE

L
⇤
xu(x) = �1, for x 2 D.

u(x) = 0, for x 2 @D,
(16)

In particular, Ex
⇡D = u(x).

5



Proof. See Corollary 4.4.1. in Schuss (2010).

We can now apply the above Corollary to the SDE (5) of the radial OUP. We will be able to
solve the resulting ODE (16) and thereby obtain an exact formula for Ex

⌧L.

4 Mean first exit time of the d-dimensional OUP

Theorem 4. Let L > 0 and let x 2 [0, L] such that a.s. kX0k = x. Denote � := ✓
�2 . Then, for all

� > 0 and � 2 R, we have that

Ex
⌧L =

2

�2

Z L

x
z
1�d

e
�z2

Z z

0
t
d�1

e
��t2 dt

�
dz. (17)

If � > 0, then this formula further simplifies to

Ex
⌧L =

1

�
d
2�2

Z L

x
z
1�d

e
�z2

�(d/2,�z2) dz, (18)

where the function � denotes the upper incomplete Gamma function

�(n, y) :=

Z y

0
t
n�1 exp(�t) dt. (19)

Remark 5 (Relation to prior work). Theorem 4 gives an exact representation of the desired MFET
of the OUP for all d 2 N. Note that Theorem 4 is already partially known. While both the physics
and mathematics literature have independently derived variations of Eq. (17), our reformulation
with the incomplete Gamma function (18) is new. Importantly, this will enable us to derive novel
lower and upper bounds on the MFET (see Theorem 7).

In physics, Grebenkov (2014) derives our formula (17) in his Eq. (75), but in a different
parametrization and with a different proof using the eigenfunctions of the backward Laplace
operator.

In mathematics, Graczyk and Jakubowski (2008), in their Theorem 2.2, also prove our formula
(17) with a similar strategy, but only for � = 1 and ✓ � 0 (called � in their notation). (Note
that they use hypergeometric functions to express the integral in Eq. (17).) Their proof strategy is
similar to ours: our Corollary 3 corresponds to their Theorem 2.1, which they derive by different
means than Schuss (2010) used for our Corollary 3. Accordingly, our BVP (20) appears on page
320 of Graczyk and Jakubowski (2008). Hence, one can think of our Eq. (17) as an extension of
Theorem 2.1 in Graczyk and Jakubowski (2008) to all � > 0 and all ✓ 2 R, and of our proof as a
shorter version of theirs.

While our Eq. (18) is easily derived from Eq. (17) by a change of variable (see proof), it will be
essential to prove the scaling for d ! 1 below. Eq. (18) is thus an essential part of our analysis.

Proof of Theorem 4. We first prove Eq. (17) and then Eq. (18). The proof of Eq. (17) is split
into three parts. First, we fix x > 0 and show that the right-hand side of Eq. (17) solves the
Andronov–Vitt–Pontryagin BVP, Eq. (16), associated with the radial Ornstein–Uhlenbeck process
⇢t, with ⇢0 = x. Second, we show that the solution to this BVP is unique. (Together, the first two
steps imply that Eq. (17) holds for all x > 0.) Third, we will show that it also holds for x = 0
which will conclude the proof.

We now go through the proof step by step.

6



First step: By the definition of the radial OU process ⇢t = (
Pd

i=1X
2
i,t)

1/2, we have ⌧L =
inf{t > 0 : ⇢t = L}. Hence, by the SDE (5) of ⇢t, the associated Andronov–Vitt–Pontryagin BVP
(16) reads 

(d� 1)�2

2x
� ✓x

�
u
0(x) +

�
2

2
u
00(x) = �1, with u(L) = 0,

or equivalently

u
00(x) =


2�x� d� 1

x

�
u
0(x)� 2

�2
, with u(L) = 0. (20)

(Note that we here used that ⇡BL(0) = ⌧L by construction in Eq. (13), so that we could apply the
Andronov–Vitt–Pontryagin formula.) We will now show that the right-hand side of Eq. (17) solves
the above equation, that is

u(x) :=
2

�2

Z L

x
z
1�d

e
�z2

Z z

0
t
d�1

e
�� dt

�
dz. (21)

