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Abstract
This paper aims at studying a generalized Camassa–Holm equation under random
perturbation. We establish a local well-posedness result in the sense of Hadamard,
i.e., existence, uniqueness and continuous dependence on initial data, as well as blow-
up criteria for pathwise solutions in the Sobolev spaces Hs with s > 3/2 for x ∈ R.
The analysis on continuous dependence on initial data for nonlinear stochastic partial
differential equations has gained less attention in the literature so far. In this work,
we first show that the solution map is continuous. Then we introduce a notion of
stability of exiting time. We provide an example showing that one cannot improve
the stability of the exiting time and simultaneously improve the continuity of the
dependence on initial data. Finally, we analyze the regularization effect of nonlinear
noise in preventing blow-up. Precisely, we demonstrate that global existence holds
true almost surely provided that the noise is strong enough.
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1 Introduction andmain results

We consider the following stochastic generalized Camassa–Holm (CH) equation on
R:

ut − uxxt + (k + 2)ukux −(1 − ∂2x )h(t, u)Ẇ
= (k + 1)uk−1uxuxx + ukuxxx , k ∈ N>0. (1.1)

In (1.1), W is a cylindrical Wiener process.
For h = 0 and k = 1, Eq. (1.1) reduces to the deterministic CH equation given by

ut − uxxt + 3uux = 2uxuxx + uuxxx . (1.2)

Equation (1.2) was introduced by Fokas and Fuchssteiner [21] to study completely
integrable generalizations of the Korteweg–de Vries equation with bi-Hamiltonian
structure. In [10], Camassa and Holm proved that (1.2) can be connected to the uni-
directional propagation of shallow water waves over a flat bottom. Since then, (1.2)
has been studied intensively, and we only mention a few related results here. The CH
equation exhibits both phenomena of soliton interaction (peaked soliton solutions) and
wave breaking (the solution remains bounded while its slope becomes unbounded in
finite time [16]).

When h = 0 and k = 2, Eq. (1.1) becomes the so-called Novikov equation

ut − uxxt + 4u2ux = 3uuxuxx + u2uxxx , (1.3)

which was derived in [44]. Equation (1.3) also possesses a bi-Hamiltonian structure
with an infinite sequence of conserved quantities, and it admits peaked solutions [24],
as well as multipeakon solutions with explicit formulas [34]. For the study of other
deterministic instances of (1.1), we refer to [28, 60].

When additional noise is included, as in [46], the noise term can be used to account
for the randomness arising from the energy exchange mechanisms. Indeed, in [40,
59], the weakly dissipative term (1− ∂2x )(λu) with λ > 0 was added to the governing
equations. In [46], such weakly dissipative term is assumed to be time-dependent,
nonlinear in u and random. Therefore, (1 − ∂2x )h(t, u)Ẇ is proposed to describe
random energy exchange mechanisms.

In this work, we consider the Cauchy problem for (1.1) on the whole space R.
Applying the operator (1 − ∂2x )

−1 to (1.1), we reformulate the equation as

⎧
⎨

⎩

du +
[
uk∂xu + F(u)

]
dt = h(t, u) dW, x ∈ R, t > 0, k ∈ N>0,

u(ω, 0, x) = u0(ω, x), x ∈ R,
(1.4)
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with

F(u) := F1(u) + F2(u) + F3(u)

and

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F1(u) := (1 − ∂2x )
−1∂x

(
uk+1

)
,

F2(u) := 2k − 1

2
(1 − ∂2x )

−1∂x

(
uk−1u2x

)
,

F3(u) := k − 1

2
(1 − ∂2x )

−1
(
uk−2u3x

)
.

(1.5)

Here we remark that F3(u) in (1.5) will disappear for the CH case (i.e., when k = 1).
The operator (1 − ∂2x )

−1 in F(·) is understood as

[
(1 − ∂2x )

−1 f
]
(x) =

[1

2
e−|·|� f

]
(x),

where � stands for the convolution.
In this paper, regarding (1.4), we focus on the following issues:

– Local well-posedness, in the sense of Hadamard (existence, uniqueness and con-
tinuous dependence on initial data), and blow-up criterion of (1.4).

– Understanding the dependence on initial data, and in particular how continuous
the solution map u0 �→ u is.

– Analyzing the effect of noise vs blow-up of the deterministic counterpart of (1.4).

For the first and second issue, we refer to Theorems 1.1 and 1.2, respectively.
Extended remarks, explanations of difficulties, and a review of literature are given in
Remarks 1.1, 1.2, 1.3 and 1.4.

The third question in our targets is on the impact of noise, which is one of the central
questions in the study of stochastic partial differential equations (SPDEs). Regulariza-
tion effects of noise have been observed for many different models. For example, it is
known that the well-posedness of linear stochastic transport equations with noise can
be established under weaker hypotheses than its deterministic counterpart, cf. [20].
Particularly, for the impact of linear noise in different models, we refer to [2, 14, 15,
26, 38, 47, 54].

Notably, the existing results on regularization by noise are largely restricted to
linear equations or linear noise. Hence we have particular interest in the nonlinear
noise case. Finding such noise is important as it helps us to understand the stabilizing
mechanisms of noise. This is the first step to characterize relevant noisewhich provides
regularization effects for the CH-type equations. In order to emphasize our ideas in
a simple way, we only consider the noise as a 1-D Brownian motion in the current
setting. That is, we consider the case that h(t, u) dW = q(t, u) dW , where W is a
standard 1-D Brownian motion and q : [0,∞) × Hs → Hs is a nonlinear function.
Here we use the notation q rather than h because h needs to be a Hilbert–Schmidt
operator [see (1.8)] to define the stochastic integral with respect to a cylindricalWiener
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process W . Then we will focus on

⎧
⎨

⎩

du +
[
ukux + F(u)

]
dt = q(t, u) dW , x ∈ R, t > 0, k ∈ N>0,

u(ω, 0, x) = u0(ω, x), x ∈ R.
(1.6)

In Theorem 1.3, we provide a sufficient condition on q such that global existence can
be guaranteed. We refer to Remark 1.5 for further remarks on Theorem 1.3.

Before we introduce the notations, definitions and assumptions, we recall some
recent results on stochastic CH-type equations. For the stochastic CH type equation
with multiplicative noise, we refer to [46–48], where global existence and wave break-
ing were studied in the periodic case, i.e., x ∈ T. In particular, when the noise is of
transport type, we refer to [1, 4, 22, 32, 33]. We also refer to [12, 13, 45] for more
results in stochastic CH type equations.

1.1 Notations

We begin by introducing some notations. Let (�, {Ft }t≥0, P) be a right-continuous
complete filtration probability space. Formally, we consider a separable Hilbert space
U and let {en} be a complete orthonormal basis of U. Let {Wn}n≥1 be a sequence of
mutually independent standard 1-D Brownian motions on (�, {Ft }t≥0, P). Then we
define the cylindrical Wiener process W as

W :=
∞∑

n=1

Wnen . (1.7)

LetX be a separable Hilbert space.L2(U;X ) stands for the Hilbert-Schmidt operators
fromU toX . If Z ∈ L2(�; L2

loc([0,∞);L2(U;X ))) is progressivelymeasurable, then
the integral

∫ t

0
Z dW :=

∞∑

n=1

∫ t

0
Zen dWn (1.8)

is a well-defined X -valued continuous square-integrable martingale [see [5, 23] for
example]. Throughout the paper, when a stopping time is defined, we set inf ∅ := ∞
by convention.

For s ∈ R, the differential operator Ds := (1 − ∂2x )
s/2 is defined by D̂s f (ξ) =

(1 + ξ2)s/2 f̂ (ξ), where f̂ denotes the Fourier transform of f . The Sobolev space
Hs(R) is defined as

Hs(R) :=
{

f ∈ L2(R) : ‖ f ‖2Hs (R) :=
∫

R

(1 + |ξ |2)s | f̂ (ξ)|2 dξ < +∞
}

,

and the inner product on Hs(R) is ( f , g)Hs := (Ds f , Dsg)L2 . In the sequel, for
simplicity, we will drop R if there is no ambiguity. We will use � to denote estimates
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that hold up to some universal deterministic constant which may change from line
to line but whose meaning is clear from the context. For linear operators A and B,
[A, B] := AB − BA is the commutator of A and B.

1.2 Definitions and assumptions

We first make the precise notion of a solution to (1.4).

Definition 1.1 Let (�, {Ft }t≥0, P,W) be a fixed in advance. Let s > 3/2, k ∈ N>0
and u0 be an Hs-valued F0-measurable random variable.

1. A local solution to (1.4) is a pair (u, τ ), where τ is a stopping time satisfying
P{τ > 0} = 1 and u : � × [0,∞) → Hs is an Ft -predictable Hs-valued process
satisfying

u(· ∧ τ) ∈ C([0,∞); Hs) P-a.s.,

and for all t > 0,

u(t ∧ τ) − u(0) +
∫ t∧τ

0

[
uk∂xu + F(u)

]
dt ′ =

∫ t∧τ

0
h(t ′, u) dW P-a.s.

2. The local solutions are said to be unique, if given any two pairs of local solutions
(u1, τ1) and (u2, τ2) with P {u1(0) = u2(0)} = 1, we have

P {u1(t, x) = u2(t, x), (t, x) ∈ [0, τ1 ∧ τ2] × R} = 1.

3. Additionally, (u, τ ∗) is called a maximal solution to (1.4) if τ ∗ > 0 almost surely
and if there is an increasing sequence τn → τ ∗ such that for any n ∈ N, (u, τn) is
a solution to (1.4) and on the set {τ ∗ < ∞}, we have

sup
t∈[0,τn ]

‖u‖Hs ≥ n.

4. If (u, τ ∗) is a maximal solution and τ ∗ = ∞ almost surely, then we say that the
solution exists globally.

Motivated by [46, 49], we introduce the concept on stability of exiting time in
Sobolev spaces. Exiting time, as its name would suggest, is defined as the time when
solution leaves a certain range.

Definition 1.2 (Stability of exiting time) Let (�, {Ft }t≥0, P,W) be fixed, s > 3/2
and k ∈ N>0. Let u0 be an Hs-valued F0-measurable random variable such that
E‖u0‖2Hs < ∞.Assume that {u0,n} is a sequence of Hs-valuedF0-measurable random
variables satisfying E‖u0,n‖2Hs < ∞. For each n, let u and un be the unique solutions
to (1.4), as in Definition 1.1, with initial values u0 and u0,n , respectively. For any
R > 0, define the R-exiting times

τ R
n := inf{t ≥ 0 : ‖un‖Hs > R}, τ R := inf{t ≥ 0 : ‖u‖Hs > R}.
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Now we define the following properties on stability:

1. If u0,n → u0 in Hs
P-a.s. implies that

lim
n→∞ τ R

n = τ R
P-a.s., (1.9)

then the R-exiting time of u is said to be stable.
2. If u0,n → u0 in Hs′ for all s′ < s almost surely implies that (1.9) holds true, the

R-exiting time of u is said to be strongly stable.

Our main results rely on the following assumptions concerning the noise coefficient
h(t, u) in (1.1).

Hypothesis H1 For s > 1/2, we assume that h : [0,∞) × Hs � (t, u) �→ h(t, u) ∈
L2(U; Hs) is measurable and satisfies the following conditions:

H1(1) There is a non-decreasing function f (·) : [0,+∞) → [0,+∞) such that for
any u ∈ Hs with s > 3/2, we have the following growth condition

sup
t≥0

‖h(t, u)‖L2(U;Hs ) ≤ f (‖u‖W 1,∞)(1 + ‖u‖Hs ).

H1(2) There is a non-decreasing function g1(·) : [0,∞) → [0,∞) such that for all
N ≥ 1,

sup
t≥0, ‖u‖Hs , ‖v‖Hs≤N

{

1{u �=v}
‖h(t, u) − h(t, v)‖L2(U,Hs )

‖u − v‖Hs

}

≤ g1(N ), s > 3/2.

H1(3) There is a non-decreasing function g2(·) : [0,∞) → [0,∞) such that for all
N ≥ 1 and 3/2 ≥ s > 1/2,

sup
t≥0, ‖u‖Hs+1 , ‖v‖Hs+1≤N

{

1{u �=v}
‖h(t, u) − h(t, v)‖L2(U,Hs )

‖u − v‖Hs

}

≤ g2(N ).

Here we outline H1(2) is the classical local Lipschitz condition. H1(3) is needed
to prove uniqueness in Lemma 3.1. Indeed, if one finds two solutions u, v ∈ Hs to
(1.4), one can only estimate u − v in Hs′ for s′ ≤ s − 1 because the term ukux loses
one derivative. We refer to Remark 1.1 for more details.

HypothesisH2Whenweconsider (1.4) inSect. 4,we assume that there is a real number
ρ0 ∈ (1/2, 1) such that for s ≥ ρ0, h : [0,∞) × Hs � (t, u) �→ h(t, u) ∈ L2(U; Hs)

is measurable. Besides, we suppose the following:

H2(1) There exists a non-decreasing function l(·) : [0,+∞) → [0,+∞) such that
for any u ∈ Hs with s > 3/2,

sup
t≥0

‖h(t, u)‖L2(U;Hs ) ≤ l(‖u‖W 1,∞)‖u‖Hs ,
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and H1(2) holds.
H2(2) There is a non-decreasing function g3(·) : [0,+∞) → [0,+∞) such that for

all N ≥ 1,

sup
t≥0, ‖u‖Hs≤N

‖h(t, u)‖L2(U;Hρ0 ) ≤ g3(N )e
− 1

‖u‖Hρ0 , s > 3/2, (1.10)

and

sup
t≥0, ‖u‖Hρ0 , ‖v‖Hρ0 ≤N

{

1{u �=v}
‖h(t, u) − h(t, v)‖L2(U,Hρ0 )

‖u − v‖Hρ0

}

≤ g3(N ).

We remark here that (1.10) means that there is a ρ0 ∈ (1/2, 1) such that, if un is
bounded in Hs and un tends to zero in the topology of Hρ0 as n tends to ∞, then
‖h(t, un)‖L2(U;Hρ0 ) tends to zero exponentially as n tends to ∞. Examples of such
noise structure can be found in Sect. 4.4.

As for the regularization effect of noise, we impose the following condition on q
in (1.6):

Hypothesis H3 We assume that when s > 3/2, q : [0,∞)×Hs � (t, u) �→ q(t, u) ∈
Hs is measurable. Define the set V as a subset of C2([0,∞); [0,∞)) such that

V :=
{
V (0) = 0, V ′(x) > 0, V ′′(x) ≤ 0 and lim

x→∞ V (x) = ∞
}

.

Then we assume the following:

H3(1) There is a non-decreasing function g4(·) : [0,+∞) → [0,+∞) such that for
any u ∈ Hs with s > 3/2, we have the following growth condition

sup
t≥0

‖q(t, u)‖Hs ≤ g4(‖u‖W 1,∞)(1 + ‖u‖Hs ).

H3(2) q(·, u) is bounded for all u ∈ Hs and there is a non-decreasing function
g4(·) : [0,∞) → [0,∞), such that

sup
t≥0, ‖u‖Hs , ‖v‖Hs≤N

{

1{u �=v}
‖q(t, u) − q(t, v)‖Hs

‖u − v‖Hs

}

≤ g4(N ), N ≥ 1, s > 3/2.

H3(3) There is a V ∈ V and constants N1, N2 > 0 such that for all (t, u) ∈ [0,∞)×
Hs with s > 3/2,

Hs(t, u) ≤ N1 − N2

{
V ′(‖u‖2Hs )

∣
∣(q(t, u), u)Hs

∣
∣
}2

1 + V (‖u‖2Hs )
,
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where

Hs(t, u)

:= V ′(‖u‖2Hs )
{
2λs‖u‖kW 1,∞‖u‖2Hs + ‖q(t, u)‖2Hs

}
+ 2V ′′(‖u‖2Hs )

∣
∣(q(t, u), u)Hs

∣
∣2

and λs > 0 is the constant given in Lemma A.6 below.

Examples of the noise structure satisfying Hypothesis H3 can be found in Sect. 5.2.

1.3 Main results and remarks

Now we summarize our major contributions providing proofs later in the remainder
of the paper.

Theorem 1.1 Let s > 3/2, k ≥ 1 and let h(t, u) satisfy Hypothesis H1. Assume that
u0 is an Hs-valued F0-measurable random variable satisfying E‖u0‖2Hs < ∞. Then

(i) (Existence and uniqueness) There is a unique local solution (u, τ ) to (1.4) in the
sense of Definition 1.1 with

E sup
t∈[0,τ ]

‖u(t)‖2Hs < ∞. (1.11)

(ii) (Blow-up criterion) The local solution (u, τ ) can be extended to a unique max-
imal solution (u, τ ∗) with

1{lim supt→τ∗ ‖u(t)‖Hs=∞} = 1{lim supt→τ∗ ‖u(t)‖W1,∞=∞} P-a.s. (1.12)

(iii) (Stability for almost surely bounded initial data) Assume additionally that
u0 ∈ L∞(�; Hs). Let v0 ∈ L∞(�; Hs) be another Hs-valued F0-measurable
random variable. For any T > 0 and any ε > 0, there is a δ = δ(ε, u0, T ) > 0
such that if

‖u0 − v0‖L∞(�;Hs ) < δ, (1.13)

then there is a stopping time τ ∈ (0, T ] P-a.s. and

E sup
t∈[0,τ ]

‖u(t) − v(t)‖2Hs < ε, (1.14)

where u and v are the solutions to (1.4) with initial data u0 and v0, respectively.

Remark 1.1 Existence and uniqueness have been studied for abundant SPDEs. Inmany
works, the authors did not address the continuous dependence on initial data. In this
work, our Theorem1.1 provides a localwell-posedness result in the sense ofHadamard
including the continuous dependence on initial data. Moreover, a blow-up criterion
is also obtained. We refer to [11, 19, 42] for the study about the dependence on the
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initial data for cases that solutions to the target problems exist globally. However, it
is necessary to point out that almost nothing is known on the analysis for dependence
on initial data for SPDEs whose solutions may blow up in finite time.

The key difficulty for such a case is as follows: on one hand, if solutions to a
nonlinear stochastic partial differential equation (SPDE) blow up in finite time, it is
usually very difficult to obtain the lifespan estimates. On the other hand, we have
to find a positive time τ to obtain an inequality like (1.14). In addition, the target
problem (1.4) is more difficult because the classical Itô formulae are not applicable.
Indeed, for u0 ∈ Hs , we can only know u ∈ Hs because this is a transport type
equation, then ukux ∈ Hs−1. However, the inner product

(
ukux , u

)

Hs appears if
one uses the Itô formula in a Hilbert space (cf. [23, Theorem 2.10]) and the dual
product Hs−1〈ukux , u〉Hs+1 appears in the Itô formula under a Gelfand triplet (cf. [39,
Theorem I.3.1]). Since we only have u ∈ Hs and ukux ∈ Hs−1, neither of them are
well-defined. Likewise, when we consider the Hs-norm for the difference between
two solutions u, v ∈ Hs to (1.4), we will have to handle (ukux − vkvx , u − v)Hs ,
which gives rise to control either ‖u‖Hs+1 or ‖v‖Hs+1 .

