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1. Introduction and main results

Let I denote the identity operator. Then the Euler-Poincaré (EP) equations are given 
by:

∂tm + (u · ∇)m + (∇u)Tm + (divu)m = 0, m = (I − αΔ)u, (1.1)

where u = (uj)1≤j≤d denotes the velocity, m = (mj)1≤j≤d with mj = (I − αΔ)uj(t, x)
represents the momentum, α corresponds to the square of the length scale and AT

denotes the transpose of a matrix A.
As a higher-dimensional Camassa-Holm (CH) system for modeling and analyzing 

nonlinear shallow water waves, the EP equations (1.1) were first introduced in Holm 
et al. [24]. In the case where d ≥ 2 and m > d/2 + 3, local existence and uniqueness of 
a strong solution belonging to Hm were established in Chae and Liu [9]. The blow-up 
phenomenon for the case α = 0 was also obtained in the same work. For the case α > 0, 
the blow-up and global existence of solutions to (1.1) were studied in Li et al. [29].

In this paper, we focus on the case where α > 0 in (1.1) and assume α = 1 for 
convenience. We use Id×d to represent the d × d identity matrix and let div be the 
divergence operator (i.e., div = ∇·). The notation f = (I −Δ)−1g denotes that f = G ∗g, 
where G is the Green function for the Helmholtz operator I −Δ. We can then reformulate 
(1.1) into the following form (see Chae and Liu [9], Yan and Yin [52], Zhao et al. [53]):

ut + (u · ∇)u + F (u) = 0, (1.2)

where
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⎧⎪⎪⎪⎨⎪⎪⎪⎩
F (u) = (I − Δ)−1divF1(u) + (I − Δ)−1F2(u),

F1(u) = ∇u(∇u + (∇u)T ) − (∇u)T∇u−∇u(divu) + 1
2Id×d|∇u|2,

F2(u) = u(divu) + u · (∇u)T .

(1.3)

Over the past two decades, Stochastic Partial Differential Equations (SPDEs) have 
emerged as a powerful tool for studying complex phenomena. They can incorporate 
phenomena such as turbulence and random energy exchange that elude traditional de-
terministic methods. For instance, deterministic methods struggle to accurately model 
cloud formation in weather forecasting. In this context, we will explore a stochastic 
version of (1.2). More precisely, let {(W̃k(t), Wk(t))}k≥1 be a family of mutually inde-
pendent 1-dimensional Brownian motions and then we consider the following stochastic
EP equations:

du + [(u · ∇)u + F (u)] dt =
∞∑
k=1

(
Qku ◦ dW̃k(t) + hk(t, u) dWk(t)

)
, (1.4)

where {Qk}k≥1 is a sequence of differential operators, {hk}k≥1 is a sequence of nonlin-
ear functions, dWk(t) is the Itô stochastic differential and ◦ dW̃k(t) is the Stratonovich 
stochastic differential.

In Mikulevicius and Rozovskii [31,32], the authors introduced randomness at the 
Lagrangian level by imposing a stochastic forcing σ ◦ dW (t) in the equation for the 
streamlines X = X(t, x) with undetermined local velocity u:

dX(t, x) = u(t,X(t, x)) dt + σ(t,X(t, x)) ◦ dW (t), X(0, x) = x, (1.5)

where W (t) is a standard 1-dimensional Brownian motion. Roughly speaking, rewriting 
the system in terms of u(t, X) leads to the transport noise. Similar ideas were incor-
porated in the Stochastic Advection by Lie Transport (SALT) framework developed 
in Holm [23], which has been a topic of much interest in recent years. See Albeve-
rio et al. [2], Alonso-Orán and Bethencourt de León [3], Alonso-Orán et al. [5], Crisan 
et al. [11], Crisan and Holm [12], Goodair and Crisan [17], Holden et al. [21,22] for recent 
developments. Let diag(·, · · · , ·) be the diagonal operator. Mathematically, we observe 
that the classical transport noise coefficient and the noise structure given by the SALT 
operator (SALT noise) can be unified by taking Q as follows:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Qk = diag

((
ψ

(1)
k (x) · ∇

)
, · · · ,

(
ψ

(d)
k · ∇

))
+ Φk(x)I,

ψ
(i)
k (x) : Rd-valued, 1 ≤ i ≤ d,

Φk(x) =
(
φ

(i,j)
k (x)

)
1≤i,j≤d

: Rd×d-valued.

(1.6)

For example, we observe the following cases:
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• In velocity equations, the SALT operator Lk can be formulated as (cf. [17, Section 
1.4])

Lk(f) = (ηk · ∇)f +
d∑

j=1
fj∇ηk,j , ηk =

(
ηk,l

)
1≤l≤d

, (1.7)

which can be covered by (1.6) with ψ(i)
k = ηk and φ(i,j)

k = ∂xi
ηk,j (1 ≤ i, j ≤ d).

• In 3-dimensional vorticity equations, the Lie derivative operator L̃k (see Crisan 
et al. [11], Flandoli and Luo [16] or [17, Equation (42)]) takes the form:

L̃k(f) = (ηk · ∇)f − (f · ∇)ηk, ηk =
(
ηk,l

)
1≤l≤3, (1.8)

Similarly, (1.8) can be also covered by (1.6).

1.1. Pseudo-differential noise and cancellation properties

We note that only the classical gradient operator is involved (and only on the main 
diagonal) in the classical transport noise coefficient and the SALT operator. In this 
paper, roughly speaking, we study the case where

Qk is a matrix-valued pseudo-differential operator, (1.9)

which significantly extends (1.6). We refer to the noise structure Qku ◦ dW̃k as pseudo-
differential noise. See Section 2.1 for a precise definition of pseudo-differential operators.

Although the physical interpretation of such pseudo-differential noise may be unclear, 
the noise structure introduced in (1.9) can facilitate the exploration of non-local random 
interactions. Since pseudo-differential operators extend classical differential operators in 
a non-local manner, studying pseudo-differential noise provides a more flexible framework 
for modeling complex phenomena that involve non-local random interactions. This can 
be particularly useful in turbulence models, where the behavior of fluid at one point is 
influenced by the behavior of fluid at distant points.

Usually, if u and σ are smooth functions, the random perturbation in the trajectories 
of the Lagrangian fluid particles (1.5) is local in X(t, x). To gain more insight into the 
non-locality introduced by the noise structure in (1.9), which the classical transport 
noise or the SALT noise cannot capture, we consider the following simple but intriguing 
model. As before, W (t) is a standard 1-dimensional Brownian motion and we consider 
the Burgers’ equation with the noise structure 

√
2μ(−∂2

x)αu ◦ dW (t):

du + u∂xu dt =
√

2μ(−∂2
x)αu ◦ dW (t), α ∈ (0, 1/2], μ > 0. (1.10)

We will show below that the noise term 
√

2μ(−∂2
x)αu ◦ dW introduces non-locality to the 

classical transport term uux. Indeed, by using the following relation for a semi-martingale 
Θ(t):
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Θ(t) ◦ dW (t) = Θ(t) dW (t) + 1
2 〈Θ,W 〉 (t), 〈·, ·〉 is the quadratic variation. (1.11)

we can rewrite (1.10) as

du + u∂xu dt =
√

2μ(−∂2
x)αu dW (t) + μ(−∂2

x)2αu dt.

Let Φα(t) := exp
{
−√

2μW (t)(−∂2
x)α

}
be an operator-valued process. Then we have the 

following operator-valued SDE (understood in the sense of Fourier multiplier):

dΦα(t) = −
√

2μ(−∂2
x)αΦα(t) dW (t) + μ(−∂2

x)2αΦα(t) dt.

From the above SDE and [Φα(t), (−∂2
x)α] = 0, it follows that θ(t) := [Φαu](t) satisfies

dθ = [dΦα](u) + Φα(du) − 2μ(−∂2
x)2αΦαu dt = −Φα

(
Φ−1

α θ · ∂xΦ−1
α θ

)
dt. (1.12)

Thus, the term Φα

(
Φ−1

α θ · ∂xΦ−1
α θ

)
reflects the non-local effect arising from the pseudo-

differential noise 
√

2μ(−∂2
x)αu ◦ dW (t) on the level of θ. In the classical derivative case, 

we have:

du + u∂xu dt =
√

2μ∂xu ◦ dW (t), μ > 0,

which is equivalent to

∂tθ + Φ
(
Φ−1θ · ∂xΦ−1θ

)
= 0, θ(t) := [Φu](t), Φ(t) := exp

{
−
√

2μW (t)∂x
}
.

Pathwisely, it appears that the kernels of Φα and Φ−1
α cannot be explicitly written down, 

while the kernels of Φ and Φ−1 are delta functions, indicating that they are local-in-x
operators.

The analysis of the non-local effects from pseudo-differential noise is quite challenging. 
Our focus will be limited to the existence and uniqueness of solutions. Even in this case, 
there is a challenge presented by pseudo-differential noise: closing the a priori estimate 
for (1.4) in Hs becomes non-trivial. Here, Hs denotes the Sobolev space with regularity 
index s (see Section 2.1). To see this, we can rewrite (1.4) in Itô’s form (see (2.8)) and 
then apply Itô’s formula to ‖u‖2

Hs . This will result in two terms:

∞∑
k=1

〈Qku, u〉Hs dW̃k and
∞∑
k=1

[〈
Q2

ku, u
〉
Hs + 〈Qku,Qku〉Hs

]
dt.

If the order of Qk is greater than zero, these two terms are a priori singular in terms 
of Hs since derivatives of order higher than s are involved. However, to close the a 
priori estimate for ‖u‖2

Hs , one must control these two terms by the Hs-norm of u. This 
means that the singularities cancel out and such estimates are called cancellation of 
singularities. The first main result in this work is the following cancellation properties:
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Main Result (A) (See Theorems 3.1, 3.2 and 3.3 for the precise statement). Cancellation 
properties for certain differential operators {Qk}k≥1:

sup
P∈O

∞∑
k=1

〈
PQkf,Pf

〉2
L2 � ‖f‖4

Hs , (1.13)

sup
P∈O

∞∑
k=1

∣∣∣〈PQ2
kf,Pf

〉
L2 +

〈
PQkf,PQkf

〉
L2

∣∣∣ � ‖f‖2
Hs , (1.14)

where O ⊂ OPSs is a bounded set and f : Kd → Rm (K = R or T := R/2πZ) is 
sufficiently regular.

1.2. Existence, uniqueness and initial-data dependence

With the above cancellation properties (1.13) and (1.14), we can obtain the second 
result in the paper:

Main Result (B) (See Theorem 4.1 for the detailed statement). Local existence, unique-
ness, blow-up criterion and global existence of solutions to the following Cauchy problem 
of the stochastic EP equations (1.4) on Kd,⎧⎪⎪⎨⎪⎪⎩

du + [(u · ∇)u + F (u)] dt =
∞∑
k=1

(
Qku ◦ dW̃k(t) + hk(t, u) dWk(t)

)
,

u
∣∣
t=0 = u0,

(1.15)

where Qk and hk satisfy certain conditions.

The effect of noise is a key and interesting question for the study of SPDEs and noise 
has been observed to produce various regularization effects. We refer to Alonso-Orán 
et al. [4], Chen et al. [10], Flandoli et al. [15], Flandoli and Luo [16], Tang and Wang [45]
and the references therein for some examples.

According to Hadamard, the concept of well-posedness for an abstract Cauchy problem 
requires the existence, uniqueness, and stability (continuous dependence of the solution 
on initial data). Here we highlight that in the case of nonlinear stochastic evolution 
equations, the dependence on initial conditions presents a much more complex problem 
than that in cases of linear growth or determinism. This is because solutions may only 
exist up to an interval [0, τ) with τ being a stopping time, and in general, there are no 
estimates available for this τ , i.e., there is a lack of lifespan estimate in the stochastic 
setting.

In contrast to many previous studies where noise effects were mainly explored in 
terms of regularity or uniqueness, we examine the impact of noise on the dependence 
of solutions on initial data. Comparing the noise and Laplacian provides an intriguing 
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perspective on this issue. Specifically, on one hand, “regularization by noise” is formally 
related to the regularization produced by an additional Laplacian. On the other hand, 
the presence of an actual Laplacian in governing equations may improve the dependence 
on initial data in some cases. For example, whereas the deterministic Euler equations 
have at most continuous dependence on initial data (cf. Himonas and Misiołek [20]), the 
deterministic Navier-Stokes equations have at least Lipschitz continuity (cf. [18, pages 
79-81]). So far, we have not been able to completely determine the impact of Qku ◦ dW̃k. 
Therefore, we are considering the special case of (1.15):

du + [(u · ∇)u + F (u)] dt =
∞∑
k=1

hk(t, u) dWk(t), u
∣∣
t=0 = u0. (1.16)

The third result in this paper can be roughly stated as follows:

Main Result (C) (The detailed statement is in Theorem 5.1). The solution map u0 �→ u

defined by (1.16) on Td is weakly unstable in the sense that:

(1) Either the exiting time of solution u ≡ 0 is not strongly stable (see Definition 2.3);
(2) Or the dependence on initial data is not uniformly continuous.

1.3. Plan on the paper and preliminary remarks

• In Section 2, we introduce the notations, review some related preliminary results, and 
provide definitions.

• In Section 3, we establish the cancellation properties (1.13) and (1.14) for an extensive 
family of Qk. These results are, to the best of our knowledge, novel in the analysis 
of pseudo-differential operators. Theorems 3.1 and 3.2 pertain to operators of order 
α ∈ [0, 1], while Theorem 3.3 addresses operators that are independent of x with order 
β ≥ 0. Section 3.3 elaborates on the assumptions and techniques (see Remark 3.1), 
provides examples (see Example 3.1), and discusses other potential extensions (see 
Theorem 3.4 and Remark 3.2). We list two preliminary remarks below before going 
into the details:

(1) When O = {∂n
x : n = 0, 1, · · · , m} ⊂ OPSm and Qk is the SALT operator of the 

form (1.7) or (1.8), the estimates of type (1.13) and (1.14) have been established 
in Crisan et al. [11], Goodair and Crisan [17], Lang and Crisan [27], where the 
Leibniz’s rule and integration by parts for classical derivatives are used. However, 
for a general pseudo-differential operator Qk in (1.9), many fundamental prop-
erties of classical derivatives no longer hold true, which may present challenges. 
To illustrate this, we consider the following simple example with f : Rd → R. 
Let Lk = (ψk · ∇) (the main part of (1.6)) with 

∑∞
k=1 ‖divψk‖L∞ < ∞. Then, 

by applying integration by parts, we obtain
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〈
Lkf, f

〉
L2 =

d∑
i=1

〈
ψ

(i)
k ∂xi

f, f
〉
L2

= 1
2

d∑
i=1

∫
Rd

ψ
(i)
k ∂xi

(f2) dx ≤ 1
2‖divψk‖L∞‖f‖2

L2 .

To derive the cancellation property in Hm with integer m ≥ 1, we also use 
the Leibniz’s rule (cf. 〈∂m

x Lkf, ∂
m
x f〉L2). Since the properties of integration by 

parts and the Leibniz’s rule do not hold true for pseudo-differential operators 
in general, even the validity of (1.13) is not immediately apparent for pseudo-
differential operators, let alone the more intricate case (1.14).

(2) Motivated by Alonso-Orán and Bethencourt de León [3], Crisan et al. [11] and 
the author’s works Alonso-Orán et al. [5], Tang and Wang [44], in this paper, 
we focus on the case where {Qk}k≥1 is a sequence of operators that are not 
far from skew-adjoint operators and we use a family of commutators (cf. (3.5)) 
to achieve the estimates (1.13) and (1.14). Even though we have ‖[Q, f ]g‖Hs ≤
C‖f‖Hs1‖g‖Hs2 for some C > 0, and some suitable s, s1, s2 ∈ R, when this 
estimate is applied for Qk, the constant C may depend on k through Qk, which 
may pose some challenges in taking summation (see Remark 3.1 for more details). 
To address this issue, we need some results on the continuous dependence of 
commutators on operators (see Lemma A.7). We note that this difficulty does
not appear for SALT operators because all the dependence on k can be written 
down in an explicit manner involving ηk in (1.7) and (1.8), where the Leibniz’s 
rule and integration by parts are used. We remark that a special case of (1.13)
and (1.14) with O = {Jn(I −Δ)s/2}n≥1 for a given sequence of mollifiers {Jn}n≥1
and Qk being diagonal form was studied in the author’s recent work Tang and 
Wang [44]. This is the first study, to the best of our knowledge, to deal with 
pseudo-differential noise.

• In Section 4, we prove the local existence, uniqueness, blow-up criterion, and global 
regularity of solutions to (1.15) (see Theorem 4.1). A key aspect of our approach is 
the use of conditional expectation E[·|F0] instead of expectation E in constructing 
solutions. This avoids the need for any moment condition on initial data. It seems 
that this technique has been rarely used in the literature of SPDEs. Moreover, our 
proof for Theorem 4.1 does not require any compactness on Sobolev embeddings, 
which is necessary in the well-known martingale approach (see Prokhorov’s Theorem 
and Skorokhod’s Theorem). As a result, Theorem 4.1 holds true not only on the torus 
Td but also on the whole space Rd. In Section 4.4, we provide further discussions on 
pseudo-differential noise in terms of global existence. We also propose an intriguing 
but unsolved problem on stochastic 2-dimensional incompressible Euler equations.

• In Section 5, we investigate the effect of noise on the solution map. Our main result 
is presented in Theorem 5.1, which demonstrates that (small) multiplicative noise 
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(in Itô’s sense) cannot simultaneously improve the stability of the exit time and the 
continuity of dependence on initial data. As mentioned before, the lack of lifespan 
estimate is the main obstacle and now we explain this difficulty in more detail. In the 
proof for Theorem 5.1, we obtain two sequences of solutions {ul,n}n≥1 (l = −1, 1)
such that {ul,n(0)}n≥1 (l = −1, 1) is bounded in Hs and we need to consider the 
limit behavior as n → ∞ at time t > 0. For each n, we know ul,n exists at least on 
[0, τl,n] but we do not know whether or not infn τl,n > 0 P -a.s. In deterministic cases, 
one can easily obtain the lifespan estimate, which enables us to find a positive lower 
bound for the existence times of a sequence of ul,n, that is, there is a T > 0 such that 
ul,n exists on [0, T ] for all n (see, for example, (4.7) & (4.8) in Tang et al. [43] and 
(3.8) & (3.9) in Tang et al. [47]). Further remarks and comparisons can be found in 
Remark 5.1.

• Appendix A provides necessary estimates/results used in our proofs.

