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Abstract

This paper aims at studying a generalized Camassa—Holm equation under random
perturbation. We establish a local well-posedness result in the sense of Hadamard,
i.e., existence, uniqueness and continuous dependence on initial data, as well as blow-
up criteria for pathwise solutions in the Sobolev spaces H® with s > 3/2 for x € R.
The analysis on continuous dependence on initial data for nonlinear stochastic partial
differential equations has gained less attention in the literature so far. In this work,
we first show that the solution map is continuous. Then we introduce a notion of
stability of exiting time. We provide an example showing that one cannot improve
the stability of the exiting time and simultaneously improve the continuity of the
dependence on initial data. Finally, we analyze the regularization effect of nonlinear
noise in preventing blow-up. Precisely, we demonstrate that global existence holds
true almost surely provided that the noise is strong enough.
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1 Introduction and main results

We consider the following stochastic generalized Camassa—Holm (CH) equation on
R:

wr — ttxr + (k + 2k —(1 = 9D)h(t, )W
= (k+ D" Yupue + uFucee, keNog. (1.1)

In (1.1), W is a cylindrical Wiener process.
For h = 0 and k = 1, Eq. (1.1) reduces to the deterministic CH equation given by

U — Uxxt + 33Uty = 2Uxtyy + Ullyxy. (1.2)

Equation (1.2) was introduced by Fokas and Fuchssteiner [21] to study completely
integrable generalizations of the Korteweg—de Vries equation with bi-Hamiltonian
structure. In [10], Camassa and Holm proved that (1.2) can be connected to the uni-
directional propagation of shallow water waves over a flat bottom. Since then, (1.2)
has been studied intensively, and we only mention a few related results here. The CH
equation exhibits both phenomena of soliton interaction (peaked soliton solutions) and
wave breaking (the solution remains bounded while its slope becomes unbounded in
finite time [16]).
When & = 0 and k = 2, Eq. (1.1) becomes the so-called Novikov equation

Up — Uxxr + 4’42”)6 = 3uuyityy + uzuxxx» (1.3)

which was derived in [44]. Equation (1.3) also possesses a bi-Hamiltonian structure
with an infinite sequence of conserved quantities, and it admits peaked solutions [24],
as well as multipeakon solutions with explicit formulas [34]. For the study of other
deterministic instances of (1.1), we refer to [28, 60].

When additional noise is included, as in [46], the noise term can be used to account
for the randomness arising from the energy exchange mechanisms. Indeed, in [40,
59], the weakly dissipative term (1 — 33)()»u) with A > 0 was added to the governing
equations. In [46], such weakly dissipative term is assumed to be time-dependent,
nonlinear in u and random. Therefore, (1 — Bf)h(t, u)W is proposed to describe
random energy exchange mechanisms.

In this work, we consider the Cauchy problem for (1.1) on the whole space R.
Applying the operator (1 — 8)%)_1 to (1.1), we reformulate the equation as

du + [ukaxu + F(u)] dr = h(t,u)dW. xR, >0, k€ Noo, )

u(w,0,x) =up(w,x), x eR,
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with

F(u) = Fi(u) + F(u) + F3(u)
Fi(u) = (1 — 8%, (u"“) ,

2% — 1
and { P = =—1-0)~"s, (uk—‘uﬁ) : (1.5)

F3(u) := %(1 — 8)%)_1 (uk_zui) .

Here we remark that F3(u) in (1.5) will disappear for the CH case (i.e., when k = 1).
The operator (1 — 8)%)_1 in F(-) is understood as

[a—a7" ] =[5ear]eo,

where * stands for the convolution.
In this paper, regarding (1.4), we focus on the following issues:

— Local well-posedness, in the sense of Hadamard (existence, uniqueness and con-
tinuous dependence on initial data), and blow-up criterion of (1.4).

— Understanding the dependence on initial data, and in particular how continuous
the solution map ug +— u is.

— Analyzing the effect of noise vs blow-up of the deterministic counterpart of (1.4).

For the first and second issue, we refer to Theorems 1.1 and 1.2, respectively.
Extended remarks, explanations of difficulties, and a review of literature are given in
Remarks 1.1, 1.2, 1.3 and 1.4.

The third question in our targets is on the impact of noise, which is one of the central
questions in the study of stochastic partial differential equations (SPDEs). Regulariza-
tion effects of noise have been observed for many different models. For example, it is
known that the well-posedness of linear stochastic transport equations with noise can
be established under weaker hypotheses than its deterministic counterpart, cf. [20].
Particularly, for the impact of linear noise in different models, we refer to [2, 14, 15,
26, 38, 47, 54].

Notably, the existing results on regularization by noise are largely restricted to
linear equations or linear noise. Hence we have particular interest in the nonlinear
noise case. Finding such noise is important as it helps us to understand the stabilizing
mechanisms of noise. This is the first step to characterize relevant noise which provides
regularization effects for the CH-type equations. In order to emphasize our ideas in
a simple way, we only consider the noise as a 1-D Brownian motion in the current
setting. That is, we consider the case that h(f, u) dW = q(t, u) dW, where W is a
standard 1-D Brownian motion and ¢ : [0, c0) x HS — H* is a nonlinear function.
Here we use the notation ¢ rather than /# because & needs to be a Hilbert—Schmidt
operator [see (1.8)] to define the stochastic integral with respect to a cylindrical Wiener
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process WW. Then we will focus on

du + [ukux + F(u)] A =qwdW, xR =0 kel o

u(w,0,x) =up(w, x), xelk.

In Theorem 1.3, we provide a sufficient condition on ¢ such that global existence can
be guaranteed. We refer to Remark 1.5 for further remarks on Theorem 1.3.

Before we introduce the notations, definitions and assumptions, we recall some
recent results on stochastic CH-type equations. For the stochastic CH type equation
with multiplicative noise, we refer to [46—48], where global existence and wave break-
ing were studied in the periodic case, i.e., x € T. In particular, when the noise is of
transport type, we refer to [1, 4, 22, 32, 33]. We also refer to [12, 13, 45] for more
results in stochastic CH type equations.

1.1 Notations

We begin by introducing some notations. Let (€2, {F;};>0, P) be a right-continuous
complete filtration probability space. Formally, we consider a separable Hilbert space
#l and let {e, } be a complete orthonormal basis of L[. Let {W,},>1 be a sequence of
mutually independent standard 1-D Brownian motions on (2, {Z;};>0, P). Then we
define the cylindrical Wiener process W as

o0
W= Waen. 1.7)
n=1

Let X be a separable Hilbert space. £, (4; X) stands for the Hilbert-Schmidt operators
fromto X.If Z € L?(; L120€ ([0, 00); Lo (4h; X)) is progressively measurable, then
the integral

t 0 t
Zdw = / Ze, dW, (1.8)
fzv=%

n=1

is a well-defined X'-valued continuous square-integrable martingale [see [5, 23] for
example]. Throughout the paper, when a stopping time is defined, we set inf J := oo
by convention.

For s € R, the differential operator D* := (1 — 83)3'/ 2 is defined by 53\]‘(5) =
(1 4 £2)%/ 2]/‘\(E), where fdenotes the Fourier transform of f. The Sobolev space
H’(R) is defined as

H(R) := {f € L*R) : | f o) = fRa +IEPDIFE)7dE < +oo} :

and the inner product on H*(R) is (f, g)us := (D*f, D’g);2. In the sequel, for
simplicity, we will drop R if there is no ambiguity. We will use < to denote estimates
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that hold up to some universal deterministic constant which may change from line
to line but whose meaning is clear from the context. For linear operators A and B,
[A, B] := AB — BA is the commutator of A and B.

1.2 Definitions and assumptions

We first make the precise notion of a solution to (1.4).

Definition 1.1 Let (2, {F;};>0, P, W) be a fixed in advance. Let s > 3/2, k € Noo
and uq be an H*-valued Fy-measurable random variable.

1. A local solution to (1.4) is a pair (u, t), where T is a stopping time satisfying
P{t >0} =1andu : Q x [0, 00) = H? is an F;-predictable H*-valued process
satisfying

u(- A1) € C([0, 00); H®) P-as.,

and forallt > O,

INT

INT
u(t A1) — u(0) +/ [ukaxu + F(u)] dr' = / h(t', u) AW P-as.
0 0

2. The local solutions are said to be unique, if given any two pairs of local solutions
(uy, t1) and (uz, o) with P{u;(0) = u2(0)} = 1, we have

Plui(t,x) = ux(t,x), (t,x) € [0, 71 Ap] x R} = 1.

3. Additionally, (u, t*) is called a maximal solution to (1.4) if t* > 0 almost surely
and if there is an increasing sequence 7, — 7* such that for any n € N, (u, t,,) is
a solution to (1.4) and on the set {t* < oo}, we have

sup |lullps = n.
tel0,7,]

4. If (u, v*) is a maximal solution and 7* = oo almost surely, then we say that the
solution exists globally.

Motivated by [46, 49], we introduce the concept on stability of exiting time in
Sobolev spaces. Exiting time, as its name would suggest, is defined as the time when
solution leaves a certain range.

Definition 1.2 (Stability of exiting time) Let (2, {F;};>0, P, W) be fixed, s > 3/2
and k € N.g. Let ugp be an H*-valued Fp-measurable random variable such that
E||u0||%15 < 00. Assume that {ug , } is a sequence of H*-valued Fo-measurable random
variables satisfying E|lug_, ||%1S < 00. For each n, let u and u,, be the unique solutions
to (1.4), as in Definition 1.1, with initial values uo and ug ,, respectively. For any
R > 0, define the R-exiting times

R =inf{r > 0: |lupllgs > R}, =8 :=inf{r >0: |ju|gs > R}.
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Now we define the following properties on stability:

1. If uon — uo in H* P-a.s. implies that

lim tf =% P-as., (1.9)
n—oo

then the R-exiting time of u is said to be stable.
2. Ifug, — uoin H* forall s’ < s almost surely implies that (1.9) holds true, the
R-exiting time of u is said to be strongly stable.

Our main results rely on the following assumptions concerning the noise coefficient
h(t,u) in (1.1).

Hypothesis H; For s > 1/2, we assume that 4 : [0, 00) x H® 3 (t,u) — h(t,u) €
Lo (4; H®) is measurable and satisfies the following conditions:

Hi (1) There is a non-decreasing function f(-) : [0, +00) — [0, +00) such that for
any u € H® with s > 3/2, we have the following growth condition

Sug I, Wl ey msy < flullyro) (1 + llullgs).
>

H{(2) There is a non-decreasing function g1 (-) : [0, co) — [0, co) such that for all
N > 1,

A, u) — h(t, V)| g, H59)
lu — vl s

sup {l{u;éu} } < gi(N), s>3/2.

120, lullgs, vl gs <N

H1(3) There is a non-decreasing function g (-) : [0, c0) — [0, co) such that for all
N=>1land3/2>5 > 1/2,

la(t, u) — h(t, V)|l g, m59)
lu —vllps

sup {l{u;ﬁv}

} =< g2(N).
120, [lull ys+15 vl gs+1 <N

Here we outline H;(2) is the classical local Lipschitz condition. H;(3) is needed
to prove uniqueness in Lemma 3.1. Indeed, if one finds two solutions u, v € H® to
(1.4), one can only estimate u — v in H s" for s/ < s — 1 because the term u* u, loses
one derivative. We refer to Remark 1.1 for more details.