Remark 1.2 Now we list some technical remarks on the statements of Theorem 1.1.

(1). Our proof for (i) in Theorem 1.1 is motivated by the recent results in [55]. For
the convenience of the reader, here we also give a brief comparison between our
approach and the framework employed in many previous works.

– We first briefly review the martingale approach used to prove existence of
nonlinear SPDEs. Roughly speaking, in searching for a solution to a nonlinear
SPDE in some space X , the martingale approach, as its name would suggest,
includes obtaining martingale solution first and then establishing (pathwise)
uniqueness to obtain the (pathwise) solution. To begin with, one needs to
approximate the equation and establish uniform estimate. For nonlinear prob-
lems, one may have to add a cut-off function to cut the nonlinear parts growing
in some space Z with X ↪→ Z (such choice of Z depends on concrete prob-
lems). As far as we know, the technique of cut-off first appears in [17] for the
stochastic Schrödinger equation. This cut-off enables us to split the expectation
of nonlinear terms, and then the L2(�;X ) estimate can be closed. For exam-
ple, for (1.4), the estimate forE‖u‖2Hs will give rise toE

(‖u‖W 1,∞‖u‖2Hs

)
, and

hence we need to add a function to cut ‖ · ‖W 1,∞ . With this additional cut-off,
we need to consider the cut-off version of the problem first and remove it then.
The first main step in the martingale approach is finding a martingale solution.
Usually, this can be done by first obtaining tightness of the measures defined
by the approximative solutions in some space Y , and then using Prokhorov’s
Theorem and Skorokhod’s Theorem to obtain the convergence in Y . Since X
is usually infinite dimensional (usually, X is a Sobolev space), to obtain tight-
ness, it is required thatX is compactly embedded intoY , i.e,X ↪→↪→ Y . This
brings another requirement to specify Z , that is, Y ↪→ Z . Otherwise, taking
limits will not bring us back to the cut-off problem due to the additional cut-off
term ‖ · ‖Z (in some cases, the choice of Z may only give rise to a semi-norm
and here we use this notation ‖ · ‖Z only for simplicity). Usually, in bounded
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domains, it is not difficult to pickY andZ such thatX ↪→↪→ Y ↪→ Z (Sobolev
spaces enjoy compact embeddings in bounded domains), see for example [4,
9, 18, 26, 48]. In unbounded domains, the difficulty lies in the choice of Y and
Z such that X ↪→↪→ Y ↪→ Z . We refer to [7, 8] for fluid models with cer-
tain cancellation properties (for example, divergence free) and linear growing
noise. However, it is difficult to achieve this for SPDEs with general nonlinear
terms and nonlinear noise. For instance, the cut-off in our case will have to
involve ‖ · ‖Z = ‖ · ‖W 1,∞ [see H1(1) and (2.3)]. Even though we can get the
convergence in Hs′

loc with some 3
2 < s′ < s, it is still not clear whether the

convergence holds true inW 1,∞, and this is because local convergence can not
control a global object ‖ · ‖W 1,∞ . Therefore, technically speaking, nonlinear
SPDEs are more non-local than its deterministic counterpart.

– Due to the above unsolved technical issue, the martingale approach is difficult
to apply in our problem and we will try to prove convergence directly, which is
motivated by [41, 55] [see also [49, 53, 54] for recent developments]. Generally
speaking, we will analyze the difference between two approximative solutions
and directly find a space Y such that X ↪→ Y ↪→ Z and convergence (up
to a subsequence) holds true in Y . The difficult part is finding convergence in
Y without compactness X ↪→↪→ Y (compared to the martingale approach,
tightness comes from the compact embedding X ↪→↪→ Y). In this paper, the
target path space is C([0, T ]; Hs) = X , and we are able to prove convergence

(up to a subsequence) in C([0, T ]; Hs− 3
2 ) = Y directly. After taking limits to

obtain a solution, one can improve the regularity to Hs again, and the technical
difficulty in this step is to prove the time continuity of the solution because the
classical Itô formula is not applicable (see in Remark 1.1). To overcome this
difficulty, we apply a mollifier Jε to equation and estimate E‖Jεu‖2Hs first [see
(2.11)]. We also remark that the techniques in removing the cut-off have been
used in [5, 25, 54]. Here we formulate such a technical result in Lemma A.7
in an abstract way.

(2). Now we give a remark on (iii) in Theorem 1.1. For the question on dependence
on initial data, there are some delicate differences between the stochastic and the
deterministic case. In the deterministic counterpart of (1.4), due to the lifespan
estimate [see (4.10) for instance], for given u0 ∈ Hs , it can be shown that if
‖u0 − v0‖Hs is small enough, then there is a T > 0 depending on u0 such that
supt∈[0,T ] ‖u(t) − v(t)‖2Hs is also small. In stochastic setting, since existence and
uniqueness are obtained in the framework of L2(�; Hs), it is therefore very natural
to expect that, for given u0 ∈ L2(�; Hs), if E‖u0 − v0‖2Hs is small enough, then
for some almost surely positive τ depending u0, E supt∈[0,τ ] ‖u(t) − v(t)‖2Hs is
also small. However, so far we have only proved it with assuming the smallness
of ‖u0 − v0‖L∞(�;Hs ). Since L∞(�; Hs) can be viewed as being less random
than L2(�; Hs), one may roughly conclude that what the solution map needs to
be continuous/stable (the initial data and its perturbation are L∞(�; Hs)) is more
“picky" in determinism than what the existence of such a solution map requires
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(existence and uniqueness guarantee that a solution map can be defined). For the
technical difficulties involved, we have the following explanations:

– As is mentioned in Remark 1.1, when we estimate the Hs-norm for the differ-
ence between two solutions u and v, Hs+1-norm will appear. Hence, we have
to use smooth approximations to make the analysis valid. More precisely, we
approximate u and v by smooth process uε and vε and consider

‖u − v‖Hs ≤ ‖u − uε‖Hs + ‖uε − vε‖Hs + ‖vε − v‖Hs . (1.15)

Then all terms can be estimated because ‖uε‖Hs+1 and ‖vε‖Hs+1 make sense.
Here we refer to Remark 3.2 for more details on the construction of such an
approximation.

– In dealing with the above three terms in the stochastic case, two sequences
of stopping times (exiting times) are needed to control ‖uε‖Hs and ‖vε‖Hs

[see (3.20) below]. Since we aim at obtaining τ > 0 almost surely in (1.14)
(otherwise the difference between two solutions on the set {τ = 0} can not
be measured), we will have to guarantee that those stopping times used in
bounding ‖uε‖Hs and ‖vε‖Hs have positive lower bounds almost surely. Up to
now,we have only achieved this for initial values belonging to L∞(�; Hs).We
also remark that this is different from the proof for existence. In the proof for
existence, uε exists on a common interval [0, T ] for all ε and enjoys a uniform-
in-ε estimate (2.4), hencewe can get rid of stopping times in convergence (from
(2.8) to (2.9)). Here we do not have such common existence interval due to
the lack of a lifespan estimate, which is a significant difference between the
stochastic and the deterministic cases. Indeed, we can easily find the lifespan
estimate for the deterministic counterpart of (1.4) [see (4.10) below].

– Moreover, even if the above issue canbehandled, in dealingwith the three terms
in (1.15), we are confronted with 1

ε2
E‖u0 − v0‖2Hs′ ‖u0‖2Hs for some suitably

chosen s′ (cf. (3.27)). After ε is fixed, the smallness of E‖u0 − v0‖2Hs is not
enough to control 1

ε2
E‖u0 − v0‖2Hs′ ‖u0‖2Hs , either. We use the L∞(�; Hs)

condition to take ‖u0‖2Hs out of 1
ε2

E‖u0 − v0‖2Hs′ ‖u0‖2Hs . In deterministic

case, no expectation is involved, 1
ε2

‖u0 − v0‖2Hs′ ‖u0‖2Hs can be controlled by

‖u0 − v0‖2Hs .

Roughly speaking, (iii) in Theorem 1.1 means that for any fixed u0 ∈ L∞(�; Hs)

and any T > 0, if ‖u0 − v0‖L∞(�;Hs ) → 0, then

∃ τ ∈ (0, T ] P-a.s. such that E‖u(· ∧ τ) − v(· ∧ τ)‖2C([0,T ];Hs ) → 0,

where u, v are solutions corresponding to u0, v0, respectively. Below we will study
this issue quantitatively. The next result addresses at least a partially negative answer.

Theorem 1.2 (Weak instability) Let s > 5/2 and k ≥ 1. If h satisfies Hypothesis H2,
then at least one of the following properties holds true:
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(i) For any R � 1, the R-exiting time is not strongly stable for the zero solution to
(1.4) in the sense of Definition 1.2;

(ii) There is a T > 0 such that the solution map u0 �→ u defined by (1.4) is not
uniformly continuous as amap from L∞(�; Hs) into L1(�;C([0, T ]; Hs)).More
precisely, there exist two sequences of solutions u1,n and u2,n, and two sequences
of stopping time τ1,n and τ2,n, such that

– For i = 1, 2, P{τi,n > 0} = 1 for each n > 1. Besides,

lim
n→∞ τ1,n = lim

n→∞ τ2,n = ∞ P-a.s. (1.16)

– For i = 1, 2, ui,n ∈ C([0, τi,n]; Hs) P-a.s., and

E

(

sup
t∈[0,τ1,n ]

‖u1,n(t)‖Hs + sup
t∈[0,τ2,n ]

‖u2,n(t)‖Hs

)

� 1. (1.17)

– At initial time t = 0, for any p ∈ [1,∞],

lim
n→∞ ‖u1,n(0) − u2,n(0)‖L p(�;Hs ) = 0. (1.18)

– When t > 0,

lim inf
n→∞ E sup

t∈[0,T∧τ1,n∧τ2,n ]
‖u1,n(t) − u2,n(t)‖Hs

�

⎧
⎪⎪⎨

⎪⎪⎩

sup
t∈[0,T ]

| sin(t)|, if k is odd,

sup
t∈[0,T ]

∣
∣ sin

( t

2

)∣
∣, if k is even.

(1.19)

Remark 1.3 We first briefly outline the main difficulties encountered in the proof for
Theorem 1.2 and the main strategies we used.

(1). Because we can not get an explicit expression of the solution to (1.4), to obtain
(1.19), we will construct two sequences of approximative solutions {um,n} (m ∈
{1, 2}) such that the actual solutions {um,n} with um,n(0) = um,n(0) satisfy

lim
n→∞ E sup

[0,τm,n ]
‖um,n − um,n‖Hs = 0, (1.20)

where um,n exists at least on [0, τm,n]. Then, one can establish (1.19) by estimating
{um,n} rather than {um,n}. We also remark that the construction of approximative
solution um,n for x ∈ R is more difficult than the construction of approximative
solution for x ∈ T [see [46]] since the approximative solution involves both high
and low frequency parts (high frequency part is already enough for the case x ∈ T,
cf. [46, 55]). The key point is that we need to guarantee infn τm,n > 0 almost
surely in dealing with (1.20). Hence we are confronted with a common difficulty
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in SPDEs again, that is, the lack of lifespan estimate. In deterministic cases, one
can easily obtain the lifespan estimate, which enables us to find a common interval
[0, T ] such that all actual solutions exist on [0, T ] (see for example Lemma 4.1).
In the stochastic case, so far we have not been able to prove this.

(2). To settle the above difficulty, we observe that the bound infn τm,n > 0 can be
connected to the stability property of the exiting time (see Definition 1.2). The
condition that the R0-exiting time is strongly stable at the zero solution will be
used to provide a common existence time T > 0 such that for all n, um,n exists up
to T (see Lemma 4.4 below). Therefore, to prove Theorem 1.2, we will show that,
if the R0-exiting time is strongly stable at the zero solution for some R0 � 1, then
the solution map u0 �→ u defined by (1.4) can not be uniformly continuous. To get
(1.20), we estimate the error in H2s−ρ0 and Hρ0 , respectively, where ρ0 is given
in H2. Then (1.20) is a consequence of the interpolation. We remark that (1.18)
holds because the approximative solutions are constructed deterministically.

Remark 1.4 With regard to similar results in the literature and further hypotheses, we
give some more remarks on Theorem 1.2.

(1). In deterministic cases, the issue of the (optimal) initial-data dependence of
solutions has been extensively investigated for various nonlinear dispersive and
integrable equations. We refer to [35] for the inviscid Burgers equation and to [37]
for the Benjamin–Ono equation. For the CH equation we refer the readers to [29,
30] concerning the non-uniform dependence on initial data in Sobolev spaces Hs

with s > 3/2. For the first results of this type in Besov spaces, we refer to [50, 56].
Particularly, non-uniform dependence on initial data in critical Besov space first
appears in [51, 52]. In this work, Theorem 1.2 and (iii) in Theorem 1.1 demonstrate
that the continuity of the solution map u0 �→ u is almost an optimal result in the
sense that, when the growth of the noise coefficient satisfies certain conditions
(cf. Hypothesis H2), the map u0 �→ u is continuous, but one can not improve the
stability of the exiting time and simultaneously the continuity of the map u0 �→ u.
Up to our knowledge, results of this type for SPDEs first appeared in [46, 49]. We
also refer to [3, 43, 55] for recent developments.

(2). It is worthwhile mentioning that, as noted in (1) of Remark 1.3, the strong stability
of exiting times is used as a technical “assumption" to handle the lower bound
of a sequence of stopping times. So far we have not been able to verify the non-
emptyness of this strong stability assumption for the current model. However, if
the transport noise ux ◦ dW is considered (W is a standard 1-D Brownian motion
and ◦ dW means the Stratonovich stochastic differential), we might conjecture
that either the notion of strong stability of exiting times can be captured, or the
solution map u0 �→ u can become more regular than being continuous. Indeed, if
h(t, u) dW is replaced by ux ◦ dW in (1.4), one can rewrite the equation into Itô’s
form with an additional viscous term − 1

2uxx on the left hand side of the equation.
Therefore, it is reasonable to expect that in this case, either the strong stability of
exiting times or the continuity of the solution map u0 �→ u can be improved. We
refer to [31] and [27] for deterministic examples on the continuity of the solution
map.
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Theorem 1.3 (Noise prevents blow-up) Let s > 5/2, k ≥ 1 and u0 ∈ Hs be an F0-
measurable random variable with E‖u0‖2Hs < ∞. If Hypothesis H3 holds true, then
the corresponding maximal solution (u, τ ∗) to (1.6) satisfies

P
{
τ ∗ = ∞} = 1.

Remark 1.5 We notice that many of the existing results on regularization effects by
noise are essentially restricted to linear equations or linear growing noise. In Theorem
1.3, both the drift and diffusion term are nonlinear. We also remark that the blow-
up can actually occur in the deterministic counterpart of (1.6). For example, when
k = 1, blow-up (as wave breaking) of solutions to the CH equation can be found
in [16]. Therefore, Theorem 1.3 demonstrates that large enough noise can prevent
singularities. Indeed, H3(3) means that the growth of ukux + F(u) can be controlled
provided that the noise grows fast enough in terms of a Lyapunov type function V .
In contrast to H1(2) and H1(3), we require s > 3/2 in both H3(2) and H3(3). As is
stated in Hypothesis H1, H3(2) implies that uniqueness holds true for solutions in Hs

with s > 5/2. It seems that one can require s > 1/2 in H3(2) to guarantee uniqueness
in Hρ with ρ > 3/2, but at present we can only construct examples for the case that
s > 3/2 is required in both H3(2) and H3(3).

Weoutline the remainder of the paper. In Sect. 2,we study the cut-off version of (1.4)
and then we remove the cut-off and prove Theorem 1.1 in Sect. 3. We prove Theorem
1.2 in Sect. 4. Concerning the interplay of noise vs blow-up, we prove Theorem 1.3 in
Sect. 5.

2 Cut-off version: regular solutions

We first consider a cut-off version of (1.4). To this end, for any R > 1, we let
χR(x) : [0,∞) → [0, 1] be a C∞-function such that χR(x) = 1 for x ∈ [0, R] and
χR(x) = 0 for x > 2R. Then we consider the following cut-off problem

⎧
⎨

⎩

du + χR(‖u‖W 1,∞)
[
uk∂xu + F(u)

]
dt = χR(‖u‖W 1,∞)h(t, u) dW,

u(ω, 0, x) = u0(ω, x) ∈ Hs .
(2.1)

In this section, we aim at proving the following result:

Proposition 2.1 Let s > 3, k ≥ 1, R > 1 and Hypothesis H1 be satisfied. Assume
that u0 ∈ L2(�; Hs) is an Hs-valuedF0-measurable random variable. Then, for any
T > 0, (2.1) has a solution u ∈ L2 (�;C ([0, T ]; Hs)). More precisely, there is a
constant C(R, T , u0) > 0 such that

E sup
t∈[0,T ]

‖u‖2Hs ≤ C(R, T , u0). (2.2)

The proof for Proposition 2.1 is given in the following subsections.
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2.1 The approximation scheme

The first step is to construct a suitable approximation scheme. From Lemma A.5,
we see that the nonlinear term F(u) preserves the Hs-regularity of u ∈ Hs for any
s > 3/2. However, to apply the theory of SDEs in Hilbert space to (2.1), we will have
to mollify the transport term uk∂xu since the product uk∂xu loses one regularity. To
this end, we consider the following approximation scheme:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

du + H1,ε(u) dt = H2(t, u) dW,

H1,ε(u) = χR(‖u‖W 1,∞)
[
Jε
(
(Jεu)k∂x Jεu

)
+ F(u)

]
,

H2(t, u) = χR(‖u‖W 1,∞)h(t, u),

u(0, x) = u0(x) ∈ Hs,

(2.3)

where Jε is the Friedrichs mollifier defined in Appendix A. After mollifying the
transport term uk∂xu, it follows from H1(2) and Lemmas A.1 and A.5 that for any
ε ∈ (0, 1), H1,ε(·) and H2(t, ·) are locally Lipschitz continuous in Hs with s > 3

2 .
Besides, we notice that the cut-off function χR(‖·‖W 1,∞) guarantees the linear growth
condition (cf. Lemma A.5 and H1(1)). Thus, for fixed (�, {Ft }t≥0, P,W) and for
u0 ∈ L2(�; Hs) with s > 3/2, the existence theory of SDE in Hilbert space (see for
example [23]) means that (2.3) admits a unique solution uε ∈ C([0,∞); Hs) P-a.s..