2. Notations, preliminary results and definitions

2.1. Notations and related preliminary results

To begin with, we list some notations used subsequently. Let Nd
0 := (N ∪ {0})d. For 

two multi-indexes α = (α1, · · · , αd), β = (β1, · · · , βd) ∈ Nd
0 with β ≤ α (which means 

βi ≤ αi with 1 ≤ i ≤ d), we define

|α|1 :=
d∑

k=1

αk, ∂α
x :=

d∏
k=1

∂αk
xk

, ∂α
ξ :=

d∏
k=1

∂αk

ξk
,

(
α
β

)
:=

d∏
i=1

αi!
βi! · (αi − βi)!

.

Recall that K = R or T := R/2πZ and d, m ∈ N. For 1 ≤ p < ∞, we denote by 
Lp(Kd; Rm) the standard Lebesgue space of measurable p-integrable Rm-valued functions 
with domain Kd, and we let L∞(Kd; Rm) be the space of essentially bounded functions. 
Particularly, the inner product in L2(Kd; Rm) is defined by

〈f, g〉L2 :=
m∑
i=1

∫
Kd

fi · gi dx,

where g denotes the complex conjugate of g. If there is no ambiguity, in the following we 
denote by 〈f, g〉L2 the inner product for both f, g ∈ L2(Kd; Rm) and f, g ∈ L2(Kd; R)
with the customary abuse of notation.

Let i =
√
−1 be the imaginary unit. The Fourier transform Fx→ξ and inverse Fourier 

transform F−1
ξ→x on Rd are defined by

(Fx→ξf)(ξ) :=
∫

f(x)e−i(x·ξ) dx, (F−1
ξ→xf)(x) := 1

(2π)d

∫
f(ξ)ei(x·ξ) dξ.
Rd Rd
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On torus, i.e., x ∈ Td, the Fourier transform Fx→k and inverse Fourier transform F−1
k→x

are given by

(Fx→kf)(k) :=
∫
Td

f(x)e−i(x·k) dx, (F−1
k→xf)(x) = 1

(2π)d
∑
k∈Zd

f(k)ei(x·k).

For any s ∈ R, we define the symbol class Ss(Rd ×Rd; Cm×m) ⊂ C∞(Rd ×Rd; Cm×m)
as

Ss(Rd ×Rd;Cm×m) :=⎧⎪⎨⎪⎩p : ∀β, α ∈ Nd
0 , ∃C(β, α) > 0 s.t. sup

(x,ξ)∈Rd×Rd

∣∣∣∂β
x∂

α
ξ p(x, ξ)

∣∣∣
m×m

(1 + |ξ|)s−|α|1
< C(β, α)

⎫⎪⎬⎪⎭ .

Here and in the sequel, | · |m×m and | · | are usual norms in Cm×m and Rd, respectively. 
It is well-known that Ss(Rd×Rd; Cm×m) is a Fréchet space equipped with the topology 
generated by seminorms {| · |β,α;s

Rd×Rd}β,α∈Nd
0
, where

|p|β,α;s
Rd×Rd := sup

(x,ξ)∈Rd×Rd

|∂β
x∂

α
ξ p(x, ξ)|m×m(1 + |ξ|)−s+|α|1 .

For any α ∈ Nd
0 , we define the partial difference operator �α

k as

(�α
k g)(k) :=

∑
γ∈Nd

0 ,γ≤α

(−1)|α−γ|1
(
α

γ

)
g(k + γ), g : Zd → C, k ∈ Zd.

Then the (toroidal) symbol class of order s for s ∈ R is defined as (cf. Ruzhansky and 
Turunen [38]):

Ss(Td × Zd;Cm×m) :=⎧⎪⎪⎨⎪⎪⎩p :

p(·, k) ∈ C∞(Td;Cm×m) for all k ∈ Zd;

∀β, α ∈ Nd
0 , ∃C(β, α) > 0 s.t. sup

(x,k)∈Td×Zd

∣∣∂β
x�α

kp(x, k)
∣∣
m×m

(1 + |k|)s−|α|1
< C(β, α)

⎫⎪⎪⎬⎪⎪⎭ .

Again, Ss(Td×Zd; Cm×m) is a Fréchet space under the topology given by the following 
seminorms {| · |β,α;s

Td×Zd}β,α∈Nd
0
:

|p|β,α;s
Td×Zd := sup

(x,k)∈Td×Zd

|∂β
x�α

kp(x, k)|(1 + |k|)−s+|α|1 .

Then the pseudo-differential operator with symbol p is defined by

OP(p) := P, (2.1)
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[Pf ](x) :=

⎧⎪⎨⎪⎩
{

F−1
ξ→x

[
p(z, ξ)

(
Fx→ξf

)
(ξ)
]}

z=x
, if p ∈ Ss(Rd ×Rd;Cm×m),{

F−1
k→x

[
p(z, k)

(
Fx→kf

)
(k)
]}

z=x
, if p ∈ Ss(Td × Zd;Cm×m).

(2.2)

Throughout this paper, all pseudo-differential operators are assumed to be real-valued, 
i.e., when f is real, [OP(p)f ] is also real. Equivalently, it is required that

p(x,−ξ) = p(x, ξ) if (x, ξ) ∈ Rd ×Rd, (2.3)

p(x,−k) = p(x, k) if (x, k) ∈ Td × Zd. (2.4)

We denote by Ss
(
Td × Rd; C

)
the symbol class such that p ∈ Ss

(
Rd × Rd; C

)
means 

that p(·, ξ) is periodic with period 2π for all ξ. Moreover, according to [39, Theorem 5.2]
(see also [13, Corollary 2.11]), we see that if

|p|β,α;s
Rd×Rd ≤ cαβs for some cαβs > 0, |α| < N1, |β| < N2, N1, N2 ≥ 1, (2.5)

then p̃ = p
∣∣
Tn×Zn satisfies

|p̃|β,α;s
Td×Zd ≤ Cαβs for some Cαβs > 0, |α| < N1, |β| < N2, N1, N2 ≥ 1. (2.6)

Conversely, every symbol ̃p ∈ Ss
(
Td×Zd; C

)
satisfying (2.6) is a restriction ̃p = p

∣∣
Tn×Zn

of a symbol p ∈ Ss
(
Td ×Rd; C

)
, where p satisfies (2.5). Therefore, we see that

OPSs
(
Td × Zd;C

)
= OPSs

(
Td ×Rd;C

)
(2.7)

and any bounded set in OPSs
(
Td×Zd; C

)
coincides with the restriction of a bounded set 

in OPSs
(
Td × Rd; C

)
(see also [13, Theorem 2.10 and Corollary 2.11]). By considering 

each element in a matrix-valued symbol p = (p(i,j))1≤i,j≤m with noting that

(
OP(p)

)(i,j) = OP
(
p(i,j)),

we see that (2.7) also holds true for OPSs.
Therefore, we simplify notations if there is no ambiguity in the context and we write

Ss :=
{
Ss(Rd ×Rd;Cm×m) : (2.3) holds

}
or

{
Ss(Td × Zd;Cm×m) : (2.4) holds

}
,

and

| · |β,α;s := | · |β,α;s
Rd×Rd or | · |β,α;s

Td×Zd .

In the following, we will also consider symbols only depending on the frequency variable 
ξ (if x ∈ Rd) or k (if x ∈ Td). To highlight the differences, we let
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S0 :=
{
p ∈ Ss :

p(x, ξ) = p(ξ), if (x, ξ) ∈ Rd ×Rd

p(x, k) = p(k), if (x, k) ∈ Td × Zd

}
.

To emphasize the scalar symbols (i.e., m = 1), we define

Ss :=
{
Ss(Rd ×Rd;C) : (2.3) holds

}
or

{
Ss(Td × Zd;C) : (2.4) holds

}
.

Recalling (2.1) and (2.2), we define

OPSs :=
{

OP(p) : p ∈ Ss
}
, OPSs

0 :=
{

OP(p) : p ∈ Ss
0

}
, s ∈ R.

In the same way, OPSs and OPSs
0 can be defined as pseudo-differential operators with 

symbols in Ss and Ss
0 , respectively.

Recall that I stands for the identity map. For any s ∈ R, the operator Ds = (I −Δ)s/2
is defined by

Ds := OP((1 + |ξ|2)s/2) on Rd or Ds := OP((1 + |k|2)s/2) on Td.

For s ≥ 0, d, m ≥ 1, the Sobolev spaces Hs on Kd with values in Rm are defined as

Hs(Rd;Rm) := C∞
0 (Rd;Rm)

‖·‖Hs

, Hs(Td;Rm) := C∞(Td;Rm)
‖·‖Hs

,

where

‖f‖Hs :=
√
〈f, f〉Hs , 〈f, g〉Hs :=

m∑
i=1

〈Dsfi,Dsgi〉L2 .

Let W 1,∞(Kd; Rm) be the set of weakly differential functions f : Kd → Rm with

‖f‖W 1,∞ :=
m∑
j=1

∑
|α|1=0,1

‖∂α
x f‖L∞ < ∞.

We will also be confronted with matrix-valued functions Φ(x) =
(
φ(i,j)(x)

)
1≤i,j≤m

, and 
for such functions, we define

‖Φ‖Hs(Rd;Rm×m) :=

⎛⎝ m∑
i,j=1

‖φ(i,j)‖2
Hs(Rd;R)

⎞⎠ 1
2

,

and propose the similar definition for W 1,∞(Rd; Rm×m) and Lp(Rd; Rm×m). If d, m ∈ N

are fixed in the context, for s ≥ 0 and p ∈ [1, ∞], we will simply write

Hs = Hs(Kd;Rm), W 1,∞ = W 1,∞(Kd;Rm), Lp = Lp(Kd;Rm),
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and do the same for the matrix-valued case. In particular, we let H∞ := ∩s≥0H
s.

For linear operators A and B, [A, B] := AB−BA. A∗ denotes the L2-adjoint operator 
of A. Let � and � denote estimates that hold up to some universal deterministic constant 
which may change from line to line. Let X and Y be two Banach spaces. We denote by 
L (X; Y ) the class of bounded linear operators from X to Y . For two separable Hilbert 
spaces U1 and U2, L2(U1; U2) is class of Hilbert-Schmidt operators from U1 to U2.

2.2. Definitions

To begin with, we note that OPSs can be measured using the topology generated by 
the norm ‖ · ‖L (Hr+s;Hr) (cf. (1) in Lemma A.6). However, since the map OP is one-to-
one (cf. [26, Proposition 1.2, Page 56]), in the paper we will consider the boundedness 
of OPSs in the following sense:

Definition 2.1. Let s ∈ R. O ⊂ OPSs is said to be bounded if 
{
p : OP(p) ∈ O} ⊂ Ss is 

bounded in the sense of boundedness in Fréchet space (cf. Rudin [37]).

To avoid any confusion, for two separable Banach spaces X and Y , ‖ · ‖L (X;Y ) will 
always be mentioned if boundedness of L (X; Y ) is considered.

Next, we give the precise definition of the solutions. Using (1.11), we rewrite (1.15) as⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
[
−(u · ∇)u− F (u) + 1

2

∞∑
k=1

Q2
ku
]
dt

+
∞∑
k=1

(
Qku dW̃k + hk(t, u) dWk

)
, x ∈ Kd,

u
∣∣
t=0 = u0, x ∈ Kd.

(2.8)

Then we will try to find solutions to (2.8) in the following sense:

Definition 2.2. Let d ≥ 2 and let K = R or T . Let u0 be an Hs(Kd; Rd)-valued F0-
measurable random variable with s > d

2 + 1.

1. A local pathwise solution to (2.8) is a pair (u, τ), where τ is a stopping time satisfying 
P (τ > 0) = 1 and (u(t))t∈[0,τ) is an Ft-progressively measurable such that

sup
t′∈[0,t]

‖u(t′)‖Hs < ∞, t ∈ [0, τ) P -a.s.,

and the following equation holds:

u(t) − u0 +
t∫ [

(u · ∇)u + F (u) − 1
2

∞∑
k=1

Q2
ku
]
(t′) dt′
0
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=
t∫

0

∞∑
k=1

Qku(t′) dW̃k(t′) +
t∫

0

∞∑
k=1

hk(t′, u) dWk(t′), t ∈ [0, τ) P -a.s.

2. Additionally, a local solution (u, τ∗) is called maximal, if τ∗ > 0 almost surely and

lim sup
t→τ∗

‖u(t)‖Hs = ∞ a.s. on {τ∗ < ∞}.

If τ∗ = ∞ almost surely, then such a solution is called global.

We also introduce the following notions on the stability of exiting time.

Definition 2.3 (Stability of exiting time). Let d ≥ 2 and let K = R or T . Let u0 be 
an Hs(Kd; Rd)-valued F0-measurable random variable with s > d

2 + 1. Assume that 
{u0,n} is an arbitrary sequence of Hs(Kd; Rd)-valued F0-measurable random variables. 
For each n, let u and un be the unique solutions to (1.16) with initial value u0 and u0,n, 
respectively. For any R > 0 and n ∈ N, define the R-exiting time as

τRn := inf {t ≥ 0 : ‖un(t)‖Hs > R} , τR := inf {t ≥ 0 : ‖u(t)‖Hs > R} ,

where inf ∅ = ∞.

1. Let R > 0. If u0,n → u0 in Hs almost surely implies

lim
n→∞

τRn = τR P -a.s., (2.9)

then the R-exiting time is said to be stable at u.
2. Let R > 0. If u0,n → u0 in Hs′ for all s′ < s almost surely also implies (2.9), then the 

R-exiting time is said to be strongly stable at u.

3. Cancellation of singularities

In this section, we aim to establish cancellation properties in (1.13) and (1.14) for 
certain cases that generalize the SALT operator.

We remind readers that K = R or T , and P∗ denotes the L2-adjoint of the linear 
operator P. Additionally, all functions and operators are real (cf. (2.3) and (2.4)). These 
facts will be used frequently without further mention. For P ∈ OPSr and a real-valued 
function h, we sometimes write hP := (hI)P. We also remind readers of the definition 
of boundedness in OPSs, as per Definition 2.1.

3.1. Case 1: x-dependent operators with order α ∈ [0, 1]

To begin with, we consider (1.13) and we find that it holds true for operators that are 
close to skew-adjoint operators. The precise statement is the following theorem:
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Theorem 3.1. Let d, m ≥ 1, s ≥ 0 and α ∈ [0, 1]. Let O ⊂ OPSs be a bounded set and 
we assume that

{Uk}k≥1 ⊂ OPSα and
{
Uk + U∗

k

}
k≥1 ⊂ OPS0 are bounded, respectively. (3.1)

Let s0 >
(
d
2 + 1

)
∨ s and we assume {dk}k≥1 ⊂ Hs0(Kd; R) such that 

∑∞
k=1 ‖dk‖2

Hs0 <

∞. Then we have

sup
P∈O

∞∑
k=1

〈
P(dkUk)f,Pf

〉2
L2 �

( ∞∑
k=1

‖dk‖2
Hs0

)
‖f‖4

Hs , f ∈ Hs+α.

Proof. Let Ek := Uk + U∗
k . Then one first infers from (1) in Lemma A.6 that

sup
P∈O

‖P‖L (Hr+s;Hr) , sup
k≥1

‖Uk‖L (Hr+α;Hr) , sup
k≥1

‖Ek‖L (Hr;Hr) < ∞, r ∈ R. (3.2)

We note that 〈
P(dkUk)f,Pf

〉
L2 = I1,k + I2,k,

I1,k := 〈[P, dkI]Ukf,Pf〉L2 ,

I2,k := 〈dkPUkf,Pf〉L2 .

Since s0 − s ≥ 0 and α ≤ 1, we can infer from (A.4) (with q = 0 and σ = s0 ≥ r = s) 
and (3.2) that

sup
P∈O

|I1,k| � ‖dk‖Hs0 ‖Ukf‖Hs−1 ‖f‖Hs � ‖dk‖Hs0 ‖f‖2
Hs .

Now we estimate I2,k. We observe that

I2,k =
〈[
P,Uk

]
f, dkPf

〉
L2 +

〈
UkPf, dkPf

〉
L2

=
〈[
P,Uk

]
f, dkPf

〉
L2 − 〈Pf,Uk(dkPf)〉L2 + 〈Pf, Ek(dkPf)〉L2

=
〈[
P,Uk

]
f, dkPf

〉
L2 −

〈
Pf,

[
Uk, dkI

]
Pf

〉
L2

− 〈Pf, dkUkPf〉L2 + 〈Pf, Ek(dkPf)〉L2 .

Then we have

I2,k =
〈[
P,Uk

]
f, dkPf

〉
L2 −

〈[
Uk, dkI

]
Pf,Pf

〉
L2

− 〈UkPf, dkPf〉L2 + 〈Pf, Ek(dkPf)〉L2

= 2
〈[
P,Uk

]
f, dkPf

〉
L2 −

〈[
Uk, dkI

]
Pf,Pf

〉
L2 + 〈Pf, Ek(dkPf)〉L2 − I2,k.

Hence
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I2,k =
〈[
P,Uk

]
f, dkPf

〉
L2 −

1
2
〈[
Uk, dkI

]
Pf,Pf

〉
L2 + 1

2 〈Pf, Ek(dkPf)〉L2 .

Applying Lemma A.7 to [P, Uk], (A.4) to [Uk, dkI] (with q = 0 and σ = s0 > r = α), 
(3.2) and Hs0 ↪→ W 1,∞, we have

sup
P∈O

∣∣〈[P,Uk

]
f, dkPf

〉
L2

∣∣ � ‖f‖Hs+α−1 ‖dk‖L∞ ‖f‖Hs � ‖dk‖Hs0 ‖f‖2
Hs ,

sup
P∈O

∣∣〈[Uk, dkI
]
Pf,Pf

〉
L2

∣∣ � ‖dk‖Hs0 ‖Pf‖Hα−1 ‖f‖Hs � ‖dk‖Hs0 ‖f‖2
Hs ,

and

sup
P∈O

|〈Pf, Ek(dkPf)〉L2 | � ‖dk‖Hs0 ‖f‖2
Hs .

In conclusion, we derive

sup
P∈O

|I2,k| � ‖dk‖Hs0 ‖f‖2
Hs .

Combining the estimates for Ii,k with i = 1, 2 gives rise to the desired estimate. �
The rest of this section focuses on the more complicated cancellation property in 

(1.14). For the well-known cases of transport noise and SALT noise, we refer to Alonso-
Orán and Bethencourt de León [3], Alonso-Orán et al. [5], Crisan et al. [11], Goodair 
and Crisan [17] and the references therein.

Hypothesis (H1). Let d, m ≥ 1 and α ∈ [0, 1]. Suppose that

Ak = akLk + pkGk, Lk = diag(Lk,1, · · · ,Lk,m) ∈ OPSα, Gk ∈ OPS0, k ≥ 1,

where ak = ak(x) and pk = pk(x) are some functions and the following conditions hold 
true:

(Ha
1) {Lk}k≥1 ⊂ OPSα, {Lk + L∗

k}k≥1 ⊂ OPS0 and {Gk}k≥1 ⊂ OPS0 are bounded, 
respectively.