Hypothesis H» When we consider (1.4) in Sect. 4, we assume that there is a real number
po € (1/2, 1) such that for s > pg, h : [0, 00) x H® > (t,u) — h(t,u) € Lo(U; H®)
is measurable. Besides, we suppose the following:

H>(1) There exists a non-decreasing function /(-) : [0, +00) — [0, +00) such that
forany u € H* withs > 3/2,

sup |1 (e, u)ll o 15y < L(luellwroo) el s,
t>0
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and H;(2) holds.
H>(2) There is a non-decreasing function g3(-) : [0, 4+00) — [0, +00) such that for
allN > 1,
N
sup At W)l gyt 0y < g3(N)e a0 s > 3/2, (1.10)

120, [lull s <N

and

< g3(N).

1@, u) — h(t, V)|l £yt HP0) }

su 1
d { {0l It — vl m0

120, lull geo . vl goo <N

We remark here that (1.10) means that there is a py € (1/2, 1) such that, if u, is
bounded in H® and u, tends to zero in the topology of H”° as n tends to oo, then
122, un)ll 2o u; HPoy tends to zero exponentially as n tends to oo. Examples of such
noise structure can be found in Sect. 4.4.

As for the regularization effect of noise, we impose the following condition on g
in (1.6):

Hypothesis H3 We assume that whens > 3/2,q : [0, 00) x H® 3 (t,u) > q(t,u) €
H?* is measurable. Define the set V as a subset of C2([0, 00); [0, o0)) such that

Vo= {V(O) =0, V/(x) > 0, V'(x) < Oand lim V(x) = oo} .

Then we assume the following:
H3(1) There is a non-decreasing function g4(-) : [0, +00) — [0, +00) such that for

any u € H® with s > 3/2, we have the following growth condition

sup (g, w)ll s < gallullwroo) (1 + llullfs).
t>0

H3(2) gq(-,u) is bounded for all u € H® and there is a non-decreasing function
g4(+) : [0, 00) — [0, 00), such that

120, llullgs, vl gs <N

<ga(N), N>1,s>3/2

llu = vllgs

g, u)—q(t, v)||H,f}

H3(3) Thereisa V €V and constants Nj, N > 0 such that for all (¢, u) € [0, c0) x
H® with s > 3/2,

}2

V' (lull3s) [, u), u) gs
L+ V(lull3s)

Hs(t,u) <Ny —Nz{

9
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where

H(t,u)

2
=Vl | 2 Nl Nl + g 01 | 4+ 2Vl

(q(t7 M), u)H"

and A; > 0 is the constant given in Lemma A.6 below.

Examples of the noise structure satisfying Hypothesis H3 can be found in Sect.5.2.

1.3 Main results and remarks

Now we summarize our major contributions providing proofs later in the remainder
of the paper.

Theorem 1.1 Lets > 3/2, k > 1 and let h(t, u) satisfy Hypothesis Hy. Assume that
ug is an H®-valued Fo-measurable random variable satisfying E||ug ||%_1S < 00. Then

(i) (Existence and uniqueness) There is a unique local solution (u, t) to (1.4) in the
sense of Definition 1.1 with

E sup [u(t)]|3s < oo. (1.11)
tel0,7]

(ii) (Blow-up criterion) The local solution (u, T) can be extended to a unique max-
imal solution (u, T™) with
1{ | P-a.s. (1.12)

L ftim sup,_ oo 1141 s =00} = L {tim sup, _ o» 1e(t)1l 1,00 =00

(iii) (Stability for almost surely bounded initial data) Assume additionally that
ug € L®(Q; HY). Let vy € L*®°(2; H®) be another H*-valued Fy-measurable
random variable. For any T > 0 and any € > 0, thereisa § = §(e,ug, T) > 0
such that if

luo — vollLee(@;msy < 9, (1.13)
then there is a stopping time T € (0, T] P-a.s. and

E sup [lu(t) —v(®)|}s <€, (1.14)

te[0,7]
where u and v are the solutions to (1.4) with initial data uqy and vo, respectively.

Remark 1.1 Existence and uniqueness have been studied for abundant SPDEs. In many
works, the authors did not address the continuous dependence on initial data. In this
work, our Theorem 1.1 provides a local well-posedness result in the sense of Hadamard
including the continuous dependence on initial data. Moreover, a blow-up criterion
is also obtained. We refer to [11, 19, 42] for the study about the dependence on the
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initial data for cases that solutions to the target problems exist globally. However, it
is necessary to point out that almost nothing is known on the analysis for dependence
on initial data for SPDEs whose solutions may blow up in finite time.

The key difficulty for such a case is as follows: on one hand, if solutions to a
nonlinear stochastic partial differential equation (SPDE) blow up in finite time, it is
usually very difficult to obtain the lifespan estimates. On the other hand, we have
to find a positive time t to obtain an inequality like (1.14). In addition, the target
problem (1.4) is more difficult because the classical Itd formulae are not applicable.
Indeed, for ug € H?®, we can only know u € H°® because this is a transport type
equation, then u*u, € H*~'. However, the inner product (uku x> u) s appears if
one uses the It6 formula in a Hilbert space (cf. [23, Theorem 2.10]) and the dual
product ys—1 (u¥u,, u) o1 appears in the 1td formula under a Gelfand triplet (cf. [39,
Theorem 1.3.1]). Since we only have u € H* and u*u, € H*~!, neither of them are
well-defined. Likewise, when we consider the H*-norm for the difference between
two solutions u, v € H® to (1.4), we will have to handle (ukux — vkvx, u— v)ys,
which gives rise to control either ||u|| gs+1 or ||v]| gs+1.

Remark 1.2 Now we list some technical remarks on the statements of Theorem 1.1.

(1). Our proof for (i) in Theorem 1.1 is motivated by the recent results in [55]. For
the convenience of the reader, here we also give a brief comparison between our
approach and the framework employed in many previous works.

— We first briefly review the martingale approach used to prove existence of
nonlinear SPDEs. Roughly speaking, in searching for a solution to a nonlinear
SPDE in some space X, the martingale approach, as its name would suggest,
includes obtaining martingale solution first and then establishing (pathwise)
uniqueness to obtain the (pathwise) solution. To begin with, one needs to
approximate the equation and establish uniform estimate. For nonlinear prob-
lems, one may have to add a cuz-off function to cut the nonlinear parts growing
in some space Z with X < Z (such choice of Z depends on concrete prob-
lems). As far as we know, the technique of cut-off first appears in [17] for the
stochastic Schrodinger equation. This cut-off enables us to split the expectation
of nonlinear terms, and then the Lz(Q; X’) estimate can be closed. For exam-
ple, for (1.4), the estimate for E||u|3,, will give rise to E (|[u|lyy1.00 135 ), and
hence we need to add a function to cut || - ||y1.00. With this additional cuz-off,
we need to consider the cut-off version of the problem first and remove it then.
The first main step in the martingale approach is finding a martingale solution.
Usually, this can be done by first obtaining tightness of the measures defined
by the approximative solutions in some space )/, and then using Prokhorov’s
Theorem and Skorokhod’s Theorem to obtain the convergence in ). Since X
is usually infinite dimensional (usually, /X is a Sobolev space), to obtain tight-
ness, it is required that X is compactly embedded into ), i.e, X << ). This
brings another requirement to specify Z, that is, }J < Z. Otherwise, taking
limits will not bring us back to the cut-off problem due to the additional cut-off
term || - || z (in some cases, the choice of Z may only give rise to a semi-norm
and here we use this notation || - || z only for simplicity). Usually, in bounded
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domains, itis not difficultto pick ) and Z such that ¥ << ) < Z (Sobolev
spaces enjoy compact embeddings in bounded domains), see for example [4,
9, 18, 26, 48]. In unbounded domains, the difficulty lies in the choice of ) and
Z such that X << ) < Z. We refer to [7, 8] for fluid models with cer-
tain cancellation properties (for example, divergence free) and linear growing
noise. However, it is difficult to achieve this for SPDEs with general nonlinear
terms and nonlinear noise. For instance, the cuz-off in our case will have to
involve || - ||z = || - [lw1. [see Hi(1) and (2.3)]. Even though we can get the

convergence in H, s" with some % < s < s, it is still not clear whether the

loc
convergence holds true in W', and this is because local convergence can not
control a global object || - ||y1... Therefore, technically speaking, nonlinear
SPDEs are more non-local than its deterministic counterpart.

— Due to the above unsolved technical issue, the martingale approach is difficult
to apply in our problem and we will try to prove convergence directly, which is
motivated by [41, 55] [see also [49, 53, 54] for recent developments]. Generally
speaking, we will analyze the difference between two approximative solutions
and directly find a space ) such that X < ) < Z and convergence (up
to a subsequence) holds true in ). The difficult part is finding convergence in
Y without compactness X << ) (compared to the martingale approach,
tightness comes from the compact embedding X << })). In this paper, the
target path space is C ([0, T']; H®) = X, and we are able to prove convergence
(up to a subsequence) in C([0, T']; H S_%) = Y directly. After taking limits to
obtain a solution, one can improve the regularity to H* again, and the technical
difficulty in this step is to prove the time continuity of the solution because the
classical It6 formula is not applicable (see in Remark 1.1). To overcome this
difficulty, we apply a mollifier J; to equation and estimate E|| J.u ||%{s first [see
(2.11)]. We also remark that the techniques in removing the cuz-off have been
used in [5, 25, 54]. Here we formulate such a technical result in Lemma A.7
in an abstract way.

(2). Now we give a remark on (iii) in Theorem 1.1. For the question on dependence
on initial data, there are some delicate differences between the stochastic and the
deterministic case. In the deterministic counterpart of (1.4), due to the lifespan
estimate [see (4.10) for instance], for given ug € H?, it can be shown that if
llug — vollgs is small enough, then there is a 7 > 0 depending on u such that
sup;epo,77 () — v(t) ||%F is also small. In stochastic setting, since existence and
uniqueness are obtained in the framework of L2 (2; H®), itis therefore very natural
to expect that, for given ug € L3(Q2; HY), if E|lug — vo||12qs is small enough, then
for some almost surely positive T depending uo, E sup, o 1 [u(t) — v(t)||%1,s is
also small. However, so far we have only proved it with assuming the smallness
of |lup — vollLoe(Q: Hs)- Since L*°(2; H®) can be viewed as being less random
than L2(Q2; H*), one may roughly conclude that what the solution map needs to
be continuous/stable (the initial data and its perturbation are L°°(2; H*)) is more
“picky" in determinism than what the existence of such a solution map requires
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(existence and uniqueness guarantee that a solution map can be defined). For the
technical difficulties involved, we have the following explanations:

— Asis mentioned in Remark 1.1, when we estimate the H*-norm for the differ-
ence between two solutions « and v, HS1!-norm will appear. Hence, we have
to use smooth approximations to make the analysis valid. More precisely, we
approximate # and v by smooth process u, and v, and consider

lu—vlias < llu—uellgs + lue — vellws + llve —vligs. (1.15)

Then all terms can be estimated because ||u; || ys+1 and ||vg|| ys+1 make sense.
Here we refer to Remark 3.2 for more details on the construction of such an
approximation.

— In dealing with the above three terms in the stochastic case, two sequences
of stopping times (exiting times) are needed to control ||u.|| gs and ||ve| gs
[see (3.20) below]. Since we aim at obtaining T > 0 almost surely in (1.14)
(otherwise the difference between two solutions on the set {t = 0} can not
be measured), we will have to guarantee that those stopping times used in
bounding ||u, || gs and ||ve || gs have positive lower bounds almost surely. Up to
now, we have only achieved this for initial values belonging to L°°(2; H*). We
also remark that this is different from the proof for existence. In the proof for
existence, u, exists on a common interval [0, 7] for all € and enjoys a uniform-
in-¢ estimate (2.4), hence we can get rid of stopping times in convergence (from
(2.8) to (2.9)). Here we do not have such common existence interval due to
the lack of a lifespan estimate, which is a significant difference between the
stochastic and the deterministic cases. Indeed, we can easily find the lifespan
estimate for the deterministic counterpart of (1.4) [see (4.10) below].