2.2 Uniform estimates

Now we establish some uniform-in-ε estimates for uε.

Lemma 2.1 Let k ≥ 1, s > 3/2, R > 1 and ε ∈ (0, 1). Assume that h satisfies
Hypothesis H1 andu0 ∈ L2(�; Hs) is an Hs-valuedF0-measurable randomvariable.
Let uε ∈ C([0,∞); Hs) be the unique solution to (2.3). Then for any T > 0, there is
a constant C = C(R, T , u0) > 0 such that

sup
ε>0

E sup
t∈[0,T ]

‖uε(t)‖2Hs ≤ C . (2.4)

Proof Using the Itô formula for ‖uε‖2Hs , we have that for any t > 0,

d‖uε(t)‖2Hs = 2χR
(‖uε‖W 1,∞

)
(h(t, uε) dW, uε)Hs

− 2χR
(‖uε‖W 1,∞

) (
Ds Jε

[
(Jεuε)

k∂x Jεuε

]
, Dsuε

)

L2
dt

− 2χR
(‖uε‖W 1,∞

) (
DsF(uε), D

suε

)

L2 dt

+ χ2
R(‖uε‖W 1,∞)‖h(t, uε)‖2L2(U;Hs ) dt .

On account of Lemmas A.1 and A.3, we derive

∣
∣
∣

(
Ds Jε

[
(Jεuε)

k∂x Jεuε

]
, Dsuε

)

L2

∣
∣
∣ ≤ C‖uε‖kW 1,∞‖uε‖2Hs ,
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Therefore, one can infer from the BDG inequality, H1(1), Lemma A.5 and the above
estimate that

E sup
t∈[0,T ]

‖uε(t)‖2Hs − E‖u0‖2Hs ≤ 1

2
E sup

t∈[0,T ]
‖uε‖2Hs + CRE

∫ T

0

(
1 + ‖uε‖2Hs

)
dt,

which implies

E sup
t∈[0,T ]

‖uε(t)‖2Hs ≤ 2E‖u0‖2Hs + CR

∫ T

0

(

1 + E sup
t ′∈[0,t]

‖uε(t
′)‖2Hs

)

dt . (2.5)

Using Grönwall’s inequality in (2.5) implies (2.4). ��

2.3 Convergence of approximative solutions

Now we are going to show that the family {uε} contains a convergent subsequence.
For different layers uε and uη, we see that vε,η := uε − uη satisfies the following
problem:

dvε,η +
( 8∑

i=1

qi
)
dt =

( 10∑

i=9

qi
)
dW, vε,η(0, x) = 0, (2.6)

where

q1 := [
χR(‖uε‖W 1,∞) − χR

(‖uη‖W 1,∞
)]

Jε[(Jεuε)
k∂x Jεuε],

q2 := χR
(‖uη‖W 1,∞

)
(Jε − Jη)[(Jεuε)

k∂x Jεuε],
q3 := χR

(‖uη‖W 1,∞
)
Jη[((Jεuε)

k − (Jηuε)
k)∂x Jεuε],

q4 := χR
(‖uη‖W 1,∞

)
Jη[((Jηuε)

k − (Jηuη)
k)∂x Jεuε],

q5 := χR
(‖uη‖W 1,∞

)
Jη[(Jηuη)

k∂x (Jε − Jη)uε],
q6 := χR

(‖uη‖W 1,∞
)
Jη[(Jηuη)

k∂x Jη(uε − uη)],
q7 := [

χR(‖uε‖W 1,∞) − χR
(‖uη‖W 1,∞

)]
F(uε),

q8 := χR
(‖uη‖W 1,∞

) [F(uε) − F(uη)],
q9 := [

χR(‖uε‖W 1,∞) − χR
(‖uη‖W 1,∞

)]
h(t, uε),

q10 := χR
(‖uη‖W 1,∞

) [h(t, uε) − h(t, uη)].

Lemma 2.2 Let s > 3 and k ≥ 1 and let G(x) := x2k+2 + 1. For any ε, η ∈ (0, 1),
we find a constant C > 0 such that

8∑

i=1

∣
∣
∣(qi , vε,η)

Hs− 3
2

∣
∣
∣ ≤CG (‖uε‖Hs + ‖uη‖Hs

)
(

‖vε,η‖2
Hs− 3

2
+ max{ε, η}

)

.
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Proof Using Lemmas A.1, A.3 and A.5, the mean value theorem for χR(·), and the

embedding Hs− 3
2 ↪→ W 1,∞, we have that for some C > 0,

∥
∥
∥Ds− 3

2 q1
∥
∥
∥
L2

,

∥
∥
∥Ds− 3

2 q7
∥
∥
∥
L2

≤C‖vε,η‖
Hs− 3

2
‖uε‖k+1

Hs ,

and

∥
∥
∥Ds− 3

2 q8
∥
∥
∥
L2

≤ C
(‖uε‖Hs + ‖uη‖Hs

)k ‖vε,η‖
Hs− 3

2
.

Using Lemma A.1, we see that

∥
∥
∥Ds− 3

2 qi
∥
∥
∥
L2

≤ C max{ε1/2, η1/2}‖uε‖k+1
Hs , i = 2, 3,

∥
∥
∥Ds− 3

2 q4
∥
∥
∥
L2

≤ C
(‖uε‖Hs + ‖uη‖Hs

)k−1 ‖vε,η‖
Hs− 3

2
‖uε‖Hs ,

∥
∥
∥Ds− 3

2 q5
∥
∥
∥
L2

≤ C max{ε1/2, η1/2}‖uε‖Hs‖uη‖kHs .

For q6, using Lemma A.1 and then integrating by part, we have

(
Ds− 3

2 q6, D
s− 3

2 vε,η

)

L2

= χR
(‖uη‖W 1,∞

)
∫

R

[Ds− 3
2 , (Jηuη)

k]∂x Jηvε,η · Ds− 3
2 Jηvε,η dx

− 1

2
χR
(‖uη‖W 1,∞

)
∫

R

∂x (Jηuη)
k(Ds− 3

2 Jηvε,η)
2 dx .

Via the embedding Hs− 3
2 ↪→ W 1,∞ and Lemmas A.1 and A.3, we obtain

∣
∣
∣

(
Ds− 3

2 q6, D
s− 3

2 vε,η

)

L2

∣
∣
∣ � ‖uη‖kHs‖vε,η‖2

Hs− 3
2
.

Therefore, we can put this all together to find

8∑

i=1

∣
∣
∣(qi , vε,η)

Hs− 3
2

∣
∣
∣ ≤ C

(
(‖uε‖Hs + ‖uη‖Hs )k+1 + 1

)
‖vε,η‖2

Hs− 3
2

+ C(‖uε‖Hs + ‖uη‖Hs )2k+2 max{ε, η},

which gives rise to the desired estimate. ��
Lemma 2.3 Let s > 3, R > 1 and ε ∈ (0, 1). For any T > 0 and K > 1, we define

τ T
ε,K := inf {t ≥ 0 : ‖uε(t)‖Hs ≥ K } ∧ T , τ T

ε,η,K := τ T
ε,K ∧ τ T

η,K . (2.7)
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Then we have

lim
ε→0

sup
η≤ε

E sup
t∈[0,τ Tε,η,K ]

‖uε − uη‖
Hs− 3

2
= 0. (2.8)

Proof By employing the BDG inequality to (2.6), for some constant C > 0, we arrive
at

E sup
t∈[0,τ Tε,η,K ]

‖vε,η(t)‖2
Hs− 3

2

≤ 1

2
E sup

t∈[0,τ Tε,η,K ]
‖vε,η‖2

Hs− 3
2

+ CE

∫ τ Tε,η,K

0

8∑

i=1

∣
∣
∣(qi , vε,η)

Hs− 3
2

∣
∣
∣ dt

+ CE

∫ τ Tε,η,K

0

10∑

i=9

‖qi‖2L2

(
U;Hs− 3

2
) dt .

For q9 and q10, we use (2.7), the mean value theorem for χR(·), H1(1) and H1(2) to
find a constant C = C(K ) > 0 such that

E

∫ τ Tε,η,K

0

10∑

i=9

‖qi‖2L2

(
U;Hs− 3

2
) dt ≤C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η,K ]
‖vε,η(t

′)‖2
Hs− 3

2
dt .

On account of Lemma 2.2 and the above estimate, we find

E sup
t∈[0,τ Tε,η,K ]

‖vε,η(t)‖2
Hs− 3

2

≤ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η,K ]
‖vε,η(t

′)‖2
Hs− 3

2
dt + C(K )T max{ε, η}.

Therefore, (2.8) holds true. ��
Lemma 2.4 For any fixed s > 3and T > 0, there is an {Ft }t≥0 progressivemeasurable
Hs−3/2-valued process u and a countable subsequence of {uε} (still denoted as {uε})
such that

uε
ε→0−−→ u in C

(
[0, T ]; Hs− 3

2

)
P-a.s. (2.9)

Proof We first let ε be discrete, i.e., ε = εn(n ≥ 1) such that εn → 0 as n → ∞. In
this way, for all n, uεn can be defined on the same set �̃ with P{�̃} = 1. For brevity,
uεn is still denoted as uε. For any ε > 0, by using (2.7), Lemma 2.1 and Chebyshev’s
inequality, we see that

P

{

sup
t∈[0,T ]

‖uε − uη‖
Hs− 3

2
> ε

}
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≤ P

{
τ T
ε,K < T

}
+ P

{
τ T
η,K < T

}
+ P

⎧
⎨

⎩
sup

t∈[0,τ Tε,η,K ]
‖uε − uη‖

Hs− 3
2

> ε

⎫
⎬

⎭

≤ 2C(R, T , u0)

K 2 + P

⎧
⎨

⎩
sup

t∈[0,τ Tε,η,K ]
‖uε − uη‖

Hs− 3
2

> ε

⎫
⎬

⎭
.

Now (2.8) clearly forces

lim
ε→0

sup
η≤ε

P

{

sup
t∈[0,T ]

‖uε − uη‖
Hs− 3

2
> ε

}

≤ 2C(R, T , u0)

K 2 .

Letting K → ∞, we see that uε converges in probability inC
(
[0, T ]; Hs− 3

2

)
. There-

fore, up to a further subsequence, (2.9) holds. ��

2.4 Proof for Proposition 2.1

By (2.9), since for each ε ∈ (0, 1), uε is {Ft }t≥0 progressive measurable, so is u.
Notice that Hs−3/2 ↪→ W 1,∞. Then one can send ε → 0 in (2.3) to prove that u
solves (2.1). Furthermore, it follows from Lemma 2.1 and Fatou’s lemma that

E sup
t∈[0,T ]

‖u(t)‖2Hs < C(R, u0, T ). (2.10)

With (2.10), to prove (2.2), we only need to prove u ∈ C([0, T ]; Hs), P-a.s. Due to
Lemma 2.4 and (1.11), u ∈ C([0, T ]; Hs−3/2) ∩ L∞ (0, T ; Hs) almost surely. Since
Hs is dense in Hs−3/2, we see that u ∈ Cw ([0, T ]; Hs) (Cw ([0, T ]; Hs) is the set
of weakly continuous functions with values in Hs). Therefore, we only need to prove
the continuity of [0, T ] � t �→ ‖u(t)‖Hs . As is mentioned in Remark 1.1, we first
consider the following mollified version with Jε being defined in (A.1):

d‖Jεu(t)‖2Hs = 2χR(‖u‖W 1,∞) (Jεh(t, u) dW, Jεu)Hs

− 2χR(‖u‖W 1,∞)
(
Jε
[
ukux + F(u)

]
, Jεu

)

Hs
dt

+ χ2
R(‖u‖W 1,∞)‖Jεh(t ′, u)‖2L2(U;Hs ) dt . (2.11)

By (2.10),

τN := inf{t ≥ 0 : ‖u(t)‖Hs > N } → ∞ as N → ∞ P-a.s. (2.12)

Then we only need to prove the continuity up to time τN ∧ T for each N ≥ 1. Let
[t2, t1] ⊂ [0, T ]with t1− t2 < 1.We use LemmaA.6, the BDG inequality, Hypothesis
H1 and (2.12) to find
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E

[(
‖Jεu(t1 ∧ τN )‖2Hs − ‖Jεu(t2 ∧ τN )‖2Hs

)4
]

≤C(N , T )|t1 − t2|2.

We notice that for any T > 0, Jεu tends to u in C ([0, T ]; Hs) as ε → 0. This,
together with Fatou’s lemma, implies

E

[(
‖u(t1 ∧ τN )‖2Hs − ‖u(t2 ∧ τN )‖2Hs

)4
]

≤C(N , T )|t1 − t2|2.

This and Kolmogorov’s continuity theorem ensure the continuity of t �→ ‖u(t ∧
τN )‖Hs .

3 Proof for Theorem 1.1

Nowwe can prove Theorem 1.1. For the sake of clarity, we provide the proof in several
subsections.

3.1 Proof for (i) in Theorem 1.1: Existence and uniqueness

3.1.1 Uniqueness

Before we prove the existence of a solution in Hs with s > 3/2, we first prove
uniqueness since some estimates here will be used later.

Lemma 3.1 Let s > 3/2, k ≥ 1, and Hypothesis H1 hold. Suppose that u0 and v0 are
two Hs-valued F0-measurable random variables satisfying u0, v0 ∈ L2(�; Hs). Let
(u, τ1) and (v, τ2) be two local solutions to (1.4) in the sense of Definition 1.1 such
that u(0) = u0, v(0) = v0 almost surely. For any N > 0 and T > 0, we denote

τu := inf {t ≥ 0 : ‖u(t)‖Hs > N } , τv := inf {t ≥ 0 : ‖v(t)‖Hs > N } ,

and τ T
u,v := τu ∧ τv ∧ T . Then for s′ ∈ ( 12 ,min

{
s − 1, 3

2

})
, we have that

E sup
t∈[0,τ Tu,v]

‖u(t) − v(t)‖2
Hs′ ≤ C(N , T )E‖u0 − v0‖2Hs′ . (3.1)

Proof Let w(t) = u(t) − v(t) for t ∈ [0, τ1 ∧ τ2]. We have

dw + 1

k + 1
∂x

[
uk+1 − vk+1

]
dt + [F(u) − F(v)] dt = [h(t, u) − h(t, v)] dW.

Then we use the Itô formula for ‖w‖2
Hs′ with s

′ ∈ ( 12 ,min
{
s − 1, 3

2

})
to find that

d‖w‖2
Hs′ = 2 ([h(t, u) − h(t, v)] dW, w)Hs′ − 2

k + 1
(∂x (Pkw),w)Hs′ dt
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− 2 ([F(u) − F(v)] , w)Hs′ dt + ‖h(t, u) − h(t, v)‖2L2(U;Hs′ ) dt

:= R1 +
4∑

i=2

Ri dt,

where Pk = uk + uk−1v + · · · + uvk−1 + vk . Taking the supremum over t ∈ [0, τ T
u,v]

and using the BDG inequality, H1(3) and the Cauchy–Schwarz inequality yield

E sup
t∈[0,τ Tu,v]

‖w(t)‖2
Hs′ − E‖w(0)‖2

Hs′

≤ 1

2
E sup

t∈[0,τ Tu,v]
‖w‖2

Hs′ + Cg2(N )

∫ T

0
E sup

t ′∈[0,τ tu,v]
‖w(t ′)‖2

Hs′ dt

+
4∑

i=2

E

∫ τ Tu,v

0
|Ri | dt .

Using Lemma A.4, integration by parts and Hs ↪→ W 1,∞, we have

|R2| �
∣
∣
∣

(
[Ds′∂x , Pk]w, Ds′w

)

L2

∣
∣
∣+
∣
∣
∣

(
PkD

s′∂xw, Ds′w
)

L2

∣
∣
∣

� ‖w‖2
Hs′ (‖u‖Hs + ‖v‖Hs )k .

Therefore, for some constant C(N ) > 0, we have that

E

∫ τ Tu,v

0
|R2| dt ≤ C(N )

∫ T

0
E sup

t ′∈[0,τ tu,v]
‖w(t ′)‖2

Hs′ dt .

Similarly, Lemma A.5 and H1(3) yield

4∑

i=3

E

∫ τ Tu,v

0
|Ri | dt ≤ C(N )

∫ T

0
E sup

t ′∈[0,τ tu,v]
‖w(t ′)‖2

Hs′ dt .

Therefore, we combine the above estimates to find

E sup
t∈[0,τ Tu,v]

‖w(t)‖2
Hs′ ≤ 2E‖w(0)‖2

Hs′ + C(N )

∫ T

0
E sup

t ′∈[0,τ tu,v]
‖w(t ′)‖2

Hs′ dt .

Using the Grönwall inequality in the above estimate leads to (3.1). ��
Similarly, one can obtain the following uniqueness result for the original problem

(1.4), and we omit the details for simplicity.

Lemma 3.2 Let s > 3/2, and let Hypothesis H1 be true. Let u0 be an Hs-valued F0-
measurable random variable such that u0 ∈ L2(�; Hs). If (u1, τ1) and (u2, τ2) are
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two local solutions to (1.4) satisfying ui (·∧ τi ) ∈ L2 (�;C([0,∞); Hs)) for i = 1, 2
and P{u1(0) = u2(0) = u0(x)} = 1, then

P {u1(t, x) = u2(t, x), (t, x) ∈ [0, τ1 ∧ τ2] × R} = 1.

3.1.2 The case s > 3

To begin with, we first state the following existence and uniqueness results in Hs with
s > 3 for the Cauchy problem (1.4):

Proposition 3.1 Let s > 3, k ≥ 1, and h(t, u) satisfy Hypothesis H1. If u0 is an
Hs-valued F0-measurable random variable satisfying E‖u0‖2Hs < ∞, then there is
a unique local solution (u, τ ) to (1.4) in the sense of Definition 1.1 with

u(· ∧ τ) ∈ L2 (�;C ([0,∞); Hs)) . (3.2)

Proof Since uniqueness has been obtained in Lemma 3.2, via Proposition 2.1, we only
need to remove the cut-off function. For u0(ω, x) ∈ L2(�; Hs), we let

�m := {m − 1 ≤ ‖u0‖Hs < m}, m ≥ 1.

Let u0,m := u01{m−1≤‖u0‖Hs<m}. For any R > 0, on account of Proposition 2.1, we
let um,R be the global solution to the cut-off problem (2.1) with initial value u0,m and
cut-off function χR(·). Define

τm,R := inf

{

t > 0 : sup
t ′∈[0,t]

‖um,R(t ′)‖2Hs > ‖u0,m‖2Hs + 2

}

.