(Hb
1) For all k ≥ 1, the symbols of Lk and Gk are commuting matrices.

We note that (Hb
1) holds true automatically for two cases: either Gk only involves 

operators on the main diagonal, or Lk,i = Lk,j , 1 ≤ i, j ≤ m (i.e., Lk can be treated as a 
scalar operator). The latter includes cases of SALT operators as in (1.7) and (1.8). For 
further remarks on assumptions and techniques, see Section 3.3.

Theorem 3.2. Let s ≥ 0 and Hypothesis (H1) hold true. Let s0 > (d2 + 1) ∨ s, σ0 >

(d + 1) ∨ (s + 2α) and O ⊂ OPSs be bounded.
2
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(i) Let {ak}k≥1, {pk}k≥1 ⊂ Hs0(Kd, R) satisfy A1 :=
∑∞

k=1

(
‖ak‖2

Hs0 + ‖pk‖2
Hs0

)
<

∞, then we have

sup
P∈O

∞∑
k=1

〈
PAkf,Pf

〉2
L2 � A1 ‖f‖4

Hs , f ∈ Hs+α. (3.3)

(ii) Let {pk}k≥1 ⊂ Hσ0(Kd, R) and {ak}k≥1 ⊂ H∞(Kd; R) satisfy 
∑∞

k=1

(
‖ak‖Hr +

‖pk‖2
Hσ0

)
< ∞ for all r ≥ 0, then (3.3) holds. Besides, for s ≥ 1 − α and 

A2 :=
∑∞

k=1

(
‖ak‖Hσ0 + ‖pk‖2

Hσ0

)
,

sup
P∈O

∞∑
k=1

∣∣∣ 〈PA2
kf,Pf

〉
L2 + 〈PAkf,PAkf〉L2

∣∣∣ � A2 ‖f‖2
Hs , f ∈ Hs+2α. (3.4)

(iii) If {ak}k≥1, {pk}k≥1 ∈ l2, then (3.3) and (3.4) hold true with A3 :=
∑∞

k=1
(
|ak|2 +

|pk|2
)

replacing A1 and A2, respectively.

Proof. By applying (2) in Lemma A.6, we observe that if (Ha
1) is satisfied, then Lk and 

Gk also satisfy (3.1). Therefore, using Theorem 3.1 with dkUk = akLk and dkUk = pkGk, 
respectively, we obtain (3.3).

In the following discussion, we will only focus on verifying (3.4) since the other cases 
can be proved in the same way.

Step (1). For k, n ∈ N, we let

Hk := L∗
k + Lk, Zk :=

[
akI,Lk

]
+ Hk(akI),

R1,k :=
[
akLk,Zk

]
, R2,k :=

[
pkGk, akLk

]
,

and

R3,k,P :=
[
P, akLk

]
, R4,k,P :=

[
R3,k,P , akLk

]
.

Claim:

〈
PA2

kf,Pf
〉
L2 +

〈
PAkf,PAkf

〉
L2 =

11∑
l=1

Nl, (3.5)

where
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 := 〈R4,k,Pf,Pf〉L2 , N2 := 〈R3,k,Pf,R3,k,Pf〉L2 , N3 = 2 〈ZkPf,R3,k,Pf〉L2 ,

N4 := −1
2 〈Pf,R1,kPf〉L2 , N5 := 1

2
〈
Pf,Z2

kPf
〉
L2 ,

N6 := 2 〈P(pkGk)f,R3,k,Pf〉L2 , N7 := 2 〈P(pkGk)f,ZkPf〉L2 ,

N8 := 2 〈R3,k,P(pkGk)f,Pf〉L2 , N9 := 〈PR2,kf,Pf〉L2 ,

N10 :=
〈
P(pkGk)2f,Pf

〉
L2 , N11 := 〈P(pkGk)f,P(pkGk)f〉L2 .

To simplify notation, we let

Tk := akLk, Kk = pkGk,

and then we have〈
PA2

kf,Pf
〉
L2 +

〈
PAkf,PAkf

〉
L2

=
〈
PT 2

k f,Pf
〉
L2 + 〈PTkKkf,Pf〉L2 + 〈PKkTkf,Pf〉L2 +

〈
PK2

kf,Pf
〉
L2

+ 〈PTkf,PTkf〉L2 + 2 〈PTkf,PKkf〉L2 + 〈PKkf,PKkf〉L2

=
7∑

i=1
hi. (3.6)

By (Ha
1), one can immediately find that T ∗

k = −Tk + Zk, which leads to

h1 =
〈
PT 2

k f,Pf
〉
L2

=
〈(
TkP + R3,k,P

)
Tkf,Pf

〉
L2

=
〈
PTkf, T ∗

k Pf
〉
L2 +

〈
R3,k,PTkf,Pf

〉
L2

= −
〈
PTkf, TkPf

〉
L2 + 〈PTkf,ZkPf〉L2 + 〈R3,k,PTkf,Pf〉L2

= − 〈PTkf,PTkf〉L2 + 〈PTkf,R3,k,Pf〉L2 + 〈PTkf,ZkPf〉L2 + 〈R3,k,PTkf,Pf〉L2

= − h5 + 〈PTkf,R3,k,Pf〉L2 + 〈PTkf,ZkPf〉L2 + 〈R3,k,PTkf,Pf〉L2 .

That is to say,

h1 + h5 = 〈PTkf,R3,k,Pf〉L2 + 〈PTkf,ZkPf〉L2 +
〈
R3,k,PTkf,Pf

〉
L2 .

Note that P is of order s. Then PTk is of order s +α ≥ s. Similarly, the order of R3,k,PTk
may be also larger than s. Therefore, by commuting P and Tk and using T ∗

k again, we 
have

h1 + h5

= 〈TkPf,R3,k,Pf〉L2 + 〈R3,k,Pf,R3,k,Pf〉L2

+ 〈R3,k,PTkf,Pf〉 2 + 〈PTkf,ZkPf〉L2
L
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= − 〈Pf, TkR3,k,Pf〉L2 + 〈Pf,ZkR3,k,Pf〉L2

+ 〈R3,k,Pf,R3,k,Pf〉L2 + 〈R3,k,PTkf,Pf〉L2 + 〈PTkf,ZkPf〉L2

= 〈R4,k,Pf,Pf〉L2 + 〈Pf,ZkR3,k,Pf〉L2

+ 〈R3,k,Pf,R3,k,Pf〉L2 + 〈PTkf,ZkPf〉L2 . (3.7)

Note that Z∗
k = Zk. Then we arrive at

〈PTkf,ZkPf〉L2

= 〈TkPf,ZkPf〉L2 +
〈
R3,k,Pf,ZkPf

〉
L2

= − 〈Pf, TkZkPf〉L2 +
〈
Pf,Z2

kPf
〉
L2 + 〈R3,k,Pf,ZkPf〉L2

= −
〈
Pf,ZkTkPf

〉
L2 − 〈Pf,R1,kPf〉L2 +

〈
Pf,Z2

kPf
〉
L2 + 〈R3,k,Pf,ZkPf〉L2

= − 〈ZkPf, TkPf〉L2 − 〈Pf,R1,kPf〉L2 +
〈
Pf,Z2

kPf
〉
L2 + 〈R3,k,Pf,ZkPf〉L2 .

Therefore, using R3,k,P =
[
P, Tk

]
gives rise to

〈PTkf,ZkPf〉L2

= − 1
2 〈Pf,R1,kPf〉L2 + 1

2
〈
Pf,Z2

kPf
〉
L2 + 〈R3,k,Pf,ZkPf〉L2 . (3.8)

Combining (3.7), (3.8) and Z∗
k = Zk gives

h1 + h5 = 〈R4,k,Pf,Pf〉L2 + 2
〈
ZkPf,R3,k,Pf

〉
L2 + 〈R3,k,Pf,R3,k,Pf〉L2

− 1
2 〈Pf,R1,kPf〉L2 + 1

2
〈
Pf,Z2

kPf
〉
L2 . (3.9)

Similarly, we use T ∗
k = −Tk + Zk, R2,k =

[
Kk, Tk

]
and R3,k,P =

[
P, Tk

]
to derive

h2 + h3 = 2 〈PTkKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2

= 2 〈TkPKkf,Pf〉L2 + 2 〈R3,k,PKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2

= 2 〈PKkf,−TkPf〉L2 + 2 〈PKkf,ZkPf〉L2

+ 2 〈R3,k,PKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2

= 2 〈PKkf,R3,k,Pf〉L2 − 2 〈PKkf,PTkf〉L2 + 2 〈PKkf,ZkPf〉L2

+ 2 〈R3,k,PKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2

= 2 〈PKkf,R3,k,Pf〉L2 − h6 + 2 〈PKkf,ZkPf〉L2

+ 2 〈R3,k,PKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2 .

This implies that
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h2 + h3 + h6

= 2 〈PKkf,R3,k,Pf〉L2 + 2 〈PKkf,ZkPf〉L2

+ 2 〈R3,k,PKkf,Pf〉L2 + 〈PR2,kf,Pf〉L2 . (3.10)

On account of (3.6), (3.9) and (3.10), we obtain (3.5).

Step (2). Claim: Recall that σ0 > (d2 +1) ∨ (s +2α). There is a constant C > 0 such that 
for all k ≥ 1,

sup
P∈O

‖R3,k,P‖L (Hs+α−1;L2) , sup
P∈O

‖R4,k,P‖L (Hs+2α−2;L2) , ‖Zk‖L (L2;L2) ≤ C ‖ak‖Hσ0 ,

(3.11)

sup
P∈O

‖P(pkGk)‖L (Hs;L2) ≤ C ‖pk‖Hs0 , (3.12)

sup
P∈O

‖R3,k,P(pkGk)‖L (Hs;L2) ≤ C ‖ak‖Hσ0 ‖pk‖Hσ0 . (3.13)

Before we prove these estimates, we note that (Ha
1) implies that for r ∈ R,

sup
k≥1

‖Hk‖L (Hr;Hr) < ∞, sup
k≥1

‖Gk‖L (Hr;Hr) < ∞, sup
k≥1

‖Lk‖L (Hr+α;Hr) < ∞. (3.14)

Verify (3.11). For R3,k,P , it holds that

‖R3,k,Pg‖L2 =
∥∥[P, akLk

]
g
∥∥
L2 ≤

∥∥[P, akI
]
Lkg

∥∥
L2 +

∥∥ak[P,Lk

]
g
∥∥
L2 .

Since O is bounded in OPSs (in the sense of Definition 2.1), by α ≤ 1, (A.4) (with 
σ = σ0 ≥ s = r and q = 0) and (3.14), we obtain that for sufficiently regular function g,

sup
P∈O

∥∥[P, akI
]
Lkg

∥∥
L2 ≤ C ‖ak‖Hσ0 ‖Lkg‖Hs−1 ≤ C ‖ak‖Hσ0 ‖g‖Hs+α−1 .

Similarly, via (Ha
1) and Lemma A.7, we see that supP∈O,k≥1

∥∥[P,Lk

]∥∥
L (Hs+α−1;L2) <

∞, and therefore,

sup
P∈O

∥∥ak[P,Lk

]
g
∥∥
L2 ≤ ‖ak‖L∞ sup

P∈O,k≥1

∥∥[P,Lk

]
g
∥∥
L2 ≤ C ‖ak‖Hσ0 ‖g‖Hs+α−1 .

Collecting the above estimates, we obtain

sup
P∈O

‖R3,k,P‖L (Hs+α−1;L2) ≤ C ‖ak‖Hσ0 .

Following the proof for (A.2), we have that {R3,k,P}k≥1,P∈O is bounded in OPSs+α−1. 
Moreover, we observe that R3,k,P is of diagonal form. Since s + α ≥ 1, by repeating the 
above procedure and replacing P with R3,k,P , we obtain
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sup
P∈O

‖R4,k,P‖L (Hs+2α−2;L2) ≤ C ‖ak‖Hσ0 .

One can also obtain the estimate for Zk in much the same way. Indeed, applying (A.4)
to 
[
Lk, akI

]
(with q = 0 and r = α < σ = σ0), we arrive at∥∥[Lk, akI

]
g
∥∥
L2 ≤ C‖ak‖Hσ0‖g‖Hα−1 ≤ C‖ak‖Hσ0‖g‖L2 .

From this, Hσ0 ↪→ L∞, and (3.14), we obtain

‖Zk‖L (L2;L2) ≤ C ‖ak‖Hσ0 .

Hence (3.11) holds.

Verify (3.12) and (3.13). Remember that supP∈O ‖P‖L (Hr+s;Hr) < ∞ for any r ∈ R

(see (3.2)). If s ≤ d
2 , we use Lemma A.3 (with s1 = s and s2 = σ0) and (3.14) to derive

sup
P∈O

‖P(pkGk)g‖L2 ≤ C‖pkGkg‖Hs ≤ C‖pk‖Hσ0‖Gkg‖Hs ≤ C‖pk‖Hσ0‖g‖Hs .

If s > d
2 , one has Hs ↪→ L∞ and this means

sup
P∈O

‖P(pkGk)g‖L2 ≤ C‖pkGkg‖Hs ≤ C‖pk‖Hs‖Gkg‖Hs ≤ C‖pk‖Hσ0‖g‖Hs .

Hence (3.12) holds. By the same argument leading to the estimate for P(pkGk) with 
noting (3.11), we also have that for all s ≥ 1 − α ≥ 0,

sup
P∈O

‖R3,k,P(pkGk)g‖L2 ≤ C‖ak‖Hσ0‖pkGkg‖Hs ≤ C‖ak‖Hσ0‖pk‖Hσ0‖g‖Hs .

Hence (3.13) is proved.

Step (3). In this step we finish the proof for (3.4).

In the following, we will frequently use the fact that supP∈O ‖P‖L (Hr+s;Hr) < ∞ for 
any r ∈ R (see (3.2)) without further mention. Moreover, we recall that σ0 > (d2 + 1) ∨
(s + 2α).

To begin with, we simply use (3.11) to derive

sup
P∈O

|N1| ≤ C ‖ak‖Hσ0 ‖f‖2
Hs , sup

P∈O

{
|N2| + |N3| + |N5|} ≤ C ‖ak‖2

Hσ0 ‖f‖2
Hs .

For N4, we observe that[
akLk,Zk

]
= [akLk, akLk − Lk(akI) + Hk(akI)] = [(akI)Lk,L∗

k(akI)] . (3.15)
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Therefore, (2) in Lemma A.6 and (A.3) in Lemma A.7 give rise to

sup
P∈O

|N4| � ‖ak‖2
Hσ0‖f‖2

Hs .

For N6, N7, N8 and N11, we use (3.11), (3.12) and (3.13) to obtain

sup
P∈O

{
|N6| + |N7| + |N8| + |N11|} ≤ C

(
‖ak‖2

Hσ0 + ‖pk‖2
Hσ0

)
‖f‖2

Hs .

Now we consider N9. Recalling that s ≥ 0, α ∈ [0, 1] and R2,k =
[
pkGk, akLk

]
, we use 

(A.3) in Lemma A.7 to find that

sup
P∈O

|N9| = sup
P∈O

∣∣〈PR2,kf,Pf〉L2

∣∣ ≤ ‖ak‖Hσ0‖pk‖Hσ0 ‖f‖2
Hs .

Finally, for N10, the proof for the estimate on P(pkGk) in (3.12) actually gives

sup
P∈O

∥∥P(pkGk)2
∥∥

L (Hs;L2) ≤ C ‖pk‖2
Hσ0 ,

and this implies

sup
P∈O

|N10| = sup
P∈O

∣∣∣〈P(pkGk)2f,Pf
〉
L2

∣∣∣ � ‖pk‖2
Hσ0‖f‖2

Hs .

Collecting all these estimates for (3.5), we see that

sup
P∈O

∣∣∣〈PA2
kf,Pf

〉
L2 +

〈
PAkf,PAkf

〉
L2

∣∣∣ � (
‖ak‖Hσ0 + ‖ak‖2

Hσ0 + ‖pk‖2
Hσ0

)
‖f‖2

Hs .

Hence we obtain (3.4). �
3.2. Case 2: x-independent operators with order β ≥ 0

The proof for Theorem 3.2 also implies that the cancellation properties hold true for 
another class of operators when operators are x-independent.

Hypothesis (H2). Let d, m ≥ 1 and β ≥ 0. We assume the following:

(Ha
2) {Bk}k≥1 ⊂ OPSβ

0 and 
{
Bk + B∗

k

}
k≥1 ⊂ OPS0

0 are bounded, respectively.
(Hb

2) Bk = bkJk + qkVk, where bk, qk ∈ R, Jk = diag(Jk,1, · · · , Jk,m),

{Jk}k≥1 ⊂ OPSβ
0 and {Vk}k≥1 ⊂ OPS0∧(1−β)

0 are bounded, respectively.

Besides, {Jk + J ∗
k }k≥1 ⊂ OPS0

0 is bounded and for all k ≥ 1, the symbols of Jk

and Vk are commuting matrices.
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Now we state the following cancellation properties for x-independent operators:

Theorem 3.3. Let s ≥ 0 and O ⊂ OPSs
0 be a bounded set. Let {bk}k≥1, {qk}k≥1, {ck}k≥1

∈ l2 with B1 :=
∑∞

k=1 c
2
k and B2 :=

∑∞
k=1 b

2
k+q2

k. Then we have the following properties:

• If (Ha
2) holds, then

sup
P∈O

∞∑
k=1

〈
PckBkf,Pf

〉2
L2 � B1 ‖f‖4

Hs , f ∈ Hs+β . (3.16)

• If (Hb
2) holds, then (3.16) holds with B2 replacing B1 and

sup
P∈O

∞∑
k=1

∣∣∣〈PB2
kf,Pf

〉
L2+

〈
PBkf,PBkf

〉
L2

∣∣∣ � B2 ‖f‖2
Hs , f ∈ Hs+2β . (3.17)

Proof. We first recall that supP∈O ‖P‖L (Hs;L2) < ∞. Under condition (Ha
2), we can 

follow the proof for Theorem 3.1 and use the fact that [P, Bk] = [P, ck] = [Bk, ck] = 0 to 
find 〈

PBkf,Pf
〉
L2 = 1

2 〈Pf,MkPf〉L2 , Mk := Bk + B∗
k.

