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Abstract

The objective of this thesis is to value spread options with payo� function on
the form max(S1(T )− hS2(T )−K, 0), where S1(T ) and S2(T ) are the spot
prices of two energy commodities at maturity time T, h is the heatrate and
K is the strike price. We model (X1(t), X2(t)) = (log(S1(t)), log(S2(t)) as a
bivariate Ornstein-Uhlenbeck Lévy process. First, we consider an Ornstein-
Uhlenbeck process driven by a bivariate Brownian motion, then we extend
the model to an Ornstein-Uhlenbeck process driven by a bivariate Lévy pro-
cess with jumps. We compute the characteristic function of (X1(t), X2(t))
in both models, and study the stationary properties of the distribution of
(X1(t), X2(t)). Then we we derive a closed form formula for the option price
in the continuous model for the case K = 0. In the model with jumps, we use
a Fourier transform method to express the price as an integral of the char-
acteristic function of (X1(t), X2(t)) times the Fourier transform of the payo�
function. When K 6= 0, we use a �rst order Taylor-expansion to approximate
the option price. We �nd a closed form formula for the approximated price
in the continuous model, and use simulations to check how good the approx-
imation is for di�erent values of K and for di�erent values of the correlation
between the two underlying price processes.
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Chapter 1

Introduction

Since the liberalization of energy markets started two decades ago, these mar-
kets have been steadily growing, and many new �nancial contracts have been
introduced. This has led to new risk management tools for the traditional
participants in these markets, like e.g. plant owners, but it has also opened
up a new investment area for speculators as investment banks and pension
funds. We will �rst give a short introduction to energy markets and some
contracts which are traded in these markets. To value energy derivatives, we
need to �nd appropriate stochastic models describing the underlying com-
modity prices. We will mainly consider electricity, since this is the energy
commodity that we face most challenges when modelling. In Section 1.2
we discuss the special attributes of electricity prices. An important di�er-
ence between electricity and other energy commodities is that electricity is
not storable, so hedging against undesirable price movements by buying and
keeping the underlying is not possible. Electricity prices are also depending
on prices in other energy markets, e.g. the temperature, natural gas and
coal markets. One example of a class of energy derivatives is spread options,
which we will study more closely in this thesis. We introduce some commonly
traded spread options in Section 1.3.

1.1 Energy markets

The liberalization of the energy markets started in the early 1990�s. In
Norway, the energy law of 1991 led to the establishment of Statnett Marked
(later Nord Pool ASA) in 1993, an exchange for trading electricity contracts.
Earlier, the local electricity producers had been responsible for delivering
electricity in their own area, and the price di�erences across the country
could be large. The other Nordic countries joined Nord Pool in the following
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10 CHAPTER 1. INTRODUCTION

years. In 2002, Nord Pool Spot AS was separated from Nord Pool ASA. Nord
Pool ASA was bought by Nasdaq OMX in 2008.

There are two markets for physical delivery of electricity, the real-time
market and the day-ahead market. The real-time market is organized by the
TSO (Transmission System Operator), which is responsible for the power
grids. In Norway, Statnett is the TSO. They continuously buy and sell
electricity from the producers to maintain a stable frequency on the power
grid. See [9] for more details about this.

On the day-ahead market, Elspot, which is organized by Nord Pool Spot,
the producers and consumers submit their bids on how much electricity they
want to buy or sell during each hour the next day. Prices for each hour the
following day are then decided at noon. This price is called the system price,
or the spot price. This is the price we will use as our underlying price in the
spread options we consider.

There is also a market called Elbas, where contracts from the Elspot
market are traded after the prices are �xed and until the delivery hour the
next day.

In the �nancial electricity market, futures and options on the system price
are traded. The electricity future contracts traded at Nord Pool are written
on the average of the hourly day-ahead prices over a speci�ed delivery period.
So these contracts are in fact swap contracts. Options on the future contracts
are also traded. The �nancial market is used to hedge against a decrease or
increase in the electricity price, or by speculators as mentioned earlier.

Another energy market is the gas market, which is linked to the electricity
market through gas �red power plants. Both the spot market for gas, which
is the market for short-term delivery of gas, and the market for gas futures
are mostly traded OTC (over the counter). Other energy markets related
to the electricity market are the markets for temperature, oil, coal and CO2

emmisions. See [1] for further details on electricity and related markets.

1.2 Modelling the spot price

To price derivative contracts in energy markets, we �rst need to �nd ap-
propriate models for the underlying spot prices. The models must describe
the special features of these markets, but they also need to be analytically
tractable in order to be able to compute the prices. The spot price is in
reality a discrete process, since it is constant for each hour during the day.
However, modelling it as a discrete process leads to a futures price that is also
constant for each hour. Modelling the spot price as an underlying continuous
process solves this problem (see [1, p.30]).



1.2. MODELLING THE SPOT PRICE 11

The price of electricity is dependeding on many di�erent factors. An
important attribute of electricity is that it can not be stored, so it needs
to be instantly consumed. Both demand and supply are strongly dependent
on weather. The demand is depending on temperature, with higher demand
when the temperature is low. In Norway, where the majority of produced
electricity comes from hydropower plants, the production is dependent on the
precipitation. Weather can change suddenly, which in combination with the
limited storage possibilities leads to imbalances between supply and demand.
This leads to high volatility and sudden �uctuations or spikes in the prices.
Temperatures are also more variable during the winter, so the volatility is
seasonally dependent.

The gas market has many similarities with the electricity market. The
prices are seasonal with sudden spikes. Contrary to electricity, gas can be
stored, which makes hedging possible.

An important di�erence from stock prices is the mean-reverting property,
because prices in energy markets are driven by the balance between pro-
duction and demand. Ornstein-Uhlenbeck (OU) processes, which posess the
mean-reverting property, are therefore natural processes for spot price mod-
elling in energy markets. The Schwarz model, which is the classical spot price
model in energy markets, models the prices as exponential OU processes (see
[1, p.20]). By letting the OU processes be driven by Lévy processes instead
of Brownian motions, we can model the spikes. The seasonally varying mean
level can be modelled by multiplying the price process with a determinis-
tic function. However, since Lévy processes are stationary, they can not be
used to model a seasonally dependent variance. To include seasonality in
the jump size and jump frequency, we can use independent increment (II)
processes instead. II processes are a generalization of Lévy processes which
are not necessarily stationary. We will not consider general II processes here.
See [1] for more information about II processes and how they are used in
energy market modelling.

Chapter 2 includes some background theory on Lévy processes and other
topics that we will need in the following chapters. In Chapter 3, we take a
closer look at both a continuous Schwarz model and a Lévy process model
for the spot price. We calculate the characteristic functions and study the
stationary distributions of the logarithmic spot prices. We also simulate a
realization of the spot price process in the continuous model.
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1.3 Spread options in energy markets

A spread option is an option written on the di�erence between two underlying
assets. We will consider spread options of European type, i.e. call or put
options on the price di�erence between the two assets. Such spread options
have a payo� on the form max(S1(T )−hS2(T )−K, 0), where S1(t) and S2(t)
are the price processes of the two underlying assets, K is the strike price, T is
the maturity time of the option and h is called the heat rate. The heat rate
is also called the e�ciency rate, since it can be interpreted as the e�ciency
of a speci�c power plant. In energy markets, the maturity time is usually a
period rather than a point in time.

Examples of spread options in energy markets are the spark spread option,
the dark spread option and the crack spread option. The spark spread is
written on the price di�erence between electricity and gas. The value of
such an option re�ects the cost of producing electricity from natural gas at
a speci�c power plant. It can be used by plant owners to hedge against
an increase in the gas price or a decrease in the electricity price. A dark
spread option is written on the di�erence between the electricity price and
the price of coal, the crack spread on the di�erence between crude and re�ned
petroleum products. The last ones are used for risk management by oil
re�ners.

There also exist spread options written on only one underlying commod-
ity, like locations spread, calendar spreads and quality spreads. Processing
spreads are written on the price di�erence between the input and the output
of a production process. Spread options depending on two underlying assets
are harder to price because one has to take into account the dependency be-
tween the price processes. There also exist spread options written on several
underlying commodities. See [2] for more details about the di�erent types of
spread options.

In Chapter 4 we will calculate the price of a spread option with strike price
K = 0 for both of the spot price models in Chapter 3. In Chapter 5 we will
�nd an approximation for the option price in the continuous model for the
case when K 6= 0, and we use simulations to see how good the approximation
is.



Chapter 2

Theoretical background

We will in this chapter introduce some topics that we will use in the later
chapters. First, we give the de�nition of a Lévy process, and state some basic
properties of these processes.

Further, we study characteristic functions, which are useful a useful tool
to describe the distributional properties of the spot price processes we will
consider in Chapter 3. It is often very di�cult or even impossible to �nd
a closed form formula for the distribution of a Lévy process, but �nding its
characteristic function is much easier. The characteristic function gives a
complete and unique characterization of the distribution, and many proper-
ties of the distribution can be derived from the characteristic function. In
Chapter 4.2, we are going to express the spread option price in the model
with jumps, in terms of a characteristic function.

Then we introduce the Esscher transform, through which we can de�ne
a new equivalent probability measure. This measure change will also be
helpful when we compute the spread option price in the Lévy process model
in Chapter 4.

In the last section we de�ne the Fourier transform and give an example
that we will use in Chapter 4.

2.1 Lévy processes

Definition 2.1. [8, p. 3] Let (Ω,F , P ) be a complete probability space
equipped with a �ltration {Ft, t ≥ 0}. A Lévy process {L(t)}t≥0 is an Ft-
adapted process that possesses the following properties:

(i) L(0) = 0 a.s.

(ii) L(t) has independent increments, i.e., for any n ≥ 1 and 0 ≤ t0 <

13



14 CHAPTER 2. THEORETICAL BACKGROUND

t1 < t2 < ... < tn, the random variables L(t0), L(t1)− L(t0),...,L(tn)−
L(tn−1) are independent.

(iii) L(t) has stationary increments, i.e., the distribution of L(t+ s)−L(t)
does not depend on t.

(iv) L(t) is stochastically continuous, i.e., for any t ≥ 0 and ε > 0, lim
s→0

P (|L(t+

s)− L(t)| > ε) = 0.

A stochastic process is càdlàg if its paths are right-continuous for t ≥ 0
and have limits from the left for t > 0 a.s. It can be shown that every Lévy
process has a càdlàg version, so we can assume that the Lévy processes we
use are càdlàg.