Its derivatives are

u
0(x) = � 2

�2
x
1�d

e
�x2

I(x), (22)

u
00(x) = � 2

�2

h
(1� d)x�d

e
�x2

+ 2�x2�d
e
�x2

i
I(x)� 2

�2
, (23)

where

I(x) : =

Z x

0
t
d�1

e
��t2 dt

�
. (24)

Insertion of these formulas yields Eq. (20):

2�x� d� 1

x

�
u
0(x)� 2

�2
=


2�x� d� 1

x

� 
� 2

�2
x
1�d

e
�x2

�
I(x)� 2

�2
(25)

= � 2

�2

h
(1� d)x�d

e
�x2

+ 2�x2�d
e
�x2

i
I(x)� 2

�2
= u

00(x). (26)

Second step: To prove that u from Eq. (21) is the unique solution to the second-order ODE
(20) for any x > 0, we recast it as a first-order ODE

d

dx


u1(x)
u2(x)

�
=


u2(x)⇥

2�x� d�1
x

⇤
u1(x)� 2

�2

�
=: f

✓
x,


u1(x)
u2(x)

�◆
. (27)

Now, on the domain x̃ 2 [x, L], the vector field f(·, [u1, u2]|), has Lipschitz uniformly bounded
Lipschitz constants:

L(x̃) : = sup
u 6=v2R2d

kf(x̃, u)� f(x̃, v)k
ku� vk = min {1, |2�x̃� (d� 1)/x|}  |2�x̃� (d� 1)/x|

 2�L+ (d� 1)/x < 1, 8x̃ 2 [x, L].

(28)

Hence, the following global Lipschitz condition required for a global-Lipschitz version of Picard–
Lindelöf’s theorem (Teschl, 2012, Corollary 2.6.) is satisfied for any choice of x > 0:

Z L

x
L(x̃) dx̃  (L� x) · (2�L+ (d� 1)/x) < 1 (29)

7



Thus, this version of Picard–Lindelöf’s theorem yields that u(x) is the unique solution of Eq. (20),
for any fixed choice of x > 0.

Third step: To provide the missing case x = 0, we first observe that liml!0 E0
⌧l = 0 – because

otherwise the radial Ornstein–Uhlenbeck ⇢t would stay at the origin for a positive time with
positive probability, which it does not. Moreover, by the strong Markov property of Xt, we have
for all l 2 (0, L] that

E0
⌧L = E0

⌧l + El
⌧L|{z}

=u(l)

. (30)

Hence, in the limit l ! 0, we indeed obtain E0
⌧L = u(0) which concludes the proof of Eq. (17).

Note that all above steps worked for all � = ✓
�2 2 R, and thus Eq. (17) holds for all � 2 R.

To prove the missing Eq. (18) for � > 0, we observe by a change of variable, using the
substitution function �(t) :=

q
t
� with derivative �

0(t) =
p
4�t, that

Z z=�(�z2)

0
t
d�1 exp(��t

2)dt =

Z �z2

0

p
4�t

✓
t

�

◆ d�1
2

exp(�t)dt ·

=
1

2
�
�d/2

Z �z2

0
t
d
2�1 exp(�t) dt

| {z }
=�( d

2 ,�z
2)

.
(31)

Insertion of the above formula into Eq. (17) yields Eq. (18).

4.1 Scaling for d ! 1

Equipped with our formula (18), we will derive the scaling for dimension d ! 1 by use of the
following existing bounds on the incomplete Gamma function.

Lemma 6 (Theorem 4.1. by Neuman (2013)). For the lower incomplete Gamma function � from
Eq. (19), the inequalities

x
a

a
exp

✓
�ax

a+ 1

◆
 �(a, x)  x

a

a(a+ 1)
(1 + a exp(�x)) (32)

are valid for all a > 0.

Now, we use the above result, to show the the scaling of Ex
⌧L in d. The result of the following

theorem is verified numerically in Fig. 2.