Since {Mk}k≥1 ⊂ OPS0
0 are bounded, we obtain (3.16). When (Hb

2) is satisfied, it is 
clear that Jk and Vk also enjoys (Ha

2), and hence (3.16) also holds with B2 replacing 
B1. Now we prove (3.17). Following the same procedure as in Step (1) of the proof for 
(3.4), and utilizing the fact that [P, Jk] = [P, Vk] = [P, bk] = [Jk, bk] = [Jk, J ∗

k

]
= 0, 

we identify that

〈
PB2

kf,Pf
〉
L2 +

〈
PBkf,PBkf

〉
L2 =

5∑
i=1

Mi, (3.18)

where ⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
J̃k := J ∗

k + Jk, M1 := b2k
2

〈
Pf, (J̃k)2Pf

〉
L2

,

M2 := 2bkqk
〈
PVkf, J̃kPf

〉
L2

, M3 := bkqk
〈
P
[
Vk,Jk

]
f,Pf

〉
L2 ,

M4 := q2
k

〈
PV2

kf,Pf
〉
L2 , M5 := q2

k 〈PVkf,PVkf〉L2 .

Then (Hb
2) and Lemma A.7 yield that for all r ∈ R,

sup
k≥1

{
‖J̃k‖L (Hr;Hr) + ‖Vk‖L (Hr;Hr) + ‖Jk‖L (Hr+β ;Hr) +

∥∥[Vk,Jk

]∥∥
L (Hr;Hr)

}
< ∞.

From the above estimate, one can easily obtain (3.17). �
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3.3. Remarks, examples and other extensions

We will begin by providing some comments on Theorems 3.1, 3.2, and 3.3. Subse-
quently, we will present examples and discuss other extensions that generalize the SALT 
operator.

Remark 3.1. We assume that the dominant part of the operators (the part with positive 
order) is close to skew-adjoint operators. This is expressed by the conditions that Ak+A∗

k, 
Lk +L∗

k, Bk +B∗
k and Jk +J ∗

k are zero-order operators (see (3.1), (Ha
1), (Ha

2) and (Hb
2)), 

respectively. This assumption can be interpreted as a form of “integration by parts”.
In Theorems 3.1 and 3.2, the coefficients dk, ak, and pk are assumed to be functions of 

x. At first glance, this may not seem necessary since Lk and Gk already depend on x (their 
symbols depend on x). However, we include the cases where dk = dk(x), ak = ak(x), and 
pk = pk(x). This generalization is non-trivial and requires delicate modifications (see 
explanation and question (3.19) below). Besides, the proof for this extended case can 
help us quickly extend SALT operators and establish cancellation properties for them, 
cf. Hypothesis (H3) and Theorem 3.4. We now make a few remarks concerning other 
hypotheses and some comparisons.

(1) On the choice of O ⊂ OPSs. When constructing an approximation scheme for (2.8)
(as shown in (4.9) below), the mollifier Jn cannot commute with Ak. In certain 
cases, to obtain a uniform estimate in Hs, we must address O = {DsJn}n≥1 (as 
demonstrated in Lemma 4.3 below). For this reason, we state the uniform (in n) 
estimate for P ∈ O rather than just one P.

(2) On {ak}k≥1 and diagonal form of Lk. We begin by posing the following question:
Question: Given s ≥ 0, P ∈ OPSs, and P1, P2 ∈ OPS1, is there a sufficiently large 
ζ0 = ζ0(s) (ζ0 depends on s) such that for h1, h2 ∈ Hζ0 ,∥∥[[P, h1P1], h2P2

]∥∥
L (Hs;L2) � ‖h1‖Hζ0‖h2‖Hζ0 ? (3.19)

We conjecture that this is true, but it is not the focus of this paper. In this work, 
we treat 

[
[P, h1P1], h2P2

]
as follows: let P̃ = [P, h1P1] and assume h1 ∈ H∞. Then, 

by (3) and (4) in Lemma A.6, we have P̃ ∈ OPSs. Let ρ0 > (d2 + 1) ∨ s. By (A.4)
(with q = 0, r = s < σ = ρ0), Hρ0 ↪→ L∞, and (4) in Lemma A.6 again, we find a 
constant C > 0 that depends on h1 (i.e., C = C(h1) > 0):∥∥[[P, h1P1], h2P2

]
f
∥∥
L2 ≤

∥∥[P̃, h2I
]
P2f

∥∥
L2 +

∥∥h2
[
P̃,P2

]
f
∥∥
L2

≤C(h1)
(
‖h2‖Hρ0 ‖P2f‖Hs−1 + ‖h2‖L∞

∥∥[P̃,P2
]
f
∥∥
L2

)
≤C(h1)‖h2‖Hρ0 ‖f‖Hs , f ∈ Hs.

The above analysis illustrates the scenario when estimating R4,k,P . To apply (4)
from Lemma A.6 to R4,k,P , R3,k,P must be a pseudo-differential operator, and its 
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symbol must commute with Lk. This is why we require that ak ∈ H∞ and that Lk

takes a diagonal form. The condition 
∑∞

k=1 ‖ak‖Hr < ∞ for all r ≥ 0 is necessary 
because it ensures that all constants in the estimate can be chosen uniformly for k
(note that in the above example C = C(h1) and see (A.4)) and that one can take 
the summation 

∑∞
k=1. For R4,k,P , if Question (3.19) has a positive answer, then one 

can relax the conditions ak ∈ H∞ and 
∑∞

k=1 ‖ak‖Hr < ∞ for all r ≥ 0 to ak ∈ Hζ0

and 
∑∞

k=1 ‖ak‖2
Hζ0 < ∞, respectively. For the cancellation properties of SALT type 

operators (as in (1.7) and (1.8)) in Hm with integer order m ≥ 0, this problem 
seems to disappear since this double commutator can be explicitly split by Leibniz’s 
rule (cf. [17, Appendix II]). In [17, Equation (20)], the Wm+2×1,∞ norm is required 
(the SALT operator is of order 1) for the cancellation property of type (1.14). In 
this work, we need σ0 > (d2 + 1) ∨ (s + 2 × α), where α is the order of Lk and this 
condition arises from (3.15) and (A.3).

(3) On (Hb
1). As far as current knowledge is concerned, existing literature results pertain 

to situations where Lk,i = Lk,j for 1 ≤ i, j ≤ m. This implies that (Hb
1) is satisfied 

because such Lk is equivalent to a scalar operator. For instance, in the case of SALT 
operator (see (1.7) and (1.8)), the derivative operator on the main diagonal is the 
same one (ηk ·∇). However, when Lk,i0 �= Lk,j0 for some 1 ≤ i0, j0 ≤ m, Lemma A.7
can only be applied to 

[
pkGk, Lk

]
by invoking (Hb

1). When Gk is also an operator 
with only diagonal elements, (Hb

1) remains valid.
(4) On (Hb

2). Similar to the above explanation, we require the commutative property of 
the symbols of Jk and Vk. Since Jk ∈ OPSβ

0 and there is no upper bound on β, to 
estimate [Jk, Vk] in M3 in (3.18), we must assume Vk ∈ OPS0∧(1−β)

0 (cf. Lemma A.6). 
This is stronger than the assumption Gk ∈ OPS0 in (Ha

1). However, it appears that 
the cancellation of singularities in such a case has not been reported in the literature.

Example 3.1. Now we construct some examples involving non-local operators such that 
Theorems 3.1, 3.2 and 3.3 are satisfied. As explained before, it suffices to construct 
examples satisfying Hypotheses (H1) and (Hb

2).
Let m ≥ 1, {ψ(i)

k (x)}k≥1 and {φi,j
k (x)}k≥1 (1 ≤ i, j ≤ m) be two families of functions 

such that for 1 ≤ i, j ≤ m and k ≥ 1,⎧⎨⎩ψ
(i)
k (x) ∈ C∞

c (Rd;Rd), φi,j
k (x) ∈ C∞

c (Rd;R), if x ∈ Rd,

ψ
(i)
k (x) ∈ C∞(Td;Rd), φi,j

k (x) ∈ C∞(Td;R), if x ∈ Td.

We assume that

∞∑
k=1

m∑
i=1

∥∥∥ψ(i)
k

∥∥∥
Hr(Kd;R)

+
∞∑
k=1

m∑
i,j=1

∥∥∥φ(i,j)
k

∥∥∥
Hr(Kd;R)

< ∞ ∀ r ≥ 0.

Let si ≥ 0, σi, s(i,j) ∈ R (1 ≤ i, j ≤ m) and define



26 H. Tang / Journal of Functional Analysis 285 (2023) 110075
⎧⎪⎨⎪⎩
Hk := diag

((
ψ

(1)
k (x) · ∇

)
(−Δ)s1(I − Δ)σ1 , · · · ,

(
ψ

(m)
k (x) · ∇

)
(−Δ)sm(I − Δ)σm

)
,

Tk :=
(
T

(i,j)
k

)
1≤i,j≤m

, T
(i,j)
k = φ

(i,j)
k (x)(I − Δ)s

(i,j)
, 1 ≤ i, j ≤ m.

By Lemma A.6, we have the following examples:

• Let si + σi + 1 ∈ [0, 1] and s(i,j) ≤ 0 for all 1 ≤ i, j ≤ m. If either ψ(i)
k = ψ

(j)
k with 

1 ≤ i, j ≤ m or φ(l,n)
k = 0 with 1 ≤ l �= n ≤ m, then Lk := Hk and Gk := Tk satisfy 

Hypothesis (H1).
• When si + σi + 1 ≥ 0 and s(i,j) = 0 ∨ (−s1 − s2) for all 1 ≤ i, j ≤ m, ψ(i)

k (x) and 

φ
(i,j)
k (x) are invariant in x (i.e., they do not depend on x), and either ψ(i)

k = ψ
(j)
k

with 1 ≤ i, j ≤ m or φ(l,n)
k = 0 with 1 ≤ l �= n ≤ m, then Jk := Hk and Vk := Tk

satisfy (Hb
2).

To conclude this section, we present another generalization of SALT operators. This 
generalization may differ slightly from the one in Hypothesis (H1); however, the corre-
sponding cancellation properties can be established by using the same approach as we 
used to prove Theorem 3.2. Throughout this discussion, we denote the norms of vector-
valued functions or matrix-valued functions simply by ‖ · ‖Hs , provided that d, m ∈ N

are apparent from the context.
As previously noted, in the case of SALT operator (see (1.7) and (1.8)), the derivative 

operator is a scalar operator (ηk · ∇). Theorem 3.2 extends the results on the scalar 
operator (ηk ·∇) in the SALT operator (see (1.7) and (1.8)) to the operator akLk, where 
Lk = diag(Lk,1, · · · , Lk,m) is of order α ∈ [0, 1].

Next, we consider the case where (ηk · ∇) =
∑d

j=1 ηk,j∂xj
is generalized to ∑∞

j=1 ak,jLk,j . We propose the following Hypothesis:

Hypothesis (H3) (Another generalization of the SALT operator). Let d, m ≥ 1 and γ ∈
[0, 1]. For k, j ≥ 1, we let ak,j = ak,j(x) and Φk = Φk(x) be scalar function and matrix-
valued functions, respectively. Suppose that

Ãk =
∞∑
j=1

ak,jLk,j + ΦkI, k ≥ 1,

where {Lk,i}k,i≥1 ⊂ OPSγ and {Lk,i + L∗
k,i}k,i≥1 ⊂ OPS0 are bounded, respectively.

Obviously, operators in (1.7) and (1.8) are just special cases of Ãk (Lk,j = ∂xj
for 

1 ≤ j ≤ d and Lk,j = 0 for j ≥ d + 1). Similar to Example 3.1, one can construct many 
examples satisfying Hypothesis (H3).

Theorem 3.4. Let s ≥ 0, O ⊂ OPSs be bounded and Hypothesis (H3) hold true. Let 
s0 > (d + 1) ∨ s and σ̃0 > (d + 1) ∨ (s + 2γ).
2 2
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(i) If {ak,j}k,j≥1 ⊂ Hs0(Kd; R) and {Φk}k≥1 ⊂ Hs0(Kd; Rm×m) satisfy

Ã1 :=
∞∑
k=1

⎛⎝ ∞∑
j=1

‖ak,j‖2
Hs0 + ‖Φk‖2

Hs0

⎞⎠ < ∞,

then we have that for f ∈ Hs+γ ,

sup
P∈O

∞∑
k=1

〈
PÃkf,Pf

〉2

L2
� Ã1 ‖f‖4

Hs . (3.20)

(ii) If {ak,j}k,j≥1 ⊂ H∞(Kd; R) and {Φk}k≥1 ⊂ Hσ0(Kd; Rm×m) satisfy that for all 
r ≥ 0,

∞∑
k=1

⎛⎝ ∞∑
j=1

‖ak,j‖Hr + ‖Φk‖2
Hσ̃0

⎞⎠ < ∞,

then (3.20) holds. Moreover, for Ã2 :=
∑∞

k=1

(∑∞
j=1 ‖ak,j‖Hσ̃0 + ‖Φk‖2

Hσ̃0

)
, s ≥

1 − γ and f ∈ Hs+2γ ,

sup
P∈O

∞∑
k=1

∣∣∣ 〈PÃ2
kf,Pf

〉
L2

+
〈
PÃkf,PÃkf

〉
L2

∣∣∣ � Ã2 ‖f‖2
Hs . (3.21)

Proof. We only provide a sketch of the proof for (3.21), since (3.20) can be proved in 
the same way as we prove Theorem 3.1. For k, i ≥ 1, we let

Hk,i := L∗
k,i + Lk,i, Zk,i :=

[
ak,iI,Lk,i

]
+ Hk,i(ak,iI).

With the customary abuse of notation, we also define

Zk :=
∞∑
i=1

Zk,i, R1,k :=
∞∑

i,j=1

[
ak,jLk,j ,Zk,i

]
, R2,k :=

∞∑
i=1

[
ΦkI, ak,iLk,i

]
,

and

R3,k,P :=
∞∑
i=1

[
P, ak,iLk,i

]
, R4,k,P :=

∞∑
i,j=1

[[
P, ak,iLk,i

]
, ak,jLk,j

]
.

Then the analysis in Step (1) in the proof for (3.4) yields

〈
P
(
Ãk

)2
f,Pf

〉
L2

+
〈
PÃkf,PÃkf

〉
L2

=
11∑
l=1

Nl,



28 H. Tang / Journal of Functional Analysis 285 (2023) 110075
where⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

N1 := 〈R4,k,Pf,Pf〉L2 , N2 := 〈R3,k,Pf,R3,k,Pf〉L2 , N3 = 2 〈ZkPf,R3,k,Pf〉L2 ,

N4 := −1
2 〈Pf,R1,kPf〉L2 , N5 := 1

2
〈
Pf,Z2

kPf
〉
L2 ,

N6 := 2 〈P(ΦkI)f,R3,k,Pf〉L2 , N7 := 2 〈P(ΦkI)f,ZkPf〉L2 ,

N8 := 2 〈R3,k,P(ΦkI)f,Pf〉L2 , N9 := 〈PR2,kf,Pf〉L2 ,

N10 :=
〈
P(Φ2

kI)f,Pf
〉
L2 , N11 := 〈P(ΦkI)f,P(ΦkI)f〉L2 .

Note that 
∑∞

k=1

(∑∞
j=1 ‖ak,j‖Hr + ‖Φk‖2

Hσ̃0

)
< ∞. Then the same argument in Steps

(2) and (3) in the proof for Theorem 3.2 leads to (3.21). �
Remark 3.2. By considering each element on the main diagonal, one can extend Theo-
rem 3.2 to cover

Ak = ãkLk + pkGk, ãk = diag
(
a
(1)
k , · · · , a(m)

k

)
, (3.22)

where Lk and Gk are given in Hypothesis (H1). Furthermore, it is also possible to combine 
the above case and Theorem 3.4 to consider

Ãk = diag

⎛⎝ ∞∑
j=1

a
(1)
k,jL1

k,j , · · · ,
∞∑
j=1

a
(m)
k,j Lm

k,j

⎞⎠+ ΦkI, k ≥ 1.

This seems to be a special case of (3.22). However, even if we know that the 
summation converges, i.e., Ãk equals diag (Lk,1, · · · ,Lk,m) + ΦkI and we denote 
diag (Lk,1, · · · ,Lk,m) = OP(pk), we do not know if OP(pk) = ãkOP(qk) for some ãk
(as in (3.22)) and qk.

4. Local and global solutions

In this section, we focus on (1.15) and we will use Theorems 3.1, 3.2 and 3.3 with 
m = d. As before we simply write

Hs = Hs(Kd;Rd), K = R or T .

We recall the following estimates for F (·):

Lemma 4.1 (Yan and Yin [52], Zhao et al. [53]). Let s > d/2 with d ≥ 2 and let F (·) be 
the non-local term defined in (1.3). For all s > d/2 + 1 and v, v1, v2 ∈ Hs, we have

‖F (v)‖Hs � ‖v‖W 1,∞‖v‖Hs ,

‖F (v1) − F (v2)‖Hs � (‖v1‖Hs + ‖v2‖Hs) ‖v1 − v2‖Hs
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Besides, for all s ∈ (d/2, d/2 + 1] and v1, v2 ∈ Hs+1, we have

‖F (v1) − F (v2)‖Hs � (‖v1‖Hs+1 + ‖v2‖Hs+1) ‖v1 − v2‖Hs .

Let Jn be the Friedrichs mollifier defined in Appendix A (cf. (A.1)).

Lemma 4.2. For all σ > d
2 + 1, there is a constant Λ = Λ(σ, d) > 0 such that∣∣〈(u · ∇)u + F (u), u

〉
Hσ

∣∣ ≤ Λ‖u‖2
Hσ‖u‖W 1,∞ , u ∈ Hσ+1, (4.1)∣∣〈Jn[(u · ∇)u] + JnF (u), Jnu

〉
Hσ

∣∣ ≤ Λ‖u‖2
Hσ‖u‖W 1,∞ , u ∈ Hσ. (4.2)

Proof. We only prove (4.2) since (4.1) can be proved in the same way. Using Lemmas A.1, 
A.2 and A.4, integration by parts and Hs ↪→ W 1,∞, we obtain that for some Λ =
Λ(σ, d) > 0,

〈
DσJn [(u · ∇)u] ,DσJnu

〉
L2

=
〈
[Dσ, (u · ∇)]u,DσJ2

nu
〉
L2 +

〈
[Jn, (u · ∇)]Dσu,DσJnu

〉
L2

+
〈
(u · ∇)DσJnu,DσJnu

〉
L2

≤Λ
(
‖u‖Hσ‖∇u‖L∞‖Jnu‖Hσ + ‖u‖Hσ‖∇u‖L∞‖Jnu‖Hσ + ‖Jnu‖2

Hσ‖∇u‖L∞
)

≤Λ‖u‖2
Hσ‖u‖W 1,∞ .

Similarly, Lemma 4.1 implies

〈DσJnF (u),DσJnu〉L2 ≤ Λ‖u‖2
Hσ‖u‖W 1,∞ .