The Poisson random measure or jump measure N(U, t) of L(t) is de�ned
as

N(U, t) =
∑

0<s≤t

1U(∆L(s)), ∀ U ∈ B0,

where B0 is the family of Borel sets U ∈ R such that 0 /∈ Ū , and ∆L(t) =
L(t) − L(t−) is the jump of L(t) at time t ≥ 0. N(U, t) is a random mea-
sure which measures the number of jumps between time 0 and time t where
∆L(s) ∈ U, 0 < s ≤ t. The Lévy process can have in�nitely many small
jumps, so the jump measure can be in�nite. It is although �nite for all
U ∈ B0 because L(t) has the càdlàg property (see [7]). The Lévy measure ν
of L(t) is de�ned as

ν(U) = E [N(U, 1)] .

The Lévy measure measures the expected number of jumps within a time
interval. We also de�ne the compensated Poisson random measure Ñ(U, t)
of L(t):

Ñ(U, t) = N(U, t)− ν(U)t.

Ñ(U, t) is a local martingale. Every Lévy process can be decomposed in the
following way:

Theorem 2.2 Itô-Lévy decomposition. [7, p. 3] Let L(t) be a Lévy
process. Then it has the following decomposition:

L(t) = αt+ σB(t) +

∫ t

0

∫
|z|<1

zÑ(dz, dt) +

∫ t

0

∫
|z|≥1

zN(dz, dt), (2.1)

where α ∈ R, σ ∈ R and B(t) is a Brownian motion independent of N.
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The triplet (α, σ, ν) is called the Lévy triplet of L(t), and it is unique.
The reason why we need to use the measure Ñ instead of N for the small
jumps, is to assure convergence of the integral, because the sum of the small
jumps does not necessarily converge.

The compound Poisson process is an example of a Lévy process with �nite
Lévy measure. A compound Poisson process X(t) with intensity λ and jump
size distribution µ is de�ned as

X(t) =

N(t)∑
j=1

Y (j), t > 0,

where Y (j), j ∈ N, is a is a sequence of i.i.d. random variables taking values
in R with common distribution µ, andN(t) is a Poisson process with intensity
λ, independent of Y (j) for all j. X(t) has Lévy measure λµ, and since it has
no continuous component, the Lévy triplet is (0, 0, λµ).

An Itô-Lévy process X(t) is a process on the form:

X(t) = X(0) +

∫ t

0

α(s) ds+

∫ t

0

β(s) dB(s)

+

∫ t

0

∫
|z|<1

γ(s, z)Ñ(dz, dt) +

∫ t

0

∫
|z|≥1

γ(s, z)N(dz, dt),

where ∫ t

0

(
|α(s)|+ β2(s) +

∫
R
γ2(s, z) ν(dz)

)
ds <∞ a.s. ∀t > 0.

We are going to use an Ornstein-Uhlenbeck Itô-Lévy process as a model for
the logarithmic spot price process.

2.2 Characteristic functions

Definition 2.3 Characteristic function. [3, p. 30] Let X ∈ Rn be
a random variable with distribution µX . Then its characteristic function
ΦX : Rn → R is de�ned as:

ΦX(u) = E[ei〈u,X〉] =

∫
Rn
ei〈u,x〉 µX(dx), ∀u ∈ Rn,

where 〈·, ·〉 denotes the Euclidian inner product in Rn.
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To show that this integral converges for all u ∈ Rn and all probability
distributions µX , we use that |ei〈u,x〉| = | cos(〈u, x〉) + i sin(〈u, x〉)| = 1 and
that µX(A) ≥ 0 for all A ⊆ Rn.∫

Rn
eiux µX(dx) ≤

∫
Rn
|eiux|µX(dx) =

∫
Rn
µX(dx) = 1.

Hence, the characteristic function of a random variable is always well-de�ned.
It is also continuous [8, p. 8], and we see that ΦX(0) = 1.

Theorem 2.4. [8, p. 8] Let X ∈ Rn and Y ∈ Rn be two random variables
with distributions µX and µY . If ΦX(u) = ΦY (u) for all u ∈ Rn, then
µX = µY .

So the characteristic function of a random variable uniquely determines
its distribution. The moments of a random variable X, if they exist, can be
found through di�erentiation of its characteristic function.

Proposition 2.5 Characteristic function and moments. [3, p. 30]
Let X ∈ Rn be a random variable with characteristic function ΦX .

1. If E[Xn] is �nite for some n ∈ N, then ΦX has n continuous derivatives
at u = 0, and

E[Xk] = (−i)k ∂
kΦX

∂uk
(0), ∀k = 1, . . . , n.

2. E[Xn] is �nite for all n ∈ N if and only if ΦX has in�nitely many
continuous derivatives at u = 0. Then we have that

E[Xn] = (−i)n∂
nΦX

∂un
(0).

We state the characteristic function of a multivariate normal random
variable, since we will use it in Chapter 3.

Proposition 2.6 Characteristic function of a multivariate normal

random variable. [8, p. 11] Let X = (X1, . . . , Xn) be a random variable
in Rn following a multivariate normal distribution with expectation µ and
covariance matrix σ. Then the characteristic function of X is

ΦX(u) = exp

{
i〈u, µ〉 − 1

2
〈u, σu〉

}
, ∀u ∈ Rn.
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As an example of a characteristic function of a Lévy process with jumps,
we calculate the characteristic function of a compound Poisson process.

Proposition 2.7 Characteristic function of a compound Poisson

random variable. Let X(t) be a compound Poisson process with intensity λ
and jump size distribution µ. Then the characteristic function ΦX(t) of X(t)
has the following representation:

ΦX(t)(u) = exp

{
λt

∫ ∞
−∞

(eiuy − 1)µ(dy)

}
, ∀u ∈ R.

Proof. We �rst calculate the characteristic function of the jump size distri-
bution. The characteristic function of Y (1), which equals the characteristic
function of Y (j) for all j ∈ N, is:

ΦY (1)(u) = E[eiuY (1)] =

∫ ∞
−∞

eiuyµ(dy), ∀u ∈ R. (2.2)

The characteristic function ΦX(t) of X(t) becomes:

ΦX(t)(u) = E[eiuX(t)]

= E
[
E
(
eiuX(t)|N(t)

)]
= E

[
E
(
eiu

∑N(t)
j=1 Y (j)|N(t)

)]
= E

E
N(t)∏

j=1

eiuY (j)|N(t)

 .
Since the random variable E[Y |X] is a function of X, the outer expectation
can be taken with respect to the distribution of X. Hence we get

∞∑
n=0

E

N(t)∏
j=1

eiuY (j)|N(t) = n

P (N(t) = n).

=
∞∑
n=0

E

(
n∏
j=1

eiuY (j)

)
P (N(t) = n).

Since the jumps Y (j) are independent and identically distributed, we see
that this is equal to

∞∑
n=0

(
n∏
j=1

E(eiuY (j))

)
P (N(t) = n).
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=
∞∑
n=0

ΦY (1)(u)n P (N(t) = n).

Using that the number of jumps N(t) is Poisson distributed with parameter
λt and {N(t); t ≥ 0} is independent of {Y (j); j ∈ N} for all t, this is equal
to

e−λt
∞∑
n=0

(
λtΦY (1)(u)

)n
n!

.

From the Taylor expansion of the exponential function, we see that this is
equal to

exp
{
λt
(
ΦY (1)(u)− 1

)}
(2.2)
= exp

{
λt

(∫ ∞
−∞

eiuyµ(dy)− 1

)}
= exp

{
λt

∫ ∞
−∞

(eiuy − 1)µ(dy)

}
.

The Lévy-Khinchin formula gives us the characteristic function of a gen-
eral Lévy process. Since we will mostly work with two-dimensional Lévy pro-
cesses, we state it for an n-dimensional Lévy process L(t) = (L1(t), . . . , Ln(t)).

Theorem 2.8 Lévy-Khintchine formula. [8, p. 37] Let L(t) be a Lévy
process with Lévy measure ν. Then

∫
Rmin(1, |z|2)ν(dz) <∞ and

E[ei〈u,L(t)〉] = etψ(u), u ∈ Rn, (2.3)

where

ψ(u) = i〈u, α〉 − 1

2
〈u, σu〉+

∫
Rn

(ei〈u,z〉 − 1− i〈u, z〉1|z|<1)ν(dz), (2.4)

where α ∈ Rn and σ is a symmetric non-negative de�nite n× n-matrix.
Conversely, given α and σ satisfying the conditions above, and a measure

ν on Rn such that
∫
Rmin(1, |z|2)ν(dz) <∞, there exists a Lévy process L(t)

such that (2.3) and (2.4) hold.

The last term in the integral in equation (2.4) corresponds to the com-
pensation of the small jumps. We use the Lévy-Khintchine formula to derive
a formula for the characteristic function of a bivariate Itô-Levy process.
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Proposition 2.9 Characteristic function of a bivariate Itô-Lévy

process. Let X(t) = (X1(t), X2(t)) be an Itô-Levy process on the form

X(t) = η(t) +

∫ t

0

γ(t, s)dL(s)

where η(t) = (η1(t), η2(t)), γ(t, s) = (γ1(t, s), γ2(t, s)) and L(t) = (L1(t), L2(t))
is a bivariate Lévy process with dynamics:

dLi(t) = σidBi(t)+

∫
|z|<1

ziÑ(dz1, dz2, ds)+

∫
|z|≥1

ziN(dz1, dz2, ds), i = 1, 2,

where B1 and B2 are Brownian motions with correlation ρ, N is a Poisson
random measure and Ñ is the corresponding compensated Poisson random
measure. Then the characteristic function of X(t) is:

ΦX(t)(u) = exp

{
i〈u, η(t)〉+

∫ t

0

Ψ(v(t, s)) ds

}
,

where

u = (u1, u2)

Ψ(·) = −1

2
〈·, σ·〉+

∫
R2
0

(
ei〈·,z〉 − 1− i〈·, z〉1{|z|<1}

)
ν(dz)

v(t, s) = (u1γ(t, s), u2γ(t, s))

σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

Proof.

ΦX(t)(u) = E
[
ei〈u,X(t)〉]

= E

[
e
i(u1,u2)

(
X1(t)
X2(t)

)]
= E

[
eiu1X1(t)+iu2X2(t)

]
= E

[
eiu1(η1(t)+

∫ t
0 γ1(t,s)dL1(s))+iu2(η2(t)+

∫ t
0 γ2(t,s)dL2(s))

]
= ei〈u,η(t)〉E

[
ei(u1

∫ t
0 γ1(t,s)dL1(s)+u2

∫ t
0 γ2(t,s)dL2(s))

]
.
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Let Πn be a partition of the interval [0, t] which divides it into Jn−1 intervals
[sj, sj+1], 1 ≤ j < Jn, with

|Πn| = max
1≤j<Jn

|snj+1 − snj | −→
n→∞

0.