Then for any R > 0 and m ∈ N, it follows from the time continuity of the solution
that P{τm,R > 0} = 1. Particularly, for any m ∈ N, we assign R = Rm such that
R2
m > c2m2+2c2,where c > 0 is the embedding constant such that ‖·‖W 1,∞ ≤ c‖·‖Hs

for s > 3. For simplicity, we denote (um, τm) := (um,Rm , τm,Rm ). Then we have

P

{
‖um‖2W 1,∞ ≤ c2‖um‖2Hs ≤ c2‖u0,m‖2Hs + 2c2 < R2

m, t ∈ [0, τm], m ≥ 1
}

= 1,

whichmeansP
{
χRm (‖um‖W 1,∞) = 1, t ∈ [0, τm], m ≥ 1

} = 1.Therefore, (um, τm)

is the solution to (1.4) with initial value u0,m . Since E‖u0‖2Hs < ∞, the condition
(A.5) is satisfied with I = N

+. Applying Lemma A.7 means that

⎛

⎝u =
∑

m≥1

1{m−1≤‖u0‖Hs<m}um, τ =
∑

m≥1

1{m−1≤‖u0‖Hs<m}τm

⎞

⎠
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is a solution to (1.4) corresponding to the initial condition u0. Besides,

sup
t∈[0,τ ]

‖u‖2Hs =
∑

m≥1

1{m−1≤‖u0‖Hs<m} sup
t∈[0,τm ]

‖um‖2Hs ≤ 2‖u0‖2Hs + 4 P-a.s.

Taking expectation gives rise to (3.2). ��

3.1.3 The case s > 3/2

When s > 3/2, we first consider the following problem

⎧
⎨

⎩

du +
[
uk∂xu + F(u)

]
dt = h(t, u) dW, k ≥ 1, x ∈ R, t > 0,

u(ω, 0, x) = Jεu0(ω, x) ∈ H∞, x ∈ R, ε ∈ (0, 1),
(3.3)

where Jε is the mollifier defined in (A.1). Proposition 3.1 implies that for
each ε ∈ (0, 1), (3.3) has a local pathwise solution (uε, τε) such that uε ∈
L2 (�;C ([0, τε]; Hs)).

Lemma 3.3 Assume u0 is an Hs-valued F0-measurable random variable such that
‖u0‖Hs ≤ M for some M > 0. For any T > 0 and s > 3/2, we define

τ T
ε := inf {t ≥ 0 : ‖uε‖Hs ≥ ‖Jεu0‖Hs + 2} ∧ T , τ T

ε,η := τ T
ε ∧ τ T

η , ε, η ∈ (0, 1).

(3.4)

Let K ≥ 2M + 5 be fixed and let s′ ∈ ( 12 ,min
{
s − 1, 3

2

})
. Then, there is a constant

C(K , T ) > 0 such that wε,η = uε − uη satisfies

E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs

≤ C(K , T )E
{
‖wε,η(0)‖2Hs + ‖wε,η(0)‖2Hs′ ‖uε(0)‖2Hs+1

}

+ C(K , T )E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′ . (3.5)

Proof To start with, we notice that Lemma A.1 implies

‖Jεu0‖Hs ≤ M, ε ∈ (0, 1) P-a.s. (3.6)

Since (3.4) and (3.6) are used frequently in the following, they will be used without
further notice. Let

Pl = Pl(uε, uη) :=
{
ulε + ul−1

ε uη + · · · + uεul−1
η + ulη, if l ≥ 1,

1, if l = 0.
(3.7)
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Applying the Itô formula to ‖wε,η‖2Hs gives rise to

d‖wε,η‖2Hs = 2
([
h(t, uε) − h(t, uη)

]
dW, wε,η

)

Hs − 2
(
wε,ηPk−1∂xuε, wε,η

)

Hs dt

− 2
(
ukη∂xwε,η, wε,η

)

Hs
dt − 2

([
F(uε) − F(uη)

]
, wε,η

)

Hs dt

+ ∥∥h(t, uε) − h(t, uη)
∥
∥2L2(U;Hs )

dt := Q1,s +
5∑

i=2

Qi,s dt . (3.8)

Since Hs′ ↪→ L∞ and Hs ↪→ W 1,∞, we can use Lemmas A.3 and A.5 to find

∣
∣Q2,s

∣
∣ �

(‖wε,ηPk−1‖Hs‖∂xuε‖L∞ + ‖wε,ηPk−1‖L∞‖∂xuε‖Hs
) ‖wε,η‖Hs

� ‖wε,η‖2Hs

(‖uε‖Hs + ‖uη‖Hs
)k + ‖wε,η‖2Hs′ ‖uε‖2Hs+1

+ (‖uε‖Hs + ‖uη‖Hs
)2k−2 ‖wε,η‖2Hs

∣
∣Q3,s

∣
∣ �

∣
∣
∣

(
[Ds, ukη]∂xwε,η, D

swε,η

)

L2

∣
∣
∣+
∣
∣
∣

(
ukη∂x D

swε,η, D
swε,η

)

L2

∣
∣
∣

� ‖wε,η‖2Hs‖uη‖kHs ,

and

∣
∣Q4,s

∣
∣ � ‖wε,η‖2Hs

(‖uε‖Hs + ‖uη‖Hs
)k

.

The above estimates and H1(2) imply that there is a constant C(K ) > 0 such that

5∑

i=2

E

∫ τ Tε,η

0
|Qi,s | dt

� E

∫ τ Tε,η

0

[((‖uε‖Hs + ‖uη‖Hs
)2k + 1

)
‖wε,η‖2Hs + ‖wε,η‖2Hs′ ‖uε‖2Hs+1

]
dt

+ E

∫ τ Tε,η

0
g21(K )‖wε,η‖2Hs dt

≤ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖wε,η(t

′)‖2Hs dt + C(K )TE sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′ ‖uε(t)‖2Hs+1 .

For Q1,s , applying the BDG inequality and H1(2), we derive

E

⎛

⎝ sup
t∈[0,τ Tε,η]

∫ t

0

( [
h(t, uε) − h(t, uη)

]
dW, wε,η

)

Hs

⎞

⎠

≤ 1

2
E sup

t∈[0,τ Tε,η]
‖wε,η‖2Hs + Cg21(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖wε,η(t

′)‖2Hs dt .
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Summarizing the above estimates and then using Grönwall’s inequality, we find some
constant C = C(K , T ) > 0 such that

E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs

≤ C

⎛

⎝E‖wε,η(0)‖2Hs + E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′ ‖uε(t)‖2Hs+1

⎞

⎠ . (3.9)

Now we estimate E supt∈[0,τ Tε,η] ‖wε,η(t)‖2Hs′ ‖uε(t)‖2Hs+1 . To this end, we first recall
(1.7) and then apply the Itô formula to deduce that for any ρ > 0,

d‖uε‖2Hρ = 2
∞∑

l=1

(h(t, uε)el , uε)Hρ dWl − 2
(
Dρ
[
(uε)

k∂xuε

]
, Dρuε

)

L2
dt

− 2
(
DρF(uε), D

ρuε

)

L2 dt + ‖h(t, uε)‖2L2(U;Hρ) dt

:=
∞∑

l=1

Z1,ρ,l dWl +
4∑

i=2

Zi,ρ dt . (3.10)

In the same way, we also rewrite Q1,s in (3.8) as

Q1,s = 2
∞∑

j=1

([
h(t, uε) − h(t, uη)

]
e j , wε,η

)

Hs dWj :=
∞∑

j=1

Q1,s, j dWj . (3.11)

With the summation form (3.11) at hand, applying the Itô product rule to (3.8) and
(3.10), we derive

d‖wε,η‖2Hs′ ‖uε‖2Hs+1 =
∞∑

j=1

(
‖wε,η‖2Hs′ Z1,s+1, j + ‖uε‖2Hs+1Q1,s′, j

)
dWj

+
4∑

i=2

‖wε,η‖2Hs′ Zi,s+1 dt +
5∑

i=2

‖uε‖2Hs+1Qi,s′ dt

+
∞∑

j=1

Q1,s′, j Z1,s+1, j dt .

We first notice that

Q2,s′ + Q3,s′ = 2

k + 1

(
∂x (Pkwε,η), wε,η

)

Hs′ ,

123



Stoch PDE: Anal Comp

where Pk is defined by (3.7). As a result, Lemma A.4, integration by parts and Hs ↪→
W 1,∞ give rise to

|Q2,s′ + Q3,s′ | � ‖wε,η‖2Hs′
(‖uε‖Hs + ‖uη‖Hs

)k
.

Using Lemma A.3, Hypothesis H1, Lemma A.5 as well as the embedding of Hs ↪→
W 1,∞ for s > 3/2, we obtain that for some C(K ) > 0,

4∑

i=2

‖wε,η‖2Hs′ |Zi,s+1| � ‖wε,η‖2Hs′
[
‖uε‖kHs ‖uε‖2Hs+1 + f 2(‖uε‖Hs )(1 + ‖uε‖2Hs+1 )

]
,

5∑

i=4

E

∫ τ Tε,η

0
‖uε‖2Hs+1 |Qi,s′ | dt ≤ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖uε(t

′)‖2Hs+1‖wε,η(t
′)‖2

Hs′ dt .

Then one can infer from the above three inequalities, the BDG inequality and Hypoth-
esis H1 that for some constant C(K ) > 0,

E sup
t∈[0,τ Tε,η]

‖wε,η‖2Hs′ ‖uε‖2Hs+1 − E‖wε,η(0)‖2Hs′ ‖uε(0)‖2Hs+1

� E

(∫ τ Tε,η

0
‖wε,η‖4Hs′ ‖h(t, uε)‖2L2(U;Hs+1)

‖uε‖2Hs+1 dt

) 1
2

+ E

(∫ τ Tε,η

0
‖uε‖4Hs+1‖h(t, uε) − h(t, uη)‖2L2(U;Hs′ )‖wε,η‖2Hs′ dt

) 1
2

+
4∑

i=2

E

∫ τ Tε,η

0
‖wε,η‖2Hs′ |Zi,s+1| dt + E

∫ τ Tε,η

0
‖uε‖2Hs+1 |Q2,s′ + Q3,s′ | dt

+
5∑

i=4

E

∫ τ Tε,η

0
‖uε‖2Hs+1 |Qi,s′ | dt + E

∫ τ Tε,η

0

∞∑

j=1

|Q1,s′, j Z1,s+1, j | dt

≤ 1

2
E sup

t∈[0,τ Tε,η]
‖wε,η‖2Hs′ ‖uε‖2Hs+1

+ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖wε,η(t

′)‖2
Hs′ ‖uε(t

′)‖2Hs+1 dt

+ C(K )TE sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′ + E

∫ τ Tε,η

0

∞∑

j=1

|Q1,s′, j Z1,s+1, j | dt . (3.12)

For the last term, we proceed as follows:

E

∫ τ Tε,η

0

∞∑

j=1

∣
∣Q1,s′, j Z1,s+1, j

∣
∣ dt
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� E

∫ τ Tε,η

0
‖h(t, uε) − h(t, uη)‖L2(U;Hs′ )‖wε,η‖Hs′ ‖h(t, uε)‖L2(U;Hs+1)‖uε‖Hs+1 dt .

≤ C(K )TE sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′

+ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖wε,η(t

′)‖2
Hs′ ‖uε(t

′)‖2Hs+1 dt

Consequently, (3.12) reduces to

E sup
t∈[0,τ Tε,η]

‖wε,η‖2Hs′ ‖uε‖2Hs+1 − 2E‖wε,η(0)‖2Hs′ ‖uε(0)‖2Hs+1

≤ C(K )TE sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′

+ C(K )

∫ T

0
E sup

t ′∈[0,τ tε,η]
‖wε,η(t

′)‖2
Hs′ ‖uε(t

′)‖2Hs+1 dt,

which means that for some C(K , T ) > 0,

E sup
t∈[0,τ Tε,η]

‖wε,η‖2Hs′ ‖uε‖2Hs+1

≤ C

⎛

⎝E‖wε,η(0)‖2Hs′ ‖uε(0)‖2Hs+1 + E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′

⎞

⎠ . (3.13)

Combining (3.9) and (3.13), we obtain (3.5). ��
To proceed further, we state the following lemma in [25] as a form which is conve-

nient for our purposes.

Lemma 3.4 (Lemma 5.1, [25]) Let all the conditions in Lemma 3.3 hold true. Assume

lim
ε→0

sup
η≤ε

E sup
t∈[0,τ Tε,η]

‖uε − uη‖Hs = 0 (3.14)

and

lim
a→0

sup
ε∈(0,1)

P

{

sup
t∈[0,τ Tε ∧a]

‖uε‖Hs ≥ ‖Jεu0‖Hs + 1

}

= 0 (3.15)

hold true. Then we have:

(a) There exists a sequence of stopping times ξεn , for some countable sequence {εn}
with εn → 0 as n → ∞, and a stopping time τ such that

ξεn ≤ τ T
εn

, lim
n→∞ ξεn = τ ∈ (0, T ] P-a.s.
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(b) There is a process u ∈ C([0, τ ]; Hs) such that

lim
n→∞ sup

t∈[0,τ ]
‖uεn − u‖Hs = 0, sup

t∈[0,τ ]
‖u‖Hs ≤ ‖u0‖Hs + 2 P-a.s.

(c) There is a sequence of sets �n ↑ � such that for any p ∈ [1,∞),

1�n sup
t∈[0,τ ]

‖uεn‖Hs ≤ ‖u0‖Hs + 2 P-a.s., and sup
n

E

(

1�n sup
t∈[0,τ ]

‖uεn‖p
Hs

)

< ∞.

Remark 3.1 In the original form of [25, Lemma 5.1], the authors only emphasize the
existence of stopping time τ ∈ (0, T ] such that (b) and (c) in Lemma 3.4 hold true.
However, here we point out that they obtained such τ by constructing stopping times
ξεn . We refer to (5.2), (5.12), (5.15), (5.20) and (5.24) in [25] for the details. The
properties (a) and (c) in Lemma 3.4 will be used in the proof for (iii) in Theorem 1.1.

Proposition 3.2 Let Hypothesis H1 hold. Assume that s > 3/2, k ≥ 1 and let u0 is an
Hs-valued F0-measurable random variable such that ‖u0‖Hs ≤ M for some M > 0.
Then (1.4) has a unique pathwise solution (u, τ ) in the sense of Definition 1.1 such
that

sup
t∈[0,τ ]

‖u‖Hs ≤ ‖u0‖Hs + 2 P-a.s.

Proof We first prove that {uε} satisfies the estimates (3.14) and (3.15).
(i) (3.14) is satisfied. Lemma A.1 tells us that

lim
ε→0

sup
η≤ε

E‖wε,η(0)‖2Hs = 0. (3.16)

Since ‖Jεu0‖Hs ≤ M , as in Lemma 3.1, we have

lim
ε→0

sup
η≤ε

E sup
t∈[0,τ Tε,η]

‖wε,η(t)‖2Hs′ ≤ C(M, T ) lim
ε→0

sup
η≤ε

E‖wε,η(0)‖2Hs = 0. (3.17)

Moreover, it follows from Lemma A.1 that

lim
ε→0

sup
η≤ε

‖wε,η(0)‖2Hs′ ‖uε(0)‖2Hs+1 � lim
ε→0

sup
η≤ε

o
(
ε2s−2s′

)
O

(
1

ε2

)

= 0. (3.18)

Summarizing (3.16), (3.17), (3.18) and Lemma 3.3, (3.14) holds true.
(ii) (3.15) is satisfied. Recall (3.10) and let a > 0. We have
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sup
t∈[0,τ Tε ∧a]

‖uε(t)‖2Hs ≤ ‖Jεu0‖2Hs + sup
t∈[0,τ Tε ∧a]

∣
∣
∣
∣
∣
∣

∫ t

0

∞∑

j=1

Z1,s, j dWj

∣
∣
∣
∣
∣
∣

+
4∑

i=2

∫ τ Tε ∧a

0
|Zi,s | dt,

which clearly forces that

P

{

sup
t∈[0,τ Tε ∧a]

‖uε(t)‖2Hs > ‖Jεu0‖2Hs + 1

}

≤ P

⎧
⎨

⎩
sup

t∈[0,τ Tε ∧a]

∣
∣
∣
∣
∣
∣

∫ t

0

∞∑

j=1

Z1,s, j dWj

∣
∣
∣
∣
∣
∣
>

1

2

⎫
⎬

⎭
+ P

{
4∑

i=2

∫ τ Tε ∧a

0
|Zi,s | dt >

1

2

}

.

Due to theChebyshev inequality, LemmasA.3 andA.5,Hypothesis H1, the embedding
of Hs ↪→ W 1,∞ for s > 3/2, (3.4) and (3.6), we have

P

{
4∑

i=2

∫ τ Tε ∧a

0
|Zi,s | dt >

1

2

}

≤ C
4∑

i=2

E

∫ τ Tε ∧a

0
|Zi,s | dt

≤ CE

∫ τ Tε ∧a

0

[
‖uε‖k+2

Hs + f 2(‖uε‖Hs )(1+‖uε‖2Hs )
]
dt

≤ CE

∫ τ Tε ∧a

0
C(M, T ) dt ≤ C(M, T )a.

Then we can infer from the Doob’s maximal inequality and the Itô isometry that

P

⎧
⎨

⎩
sup

t∈[0,τ Tε ∧a]

∣
∣
∣
∣
∣
∣

∫ t

0

∞∑

j=1

Z1,s, j dWj

∣
∣
∣
∣
∣
∣
>

1

2

⎫
⎬

⎭

≤ CE

⎛

⎝

∫ τ Tε ∧a

0

∞∑

j=1

Z1,s, j dWj

⎞

⎠

2

≤ CE

∫ τ Tε ∧a

0

[
f 2(‖uε‖W 1,∞)(1 + ‖uε‖Hs )2‖uε‖2Hs

]
dt

≤ CE

∫ τ Tε ∧a

0
C(M, T ) dt ≤ C(M, T )a.

Hence we have

P

{

sup
t∈[0,τ Tε ∧a]

‖uε(t)‖2Hs > ‖Jεu0‖2Hs + 1

}

≤ C(M, T )a,
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which gives (3.15).
(iii) Applying Lemma 3.4. By Lemma 3.4, we can take limit in some subse-

quence of {uεn } to build a solution u to (1.4) such that u ∈ C([0, τ ]; Hs) and
supt∈[0,τ ] ‖u‖Hs ≤ ‖u0‖Hs + 2. Uniqueness is a direct corollary of Lemma 3.2.