Theorem 7. Let L > 0 and let x 2 [0, L] such that a.s. kX0k = x. Denote � := ✓
�2 . Let ✓ > 0 (or

equivalently � = ✓
�2 > 0). Then, we have the following upper bounds

Ex
⌧L  2

�2d(d+ 2)

✓
1

�

⇥
exp(�L2)� exp(�x2)

⇤
+

d

2

⇥
L
2 � x

2
⇤◆

(33)

 1

✓

⇥
exp(�L2)� exp(�x2)

⇤
d
�1

, (34)

and lower bounds

Ex
⌧L �

1 + 2
d

2��2


exp

✓
2�

d+ 2
L
2

◆
� exp

✓
2�

d+ 2
x
2

◆�
(35)

�

L
2 � x

2

�2

�
d
�1

. (36)
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Figure 2: Log-log plot of the bounds of Theorem 7. Parameters are set as (L, x,�,�) =
(4.0, 0.0, 1.0, 0.5) (on the left plot) and as (L, x,�,�) = (3.0, 0.0, 1.0, 0.7) (on the right plot);
but other parameters give the same behavior. The BM lower bound is the smaller lower bound that
is independent of � (which is the exact MFET of BM). To compute the MFETs, 100 simulations
with a step size of 0.001 (on the left) and of 0.0001 (on the right) were run for each choice of
d. In both plots, the step size was chosen to reproduce the upper bounds (otherwise the point
of exit can be missed by the discrete time steps); smaller choices also work. The bounds can be
computed in closed form with our Eqs. (33)–(36). The bounds from Theorem 7 are verified by this
plot. Remarkably, as we prove in Corollary 8, the asymptotics of OUP (✓ > 0) are equivalent to
the BM lower bound (✓ = 0).

Proof. We first show the upper bounds and then the lower bounds.
Upper bounds: By the second inequality from Lemma 6, we have

�(d/2,�z2)  4�d/2
z
d

d(d+ 2)
·

1 +

d

2
exp(��z

2)

�
(37)

 4�d/2
z
d

d(d+ 2)
· 2 + d

2
=

2�d/2
z
d

d
. (38)

Insertion of the inequality (37) into Eq. (18) yields

Ex
⌧L  4

�2d(d+ 2)
·

Z L

x
z exp

�
�z

2
� ⇥

1 + exp(�z2)
⇤
dz

| {z }
=
R L
x z exp(�z2)dz+ d

2

R L
x zdz = [ 1

2� exp(�z2)]z=L

z=x
+ d

4 [L
2�x2]

, (39)

which is Eq. (33). For the missing upper bound (34), we insert the less sharp inequality (38) into
Eq. (18):

Ex
⌧L  2

�2d

Z L

x
z exp

�
�z

2
�
dz =

1

✓

⇥
exp(�L2)� exp(�x2)

⇤
d
�1

, (40)

where we used that � = ✓/�
2. Since the inserted upper bound from inequality (37) is sharper than

the one from (38), the first proved inequality (39) is lower than the second one (40).
Lower bounds: By the first inequality from Lemma 6, we have

�(d/2,�z2) � 2

d
(�z2)d/2 exp

✓
� d/2

d/2 + 1
�z

2

◆
� 2

d
(�z2)d/2 exp

�
��z

2
�
. (41)
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Now, for the inequalities in Eqs. (35) and (36), we insert the first and second inequality from
Eq. (41) into Eq. (18), respectively. For the first inequality, we thereby obtain

Ex
⌧L � 2

�2d

Z L

x
exp

✓
2

d+ 2
�z

2

◆
z dz =

2

�2d


d+ 2

4�
exp

✓
2�

d+ 2
z
2

◆�L

z=x

(42)

=
1 + 2

d

2��2


exp

✓
2�

d+ 2
L
2

◆
� exp

✓
2�

d+ 2
x
2

◆�
. (43)

For the second inequality, we analogously obtain

Ex
⌧L � 2

�2d

Z L

x
z dz =


L
2 � x

2

�2

�
d
�1

. (44)

As for the upper bounds, the ordering of inequalities in Eq. (41) implies that the lower bound in
Eq. (44) is even lower than the one in Eq. (43).

Corollary 8. Let L > 0 and let x 2 [0, L] such that a.s. kX0k = x. Then, we have, for d ! 1,
that

Ex
⌧L ⇠


L
2 � x

2

�2

�
d
�1

, 8 ✓ � 0, (45)

i.e. the MFET of a d-dimensional radial Ornstein Uhlenbeck process with arbitrary ✓ > 0 is
asymptotically equivalent to the one of a d-dimensional Brownian motion with ✓ = 0. (See
e.g. Eq. (7.4.2) in Øksendal (2003) for a proof that the MFET of a d-dimensional Brownian motion
is equal to the right-hand side of Eq. (45).)