We can write the integrals in the expectation above as limits of integrals
of elementary functions. Then we use the dominated convergence theorem
to put the limit outside of the expectation. We also use the independent
increment property of Lévy processes.

E
[
ei(u1

∫ t
0 γ1(t,s)dL1(s)+u2

∫ t
0 γ2(t,s)dL2(s))

]
= E

[
e
i
(
u1 lim
n→∞

∑Jn
j=1 γ1(t,snj )∆L1(snj )+u2 lim

n→∞

∑Jn
j=1 γ2(t,snj )∆L2(snj )

)]
= E

[
e
i lim
n→∞

∑Jn
j=1(u1γ1(t,snj )∆L1(snj )+u2γ2(t,snj )∆L2(snj ))

]
= E

[
lim
n→∞

ei
∑Jn
j=1(u1γ1(t,snj )∆L1(snj )+u2γ2(t,snj )∆L2(snj ))

]
= lim

n→∞
E
[
ei
∑Jn
j=1(u1γ1(t,snj )∆L1(snj )+u2γ2(t,snj )∆L2(snj ))

]
= lim

n→∞

Jn∏
j=1

E
[
ei(u1γ1(t,snj )∆L1(snj )+u2γ2(t,snj )∆L2(snj ))

]

= lim
n→∞

Jn∏
j=1

E

[
e
i(u1γ1(t,snj ),u2γ2(t,snj ))

(
∆L1(snj )

∆L2(snj )

)]

= lim
n→∞

Jn∏
j=1

E
[
ei〈v(t,snj ),∆L(snj )〉

]
,

where

v(t, snj ) =
(
u1γ1(t, snj ), u2γ2(t, snj )

)
and

∆L(snj ) =
(

∆L1(snj )

∆L2(snj )

)
.

∆L(t) is a two-dimensional Lévy process, and its characteristic function is
given by the Lévy-Khinchin formula:

E
[
ei〈u,∆L(t)〉] = eΨ(u)∆t,
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where

Ψ(u) = −1

2
〈u, σu〉+

∫
R2
0

(
ei〈u,z〉 − 1− i〈u, z〉1{|z|<1}

)
ν(dz)

and

σ =

(
σ2

1 ρσ1σ2

ρσ1σ2 σ2
2

)
.

So we get that:

lim
n→∞

Jn∏
j=1

E
[
ei〈v(t,snj ),∆L(snj )〉

]
= lim

n→∞

Jn∏
j=1

eΨ(v(t,snj ))∆snj

= lim
n→∞

e
∑Jn
j=1 Ψ(v(t,snj ))∆snj

= e
lim
n→∞

∑Jn
j=1 Ψ(v(t,snj ))∆snj

= e
∫ t
0 Ψ(v(t,s))ds.

Putting everything together, we have that

ΦX(t)(u) = exp

{
i〈u, η(t)〉+

∫ t

0

Ψ(v(t, s)) ds

}
.

We also give the de�nition of the moment-generating function, which is
closely related to the characteristic function.

Definition 2.10. Let X ∈ Rn be a random variable with distribution µX .
Then its moment generating function ΨX : Rn → R is de�ned as:

ΨX(u) = E[e〈u,X〉] =

∫
Rn
e〈u,x〉 dµX(x), ∀u ∈ Rn.

We see that ΨX(u) = ΦX(−iu). As opposed to the characteristic function,
the moment generating function is not always well-de�ned.
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2.3 Esscher transform

The Esscher transform of a stochastic variable with density f, is de�ned as

f(x, θ) =
eθxf(x)∫

R e
θyf(y)dy

,

where θ ∈ R, and it was introduced by Esscher in 1932 (see [4]). Gerber
and Shiu extended it to stochastic processes in 1994 (see [5]), in which case
the Esscher transform de�nes a new equivalent probability measure. For a
stochastic process X(t), the Esscher measure Qθ is de�ned as:

dQθ

dP

∣∣∣∣
Ft

=
eθX(t)

EP [eθX(t)]
,

where EP [eθX(t)] is the moment-generating function of X(t).
In the continuous case, the Esscher transform is the same as the Girsanov

transform. But the Esscher transform can also be applied to stochastic pro-
cesses with jumps.

In [1], the Esscher measure is de�ned for n-dimensional Lévy processes
and with a time-dependent parameter θ(t). Let Li(t) be a Lévy process with
Lévy triplet (αi, σi, νi) for i = 1, . . . , n:

Li(t) = αit+ σiBi(t) + Ji(t), i = 1, . . . , n,

where B1, . . . , Bn are correlated Brownian motions and Ji(t) denotes the
jump term of Li(t):

Ji(t) =

∫ t

0

∫
|z|<1

ziÑ(dz, dt) +

∫ t

0

∫
|z|≥1

ziN(dz, dt),

where N(dz, dt) is a Poisson random measure with compensator measure
ν(dz, dt) = (ν1(dz, dt), . . . , νn(dz, dt)). Let

θ̂(t) = (θ̂1(t), . . . , θ̂n(t)),

θ̃(t) = (θ̃1(t), . . . , θ̃n(t)),

and let θ(t) be a 2n-dimensional vector:

θ(t) = (θ̂(t), θ̃(t)).

We de�ne for i = 1, . . . n,

Ẑθ
i (t) = exp

{∫ t

0

θ̂i(s)dB(s)− 1

2

∫ t

0

θ̂2
i (s)ds

}
,
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Z̃θ
i (t) = exp

{∫ t

0

θ̃i(s)dJ(s)− φ(0, t, θ̃i(·))
}
,

where exp
{
φ(0, t, θ̃i(·))

}
is the moment-generating function of J(t), and we

let

Zθ(t) =
n∏
i=1

(
Ẑθ
i (t)× Z̃θ

i (t)
)
.

Assuming that sup0≤t≤T |θ̃i(t)| ≤ ci, where ci > 0 is a constant ensuring that∫ T

0

∫ ∞
1

(ecizi − 1)νi(dz, ds) <∞,

it follows that Z̃(t) is a martingale process (see [1]). Ẑ(t) is also a martingale
since the Novikov condition holds. Therefore, we can de�ne an equivalent
probability measure Qθ in the following way:

dQθ

dP

∣∣∣∣
Ft

= Zθ(t),

for 0 ≤ t ≤ T . The following proposition states how the drift and the Lévy
measure of the process changes when we apply the Esscher transform.

Proposition 2.11. [1, p. 97] With respect to the probability measure Qθ,
the processes

Bθ
i (t) = Bi(t)−

∫ t

0

θ̂i(s)ds

are Brownian motions for i = 1, . . . , n and 0 ≤ t ≤ T . Furthermore, for each
i = 1, . . . , n, Li(t) is a Lévy process on 0 ≤ t ≤ T with drift

αit+

∫ t

0

∫
|z|<1

zi(e
θ̃(s)z − 1)νi(dz, ds),

and compensator measure eθ̃(t)zνi(dz, dt). Under Qθ, we denote the random
jump measure associated with Ji(t) by N

θ
i (dz, dt), and its compensator mea-

sure by Ñ θ
i (dz, dt).

We remark that the Brownian motions B1, . . . , Bn are still correlated after
the measure change.
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2.4 Fourier transform

If f is a bounded and continuous function in L1(R), the Fourier transform f̂
of f is de�ned as:

f̂(y) =

∫
R
e−ixyf(x)dx.

We see that the characteristic function of a random variable is the Fourier
transform of its density. f is uniquely determined by its Fourier transform,
and if f̂ ∈ L1(R), we can �nd f by the following inversion formula (see [1, p.
247]):

f(x) =
1

2π

∫
R
eixyf̂(y)dy.

This is not the most common de�nition of a Fourier transform, but it is the
one that is used in [1]. The reason for having a minus sign in the exponent, is
to get the following relation between the characteristic function of a random
variable X, the Fourier transform of f and E[f(X)].

E[f(X)] = E

[
1

2π

∫
R
eiXyf̂(y)dy

]
=

1

2π

∫
R
f̂(y)E

[
eiXy

]
dy

=
1

2π

∫
R
f̂(y)φX(y)dy,

where we used the Fubini theorem. So if we can �nd the Fourier transform of
f and the characteristic function of X, we can �nd the expectation of f(X).
We will use this approach to �nd the spread option price in the model with
jumps in Chapter 4.

Example 2.12. We let X be a random variable, and f(x) = max(ex − 1).
We want to compute E[f(X)], but since f ∈ L1R, we can not compute the
Fourier transform directly. We therefore de�ne a function fα by

fα(x) = e−αxf(x).

Since fα ∈ L1(R), we can compute its Fourier transform f̂α.

f̂α(y) =

∫
R
e−ixyfα(x)dx

=

∫
R
e−ixye−αx max(ex − 1, 0)dx
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=

∫ ∞
0

e−ixye−αx(ex − 1)dx

=

∫ ∞
0

(
e−(iy+α−1)x − e−(iy+α)x

)
dx

=
1

iy + α− 1
− 1

iy + α

=
1

α2 − α− y2 + i(2α− 1)y
.

By the inversion formula, we have that

fα(x) =
1

2π

∫
R
f̂α(y)eixydy.

So

f(x) = eαxfα(x)

=
eαx

2π

∫
R
f̂α(y)eixydy

=
1

2π

∫
R
f̂α(y)e(iy+α)xdy

=
1

2π

∫
R
f̂α(y)ei(y−iα)xdy.

Hence, we see that

E[f(X)] = E

[
1

2π

∫
R
f̂α(y)ei(y−iα)Xdy

]
=

1

2π

∫
R
f̂α(y)E

[
ei(y−iα)X

]
dy

=
1

2π

∫
R
f̂α(y)ΦX (y − iα) dy

=
1

2π

∫
R

ΦX (y − iα)

α2 − α− y2 + i(2α− 1)y
dy.

This result will be used in Chapter 4 to write the payo� function of a
spread option in terms of a characteristic function.
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Chapter 3

Two spot price models

As we argued in Chapter 1, Ornstein-Uhlenbeck processes are a natural class
of processes when modelling spot prices in energy markets. OU processes are
mean-reverting, which is an important feature distinguishing energy com-
modity prices from stock prices. We will model the logarithm of the price
process (log-price) as an OU process, to assure positive prices.

The �rst model we will consider in this chapter, is an OU process driven
by a bivariate Brownian motion. In this continuous model we can easily
calculate the distributional properties of the prices, which will lead us to a
closed form formula for the spread option price in the next chapter.