��
Now we can finish the proof for (i) in Theorem 1.1.
Proof for (i) in Theorem 1.1. As in Proposition 3.1, we let

u0(ω, x) :=
∑

m≥1

u0,m(ω, x) :=
∑

m≥1

u0(ω, x)1{m−1≤‖u0‖Hs<m} P-a.s.

For each m ≥ 1, we can infer from Proposition 3.2 that (1.4) has a unique solu-
tion (um, τm) with um(0) = u0,m almost surely. Furthermore, supt∈[0,τm ] ‖um‖Hs ≤
‖u0,m‖Hs + 2 P-a.s. Using Lemma A.7 in a similar way as in Proposition 3.2, we find
that

⎛

⎝u =
∑

m≥1

1{m−1≤‖u0‖Hs<m}um, τ =
∑

m≥1

1{m−1≤‖u0‖Hs<m}τm

⎞

⎠

is a solution to (1.4) satisfying (1.11) and u(0) = u0 almost surely. Uniqueness is
given by Lemma 3.2. ��

3.2 Proof for (ii) in Theorem 1.1: Blow-up criterion

With a local solution (u, τ ) at hand, one may pass from (u, τ ) to the maximal solution
(u, τ ∗) as in [5, 26]. In the periodic setting, i.e., x ∈ T = R/2πZ, the blow-up criterion
(1.12) for a maximal solution has been proved in [46] by using energy estimate and
some stopping-time techniques. When x ∈ R, (1.12) can be also obtained in the same
way, and we omit the details for brevity.

3.3 Proof for (iii) in Theorem 1.1: Stability

Let u0, v0 ∈ L∞(�; Hs) be two Hs-valued F0-measurable random variables. Let u
and v be the corresponding solutions with initial conditions u0 and v0. To prove (iii)
in Theorem 1.1, for any ε > 0 and T > 0, we need to find a δ = δ(ε, u0, T ) > 0 and
a τ ∈ (0, T ] P-a.s. such that (1.14) holds true as long as (1.13) is satisfied. Without
loss of generality, by (1.13), we can first assume

‖v0‖L∞(�;Hs ) ≤ ‖u0‖L∞(�;Hs ) + 1. (3.19)

From now on ε > 0 and T > 0 are given.
However, as is mentioned in Remark 1.1, the term ukux loses one regularity and

the estimate for E supt∈[0,τ ] ‖u(t) − v(t)‖2Hs will involve ‖u‖Hs+1 or ‖v‖Hs+1 , which
might be infinite since we only know u, v ∈ Hs . To overcome this difficulty, we will
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consider (3.3). Let ε ∈ (0, 1). By (i) in Theorem 1.1, there is a unique solution uε

(resp. vε) to the problem (3.3) with initial data Jεu0 (resp. Jεv0). Then the Hs+1-norm
is well-defined for the smooth solution uε and vε. Similar to (3.4), for any T > 0, we
define

τ f ,T
ε := inf {t ≥ 0 : ‖ fε‖Hs ≥ ‖Jε f0‖Hs + 2} ∧ T , f ∈ {u, v}. (3.20)

Recalling the analysis in Lemma 3.3 and Proposition 3.2 (for the case f = v, we
notice (3.19)), we can use Lemma 3.4 to find that there exists a unified subsequence
{εn} with εn → 0 as n → ∞ such that for f ∈ {u, v}, there is a sequence of stopping
times ξ

f
εn and a stopping time τ f satisfying

ξ f
εn

≤ τ f ,T
εn

, n ≥ 1 and lim
n→∞ ξ f

εn
= τ f ∈ (0, T ] P-a.s., (3.21)

and

lim
n→∞ sup

t∈[0,τ f ]
‖ f − fεn‖Hs = 0, sup

t∈[0,τ f ]
‖ f ‖Hs ≤ ‖ f0‖Hs + 2 P-a.s. (3.22)

Moreover, for f ∈ {u, v}, there exists �
f
n ↑ � such that

1
�

f
n

sup
t∈[0,τ f ]

‖ fεn‖Hs ≤ ‖ f0‖Hs + 2 P-a.s. (3.23)

Next, we let �n := �u
n ∩ �v

n . Then �n ↑ �. This, (3.22), (3.23) and Lebesgue’s
dominated convergence theorem yield

lim
n→∞ E sup

t∈[0,τ f ]
‖ f − 1�n fεn‖2Hs = 0, f ∈ {u, v}.

Therefore, we have, when n is large enough, that

E sup
t∈[0,τ f ]

‖ f − 1�n fεn‖2Hs <
ε

9
, f ∈ {u, v}. (3.24)

Now we consider E supt∈[0,τ u∧τv] ‖1�n uεn − 1�nvεn‖2Hs . It follows from (3.21) that
for all n ≥ 1,

E sup
t∈[0,τ u∧τv]

‖1�n uεn − 1�nvεn‖2Hs

≤ E sup
t∈[0,ξuεn∧ξv

εn∧τ u∧τv]
‖1�n uεn − 1�nvεn‖2Hs

+ E sup
t∈[ξuεn∧ξv

εn∧τ u∧τv,τ u∧τv]
‖1�n uεn − 1�nvεn‖2Hs

≤ E sup
t∈[0,τ u,T

εn ∧τ
v,T
εn ]

‖uεn (t) − vεn (t)‖2Hs

123



Stoch PDE: Anal Comp

+ E sup
t∈[ξuεn∧ξv

εn∧τ u∧τv,τ u∧τv]
‖1�n uεn − 1�nvεn‖2Hs . (3.25)

By (3.23),

sup
t∈[ξuεn∧ξv

εn∧τ u∧τv,τ u∧τv]
‖1�n uεn − 1�nvεn‖2Hs ≤ 32

(
‖u0‖2Hs + ‖v0‖2Hs + 1

)
.

Consequently, by Lebesgue’s dominated convergence theorem and (3.21), we have
for n � 1 that,

E sup
t∈[ξuεn∧ξv

εn∧τ u∧τv,τ u∧τv]
‖1�n uεn − 1�nvεn‖2Hs <

ε

18
. (3.26)

Now we estimate E supt∈[0,τ u,T
εn ∧τ

v,T
εn ] ‖uεn (t) − vεn (t)‖2Hs . Similar to (3.5), by using

(3.19), one can show that for s′ ∈ ( 12 ,min
{
s − 1, 3

2

})
,

E sup
t∈[0,τ u,T

εn ∧τ
v,T
εn ]

‖uεn (t) − vεn (t)‖2Hs

≤ CE

{
‖Jεn u0 − Jεnv0‖2Hs + ‖Jεn u0 − Jεnv0‖2Hs′ ‖Jεn u0‖2Hs+1

}

+ CE sup
t∈[0,τ u,T

εn ∧τ
v,T
εn ]

‖uεn (t) − vεn (t)‖2Hs′

≤ CE

{
‖u0 − v0‖2Hs + 1

ε2n
‖u0 − v0‖2Hs′ ‖u0‖2Hs

}

+ CE sup
t∈[0,τ u,T

εn ∧τ
v,T
εn ]

‖uεn (t) − vεn (t)‖2Hs′ , (3.27)

where C = C
(‖u0‖L∞(�;Hs ), T

)
and Lemma A.1 is used in the last step. Since

u0 ∈ L∞(�; Hs), by Lemmas 3.1 and A.1 again, we have

E sup
t∈[0,τ u,T

εn ∧τ
v,T
εn ]

‖uεn (t) − vεn (t)‖2Hs

≤ CE

{

‖u0 − v0‖2Hs + 1

ε2n
‖u0 − v0‖2Hs′ ‖u0‖2Hs

}

+ CE‖Jεn u0 − Jεnv0‖2Hs′

≤ CE‖u0 − v0‖2Hs + C
1

ε2n
E‖u0 − v0‖2Hs′ + CE‖u0 − v0‖2Hs′ , (3.28)
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where C = C
(‖u0‖L∞(�;Hs ), T

)
as before. Fix n = n0 � 1 such that (3.24) and

(3.26) are satisfied, i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

E sup
t∈[0,τ f ]

‖ f − 1�n0
fεn0 ‖2Hs <

ε

9
, f ∈ {u, v},

E sup
t∈[ξuεn0 ∧ξv

εn0
∧τ u∧τv,τ u∧τv]

‖1�n0
uεn0

− 1�n0
vεn0

‖2Hs <
ε

18
.

(3.29)

Then, for (3.28) with n = n0, we can find a δ = δ(ε, u0, T ) ∈ (0, 1) such that (3.19)
is satisfied and

E sup
t∈[0,τ u,T

εn0
∧τ

v,T
εn0

]
‖uεn0

(t) − vεn0
(t)‖2Hs <

ε

18
, if ‖u0 − v0‖L∞(�;Hs ) < δ. (3.30)

As a result, for (3.25) with fixed n = n0, we use (3.29)2 and (3.30) to derive that

E sup
t∈[0,τ u∧τv ]

‖1�n0
uεn0

− 1�n0
vεn0

‖2Hs ≤ ε

18
+ ε

18
= ε

9
, if ‖u0 − v0‖L∞(�;Hs ) < δ.

This inequality and (3.29)1 yield that

E sup
t∈[0,τ u∧τv]

‖u − v‖2Hs

≤ 3
∑

f ∈{u,v}
E sup

t∈[0,τ u∧τv]
‖ f − 1�n0

fεn0 ‖2Hs

+ 3E sup
t∈[0,τ u∧τv]

‖1�n0
uεn0

− 1�n0
vεn0

‖2Hs

≤ ε

3
+ ε

3
+ ε

3
= ε, if ‖u0 − v0‖L∞(�;Hs ) < δ.

Hence we obtain (1.14) with τ = τ u ∧ τv . Due to (3.21), τ ∈ (0, T ] almost surely.

Remark 3.2 Here we remark that the restriction 1�n is needed to estimate

E sup
t∈[0,τ f ]

‖ f − 1�n fεn‖2Hs

for f ∈ {u, v}. This is because we only have limn→∞ supt∈[0,τ f ] ‖ f − fεn‖Hs = 0
P-a.s. (cf. (b) in Lemma 3.4), and we need to interchange limit and expectation. By
(c) in Lemma 3.4,

sup
t∈[0,τ f ]

‖ f − 1�n fεn‖2Hs ≤ 2 sup
t∈[0,τ f ]

‖ f ‖2Hs + 21�n sup
t∈[0,τ f ]

‖ fεn‖2Hs ≤ 4‖ f0‖2Hs + 16.

Hence Lebesgue’s dominated convergence theorem can be used. In the deterministic
case, one can directly consider ‖ f − fεn‖2Hs .
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4 Weak instability

Now we prove Theorem 1.2. As is mentioned in Remark 1.3, since we can not get an
explicit expression of the solution to (1.4), we start with constructing some approxi-
mative solutions from which (1.19) can be established.

4.1 Approximative solutions and actual solutions

Following the approach in [28, 46], now we construct the approximative solutions.
We fix two functions φ, φ̃ ∈ C∞

c such that

φ(x) =
{
1, if |x | < 1,

0, if |x | ≥ 2,
and φ̃(x) = 1 if x ∈ supp φ. (4.1)

Let k ≥ 1 and

m ∈ {−1, 1} if k is odd and m ∈ {0, 1} if k is even. (4.2)

Then we consider the following sequence of approximative solutions

um,n = ul + uh, (4.3)

where uh = uh,m,n is the high-frequency part defined by

uh = uh,m,n(t, x) = n− δ
2−sφ

( x

nδ

)
cos(nx − mt), n ∈ N, (4.4)

and ul = ul,m,n is the low-frequency part constructed such that ul is the solution to
the following problem:

⎧
⎨

⎩

∂t ul + ukl ∂xul + F(ul) = 0, x ∈ R, t > 0, k ≥ 1,

ul(0, x) = mn− 1
k φ̃
( x

nδ

)
, x ∈ R.

(4.5)

The parameter δ > 0 in (4.4) and (4.5) will be determined later for different k ≥ 1.
Particularly, when m = 0, we have ul = 0. In this case the approximative solution
u0,n has no low-frequency part and

u0,n(t, x) = n− δ
2−sφ

( x

nδ

)
cos(nx).

Next, we consider the problem (1.4) with initial data um,n(0, x), i.e.,

⎧
⎨

⎩

du + [uk∂xu + F(u)] dt = h(t, u) dW, t > 0, x ∈ R,

u(0, x) = mn− 1
k φ̃
( x

nδ

)
+ n− δ

2−sφ
( x

nδ

)
cos(nx), x ∈ R,

(4.6)
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where F(·) is defined by (1.5). Since h satisfies H2(1), similar to the proof for Theorem
1.1, we see that for each fixed n ∈ N, (4.6) has a unique solution (um,n, τm,n) such
that um,n ∈ C ([0, τm,n]; Hs) P-a.s. with s > 5/2.

4.2 Estimates on the errors

Substituting (4.3) into (1.4), we define the error E(ω, t, x) as

E(ω, t, x) := um,n(t, x) − um,n(0, x)

+
∫ t

0

[
ukm,n∂xum,n + F(um,n)

]
dt ′ −

∫ t

0
h(t ′, um,n) dW P-a.s.

For simplicity, we let

Zq = Zq(uh, ul) =

⎧
⎪⎪⎨

⎪⎪⎩

q∑

j=1

C j
q u

q− j
l u j

h, if q ≥ 1,

0, if q = 0,

(4.7)

where C j
q is the binomial coefficient. By using (4.3), (4.5) and (4.7), E(ω, t, x) can

be reformulated as

E(ω, t, x)

= ul(t, x) − ul(0, x) +
∫ t

0
ukl ∂xul dt

′ +
∫ t

0
F(ul) dt

′

+ uh(t, x) − uh(0, x) +
∫ t

0

[
ukl ∂xuh + Zk(∂xul + ∂xuh)

]
dt ′

+
∫ t

0
[F(ul + uh) − F(ul)] dt

′ −
∫ t

0
h(t ′, um,n) dW

= uh(t, x) − uh(0, x) +
∫ t

0

[
ukl ∂xuh + Zk(∂xul + ∂xuh)

]
dt ′

+
∫ t

0
[F(ul + uh) − F(ul)] dt

′ −
∫ t

0
h(t ′, um,n) dW P-a.s. (4.8)

4.2.1 Estimates on the low-frequency part

The following lemma gives a decay estimate for the low-frequency part of um,n , that
is, ul .

Lemma 4.1 Let k ≥ 1, |m| = 1 or m = 0, s > 3/2, δ ∈ (0, 2/k) and n � 1. Then
there is a Tl > 0 such that for all n � 1, the initial value problem (4.5) has a unique
smooth solution ul = ul,m,n ∈ C([0, Tl ]; Hs) such that Tl does not depend on n.
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Besides, for all r > 0, there is a constant C = Cr ,φ̃,Tl
> 0 such that ul satisfies

‖ul(t)‖Hr ≤ C |m|n δ
2− 1

k , t ∈ [0, Tl ]. (4.9)

Proof When m = 0, as is mentioned above, ul ≡ 0 for all t ≥ 0. It remains to prove
the case |m| = 1. For any fixed n ≥ 1, since ul(0, x) ∈ H∞, by applying Theorem
1.1 with h = 0 and deterministic initial data, we see that for any s > 3/2, (4.5) has
a unique (deterministic) solution ul = ul,m,n ∈ C

([0, Tm,n]; Hs
)
. Different from the

stochastic case, here we will show that there is a lower bound of the existence time,
i.e., there is a Tl > 0 such that for all n � 1, ul = ul,m,n exists on [0, Tl ] and satisfies
(4.9).

Step 1: Estimate ‖ul(0, x)‖Hr . When n � 1, we have

‖ul(0, x)‖2Hr =m2n2δ−
2
k

∫

R

(1 + |ξ |2)r
∣
∣
∣
̂̃
φ(nδξ)

∣
∣
∣
2
dξ

=m2nδ− 2
k

∫

R

(

1 +
∣
∣
∣
z

nδ

∣
∣
∣
2
)r ∣
∣
∣
̂̃
φ(z)

∣
∣
∣
2
dz ≤ Cm2nδ− 2

k

for some constant C = Cr ,φ̃ > 0. As a result, we have

‖ul(0, x)‖Hr ≤ C |m|n δ
2− 1

k .

Step 2: Prove (4.9) for r > 3/2. In this case, we apply Lemmas A.3 and A.5,
Hr ↪→ W 1,∞ to find

1

2

d

dt
‖ul‖2Hr

≤
∣
∣
∣

(
Drul , D

r
(
ukl ∂xul

))

L2

∣
∣
∣+ ∣∣(Drul , D

r F(ul)
)

L2

∣
∣

≤
∣
∣
∣

(
[Dr , ukl ]∂xul , Drul

)

L2

∣
∣
∣+
∣
∣
∣

(
ukl D

r∂xul , D
rul
)

L2

∣
∣
∣+ ‖ul‖Hr ‖F(ul)‖Hr

� ‖ukl ‖Hr ‖∂xul‖L∞‖ul‖Hr + ‖∂xul‖L∞‖ul‖k−1
L∞ ‖ul‖2Hr + ‖ul‖kW 1,∞‖ul‖2Hr

≤ C‖ul‖k+2
Hr , C = Cr > 0.

Solving the above inequality gives

‖ul‖Hr ≤ ‖ul(0)‖Hr

(
1 − Ckt‖ul(0)‖kHr

) 1
k

, 0 ≤ t <
1

Ck‖ul(0)‖kHr

.

Therefore, we arrive at

‖ul‖Hr ≤ 2‖ul(0)‖Hr , t ∈ [0, Tm,n], Tm,n = 1

2Ck‖ul(0)‖kHr

. (4.10)
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By Step 1, we have Tm,n � 1

2Cknk(
δ
2− 1

k )
→ ∞, as n → ∞. Consequently, we can

find a common time interval [0, Tl ] such that

‖ul‖Hr ≤ 2‖ul(0)‖Hr ≤ C |m|n δ
2− 1

k , t ∈ [0, Tl ],

which is (4.9).
Step 3: Prove (4.9) for 0 < r ≤ 3/2. Similarly, by applying Lemmas A.3 and A.5,

we have

1

2

d

dt
‖ul‖2Hr

≤
∣
∣
∣

(
Drul , D

r
(
ukl ∂xul

))

L2

∣
∣
∣+ ∣∣(Drul , D

r F(ul)
)

L2

∣
∣

≤
∣
∣
∣

(
[Dr , ukl ]∂xul , Drul

)

L2

∣
∣
∣+
∣
∣
∣

(
ukl D

r∂xul , D
rul
)

L2

∣
∣
∣+ ‖ul‖Hr ‖F(ul)‖Hr

� ‖ukl ‖Hr ‖∂xul‖L∞‖ul‖Hr + ‖∂xul‖L∞‖ul‖k−1
L∞ ‖ul‖2Hr

+ ‖ul‖Hr ‖ul‖kW 1,∞ (‖ul‖Hr + ‖∂xul‖Hr ) .