— Moreover, evenif the above issue can be handled, in dealing with the three terms
in (1.15), we are confronted with ﬁEHuo — Uo||?{x/ ||u0||12q.Y for some suitably
chosen s (cf. (3.27)). After ¢ is fixed, the smallness of E|ug — vo||%15 is not
enough to control eleHuo — UO”?,S/ ||uo||%{x, either. We use the L*°(2; H*)
condition to take [|ug||3;s out of ;—ZEHMO — voll?,, luoll%s. In deterministic
case, no expectation is involved, giz [lug — vo ”i]é" 1o ||%1X can be controlled by

”u() - UOH%{AW

Roughly speaking, (iii) in Theorem 1.1 means that for any fixed uog € L°°(2; H*)
and any T > 0, if |lug — voll Lo (q; sy — O, then

37 € (0, T]P-as. such that Eflu(- A 1) = v(- A D¢ 0.7 = O-

where u, v are solutions corresponding to ug, vg, respectively. Below we will study
this issue quantitatively. The next result addresses at least a partially negative answer.

Theorem 1.2 (Weak instability) Let s > 5/2 and k > 1. If h satisfies Hypothesis H»,
then at least one of the following properties holds true:
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(i) For any R > 1, the R-exiting time is not strongly stable for the zero solution to
(1.4) in the sense of Definition 1.2;

(ii) There is a T > 0 such that the solution map ug +— u defined by (1.4) is not
uniformly continuous as a map from L*°(2; HY) into L'(2: C([0, T); HY)). More
precisely, there exist two sequences of solutions u"" and u*", and two sequences
of stopping time t1 ,, and T2, such that

— Fori=1,2 P{t;, > 0} =1 for eachn > 1. Besides,

lim 71, = lim 75, = oo P-a.s. (1.16)
n—oo n—oo

— Fori=1,2,u"" € C([0, 1;.,]; H*) P-a.s., and

t€0,71,,] lE[OeTZ,n]

E( sup [|u"" (1)l s+ sup Iluz’"(t)llm)ﬁl- (1.17)

— At initial time t = 0, for any p € [1, o],

lim [lu!"(0) — u>"(0) | Lr(9: 15y = O. (1.18)
n—oo
— Whent > 0,
liminf E sup N (1) — u®" (1) || s
n—oo

te[0,TATI nAT20]

sup |sin(t)|, ifk is odd,
t€[0,T]
¢ (1.19)
sup | sin (—)| if k is even.
1€[0,T] 2

Remark 1.3 We first briefly outline the main difficulties encountered in the proof for
Theorem 1.2 and the main strategies we used.

(1). Because we can not get an explicit expression of the solution to (1.4), to obtain
(1.19), we will construct two sequences of approximative solutions {u, ,} (m €
{1, 2}) such that the actual solutions {u#""} with u™"(0) = u,, »(0) satisfy

lim E sup |ju

" — s =0, (1.20)
n— o0 [Osfm,n]
where ™" exists at least on [0, 7, ,,]. Then, one can establish (1.19) by estimating
{tm,n} rather than {u""}. We also remark that the construction of approximative
solution u,, , for x € R is more difficult than the construction of approximative
solution for x € T [see [46]] since the approximative solution involves both high
and low frequency parts (high frequency part is already enough for the case x € T,
cf. [46, 55]). The key point is that we need to guarantee inf, 7,, , > O almost
surely in dealing with (1.20). Hence we are confronted with a common difficulty
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@.

in SPDEs again, that is, the lack of lifespan estimate. In deterministic cases, one
can easily obtain the lifespan estimate, which enables us to find a common interval
[0, T'] such that all actual solutions exist on [0, T'] (see for example Lemma 4.1).
In the stochastic case, so far we have not been able to prove this.

To settle the above difficulty, we observe that the bound inf, 7, » > O can be
connected to the stability property of the exiting time (see Definition 1.2). The
condition that the Rp-exiting time is strongly stable at the zero solution will be
used to provide a common existence time 7' > 0 such that for all n, u"" exists up
to T (see Lemma 4.4 below). Therefore, to prove Theorem 1.2, we will show that,
if the Ro-exiting time is strongly stable at the zero solution for some Ry >> 1, then
the solution map u( +— u defined by (1.4) can not be uniformly continuous. To get
(1.20), we estimate the error in H 25=p0 and H ", respectively, where pg is given
in H,. Then (1.20) is a consequence of the interpolation. We remark that (1.18)
holds because the approximative solutions are constructed deterministically.

Remark 1.4 With regard to similar results in the literature and further hypotheses, we
give some more remarks on Theorem 1.2.

(D).

Q).

In deterministic cases, the issue of the (optimal) initial-data dependence of
solutions has been extensively investigated for various nonlinear dispersive and
integrable equations. We refer to [35] for the inviscid Burgers equation and to [37]
for the Benjamin—Ono equation. For the CH equation we refer the readers to [29,
30] concerning the non-uniform dependence on initial data in Sobolev spaces H*
with s > 3/2. For the first results of this type in Besov spaces, we refer to [50, 56].
Particularly, non-uniform dependence on initial data in critical Besov space first
appears in [51, 52]. In this work, Theorem 1.2 and (iii) in Theorem 1.1 demonstrate
that the continuity of the solution map ug + u is almost an optimal result in the
sense that, when the growth of the noise coefficient satisfies certain conditions
(cf. Hypothesis H3), the map ug +— u is continuous, but one can not improve the
stability of the exiting time and simultaneously the continuity of the map uo — u.
Up to our knowledge, results of this type for SPDEs first appeared in [46, 49]. We
also refer to [3, 43, 55] for recent developments.

It is worthwhile mentioning that, as noted in (1) of Remark 1.3, the strong stability
of exiting times is used as a technical “assumption” to handle the lower bound
of a sequence of stopping times. So far we have not been able to verify the non-
emptyness of this strong stability assumption for the current model. However, if
the transport noise u, o dW is considered (W is a standard 1-D Brownian motion
and odW means the Stratonovich stochastic differential), we might conjecture
that either the notion of strong stability of exiting times can be captured, or the
solution map ug + u can become more regular than being continuous. Indeed, if
h(t,u)dW isreplaced by uy o dW in (1.4), one can rewrite the equation into It6’s
form with an additional viscous term — %u xx on the left hand side of the equation.
Therefore, it is reasonable to expect that in this case, either the strong stability of
exiting times or the continuity of the solution map uo + u can be improved. We
refer to [31] and [27] for deterministic examples on the continuity of the solution
map.
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Theorem 1.3 (Noise prevents blow-up) Let s > 5/2, k > 1 and ug € H® be an Fy-
measurable random variable with E||uo||%{s < oo. If Hypothesis Hz holds true, then
the corresponding maximal solution (u, t™*) to (1.6) satisfies

P{r* =00} = 1.

Remark 1.5 We notice that many of the existing results on regularization effects by
noise are essentially restricted to linear equations or linear growing noise. In Theorem
1.3, both the drift and diffusion term are nonlinear. We also remark that the blow-
up can actually occur in the deterministic counterpart of (1.6). For example, when
k = 1, blow-up (as wave breaking) of solutions to the CH equation can be found
in [16]. Therefore, Theorem 1.3 demonstrates that large enough noise can prevent
singularities. Indeed, H3(3) means that the growth of uku, + F(u) can be controlled
provided that the noise grows fast enough in terms of a Lyapunov type function V.
In contrast to H;(2) and H;(3), we require s > 3/2 in both H3(2) and H3(3). As is
stated in Hypothesis H;, H3(2) implies that uniqueness holds true for solutions in H*
with s > 5/2. It seems that one can require s > 1/2 in H3(2) to guarantee uniqueness
in H” with p > 3/2, but at present we can only construct examples for the case that
s > 3/2 is required in both H3(2) and H3(3).

We outline the remainder of the paper. In Sect. 2, we study the cut-off version of (1.4)
and then we remove the cut-off and prove Theorem 1.1 in Sect. 3. We prove Theorem
1.2 in Sect. 4. Concerning the interplay of noise vs blow-up, we prove Theorem 1.3 in
Sect.5.

2 Cut-off version: regular solutions

We first consider a cut-off version of (1.4). To this end, for any R > 1, we let
xR (x) : [0, 00) — [0, 1] be a C*°-function such that xz(x) = 1 for x € [0, R] and
xRr(x) = 0 for x > 2R. Then we consider the following cut-off problem

dut + xr (o) [t D+ F o) | dt = xrQlullyr)h(e, w) dW,

u(w,0,x) =up(w, x) € H®.

2.1)

In this section, we aim at proving the following result:

Proposition2.1 Let s > 3, k > 1, R > 1 and Hypothesis Hy be satisfied. Assume
that ug € L*(Q2; H®) is an H® -valued Fo-measurable random variable. Then, for any
T > 0, (2.1) has a solution u € L*(Q; C ([0, T1; H®)). More precisely, there is a
constant C(R, T, ug) > 0 such that

E sup [ul%s < C(R, T, up). (2.2)
t€l0,7T]

The proof for Proposition 2.1 is given in the following subsections.
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2.1 The approximation scheme

The first step is to construct a suitable approximation scheme. From Lemma A.5,
we see that the nonlinear term F (u) preserves the H®-regularity of u € H® for any
s > 3/2. However, to apply the theory of SDEs in Hilbert space to (2.1), we will have
to mollify the transport term u*d,u since the product u*d,u loses one regularity. To
this end, we consider the following approximation scheme:

du + Hy o (u)dt = Hy(t, u) dW,
Hi o) = gl [ e (e o Jou) + Fao |

Hy(t, u) = xr(lullyr.0)h(t, u),
u(0,x) =up(x) € H®,

(2.3)

where J; is the Friedrichs mollifier defined in Appendix A. After mollifying the
transport term u*d,u, it follows from H;(2) and Lemmas A.1 and A.5 that for any
e € (0,1), H ¢(-) and H>(¢, -) are locally Lipschitz continuous in H® with s > %
Besides, we notice that the cut-off function xg (|| - [|yy1.c) guarantees the linear growth
condition (cf. Lemma A.5 and Hj(1)). Thus, for fixed (2, {F;};>0, P, W) and for
ug € L*(Q; H*) with s > 3/2, the existence theory of SDE in Hilbert space (see for
example [23]) means that (2.3) admits a unique solution u, € C([0, o0); H*) P-a.s..

2.2 Uniform estimates

Now we establish some uniform-in-¢ estimates for .

Lemma2.1 Letk > 1, s > 3/2, R > 1 and ¢ € (0, 1). Assume that h satisfies
Hypothesis Hy andug € LZ(Q; HS)isan H® -valued JFy-measurable random variable.
Letu, € C([0, 00); H*) be the unique solution to (2.3). Then for any T > 0, there is
a constant C = C(R, T, ug) > 0 such that

supE sup |[lue(0)]|%s < C. (2.4)
e>0 r€[0,T]

Proof Using the 1t6 formula for ||u, ||%1S, we have that for any r > 0,

dlle (D3 = 2 (e llyro0) (e, 1) AW, 1) s
=2 (Juelyr) (Do [(Fewe) o Joue | Due) e
- 2XR (”Mgnwl,oo) (DSF(ME)a DSMS)LZ dt

+ 1 e o) 1A CE w7 . ) -

On account of Lemmas A.1 and A.3, we derive
(D0 [ewer ou e ] D) | < Cluelly e

@ Springer



Stoch PDE: Anal Comp

Therefore, one can infer from the BDG inequality, H; (1), Lemma A.5 and the above
estimate that

1 T
E sup luc ()l = Elluollys < 5E sup ||us||%p+cRﬂ<:f (14 e 3 ) ar,
t€[0,T] 1€[0,T] 0

which implies

T
E sup [[ue(t)]%s 52E||u0||%,s+ch <1+1E sup ||u5(r’)||%,s> dt. (2.5)
t€[0,T] 0 t'€[0,1]

Using Gronwall’s inequality in (2.5) implies (2.4). O

2.3 Convergence of approximative solutions

Now we are going to show that the family {u,} contains a convergent subsequence.