Combining the above estimates gives (4.2). �
To obtain a solution, we need the following hypothesis:

Hypothesis (H4). Let d ≥ 1 and define

Qk = Ak + Bk, k ≥ 1.

Furthermore, Ak and Bk satisfy the following conditions:

• Ak = akLk + pkGk satisfies Hypothesis (H1) with m = d. Either {ak}k≥1, {pk}k≥1 ∈
l2, or {pk}k≥1 ⊂ Hσ0(Kd, R) and {ak}k≥1 ∈ H∞(Kd; R) satisfy 

∑∞
k=1

(
‖ak‖Hr +

‖pk‖2
Hσ0

)
< ∞ for all r ≥ 0.

• Bk = bkJk + qkVk satisfies (Hb
2) with m = d and {bk}k≥1, {qk}k≥1 ∈ l2.

• For all k ≥ 1, either Ak = 0 or Bk = 0.
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Hypothesis (H5). Let s > d
2 +1. For all k ≥ 1, hk : [0, ∞) ×Hs � (t, u) �→ hk(t, u) ∈ Hs

is continuous. Moreover, there is a function K : [0, ∞) × [0, ∞) → (0, ∞) increasing in 
both variables such that for all t ≥ 0 and u, v ∈ Hs,

∞∑
k=1

‖hk(t, u)‖2
Hs ≤K(t, ‖u‖W 1,∞)(1 + ‖u‖2

Hs),

∞∑
k=1

‖hk(t, u) − hk(t, v)‖2
Hs ≤K(t, ‖u‖Hs + ‖v‖Hs)‖u− v‖2

Hs .

Recall α ∈ [0, 1] and β ≥ 0 given in Hypotheses (H1) and (H2), respectively. Let

γ0 :=

⎧⎪⎨⎪⎩
max

{
α1{∑∞

k=1 ‖ak‖Hs>0
}, β1{∑∞

k=1 |bk|2>0
}}, if {ak}k≥1 ⊂ H∞(Kd;R),

max
{
α1{∑∞

k=1 |ak|2>0
}, β1{∑∞

k=1 |bk|2>0
}}, if {ak}k≥1 ∈ l2.

(4.3)
The main results for (1.15) (or (2.8)) are stated as follows:

Theorem 4.1. Let Hypotheses (H4) and (H5) be verified. Let s > d
2 + 1 + max{2γ0, 1}

with d ≥ 2. For any Hs-valued F0-measurable random variable u0,

(I) (1.15) admits a unique maximal solution (u, τ∗) in the sense of Definition 2.2. 
Besides, (u, τ∗) defines a map Hs � u0 �→ u(t) ∈ C([0, τ∗); Hs) P -a.s., where τ∗

does not depend on s, and

1{lim supt→τ∗ ‖u(t)‖Hs=∞} = 1{lim supt→τ∗ ‖u(t)‖W1,∞=∞
} P -a.s. (4.4)

(II) Let T > 0, σ > d
2 + 1 and define

Ξ(T, v, σ) := sup
t∈[0,T ]

∞∑
k=1

(
‖hk(t, v)‖2

Hσ −
2
〈
hk(t, v), v

〉2
Hσ

e + ‖v‖2
Hσ

)
. (4.5)

Then u exists globally, i.e., P (τ∗ = ∞) = 1, provided that

lim sup
‖f‖Hη→∞

Ξ(T, f, η)
2Λ‖f‖W 1,∞‖f‖2

Hη

< −1, η ∈
(d

2 + 1, s− max{2γ0, 1}
)
, (4.6)

where Λ is given in Lemma 4.2.

The proof for Theorem 4.1 can be carried out in a way similar to Tang and Wang [44]. 
However, since the pseudo-differential noise in this paper is extended, we also provide 
the details here. The proof is divided into three subsections.
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4.1. Approximation scheme and estimates

For convenience, we recall that (1.15) is equivalent to (2.8). Since either Ak = 0 or 
Bk = 0 for all k ≥ 1, we can rewrite

∞∑
k=1

Qku dW̃k(t) =
∞∑
k=1

Aku dW k(t) +
∞∑
k=1

Bku dŴk(t)

with a family of independent standard 1-dimensional Brownian motions 
{
W k(t),

Ŵk(t)
}
k≥1, which are also independent of {Wk(t)}k≥1. Then we use (1.11) to rewrite 

(2.8) as

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

du =
{
− (u · ∇)u− F (u) + 1

2

∞∑
k=1

[
A2

ku + B2
ku
] }

dt

+
∞∑
k=1

{
Aku dW k + Bku dŴk + hk(t, u) dWk(t)

}
, t > 0, x ∈ Kd,

u
∣∣
t=0 = u0, x ∈ Kd.

(4.7)

Let U be a separable Hilbert space with a complete orthonormal basis {ek}k≥1. Let

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

G(u) := −(u · ∇)u + 1
2
∑∞

k=1
[
A2

ku + B2
ku
]
,

H(t, u)e3k−2 := Aku, k ≥ 1,

H(t, u)e3k−1 := Bku, k ≥ 1,

H(t, u)e3k := hk(t, u), k ≥ 1,

W(t) :=
∑∞

k=1

(
W k(t)e3k−2 + Ŵk(t)e3k−1 + Wk(t)e3k

)
.

(4.8)

With the above notations, (4.7) reduces to

du = [G(u) − F (u)] dt + H(t, u) dW(t), u
∣∣
t=0 = u0, t > 0.

Let d ≥ 2 and recall γ0 in (4.3). Let s > d
2 + 1 + max{2γ0, 1}. According to Hypothe-

ses (H4) and (H5), if u ∈ Hs, then G(u) ∈ H(s−1)∧(s−2γ0) and H(t, u) ∈ L2(U ; Hs−γ0), 
while by Lemma 4.1, F (u) ∈ Hs. To apply the theory for SDEs in Hilbert space, we need 
to mollify G(u) and H(t, u). To this end, we will use the mollifier Jn defined in (A.1)
and construct the following regularization:
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⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

Gn(u) := −Jn[(Jnu · ∇Jnu)] + 1
2
∑∞

k=1 J
3
nA2

kJnu + 1
2
∑∞

k=1 J
3
nB2

kJnu,

Hn(t, u)e3k−2 := JnAkJnu, k ≥ 1,

Hn(t, u)e3k−1 := JnBkJnu, k ≥ 1,

Hn(t, u)e3k := hk(t, u), k ≥ 1.

(4.9)

We also need a cut-off function to split the expectation. Hence for any R > 1, we take a 
cut-off function χR ∈ C∞([0, ∞); [0, 1]) such that

χR(y) = 1 for |y| ≤ R, and χR(y) = 0 for y > 2R, (4.10)

and then we consider

du =χ2
R

(
‖u(t) − u0‖W 1,∞

)
[Gn(u) − F (u)] dt

+ χR

(
‖u(t) − u0‖W 1,∞

)
Hn(t, u) dW(t), u

∣∣
t=0 = u0. (4.11)

Keep in mind that γ0 is in (4.3) and we have the following:

Lemma 4.3. Let d ≥ 2 and s > d
2 + 1 + max{2γ0, 1}. Let Hypotheses (H4) and (H5)

be verified. For any R > 1, n ≥ 1 and F0-measurable Hs-valued random variable u0, 
(4.11) has a unique global solution un = u

(R)
n (t, x) ∈ C([0, ∞); Hs). Besides, there exists 

a function V : [0, ∞) × [0, ∞) → (0, ∞) increasing in both variables such that for any 
R > 1, T > 0,

sup
n≥1

E
[

sup
t∈[0,T ]

‖un‖2
Hs

∣∣F0

]
≤ V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2

Hs). (4.12)

Proof. By Lemma A.1, it is easy to see that Gn : Hs → Hs and Hn : [0, ∞) × Hs →
L2(U ; Hs) are locally Lipschitz. This, together with Lemma 4.1, means that for any 
deterministic initial data, (4.11) admits a unique solution, and the solution is continuous 
in Hs (See for instance Prévôt and Röckner [34], Wang [51]). Combining this with the 
fact that F0 is independent of the equation, we see that for any F0-measurable Hs-valued 
random variable u0, (4.11) also admits a unique solution un = un(t), which is continuous 
in Hs.

Now we verify (4.12). To begin with, we can infer from (4.9), Hypothesis (H5), 
Lemma A.1, Theorems 3.2 and 3.3 (with O = {Ds}, f = Jnun) that

∞∑
k=1

〈Hn(t, un)ek, un〉2Hs

=
∞∑
k=1

(
〈JnAkJnun, un〉2Hs + 〈JnBkJnun, un〉2Hs + 〈hk(t, un), un〉2Hs

)
�
(
1 + K2(t, ‖un‖W 1,∞)

)
(1 + ‖un‖4

Hs).
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Besides, it follows from (4.9) that

2 〈Gn(un) − F (un), un〉Hs + ‖Hn(t, un)‖2
L2(U ;Hs)

= − 2 〈Jn[(Jnun · ∇)Jnun], un〉Hs − 2 〈F (un), un〉Hs

+
∞∑
k=1

〈
J3
nA2

kJnun, un

〉
Hs +

∞∑
k=1

〈
J3
nB2

kJnun, un

〉
Hs

+
∞∑
k=1

‖JnAkJnun‖2
Hs +

∞∑
k=1

‖JnBkJnun‖2
Hs +

∞∑
k=1

‖hk(t, un)‖2
Hs

:=
7∑

i=1
Ii.

On account of Hypothesis (H5), Lemmas 4.1, A.1 and A.4, it holds that

|I1| + |I2| � ‖un‖W 1,∞‖un‖2
Hs , |I7| ≤ K(t, ‖un‖W 1,∞)(1 + ‖un‖2

Hs).

It follows from Theorems 3.2 and 3.3 (with O = {DsJn}n≥1 and f = Jnun) that

|I3 + I5| + |I4 + I6| � ‖Jnun‖2
Hs ≤ ‖un‖2

Hs .

By the above estimates and Itô’s formula, we find a function Ṽ : [0, ∞) × [0, ∞) → (0, ∞)
such that

d‖un(t)‖2
Hs − dMn(t)

=χ2
R

(
‖un(t) − u0‖W 1,∞

){ 7∑
i=1

Ii

}
dt ≤ Ṽ (t, 2R + ‖u0‖W 1,∞)(1 + ‖un(t)‖2

Hs) dt,

where

dMn(t) := 2χR

(
‖un(t) − u0‖W 1,∞

)〈
un(t), Hn(t, un) dW(t)

〉
Hs

satisfies

d
〈
Mn(t)

〉
≤ Ṽ (t, 2R + ‖u0‖W 1,∞)(1 + ‖un(t)‖4

Hs

)
dt.

Define

τn := lim
N→∞

τn,N , τn,N := inf
{
t ≥ 0 : ‖un(t)‖Hs ≥ N

}
, n, N ≥ 1.

For any T > 0, we use BDG’s inequality to find constants c1, c2 > 0 such that
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E

[
sup

t′∈[0,t∧τn,N ]
‖un(t)‖2

Hs

∣∣∣F0

]
− ‖u0‖2

Hs

≤ c1E

[( t∧τn,N∫
0

Ṽ (t′, 2R + ‖u0‖W 1,∞)
(
1 + ‖un(t′)‖4

Hs

)
dt′
) 1

2
∣∣∣∣F0

]

+ c1E

[ t∧τn,N∫
0

Ṽ (t′, 2R + ‖u0‖W 1,∞)
(
1 + ‖un(t′)‖2

Hs

)
dt′
∣∣∣∣F0

]

≤ 1
2E

[
sup

t′∈[0,t∧τn,N ]
‖un(t′)‖2

Hs

∣∣∣F0

]
+ c2

+ c2

t∫
0

Ṽ (t′, 2R + ‖u0‖W 1,∞)E
[

sup
r∈[0,t′∧τn,N ]

‖un(r)‖2
Hs

∣∣∣F0

]
dt′, t ∈ [0, T ], N ≥ 1.

By Grönwall’s inequality, there exists a function V : [0, ∞) × [0, ∞) → (0, ∞) increasing 
in both variables such that for all n, N ≥ 1,

E
[

sup
t∈[0,T∧τn,N ]

‖un(t)‖2
Hs

∣∣∣F0

]
≤ V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2

Hs). (4.13)

This implies that for all n, N ≥ 1,

P
(
τn,N < T

∣∣F0
)
≤ V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2

Hs)
N2 ,

so that τn = limN→∞ τn,N satisfies

P
(
τn < T

∣∣F0
)
≤ lim

N→∞
P (τn,N < T |F0) = 0.

Hence, P
(
τn ≥ T

)
= E

[
P (τn ≥ T |F0)

]
= 1 for all T > 0, which means P (τn = ∞) = 1. 

Letting N → ∞ in (4.13) yields (4.12). �
4.2. Solve the cut-off problem

In this section, we will take limit in (4.11) to find a solution to the following cut-off 
problem:

du =χ2
R

(
‖u(t) − u0‖W 1,∞

)
[G(u) − F (u)] dt

+ χ2
R

(
‖u(t) − u0‖W 1,∞

)
H(t, u) dW(t), u

∣∣
t=0 = u0, t > 0, (4.14)

where χR, F and (G, H) are given in (4.10), (1.3) and (4.8), respectively.
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Lemma 4.4. Let un be the approximate solution as in Lemma 4.3. For any n, l ≥ 1, 
δ0 ∈

(
d
2 + 1, s − max{2γ0, 1}

)
and T, N > 0, let

τn,l,TN := T ∧ inf
{
t ≥ 0 : ‖un(t)‖Hs ∨ ‖ul(t)‖Hs ≥ N

}
.

Then P -a.s.,

lim
n→∞

sup
l≥n

E

[
sup

t∈[0,τn,l,T
N ]

‖un(t) − ul(t)‖2
Hδ0

∣∣∣∣F0

]
= 0, T, N > 0. (4.15)

Proof. Let vn,l = un − ul for n, l ≥ 1. We have that

dvn,l(t) =
4∑

i=1
An,l

i (t) dt +
2∑

i=1
Bn,l

i (t) dW(t), vn,l(0) = 0, (4.16)

where

An,l
1 (t) := −

[
χ2
R

(
‖un(t) − u0‖W 1,∞

)
− χ2

R

(
‖ul(t) − u0‖W 1,∞

)]
F (t, un(t)),

An,l
2 (t) := −χ2

R

(
‖ul(t) − u0‖W 1,∞

)
[F (t, un(t)) − F (t, ul(t))] ,

An,l
3 (t) :=

[
χ2
R (‖un(t) − u0‖W 1,∞) − χ2

R

(
‖ul(t) − u0‖W 1,∞

)]
Gn(t, un(t)),

An,l
4 (t) := χ2

R

(
‖ul(t) − u0‖W 1,∞

)
[Gn(t, un(t)) −Gl(t, ul(t))] ,

and

Bn,l
1 (t) :=

[
χR(‖un(t) − u0‖W 1,∞) − χR

(
‖ul(t) − u0‖W 1,∞

)]
Hn(t, un(t)),

Bn,l
2 (t) := χR

(
‖ul(t) − u0‖W 1,∞

)
[Hn(t, un(t)) −Hl(t, ul(t))].

By the Itô formula, we obtain

d ‖vn,l(t)‖2
Hδ0 =2

2∑
i=1

〈
vn,l(t), Bn,l

i (t) dW(t)
〉
Hδ0

+
{ 2∑

i=1

∥∥∥Bn,l
i (t)

∥∥∥2

L2(U ;Hδ0 )
+ 2

4∑
i=1

〈
An,l

i (t), vn,l(t)
〉
Hδ0

}
dt.

Claim: There is a function Q : [0, ∞) × [0, ∞) → (0, ∞) increasing in both variables 
and a function λ : N × N → [0, ∞) with lim

n,l→∞
λn,l = 0 such that for all n, l ≥ 1 and 

t ∈ [0, τn,l,TN ],

2∑
i=1

∞∑
k=1

〈
vn,l(t), Bn,l

i (t)ek
〉2
Hδ0 ≤ Q(t,N) ‖vn,l(t)‖2

Hδ0

{
λn,l + ‖vn,l(t)‖2

Hδ0

}
, (4.17)
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2∑
i=1

∥∥∥Bn,l
i (t)

∥∥∥2

L2(U ;Hδ0 )
+ 2

4∑
i=1

〈
An,l

i (t), vn,l(t)
〉
Hδ0

≤Q(t,N)
{
λn,l + ‖vn,l(t)‖2

Hδ0

}
. (4.18)

If (4.17) and (4.18) hold true, then we use BDG’s inequality to (4.16) to find constants 
a1, a2 > 0 depending on N and T such that for all n, l ≥ 1 and t ∈ [0, T ],

E

[
sup

t′∈[0,t∧τn,l,T
N ]

‖vn,l(t′)‖2
Hδ0

∣∣∣∣F0

]

≤ a1E

[ t∧τn,l,T
N∫

0

Q(t′, N)
{
λn,l + ‖vn,l(t′)‖2

Hδ0

}
dt′
∣∣∣∣F0

]

+ a1E

[( t∧τn,l,T
N∫

0

Q(t′, N) ‖vn,l(t′)‖2
Hδ0

{
λn,l + ‖vn,l(t′)‖2

Hδ0

}
dt′
) 1

2
∣∣∣∣F0

]

≤ 1
2E

[
sup

t′∈[0,t∧τn,l,T
N ]

‖vn,l(t′)‖2
Hδ0

∣∣∣∣F0

]
+ a2λn,l

+ a2

t∫
0

Q(t′, N)E
[

sup
r∈[0,t′∧τn,l,T

N ]
‖vn,l(r)‖2

Hδ0

∣∣∣∣F0

]
dt′. (4.19)

By Grönwall’s inequality and noting λn,l → 0 as n, l → ∞, we prove (4.15). Therefore, 
it suffices to prove (4.17) and (4.18).