Proof. From Eq. (33), we know that

Ex
⌧L  2

��2d(d+ 2)

⇥
exp(�L2)� exp(�x2)

⇤
+

1

�2(d+ 2)

⇥
L
2 � x

2
⇤
, (46)

where the first term is of order O(d�2) and the second of order O(d�1). Thus, the first term is
irrelevant for the asymptotics and we have

lim sup
d!1

Ex
⌧L

�2d/(L2 � x2)
= lim sup

d!1

Ex
⌧L

�2(d+ 2)/(L2 � x2)
 1. (47)

On the other hand, by Eq. (36), we have that

lim inf
d!1

Ex
⌧L

�2d/(L2 � x2)
� 1. (48)

This means that the liminf and the limsup coincide at 1, i.e.

lim
d!1

Ex
⌧L

�2d/(L2 � x2)
= 1, (49)

which is equivalent to the desired Eq. (45).
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5 Discussion

Theorem 7 provides asymptotically tight bounds for the MFET of a d-dimensional OUP from a
ball of finite radius L > 0, as d ! 1. These bounds imply by virtue of Corollary 8 that, in high
dimensions, the d-dimensional OUP takes (on average) no longer than a d-dimensional BM to exit
a ball of radius L. While we provided a rigorous proof above, this section gives some intuition
on whether this result is surprising and why the drift coefficient ✓ does not impact Ex

⌧L in high
dimensions.

Is Corollary 8 surprising? (Short answer: At first, it might be; but a careful examination
dispels the surprise.) At first sight, Corollary 8 may be surprising. After all, the mean-reverting
drift of OUP (parametrized by ✓ > 0) makes all the difference with the drift-less BM. In fact, due
to the drift, the analytical properties of OUP and BM differ significantly; e.g., the OUP has a
stationary distribution (unlike the BM) and its maximum grows in ✓ (Graversen and Peskir, 2000;
Jia and Zhao, 2020). But, our result suggests that – for the MFET – the drift becomes irrelevant
as d ! 1. The following paragraphs contain an attempt to explain this.

First, we want to discern which part of our result might be surprising. We proved that (i) the
MFET Ex

⌧L goes to zero, and that (ii) Ex
⌧L is for any ✓ > 0 asymptotically equivalent to Ex

⌧L

when ✓ = 0 (Brownian motion case). We feel that, while point (i) is unsurprising, point (ii) may
be surprising at first (before a closer examination on the drift below).

Regarding (i), it is clear that, as d grows, the first-exit time ⌧L will converge to zero (in proba-
bility) for all choices of ✓ (or in fact, for any d-dimensional stochastic process with iid. components).
This can be seen from Eq. (3), where ⌧L was defined as ⌧L = inf{t > 0 : kXtk22 =

Pd
i=1X

2
i,t = L

2}.
Since the processes Xi,t are iid., the sum

Pd
i=1X

2
i,t will likely reach L

2 faster for a high value
of d. Thus, each value of the cumulative distribution function of ⌧L, as well as its mean, will
monotonously decrease to zero, as d ! 1. But, from this, it does not follow how the asymptotic
rates depend on drift coefficient ✓, as d ! 1. Next, we will explain why this is the case.

For ⇢t 2 [0, L], the dynamics of the rOUP is asymptotically independent of ✓, as d ! 1.

From Eq. (3), we can rewrite the first exit time as ⌧L = supt�0{0  ⇢
2
s  L

2
, 8s 2 [0, t]}. This

means that, for ⌧L, only the dynamics of ⇢2t on the interval ⇢t 2 [0, L] matters. But the SDE of
⇢
2
t , Eq. (4), only depends on ✓ through the SDE’s drift coefficient (�2

d � 2✓⇢2t ), and this drift
coefficient becomes irrelevant for d ! 1 on the bounded interval ⇢t 2 [0, L]:

�
2
d� 2✓⇢2t ⇠ �

2
d, for d ! 1, (50)

because �
2, ✓ and L are chosen as constants independent of d. Note that the right-hand side, �2

d,
is indeed the drift of the d-dim. squared Bessel process, i.e. of the squared rOUP ⇢

2
t with ✓ = 0

(Pitman and Winkel, 2018, Eq. (1.1)). Hence, Eq. (50) shows that the coefficients of the SDE of
⇢
2
t , Eq. (4), is asymptotically independent of ✓ on ⇢t 2 [0, L]. The left subplot of Fig. 3 visualizes

this effect. With this in mind, it is unsurprising that the MFET Ex
⌧L becomes independent of ✓,

as d ! 1.