For different layers u, and u,, we see that ve , := u, — u, satisfies the following
problem:
8 10
dvey + (Yo ai)dr = (3 ar) AW, v,y 0.) =0, 2.6)
i=1 i=9
where

a1 = [xrUlue i) — xr (luglwioo) ] Jel(Jere) x Teue],
a2 = xr (Iluyllwre) (Je = I [(Jete) d Jeue],

a3 = x& (luy o) Ty[((Jeu)t = (Jyue))x Joue],

s = xr (luy o) Tyl ((Fyue)* — (Jyun))dx Joue],

as = x& (luyllwroe) Tyl (Tyuy) 0 (Je — Jpuel,

a6 = xr (luyllwroe) Tyl (Jyug) 0 Ty (e — uy)],

q7 = [xr(luellwioo) = x& (llunllwioo) ] Fue),

g8 == x& (lluyllwio) [F (ue) — F(uy)],

g9 = [xrluellwioo) = x& (luyllwroe) ] 2, ue),

10 = x& (luyllwroc) Uh(t, ug) — h(t, uy)].

Lemma2.2 Lets > 3and k > 1 and let G(x) := x*+2 1+ 1. For any ¢,n € (0, 1),
we find a constant C > 0 such that

8
Z ‘(Qia Ua,n)HS,%

i=1

<Cg (”us“HS + ||”77||H5) <||U£n||ip; + max({e, 77}> .
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Proof Using Lemmas A.1, A.3 and A.5, the mean value theorem for xz(-), and the
embedding H“_% <> WL we have that for some C > 0,

k+1

3 3
s—3 s—5
|0 o |0 2a| , = Clloeal g el

2’

and

_3 k
S
|0 3as| = € (lmellas + Doyl el 3.

Using Lemma A.1, we see that

3
[p=ta] = cmaxte!2 0 P!, i = 2.3,

L2
3
HD 2q4

k—1
. =€ (ute ll s + Nty ll s ) el o3 lluell s,

_3
[D~2as] , = cmaxte 2 el e
For ¢, using Lemma A.1 and then integrating by part, we have

D'~ 3ge. D3
‘]6’ &,n 12

s—32 k §—3
= x& (lupllyroo) | (D72, (Jyuy) 105 Jyve,y - D° 72 Jyve,y dx
R

1 3
_EXR (Ilunllwl,m)/Rax(Jnun)k(Ds anvsyn)zdx.

Via the embedding H*® -3 <> W and Lemmas A.1 and A.3, we obtain

D*"1g6, D" 7v
f]67 &,n 12

k 2
5 ”“n ||H_; ||Ue,n ”HS_% .

Therefore, we can put this all together to find

8
‘ . NS 2
» (@i ven) o3| = € (el + Tl " 1) ol

+ Clluell s + lluy |l s)** T2 max(e, n},

which gives rise to the desired estimate. O
Lemma23 Lets >3, R > lande € (0,1). Forany T > 0 and K > 1, we define

o =inf{r =0 Juellws = KYAT, 1], =1l nelp. @7
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Then we have

lim supE  sup |lus — "‘n”H.sJ =0. (2.8)

2
e~>0p<e te[O,th,7 «l

Proof By employing the BDG inequality to (2.6), for some constant C > 0, we arrive
at

E Sl.lp ||Us,n(t)||2r§
H

t€l0, '[F . x]

T 8
1 2 Ts,n,K
< 3E s fueyl?,  +CE /0 2]<qi,ve,n>m_;
=

rel0,r] 1
’eTqK 10
+CIE/ D ollail® s de
0 i—9 Lo(w:H3)

For g9 and g9, we use (2.7), the mean value theorem for yg(-), H;(1) and H{(2) to
find a constant C = C(K) > 0 such that

T 10
Ts,n.K T
E/ > laill? dzscuof E sup e, (t)I* 5 dr.
0 par Lz(u:H“ 7) 0 H2

t’e[O,rE’Yn'K]
On account of Lemma 2.2 and the above estimate, we find

2
E  sup  [lve, D .3
HY ™3

rel0,r], i1

< C(K)/ sup ||v€,,7(t’)||2Y_§ dt + C(K)T max{s, n}.
refo,t, H 2

Therefore, (2.8) holds true. O

Lemma 2.4 Foranyfixeds > 3andT > O, thereis an {F;};>0 progressive measurable
H*~32.valued process u and a countable subsequence of {u} (still denoted as {u.})
such that

u, 2% uinc ([0, 1. HS’%) P-a.s. (2.9
Proof We first let ¢ be discrete, i.e., ¢ = g,(n > 1) sugh that ¢, - Oasn — oo.In
this way, for all n, u,, can be defined on the same set 2 with P{€2} = 1. For brevity,

ug, is still denoted as u,. For any € > 0, by using (2.7), Lemma 2.1 and Chebyshev’s
inequality, we see that

P{ sup ||u5—u,7|| 3> e}
1€[0,7]
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§P{IST’K<T]+IPHTWT’K<T]+IP’ sup ||u€—u,7||Hs > €

_3
2

T

te[O,rM’K]

2C(R, T,
§M+]}D

22 sup  ||ug — u,]||HS_% > €

rel0,r], &1
Now (2.8) clearly forces

< 2C(R, T, uo).

lim sup]P’{ sup ||”s_”n||H.;—% >€} X2

e=>0p<e  |tef0,1]

Letting K — oo, we see that u, converges in probability in C ([O, T, H S_%>. There-
fore, up to a further subsequence, (2.9) holds. O

2.4 Proof for Proposition 2.1

By (2.9), since for each ¢ € (0, 1), u, is {F;};>0 progressive measurable, so is u.
Notice that H5~3/> < W1 Then one can send ¢ — 0 in (2.3) to prove that u
solves (2.1). Furthermore, it follows from Lemma 2.1 and Fatou’s lemma that

E sup [lu(t)l|3s < C(R,uo, T). (2.10)
tel0,T]

With (2.10), to prove (2.2), we only need to prove u € C([0, T']; H®), P-a.s. Due to
Lemma 2.4 and (1.11), u € C([0, T]; H*~3/2) N L™ (0, T; H*) almost surely. Since
H?* is dense in H*~3/2, we see that u € C,, ([0, T1; H®) (Cy, ([0, T1; H®) is the set
of weakly continuous functions with values in H*). Therefore, we only need to prove
the continuity of [0, 7] > t > |lu(¢)| gs. As is mentioned in Remark 1.1, we first
consider the following mollified version with J; being defined in (A.1):
Al L3 = 2xr(ullwioo) (Jeh(t, w) dW, Jeu) s
= 2l ) (Ve [+ Fa | Jer) - ar

+ xpUullwre) 1 Jeh (' 17, g prs) At (2.11)
By (2.10),
ty =inf{t > 0: |lu(®)||gs > N} > ocoas N — oo P-a.s. (2.12)

Then we only need to prove the continuity up to time tiy A T for each N > 1. Let
[t2, 1] C [0, T]witht; —f, < 1. We use Lemma A.6, the BDG inequality, Hypothesis
Hj and (2.12) to find
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4
E [(nJgu(n AT = ettt A ) Iy ) } <C(N.D)in —nf.

We notice that for any T > 0, Jou tends to u in C ([0, T]; H*) as ¢ — 0. This,
together with Fatou’s lemma, implies

4
E [(Ilu(n AT s = lutes A o)) ] = CN. Tl = o,

This and Kolmogorov’s continuity theorem ensure the continuity of ¢ +— |ju(t A
™)l Hs.
3 Proof for Theorem 1.1

Now we can prove Theorem 1.1. For the sake of clarity, we provide the proof in several
subsections.

3.1 Proof for (i) in Theorem 1.1: Existence and uniqueness
3.1.1 Uniqueness

Before we prove the existence of a solution in H*® with s > 3/2, we first prove
uniqueness since some estimates here will be used later.

Lemma 3.1 Lets > 3/2, k > 1, and Hypothesis Hy hold. Suppose that ug and vy are
two H*-valued Fo-measurable random variables satisfying ug, vo € L*(2; H®). Let
(u, T1) and (v, 1) be two local solutions to (1.4) in the sense of Definition 1.1 such
that u(0) = ug, v(0) = vo almost surely. For any N > 0 and T > 0, we denote

T c=inf {t > 0: lu@®)|lgs > N}, ©:=inf{t > 0: lv()||lgs > N},

and ‘L',Z:v =1, ATy AT. Then fors' € (% min {s -1, %}) we have that

E sup fu@) — vl < C(N, T)E[up —vol3,, - 3.1

t€l0,7] )]
Proof Let w(t) = u(t) — v(¢) fort € [0, t; A T2]. We have
1
dw + max [uk'H — ka] df + [F(u) — F(v)] dt = [h(t, u) — h(t,v)] dW.
Then we use the 1t6 formula for ||w ||i”, with s’ € (% min {s -1, %}) to find that

2
dllwllz,« = 2([h(t,u) — h(t, v)] AW, w) v — Py (Ox (Prw), w) gy dt
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S 2(F )~ FO)) ) di 4 0 — b 02 dr
4
= Ry + Z R; dt,
i=2

where P = uf +u*"1v 4+ + uv*~! + vk, Taking the supremum over 7 € [0, 7] ]
and using the BDG inequality, H;(3) and the Cauchy—Schwarz inequality yield

E sup [w®l —ElwOI?,

te[O,rLZv]
1 2 T N2
< 3B swp i, +Co) [ B swp u),
0

1€[0,7],] 1'el0,7 ]

T

4 TM v
+Y E / |R;|dt.
i= 70
Using Lemma A .4, integration by parts and H® < W1, we have

IRal S (10" 00, Pedwo, D w) |+ |(PeD gy, D)

L2

2 k
Slwl,e (lullas + vlias)”
Therefore, for some constant C(N) > 0, we have that

rlv T
IE/ |R2|dt§C(N)/ E sup  [w(@)]?, dr.
0 0

el ]

Similarly, Lemma A.5 and H;(3) yield

4 o T
ZE/ |R;|dt < C(N)/ E sup [w(@)|?, dr.
i=3 70 0 "

t'el0,7} ]

Therefore, we combine the above estimates to find

T
E sup ||w(t)||ip,52E||w(0)||§p,+C(N)/ E sup [w(@)3, dr.
rel0,7],] 0 ref0r),]

Using the Gronwall inequality in the above estimate leads to (3.1). O

Similarly, one can obtain the following uniqueness result for the original problem
(1.4), and we omit the details for simplicity.

Lemma 3.2 Lets > 3/2, and let Hypothesis Hy be true. Let uy be an H*-valued Fo-
measurable random variable such that uy € LZ(Q; H?). If (u1, t1) and (u3, vp) are
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two local solutions to (1.4) satisfying u; (- At;) € L? (Q2; C([0, 00); H*)) fori = 1,2
and P{u1(0) = u(0) = ug(x)} = 1, then

Plui(t,x) =ux(t,x), (t,x)e€[0,71 Ap] x R} =1.