It follows from the embedding Hr+ 3
2 ↪→ Hr+1 and Hr+ 3

2 ↪→ W 1,∞ that

1

2

d

dt
‖ul‖2Hr � ‖ukl ‖Hr ‖∂xul‖L∞‖ul‖Hr + ‖∂xul‖L∞‖ul‖k−1

L∞ ‖ul‖2Hr

+ ‖ul‖Hr ‖ul‖kW 1,∞ (‖ul‖Hr + ‖∂xul‖Hr )

� ‖ul‖kW 1,∞‖ul‖2Hr + ‖ul‖kW 1,∞ ‖ul‖Hr ‖ul‖Hr+1

� ‖ul‖k
Hr+ 3

2
‖ul‖2Hr + ‖ul‖Hr ‖ul‖k+1

Hr+ 3
2
.

Using the conclusion of Step 2 for r + 3
2 > 3

2 , we have

d

dt
‖ul‖Hr � ‖ul‖Hr ‖ul(0)‖k

Hr+ 3
2

+ ‖ul(0)‖k+1

Hr+ 3
2
, t ∈ [0, Tl ],

and hence

‖ul(t)‖Hr � ‖ul(0)‖Hr + ‖ul(0)‖k+1

Hr+ 3
2
Tl +

∫ t

0
‖ul‖Hr ‖ul(0)‖k

Hr+ 3
2
dt ′, t ∈ [0, Tl ].

Applying Grönwall’s inequality to the above inequality, we have

‖ul‖Hr �
(

‖ul(0)‖Hr + ‖ul(0)‖k+1

Hr+ 3
2
Tl

)

exp

{

‖ul(0)‖k
Hr+ 3

2
Tl

}

, t ∈ [0, Tl ].

Since δ ∈ (0, 2/k), we can infer from Step 1 that exp

{

‖ul(0)‖k
Hr+ 3

2
Tl

}

< C(Tl) for

some constant C(Tl) > 0 and ‖ul(0)‖k+1

Hr+ 3
2

≤ ‖ul(0)‖
Hr+ 3

2
≤ C |m|n δ

2− 1
k . Hence we
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see that there is a constant C = Cr ,φ̃,Tl
> 0 such that

‖ul‖Hr ≤ C |m|n δ
2− 1

k , t ∈ [0, Tl ],

which is (4.9). ��

Recall the approximative solution defined by (4.3). The above result means that the
Hs-norm of the low-frequency part ul is decaying. For the high-frequency part uh , as
in Lemma A.8, its Hs-norm is bounded.

4.2.2 Estimate on E

Recall the error E given in (4.8). By using (4.1) and (4.2), we have m = mk and
φ = φ̃kφ for all k ≥ 1. Then by (4.4) and ul(0, x) in (4.5), we see that as long as
m �= 0,

uh(t, x) − uh(0, x)

= n− δ
2−sφ

( x

nδ

)
cos(nx − mt) − n− δ

2−sφ
( x

nδ

)
cos(nx)

= m−1mk φ̃k
( x

nδ

)
n− δ

2−sφ
( x

nδ

)
cos(nx − mt)

− m−1mk φ̃k
( x

nδ

)
n− δ

2−sφ
( x

nδ

)
cos(nx)

= m−1ukl (0, x)n
1− δ

2−sφ
( x

nδ

)
cos(nx − mt)

− m−1ukl (0, x)n
1− δ

2−sφ
( x

nδ

)
cos(nx)

=
∫ t

0
ukl (0, x)n

1− δ
2−sφ

( x

nδ

)
sin(nx − mt ′) dt ′.

If m = 0, then ul = 0 and we also have

uh(t, x) − uh(0, x) =
∫ t

0
0 dt ′ =

∫ t

0
ukl (0, x)n

1− δ
2−sφ

( x

nδ

)
sin(nx − mt ′) dt ′.

To sum up, we find that for all k ≥ 1,m satisfying (4.2), uh given by (4.4) and ul(0, x)
in (4.5),

uh(t, x) − uh(0, x) =
∫ t

0
ukl (0, x)n

1− δ
2−sφ

( x

nδ

)
sin(nx − mt ′) dt ′. (4.11)

On the other hand, for all k ≥ 1,
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∫ t

0
ukl ∂xuh dt

′ = −
∫ t

0
ukl (t

′)n1−
δ
2−sφ

( x

nδ

)
sin(nx − mt ′) dt ′

+
∫ t

0
ukl (t

′)n− 3δ
2 −s∂xφ

( x

nδ

)
cos(nx − mt ′) dt ′. (4.12)

Combining (4.11), (4.12) and (1.5) into (4.8) yields

E(ω, t, x) =
4∑

i=1

∫ t

0
Ei dt

′ −
∫ t

0
h(t ′, um,n) dW, k ≥ 1 P-a.s., (4.13)

where

E1 := [ukl (0) − ukl (t)]n1−
δ
2−sφ

( x

nδ

)
sin(nx − mt)

+ ukl (t)n
− 3δ

2 −s∂xφ
( x

nδ

)
cos(nx − mt) + Zk(∂xul + ∂xuh),

E2 := F1(ul + uh) − F1(ul) = D−2∂xZk+1,

E3 := F2(ul + uh) − F2(ul)

= 2k − 1

2
D−2∂x

{
uk−1
l

[
2(∂xul)(∂xuh) + (∂xuh)

2
]

+ Zk−1(∂xul + ∂xuh)
2
}
,

E4 := F3(ul + uh) − F3(ul)

= k − 1

2
D−2

{
uk−2
l

[
3(∂xul)

2(∂xuh) + 3(∂xul)(∂xuh)
2 + (∂xuh)

3]

+ Zk−2(∂xul + ∂xuh)
3
}
.

We remark here that E4 disappears when k = 1. Recalling ρ0 ∈ (1/2, 1) in Hypothesis
H2, now we shall estimate the Hρ0 -norm of the error E . Actually, we will show that
the Hρ0 -norm of E is decaying.

Lemma 4.2 Let Tl > 0 be given in Lemma 4.1, and ρ0 ∈ (1/2, 1) be given in H2. Let
n � 1, s > 5/2. Let

⎧
⎪⎨

⎪⎩

2

3
< δ < 1, when k = 1,

2

k
− 2

2k − 1
< δ <

1

k
, when k ≥ 2,

(4.14)

and

0 > rs = −s − 1 + ρ0 + kδ, k ≥ 1. (4.15)

Then the error E given by (4.13) satisfies that for some C = C(Tl) > 0,

E sup
t∈[0,Tl ]

‖E(t)‖2Hρ0 ≤ Cn2rs .
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Proof The proof is technical and it is given in Appendix B. ��

4.2.3 Estimate on um,n − um,n

Recall the approximative solutions um,n given by (4.3). Then we have the follow-
ing estimates on the difference between the actual solutions and the approximative
solutions.

Lemma 4.3 Let k ≥ 1, s > 5/2 and ρ0 be given in H2. Let (4.14) hold true and rs < 0
be given in (4.15). For any R > 1, we define

τ
m,n
R := inf{t > 0 : ‖um,n‖Hs > R}. (4.16)

Then for n � 1,

E sup
t∈[0,Tl∧τ

m,n
R ]

‖(um,n − um,n)(t)‖2Hρ0 ≤ Cn2rs , (4.17)

E sup
t∈[0,Tl∧τ

m,n
R ]

‖(um,n − um,n)(t)‖2
H2s−ρ0

≤ Cn2s−2ρ0 , (4.18)

where Tl > 0 is given in Lemma 4.1 and C = C(R, Tl) > 0.

Proof Let v = vm,n = um,n − um,n . Then v satisfies v(0) = 0 and

v(t) +
∫ t

0

(
1

k + 1
∂x (Pv) + F(um,n) − F(um,n)

)

dt ′

= −
∫ t

0
h(t ′, um,n) dW +

4∑

i=1

∫ t

0
Ei dt

′,

where

P = Pm,n = ukm,n + uk−1
m,n u

m,n + · · · + um,n(u
m,n)k−1 + (um,n)k, k ≥ 1.

On [0, Tl ], by the Itô formula, we have that

‖v(t)‖2Hρ0 = − 2
∫ t

0

(
h(t ′, um,n) dW, v

)

Hρ0 + 2
4∑

i=1

∫ t

0
(Ei , v)Hρ0 dt ′

− 2

k + 1

∫ t

0
(∂x (Pv), v)Hρ0 dt ′ − 2

∫ t

0
([F(um,n) − F(um,n)], v)Hρ0 dt ′

+
∫ t

0
‖h(t ′, um,n)‖2L2(U;Hρ0 ) dt

′.
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Taking supremumwith respect to t ∈ [0, Tl∧τ
m,n
R ], and then using the BDG inequality

yield

E sup
t∈[0,Tl∧τ

m,n
R ]

‖v(t)‖2Hρ0

≤ CE

(∫ Tl∧τ
m,n
R

0
‖v‖2Hρ0 ‖h(t, um,n)‖2L2(U;Hρ0 ) dt

)1/2

+ 2
4∑

i=1

E

∫ Tl∧τ
m,n
R

0
|(Ei , v)Hρ0 | dt

+ 2

k + 1
E

∫ Tl∧τ
m,n
R

0
|(∂x (Pv), v)Hρ0 | dt

+ 2E

∫ Tl∧τ
m,n
R

0

∣
∣
(
F(um,n) − F(um,n), v

)

Hρ0

∣
∣ dt

+ E

∫ Tl∧τ
m,n
R

0
‖h(t, um,n)‖2L2(U;Hρ0 ) dt .

It follows from Lemmas A.8 and 4.1 that ‖um,n‖Hs � 1 on [0, τm,n
R ∧ Tl ]. Hence we

can infer from Hypothesis H2 that

‖h(t, um,n)‖2L2(U;Hρ0 ) � ‖h(t, um,n)‖2L2(U;Hρ0 ) + ‖h(t, um,n) − h(t, um,n)‖2L2(U;Hρ0 )

�
(

e
−1

‖um,n‖Hρ0

)2

+ g23(CR)‖v‖2Hρ0 , t ∈ [0, τm,n
R ∧ Tl ] P-a.s.,

where g3(·) is given in H2(2). As a result, for any fixed s > 5/2, by applying Lemmas
A.8 and 4.1 again, we can pick N = N (s, k) � 1 to derive

‖h(t, um,n)‖2L2(U;Hρ0 ) � ‖um,n‖2NHρ0 + g23(CR)‖v‖2Hρ0

�
(
nN (−s+ρ0) + nN ( δ

2− 1
k )
)2 + g23(CR)‖v‖2Hρ0

� n2rs + g23(CR)‖v‖2Hρ0 , t ∈ [0, τm,n
R ∧ Tl ] P-a.s.

Consequently, we can infer from the above inequalities that

E sup
t∈[0,Tl∧τ

m,n
R ]

‖v(t)‖2Hρ0

≤ 1

2
E sup

t∈[0,Tl∧τ
m,n
R ]

‖v(t)‖2Hρ0 + 2
4∑

i=1

E

∫ Tl∧τ
m,n
R

0
|(Ei , v)Hρ0 | dt

+ 2

k + 1
E

∫ Tl∧τ
m,n
R

0
|(∂x (Pv), v)Hρ0 | dt
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+ 2E

∫ Tl∧τ
m,n
R

0

∣
∣
(
F(um,n) − F(um,n), v

)

Hρ0

∣
∣ dt

+ C(Tl)n
2rs + CR

∫ Tl

0
E sup

t ′∈[0,t∧τ
m,n
R ]

‖v(t ′)‖2Hρ0 dt .

Via Lemma 4.2, we have

2
4∑

i=1

|(Ei , v)Hρ0 | ≤ 2
4∑

i=1

‖Ei‖Hρ0 ‖v‖Hρ0

�
4∑

i=1

‖Ei‖2Hρ0 + ‖v‖2Hρ0 � C(Tl)n
2rs + ‖v‖2Hρ0 .

Using Lemma A.4 and integration by parts, we obtain that

∣
∣(Dρ0∂x (Pv), Dρ0v)L2

∣
∣

= ∣
∣([Dρ0∂x , P]v, Dρ0v)L2 + (PDρ0∂xv, Dρ0v)L2

∣
∣

� ‖P‖Hs‖v‖2Hρ0 + ‖Px‖L∞‖v‖2Hρ0 � (‖um,n‖Hs + ‖um,n‖Hs )k‖v‖2Hρ0 .

Then, we use Lemma A.5 to find that

∣
∣
(
F(um,n) − F(um,n), v

)

Hρ0

∣
∣ � ‖F(um,n) − F(um,n)‖Hρ0 ‖v‖Hρ0

� ‖F(um,n) − F(um,n)‖2Hρ0 + ‖v‖2Hρ0

� (‖um,n‖Hs + ‖um,n‖Hs )2k‖v‖2Hρ0 + ‖v‖2Hρ0 ,

To sum up, by (4.16), Lemmas 4.1 and A.8, we arrive at

E sup
t∈[0,Tl∧τ

m,n
R ]

‖v(t)‖2Hρ0 ≤ C(Tl)n
2rs + CR

∫ Tl

0
E sup

t ′∈[0,t∧τ
m,n
R ]

‖v(t ′)‖2Hρ0 dt .

Using the Grönwall inequality, we obtain (4.17).
Now we prove (4.18). Since 2 s − ρ0 > s > 5

2 and um,n is the unique solution to
(4.6), similar to (2.5), we can use (4.16) and H2(1) to find for each fixed n ∈ N that

E sup
t∈[0,Tl∧τ

m,n
R ]

‖um,n(t)‖2
H2s−ρ0

≤ CE‖um,n(0)‖2H2s−ρ0
+ CR

∫ Tl

0
E sup

t ′∈[0,t∧τ
m,n
R ]

‖um,n(t ′)‖2
H2s−ρ0

dt .
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Using the Grönwall inequality and Lemmas 4.1 and A.8, we find a constant C =
C(R, Tl) such that for all n ≥ 1,

E sup
t∈[0,Tl∧τ

m,n
R ]

‖um,n(t)‖2
H2s−ρ0

≤CE‖um,n(0)‖2H2s−ρ0

≤C(n
δ
2− 1

k + ns−ρ0)2 ≤ Cn2s−2ρ0 .

Hence, by Lemmas 4.1 and A.8 again, we arrive at

E sup
t∈[0,Tl∧τ

m,n
R ]

‖(um,n − um,n)(t)‖2H2s−ρ0

≤ 2E sup
t∈[0,Tl∧τ

m,n
R ]

‖um,n(t)‖2
H2s−ρ0

+ 2E sup
t∈[0,Tl∧τ

m,n
R ]

‖um,n(t)‖2H2s−ρ0

≤ Cn2s−2ρ0 , n ≥ 1.

The proof is therefore completed. ��

4.3 Finish the proof for Theorem 1.2

To begin with, we observe the following property:

Lemma 4.4 Let H2(1) hold true. Suppose that for some R0 � 1, the R0-exiting time
of the zero solution to (1.4) is strongly stable. Then we have

lim
n→∞ τ

m,n
R0

= ∞ P-a.s. (4.19)

Proof By H2(1), the unique solution with zero initial data to (1.4) is zero. On the other
hand, we notice that for all s′ < s, limn→∞ ‖um,n(0)‖Hs′ = limn→∞ ‖um,n(0) −
0‖Hs′ = 0. Since the R0-exiting time of the zero solution is ∞, we see that (4.19)
holds provided that the R0-exiting time of the zero solution to (1.4) is strongly stable.

��
Proof forTheorem 1.2Our strategy is to show that if the R0-exiting time is strongly

stable at the zero solution for some R0 � 1, then {u−1,n} and {u1,n} (if k is odd) or
{u0,n} and {u1,n} (if k is even) are two sequences of solutions such that (1.16), (1.17),
(1.18) and (1.19) are satisfied.

For each n > 1 and for fixed R0 � 1, Lemmas 4.1, A.8 and (4.16) give P{τm,n
R0

>

0} = 1, and Lemma 4.4 implies (1.16). Then, it follows from (4.16) that um,n ∈
C([0, τm,n

R0
]; Hs) P-a.s. and (1.17) holds true. Next, we check (1.18). By interpolation,

we have

E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖Hs

≤ C

⎛

⎝E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖Hρ0

⎞

⎠

1
2
⎛

⎝E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖H2s−ρ0

⎞

⎠

1
2
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≤ C

⎛

⎝E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖2Hρ0

⎞

⎠

1
4
⎛

⎝E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖2

H2s−ρ0

⎞

⎠

1
4

.

For Tl > 0, combining Lemma 4.3 and the above estimate yields

E sup
t∈[0,Tl∧τ

m,n
R0

]
‖um,n − um,n‖Hs ≤ C(R0, Tl)n

1
4 ·2rs · n 1

4 ·(2s−2ρ0) = C(R0, Tl)n
r ′
s ,

where rs is defined by (4.14) and r ′
s = rs · 12 + (s−ρ0) · 12 = kδ−1

2 < 0. Consequently,
we can deduce that

lim
n→∞ E sup

t∈[0,Tl∧τ
m,n
R0

]
‖um,n − um,n‖Hs = 0. (4.20)

When k is odd,

‖u−1,n(0) − u1,n(0)‖Hs = ‖u−1,n(0) − u1,n(0)‖Hs

= 2
∥
∥
∥n− 1

k φ̃
( x

nδ

) ∥
∥
∥
Hs

→ 0, as n → ∞.

When k is even

‖u0,n(0) − u1,n(0)‖Hs = ‖u0,n(0) − u1,n(0)‖Hs

=
∥
∥
∥n− 1

k φ̃
( x

nδ

) ∥
∥
∥
Hs

→ 0, as n → ∞.