The drawback of the continuous model is that we are not able to explain
the spikes in the observed prices. In the second model we consider, we use
an OU process driven by a bivariate Lévy process with jumps instead of a
Brownian motion. This model captures the spikes, but since Lévy processes
are stationary, the seasonality is still not captured. A further improvement
that we will not exploit here, is therefore to use Independent Increment (II)
processes instead, as we mentioned in the introduction.

We will in the following let S1(t) denote the electricity price and S2(t) the
gas price at time t. The prices are on the form (S1(t), S2(t)) = (eX1(t), eX2(t)),
where {

dXi(t) = (µi − αiXi(t))dt+ dLi(t)

Xi(0) = xi
, i = 1, 2,

and (L1(t), L2(t)) is a bivariate Lévy process. We see that the process �uc-

tuates around a mean level
(
µi
αi
, µi
αi

)
. When the process is below this mean

level, the drift is positive, and when it is above the mean level, the drift is
negative.

After solving the SDE�s describing the dynamics of (X1(t), X2(t)), we
compute the characteristic function of (X1(t), X2(t)) in both models. The

27
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process converges to a stationary distribution because it is mean-reverting
with stationary increments. We use the characteristic function to �nd the
stationary distribution in the continuous model. We also simulate a realiza-
tion of (X1(t), X2(t)) and (S1(t), S2(t)) for the continuous model.

3.1 Continuous model

We will start by looking at the continuous model. In this model, the in-
crements of the logarithmic spot price process are normally distributed. As
mentioned earlier, this model is less realistic than the model with jumps,
bevause it does not capture the spikes in the prices. However, the model is
easy to analyse, and it is therefore a natural start. We calculate the charac-
teristic function of the spot price process, and use it to �nd the stationary
distribution of the log-prices. Let{

dXi(t) = (µi − αiXi(t))dt+ σidBi(t)

Xi(0) = xi
, i = 1, 2, (3.1)

where B1 and B2 are Brownian motions with correlation ρ. We �rst solve
the equation for Xi(t).

Proposition 3.1. Let Xi(t) be given by the dynamics (3.1) above. Then

Xi(t) = ηi(t) + σi

∫ t

0

e−αi(t−s)dBi(s), (3.2)

where
ηi(t) = xie

−αit +
µi
αi

(1− e−αit), i = 1, 2.

Proof. We let Yi(t) = eatXi(t), and calculate dYi(t) using Itô�s formula (see
[6, p. 44]).

dYi(t) = αie
αitXi(t)dt+ eαitdXi(t)

= αie
αitXi(t)dt+ eαit [(µ− αiXi(t))dt+ σidBi(t)]

= eαit(µidt+ σidBi(t)).

It follows that

Yi(t) = Yi(0) + µi

∫ t

0

eαisds+ σi

∫ t

0

eαisdBi(s)
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= Yi(0) +
µi
αi

(eαit − 1) + σi

∫ t

0

eαisdBi(s).

Observing that Yi(0) = xi, we get that

Xi(t) = e−αitYi(t)

= xie
αit +

µi
αi

(1− eαit) + σi

∫ t

0

eαi(s−t)dBi(s).

The dynamics of the spot price process becomes:

dSi(t) = d(eXi(t))

= eXi(t)dXi(t) +
1

2
eXi(t)(dXi(t))

2

= Si(t) [(µi − αiXi(t)) dt+ σidBi(t)] +
1

2
Si(t)σ

2
i dt

= Si(t)

[(
µi − αiXi(t) +

1

2
σ2
i

)
dt+ σidBi(t)

]
.

We will simulate a realization of the processes X1(t) and X2(t) from t = 0
to t = 365, where t is measured in days. The parameters we use are shown
in Table 3.1.

Table 3.1: Parameters in the simulation

Parameter Value
µ1 0.4
µ2 0.6
α1 0.1
α2 0.15
σ1 0.1
σ2 0.1
ρ 0.5

We have chosen the parameters such that µ1
α1

= µ2
α2

= 4, so that both

price processes �uctuate around the same mean level e4 ≈ 54.6. We let both
processes start at the mean level. σ1 and σ2 are equal. Since α2 is larger
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Figure 3.1: Simulation of X1(t) and X2(t) for t = 1, . . . , 365.

than α1, X2(t) has a stronger mean-reversion than X1(t). This leads to larger
spikes in X1(t), which we clearly see in Figure 3.1.

To study the distribution of X(t) = (X1(t), X2(t)) and analyse its sta-
tionary properties, we calculate its characteristic function. We use the result
from Proposition 2.9.

Proposition 3.2 Characteristic function of X(t). Let X(t) = (X1(t), X2(t))
be a bivariate gaussian Ornstein-Uhlenbeck process on the form (3.2). Then
the characteristic function of X(t) is

ΦX(t)(u1, u2) = exp

{
iu1η1(t) + iu2η2(t)− 1

2

(
u2

1β1(t) + u2
2β2(t)− ρu1u2ζ(t)

)}
,

where

βi(t) =
σ2
i

2αi
(1− e−2αit), i = 1, 2,

ζ(t) =
σ1σ2

α1 + α2

(1− e−(α1+α2)t).

Proof. We use Proposition 2.9 with η(t) = (η1(t), η2(t)) and γ(t, s) = (e−α1(t−s), e−α2(t−s)).
It follows that

ΦX(t)(u) = exp

{
iuη(t)− 1

2

∫ t

0

v(t, s)σv(t, s)T ds

}
,
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Figure 3.2: Simulation of S1(t) and S2(t) for t = 1, . . . , 365.

where
v(t, s) = (u1e

−α1(t−s), u2e
−α2(t−s)).

We see that

v(t, s)σv(t, s)T = u2
1σ

2
1e
−2α1(t−s) + u2

2σ
2
2e
−2α2(t−s) + 2ρu1u2σ1σ2e

−(α1+α2)(t−s),

and hence∫ t

0

v(t, s)σv(t, s)Tds =
u2

1σ
2
1

2α1

(1− e−2α1t) +
u2

2σ
2
2

2α2

(1− e−2α2t)

+
ρu1u2σ1σ2

α1 + α2

(1− e−(α1+α2)t).

This gives us the desired result.

From the characteristic function we see that (X1(t), X2(t)) follows a bi-
variate normal distribution with expectation (η1(t), η2(t)) and covariance ma-
trix

σ(t) =

(
β1(t) ρζ(t)
ρζ(t) β2(t)

)
.

So
Xi(t) ∼ N (ηi(t), βi(t)) , i = 1, 2

and
Cov(X1(t), X2(t)) = ρζ(t).
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The correlation between X1(t) and X2(t) is

ρX1,X2(t) =
ρζ(t)√
β1(t)β2(t)

=
2ρ(1− e−(α1+α2)t)

α1 + α2

√
α1α2

(1− e−2α1t)(1− e−2α2t)
.

To �nd the stationary distribution, we let t → ∞. Then we see that

ηi(t) → µi
αi
, βi(t) → σ2

i

2αi
and ζ(t) → σ1σ2

α1+α2
. So the stationary distribution

of (X1(t), X2(t)) is a bivariate normal distribution with expectation (µ1
α1
, µ2
α2

)
and covariance matrix

σ =

(
σ2
1

2α1

ρσ1σ2
α1+α2

ρσ1σ2
α1+α2

σ2
2

2α2

)
.

The correlation between X1(t) and X2(t) converges to

ρX1,X2 =
2ρ
√
α1α2

α1 + α2

.

3.2 Model with jumps

Now we move on to the model where the log-price processX(t) = (X1(t), X2(t))
is described by an OU Lévy process with jumps. Let{

dXi(t) = (µi − αiXi(t))dt+ dLi(t)

Xi(0) = xi
, i = 1, 2, (3.3)

where (L1(t), L2(t)) is a bivariate Lévy process on the form:

dLi(t) = σidBi(t) + dJi(t), i = 1, 2,

where B1 and B2 are Brownian motions with correlation ρ as before, and
Ji(t) denotes the jump term:

dJi(t) =

∫
|z|<1

ziÑ(dz1, dz2, dt) +

∫
|z|≥1

ziN(dz1, dz2, dt), i = 1, 2,

where N is a Poisson random measure and Ñ is the corresponding compen-
sated Poisson random measure. The correlations between the jumps sizes
and jumps times are now contained in the measure N . We will not specify
this measure any further in this thesis.

We solve the equation for Xi(t) using Itô�s formula for Lévy processes.
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Proposition 3.3. Let Xi(t), i = 1, 2, be given by the dynamics (3.3)
above. Then

Xi(t) = ηi(t) +

∫ t

0

e−αi(t−s)dLi(s), (3.4)

where
ηi(t) = xie

−αt +
µi
αi

(1− e−αit).

Proof. We let Yi(t) = eαitXi(t), and use Itô�s formula for Lévy processes (see
[7, p. 6]) to �nd dYi(t).

dYi(t) =αie
αitXi(t)dt+ eαit ((µi − αiXi(t))dt+ σidBi(t))

+

∫
|z|<1

(
eαit(Xi(t) + z)− eαitXi(t)− eαitz

)
ν(dz1, dz2)ds

+

∫
|z|<1

(
eαit(Xi(t) + z)− eαitXi(t)

)
Ñ(dz1, dz2, dt)

+

∫
|z|≥1

(
eαit(Xi(t) + z)− eαitXi(t)

)
N(dz1, dz2, dt)

=eαit (µidt+ σidBi(t)) +

∫
|z|<1

zie
αitÑ(dz1, dz2, dt)

+

∫
|z|≥1

zie
αitN(dz1, dz2, dt).

It follows that

Yi(t) =Yi(0) + µi

∫ t

0

eαisds+ σ

∫ t

0

eαisdBi(s) +

∫ t

0

∫
|z|<1

zie
αisÑ(dz1, dz2, ds)

+

∫ t

0

∫
|z|≥1

zie
αisN(dz1, dz2, ds).

Observing that Xi(0) = Yi(0), it follows that

Xi(t) =e−αitYi(t)

=e−αitxi +
µi
αi

(
1− e−αt

)
+ σi

∫ t

0

e−αi(t−s)dB(s)

+

∫ t

0

∫
|z|<1

zie
αi(t−s)Ñ(dz1, dz2, dt)
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+

∫ t

0

∫
|z|≥1

zie
αi(t−s)N(dz1, dz2, dt)

=xie
−αit +

µi
αi

(
1− e−αt

)
+

∫ t

0

e−αi(t−s)dL(s).