3.1.2 Thecases > 3

To begin with, we first state the following existence and uniqueness results in H® with
s > 3 for the Cauchy problem (1.4):

Proposition3.1 Let s > 3, k > 1, and h(t, u) satisfy Hypothesis Hy. If ug is an
H? -valued Fy-measurable random variable satisfying E||uo||%15 < 00, then there is
a unique local solution (u, t) to (1.4) in the sense of Definition 1.1 with

u(- A1) € L? (2 € ([0, 00); HY)). (3.2)

Proof Since uniqueness has been obtained in Lemma 3.2, via Proposition 2.1, we only
need to remove the cut-off function. For ug(w, x) € L%(2; HY), we let

Qp :={m —1 < luollgs <m}, m>1.

Let uo,m = uolyn—1<|ug| ys <m}- For any R > 0, on account of Proposition 2.1, we
let u,, g be the global solution to the cut-off problem (2.1) with initial value ug , and
cut-off function yg(-). Define

—: . 2 2
Ty, g := inf {t >0: sup lum (s > lluomllyys + 2} )
t'€[0,t]

Then for any R > 0 and m € N, it follows from the time continuity of the solution
that P{r, g > 0} = 1. Particularly, for any m € N, we assign R = R, such that
R2 > ?m?+2¢%, where ¢ > 0is the embedding constant such that || || yy1.0c < cl|-|l s
for s > 3. For simplicity, we denote (i, 7)) := (U R,,> Tm.R,,)- Then we have

2 2 2 2 2 2 2
P{llum 300 = lltmliFe < lluomlys +26% < R,

te[O,rm],mzl}zl,

whichmeansIP’{XRm(||um||W1,oo) =1,tel0,t,], m> 1} = 1. Therefore, (i, Trn)
is the solution to (1.4) with initial value ug ,,. Since E||u0||%1,. < 00, the condition
(A.5) is satisfied with I = N*. Applying Lemma A.7 means that

=Y Nm—t<puollgs <mms T =D Lm—1 =l s <m) T

m>1 m>1
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is a solution to (1.4) corresponding to the initial condition u(. Besides,

2 2 2
sup |[ullzs = E Yon—1<jugliys <my SUP |umlgys < 2lluollfys +4 P-as.
1€[0,7] el 1€0,7]

Taking expectation gives rise to (3.2). O

3.1.3 The cases > 3/2

When s > 3/2, we first consider the following problem

du + |u*o,u + Fu dt =h(t,u)dW, k>1, xeR, t >0,
[dhocu+ P dr = nae,uy o)
u(w,0,x) = Jeugp(w,x) € H*®, x eR, ¢ € (0, 1),

where J, is the mollifier defined in (A.l). Proposition 3.1 implies that for
each ¢ € (0,1), (3.3) has a local pathwise solution (i, 7;) such that u, €
L (2; C ([0, Te]; HY)).

Lemma 3.3 Assume ug is an H®-valued Fy-measurable random variable such that
luollgs < M for some M > 0. Forany T > 0 and s > 3/2, we define

t) =inf{r > 0: luelas > [euollms + 20 AT, ) =1l A1), e.ne (D).

5’”
(3.4)

Let K > 2M + 5 be fixed and let s’ € (%, min {s -1, %}) Then, there is a constant

C(K,T) > 0 such that we = ugs — uy satisfies

2
E sup Jlwe () lgs
tE[O,rgW]

= COKTIE {1wesn ) + wesn O e O}
+C(K, TE sup [lwe, (03, 3.5)

1e[0,7],]
Proof To start with, we notice that Lemma A.1 implies
I Jetollgs < M, & e (0,1) P-as. (3.6)

Since (3.4) and (3.6) are used frequently in the following, they will be used without
further notice. Let

ué —i—ué_lu,, +~-~+u8u€7_1 —I—MZ,], if Il >1,

P = Pi(ug, M;]) = {1’ F1=0 - 3.7
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Applying the It6 formula to ||w,,, ||%_1S gives rise to

dllwe s = 2 ([A(t, ue) = h(t,up)] AWV, wey) s — 2 (Weuy Pem1xits, wey) , dt
2 (M,;axwg,n, wg,n)m dt =2 ([F(ue) — Fuy)], we ) . de
5
+ R ue) = B u) | ey 7= Qrs+ Y Qisdt. (38)
i=2

Since H* <> L™ and H® <> W1 we can use Lemmas A.3 and A.5 to find

|Q2,x| f, (||ws,7]Pk—1||H~‘||8xu£||L°° + ”ws,nPk—l||L°°||axM8||H~‘) ”wa,n”HS
< Nwe s (Tellzrs + Ny llzrs)* + we g 12,0 ey
+ (e s + Moyl )72 we s
105.] < ‘([DS,uf]]ast,n,wag,,,)Lz (M,;axDSws,,,,Dswg,n)L2

< Mwe, 137 ey 15,

+

and

| Qas| S llwep s (luell s + IIMnIIH:)k-

The above estimates and Hj(2) imply that there is a constant C(K) > 0 such that

5 ZsTn
>5[ ionlar
i— Y0
.
<E e , Nk 4 2 2 2 d
SE (luellrs + Nugllas)™ + 1) lwepllzs + lwen 5, el | df

i 2 2
+E 81 (K) lwg,p |l s dt

0
T
< C(K) [) E sup flwey ()3 di + CTE  sup  [we (17,0 e () 1501

t'€[0,7{ ;] 1€[0,77, ]

For Q1 s, applying the BDG inequality and H;(2), we derive

t
E| sup f([h(;,us)—h(t,un)]dw,wm)m
| »

te[O,an]

1 T
< JE sup el + CaHK) / E sup w1 dr.
0

rel0,c7,] rel0,z, |
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Summarizing the above estimates and then using Gronwall’s inequality, we find some
constant C = C(K, T) > 0 such that

2
E sup [wen(Dllgs
te[O,rgT_n]

< C [ Ellwe )3 +E  sup [lwe 0117, e ()50 | - (3.9)

rel0.77,]

Now we estimate E sup, ¢ .7 ||w,;,,7(t)||2 Jlue () ”3—1”1’ To this end, we first recall
sten S

(1.7) and then apply the Itd formula to deduce that for any p > 0,

o0
dllucly =27 (e, uder, e o dWs =2 (D [ o) s | DPu,) , dr
=1

—2(DPF(ue), Due) o di + Wt ) | 2, 51, oy A1
4

o
= ZipsdWi+ Y Z; ,dt. (3.10)
=1 i=2

In the same way, we also rewrite Q1 s in (3.8) as
o o0
Qrs =2 ([nt.ue) = hit.up)] ej. wey) s AW; =Y Q15 dW;. (3.11)

j=1 j=1

With the summation form (3.11) at hand, applying the Itd product rule to (3.8) and
(3.10), we derive

o0

2 2 2 2
dllwe 12 e Bgeis = D2 (el Z1ssn + el Qu ;) dW;
j=1

4 5
2 2
+ ) eyl Zisrrde + Y llue 10 Qi di
=2 i=2

oo
+ Y 01y, 21t dt.
j=1

We first notice that

Q2,s’ + Q3,s’ = ax(Pkwa,n)a ws,n)Hx’ s

k—i—l(
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where Py is defined by (3.7). As a result, Lemma A .4, integration by parts and H® —
W12 give rise to

2 k
1025 + Q3,51 S llweplly,, (luellms + eyl s )

Using Lemma A.3, Hypothesis Hj, Lemma A.5 as well as the embedding of H® —
W12 for s > 3/2, we obtain that for some C(K) > 0,

4

2 2 k 2 2 2
Z ||ws.r7||HS' |Zi s+1] 5 st,n”H:/ I:”“s”Hs ||“s||H.x+1 + f“uellgs)A + ||us||H.‘+1):| s
i=2

5 7 T

&,n
D E fo lute 1 37011Qi 5/ di < C(K) /0 E sup ()3 llwey 117, de
i=4

t’elo,ré'.vﬂl

Then one can infer from the above three inequalities, the BDG inequality and Hypoth-
esis H; that for some constant C(K) > 0,

2 2 2 2
E sup ”ws,n ”H-Y/ [lzee ”Hs+l - ]E”ws,n(o)”HS/ [ (0) ”H.H—l
ref0,77,1

2

T
‘L’s’n
4 2 2
rg ]E (/ ”ws,n ||H_y/ ”h(ts ug)”ﬁz(ﬂ' Hx+1) ”u&‘ ”HHI dt)
0 5

1
2

faT,n
+E(/0 ot e I, 1) = e, eI ||w8,,||Hs,dt)

T
+ ZEf eI, Zi 1] e + E/ e 12,0 @,y + O30 d

+ZE/ |u8||H3+1|Q,s/|dt+E/ Z|Q1s121s+1;|dl

<1g 2 2
= sup  [lwe,p ”HS/ flue ”H.H—I
ref0,77, ]

T
+C(K) / sup [[we,y ()17, e (1) 13501 dt

t'e€l0,t! "

TsT,n >
+C(K)TE  sup IIwE,](t)IIHA,—HE[ ZlQl,s’,jzl,s—i-l,ﬂdt- (3.12)

ref0.77,]

For the last term, we proceed as follows:

Tej:n ad
IE/O Z |01, Z1 41,5 dt
=1
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T
Tey
E/ N, ue) — h(t, upll 2, 5. gy 1Wenll s 1R (LS ) | 2 (st sty ke Nl st i
0 2

N

IA

CHKITE sup w07,y

rel0.tf,]

T
s /0 Esup lwey )2, lue () dr

ref0.tt,]
Consequently, (3.12) reduces to

E sup  Nwe I3, luelfyen — 2Elwe 017 llite (0) [0
r€[0,7],]
< C(KTE sup Jwe (017,

rel0.77,]

T
+cm»/ E sup  lwe @) lue ()]0 dr,
0 t’e[O,rgyn]

which means that for some C(K, T) > 0,

E sup (weyl?, lluell3
tel0,7],]
< C | Ellwe 5 O3, 4301 +E - sup  Jwe, 17,0 | (3.13)
te[O,an]
Combining (3.9) and (3.13), we obtain (3.5). O

To proceed further, we state the following lemma in [25] as a form which is conve-
nient for our purposes.

Lemma 3.4 (Lemma 5.1, [25]) Let all the conditions in Lemma 3.3 hold true. Assume

lim supE  sup |lug —uyllgs =0 (3.14)
e—0 n<e te[O,rg,]]
and
lim sup Py sup ugllps = [ Jeuollps +1¢ =0 (3.15)
a=0ee0,1) | ref0,77 nal

hold true. Then we have:

(a) There exists a sequence of stopping times &, , for some countable sequence {e;}
with ¢, — 0 asn — oo, and a stopping time t such that

g, <tl, lim &, =1 € (0,T] P-as.
n n—o0
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(b) There is a process u € C([0, t]; H®) such that

lim sup |lug, —ullgs =0, sup |lullpgs < |luollps +2 P-as.
= 1e0,1] tef0,1]

(c) There is a sequence of sets 2, 1 2 such that for any p € [1, 00),

tef0,7] n 1€l0,7]

1o, sup lue,llms < luollys +2 P-as., and supE (19,, sup ue, ||zs) < 0.
Remark 3.1 In the original form of [25, Lemma 5.1], the authors only emphasize the
existence of stopping time 7 € (0, 7] such that (b) and (c) in Lemma 3.4 hold true.
However, here we point out that they obtained such t by constructing stopping times

&,. We refer to (5.2), (5.12), (5.15), (5.20) and (5.24) in [25] for the details. The
properties (a) and (c) in Lemma 3.4 will be used in the proof for (iii) in Theorem 1.1.