For ⇢t 2 R>0, the dynamics of rOUP still depend on ✓. For unbounded ⇢t the situation is
however different. If ⇢2t can take arbitrarily large values in the left-hand side of Eq. (50), then the
asymptotics do not hold. This is demonstrated on the right subplot of Fig. 3. In fact, as long as L
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Figure 3: Simulations to give intuition for Corollary 8. Parameters are set as L = 3.0, �2 = 1.0,
and ✓ = 0.7. Both the left and the right plot show the drift of the squared radial OUP �

2
d� 2✓

divided by the squared BM drift �
2
d, i.e. �2d�2✓

�2d , on different domains; see Eq. (4) for these drift
terms. Hence, BM is a vertical line at y = 1 and the OUPs have lower values (in some cases
negative, i.e. the drift pushes back to zero). The left plot shows these ratios for d = 21, 22, ..., 27

in gray, on ⇢t 2 [0, L]. The k
th line from below belongs to d = 2k. We can see that, as d ! 1,

the OUP drift approaches BM. However the right plot shows that, for ⇢t > L, even the highest
OUP drift d = 27 still diverges to �1, as ⇢t ! 1. In summary, the left plot explains why Ex

⌧L

is asymptotically independent of ✓, while the right plot highlights that the rOUP still depends on
✓ for large values of ⇢t. More details in main text.

grows at least like O(
p
d), we could still conclude from Eq. (50) that the d ! 1 asymptotics of

Ex
⌧L will depend on ✓.
Therefore, it would be incorrect to conclude that Corollary 8) implies that the d-dim. squared

rOUP ⇢
2
t will resemble the d-dim. squared Bessel process on all of R>0, as d ! 1. But, on [0, L],

the SDE of the squared rOUP ⇢
2
t is asymptotically equivalent to the squared Bessel process. (With

this in mind, one can probably show more asymptotic similarities between these processes on
compact domains.)

6 Conclusion

In the above material, we proved two new theorems and one corollary.
First, Theorem 4 gave two explicit formulas for the mean first exit time of a d-dimensional

Ornstein–Uhlenbeck process from a ball of radius L. The first of these formulas, Eq. (17), coincides
with the ones derived by prior work (Graczyk and Jakubowski, 2008; Grebenkov, 2014), but our
proof is very short (see discussion in Remark 5) and leverages Andronov–Vitt–Pontryagin theory
(Schuss, 2010). The second of these formulas, Eq. (18), is a novel reformulation in terms of the
incomplete Gamma function.

Second, Theorem 7 exploits this reformulation by bounding the Gamma function as suggested
by Neuman (2013). The resulting bounds are new and are verified numerically in Fig. 2. Since the
upper and lower bounds are asymptotically equivalent, they have the (perhaps at first surprising)
implication (Corollary 8) that, for d ! 1, the d-dimensional OUP takes no longer than a d-
dimensional Brownian motion to exit a ball of arbitrary radius L. Thus, for large d, the drift does

12



not matter for the (mean) exit time of OUP. This might be surprising because the d-dimensional
Brownian motion is just an OUP without drift, i.e. with ✓ = 0, and one would expect that a larger
drift back to zero leads to a slower exit (as is the case for small d 2 N). The simulations in Fig. 2
verify this asymptotic relation between OUP and Brownian motion. In Section 5, we then give
intuition to disperse any initial surprise that readers might have experienced.

Our findings shed light on some unusual behavior of the OUP in high dimensions. We hope
that our Corollary 8 will be applicable in the numerous research areas (biology, economics, machine
learning, statistical mechanics, etc.), where high-dimensional OUPs are used for modeling.
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