To �nd the spot price dynamics, we also use Itô�s formula for Lévy pro-
cesses.

dSi(t) =d(eXi(t))

=eXi(t) ((µi − αiXi(t))dt+ σidBi(t)) +
1

2
σ2
i e
Xi(t)dt

+

∫
|z|<1

(
eXi(t)+z − eXi(t) − eXi(t)z

)
ν(dz1, dz2)dt

+

∫
|z|<1

(
eXi(t)+z − eXi(t)

)
Ñ(dz1, dz2, dt)

+

∫
|z|≥1

(
eXi(t)+z − eXi(t)

)
N(dz1, dz2, dt)

=eXi(t)

[(
µi − αiXi(t) +

1

2
σ2
i

)
dt+ σidBi(t) +

∫
|z|<1

(ez − 1− z) ν(dz1, dz2)dt

+

∫
|z|<1

(ez − 1) Ñ(dz1, dz2, dt) +

∫
|z|≥1

(ez − 1)N(dz1, dz2, dt)

]

=Si(t)

[(
µi − αiXi(t) +

1

2
σ2
i +

∫
|z|<1

(ez − 1− z) ν(dz1, dz2)

)
dt+ σidBi(t)

+

∫
|z|<1

(ez − 1) Ñ(dz1, dz2, dt) +

∫
|z|≥1

(ez − 1)N(dz1, dz2, dt)

]
.

To �nd the characteristic function of (X1(t), X2(t)), we use Proposition
2.9 where we found the characteristic function of a bivariate Itô-Lévy process.

Proposition 3.4 Characteristic function of X(t). Let X(t) = (X1(t), X2(t))
be a bivariate Ito-Lévy process on the form (3.4). Then the characteristic
function of X(t) is:

ΦX(t)(u1, u2) = exp

{
iu1η1(t) + iu2η2(t)− 1

2

(
u2

1β1(t) + u2
2β2(t)− ρu1u2ζ(t)

)
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+

∫ t

0

∫
R2
0

(
ei〈v(s),z〉 − 1− i〈v(s), z〉1{|z|<1}

)
ν(dz)ds

}
,

where

ηi(t) = xie
−αit +

µi
α1

(1− e−αit), i = 1, 2,

βi(t) =
σ2
i

2αi
(1− e−2αit), i = 1, 2,

ζ(t) =
σ1σ2

α1 + α2

(1− e−(α1+α2)t),

v(s) = (u1 e
−α1s, u2 e

−α2s).

Proof. We use Proposition 2.9 with

η(t) =

(
x1e
−α1t +

µ1

α1

(1− e−α1t), x2e
−α2t +

µ2

α2

(1− e−α2t)

)
and

γ(t, s) = (e−α1(t−s), e−α2(t−s)).

It follows that

ΦX(t)(u) = exp

{
i〈u, η(t)〉+

∫ t

0

Ψ(v(t, s)) ds

}
,

where
v(t, s) = (u1e

−α1(t−s), u2e
−α2(t−s)).

and

Ψ(·) = −1

2
〈·, σ·〉+

∫
R2
0

(
ei〈·,z〉 − 1− i〈·, z〉1{|z|<1}

)
ν(dz).

We observe that v(t, s) is a function of t− s, so we do a variable change and
let w = t− s. Let

v(w) = (u1e
−α1w, u2e

−α2w).

We see that the limits in the integral are interchanged when we do the variable
change, so we get a minus sign in front of the integral. However, since dw =
−ds, the minus sign is cancelled. Denoting w by s, the result follows.

We can�t say anything about the properties of the stationary distribution
in this case without specifying the Lévy measure.
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Chapter 4

Pricing spread options with strike

price K = 0

We recall from Section 1.3 that a European spread option has payo� function

max(S1(T )− hS2(T )−K, 0), (4.1)

at time T, where S1(T ) and S2(T ) are the prices of the two underlying com-
modities at maturity time T, K is the strike price and h is the heatrate. In
this chapter, we will let K = 0. In the continuous case, this will lead to
a closed form formula for the option price, corresponding to the Margrabe
formula for spread options on stock prices (see [2]). The prices are modelled
as exponential Ornstein-Uhlenbeck processes as in the previous chapter.

Si(t) = eXi(t), i = 1, 2,

where

Xi(t) = ηi(t) +

∫ t

0

e−αi(t−s)dLi(s), i = 1, 2,

ηi(t) = e−αitxi +
µi
αi

(1− e−αit), i = 1, 2

and (L1, L2) is a bivariate Lévy process.
The price of an option is given as the expected value of its payo� under

an equivalent martingale measure, discounted by the risk-free interest rate.
This follows from arbitrage arguments (see, for instance, [6]). The equivalent
martingale measure is a probability measure equivalent to the market proba-
bility P under which the discounted price process is a martingale. But since
electricity and temperature are not storable, hedging is not possible in these
markets, and hence any probability measure equivalent to P is an equivalent
martingale measure (see [1]). We will therefore use the market probability

37
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P when computing the prices. Since it does not exist a unique equivalent
martingale measure, these markets are not complete.

We assume that the risk free interest rate r is constant. The price of the
option at time 0 ≤ t ≤ T , is therefore given as:

p(t, T ) = e−r(T−t)E[max(S1(T )− hS2(T ), 0)|Ft].

We can rewrite this as

p(t, T ) = e−r(T−t)E

[
S2(T ) max

(
S1(T )

S2(T )
− h, 0

)∣∣∣∣Ft

]
.

We will perform a measure change to get the maximum function alone inside
the conditional expectation. We de�ne a probability measure Q equivalent
to P by

dQ

dP

∣∣∣∣
Ft

= Z(t), 0 ≤ t ≤ T.,

where Z(t) is a martingale. For the continuous model, Q will be de�ned by
the Girsanov theorem. For the model with jumps, it will be de�ned by the
Esscher transform. We get that:

p(t, T ) = e−r(T−t)
EQ

[
S2(T )
Z(T )

max
(
S1(T )
S2(T )

− h, 0
)∣∣∣Ft

]
EQ

[
1

Z(T )

∣∣∣Ft

]
= e−r(T−t)Z(t)EQ

[
S2(T )

Z(T )
max

(
S1(T )

S2(T )
− h, 0

)∣∣∣∣Ft

]

where we used Bayes formula (see [6]) and the fact that Z(t) is a martingale.
S2(T )
Z(T )

is a deterministic function and can be put outside of the conditional
expectation. Hence we get

p(t, T ) = e−r(T−t)Z(t)
S2(T )

Z(T )
EQ

[
max

(
S1(T )

S2(T )
− h, 0

)∣∣∣∣Ft

]
. (4.2)

If we can �nd the dynamics of S1(t)
S2(t)

under Q, we have only one underlying
price process, and our problem is reduced to the problem of pricing a call
option. In the continuous case, we can then apply the Black and Scholes for-
mula. In the jump case, we will use a Fourier technique to �nd an expression
for the price in terms of the characteristic function of X1(T )−X2(T ). Note
that this approach can only be used when K = 0.
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4.1 Continuous model

We let

Xi(t) = ηi(t) + σi

∫ t

0

e−αi(t−s)dBi(s), i = 1, 2, (4.3)

where
ηi(t) = e−αitxi +

µi
αi

(1− e−αit), i = 1, 2,

and B1(t) and B2(t) are Brownian motions with correlation ρ.

Proposition 4.1. Let Xi(t) = (X1(t), X2(t)) be given by the dynamics
(4.3). Consider a spread option with payo� (4.1) at time T , and let the
interest rate r be constant. Let p0(0, T ) denote the price of the spread option
at time t = 0. Then,

p(0, T ) = exp

{
−rT + η1(T ) +

1

2
β1(T )

}
Φ(k + σ(T ))

− exp

{
−rT + η2(T ) +

1

2
β2(T )

}
hΦ(k),

where

k =
η1(T )− η2(T ) + 1

2
(β1(T )− β2(T ))− log h

σ(T )
− 1

2
σ(T )

and

βi(T ) =
σ2
i

2αi
(1− e−2αiT ), i = 1, 2,

ζ(T ) =
σ1σ2

α1 + α2

(1− e−(α1+α2)T ) and

σ(T ) =
√
β1(T ) + β2(T )− 2ρζ(T ).

Proof. We let
θT (t) = σ2e

−α2(T−t)

and

ZT (t) = exp

{∫ t

0

θT (s) dB2(s)− 1

2

∫ t

0

θ2
T (s) ds

}
= exp

{
σ2

∫ t

0

e−α2(T−s) dB2(s)− β2

2

∫ t

0

e−2α2(t−s) ds

}
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= exp

{
σ2

∫ t

0

e−α2(T−s) dB2(s)− β2

4α2

(e−2α2(T−t) − e−2α2T )

}
.

From Girsanovs theorem we know that ZT (t) is a martingale, and we can
de�ne a new probability measure Q equivalent to P by dQ

dP

∣∣
Ft

= ZT (t). From

(4.2) we know that

p(0, T ) = e−rTZT (t)
S2(T )

ZT (T )
E

[
max

(
S1(T )

S2(T )
− h, 0

)]
= e−rT+ 1

2
β2(T )ZT (t)E

[
max

(
S1(T )

S2(T )
− h, 0

)]
.

Since S1(T )
S2(T )

= eX1(T )−X2(T ), we want to �nd the distribution of X1(T )−X2(T )
under Q. From Girsanovs theorem we know that

W2(t) = B2(t)−
∫ t

0

θT (s)ds (4.4)

is a Brownian motion under Q. Since B1(t) and B2(t) have correlation ρ,
B1(t) can be written as

B1(t) = ρB2(t) +
√

1− ρ2B3(t),

where B3 is a Brownian motion under P which is independent of B2. Under
Q, B3 is still a Brownian motion independent of B2. We de�ne W1 as

W1(t) = ρW2(t) +
√

1− ρ2B3(t).

W1 is a Brownian motion under Q which has correlation ρ with B2. Using
(4.4) we get that

W1(t) = ρB2(t)− ρ
∫ t

0

θT (s)ds+
√

1− ρ2B3(t)

= B1(t)− ρ
∫ t

0

θT (s)ds.

So we get that:

X1(t) = η1(t) + σ1

∫ t

0

e−α1(t−s)dB1(s)

= η1(t) + σ1

∫ t

0

e−α1(t−s) (dW1(s) + ρθT (s)ds)
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= η1(t) + ρσ1σ2

∫ t

0

e−α1(t−s)e−α2(T−s)ds+ σ1

∫ t

0

e−α1(t−s)dW1(s)

= η1(t) +
ρσ1σ2

α1 + α2

(
e−α2(T−t) − e−α1t−α2T

)
+ σ1

∫ t

0

e−α1(t−s)dW1(s)

and

X2(t) = η2(t) + σ2

∫ t

0

e−α2(t−s)dB2(s)

= η2(t) + σ1

∫ t

0

e−α2(t−s) (dW2(s) + θT (s)ds)

= η2(t) + σ2
2

∫ t

0

e−α2(t−s)e−α2(T−s)ds+ σ2

∫ t

0

e−α2(t−s)dW2(s)

= η2(t) +
σ2

2

2α2

(
e−α2(T−t) − e−α2(t+T )

)
+ σ2

∫ t

0

e−α2(t−s)dW2(s).