Proposition 3.2 Ler Hypothesis Hy hold. Assume that s > 3/2, k > 1 and let ug is an
H*-valued Fo-measurable random variable such that |ug|| gs < M for some M > 0.
Then (1.4) has a unique pathwise solution (u, t) in the sense of Definition 1.1 such
that

sup |lullgs < lluollgs +2 P-as.
tel0,7]

Proof We first prove that {u,} satisfies the estimates (3.14) and (3.15).
(i) (3.14) is satisfied. Lemma A.1 tells us that

lim sup Ew, 2 O) [ =0. (3.16)

e—0p<e
Since || Jeug||gs < M, as in Lemma 3.1, we have

limsupE sup |jw, ,7(t)||HS <CM,T) hm supEst ,7(0)||H5 =0. (3.17)

e=>0n<e  yefo,f )]

Moreover, it follows from Lemma A.1 that

A 1
iy sup 102, (O) 12, 0 O) .1 S lim supo (32) 0 (8_2) —0. (18

e—0 n=< n=<e

Summarizing (3.16), (3.17), (3.18) and Lemma 3.3, (3.14) holds true.
(ii) (3.15) is satisfied. Recall (3.10) and let a > 0. We have
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; 00
sup el < Mool sup |30z aw,
0
j=1

tel0,t] Aal t€[0,7) Aal

4 il ha
+) /0 |Zi ] dt,
i=2

which clearly forces that

]P’{ sup  [lue (I3 > I Jeuollzs + 1}

t€[0,7) Aal

1 4 ‘[ET/\a 1
<P{ sup /OZZL”de > (+P Z/O |Zisldt > S ¢
i=2

IE[O,TST/\(J] j=1

Due to the Chebyshev inequality, Lemmas A.3 and A.5, Hypothesis H;, the embedding
of H < W1 fors > 3/2, (3.4) and (3.6), we have

4 T

4 rilna 1 tl Aa
P Z/ Zisldt > S 4 < CZE/ | Z; | de
i= 70 i= V0

I na
<CE [ [Iuallf o £2 e 1+ e )]
0
T

T, Na
< CE/ C(M,T)dt < C(M, T)a.
0

Then we can infer from the Doob’s maximal inequality and the Itd isometry that

t 1
P{ sup / E Z15.jdWj| > 5
0

1€[0,t] Aal j=1

2
00

12N
<CE / Zzl,s.j dw;
0 ,
j=1

tl na 5 5 5
< CIE/O [ £2 e lr) (1 -+ el ) e e ] i
T

T, Aa
§CE/ CM,T)dt <C(M,T)a.
0

Hence we have

p{ sup ||ue(l)||%1x>||Jau0||%1s+1}SC(M,T)a,

te0,7] Aal
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which gives (3.15).

(iii) Applying Lemma 3.4. By Lemma 3.4, we can take limit in some subse-
quence of {ug,} to build a solution u to (1.4) such that u € C([0, r]; H*) and
sup,cjo.o) lull s < lluoll s + 2. Uniqueness is a direct corollary of Lemma 3.2.

O

Now we can finish the proof for (i) in Theorem 1.1.
Proof for (i) in Theorem 1.1. As in Proposition 3.1, we let

uo(@, ) 1= Y uom(@. %) 1= > uo(@. X)m_1<jugll s <m) P-as.

m>1 m>1

For each m > 1, we can infer from Proposition 3.2 that (1.4) has a unique solu-
tion (Upm, Tpy) With uy, (0) = ug s, almost surely. Furthermore, SUP; (0.7, 1Umllms <
[0, m || s +2 P-a.s. Using Lemma A.7 in a similar way as in Proposition 3.2, we find
that

u= Z Lon—1<luoll s <m}m> T = Z Lin—1<|lugl yys <m) Tm

m>1 m>1

is a solution to (1.4) satisfying (1.11) and u#(0) = uo almost surely. Uniqueness is
given by Lemma 3.2. O

3.2 Proof for (ii) in Theorem 1.1: Blow-up criterion

With a local solution (u, ) at hand, one may pass from (u, ) to the maximal solution
(u, T*) asin [5,26]. In the periodic setting, i.e., x € T = R/27Z, the blow-up criterion
(1.12) for a maximal solution has been proved in [46] by using energy estimate and
some stopping-time techniques. When x € R, (1.12) can be also obtained in the same
way, and we omit the details for brevity.

3.3 Proof for (iii) in Theorem 1.1: Stability

Let ug, vo € L*°(2; H®) be two H*-valued Fy-measurable random variables. Let u
and v be the corresponding solutions with initial conditions uy and vg. To prove (iii)
in Theorem 1.1, forany ¢ > O and 7 > 0, we need to find a § = &(e, ug, T) > 0 and
at € (0, T] P-a.s. such that (1.14) holds true as long as (1.13) is satisfied. Without
loss of generality, by (1.13), we can first assume

lvoll Loe(; msy < lluollLoo: s + 1. (3.19)

From now on € > 0 and 7 > 0O are given.

Howeyver, as is mentioned in Remark 1.1, the term ukux loses one regularity and
the estimate for [ sup, o . lu(?) — v(t)||%_1s will involve ||u|| gs+1 or ||v|| gs+1, which
might be infinite since we only know u, v € H®. To overcome this difficulty, we will
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consider (3.3). Let ¢ € (0, 1). By (i) in Theorem 1.1, there is a unique solution u,
(resp. v) to the problem (3.3) with initial data J,uq (resp. Jsvo). Then the H*+!-norm
is well-defined for the smooth solution u, and v,. Similar to (3.4), for any T > 0, we
define
o/ T i=inf e 20 fellgs = e folls +2VAT, f€fuv).  (3.20)
Recalling the analysis in Lemma 3.3 and Proposition 3.2 (for the case f = v, we
notice (3.19)), we can use Lemma 3.4 to find that there exists a unified subsequence
{en} with &, — 0 as n — oo such that for f € {u, v}, there is a sequence of stopping
times sg; and a stopping time 7/ satisfying
gf <7/T, n>1and lim g/ =1/ €0, 7] P-as., (3.21)
n—oo N

n — “&n
and

lim sup |If — fe,llms =0, sup | fllms =l follgs +2 P-as. (3.22)

"7 0,711 1€[0,77]
Moreover, for f € {u, v}, there exists SZ,{ 1 € such that

1 sup | fe, s < Il follas +2 P-a.s. (3.23)

!
Q .
" tef0,7/]

Next, we let @, := Q¥ N Q7. Then 2, 1 Q. This, (3.22), (3.23) and Lebesgue’s
dominated convergence theorem yield

lim B sup | f —1g, fe, Il =0, f € {u, v}

n— 00 te[0.7/]

Therefore, we have, when n is large enough, that

€
E sup [If —1g, fe, I3 < 5 f € {u, v}. (3.24)
ref0,7/]

Now we consider E sup,¢(g ruprvy 110,ue, — 1, Ve, ||%1s. It follows from (3.21) that
foralln > 1,

2
E sup ”152,, Ug, — lSZn Vg, ||1-1-r
tel0, T4 ATY]

2
<E sup Mg, us, — 1, Ve, I s
1€[0,54 NEY ATUATY]

2
+E sup I1e,ue, — 1q,ve, I 5s
te[§f, NES AT AT T ATV

<E  sup  lug, (t) — ve, (D%

u, T v, T
t€[0,7e,” ATe," ]
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+E sup I, ue, — 1o, Ve, |15 (3.25)

te[§f NES AT AT T ATV

By (3.23),

sup g, us, — 1o, ve, [ < 32 (||u0||%,x +llvollys + 1).

1€[E8 AED ATHATY, THATY]

Consequently, by Lebesgue’s dominated convergence theorem and (3.21), we have
for n > 1 that,

€
E sup g, ue, — 1, ve, 137 < — (3.26)

te[sgn Afg;l/\r”/\r“,r“/\r“] 13

Now we estimate |E SUp, ¢ v llug, () — v, (t)||%{s. Similar to (3.5), by using

0,r§',;T/\r5,
(3.19), one can show that for s’ € (%, min {s — 1, %}),

E  sup e, (t) — ve, (1) 155

10, 75T AT

2 2 2
< CE{I1Je, 40 = Jo, v0ll3y + ey 100 = Jo, 0120 19, w0031 |

+CE  sup ue, (1) = v, (DI,

rel0, 7T AT

en
2 1 2 2
= CE\lluo = volls + 25 lluo = volly lluolls
n

+CE  sup lue, (1) — v, I, (3.27)

e[0T ATy

where C = C (”M()”LOO(Q;HS), T) and Lemma A.1 is used in the last step. Since
ug € L*(2; H®), by Lemmas 3.1 and A.1 again, we have

E  sup g, (6) — ve, (0) |55

ref0, " AT

1
2 2 2 2
<CE { lluo — vollgs + 2 lluo —voll7,, ||MO||HS} + CE|[Je,u0 — Je, voll 3,y

n

1
= CElluo = vollfys + C—5Elluo = volly,e + CElluo — voll},:, (3.28)

n

@ Springer



Stoch PDE: Anal Comp

where C = C (|luoll(q:as), T) as before. Fix n = ng > 1 such that (3.24) and
(3.26) are satisfied, i.e.,

€
E sup |If =1, fer, s < 5o f € lu,v),
tef0,7/]
¢ (3.29)

2
E sup ”19,,0 usno - IQHO vano ”H‘Y < 1_
te[ég‘no NEY ATUATY, THATY] 8

€nqy
Then, for (3.28) with n = ng, we can find a § = §(¢, ug, T) € (0, 1) such that (3.19)
is satisfied and

€ .
Eoosup ey, () = vy, (Dl < g0 iF o = voll sy < 8. (3:30)
u, T v, T
te[O,rg,,O/\tSnO]

As a result, for (3.25) with fixed n = ng, we use (3.29), and (3.30) to derive that

€ € €
E su g, ue, —1la, ve, 13 < — 4+ — = —, if |lup — vollL=(@ sy < 8.
tE[O,z“pAz”] "o o o LA I8 18 9 (A1)

This inequality and (3.29); yield that

E  sup [lu—vll}s
te[0, T4 ATY]

<3 > E sup  |If — 1oy fe, s

felu,v) tel0, T4 ATV]
2
+3E  sup g, ue,, — 1, Ve, 5

te[0, T4 ATV]

<zt 3t 3 =6 if lluo —vollre@ins) <9

€ €
3 3 3
Hence we obtain (1.14) with T = t* A t¥. Due to (3.21), T € (0, T'] almost surely.

Remark 3.2 Here we remark that the restriction 1g, is needed to estimate

E sup |f —1q, fe, I3
te[O,rf]

for f € {u, v}. This is because we only have lim, o sup, i 11 II.f — fe, s =0

P-a.s. (cf. (b) in Lemma 3.4), and we need to interchange limit and expectation. By
(c) in Lemma 3.4,

sup | f — Lo, fe l3s <2 sup £ +21q, sup [l fe, 135 < 41l foll%s + 16.
tef0,7/] tef0,7/] tef0,7/]

Hence Lebesgue’s dominated convergence theorem can be used. In the deterministic
case, one can directly consider || f — f;, ||%1S.
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4 Weak instability
Now we prove Theorem 1.2. As is mentioned in Remark 1.3, since we can not get an

explicit expression of the solution to (1.4), we start with constructing some approxi-
mative solutions from which (1.19) can be established.