We only prove (4.18) since (4.17) can be verified similarly. We note that χR(·) is 
bounded and Lipschitz, F (·) is locally Lipschitz (cf. Lemma 4.1) and Hδ0 ↪→ W 1,∞. 
Then we use Hypothesis (H4), (4.9) and Lemma A.1 to obtain that for all n, l ≥ 1 and 
t ∈ [0, τn,l,TN ],

∥∥∥Bn,l
1 (t)

∥∥∥2

L2(U ;Hδ0 )
+ 2

3∑
i=1

〈
An,l

i (t), vn,l(t)
〉
Hδ0

≤ Q(t,N) ‖vn,l(t)‖2
Hδ0

for some increasing function Q : [0, ∞) × [0, ∞) → (0, ∞) increasing in both variables. 
Once again, since χR(·) ≤ 1, we only need to prove that for all n, l ≥ 1 and t ∈ [0, τn,l,TN ],

2
〈
Gn(un) −Gl(ul), vn,l

〉
Hδ0 +

∥∥Hn(t, un)−Hl(t, ul)
∥∥2

L2(U ;Hδ0 )

≤Q(t,N)
{
λn,l + ‖vn,l(t)‖2

Hδ0

}
. (4.20)

To this end, we find
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2
〈
Gn(un) −Gl(ul), vn,l

〉
Hδ0 +

∥∥Hn(t, un) −Hl(t, ul)
∥∥2

L2(U ;Hδ0 ) = Ψ1 +
∞∑
k=1

6∑
i=2

Ψi,k,

where

Ψ1 = Ψn,l
1 := 2 〈Jn[(Jnun · ∇)Jnun] − Jl[(Jlul · ∇)Jlul], un − ul〉Hδ0 ,

Ψ2,k = Ψn,l
2,k :=

〈
J3
nA2

kJnun − J3
l A2

kJlul, un − ul

〉
Hδ0 ,

Ψ3,k = Ψn,l
3,k :=

〈
J3
nB2

kJnun − J3
l B2

kJlul, un − ul

〉
Hδ0 ,

Ψ4,k = Ψn,l
4,k := ‖Hn(t, un)e3k−2 −Hl(t, ul)e3k−2‖2

Hδ0 ,

Ψ5,k = Ψn,l
5,k := ‖Hn(t, un)e3k−1 −Hl(t, ul)e3k−1‖2

Hδ0 ,

Ψ6,k = Ψn,l
6,k := ‖hk(t, un) − hk(t, ul)‖2

Hδ0 .

For Ψ1, one can show that

|Ψ1| �
(
(‖un‖Hs + ‖ul‖Hs)4 + 1

) (
‖vn,l‖2

Hδ0 + (l ∧ n)−2(s−1−δ0−ε)
)
, ε ∈ (0, s− 1 − δ0).

The proof for this estimate is similar to [46, Lemma 3.1] (see also Miao et al. [30]), and 
here we omit the details to save space. Now we estimate the other terms. To control ∑∞

k=1 {Ψ3,k + Ψ5,k}, we find

Ψ3,k =
3∑

j=1
Ψ3,k,j , Ψ5,k =

3∑
i,j=1

〈
Ψ5,k,i,Ψ5,k,j

〉
Hδ0 ,

where ⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ψ3,k,1 :=

〈
(J3

n − J3
l )B2

kJnun, vn,l
〉
Hδ0 , Ψ5,k,1 := (Jn − Jl)BkJnun,

Ψ3,k,2 :=
〈
J3
l B2

k(Jn − Jl)un, vn,l
〉
Hδ0 , Ψ5,k,2 := JlBk(Jn − Jl)un,

Ψ3,k,3 :=
〈
J3
l B2

kJlvn,l, vn,l
〉
Hδ0 , Ψ5,k,3 := JlBkJlvn,l.

By Hypothesis (H4) and Lemma A.1, we have for any ε ∈ (0, s − 2γ0 − δ0),

∞∑
k=1

|Ψ3,k,1| +
∞∑
k=1

|Ψ3,k,2|+
∞∑
k=1

∑
i∈{1,2}

∣∣〈Ψ5,k,i,Ψ5,k,3
〉
Hδ0

∣∣
� (l ∧ n)−(s−2γ0−δ0−ε) ‖un‖Hs ‖vn,l‖Hδ0 ,

∞∑
k=1

∑
i,j∈{1,2}

∣∣〈Ψ5,k,i,Ψ5,k,j
〉
Hδ0

∣∣ � (l ∧ n)−2(s−2γ0−δ0−ε) ‖un‖2
Hs .

Then we apply Theorem 3.3 (with s = δ0, O = {Dδ0Jl} and f = Jlvn,l) to find
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∞∑
k=1

{
Ψ3,k,3 + 〈Ψ5,k,3,Ψ5,k,3〉Hδ0

}
� ‖vn,l‖2

Hδ0 .

Hence we find an increasing function Q : [0, ∞) × [0, ∞) → (0, ∞) increasing in both 
variables such that for all n, l ≥ 1 and t ∈ [0, τn,l,TN ],

∞∑
k=1

{Ψ3,k + Ψ5,k} � Q(t,N)
{
(l ∧ n)−(s−2γ0−δ0−ε) + ‖vn,l‖2

Hδ0

}
.

Similarly, the same estimate holds for 
∑∞

k=1 {Ψ2,k + Ψ4,k}. Obviously, the desired upper 
bound of Ψ6,k follows from Hypothesis (H5). In conclusion, (4.20) holds true. �
Lemma 4.5. Let un be the approximate solution as in Lemma 4.3 and V be given 
in Lemma 4.3. There exists an Ft-progressive measurable Hs-valued process u(t) =
(u(R)(t))t≥0 such that, up to a subsequence, P -a.s.,

un
n→∞−−−−→ u in C([0,∞);Hδ0), (4.21)

and u satisfies

E
[

sup
t∈[0,T ]

‖u(t)‖2
Hs

∣∣F0

]
≤ V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2

Hs). (4.22)

Proof. For any T > 0, N ≥ 1 and ε > 0, by using (4.12) in Lemma 4.3 and Chebyshev’s 
inequality, we have

P (τn,l,TN < T |F0)

≤P

(
sup

t∈[0,T ]
‖un(t)‖Hs ≥ N

∣∣∣∣F0

)
+ P

(
sup

t∈[0,T ]
‖ul(t)‖Hs ≥ N

∣∣∣∣F0

)

≤ 2V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2
Hs)

N2 .

Since τn,l,TN ≤ T P -a.s., for any T > 0, N ≥ 1 and n, l ≥ 1, we have

P

(
sup

t∈[0,T ]
‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)
≤P

(
τn,l,TN < T

∣∣F0

)
+ P

(
sup

t∈[0,τn,l,T
N ]

‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)

≤ 2V (T, 2R + ‖u0‖W 1,∞)(1 + ‖u0‖2
Hs)

N2 + P

(
sup

t∈[0,τn,l,T
N ]

‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)
.

On account of Lemma 4.4, we first let n, l → ∞ and then N → ∞ to find
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lim
n,l→∞

P

(
sup

t∈[0,T ]
‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)
= 0, ε, T > 0.

According to the reverse Fatou lemma, we obtain

lim sup
n,l→∞

P

(
sup

t∈[0,T ]
‖un(t) − ul(t)‖Hδ0 > ε

)

= lim sup
n,l→∞

E

[
P

(
sup

t∈[0,T ]
‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)]

≤E

[
lim sup
n,l→∞

P

(
sup

t∈[0,T ]
‖un(t) − ul(t)‖Hδ0 > ε

∣∣∣∣F0

)]
= 0, ε, T > 0.

Therefore, up to a subsequence, (4.21) holds for certain progressively measurable process 
u. Furthermore, (4.22) follows from Fatou’s lemma, (4.21) and (4.12). �
Lemma 4.6. Let d ≥ 2 and s > d

2 + 1 + max{2γ0, 1}. Let Hypotheses (H4) and (H5)
hold. For any R > 1, n ≥ 1 and F0-measurable Hs-valued random variable, (4.14) has a 
unique global solution u = u(R) such that for any T > 0,

P
(
u ∈ C([0, T ];Hs)

)
= 1. (4.23)

Proof. For any R ≥ 1, by Lemma 4.5, as in Tang and Wang [44], we can take limit to 
see that the limit process u obtained in Lemma 4.5 is a solution to (4.14). Uniqueness 
of solution can be obtained in the same way as we estimate (4.19).

Now we prove (4.23). By (4.21), we know that u ∈ C([0, T ]; Hδ0), which, together 
with the fact that Hs ↪→ Hδ0 is dense, means that u is weakly continuous in Hs. In 
order to prove (4.23), we only need to prove that [0, T ] � t �→ ‖u(t)‖Hs is continuous 
almost surely. Let

τN := N ∧ inf
{
t ≥ 0 : ‖u(t)‖Hs ≥ N

}
, N ≥ 1.

Note that (4.22) implies limN→∞ τN = ∞ P -a.s. It suffices to prove

‖u(·)‖Hs ∈ C
(
[0, τN ∧ T ];R

)
, N ≥ 1. (4.24)

However, the two terms 〈H(t, u)ek, u〉Hs and 
〈[
G(u) − F (u)

]
, u
〉
Hs + ‖H(t, u)‖2

L2(U ;Hs)
are not well-defined since we only know u ∈ Hs (by (4.22)). Hence one cannot apply 
Itô’s formula to ‖u‖2

Hs . Then we apply Lemma 4.2, (4.8), Hypothesis (H5), Lemma A.1, 
Theorems 3.1, 3.2 and 3.3 (with O = {DsJn}n≥1, f = u) to find

∞∑
〈JnH(t, u)ek, Jnu〉2Hs
k=1
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=
∞∑
k=1

(
〈JnAku, Jnu〉2Hs + 〈JnBku, Jnu〉2Hs + 〈Jnhk(t, u), Jnu〉2Hs

)
�
(
1 + K2(t, ‖u‖W 1,∞)

)
(1 + ‖u‖4

Hs),

and ∣∣∣2〈Jn [G(u) − F (u)] , Jnu
〉
Hs + ‖JnH(t, u)‖2

L2(U ;Hs)

∣∣∣
≤ 2Λ‖u‖2

Hs‖u‖W 1,∞ +

∣∣∣∣∣
∞∑
k=1

〈
JnA2

ku, Jnu
〉
Hs +

∞∑
k=1

‖JnAku‖2
Hs

∣∣∣∣∣
+

∣∣∣∣∣
∞∑
k=1

〈
JnB2

ku, Jnu
〉
Hs +

∞∑
k=1

‖JnBku‖2
Hs

∣∣∣∣∣+
∞∑
k=1

‖hk(t, u)‖2
Hs

�
(
1 + ‖u‖W 1,∞ + K2(t, ‖u‖W 1,∞)

)
(1 + ‖u‖4

Hs).

Therefore, by applying Itô’s formula to ‖Jnu‖2
Hs , for any n, N ≥ 1, we find a martingale 

M
(n)
t such that for some constant QN > 0,

−QN dt ≤ d‖Jnu(t)‖2
Hs + dM (n)(t) ≤ QN dt, t ∈ [0, τN ], n ≥ 1,

and

d
〈
M (n)〉(t) ≤ QN dt, t ∈ [0, τN ], n ≥ 1.

Therefore, there is a constant CN > 0 such that for all t, t′ ≥ 0, |t − t′| < 1,

E
[∣∣‖Jnu(t ∧ τN )‖2

Hs − ‖Jnu(t′ ∧ τN )‖2
Hs

∣∣4] ≤ CN |t− t′|2, n ≥ 1.

By Lemma A.1 and Fatou’s lemma with n → ∞, we derive

E
[∣∣‖u(t ∧ τN )‖2

Hs − ‖u(t′ ∧ τN )‖2
Hs

∣∣4] ≤ CN |t− t′|2.

From this and Kolmogorov’s continuity theorem, we obtain (4.24). �
4.3. Finish the proof for Theorem 4.1

Now we are in the position to prove Theorem 4.1.

Proof for Theorem 4.1. We will verify (I) and (II) as follows:
(I). Let u = u(R) be the solution to (4.14) as in Lemma 4.6. Now we remove the 

cut-off. To this end, we let

τ (R) := inf
{
t ≥ 0 : ‖u(R)(t) − u0‖W 1,∞ ≥ R

}
.
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By the continuity of u(R)(t) in Hδ0 and Hδ0 ↪→ W 1,∞, we have P (τ (R) > 0) = 1 for any 
R > 0. Since χ2

R

(
‖u(R)(t) − u0‖W 1,∞

)
= 1 for t ≤ τ , (u(R), τ (R)) is a local solution to 

(2.8) (or equivalently, (4.7)). The uniqueness of u(R) (to the cut-off problem (4.14), cf. 
Lemma 4.6) implies

u(R)(t) = u(R+1)(t), t ≤ τ (R), R ≥ 1 P -a.s.

Define

τ∗ := lim
R→∞

τ (R), τ (0) := 0, u(t) :=
∞∑

R=1
u(R)(t)1[τ(R−1),τ(R))(t), t ∈ [0, τ∗).

Then one can conclude that (u, τ∗) is a local solution to (2.8). Again, by the uniqueness 
of u(R) and (4.23), P

(
u ∈ C([0, τ∗); Hs)

)
= 1. Moreover, the construction of τ∗ and 

(4.22) immediately tell us

lim sup
t→τ∗

‖u(t)‖W 1,∞ = lim sup
t→τ∗

‖u(t)‖Hs = ∞ on {τ∗ < ∞} P -a.s.,

which gives (4.4).
(II). Recall that η ∈

(
d
2 + 1, s − max{2γ0, 1}

)
and define

τ̃∗ := lim
N→∞

τ̃N , τ̃N := N ∧ inf
{
t ≥ 0 : ‖u(t)‖Hη ≥ N

}
, N ≥ 1.

From (4.4) and Hη ↪→ W 1,∞, we have τ̃∗ = τ∗ P -a.s. Then it suffices to prove P (τ̃∗ <

∞) = 0.
Recall (4.8). Then we apply Itô’s formula to log(e + ‖u(t)‖2

Hη) with noting (4.1) in 
Lemma 4.2, Theorems 3.2 and 3.3 to derive

d log(e + ‖u(t)‖2
Hη)

= 1
e + ‖u(t)‖2

Hη

{
2
〈
G(u(t)) + F (u(t)), u(t)

〉
Hη + ‖H(t, u(t))‖2

L2(U ;Hη)

}
dt

− 2
(e + ‖u(t)‖2

Hη)2
∞∑
k=1

〈
H(t, u(t))ek, u(t)

〉2
Hη dt + dMt

≤ 1
e + ‖u(t)‖2

Hη

{
2Λ‖u(t)‖2

Hη‖u(t)‖W 1,∞ + C ‖u(t)‖Hη +
∞∑
k=1

‖hk(t, u(t))‖2
Hη

}
dt

− 2
(e + ‖u(t)‖2

Hη)2
∞∑
k=1

〈
hk(t, u(t)), u(t)

〉2
Hη dt + dMt, t ∈ [0, τ̃∗),

where Mt is a martingale up to τ̃N with N ≥ 1. According to (4.6) and (4.5), one can 
find a bounded function Q : [0; ∞) → (0, ∞) such that
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1
e + ‖u(t)‖2

Hη

{
2Λ‖u‖2

Hη‖u‖W 1,∞ + C‖u(t)‖2
Hη +

∞∑
k=1

‖hk(t, u(t))‖2
Hη

− 2
(e + ‖u(t)‖2

Hη)

∞∑
k=1

〈
hk(t, u(t)), u(t)

〉2
Hη

}
≤ Q(t), t ∈ [0, τ∗).

Consequently, we infer from the above estimate that

d log(e + ‖u(t)‖2
Hη) ≤Q(t) dt + dMt, t ∈ [0, τ∗),

which means that for some function V : [0, ∞) × [0, ∞) → (0, ∞) increasing in both 
variables,

E
[
log(e + ‖u(t ∧ τ̃N )‖2

Hη)
∣∣F0

]
≤ V (t, ‖u0‖Hs), t ≥ 0, N ≥ 1.

Consequently, by the continuity of u in Hs (hence also in Hη), we derive that

P
(
τ̃∗ < t

∣∣F0
)
≤P

(
τ̃N < t

∣∣F0
)

≤
E
[
log(e + ‖u(t ∧ τ̃N )‖2

Hη )
∣∣F0

]
log(e + N2) ≤ V (t, ‖u0‖Hs)

log(e + N2) , N ≥ 1, t > 0.

Letting N → ∞ and then t → ∞, we see that P (τ̃∗ < ∞|F0) = 0 and hence P (τ̃∗ <

∞) = 0. �
Remark 4.1. Since we have obtained cancellation properties for another generalized form 
of SALT operators, as described in Theorem 3.4, using the same procedure as we used 
to prove Theorem 4.1, we can also obtain results parallel to (I) and (II) in Theorem 4.1
for the following case:

Qk = Ak + Bk + Ãk. Ãk =
∞∑
j=1

ak,jLk,j + ΦkI.

One can require that:

• Ak and Bk satisfy Hypothesis (H4), and Lk,j satisfies Hypothesis (H3) with m = d.
• {ak,j}k,j≥1 ⊂ H∞(Kd; R), and {Φk}k≥1 ⊂ H σ̃0(Kd; Rm×m) with σ̃0 > (d2+1) ∨(s +2γ)

satisfy that 
∑∞

k=1

(∑∞
j=1 ‖ak,j‖Hr + ‖Φk‖2

Hσ̃0

)
< ∞ for all r ≥ 0.

• For all k ≥ 1, only one of the operators Ak, Bk, or Ãk is non-zero.

4.4. Further discussion on pseudo-differential noise

To conclude Section 4, we discuss the role of the pseudo-differential noise structure 
in global existence in SPDEs in the following remark. To simplify our analysis, we will 
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focus on the noise structure Qu ◦ dW (t) with only one pseudo-differential operator Q
and one standard Brownian motion W (t).

(1) From (II) in Theorem 4.1, we can infer that the “largeness” of the noise ∑∞
k=1 hk dWk(t) can lead to global existence by canceling out the growth of the 

other terms in (1.4). This means that sufficiently large multiplicative noise, in the 
sense of Itô, can prevent blow-up. We note that blow-up may actually occur as wave-
breaking when the multiplicative noise is linear (cf. Rohde and Tang [36]). Additional 
results in this direction can be found in Brzeźniak et al. [8], Ren et al. [35], Rohde 
and Tang [36], Tang and Wang [44]. For the case of transport noise, regularization 
effects have also been identified. For example, it has been demonstrated that trans-
port noise can delay blow-up in certain SPDEs (cf. Flandoli et al. [14], Flandoli and 
Luo [16]).

(2) However, understanding the effects of general pseudo-differential noise Qu ◦ dW (t)
in nonlinear SPDEs can be challenging. To provide a comparison, we consider the 
following 2-dimensional stochastic incompressible Euler equations in vorticity form:

dw+(u·∇)w dt+Qw◦ dW (t) = 0, u = Bw, w
∣∣
t=0 = w(0) ∈ Hs, s � 1. (4.25)

Here, B is the Biot-Savart operator, u represents the velocity of an incompressible 
fluid, and w is the corresponding vorticity. We note the following situations in (4.25):

(a) The global existence of solutions to (4.25) without noise, i.e., Q ≡ 0, is well-
known, cf. Bahouri et al. [6], Taylor [50]. The transport nature of the system 
plays a crucial role in the proof, which yields ‖w‖L∞ = ‖w0‖L∞ , as shown in 
[50, Proposition 2.5, Page 547].