So Xi(t) can still be written on the form (3.2), but the drift ηi(t) has changed.
Since the correlation between W1(t) and W2(t) is still ρ, it follows from
Proposition 2.9 that the characteristic function of (X1(t), X2(t)) is

ΦX(t)(u1, u2) = exp

{
iu1η

′
1(t) + iu2η

′
2(t)− 1

2

(
u2

1β1(t) + u2
2β2(t)− ρu1u2ζ(t)

)}
,

where

η′1(t) = η1(t) +
ρσ1σ2

α1 + α2

(
e−α2(T−t) − e−α1t−α2T

)
,

η′2(t) = η2(t) +
σ2

2

2α2

(
e−α2(T−t) − e−α2(t+T )

)
,

βi(t) =
σ2
i

2αi
(1− e−2αit), i = 1, 2,

ζ(t) =
σ1σ2

α1 + α2

(1− e−(α1+α2)t).

So from Chapter 3.1 we know that (X1(t), X2(t)) follows a bivariate normal
distribution with expectation (η′1(t), η′2(t)) and covariance matrix

σ(t) =

(
β1(t) ρζ(t)
ρζ(t) β2(t)

)
.

So X1(t)−X2(t) is normally distributed with

E [X1(t)−X2(t)] = η′1(t)− η′2(t)
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and
V ar (X1(t)−X2(t)) = β1(t) + β2(t)− 2ρζ(t).

To ease the notation, we let

σ(t)2 = β1(t) + β2(t)− 2ρζ(t).

We also observe that η′1(t) = β1(T ) and η′2(t) = ρζ(T ), and we let

g(T ) = η1(T )− η2(T ) + ρζ(T )− β(T ).

So S1(T )
S2(T )

is lognormally distributed, and we can write it as

S1(T )

S2(T )
= eX1(T )−X2(T ) = eg(T )+σ(T )·ε,

where ε ∼ N(0, 1). We can now calculate

EQ

[
max

(
S1(T )

S2(T )
− h, 0

)]
by integrating S1(T )

S2(T )
−h times the density of the standard normal distribution

over all values of ε such that S1(T )
S2(T )

− h > 0, i.e. for all ε > −k, where

k =
g(T )− log h

σ(T )
.

We compute the integral:

EQ

[
max

(
S1(T )

S2(T )
− h, 0

)]
=

∫ ∞
−k

(
eg(T )+σ(T )x − h

) 1√
2π
e−

x2

2 dx

= eg(T )

∫ ∞
−k

1√
2π
eσ(T )x−x

2

2 dx− h
∫ ∞
−k

1√
2π
e−

x2

2 dx.

We see that

h

∫ ∞
−k

1√
2π
e−

x2

2 dx = h(1− Φ(−k)) = hΦ(k),

where Φ is the distribution function of the standard normal distribution. To
solve the other integral, we observe that

σ(T )x− x2

2
= −1

2
(x− σ(T ))2 +

σ2(T )

2
.
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Letting v = x− σ(T ), we get∫ ∞
−k

1√
2π
eσ(T )x−x

2

2 dx = e
σ2(T )

2

∫ ∞
−k−σ(T )

1√
2π
e
v2

2 dv

= e
σ2(T )

2 (1− Φ(−k − σ(T )))

= e
σ2(T )

2 Φ(k + σ(T )).

So

EQ

[
max

(
S1(T )

S2(T )
− h, 0

)]
= exp

{
g(T ) +

1

2
σ2(T )

}
Φ(k + σ(T ))− hΦ(k)

= exp

{
η1(T )− η2(T ) +

1

2
(β1(T )− β2(T ))

}
Φ(k + σ(T ))− hΦ(k).

Finally we have

E[max(S1(T )− hS2(T ), 0)]

= exp

{
η2(T ) +

1

2
β2(T )

}
EQ

[
max

(
S1(T )

S2(T )
− h, 0

)]
= exp

{
η2(T ) +

1

2
β2(T ) + η1(T )− η2(T ) +

1

2
(β1(T )− β2(T ))

}
Φ(k + σ(T ))

− exp

{
η2(T ) +

1

2
β2(T )

}
hΦ(k)

= exp

{
η1(T ) +

1

2
β1(T )

}
Φ(k + σ(T ))− exp

{
η2(T ) +

1

2
β2(T )

}
hΦ(k).

We observe that

k =
g(T )− log h

σ(T )

=
η1(T )− η2(T ) + ρζ(T )− β2(T )− log h

σ(T )

=
η1(T )− η2(T ) + ρζ(T )− β2(T )− log h+ 1

2
σ2(T )

σ(T )
− 1

2
σ(T )
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=
η1(T )− η2(T ) + 1

2
(β1(T )− β2(T ))− log h

σ(T )
− 1

2
σ(T ).

To see how this spread option price is depending on ρ, we plot in Figure
4.1 p(0, T ) as a function of ρ. We let the other parameters be as in Chapter
3 (see Table 3.1).

0.0 0.2 0.4 0.6 0.8 1.0

2
3

4
5

6

rho

p(
0,

T
)

Figure 4.1: p(0, T ) as a function of ρ.

We see that the price is a decreasing function of ρ. When the correlation
is high, the probability of a large deviation between the underlying prices,
and hence a large payo�, is small.

4.2 Model with jumps

We now let

Xi(t) = ηi(t) +

∫ t

0

e−αi(t−s)dLi(s), i = 1, 2, (4.5)

where

ηi(T ) = xie
−αiT +

µi
α1

(1− e−αiT ), i = 1, 2,
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and L(t) = (L1(t), L2(t)) is a bivariate Lévy process with jumps on the form

Li(t) = σiBi(t) + Ji(t), i = 1, 2,

where B1(t) and B2(t) are Brownian motions with correlation ρ, and Ji(t)
denotes the jump terms:

Ji(t) =

∫ t

0

∫
|z|<1

ziÑ(dz1, dz2, ds) +

∫ t

0

∫
|z|≥1

ziN(dz1, dz2, ds), i = 1, 2,

where N is a Poisson random measure and Ñ is the corresponding compen-
sated Poisson random measure.

We recall from equation (4.2) that the spread option price is given by the
formula

p(t, T ) = e−r(T−t)Z(t)
S2(T )

Z(T )
EQ

[
max

(
S1(T )

S2(T )
− h, 0

)∣∣∣∣Ft

]
.

We will in this model use the Esscher transform to change the measure. Then
we �nd the dynamics of X1(T )−X2(T ) under the new measure, and compute
its characteristic function of X1(T ) −X2(T ). Finally, we �nd an expression
for the price in terms of this characteristic function.

Proposition 4.2. Let Xi(t) = (X1(t), X2(t)) be given by the dynamics
(4.5). Consider a spread option with payo� (4.1) at time T , and let the
interest rate r be constant. Let p0(0, T ) denote the price of the spread option
at time t = 0. Then,

p(0, T ) =
1

2π
exp

{
−rT +

1

2
β2(T )− h(T )

}∫
R

ΦX1(T )−X2(T ) (y − iα)

α2 − α− y2 + i(2α− 1)y
dy,

where α ∈ R,

β2(T ) =
σ2

2

2α2

(1− e−2α2T ),

h(T ) =

∫ T

0

∫
R2
0

(
ez2e

−α2(T−s) − 1− z2e
−α2(T−s)1{|z|<1}ν(dz1, dz2)

)
ds,

and ΦX1(T )−X2(T ) is the characteristic function of X1(T )−X2(T );

ΦX1(T )−X2(T )(u)

= exp

{
iu

(
η1(T )− η2(T ) + ρζ(T )− β(T ) +

∫ T

0

∫
|z|<1

(z1 − z2)(ez2e
−α2(T−s) − 1)ν(dz1, dz2)ds

)
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− 1

2
u2 (β1(T ) + β2(T )− ρζ(T ))

+

∫ T

0

∫
R2
0

(
ei〈v(s),z〉 − 1− i〈v(s), z〉1{|z|<1}

)
νθT (dz)ds

}
,

where

βi(T ) =
σ2
i

2αi
(1− e−2αiT ), i = 1, 2,

ζ(T ) =
σ1σ2

α1 + α2

(1− e−(α1+α2)T ),

v(s) = (e−α1s,−e−α2s).

Proof. We de�ne the Esscher transform for L(t) as in Chapter 1. Let

θT (t) = (θ̂1,T (t), θ̂2,T (t), θ̃1,T (t), θ̃2,T (t))

= (0, σ2e
−α2(T−t), 0, e−α2(T−t)).

Then we let

ẐθT (t) = exp

{∫ t

0

θ̂T (s)dB(s)− 1

2

∫ t

0

θ̂2
T (s)ds

}
= exp

{
σ2

∫ t

0

e−α2(T−s)dB2(s)− β2

4α2

(e−2α2(T−t) − e−2α2t)

}
and

Z̃θT (t) = exp

{∫ t

0

θ̃T (s)dI(s)− φ(0, t, θ̃T (·))
}

= exp

{∫ t

0

∫
|z|<1

z2e
−α2(T−s)Ñ(dz1, dz2, ds)

+

∫ t

0

∫
|z|≥1

z2e
−α2(T−s)N(dz1, dz2, ds)

+

∫ t

0

∫
R2
0

(
ez2e

−α2(T−s) − 1− z2e
−α2(T−s)1{|z|<1}ν(dz1, dz2)

)
ds

}
.

We let ZθT (t) = ẐθT (t)× Z̃θT (t), and de�ne the equivalent probability mea-
sure QθT as in Chapter 1:

dQθT

dP

∣∣∣∣
Ft

= ZθT (t), 0 ≤ t ≤ T.
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Under QθT , we know from the previous section that

B θ̂T
1 (t) = B1(t)− ρ

∫ t

0

θ̂2,T (s)ds

and

B θ̂T
2 (t) = B2(t)−

∫ t

0

θ̂2,T (s)ds

are Brownian motions with correlation ρ. From Proposition 2.11, we see that
Ji(t) gets a drift ∫ t

0

∫
|z|<1

zi(e
θ̂2,T (s)z2 − 1)ν(dz1, dz2)ds,

and the Lévy measure under QθT becomes

νθT (dz1, dz2)dt = eθ̂2,T (t)z2ν(dz1, dz2)dt.