The above two estimates imply that (1.18) holds true.
Now we prove (1.19). Let Tl > 0 be given in Lemma 4.1. When k is odd, we use

(4.20) to derive

lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
‖u−1,n(t) − u1,n(t)‖Hs

� lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
‖u−1,n(t) − u1,n(t)‖Hs

− lim
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
‖u−1,n(t) − u−1,n(t)‖Hs

− lim
n→∞ E sup

t∈[0,Tl∧τ R−1,n∧τ R
1,n ]

‖u1,n(t) − u1,n(t)‖Hs

� lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
‖u−1,n(t) − u1,n(t)‖Hs .
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It follows from the construction of um,n , Fatou’s lemma, Lemmas 4.1, A.8 and 4.4
that

lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
‖u−1,n(t) − u1,n(t)‖Hs

= lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]

∥
∥
∥− 2n− δ

2−sφ
( x

nδ

)
sin(nx) sin(t)

+ [ul,−1,n(t) − ul,1,n(t)]
∥
∥
∥
Hs

� lim inf
n→∞ E sup

t∈[0,Tl∧τ
−1,n
R0

∧τ
1,n
R0

]
n− δ

2−s
∥
∥
∥φ
( x

nδ

)
sin(nx)

∥
∥
∥
Hs

| sin t | − lim inf
n→∞ n

δ
2− 1

k

� sup
t∈[0,Tl ]

| sin t |, (4.21)

which is (1.19) in the case that k is odd. When k is even, one has

‖u0,n(t) − u1,n(t)‖Hs =
∥
∥
∥− 2n− δ

2−sφ
( x

nδ

)
sin(nx − t/2) sin(t/2) − ul,1,n(t)

∥
∥
∥
Hs

� n− δ
2−s
∥
∥
∥φ
( x

nδ

)
sin(nx − t/2)

∥
∥
∥
Hs

| sin(t/2)| − n
δ
2− 1

k .

Similar to (4.21), we can also obtain (1.19) in the case that k is even. The proof is
completed. ��

4.4 Example

Now we give an example of noise structure satisfying Hypothesis H2. For simplicity,
we consider the case that h(t, u) dW = b(t, u) dW , where W is a standard 1-D
Brownian motion. Let m ≥ 1 and f (·) be a continuous and bounded function, then

b(t, u) = f (t)e
− 1

‖u‖Hρ0 um,

satisfies Hypothesis H2.

5 Noise prevents blow up

5.1 Proof for Theorem 1.3

Our approach is motivated by [6, 45]. Let s > 5/2 and u0 be an Hs-valued F0-
measurable random variable with E‖u0‖2Hs < ∞. With H3(1) and H3(2) at hand, one
can follow the steps in the proof for Theorem 1.1 to obtain a unique solution u to (1.6)
such that u ∈ C([0, τ ∗); Hs) P-a.s. and

1{lim supt→τ∗ ‖u(t)‖Hs=∞} = 1{lim supt→τ∗ ‖u(t)‖W1,∞=∞} P-a.s. (5.1)

123



Stoch PDE: Anal Comp

Here we remark that H3(2) is the condition of locally Lipschitz continuous in Hσ with
σ > 3/2, hence uniqueness can only be considered for solution in Hs with s > 5/2.
This is because, if two solutions to (1.6) belong to Hs , the difference between them
can be only estimated in Hs′ for s′ ≤ s − 1 (Recalling (3.9), Hs+1-norm appears).

Define

τm := inf
{
t ≥ 0 : ‖u(t)‖Hs−1 ≥ m

}
, m ≥ 1 and τ̃ ∗ := lim

m→∞ τm .

Due to (5.1), we have τm < τ̃ ∗ = τ ∗
P-a.s. and hence we only need to show

τ̃ ∗ = ∞ P-a.s.. (5.2)

For V ∈ V , applying the Itô formula to ‖u(t)‖2
Hs−1 and then to V (‖u‖2

Hs−1), we find

dV (‖u‖2Hs−1) = 2V ′(‖u‖2Hs−1) (q(t, u), u)Hs−1 dW

+ V ′(‖u‖2Hs−1)
{
−2
(
ukux , u

)

Hs−1
− 2 (F(u), u)Hs−1

}
dt

+ V ′(‖u‖2Hs−1)‖q(t, u)‖2Hs−1 dt

+ 2V ′′(‖u‖2Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣2 dt .

Next, we recall τm < τ̃ ∗ = τ ∗ and s − 1 > 3/2, take expectation and then use
Hypothesis H3 and Lemma A.6 to find that

EV (‖u(t ∧ τm)‖2Hs−1)

= EV (‖u0‖2Hs−1)

+ E

∫ t∧τm

0
V ′(‖u‖2Hs−1)

{
−2
(
ukux , u

)

Hs−1
− 2 (F(u), u)Hs−1

}
dt ′

+ E

∫ t∧τm

0
V ′(‖u‖2Hs−1)‖q(t ′, u)‖2Hs−1 dt

′

+ E

∫ t∧τm

0
2V ′′(‖u‖2Hs−1)

∣
∣
(
q(t ′, u), u

)

Hs−1

∣
∣2 dt ′

≤ EV (‖u0‖2Hs−1) + E

∫ t∧τm

0
Hs−1(t

′, u) dt ′

≤ EV (‖u0‖2Hs−1) + N1t − E

∫ t∧τm

0
N2

{
V ′(‖u‖2

Hs−1)
∣
∣
(
q(t ′, u), u

)

Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt ′,

whereHσ (t, u) (u ∈ Hσ and σ > 3/2) is defined in Hypothesis H3(3). Then we can
infer from the above estimate that there is a constant C(u0, N1, N2, t) > 0 such that

E

∫ t∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣
(
q(t ′, u), u

)

Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt ′ ≤ C(u0, N1, N2, t). (5.3)
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Next, for any T > 0, it follows from the BDG inequality that

E sup
t∈[0,T∧τm ]

V (‖u‖2Hs−1) − EV (‖u0‖2Hs−1)

≤ CE

(∫ T∧τm

0

{
V ′(‖u‖2Hs−1)

∣
∣(q(t, u), u)Hs−1

∣
∣
}2

dt

) 1
2

+ N1T + N2E

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt

≤ 1

2
E sup

t∈[0,T∧τm ]

(
1 + V (‖u‖2Hs−1)

)

+ CE

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt

+ N1T + N2E

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt .

Thus we use (5.3) to obtain

E sup
t∈[0,T∧τm ]

V (‖u‖2Hs−1)

≤ 1 + 2EV (‖u0‖2Hs−1) + CE

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt

+ 2N1T + 2N2E

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt

≤ C(u0, N1, T ) + C(N2)E

∫ T∧τm

0

{
V ′(‖u‖2

Hs−1)
∣
∣(q(t, u), u)Hs−1

∣
∣
}2

1 + V (‖u‖2
Hs−1)

dt

≤ C(u0, N1, N2, T ).

As a result, for all m ≥ 1,

P{τ̃ ∗ < T } ≤ P{τm < T }

≤ P

{

sup
t∈[0,T∧τm ]

V (‖u‖2Hs−1) ≥ V (m2)

}

≤ C(u0, N1, N2, T )

V (m2)
.

SinceP{τ̃ ∗ < T } does not depend onm, sendingm → ∞ gives rise toP{τ ∗ < T } = 0.
Since T > 0 is arbitrary, we obtain (5.2), which completes the proof for Theorem 1.3.

123



Stoch PDE: Anal Comp

5.2 Example

As in (1.12), for the solution to (1.4), its Hs-norm blows up if and only if its W 1,∞-
norm blows up. On the other hand, H3(3)means that the growth of 2λs‖u‖k

W 1,∞‖u‖2Hs

can be canceled by 2V ′′(‖u‖2Hs )|(q(t, u), u)Hs |. Motivated by these two observations,
we consider the following examples where theW 1,∞-norm of u will be involved, that
is,

q(t, u) = β(t, ‖u‖W 1,∞)u, (5.4)

where β(t, x) satisfies the following conditions:

Hypothesis H4 We assume that

– The function β(t, x) ∈ C ([0,∞) × [0,∞)) such that for any x ≥ 0, β(·, x) is
bounded as a function of t , and for all t ≥ 0, β(t, ·) is locally Lipschitz continuous
as a function of x ;

– The functionβ(t, x) �= 0 for all (t, x) ∈ [0,∞)×[0,∞), and lim supx→+∞ 2λs xk

β2(t,x)
< 1 for all t ≥ 0, where λs > 0 is given in Lemma A.6.

Now we give a concrete example β(t, x) satisfying Hypothesis H4. Let b :
[0,∞) → [0,∞) be a continuous function and there are constants b∗, b∗ > 0 such
that b∗ ≤ b2(t) ≤ b∗ < ∞ for all t . For all k ≥ 1, if

either θ > k/2, b∗ > b∗ > 0 or θ = k/2, b∗ > b∗ > 2λs,

then β(t, x) = b(t)(1+ x)θ satisfies Hypothesis H4. Moreover, by the following two
lemmas, we will see that q(t, u) = b(t)(1 + ‖u‖W 1,∞)θu satisfies Hypothesis H3.

Lemma 5.1 Let λs be given in Lemma A.6. Let K > 0. If Hypothesis H4 holds true,
then there is an M1 > 0 such that for any M2 > 0 and all 0 < x ≤ Ky < ∞,

2λs xk y2 + β2(t, x)y2

1 + y2
− 2β2(t, x)y4

(1 + y2)2
≤ M1 − M2

2β2(t, x)y4

(1 + y2)2(1 + log(1 + y2))
.

(5.5)

Proof By Hypothesis H4, we have

lim sup
x→+∞

2λs xk y2 + β2(t, x)y2

1 + y2
− 2β2(t, x)y4

(1 + y2)2
+ M2

2β2(t, x)y4

(1 + y2)2(1 + log(1 + y2))

≤ lim sup
x→+∞

⎛

⎜
⎝

2λs xk

β2(t, x)
+ 1 − 2

( x
K

)4

(
1 + ( xK

)2
)2 +M2

2
(
1 + log

(
1 + ( xK

)2
))

⎞

⎠β2(t, x) < 0,

which implies (5.5). ��
Lemma 5.2 If β(t, x) satisfies Hypothesis H4, then q(t, u) defined by (5.4) satisfies
Hypothesis H3.
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Proof It follows from Lemma 5.1 that H3(3) holds true with the choice V (x) =
log(1 + x) ∈ V . Since Hs ↪→ W 1,∞ with s > 3/2, it is obvious that the other
requirements in Hypothesis H3 are verified. ��
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A Appendix: Auxiliary results

In this appendix we formulate and prove some estimates employed in the above proofs.
We first recall the Friedrichs mollifier Jε defined as

[Jε f ](x) = [ jε� f ](x), ε ∈ (0, 1), (A.1)

where � stands for the convolution, jε(x) = 1
ε
j( x

ε
) and j(x) is a Schwartz func-

tion satisfying ĵ(ξ) : R → [0, 1] and ĵ(ξ) = 1 for ξ ∈ [−1, 1]. From the above
construction, we have

Lemma A.1 [41, 48] For all ε ∈ (0, 1), s, r ∈ R and u ∈ Hs, Jε constructed in (A.1)
satisfies

‖I − Jε‖L(Hs ;Hr ) � εs−r , ‖u − Jεu‖Hr ∼ o(εs−r ), r ≤ s,

‖Jε‖L(Hs ;Hr ) ∼ O(εs−r ), r > s,

and

[Ds, Jε] = 0, (Jε f , g)L2 = ( f , Jεg)L2 , ‖Jε‖L(L∞;L∞) � 1, ‖Jε‖L(Hs ;Hs ) ≤ 1,

where L(X ;Y) is the space of bounded linear operators from X to Y .
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Lemma A.2 [58] Let f , g be two functions such that g ∈ W 1,∞ and f ∈ L2. Then for
some C > 0,

‖[Jε, g] fx‖L2 ≤ C‖gx‖L∞‖ f ‖L2 .

Lemma A.3 [36] If f ∈ Hs⋂W 1,∞, g ∈ Hs−1⋂ L∞ for s > 0, then there exists a
constant Cs > 0 such that

∥
∥
[
Ds, f

]
g
∥
∥
L2 ≤ Cs(‖Ds f ‖L2‖g‖L∞ + ‖∂x f ‖L∞‖Ds−1g‖L2).

Besides, if s > 0, then we have for all f , g ∈ Hs⋂ L∞,

‖ f g‖Hs ≤ Cs(‖ f ‖Hs‖g‖L∞ + ‖ f ‖L∞‖g‖Hs ).

Lemma A.4 (Proposition 4.2, [57]) Let ρ > 3/2 and 0 ≤ η + 1 ≤ ρ. We have for
some c > 0,

‖[Dη∂x , f ]v‖L2 ≤ c‖ f ‖Hρ ‖v‖Hη ∀ f ∈ Hρ, v ∈ Hη.

Lemma A.5 For F(·) defined in (1.5), we have for all k ≥ 1 the following estimates:

‖F(v)‖Hs � ‖v‖kW 1,∞‖v‖Hs , s > 3/2,

‖F(v)‖Hs � ‖v‖kW 1,∞ (‖v‖Hs + ‖vx‖Hs ) , 0 < s ≤ 3/2,

‖F(u) − F(v)‖Hs � (‖u‖Hs + ‖v‖Hs )k ‖u − v‖Hs , s > 3/2,

‖F(u) − F(v)‖Hs �
(‖u‖Hs+1 + ‖v‖Hs+1

)k ‖u − v‖Hs , 1/2 < s ≤ 3/2.

Proof We only estimate ‖F(v)‖Hs for 0 < s ≤ 3/2 since the other cases can be found
in [46, 52, 56]. When s > 0, by using (1.5) and Lemma A.3, we derive

‖F1(v)‖Hs � ‖vk+1‖Hs � ‖v‖kL∞‖v‖Hs , k ≥ 1. (A.2)

When k ≥ 2, we have

‖F2(v)‖Hs �
∥
∥
∥v

k−1v2x

∥
∥
∥
Hs

� ‖v‖Hs‖v‖k−2
L∞ ‖vx‖2L∞ + ‖v‖k−1

L∞ ‖vx‖Hs‖vx‖L∞

� ‖v‖kW 1,∞ (‖v‖Hs + ‖vx‖Hs ) .

When k = 1, F2(v) = 1
2 (1 − ∂2x )

−1∂x
(
v2x
)
and hence

‖F2(v)‖Hs �
∥
∥
∥v

2
x

∥
∥
∥
Hs

� ‖vx‖L∞ ‖vx‖Hs � ‖v‖W 1,∞ (‖v‖Hs + ‖vx‖Hs ) .
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Combining the above two cases for F2, we arrive at

‖F2(v)‖Hs � ‖v‖kW 1,∞ (‖v‖Hs + ‖vx‖Hs ) , k ≥ 1. (A.3)

Now we consider F3. When k ≥ 3, we have

‖F3(v)‖Hs �
∥
∥
∥v

k−2v3x

∥
∥
∥
Hs

� ‖v‖Hs ‖v‖k−3
L∞ ‖vx‖3L∞ + ‖v‖k−2

L∞ ‖vx‖Hs‖vx‖2L∞

� ‖v‖kW 1,∞ (‖v‖Hs + ‖vx‖Hs ) .

When k = 2, we have F3(v) = 1
2 (1 − ∂2x )

−1
(
v3x
)
and then

‖F3(v)‖Hs �
∥
∥
∥v

3
x

∥
∥
∥
Hs

� ‖vx‖Hs‖vx‖2L∞ � ‖v‖2W 1,∞ (‖v‖Hs + ‖vx‖Hs ) .

Combining the above two cases for F3 with noticing that F3 = 0 for k = 1, we find

‖F3(v)‖Hs � ‖v‖kW 1,∞ (‖v‖Hs + ‖vx‖Hs ) , k ≥ 1. (A.4)

Then the desired estimate is a consequence of (A.2), (A.3) and (A.4). ��
Lemma A.6 Let s > 3/2, k ≥ 1, F(·) be given in (1.5) and Jε be the mollifier defined
in (A.1). There exists a constant λs > 0 such that for all ε > 0,

∣
∣
∣

(
Ds Jε

[
ukux

]
, Ds Jεu

)

L2

∣
∣
∣+ ∣∣(Ds JεF(u), Ds Jεu

)

L2

∣
∣

≤ λs‖u‖kW 1,∞‖u‖2Hs , u ∈ Hs, s > 3/2.

If u ∈ Hs+1, then ukux ∈ Hs, and the above estimate also holds true without Jε.

Proof We only prove the case that u ∈ Hs . It follows from Lemmas A.1, A.2 and A.3,
integration by parts and Hs ↪→ W 1,∞ that

∣
∣
(
Ds Jε

[
ukux

]
, Ds Jεu

)

L2

∣
∣

≤ ∣
∣
([

Ds, uk
]
ux , D

s J 2ε u
)

L2

∣
∣+ ∣∣

(
[Jε, uk]Dsux , D

s Jεu
)

L2

∣
∣

+ ∣∣
(
uk Ds Jεux , D

s Jεu
)

L2

∣
∣

≤ C(s)‖u‖kW 1,∞‖u‖2Hs .

From Lemma A.5, we also have

∣
∣
(
Ds JεF(u), Ds Jεu

)

L2

∣
∣ ≤ C(s)‖u‖kW 1,∞‖u‖2Hs .

Combining the above two inequalities gives rise to the desired estimate of the lemma.
��
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The following technique has been used in [4, 5, 25]. Here we formulate such a
technique result in an abstract way.

Lemma A.7 Suppose u0 is an Hs-valued F0-measurable random variable, and sup-
pose H1(1) holds true. Let I be a countable index set and let {�i }i∈I satisfy

�i ⊂ �, P {∪i∈I�i } = 1 and �i ∩ � j = ∅ for all i, j ∈ I , i �= j . (A.5)

If (ui , τi ) with i ∈ I is a solution to (1.4) with initial value 1�i u0, then

(

u =
∑

i∈I
1�i ui , τ =

∑

i∈I
1�i τi

)

(A.6)

is a solution to (1.4) with initial data u0.

Proof Since (ui , τi ) is a solution to (1.4) with initial value u01�i , we find

ui (t ∧ τi ) − 1�i u0 = −
∫ t∧τi

0

[
uki ∂xui + F(ui )

]
dt ′ +

∫ t∧τi

0
h(t, ui ) dW P-a.s.

Therefore, we restrict the above equation to �i and we obtain

1�i ui (t ∧ τi ) − 1�i u0 = −
∫ t∧1�i τi

0
1�i

[
uki ∂xui + F(ui )

]
dt ′

+
∫ t∧1�i τi

0
1�i h(t, ui ) dW P-a.s.

It is clear that almost surely,

1�i h(t, ui ) = h(t, 1�i ui ) − 1�C
i
h(t, 0),

1�i

[
uki ∂xui + F(ui )

]
=
[
(1�i ui )

k∂x
(
1�i ui

)+ F(1�i ui )
]
.