(b) Consider the case of transport noise when Q = (η·∇) for a well-behaved function 
η. Global existence of solutions has been obtained in Lang and Crisan [27], where 
the spatial locality of Q is essential to derive ‖w‖L∞ = ‖w0‖L∞ (almost surely), 
cf. [27, Equations (21) and (22)].

(c) Motivated by the above cases, we consider Q ∈ OPS1 involving non-locality 
in x, for example, Q = (η · ∇)(−Δ)γ(I − Δ)−γ with γ > 0, and propose the 
following question:

Question: Does the solution to (4.25) with Q ∈ OPS1 exist globally?

Unfortunately, a proof or counterexample has not yet been found. However, this 
question is very interesting when considering the following:

• The deterministic case has a global solution and the additional noise 
term is only a linear term that can be controlled, as guaranteed by The-
orems 3.1 and 3.2. It is highly reasonable to expect that (4.25) will still 



44 H. Tang / Journal of Functional Analysis 285 (2023) 110075
have a global solution. This is because a linear term should not accelerate 
the growth of the Hs-norm of the solution.

• However, the introduction of noise results in additional non-local inter-
actions. It remains unclear whether ‖w‖L∞ = ‖w0‖L∞ , as the usual 
transport structure is disrupted when compared to the transport noise 
case (see also the previous example (1.12)).

We believe that this question can serve as a starting point for a deeper under-
standing of the mechanisms behind more complex non-local random perturba-
tions.

5. Noise effect on the dependence on initial data

In this section, we consider the problem (1.16) on Td. For simplicity, we fix a separable 
Hilbert space U with the complete orthonormal basis {ek}k≥1. Then we reformulate 
(1.16) on Td as

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
du + [(u · ∇)u + F (u)] dt =B(t, u) dW(t), t > 0, u

∣∣
t=0 = u0,

W(t) :=
∞∑
k=1

Wk(t)ek,

B(t, u)ek :=hk(t, u).

(5.1)

We assume that hk(t, ·) is controlled by F in the following sense:

Hypothesis (H6). For all k, hk : [0, ∞) ×Hs � (t, u) �→ hk(t, u) ∈ Hs is continuous for 
s > d

2 , and

∞∑
k=1

‖hk(t, u)‖2
Hs ≤ ‖F (u)‖2

Hs ,

∞∑
k=1

‖hk(t, u) − hk(t, v)‖2
Hs ≤ ‖F (u) − F (v)‖2

Hs ,

where F is defined in (1.3).

Obviously, in terms of B(t, u) such that B(t, u)ek = hk(t, u), Hypothesis (H6) is 
equivalent to the following hypothesis:

Hypothesis (HB). Let s > d
2 . We suppose that B : (t, u) �→ B(t, u) ∈ L2(U ; Hs) is 

continuous and

‖B(t, u)‖L2(U ;Hs) ≤ ‖F (u)‖Hs , ‖B(t, u) −B(t, v)‖L2(U ;Hs) ≤ ‖F (u) − F (v)‖Hs .

For (5.1), we have
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Proposition 5.1. Let s > d
2 + 1. Let Hypothesis (HB) (or equivalently Hypothesis (H6))

hold. If u0 is an Hs-valued F0-measurable random variable with E‖u0‖2
Hs < ∞, then 

there is a unique maximal solution (u, τ∗) to (5.1) in the sense of Definition 2.2, and 
(u, τ∗) satisfies (4.4).

Proof. By Lemma 4.1, Hypothesis (H6) implies Hypothesis (H5). So existence, unique-
ness and the blow-up criterion (4.4) in Hs with s > d

2 + 2 follow from Theorem 4.1. To 
extend the result from s > d

2 + 2 to s > d
2 + 1, we can use the same method as in Miao 

et al. [30], Tang [40], which involves mollifying initial data and then passing to the limit. 
We omit the details here to avoid redundancy. �

For the noise effect on the solution map u0 �→ (u, τ), we consider (1.16) and the results 
can be stated as follows:

Theorem 5.1. Let s > d/2 + 1 with d ≥ 2. Let Hypothesis (HB) be satisfied. Then there 
is at least one of the following properties holding true for the problem (5.1):

(1) For any R � 1, the R-exiting time is not strongly stable at the zero solution in the 
sense of Definition 2.3.

(2) For any T > 0, the solution map u0 �→ u defined by (5.1) is not uniformly continu-
ous, as a map from Lp(Ω, Hs) (p ∈ [1, ∞]) into L1 (Ω;C ([0, T ];Hs)). More precisely, 
there exist two sequences of solutions u1,n(t) and u2,n(t), and two sequences of stop-
ping times τ1,n and τ2,n, such that

(a) P{τi,n > 0} = 1 for each n > 1 and i = 1, 2. Besides,

lim
n→∞

τ1,n = lim
n→∞

τ2,n = ∞ P -a.s.

(b) For i = 1, 2, ui,n ∈ C([0, τi,n]; Hs) P -a.s., and∥∥∥ sup
t∈[0,τ1,n]

‖u1,n(t)‖Hs

∥∥∥
Lp(Ω)

+
∥∥∥ sup

t∈[0,τ2,n]
‖u2,n(t)‖Hs

∥∥∥
Lp(Ω)

� 1, p ∈ [1,∞].

(c) At t = 0, lim
n→∞

‖u1,n(0) − u2,n(0)‖Lp(Ω;Hs) = 0, p ∈ [1, ∞].

(d) For any T > 0, we have

lim inf
n→∞

E sup
t∈[0,T∧τ1,n∧τ2,n]

‖u1,n(t) − u2,n(t)‖Hs � sup
t∈[0,T ]

| sin t|.

Remark 5.1. We give the following remarks concerning Theorem 5.1.

(1) To prove Theorem 5.1, we suppose that for some R0 � 1, the R0-exiting time of 
the zero solution is strongly stable. We then construct an example to show that the 
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solution map u0 �→ u defined by (1.16) is not uniformly continuous. This example 
involves the construction of two sequences of solutions, which converge at time zero 
but stay far apart at any later time for each s > d/2 +1. Specifically, we first construct 
two sequences of approximate solutions ul,n (l ∈ −1, 1) such that the actual solutions 
ul,n (l ∈ −1, 1) starting from ul,n(0) = ul,n(0) satisfy

lim
n→∞

E sup
[0,τl,n]

‖ul,n − ul,n‖2
Hs = 0, (5.2)

where ul,n exists at least on [0, τl,n]. However, due to the lack of a lifespan estimate 
in the stochastic setting (see explanation in Section 1.3), we first relate the property 
infn τl,n > 0 to the stability property of the exiting time of the zero solution. If 
(5.2) holds, then we can estimate the approximate solutions instead of the actual 
solutions and obtain (d) by showing that the error in H2s−σ behaves like ns−σ, 
whereas the error in Hσ is O(1/nrs), where d/2 < σ < s − 1 and −rs + s − σ < 0. 
These two estimates and interpolation imply (5.2). We prove Theorem 5.1 for d ≥ 2. 
However, the proof also works for d = 1, that is, the stochastic CH equation case 
(see Remark 5.2).

(2) Theorem 5.1 implies that we cannot expect (small) multiplicative noise (in the Itô’s 
sense) to simultaneously improve the stability of the exiting time of the zero solu-
tion and the continuity of the dependence on initial data. We refer to Alonso-Orán 
et al. [4], Miao et al. [30], Tang and Yang [46] for similar results in this direction. 
The question of whether (and how) noise in the Stratonovich sense can improve the 
dependence on initial data is a topic for future work.

(3) The non-uniform dependence of solutions on initial data for various deterministic 
fluid PDEs has been studied extensively in the literature. For example, this phe-
nomenon has been examined for the incompressible Euler equations in the Sobolev 
spaces Hs in Himonas and Misiołek [20] and for the CH equation in Himonas 
et al. [19]. The first results of this kind for Besov spaces were obtained in Tang 
and Liu [41], Tang et al. [47]. In particular, non-uniform dependence of solutions 
on initial data in the critical Besov space first appears in Tang and Liu [42], Tang 
et al. [43].

Now we proceed to prove Theorem 5.1. We assume that for some R0 � 1, the R0-
exiting time is strongly stable at the zero solution. Then we will show that the solution 
map u0 �→ u defined by (1.16) is not uniformly continuous. We will firstly assume that 
the dimension d ≥ 2 is even.

5.1. Approximate solution and error

Let l ∈ {−1, 1}. Define

ul,n := (ln−1 + n−s cos θ1, ln
−1 + n−s cos θ2, · · · , ln−1 + n−s cos θd), (5.3)
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where θi = nxd+1−i − lt with 1 ≤ i ≤ d and n ≥ 1. Substituting ul,n into (1.16), we see 
that the (vector) error El,n(t) can be defined as

El,n(t)

:=ul,n(t) − ul,n(0) +
t∫

0

[
(ul,n · ∇)ul,n + F (ul,n)

]
dt′ −

t∫
0

B(t′, ul,n) dW(t). (5.4)

Now we analyze the error.

Lemma 5.1. Let d ≥ 2 be even and s > 1 + d
2 ≥ 2. For σ ∈

(
d
2 ,min

{
s− 1, d

2 + 1
})

, we 
have that for any T > 0 and n � 1,

E sup
t∈[0,T ]

‖El,n(t)‖2
Hσ ≤ Cn−2rs , C = C(T ), (5.5)

where

rs =
{

2s− σ − 1 if 1 + d
2 < s ≤ 3,

s− σ + 2 if s > 3.

Proof. Direct computation shows that

(ul,n · ∇)ul,n =
(
−ln−s sin θi − n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

,

which means that

ul,n(t) − ul,n(0)+
t∫

0

(ul,n · ∇)ul,n dt′ =
t∫

0

(
−n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

dt′.

Then we have the following equation

El,n(t)

=
t∫

0

[
−
(
n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

+ F (ul,n)
]

dt′ −
t∫

0

B(t, ul,n) dW(t′). (5.6)

We note that by Lemma A.5,∥∥∥ (−n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

∥∥∥
Hσ

� n−2s+1+σ � n−rs . (5.7)

For F (·) = (I −Δ)−1divF1(u) + (I −Δ)−1F2(u) given by (1.3), some calculations reveal 
that F1(ul,n) is a diagonal matrix such that
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F1(ul,n) = n−2s+2 × diag(κ1, · · · , κd),

where for 1 ≤ i ≤ d,

κi := sin θi(sin θi + sin θd+1−i) − sin2 θd+1−i + 1
2
(
sin2 θ1 + · · · + sin2 θd

)
.

Therefore, we have

divF1(ul,n) = n−2s+3( sin θi cos θd+1−i − sin θd+1−i cos θd+1−i

)
1≤i≤d

.

Similarly, since divul,n = 0, we have

F2(ul,n) =
(
−ln−s sin θd+1−i − n−2s+1 sin θd+1−i cos θd+1−i

)
1≤i≤d

.

Therefore

F (ul,n) =
(
(I − Δ)−1Γi

)
1≤i≤d

,

where

Γi =
(
n−2s+3 sin θi cos θd+1−i −

n−2s+1 + n−2s+3

2 sin 2θd+1−i − ln−s sin θd+1−i

)
.

Since (I − Δ)−1 is bounded from Hσ to Hσ+2, we can use Lemma A.5 to derive that

∥∥F (ul,n)
∥∥
Hσ ≤C

d∑
i=1

(∥∥n−2s+3 sin θi cos θd+1−i

∥∥
Hσ−2 +

∥∥n−2s+3 sin 2θd+1−i

∥∥
Hσ−2

)
+ C

d∑
i=1

(∥∥n−2s+1 sin 2θd+1−i

∥∥
Hσ−2 + ‖n−s sin θd+1−i‖Hσ−2

)
�n−2s+3+σ−2 + n−2s+1+σ−2 + n−s+σ−2 � n−rs . (5.8)

Applying the Itô formula to (5.6), we find that for any T > 0 and t ∈ [0, T ],

E sup
t∈[0,T ]

‖El,n(t)‖2
Hσ

≤E sup
t∈[0,T ]

∣∣∣∣∣∣−2
t∫

0

〈
B(t′, ul,n) dW(t′),El,n(t′)

〉
Hσ

∣∣∣∣∣∣+
4∑

i=2

T∫
0

E|Pi|dt, (5.9)

where
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P2 = −2
〈
Dσ

(
n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

,DσEl,n
〉
L2

,

P3 = 2
〈
DσF (ul,n),DσEl,n

〉
L2 , P4 = ‖B(t, ul,n)‖2

L2(U ;Hσ).

Using Hypothesis (HB) and the BDG inequality, we find that

E sup
t∈[0,T ]

∣∣∣∣∣∣
t∫

0

〈
−2B(t′, ul,n) dW(t′),El,n

〉
Hσ

∣∣∣∣∣∣
≤ 2E

⎛⎝ sup
t∈[0,T ]

‖El,n(t)‖2
Hσ

T∫
0

‖F (ul,n)‖2
Hσ dt

⎞⎠
1
2

≤ 1
2E sup

t∈[0,T ]
‖El,n(t)‖2

Hσ + CTn−2rs .

We use (5.7), (5.8) and Hypothesis (HB) to find that,

T∫
0

E (|P2| + |P3| + |P4|) dt ≤CTn−2rs + C

T∫
0

E‖El,n(t)‖2
Hσ dt.

Collecting the above estimates into (5.9), we arrive at

E sup
t∈[0,T ]

‖El,n(t)‖2
Hσ ≤ CTn−2rs + C

T∫
0

E sup
t′∈[0,t]

‖El,n(t′)‖2
Hσ dt.

Then it follows from the Grönwall inequality that

E sup
t∈[0,T ]

‖El,n(t)‖2
Hσ ≤ Cn−2rs , C = C(T ),

which is the desired result. �
5.2. Actual solution and associated estimates

Now we consider the problem (1.16) with deterministic initial data ul,n(0, x), i.e.,⎧⎨⎩du + [(u · ∇)u + F (u)] dt = B(t, u) dW(t), x ∈ Td, t > 0,

u
∣∣
t=0 = ul,n(0, x) =

(
ln−1 + n−s cosnxd+1−i

)
1≤i≤d

, x ∈ Td.
(5.10)

Then Proposition 5.1 means that for each n, (5.10) has a unique maximal solution 
(ul,n, τ∗l,n).
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Lemma 5.2. Let d ≥ 2 be even, s > 1 + d
2 , σ ∈

(
d
2 ,min

{
s− 1, d

2 + 1
})

and rs > 0 be 
given in Lemma 5.1. For R � 1, we define

τRl,n := inf {t ≥ 0 : ‖ul,n‖Hs > R} , l ∈ {−1, 1}. (5.11)

Then for any T > 0 and n � 1, we have that for l ∈ {−1, 1},

E sup
t∈[0,T∧τR

l,n]
‖ul,n − ul,n‖2

Hσ ≤ Cn−2rs , C = C(R, T ), (5.12)

and

E sup
t∈[0,T∧τR

l,n]
‖ul,n − ul,n‖2

H2s−σ ≤ Cn2s−2σ, C = C(R, T ). (5.13)

Proof. We first note that by Lemma A.5, for l ∈ {1, −1},

‖ul,n(t)‖Hs � 1, t ≥ 0, n ≥ 1, (5.14)

which means P{τRl,n > 0} = 1 for any n ≥ 1 and l ∈ {−1, 1}. Let v = vl,n = ul,n − ul,n. 
In view of (5.4), (5.6) and (5.10), we see that v satisfies

v(t) +
t∫

0

[
(ul,n · ∇)v + (v · ∇)ul,n + (−F (ul,n))

]
dt′

=
t∫

0

[
−B(t′, ul,n)

]
dW(t′) −

t∫
0

[(
n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

]
dt′.

For any T > 0, we use the Itô formula on [0, T∧τRl,n], take a supremum over t ∈ [0, T∧τRl,n]
and use the BDG inequality to find

E sup
t∈[0,T∧τR

l,n]
‖v‖2

Hσ

≤ 2E sup
t∈[0,T∧τR

l,n]

∣∣∣∣∣∣
t∫

0

〈
−B(t′, ul,n) dW(t′), v

〉
Hσ

∣∣∣∣∣∣+
6∑

i=2
E

T∧τR
l,n∫

0

|Si|dt,

where

S2 := 2
〈
Dσ

(
−n−2s+1 sin θi cos θd+1−i

)
1≤i≤d

,Dσv
〉
L2

,

S3 := −2
〈
Dσ[(v · ∇)ul,n],Dσv

〉
L2 , S4 := −2

〈
Dσ[(ul,n · ∇)v],Dσv

〉
L2 ,

S5 := 2
〈
DσF (ul,n),Dσv

〉
L2 , S6 := ‖B(t, ul,n)‖2

L2(U ;Hσ).
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We can first infer from Lemma 4.1 that

‖F (ul,n)‖2
Hσ �

(
‖F (ul,n) − F (ul,n)‖Hσ + ‖F (ul,n)‖Hσ

)2
� (‖ul,n‖Hs + ‖ul,n‖Hs)2‖v‖2

Hσ + ‖F (ul,n)‖2
Hσ .

From the above estimate, Hypothesis (HB), the BDG inequality, (5.8), (5.11) and (5.14), 
we have

E sup
t∈[0,T∧τR

l,n]

∣∣∣∣∣∣
t∫

0

〈
− 2B(t′, ul,n) dW(t′), v

〉
Hs

∣∣∣∣∣∣
≤CE

⎛⎜⎝ sup
t∈[0,T∧τR

l,n]
‖v‖2

Hσ

T∧τR
l,n∫

0

(‖ul,n‖Hs + ‖ul,n‖Hs)2‖v‖2
Hσ dt

⎞⎟⎠
1
2

+ CE

⎛⎜⎝ sup
t∈[0,T∧τR

l,n]
‖v‖2

Hσ

T∧τR
l,n∫

0

‖F (ul,n)‖2
Hσ dt

⎞⎟⎠
1
2

≤ 1
2E sup

t∈[0,T∧τR
l,n]

‖v‖2
Hσ + CRE

T∫
0

sup
t′∈[0,t∧τR

l,n]
‖v(t′)‖2

Hσ dt + CTn−2rs .

Applying Lemma 4.1, Hσ ↪→ L∞, integration by parts and (5.7), we have

|S2| �
∥∥(n−2s+1 sin θi cos θd+1−i)1≤i≤d

∥∥2
Hσ + ‖v‖2

Hσ � n−2rs + ‖v‖2
Hσ ,

|S3| � ‖(v · ∇)ul,n‖Hσ‖v‖Hσ � ‖v‖2
Hσ‖ul,n‖Hs ,

|S5| � (‖ul,n‖Hs + ‖ul,n‖Hs)‖v‖2
Hσ + ‖F (ul,n)‖2

Hσ + ‖v‖2
Hσ ,

and

|S6| � (‖ul,n‖Hs + ‖ul,n‖Hs)2‖v‖2
Hσ + ‖F (ul,n)‖2

Hσ .