From equation (4.2) we have that

p(0, T ) = e−r(T−t)
S2(T )

ZθT (T )
EQ

[
max

(
S1(T )

S2(T )
− h, 0

)]
,

since ZθT (0) = 1. We see that

S2(T )

ZθT (T )
= exp

{
1

2
β2(T )− h(T )

}
,

where

β2(T ) =
β2

4α2

(1− e−2α2T )

and

h(T ) =

∫ T

0

∫
R2
0

(
ez2e

−α2(T−s) − 1− z2e
−α2(T−s)1{|z|<1}ν(dz1, dz2)

)
ds.

We compute the dynamics of X1(t)−X2(t) under QθT .

X1(t)−X2(t)

=η1(t)− η2(t) +

∫ t

0

e−α1(t−s)dL1(s)−
∫ t

0

e−α2(t−s)dL2(s)

=η1(t)− η2(t) + σ1

∫ t

0

e−α1(t−s)dB1(s)− σ2

∫ t

0

e−α2(t−s)dB2(s)
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+

∫ t

0

∫
|z|<1

(z1e
−α1(t−s) − z2e

−α2(t−s))Ñ(dz1, dz2, ds)

+

∫ t

0

∫
|z|≥1

(z1e
−α1(t−s) − z2e

−α2(t−s))N(dz1, dz2, ds)

=η1(t)− η2(t) +

∫ t

0

∫
|z|<1

(z1 − z2)(ez2e
−α2(T−s) − 1)ν(dz1, dz2)ds

+ σ1

∫ t

0

e−α1(t−s)
(
dB θ̂T

1 (s) + ρσ2e
−α2(T−s)ds

)
− σ2

∫ t

0

e−α2(t−s)
(
dB θ̂T

2 (s) + σ2e
−α2(T−s)ds

)
+

∫ t

0

∫
|z|<1

(z1e
−α1(t−s) − z2e

−α2(t−s))ÑθT (dz1, dz2, ds)

+

∫ t

0

∫
|z|≥1

(z1e
−α1(t−s) − z2e

−α2(t−s))NθT (dz1, dz2, ds)

=η1(t)− η2(t) +
ρσ1σ2

α1 + α2

(e−α2(T−t) − e(α1t−α2T ))− σ2
2

2α2

(e−α2(T−t) − e−α2(T+t))

+

∫ t

0

∫
|z|<1

(z1 − z2)(ez2e
−α2(T−s) − 1)ν(dz1, dz2)ds

+ σ1

∫ t

0

e−α1(t−s)dB θ̂T
1 (s)− σ2

∫ t

0

e−α2(t−s)dB θ̂T
2 (s)

+

∫ t

0

∫
|z|<1

(z1e
−α1(t−s) − z2e

−α2(t−s))ÑθT (dz1, dz2, ds)

+

∫ t

0

∫
|z|≥1

(z1e
−α1(t−s) − z2e

−α2(t−s))NθT (dz1, dz2, ds).

So at time t = T we have

X1(T )−X2(T ) =η1(T )− η2(T ) + ρζ(T )− β(T )

+

∫ T

0

∫
|z|<1

(z1 − z2)(ez2e
−α2(T−s) − 1)ν(dz1, dz2)ds

+ σ1

∫ T

0

e−α1(T−s)dB θ̂T
1 (s)− σ2

∫ T

0

e−α2(T−s)dB θ̂T
2 (s)

+

∫ T

0

∫
|z|<1

(z1e
−α1(T−s) − z2e

−α2(T−s))ÑθT (dz1, dz2, ds)
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+

∫ T

0

∫
|z|≥1

(z1e
−α1(T−s) − z2e

−α2(T−s))NθT (dz1, dz2, ds),

where

βi(T ) =
σ2
i

2αi
(1− e−2αiT ), i = 1, 2,

ζ(T ) =
σ1σ2

α1 + α2

(1− e−(α1+α2)T ).

The characteristic function of X1(T )−X2(T ), ΦX1(T )−X2(T ) follows from 3.4
with (u1, u2) = (u,−u). Using the result from 2.12, we see that

EQθT [f(X1(T )−X2(T ))] =
1

2π

∫
R

ΦX1(T )−X2(T ) (y − iα)

α2 − α− y2 + i(2α− 1)y
dy.

So the spread option price at time t = 0 is then:

p(0, T ) =
1

2π
exp

{
−rT +

1

2
β2(T )− h(T )

}∫
R

ΦX1(T )−X2(T ) (y − iα)

α2 − α− y2 + i(2α− 1)y
dy,

The integral can be computed numerically, using a FFT (Fast Fourier
Transform), but we will not do this here.
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Chapter 5

Approximation of the spread

option price when K 6= 0

When K 6= 0, it is no longer possible to reduce the spread option pricing
problem to the problem of pricing a call option on a single asset. We can�t
�nd an explicit formula for the price, but we will �nd an approximation
by using a Taylor expansion. The payo� function of a spread option with
maturity time T and strike price K is

max(S1(T )− hS2(T )−K, 0). (5.1)

We denote by pK(t, T ) the price of the option at time t. We are interested
in �nding the price at time 0.

pK(0, T ) = e−rTE [max(S1(T )− hS2(T )−K, 0)] .

We write the expectation of the payo� function as a function of K:

f(K) = E [max(S1(T )− hS2(T )−K, 0)] .

Then we use a �rst order Taylor expansion to approximate f(K).

f(K) ≈ f(0) + f ′(0)K.

The approximated price is denoted by p̂K(0, T ), and it is

p̂K(0, T ) = e−rTf(K)

= e−rTf(0) + e−rTf ′(0)K

= p0(0, T ) +Ke−rT
∂

∂K
(E [max(S1(T )− hS2(T )−K, 0)])

∣∣∣∣
K=0

.

(5.2)
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This approximation can be used when K is small, and we will see in
the next section how good it is for di�erent values of K. We have already
computed p0(0, T ) in the previous chapter, so we need to �nd f ′(K). We let
Y = S1(T )− hS2(T ), and we let pY (y) denote the density of Y .

f(K) = E [max(S1(T )− hS2(T )−K, 0)]

= E [max(Y −K, 0)]

=

∫
R

max(y −K, 0)pY (y)dy

=

∫ ∞
K

(y −K)pY (y)dy

=

∫ ∞
K

ypY (y)dy +K

∫ ∞
K

pY (y)dy.

We di�erentiate this expression with respect to K.

f ′(K) = −KpY (K)−
(
K(−pY (K) +

∫ ∞
K

pY (y)dy)

)
= −KpY (K) +KpY (K)−

∫ ∞
K

pY (y)dy

= −P (S1(T )− hS2(T ) > K).

Putting K = 0, we have that

f ′(0) = −P (S1(T ) > hS2(T ))

= −P (log(S1(T ) > log(hS2(T ))))

= −P (X1(T ) > log(h) +X2(T ))

= −P (X1(T )−X2(T ) > log(h)).

5.1 Continuous model

In the continuous model,X1(T )−X2(T ) is normally distributed, so P (X1(T )−
X2(T ) > log(h)) can be easily computed. We get the following result:

Proposition 5.1. Let Xi(t) = (X1(t), X2(t)) be given by the dynamics
(4.3). Consider a spread option with payo� (5.1) at time T , and let the
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interest rate r be constant. Let p̂K(0, T ) denote the approximated price of the
spread option at time t = 0. Then,

p̂K(0, T ) = p(0, T )−Ke−rTΦ

(
η1(T )− η2(T )− log(h)√
β1(T ) + β2(T )− 2ρζ(T )

)
,

where p(0, T ) is given by Proposition 4.1.

Proof. We know from Chapter 3 that

Xi(T ) ∼ N (ηi(T ), βi(T )) ,

where
ηi(T ) = xie

−αiT +
µi
αi

(1− e−αiT )

and

βi(T ) =
σ2
i

2αi
(1− e−2αiT ).

The covariance between X1(T ) and X2(T ) is ρζ(T ), where

ζ(T ) =
σ1σ2

α1 + α2

(1− e−(α1+α2)T ).

So

X1(T )−X2(T ) ∼ N (η1(T )− η2(T ), β1(T ) + β2(T )− 2ρζ(T )) .

We see that

P (X1(T )−X2(T ) > log(h)) = Φ

(
− log(h)− (η1(T )− η2(T ))√

β1(T ) + β2(T )− 2ρζ(T )

)

= Φ

(
η1(T )− η2(T )− log(h)√
β1(T ) + β2(T )− 2ρζ(T )

)
,

where Φ is here the cumulative distribution function of the standard normal
distribution. Since f ′(0) = −P (X1(T )−X2(T ) > log(h)), we have that

f ′(0) = −Φ

(
η1(T )− η2(T )− log(h)√
β1(T ) + β2(T )− 2ρζ(T )

)
.

The approximated price then follows from equation (5.2) and Proposition
4.1.

p̂K(0, T ) = p0(0, T ) +Ke−rTf ′(0)
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= exp

{
−rT + η1(T ) +

1

2
β1(T )

}
Φ(k + σ(T ))

− exp

{
−rT + η2(T ) +

1

2
β2(T )

}
hΦ(k)

−Ke−rTΦ

(
η1(T )− η2(T )− log(h)√
β1(T ) + β2(T )− 2ρζ(T )

)
.

In the model with jumps, we don�t know the distribution of X1(T ) −
X2(T ) for a general Lévy measure, and we can therefore not �nd a closed
form formula for f ′(0).

5.2 Simulation of the approximation error

To estimate how good this approximation is for di�erent values of K, we will
simulate the spread option price for di�erent values of ρ and K, and compare
it to the approximated price. We let r = 0, so the price equals the expected
payo� of the option. We also let h = 1. To �nd the simulated price, we
simulate the payo� of the option 1000000 times, and compute the mean of
the simulated payo�s. We denote by p̃ρ,K the simulated price as a function
of ρ and K, and by p̂ρ,K the approximated price p̂K(0, T ) as a function of ρ
and K. We use the same parameters as in Chapter 3 (see Table 3.1), and we
let T = 365 days.

We �rst plot a histogram of the simulated values of S1(T ) − S2(T ) for
three di�erent values of ρ; ρ = 0.2, ρ = 0.5 and ρ = 0.8. See Figures 5.1,
5.2 and 5.3. We see that the variance of the spread S1(T ) − S2(T ) is larger
for smaller ρ. This is natural, since a smaller ρ gives a smaller correlation
between S1(T ) and S2(T ), and hence the probability of a high absolute value
of the spread gets larger. Then we plot the approximated and the simulated
price as a function of K for the same three values of ρ, where K varies between
0 and 4. See Figures 5.4, 5.5 and 5.6.