4.1 Approximative solutions and actual solutions

Following the approach in [28, 46], now we construct the approximative solutions.
We fix two functions ¢, ¢ € C2° such that

=T o = it @.1)
P(x) = 0. if || > 2. an x) = 1if x € supp ¢. .
Letk > 1and

m € {—1, 1} if kis odd and m € {0, 1} if k is even. “4.2)

Then we consider the following sequence of approximative solutions
Upp = U]+ Up, 4.3)

where up = up ;5 is the high-frequency part defined by
s X
Wy = pmn(t,x) =n" 2% (—5) cos(nx —mt), n €N, “.4)
n

and u; = uy,,,, is the low-frequency part constructed such that u; is the solution to
the following problem:

a,uz—i—uf‘Bxu[—i—F(ul):O, xeR, t>0,k>1,

~ 4.5
ul(O,x)zmn_%qb (:_6)’ x € R. )

The parameter § > 0 in (4.4) and (4.5) will be determined later for different k£ > 1.
Particularly, when m = 0, we have u; = 0. In this case the approximative solution
ug,, has no low-frequency part and

o x
up(t,x) =n"2"%¢ (_5) cos(nx).
n
Next, we consider the problem (1.4) with initial data u,, , (0, x), i.e.,

du + [u*0eu + F(u)]1dt = h(r,u)dW, t >0, x € R,

u(0, x) = mn_%qg (:—6) + n—%_sqj (:_6) cos(nx), x € R, (4-6)
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where F(-) is defined by (1.5). Since & satisfies H, (1), similar to the proof for Theorem
1.1, we see that for each fixed n € N, (4.6) has a unique solution (#™", t”>") such
that u™" € C ([0, T""]; H®) P-a.s. with s > 5/2.

4.2 Estimates on the errors
Substituting (4.3) into (1.4), we define the error £(w, ¢, x) as

E(w,t,x):= um,n(tv x) — um,n(ov x)

t t
+/ [u],‘n’n(‘)xum,n +F(um,n)] dr’ —/ h(t', ) AW P-as,
0 0

For simplicity, we let

q
> Couluy, itg =1,
j=1

0, ifg =0,

Zy = Z4(up, up) = 4.7

where C({ is the binomial coefficient. By using (4.3), (4.5) and (4.7), £(w, t, x) can
be reformulated as

E(w,t,x)
'

t
= u,(r,x)—u,(o,x)+/ ukd,uy dﬂ+/ F(u;)dt’
0 0

13
Fun(t0) =00 + [ [uf s + 2o + )| ar
0
t t
+/ [F(u; +up) — F(up)] di’ — f h(t', up ) dW
0 0
t
= up(t,x) —up0,x)+ / [ufaxuh + Zi(0yu; + axu,,)] dr’
0

t t
+/ [F(u + up) — Fup)] dﬂ—/ h(t', ) AW P-as.  (4.8)
0 0

4.2.1 Estimates on the low-frequency part

The following lemma gives a decay estimate for the low-frequency part of u,, ,, that
iS, uj.

Lemmad.l Letk > 1, im| =1orm =0,s5s > 3/2,§ € (0,2/k) andn > 1. Then

there is a T; > O such that for all n > 1, the initial value problem (4.5) has a unique
smooth solution u; = u;,, € C([0, T;]; H®) such that T; does not depend on n.
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Besides, for all r > 0O, there is a constant C = C, o1 > 0 such that u; satisfies

5_1
lur@llgr < Clmin2"%, 1 € [0, T7]. (4.9)

Proof When m = 0, as is mentioned above, u; = 0 for all # > 0. It remains to prove
the case |m| = 1. For any fixed n > 1, since u;(0, x) € H*, by applying Theorem
1.1 with & = 0 and deterministic initial data, we see that for any s > 3/2, (4.5) has
a unique (deterministic) solution u; = u; » , € C ([0, Twnl H® ) Different from the
stochastic case, here we will show that there is a lower bound of the existence time,
i.e., thereis a 7; > O such that foralln > 1, u; = u; ;,, , exists on [0, T;] and satisfies
4.9).
Step 1: Estimate ||u;(0, x)|| g-. When n > 1, we have

=~ 2
0. ) e = F [ (14 16Py B[ ae

—m2n1 /R (1 + (;’—5(2>r

for some constant C = C, 3> 0. As a result, we have

= 2 2 5-2
d)(z)‘ dz < Cm2n®~ 1

1

)
(0, )| pr = Clmln2"k.

Step 2: Prove (4.9) for r > 3/2. In this case, we apply Lemmas A.3 and A.S,
H" — W to find

2
a7

‘ (Drul, D" (uf‘axul)>
L2

\([D’, K10, Drm)Lz

2.dr

IA

+|(D"ur, D"F(up) |

IA

+ llutll gr 1 F ()l

+ ‘(ufDraxul, Drul)
L2

k k—1 2 k 2

S Nuag W 09| oo lloag e+ 9t | zoc Naag Wy e 3 + e 1y e 17
2

< Clully?, € =Cr>0.

Solving the above inequality gives

0) || 1
@l o, _
(1= Cktlu@1f,)* Chllaer O)lzgr

luillmr <

Therefore, we arrive at

1

uillgr <2luiO)lgr, t€l0, Tnnl, Tinpn=———.
” l||H = || i )”H [ m‘n] m,n 2Ck||u1(0)||k,

(4.10)
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1

20kn* )
find a common time interval [0, 77] such that

By Step 1, we have T, — 00, as n — oo. Consequently, we can

nN

1

k, tel0,T],

5
lurllar < 20lui(0)gr < Clmin2

which is (4.9).
Step 3: Prove (4.9) for 0 < r < 3/2. Similarly, by applying Lemmas A.3 and A.S5,
we have

1d
3 — g3
< ’(Drul, D’ (uf‘axul))Lz (D", D" F(up) |
= (10" uftosur, D'wr) (u"D’axuz,D’uz) I )
< b 1 e 18y u |l oo g e + 1185 Ml||L°°||Ml|| Mg 1130

+ lluill g ”ulnwl,oo (lurll g + l0xullEr) -

It follows from the embedding H'™3 < H™and H'™3 < WL that

1
2
> ||u1||Hr Sl ur | oo g e + 19l oo Nl 15 oty 1
+ ot gz Neta Wy e gl + 192001 v
k 2 k
S o lur e =+ Nua o0 Nzl e N |l e
k ket
Slluzll 3 lurl7r + ||Ml||H’||”l|| +
Using the conclusion of Step 2 for r + , we have

d
— Mgl S Nl N OF 5 + w5, 7 € [0, 771,
dt Hr+2 Hr+2
and hence
t
s N < Mg O g+ g O 73 + / gl g ()% 5 de’, 1 €0, Thl.
H;+7 0 Hr+2

Applying Gronwall’s inequality to the above inequality, we have

gl e S (||u1<0>||m + ||u1<0>||kt‘+3n) exp{nu,(())nk n} , 1€[0,T].
H "2 H 2

Since § € (0, 2/k), we can infer from Step 1 that exp { ||u1(0)||k L3 Tl} < C(T) for
H'™2

3 1
some constant C(7;) > 0 and ||u[(0)||kJrl 3 < ||u1(0)||Hr+% < C|m|n2~%. Hence we
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see that there is a constant C = C, b1 > 0 such that

§_ 1
luillgr < Clmln27%, 1 € [0, Ti],

which is (4.9). O
Recall the approximative solution defined by (4.3). The above result means that the

H*-norm of the low-frequency part u; is decaying. For the high-frequency part uy,, as
in Lemma A.8, its H*-norm is bounded.

4.2.2 Estimateon €

Recall~the error £ given in (4.8). By using (4.1) and (4.2), we have m = m* and
¢ = ¢k¢ for all k > 1. Then by (4.4) and u;(0, x) in (4.5), we see that as long as
m # 0,

(. ) — 1, (0, x)
— n 3 (;—8) cos(nx — mt) —n=3"5¢ (:—8) cos(nx)
A Y S
3 (20 (5t

= m_luf(O, x)nl_%_‘vqb (i) cos(nx — mt)

nd
1k 1-3—s (X
m~uy (0, x)n" "2 ¢(n5)cos(nx)
t
= /0 uf‘ (0, x)nl_%_sqf) (:—5) sin(nx —mt")dt’.

If m = 0, then u; = 0 and we also have

t t s X
up(t, x) —up(0, x) = / 0dt = f uk (0, x)n'"275¢ (—a) sin(nx — mt")dt’.
0 0 n

To sum up, we find that for all k > 1, m satisfying (4.2), u;, given by (4.4) and ; (0, x)
in (4.5),

4 I
un(t, x) — up(0, x) = f Uk (0, x)n' =175 (15) sin(nx —mt'yde'.  (4.11)
0 n

On the other hand, forall k > 1,
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t t
/ WKy di’ = —f K (tHn' =35 (%)sin(nx — mt'ydf’
0 0 n
! k B _g X / /
+/ Wk (=T S (—3) costnx —meydr'.  (4.12)
0 n

Combining (4.11), (4.12) and (1.5) into (4.8) yields

4 t '
E(w,t,x) = Z/O E;dt _,/() h(t', um ) dW, k>1 P-as., (4.13)
i=1

where
Er =[uf (0) = uf (0] =3¢ (=) sinGux — mr)

+ uf‘(t)n—?—fam (%) cos(nx —mt) + Z(0yu; + oxuyp),
n

Ep == Fy(u; +up) — Fi(u) = D728, Z41,
E3 :=Fy(up + up) — Fa(ur)

- ?D—zax{uf—l (2 @cten) + @) | + Zimr oty + d01)?),
Ey = F3(u; +up) — F3(up)

= %D—Z{uf—z[s(axw)z(axuw + 30u) Byun)” + Bun)’]

+ Ze2 @ + dun)* ).
We remark here that E4 disappears when k = 1. Recalling pg € (1/2, 1) in Hypothesis

H;, now we shall estimate the H”°-norm of the error £. Actually, we will show that
the H”°-norm of £ is decaying.

Lemma4.2 Let T; > 0 be given in Lemma 4.1, and py € (1/2, 1) be given in H,. Let
n> 1,5 >5/2 Let

§<6<1, when k =1,

> ) (4.14)
- —— < 3§ < —, whenk > 2,
k  2k—1 k
and
O>ry=—s—14+po+k6, k>1. (4.15)

Then the error £ given by (4.13) satisfies that for some C = C(Tj) > 0,

E sup €@, < Cn*.
tel0,T7]
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Proof The proof is technical and it is given in Appendix B. O

4.2.3 Estimate on upy,,, — u™"

Recall the approximative solutions u,, , given by (4.3). Then we have the follow-
ing estimates on the difference between the actual solutions and the approximative
solutions.

Lemmad4.3 Letk > 1,5 > 5/2 and po be given in H,. Let (4.14) hold true and rs < 0
be given in (4.15). For any R > 1, we define

" =inf{r > 0: [[u"™" || gs > R}. (4.16)
Then forn > 1,
E sup  [[(mn — u™") (O30 < Cn*", (4.17)
1€[0, ATy "]
E  sup [ Gmn — ™" (O py < CnP 70, (4.18)

1€[0, Tt "]

where T; > 0 is given in Lemma 4.1 and C = C(R, T;) > 0.

Proof Letv = vy = Uy, — u™". Then v satisfies v(0) = 0 and
! 1
v(t) —i—/ (—ax(Pv) + F(umpn) — F(u”“”)) dr’
0

k+1
t 4 t
= _/ h(t’,u’"’”)dW+Z/ E;dr',
0 —Jo
where
P=Py,= uﬁm + u];;nlum’” 4+ 4+ u,,”,(u'"’”)k_1 + @™k, k> 1.