With Lemma A.4 at hand, we consider the following two cases:

|S4| � ‖ul,n‖
W

σ, 2d
d−2

‖∇v‖Ld‖v‖Hσ + ‖∇ul,n‖L∞‖v‖2
Hσ

� ‖ul,n‖Hs‖v‖2
Hσ for even d ≥ 4,

and

|S4| � ‖ul,n‖Wσ,q‖∇v‖Lp‖v‖Hσ + ‖∇ul,n‖L∞‖v‖2
Hσ for d = 2,
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where in the case d = 2, p will be chosen such that σ − d
2 = σ − 1 > 1 − 2

p > 0 and q

is determined by 1
2 = 1

q + 1
p . We use Hs ↪→ Hσ+1 ↪→ W σ, 2d

d−2 , Hσ ↪→ W 1,d for the case 

d ≥ 4 and use Hs ↪→ W σ+ 2
q ,q ↪→ W σ,q and Hσ ↪→ W 1,p for the case d = 2 to obtain

|S4| � ‖ul,n‖Hs‖v‖2
Hσ .

Therefore, we can infer from Lemma 4.1, (5.8), (5.11) and (5.14) that

E

T∧τR
l,n∫

0

(|S2| + |S5| + |S6|) dt ≤CTn−2rs + CR

T∫
0

E sup
t′∈[0,t∧τR

l,n]
‖v(t′)‖2

Hσ dt,

and

E

T∧τR
l,n∫

0

(|S3| + |S4|) dt ≤ CR

T∫
0

E sup
t′∈[0,t∧τR

l,n]
‖v(t′)‖2

Hσ dt.

Over all, we arrive at

E sup
t∈[0,T∧τR

l,n]
‖v(t)‖2

Hσ ≤ CTn−2rs + CR

T∫
0

E sup
t′∈[0,t∧τR

l,n]
‖v(t′)‖2

Hσ dt.

Via the Grönwall inequality, we have

E sup
t∈[0,T∧τR

l,n]
‖v(t)‖2

Hσ ≤ Cn−2rs , C = C(R, T ),

which is (5.12). For (5.13), we first note that ul,n is the unique solution to (5.10) and 
2s −σ > d/2 +1. For each fixed n ≥ 1, similar to the analysis in the proof for Lemma 4.3, 
we find constant C = C(R, T ) > 0 such that

E sup
t∈[0,T∧τR

l,n]
‖ul,n(t)‖2

H2s−σ ≤ 2E‖ul,n(0)‖2
H2s−σ + C

T∫
0

(
E sup

t′∈[0,t∧τR
l,n]

‖u(t′)‖2
H2s−σ

)
dt.

From the above estimate, we can use the Grönwall inequality and Lemma A.5 to infer

E sup
t∈[0,T∧τR

l,n]
‖ul,n(t)‖2

H2s−σ ≤ CE‖ul,n(0)‖2
H2s−σ ≤ Cn2s−2σ, C = C(R, T ).

Then it follows from Lemma A.5 that for some C = C(R, T ) and l ∈ {−1, 1},
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E sup
t∈[0,T∧τR

l,n]
‖v‖2

H2s−σ ≤CE sup
t∈[0,T∧τR

l,n]
‖ul,n‖2

H2s−σ

+ CE sup
t∈[0,T∧τR

l,n]
‖ul,n‖2

H2s−σ ≤ Cn2s−2σ,

which is (5.13). �
5.3. Proof for Theorem 5.1

Lemma 5.3. Let d ≥ 2 be even and B(t, u) satisfy Hypothesis (H6). If for some R0 � 1, 
the R0-exiting time is strongly stable at the zero solution to (1.16), then for l ∈ {1, −1}, 
we have

lim
n→∞

τR0
l,n = ∞ P -a.s., (5.15)

where τR0
l,n is given in (5.11).

Proof. Since F (0) = 0, it is clear that zero is the unique solution to (1.16) with zero 
initial data under Hypothesis (H6). Due to (5.10), it follows that

lim
n→∞

‖ul,n(0) − 0‖Hs′ = lim
n→∞

‖ul,n(0)‖Hs′ = 0 ∀ s′ < s.

Note that the R0-exiting time at the zero solution is ∞. As a result, we see that if 
the R0-exiting time is strongly stable at the zero solution to (1.16), then (5.15) holds 
true. �

With the above result at our disposal, now we can prove Theorem 5.1.

Proof for Theorem 5.1. Let us first consider the case d ≥ 2 is even. We will show that, 
if the R0-exiting time is strongly stable at the zero solution for some R0 � 1, then 
(u−1,n, τ

R0
−1,n) and (u1,n, τ

R0
1,n) satisfy (a)–(d) in Theorem 5.1.

Verify (a). For each n > 1, for l ∈ {1, −1} and for the fixed R0 � 1, Lemma A.5 and 
(5.11) give us P{τR0

l,n > 0} = 1 and Lemma 5.3 implies the desired estimate in (a).

Verify (b). Theorem 4.1 and (5.11) show that ul,n ∈ C([0, τR0
l,n ]; Hs) P -a.s. and

sup
t∈[0,τR0

l,n ]
‖ul,n‖Hs ≤ R0 P -a.s.,

which gives (b).

Verify (c). Since u−1,n(0) and u1,n(0) are deterministic and

‖u−1,n(0) − u1,n(0)‖Hs = ‖u−1,n(0) − u1,n(0)‖Hs � n−1,
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we obtain (c).

Verify (d). For any T > 0, using the interpolation inequality and Lemma 5.2, we see 
that for l ∈ {−1, 1} and v = vl,n = ul,n − ul,n,

⎛⎝E sup
t∈[0,T∧τ

R0
l,n ]

‖v‖Hs

⎞⎠2

≤

⎛⎝E sup
t∈[0,T∧τ

R0
l,n ]

‖v‖2
Hσ

⎞⎠ 1
2
⎛⎝E sup

t∈[0,T∧τ
R0
l,n ]

‖v‖2
H2s−σ

⎞⎠ 1
2

�n−rs+(s−σ).

It follows from

0 > −rs + s− σ =
{

1 − s if 1 + d
2 < s ≤ 3,

−2 if s > 3,

that for l ∈ {−1, 1},

lim
n→∞

E sup
t∈[0,T∧τ

R0
l,n ]

‖ul,n − ul,n‖Hs = 0. (5.16)

For any given T > 0, on account of (5.16), Lemmas A.5 and 5.3, we have

lim inf
n→∞

E sup
t∈[0,T∧τ

R0
−1,n∧τ

R0
1,n]

‖u−1,n(t) − u1,n(t)‖Hs

� lim inf
n→∞

E sup
t∈[0,T∧τ

R0
−1,n∧τ

R0
1,n]

‖u−1,n(t) − u1,n(t)‖Hs

� lim inf
n→∞

E sup
t∈[0,T∧τ

R0
−1,n∧τ

R0
1,n]

∥∥n−s cos
(
nxd+1−i + t

)
− n−s cos

(
nxd+1−i − t

)∥∥
Hs

� lim inf
n→∞

E sup
t∈[0,T∧τ

R0
−1,n∧τ

R0
1,n]

(
n−s‖ sinnxd+1−i‖Hs | sin t| − ‖2n−1‖Hs

)
.

Using Fatou’s lemma, we arrive at

lim inf
n→∞

E sup
t∈[0,T∧τ

R0
−1,n∧τ

R0
1,n]

‖u−1,n(t) − u1,n(t)‖Hs � sup
t∈[0,T ]

| sin t|,

which implies (d).
Now we consider the case that d ≥ 3 is odd. Instead of (5.3), we define

ul,n = (ln−1 + n−s cos θ1, ln
−1 + n−s cos θ2, · · · , ln−1 + n−s cos θd−1, 0),

where θi = nxd−i − lt with 1 ≤ i ≤ d − 1, n ≥ 1, l ∈ {−1, 1}. In this case, d − 1 is even 
and we can repeat the proof for Lemma 5.1 to find that the error El,n(t) also enjoys 
(5.5). Moreover, for the pathwise solutions ul,n to (5.10) with
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ul,n(0) = ul,n(0) =
(
ln−1 + n−s cosnxd−i, 0

)
1≤i≤d−1 ,

we can basically repeat the previous procedure to show that Lemmas 5.2 and 5.3 also 
hold true. Therefore, one can establish (a)–(d) for ul,n similarly.

In conclusion, we see that if for some R0 � 1, the R0-exiting time is strongly stable 
at the zero solution, then the solution map defined by (1.16) is not uniformly continuous 
when B(t, ·) satisfies Hypothesis (HB). �
Remark 5.2. From the above proof for Theorem 5.1, it is clear that if d = 1, one can use

ul,n = ln−1 + n−s cos(nx− lt)

as a sequence of approximation solutions and repeat the other part of the proof corre-
spondingly to obtain the similar statements in d = 1. Therefore, Theorem 5.1 also holds 
true for d = 1, namely the stochastic CH equation case.
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Appendix A. Auxiliary results

In this appendix, we recall and establish some auxiliary results from analysis employed 
in the proofs above. We begin with introducing mollifiers. For n ≥ 1, we define the 
Friedrichs mollifier

Jn := OP
(
j(·/n)

)
, n ≥ 1, (A.1)

where j ∈ S (Rd; R) (the Schwarz space of rapidly decreasing C∞ functions on Rd) 
satisfies 0 ≤ j(y) ≤ 1 for all y ∈ Rd and j(y) = 1 for any |y| ≤ 1.

From the construction of Jn, it is easy to find the following lemma:

Lemma A.1. The following properties for Jn hold true:

‖I − Jn‖L (Hs;Hr) �
1

ns−r
, r < s,

‖Jn‖L (Hs;Hr) ∼O(nr−s), r > s,
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and for all n ≥ 1, s ≥ 0,

[Ds, Jn] = 0, 〈Jnf, g〉L2 = 〈f, Jng〉L2 , ‖Jn‖L (L∞;L∞) � 1, ‖Jn‖L (Hs;Hs) ≤ 1.

Lemma A.2 (Page 3 in Taylor [50]). Let d ≥ 1 and f, g : Kd → Rd such that g ∈ W 1,∞

and f ∈ L2. Then for some C = C(d) > 0,

‖[Jn, (g · ∇)]f‖L2 ≤ C‖g‖W 1,∞‖f‖L2 , n ≥ 1.

Then we recall some estimates in Sobolev spaces Hs.

Lemma A.3 (Bahouri et al. [6]). Let s1, s2 ∈ R with s1 + s2 > 0 and s1 ≤ d
2 < s2,

‖fg‖Hs1 � ‖f‖Hs1‖g‖Hs2 , f ∈ Hs1 , g ∈ Hs2 .

Lemma A.4 (Kenig et al. [25]). If f, g ∈ Hs
⋂
W 1,∞ with s > 0, then for p, pi ∈ (1, ∞)

with i = 2, 3 and 1
p = 1

p1
+ 1

p2
= 1

p3
+ 1

p4
, we have

‖ [Ds, fI] g‖Lp ≤ Cs(‖∇f‖Lp1‖Ds−1g‖Lp2 + ‖Dsf‖Lp3‖g‖Lp4 ),

and

‖Ds(fg)‖Lp ≤ Cs(‖f‖Lp1‖Dsg‖Lp2 + ‖Dsf‖Lp3‖g‖Lp4 ).

Lemma A.5 (Tang and Liu [42], Zhao et al. [53]). Let σ, r ∈ R. If n � 1, then

‖ sin(nx− r)‖Hσ(T ;R), ‖ cos(nx− r)‖Hσ(T ;R) ≈ nσ,

‖ cos(nx− r) sin(ny − r)‖Hσ(T2;R) ≈ nσ.

The following lemmas with single P and a pair (P1, P2) on Rd are well known in the 
literature. By (2.7) in previous sections, they also hold true on Td. Recall that Ss is 
Fréchet space with seminorms {| · |β,α;s}β,α∈Nd

0
.

Lemma A.6. Let r, r1, r2 ∈ R, p ∈ Sr, p1 ∈ Sr1 , p2 ∈ Sr2 , and let OP be given in (2.1)
and (2.2). Then we have the following results:

(1) (Continuity of OP) For any q, s ∈ R, OP : Ss → L (Hq+s; Hq) is bounded and there 
are β̃, α̃ ∈ Nd

0 and a constant C = C(s, q) > 0 such that

‖OP(q)‖L (Hq+s;Hq) ≤ C(s, q)|q|β̃,α̃;s.

(2) (Adjoint)
(
OP(p)

)∗ ∈ OPSr, and the map

Sr � p �→ p̃ ∈ Sr is continuous,
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where 
(
OP(p)

)∗ = OP
(
p̃
)
.

(3) (Composition) OP(p1)OP(p2) ∈ OPSr1+r2 , and the map

Sr1 × Sr2 � (p1, p2) �→ p1#p2 ∈ Sr1+r2 is continuous,

where OP(p1)OP(p2) = OP(p1#p2).
(4) (Commutator) If p1 ∈ Sr1 and p2 ∈ Sr2 are commuting matrices, then

[
OP(p1),OP(p2)

]
∈ OPSr1+r2−1.

Proof. These properties are well-known in the literature. However, for the convenience 
of readers, we provide some references where the details of each property can be found. 
The first property can be found in [26, Theorem 2.7, Page 124] and [1, Theorem 3.41]. 
The second property is detailed in [28, Theorems 1.1.8 & 1.1.21] and [7, Theorem C.1]. 
The third property is given in [33, Theorem 1.2.16] and [1, Page 72]. Lastly, we refer to 
[48, Page 32] and [7, Theorem C.3] for the final property. �
Lemma A.7. Let K = R or T , d ≥ 1, s, r1, r2 ∈ R. Suppose that M ×O ⊂ Sr1 ×Sr2 is a 
bounded subset such that for any (p1, p2) ∈ M × O, p1 and p2 are commuting matrices. 
Then we have:

sup
(p1,p2)∈M×O

∥∥[OP(p1),OP(p2)
]∥∥

L (Hs+r1+r2−1;Hs) < ∞. (A.2)

If additionally s, r1, r2 ≥ 0, then for all f, g ∈ Hr0(Kd; R) with r0 > max
{

d
2 +1, s + r1 +

r2
}
, the following estimate holds:

sup
(p1,p2)∈M×O

‖Q‖L (Hs+r1+r2−1;Hs) � ‖f‖Hr0 ‖g‖Hr0 , Q ∈ S, (A.3)

where for Pi = OP(pi) with i = 1, 2,

S :=
{[

(fI)P1, (gI)P2
]
,
[
P1(fI), (gI)P2

]
,
[
(fI)P1,P2(gI)

]
,
[
P1(fI),P2(gI)

]}
.

Proof. When p and q are commuting matrices, some direct computations (cf. [28, Corol-
lary 1.1.22] or [7, Theorem C.3]) yield p1#p2 − p2#p1 ∈ Sr1+r2−1. From this and 
Lemma A.6, we see that

(p1, p2) �→
[
OP(p1),OP(p2)

]
= OP

(
p1#p2 − p2#p1

)
is continuous from Sr1 × Sr2 to L (Hs+r1+r2−1; Hs), which implies (A.2).

Now we will prove (A.3). To begin with, we have the following:
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Claim: If M ⊂ Sr is bounded with r ≥ 0, then there is a constant C > 0 such that

sup
p∈M

∥∥[OP(p), gI
]∥∥

L (Hq+r−1;Hq) ≤ C‖g‖Hσ , σ >
d

2 + 1, q ∈ [0, σ − r], g ∈ Hσ. (A.4)

Indeed, for a single operator P = OP(p) ∈ OPSr, by [49, Proposition 4.2], we can find 
a constant C > 0 such that

‖[P, gI]u‖Hq ≤ C‖g‖Hσ‖u‖Hq+r1−1 .

From its proof (see Taylor [49]) and (1) in Lemma A.6, we observe that the constant C
depends on the seminorms of p. This implies that the bilinear map

T : Sr ×Hσ � (p, f) �→ [OP(p), fI] ∈ L (Hq+r−1;Hq)

is continuous separately in p and f . By [37, Theorem 2.17], T is continuous, which implies 
(A.4) with p ∈ Sr. Recalling the fact(

OP(p)
)(i,j) = OP

(
p(i,j)),

and then summing over i and j, we obtain (A.4) with p ∈ Sr.
To prove (A.3), we observe that

[AB,CD] = A[B,C]D + [A,C]BD + CA[B,D] + C[A,D]B.

This and (A.4) lead to (A.3). For brevity, we will only verify the case of 
[
(fI)P1, P2(gI)

]
. 

In this case, we have[
(fI)P1,P2(gI)

]
= (fI)[P1,P2](gI) + (fI)P2[P1, gI] + [fI,P2](gI)P1.

Let η1 > s ∨ d
2 . Using either the algebra property of Hs (when s > d

2 ) or Lemma A.3
(when s ≤ d

2 ), we obtain

‖(fI)[P1,P2](gI)h‖Hs � ‖f‖Hη1 ‖[P1,P2](gh)‖Hs .

Once again, let η2 > (s + r1 + r2 − 1) ∨ d
2 ∨ 1. Then (A.2) gives rise to

sup
(p1,p2)∈M×O

‖(fI)[P1,P2](gI)h‖Hs � ‖f‖Hη1 ‖gh‖Hs+r1+r2−1

� ‖f‖Hη1 ‖g‖Hη2 ‖h‖Hs+r1+r2−1 .

Let η3 > (s + r1 + r2) ∨ (d2 + 1). Similarly, for (fI)P2[P1, gI], we use (1) in Lemma A.6
and apply (A.4) to [P1, gI]h (with u = h, 0 ≤ q = s + r2 ≤ σ − r, σ = η3 and r = r1) to 
find
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sup
(p1,p2)∈M×O

‖(fI)P2[P1, gI]h‖Hs � ‖f‖Hη1 sup
p1∈M

‖[P1, gI]h‖Hs+r2

� ‖f‖Hη1 ‖g‖Hη3 ‖h‖Hs+r1+r2−1 .

For [fI, P2](gI)P1, we note that η3 > s + r2 − 1 and η3 + s + r2 − 1 > 0. Then, (A.4)
(with u = gP1h, 0 ≤ q = s ≤ σ − r, σ = η3 and r = r2) leads to

sup
(p1,p2)∈M×O

∥∥[fI,P2](gI)P1h
∥∥
Hs � ‖f‖Hη3 sup

p1∈M
‖gP1h‖Hs+r2−1

� ‖f‖Hη3 ‖g‖Hη3 ‖h‖Hs+r1+r2−1 .

To sum up, we obtain (A.3) for 
[
(fI)P1, P2(gI)

]
. The other cases can be proved in the 

same way. �
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