We compute the error ερ,K of the approximation by the following formula:

ερ,K =

∣∣∣∣ p̂ρ,K − p̃ρ,Kp̃ρ,K

∣∣∣∣ .
In Figure 5.7, we plot ερ,K as a function of K for the three di�erent values
of ρ. We see that the larger ρ is, the faster ερ,K increases as a function of K.
When ρ = 0.8, the error is larger than 5% for K > 2. For ρ = 0.5, we must
increase the strike price to K = 3 to get an error of the same size. When
ρ = 0.2, we can can have a K just below 4 and still get an error under 5%.
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Figure 5.1: Histogram of S1(T )− S2(T ) when ρ = 0.2.
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Figure 5.2: Histogram of S1(T )− S2(T ) when ρ = 0.5.
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Figure 5.3: Histogram of S1(T )− S2(T ) when ρ = 0.8.
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Figure 5.4: Approximated and simulated price as a function of K when
ρ = 0.2.
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Figure 5.5: Approximated and simulated price as a function of K when
ρ = 0.5.
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Figure 5.6: Approximated and simulated price as a function of K when
ρ = 0.8.



58CHAPTER 5. APPROXIMATIONOF THE SPREADOPTION PRICEWHENK 6= 0

0 1 2 3 4

0.
00

0.
05

0.
10

0.
15

0.
20

K

E
rr

or

rho=0.2
rho=0.5
rho=0.8

Figure 5.7: ερ,K as a function of K for three di�erent values of ρ.



Appendix A

R code

This appendix contains the R code for the simulations.

#Simulat ion o f the Ornstein−Uhlenbeck proces se s

#===============================================

T=365
mu1=0.4
mu2=0.6
alpha1=0.1
alpha2=0.15
sigma1=0.1
sigma2=0.1
rho=0.5

X1=rep (0 ,T)
X2=rep (0 ,T)

X1[1 ]=mu1/alpha1
X2[1 ]=mu2/alpha2

Z1=rnorm(T)
Z2=rho∗Z1+sqrt(1−rho^2)∗rnorm(T)

for ( t in 2 :T){
X1 [ t ]=X1 [ t−1]+(mu1−alpha1∗X1 [ t−1])+sigma1∗Z1 [ t ]
X2 [ t ]=X2 [ t−1]+(mu2−alpha2∗X2 [ t−1])+sigma2∗Z2 [ t ]

}

S1=exp(X1)
S2=exp(X2)

plot (X1 , type=" l " , xlab="Time in  days" , ylab="X1 and X2" , col="blue " )
l ines (X2 , type=" l " , col="red" )
legend ( " t op r i gh t " , i n s e t =0.05 ,c ( "X1" , "X2" ) ,

l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( " blue " , " red " ) )
savePlot ( f i l ename="X1X2" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

plot ( S1 , type=" l " , xlab="Time in  days" , ylab="S1 and S2" , col="blue " )
l ines (S2 , type=" l " , col="red" )
legend ( " t op r i gh t " , i n s e t =0.05 ,c ( "S1" , "S2" ) ,

l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( " blue " , " red " ) )
savePlot ( f i l ename="S1S2" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)
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#The opt ion pr i c e when K=0 as a func t i on o f rho

#===============================================

eta1T=exp(−alpha1∗T)+mu1/alpha1∗(1−exp(−alpha1∗T))
eta2T=exp(−alpha2∗T)+mu2/alpha2∗(1−exp(−alpha2∗T))
beta1T=(sigma1^2)/(2∗alpha1 )∗(1−exp(−2∗alpha1∗T))
beta2T=(sigma2^2)/(2∗alpha2 )∗(1−exp(−2∗alpha2∗T))
zetaT=sigma1∗sigma2/ ( alpha1+alpha2 )∗(1−exp(−( alpha1+alpha2 )∗T))

p0=function ( rho ){
sigmaT=sqrt ( beta1T+beta2T−2∗rho∗zetaT )
k=(eta1T−eta2T+0.5∗ ( beta1T−beta2T ) )/sigmaT−0.5∗sigmaT
p0=exp( eta1T+0.5∗beta1T )∗pnorm( k+sigmaT)−exp( eta2T+0.5∗beta2T )∗pnorm( k )
return ( p0 )

}

rhos=seq (0 , 1 ,by=0.01)
p r i c e s=p0 ( rhos )
plot ( rhos , p r i c e s , type=" l " , xlab="rho" , ylab="p (0 ,T) " )
savePlot ( f i l ename="p0" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

#The approximated pr i c e as a func t i on o f rho and K

#==================================================

pK_hat=function ( rho ,K){
sigmaT=sqrt ( beta1T+beta2T−2∗rho∗zetaT )
k=(eta1T−eta2T+0.5∗ ( beta1T−beta2T ) )/sigmaT−0.5∗sigmaT
pK_hat=p0 ( rho)−pnorm( ( eta1T−eta2T )/sigmaT )∗K
return (pK_hat )

}

#The s imula ted pr i c e as a func t i on o f rho and K

#===============================================

sim=1000000

pK_t i l d e=function ( rho ,K){
co r r=rho∗zetaT/sqrt ( beta1T∗beta2T )
Z1=rnorm( sim )
Z=rnorm( sim )
Z2=cor r∗Z1+sqrt(1− co r r ^2)∗Z
X1T=rep ( eta1T , sim)+Z1∗rep ( sqrt ( beta1T ) , sim )
X2T=rep ( eta2T , sim)+Z2∗rep ( sqrt ( beta2T ) , sim )
S1T=exp(X1T)
S2T=exp(X2T)
spread=S1T−S2T−rep (K, sim )
payo f f=spread [ spread >0]
pK_t i l d e=sum( payo f f )/sim
return (c (pK_t i l d e , spread ) )

}

#Plot a histogram of S1T−S2T when rho=0.2

#=========================================

spread=pK_t i l d e ( 0 . 2 , 0 ) [ 2 : ( sim+1)]
hist ( spread , xlab="S1T−S2T" ,main="" )
savePlot ( f i l ename="S1S2rho1" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

#Plot a histogram of S1T−S2T when rho=0.5

#=========================================

spread=pK_t i l d e ( 0 . 5 , 0 ) [ 2 : ( sim+1)]
hist ( spread , xlab="S1T−S2T" ,main="" )
savePlot ( f i l ename="S1S2rho2" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)
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#Plot a histogram of S1T−S2T when rho=0.8

#=========================================

spread=pK_t i l d e ( 0 . 8 , 0 ) [ 2 : ( sim+1)]
hist ( spread , xlab="S1T−S2T" ,main="" )
savePlot ( f i l ename="S1S2rho3" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

#The error as a func t i on o f rho and K

#=====================================

e r r o r=function ( rho ,K){
pK_hat=pK_hat ( rho ,K)
pK_t i l d e=pK_t i l d e ( rho ,K) [ 1 ]
e r r o r=abs ( (pK_hat−pK_t i l d e )/pK_t i l d e )
return ( e r r o r )

}

#Calcu la t e the p r i c e s and er ror s f o r d i f f e r e n t va lue s o f rho and K

#==================================================================

rhos=cbind ( 0 . 2 , 0 . 5 , 0 . 8 )
Ks=seq (0 , 4 ,by=0.1)
n=length ( rhos )
m=length (Ks)
pK_t i l d e s=matrix ( rep (0 , n∗m) ,n ,m)
pK_hats=matrix ( rep (0 , n∗m) ,n ,m)
e r r o r s=matrix ( rep (0 , n∗m) ,n ,m)

for ( i in 1 : n){
for ( j in 1 :m){

pK_t i l d e s [ i , j ]=pK_t i l d e ( rhos [ i ] , Ks [ j ] ) [ 1 ]
pK_hats [ i , j ]=pK_hat ( rhos [ i ] , Ks [ j ] )
e r r o r s [ i , j ]=abs ( (pK_t i l d e s [ i , j ]−pK_hats [ i , j ] ) /pK_t i l d e s [ i , j ] )

}
}

#Plot the s imula ted and approximated pr i c e as a func t i on o f K when rho=0.2

#==========================================================================

plot (Ks ,pK_hats [ 1 , ] , type=" l " , col="red" , xlab="K" , ylab=" Pr i c e s " )
l ines (Ks ,pK_t i l d e s [ 1 , ] , type=" l " , col="blue " )
legend ( " t op r i gh t " , i n s e t =0.05 ,c ( "pK_t i l d e " , "pK_hat" ) ,

l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( " blue " , " red " ) )
savePlot ( f i l ename="rho1" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

#Plot the s imula ted and approximated pr i c e as a func t i on o f K when rho=0.5

#==========================================================================

plot (Ks ,pK_hats [ 2 , ] , type=" l " , col="red" , xlab="K" , ylab=" Pr i c e s " )
l ines (Ks ,pK_t i l d e s [ 2 , ] , type=" l " , col="blue " )
legend ( " t op r i gh t " , i n s e t =0.05 ,c ( "pK_t i l d e " , "pK_hat" ) ,

l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( " blue " , " red " ) )
savePlot ( f i l ename="rho2" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)

#Plot the s imula ted and approximated pr i c e as a func t i on o f K when rho=0.8

#==========================================================================

plot (Ks ,pK_hats [ 3 , ] , type=" l " , col="red" , xlab="K" , ylab=" Pr i c e s " )
l ines (Ks ,pK_t i l d e s [ 3 , ] , type=" l " , col="blue " )
legend ( " t op r i gh t " , i n s e t =0.05 ,c ( "pK_t i l d e " , "pK_hat" ) ,

l t y=c ( 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 ) , col=c ( " blue " , " red " ) )
savePlot ( f i l ename="rho3" , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)
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#Plot the error as a func t i on o f K fo r d i f f e r e n t rho�s

#======================================================

plot (Ks , e r r o r s [ 3 , ] , type=" l " , col="red" , xlab="K" , ylab="Error " )
l ines (Ks , e r r o r s [ 2 , ] , type=" l " , col="blue " )
l ines (Ks , e r r o r s [ 1 , ] , type=" l " , col="green " )
legend ( " t o p l e f t " , i n s e t =0.05 ,c ( " rho=0.2" , " rho=0.5" , " rho=0.8" ) ,

l t y=c ( 1 , 1 , 1 ) , lwd=c ( 2 . 5 , 2 . 5 , 2 . 5 ) , col=c ( " green " , " blue " , " red " ) )
savePlot ( f i l ename=" e r r o r " , type="pdf " , dev i c e=dev . cur ( ) , r e s t o r eConso l e=TRUE)
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