By H1(1), we have ‖h(t, 0)‖L2(U;Hs ) < ∞. Then, from the above three equations,
we have that almost surely

1�i ui (t ∧ τi ) − 1�i u0 = 1�i ui (t ∧ 1�i τi ) − 1�i u0

= −
∫ t∧1�i τi

0

[
(1�i ui )

k∂x (1�i ui ) + F(1�i ui )
]
dt ′

+
∫ t∧1�i τi

0
h(t, 1�i ui ) dW,

which means (1�i ui , 1�i τi ) also solves (1.4) with initial data 1�i u0. By summing
up both sides of the above equation with noticing (A.5), we derive that (A.6) is a
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solution to (1.4) with initial data u0 almost surely. Indeed, for the initial data, we have
u0 =∑i∈I 1�i u0 P-a.s. For the nonlinear term uk∂xu, by (A.5), we have that P-a.s.,

∑

i∈I

∫ t∧1�i τi

0
(1�i ui )

k∂x (1�i ui ) dt
′

=
∑

i∈I

∫ t∧∑ j∈I 1� j τ j

0
(1�i ui )

k∂x

(
∑

l∈I
1�l ul

)

dt ′

=
∫ t∧τ

0

∑

i∈I
(1�i ui )

k∂x

(
∑

l∈I
1�l ul

)

dt ′

=
∫ t∧τ

0

(
∑

i∈I
1�i ui

)k

∂x

(
∑

l∈I
1�l ul

)

dt ′ =
∫ t∧τ

0
uk∂xu dt

′.

The other terms can also be justified in the same way, here we omit the details. ��
Finally, we recall the following estimate on the product of a Schwartz function and

a trigonometric function.

Lemma A.8 [29, 37] LetS (R) be the set of Schwartz functions. Let δ > 0 and α ∈ R.
Then for any r ≥ 0 and ψ ∈ S (R), we have that

lim
n→∞ n− δ

2−r
∥
∥
∥ψ
( x

nδ

)
cos(nx − α)

∥
∥
∥
Hr

= 1√
2
‖ψ‖L2 . (A.7)

Relation (A.7) is also true if cos is replaced by sin.

B Appendix: Proof for Lemma 4.2

As um,n = ul + uh is explictly given, we will firstly estimate Ei (i = 1, 2, 3, 4). Let
Tl > 0 be given in Lemma 4.1 such that ul exits on [0, Tl ] for all n � 1 and (4.9) is
satisfied.

(i) Estimating ‖E1‖Hρ0 . We apply the embedding Hρ0 ↪→ L∞, Lemmas 4.1 and
A.8 to obtain

‖E1‖Hρ0

≤
∥
∥
∥

[
ukl (0) − ukl (t)

]
n1−

δ
2 −sφ

( x

nδ

)
sin(nx − mt)

+ukl (t)n
− 3δ

2 −s∂xφ
( x

nδ

)
cos(nx − mt)

∥
∥
∥
Hρ0

+ ‖Zk∂xul‖Hρ0 + ‖Zk∂xuh‖Hρ0

� n1−
δ
2 −s

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

∥
∥
∥φ
( x

nδ

)
sin(nx − mt)

∥
∥
∥
Hρ0

+ n− 3δ
2 −s ‖ul(t)‖kHρ0

∥
∥
∥∂xφ

( x

nδ

)
cos(nx − mt ′)

∥
∥
∥
Hρ0

+ ‖Zk∂xul‖Hρ0
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+ ‖Zk∂xuh‖Hρ0

� n1−s+ρ0

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

+ n−s−1+ρ0+( k2 −1)δ + ‖Zk∂xul‖Hρ0 + ‖Zk∂xuh‖Hρ0

� n1−s+ρ0

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

+ nrs + ‖Zk∂xul‖Hρ0 + ‖Zk∂xuh‖Hρ0 , t ∈ [0, Tl ].
(B.1)

Next, we estimate ‖ukl (0) − ukl (t)‖Hρ0 . Using the fundamental theorem of calculus
and the algebra property, we have that for all k ≥ 1 and t ∈ [0, Tl ],

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

=
∥
∥
∥
∥k
∫ t

0
uk−1
l (t ′)∂t ul(t ′) dt ′

∥
∥
∥
∥
Hρ0

�
∫ t

0
‖ul(t ′)‖k−1

Hρ0 ‖∂t ul(t ′)‖Hρ0 dt ′.

Using (4.5) with t ∈ [0, Tl ], (1.5), Lemmas A.5 and 4.1 and the embedding Hρ0+1 ↪→
W 1,∞, we get

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

�
∫ t

0
‖ul‖k−1

Hρ0

(
‖ukl ∂xul‖Hρ0 + ‖F(ul)‖Hρ0+1

)
dt ′

�
∫ t

0
‖ul‖k−1

Hρ0+1‖ul‖k+1
Hρ0+1 dt

′ � n( δ
2 − 1

k )2kTl , k ≥ 1, t ∈ [0, Tl ],

which implies

n1−s+ρ0

∥
∥
∥ukl (0) − ukl (t)

∥
∥
∥
Hρ0

� n1−s+ρ0+kδ−2Tl = nrs Tl , k ≥ 1, t ∈ [0, Tl ].
(B.2)

Again, applying the algebra property and using Lemmas 4.1, A.8 and (4.7), we have
that for all k ≥ 1 and t ∈ [0, Tl ],

‖Zk∂xul‖Hρ0 �
k∑

j=1

‖ul‖k− j
Hρ0 ‖uh‖ j

Hρ0 ‖ul‖Hρ0+1

�

⎛

⎝
k∑

j=1

n( δ
2− 1

k )(k− j)n(−s+ρ0) j

⎞

⎠ n
δ
2− 1

k

=
k∑

j=1

n j(−s+ρ0− δ
2+ 1

k )−1− 1
k +(k+1) δ

2 � n−s−1+ρ0+k δ
2 � nrs . (B.3)

Here we used the facts that −s + ρ0 − δ
2 + 1

k < −s + 1 − δ
2 + 1 = −s + 2 − δ

2 <

− 1
2 − δ

2 < 0 for all k ≥ 1, which means that the term corresponding to j = 1
dominates.
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For the last term Zk∂xuh , by using (4.4), (4.7), Lemma A.3, Lemmas 4.1 and A.8,
we obtain that

‖Zk∂xuh‖Hρ0

�
k∑

j=1

‖ul‖k− j
Hρ0 ‖u j

h∂xuh‖Hρ0

�
k∑

j=1

‖ul‖k− j
Hρ0

[
‖u j

h‖Hρ0 ‖∂xuh‖L∞ + ‖u j
h‖L∞‖uh‖Hρ0+1

]

�
k∑

j=1

n( δ
2− 1

k )(k− j)
{

n(−s+ρ0) j
[∥
∥
∥− n1−

δ
2−sφ

( x

nδ

)
sin(nx − mt)

∥
∥
∥
L∞

+
∥
∥
∥n− 3δ

2 −s∂xφ
( x

nδ

)
cos(nx − mt)

∥
∥
∥
L∞

]

+
∥
∥
∥n− δ

2−sφ
( x

nδ

)
cos(nx − mt)

∥
∥
∥
j

L∞n−s+ρ0+1
}

�
k∑

j=1

n( δ
2− 1

k )(k− j)
{
n(−s+ρ0) j

[
n−s− δ

2+1 + n− 3δ
2 −s
]

+ n(− δ
2−s) j n−s+ρ0+1

}

�
k∑

j=1

n j(−s+ρ0− δ
2+ 1

k )−s+(k−1) δ
2 +

k∑

j=1

n j(−s−δ+ 1
k )−s+ρ0+k δ

2 , k ≥ 1, t ∈ [0, Tl ].

When k ≥ 1,−s+ρ0− δ
2+ 1

k < 0 and−s−δ+ 1
k < 0, therefore, both sums are bounded

by n−2s+ρ0+ 1
k +(k−2) δ

2 . Furthermore, when k ≥ 1, −2 s + ρ0 + 1
k + (k − 2) δ

2 ≤ rs ,
which means

‖Zk∂xuh‖Hρ0 � n−2s+ρ0+ 1
k +(k−2) δ

2 � nrs , k ≥ 1, t ∈ [0, Tl ]. (B.4)

Finally, inserting (B.2), (B.3) and (B.4) into (B.1), we arrive at

‖E1‖Hρ0 � nrs , k ≥ 1, t ∈ [0, Tl ]. (B.5)

(ii) Estimating ‖E2‖Hρ0 . For E2, we first recall (4.7). Applying the embedding
Hρ0 ↪→ L∞ and Lemma 4.1, and then taking the dominated term j = 1, we find that
for all k ≥ 1 and t ∈ [0, Tl ],

‖E2‖Hρ0 �

∥
∥
∥
∥
∥
∥

k+1∑

j=1

C j
k+1u

k+1− j
l u j

h

∥
∥
∥
∥
∥
∥
Hρ0

�
k+1∑

j=1

n(k+1− j)( δ
2− 1

k )n(−s+ρ0) j � n−s−1+ρ0+k δ
2 � nrs . (B.6)
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(iii) Estimating ‖E3‖Hρ0 . As in the estimate for (B.4), we have obtained that

‖∂xuh‖L∞ � n−s− δ
2+1 + n− 3δ

2 −s � n−s− δ
2+1, t ∈ [0, Tl ].

When k = 1, Zk−1 = 0 and then we find

‖E3‖Hρ0 � ‖2(∂xul)(∂xuh) + (∂xuh)
2‖Hρ0−1

� ‖2(∂xul)(∂xuh) + (∂xuh)
2‖L2

� ‖ul‖H2‖∂xuh‖L∞ + ‖∂xuh‖L2‖∂xuh‖L∞

� ‖ul‖H2‖∂xuh‖L∞ + ‖uh‖H1‖∂xuh‖L∞

� n
δ
2−1n1−

δ
2−s + n−s+1n1−

δ
2−s � n−s + n−2s+2− δ

2 , t ∈ [0, Tl ].

Since δ > 0, −2s+2− δ
2 − rs = −s+3−ρ0 − 3

2δ < − 5
2 +3− 1

2 − 3
2δ = − 3

2δ < 0,
hence

‖E3‖Hρ0 � n−s + n−2s+2− δ
2 � nrs , k = 1, t ∈ [0, Tl ]. (B.7)

When k ≥ 2, we can use the above estimate, Lemma 4.1, the facts ‖ f ‖Hρ0−1 ≤ ‖ f ‖L2

and ‖ f g‖L2 ≤ ‖ f ‖L2‖g‖L∞ and take the dominate term j = 1 to obtain

‖E3‖Hρ0

�
∥
∥
∥uk−1

l [2(∂xul)(∂xuh) + (∂xuh)
2]
∥
∥
∥
Hρ0−1

+
∥
∥
∥Zk−1(∂xul + ∂xuh)

2
∥
∥
∥
Hρ0−1

�
∥
∥
∥uk−1

l [2(∂xul)(∂xuh) + (∂xuh)
2]
∥
∥
∥
L2

+
∥
∥
∥
∥
∥
∥

⎛

⎝
k−1∑

j=1

C j
k−1u

k−1− j
l u j

h

⎞

⎠ (∂xul + ∂xuh)
2

∥
∥
∥
∥
∥
∥
L2

� ‖ul‖kH2‖∂xuh‖L∞ + ‖ul‖k−1
H2 ‖∂xuh‖2L∞ +

k−1∑

j=1

‖ul‖k+1− j
H2 ‖uh‖ j

L∞

+
k−1∑

j=1

‖ul‖k− j
H2 ‖u j

h∂xuh‖L∞ +
k−1∑

j=1

‖ul‖k−1− j
H2 ‖u j

h(∂xuh)
2‖L∞

� nk(
δ
2− 1

k )n1−
δ
2−s + n(k−1)( δ

2− 1
k )n2−δ−2s +

k−1∑

j=1

n(k+1− j)( δ
2− 1

k )n j(− δ
2−s)

+
k−1∑

j=1

n(k− j)( δ
2− 1

k )n j(− δ
2−s)+1− δ

2−s +
k−1∑

j=1

n(k−1− j)( δ
2− 1

k )n j(− δ
2−s)+2−δ−2s

= n−s+(k−1) δ
2 + n−2s+1+ 1

k +(k−3) δ
2 +

k−1∑

j=1

n j(−s−δ+ 1
k )−1− 1

k +(k+1) δ
2
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+
k−1∑

j=1

n j(−s−δ+ 1
k )−s+(k−1) δ

2 +
k−1∑

j=1

n j(−s−δ+ 1
k )−2s+1+ 1

k +(k−3) δ
2

� nrs , k ≥ 2, t ∈ [0, Tl ]. (B.8)

Combining (B.8) and (B.7), we have the following conclusion for E3:

‖E3‖Hρ0 � nrs , k ≥ 1, t ∈ [0, Tl ]. (B.9)

(iv) Estimating ‖E4‖Hρ0 . For k = 1, E4 = 0 since F3 disappears. When k = 2,
Zk−2 = 0 and then

‖E4‖Hρ0 �
∥
∥
∥3(∂xul)

2(∂xuh) + 3(∂xul)(∂xuh)
2 + (∂xuh)

3
∥
∥
∥
Hρ0−2

� ‖ul‖2H2‖∂xuh‖L∞ + ‖ul‖H2‖∂xuh‖2L∞ + ‖uh‖H1‖∂xuh‖2L∞

� n2(
δ
2− 1

2 )n1−
δ
2−s + n

δ
2− 1

2 n2(1−
δ
2−s) + n1−sn2(1−

δ
2−s)

= n−s+ δ
2 + n−2s− δ

2+ 3
2 + n3−δ−3s � nrs , k = 2, t ∈ [0, Tl ].

Finally, for k ≥ 3 and t ∈ [0, Tl ],

‖E4‖Hρ0 �
∥
∥
∥uk−2

l [3(∂xul)2(∂xuh) + 3(∂xul)(∂xuh)
2 + (∂xuh)

3]
∥
∥
∥
Hρ0−2

+
∥
∥
∥Zk−2(∂xul + ∂xuh)

3
∥
∥
∥
Hρ0−2

�
∥
∥
∥uk−2

l [3(∂xul)2(∂xuh) + 3(∂xul)(∂xuh)
2 + (∂xuh)

3]
∥
∥
∥
L2

+
∥
∥
∥
∥
∥
∥

⎛

⎝
k−2∑

j=1

C j
k−2u

k−2− j
l u j

h

⎞

⎠ (∂xul + ∂xuh)
3

∥
∥
∥
∥
∥
∥
L2

� ‖ul‖kH2‖∂xuh‖L∞ + ‖ul‖k−1
H2 ‖∂xuh‖2L∞

+ ‖ul‖k−2
H2 ‖∂xuh‖3L∞ +

k−2∑

j=1

‖ul‖k+1− j
H2 ‖uh‖ j

L∞

+
k−2∑

j=1

‖ul‖k− j
H2 ‖u j

h∂xuh‖L∞ +
k−2∑

j=1

‖ul‖k−1− j
H2 ‖u j

h(∂xuh)
2‖L∞

+
k−2∑

j=1

‖ul‖k−2− j
H2 ‖u j

h(∂xuh)
3‖L∞ .
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Repeating the analysis in (B.8), one has that for k ≥ 3 and t ∈ [0, Tl ],

nrs �

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

‖ul‖kH2‖∂xuh‖L∞ , ‖ul‖k−1
H2 ‖∂xuh‖2L∞ ,

k−2∑

j=1

‖ul‖k+1− j
H2 ‖uh‖ j

L∞ ,

k−2∑

j=1

‖ul‖k− j
H2 ‖u j

h∂xuh‖L∞ ,

k−2∑

j=1

‖ul‖k−1− j
H2 ‖u j

h(∂xuh)
2‖L∞ ,

and therefore it suffices to estimate the different terms, which are

‖ul‖k−2
H2 ‖∂xuh‖3L∞ � n(k−2)( δ

2− 1
k )n3(1−

δ
2−s)

= n−3s+2+ 2
k +(k−5) δ

2 � nrs , k ≥ 3, t ∈ [0, Tl ],
k−2∑

j=1

‖ul‖k−2− j
H2 ‖u j

h(∂xuh)
3‖L∞ �

k−2∑

j=1

n(k−2− j)( δ
2− 1

k )n j(− δ
2−s)+3(1− δ

2−s)

�
k−2∑

j=1

n j(−s−δ+ 1
k )+2+ 2

k −3s+(k−5) δ
2

� n−4s+ 3
k +2+(k−7) δ

2 � nrs , k ≥ 3, t ∈ [0, Tl ].

Combining the above estimations, we get

‖E4‖Hρ0 � nrs , k ≥ 1, t ∈ [0, Tl ]. (B.10)

(v) Estimating ‖E‖Hρ0 . Let Tl > 0 be given in Lemma 4.1 such that Tl does not
depend on n. Let t ∈ [0, Tl ], by virtue of the Itô formula and (4.13), we derive that

‖E(t, x)‖2Hρ0 ≤
∣
∣
∣
∣−2

∫ t

0
(h(t ′, um,n) dW, E)Hρ0

∣
∣
∣
∣+ 2

4∑

i=1

∫ t

0
|(Ei , E)Hρ0 | dt ′

+
∫ t

0
‖h(t ′, um,n)‖2L2(U;Hρ0 ) dt

′.

Taking supremum with respect to t ∈ [0, Tl ] and then using the BDG inequality give
rise to

E sup
t∈[0,Tl ]

‖E(t)‖2Hρ0

≤ 1

2
E sup

t∈[0,Tl ]
‖E(t)‖2Hρ0 + CE

∫ Tl

0
‖h(t, um,n)‖2L2(U;Hρ0 ) dt
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+ C
∫ Tl

0

[ 4∑

i=1

E‖Ei‖2Hρ0 + E‖E(t)‖2Hρ0

]
dt .

For any fixed s > 5
2 , since ‖um,n‖Hs � 1, on account of (1.10), Lemmas A.8 and 4.1,

we can pick N = N (s, k) � 1 such that

‖h(t, um,n)‖2L2(U;Hρ0 ) �
(

e
−1

‖um,n‖Hρ0

)2

�
(
nN (−s+ρ0) + nN ( δ

2− 1
k )
)2

� n2rs .

This, (B.5), (B.6), (B.9) and (B.10) yield

E sup
t∈[0,Tl ]

‖E(t)‖2Hρ0 ≤ 1

2
E sup

t∈[0,Tl ]
‖E(t)‖2Hρ0 + CE

∫ Tl

0
‖h(t, um,n)‖2L2(U;Hρ0 ) dt

+ C
∫ Tl

0

[ 4∑

i=1

E‖Ei‖2Hρ0 + E‖E(t)‖2Hρ0

]
dt

≤ 1

2
E sup

t∈[0,Tl ]
‖E(t)‖2Hρ0 + C(Tl)n

2rs

+ C
∫ Tl

0
E sup

t ′∈[0,t]
‖E(t ′)‖2Hρ0 dt

Obviously, for each n ≥ 1, E supt∈[0,Tl ] ‖E(t)‖2Hρ0 is finite. Then by the Grönwall
inequality, we have

E sup
t∈[0,Tl ]

‖E(t)‖2Hρ0 ≤ Cn2rs , C = C(Tl).
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