On [0, T7], by the It formula, we have that

' 4
O = =2 [ (") W)y +2 3 [ oo 0
i=1

2
k+1

t
+/0 ||h(t/»um’n)”%z(u;yﬂo)dt/-

t 1
/ (3¢ (Pv), v) oo dt’ — 2[ (LF () — F@™™)], v) oo dt’
0 0
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Taking supremum withrespecttot € [0, T; ATy "], and then using the BDG inequality
yield

2
E  sup  Jlv@)llgeo
1e[0,TiATg "]

T]A'r;en’n ) ) 1/2
< CE fo DI e, )2 1y
4 Tinty™
+2ZE/ [(Ei, v)pro| dt
. 0
i=1

) Tl/\r;enﬂ
+ m]E/(; |(ax(PU), U)Hﬂ0| dr

Aty
+ 2]E[0 |(F(umn) = F@™"), 0) 0 | dt

TATh .
+E/0 ||h(t,um'n)”l:z(u;]-]po)dﬁ

It follows from Lemmas A.8 and 4.1 that [|u,, || g5 < 1 on [0, Tp"" A T;]. Hence we
can infer from Hypothesis H, that

2 2 2
Az, um'n)”L‘,z(u;Hﬂo) S A, um,n)”L‘,z(u;HﬂO) + (2, um,n) — h(t, um’n)”gz(g;yﬂ())

1 2
S (e'”) + G CRVGm, 1 €10, 77" AT P-as.,

where g3(-) is given in H»(2). As aresult, for any fixed s > 5/2, by applying Lemmas
A.8 and 4.1 again, we can pick N = N (s, k) > 1 to derive

e ™) sy S Wil + 83 (C R
8 1 2
< (nN(—S-i-po) + nN(j—E)> + g%(CR)”U”%Iﬂo

S+ 3 (CR) VI, 1 €0, 73" ATH] P-as.
Consequently, we can infer from the above inequalities that

E  sup vl

1€l0, TinTa"]

<

| =

5 4 Aty
E  sup ||v<t)||Hpo+ZZEf |(Eg, wm] di
i=1 70

1e[0, TiATy™]

s pTiAd
+E /0 |02 (P), v) oo dt
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m,n

Tinte
+ 21E/0 |(F (umn) — F ™), 0) o | dt

m.n

0,tnTR™"]

T;
+CO v [ B sup (o) o
0 e[

Via Lemma 4.2, we have

4

4
2> IEi vygnl <2 IEgmo llvll oo

i=1 i=1

2 2 2rg 2
S D E NG + Wl S CADR + [0ll0-

i=1
Using Lemma A.4 and integration by parts, we obtain that

|(D™9, (Pv), D™v) ;2|
= |([D™d,, Plv, D"v) ;2 4+ (PD™dcv, D™v) 2|

2 2 : ko2
S WPl asvllgee + I Pl llolze S Q™" e + llwmnllms) " 10l 50 -

Then, we use Lemma A.5 to find that

|(F @mn) — F@™™),0) oo | S NF Wmn) — F @™ oo 0]l 0
SIF W) — F@™™) 1300 + 101300

S ™" s + Nt nll ) 101300 + 101100,
To sum up, by (4.16), Lemmas 4.1 and A.8, we arrive at

7
E  sup [o@ e < CTDR +Cr / E sup  [o()2mdr.

te[0,TinTp "] 0 re[0,rnty™]

Using the Gronwall inequality, we obtain (4.17).
Now we prove (4.18). Since 25 — pp > s > % and u™" is the unique solution to
(4.6), similar to (2.5), we can use (4.16) and H»(1) to find for each fixed n € N that

N 2
E o sup (w0125
1[0, TATi "]

Ti
< CElltp 0 ()% 2, + Cr / E  sup  [lu™" ()%, dt
0 e[

H2sfp0 HZspr .
0.tATg™"]
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Using the Gronwall inequality and Lemmas 4.1 and A.8, we find a constant C =
C(R, T;) such that foralln > 1,

E  sup [u™"(0)] < CE|lt 1 (0)]|

H2x7p0 H2sfp()
1e[0, TiATy™"]

§_ 1
< C(nf_f +ns—p0)2 < Cn2s—2p0.

Hence, by Lemmas 4.1 and A.8 again, we arrive at

, 2
E sup [l (™" — um,n)(t)”HzS—po
1e[0, TiATE™]
s 2 2
<2E s WO +2E sup a1
1e[0,TiATy™] 1e[0, TiATy™]

< Cn®72M p>1.

The proof is therefore completed. O

4.3 Finish the proof for Theorem 1.2

To begin with, we observe the following property:

Lemma 4.4 Let Hy(1) hold true. Suppose that for some Ry >> 1, the Ry-exiting time
of the zero solution to (1.4) is strongly stable. Then we have

lim tl'?o’" = oo P-a.s. (4.19)
n—o0

Proof By H, (1), the unique solution with zero initial data to (1.4) is zero. On the other

hand, we notice that for all s < s, lim,— oo || Um.n Ol s = limy— 0 |t (0) —

Oll s = 0. Since the Ry-exiting time of the zero solution is oo, we see that (4.19)

holds provided that the Rp-exiting time of the zero solution to (1.4) is strongly stable.

O

Proof for Theorem 1.2 Our strategy is to show that if the Ry-exiting time is strongly
stable at the zero solution for some Rg > 1, then {u~!"} and {u'"} (if k is odd) or
{uo’"} and {ul’"} (if k is even) are two sequences of solutions such that (1.16), (1.17),
(1.18) and (1.19) are satisfied.

For each n > 1 and for fixed Ry > 1, Lemmas 4.1, A.8 and (4.16) give P{r;"o’" >
0} = 1, and Lemma 4.4 implies (1.16). Then, it follows from (4.16) that ™" €
([0, Tlre”(;n]; H*)P-a.s. and (1.17) holds true. Next, we check (1.18). By interpolation,
we have

E sup ltm,n — u™ " || s

m,n

IE[O,T[/\‘ERU 1

1 1
2 2
<C|E sup llumpn—u""llum E  sup  flumn — ™" g2s—no
te[O,T,/\r};’d”] te[O,T,/\r}e"U‘”]
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1 1

q 7

2 2
<C|E sup ”um,n —u™" ”Hﬂo E sup ”um,n —u™" ”st—po
IG[O,T[/\‘E;IO'”] IG[O,T[/\‘E?O'”]

For 7; > 0, combining Lemma 4.3 and the above estimate yields

1 1 ’
E  sup  |lmn — u"™"|gs < C(Ro, T)nas - n#@5=200) = C(Ry, Ty)n',
ze[O,T,Arl'e"(;”]

where r; is defined by (4.14) and | = ry - % +(s—po) - % = % < 0. Consequently,
we can deduce that

lim sup Nt — u™" || gs = 0. (4.20)

n—00 rel0.TinTe" ]
When £ is odd,

= 10) — u ™ (O) [l s = lle—1,2(0) — w1 (0)[| s

1~/ X
=2Hn_i (—) H — 0, asn — oo.
¢ nd/ las
When £ is even

1u®"(0) — u"" ) | s = 1o, (0) — w1, (0) || 115
=14 ()|

The above two estimates imply that (1.18) holds true.

Now we prove (1.19). Let 7; > 0 be given in Lemma 4.1. When k is odd, we use
(4.20) to derive

— 0, asn — oo.
HS

liminf E sup =17 (e) — u" (1) | s
n—oo —1,n 1,n
te[O,TI/\rRO ArRO]
> liminf E sup lee—1,0(t) — w10 ()] Hs
n—oQ —1,n 1,n
te[O,T;/\rRO /\rRO]
— lim E sup Nty n(t) —u= @) || s
n—oo

—1,n 1,n
te[O,Tl/\rR0 /\rRO 1

. 1,
—nll)rr;oE sup Nt () —u"" ()|l as
te[o*nAffl,nAffn]
> liminf E sup Nee—1.0(t) —urn(@®)|las.
n— 00 —1,n 1,n
tel0, T TR " ATpt]

@ Springer



Stoch PDE: Anal Comp

It follows from the construction of u,, ,, Fatou’s lemma, Lemmas 4.1, A.8 and 4.4
that

liminf E sup lu—1n) —uin@)| as
n—0oo —1,n 1,n
tE[O,TlArRO /\rRO]

= liminf E sup
n—oo

SO (XN . .
—2n 2% (—5) sin(nx) sin(z)
tE[O,T]AT;OI’n/\rlle’O”] n

+ [ug,—1,,() — ul,l,n(t)]” s

.. _d_ X . . .. s_1
= liminf E sup n27%|¢ <_8) sm(nx)H |sinf| — liminf n2 "%
n—00 —Ln 1,n n H*S n—00
te[O,TI/\rRO’ A‘L’R’O]
2 sup |sint|, 4.21)
1€[0,7;]

which is (1.19) in the case that k is odd. When k is even, one has

_d_ X . .
0.0 (8) = w1 Ol = | = 207376 (55 ) sintnx = 1/2)sin(e/2) = w1, 0]

_%_S 1

¢ (;—5) sin(nx —1/2) H e sin(z/2)| — n?"%.

=n

Similar to (4.21), we can also obtain (1.19) in the case that k is even. The proof is
completed. O

4.4 Example
Now we give an example of noise structure satisfying Hypothesis H;. For simplicity,

we consider the case that (¢, u) dW = b(¢t,u)dW, where W is a standard 1-D
Brownian motion. Let m > 1 and f(-) be a continuous and bounded function, then

b(t,u) = f(t)e_mum’

satisfies Hypothesis H>.

5 Noise prevents blow up

5.1 Proof for Theorem 1.3

Our approach is motivated by [6, 45]. Let s > 5/2 and ug be an H*-valued Fp-
measurable random variable with E||uq ||%_F < 0o. With H3(1) and H3(2) at hand, one
can follow the steps in the proof for Theorem 1.1 to obtain a unique solution u« to (1.6)

such that u € C([0, t*); H®) P-a.s. and

} P-a.s. 5.1

Ltim sup, . oo u(0) 1 s =00} = L{tim sup,_, ,« (@)l 1,00 =00
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Here we remark that H3(2) is the condition of locally Lipschitz continuous in H? with

o > 3/2, hence uniqueness can only be considered for solution in H* with s > 5/2.

This is because, if two solutions to (1.6) belong to H?, the difference between them

can be only estimated in H Sfors’ <s—1 (Recalling (3.9), H**!-norm appears).
Define

Ty = inf {t >0: lu@®|lgs— > m}, m > 1 and T* = mli_)moo T -

Due to (5.1), we have 7, < 7% = t* P-a.s. and hence we only need to show
¢ = 0o P-as.. (5.2)

For V € V), applying the Itd formula to [lu(2)|1%,,-, and then to V (|u|%,,,), we find

AV (lull ) =2V (lull35-0) (@t ), u) oot dW
VWl {2 (W) = 2@, 0| dr
+ Vel 3= g (2 1) |35 dt

2
+ 2V (lull3y-) [ (gt ), w) s | de

Next, we recall 7,, < 7 = t*and s — 1 > 3 /2, take expectation and then use
Hypothesis H3 and Lemma A.6 to find that

EV(llut A tu)l1375-1)
= EV(lluoll -1

AT ) L
+Ef0 V() {—2 (u ux,u)m_l —2(F(u),u)Hsfl} dr'

ATy
+E /0 V'l llg @ w1 3,- de’

AT,
+E/0 2V (NullZye) | (g0 ), ) o [* 0

IA

(AT
EV (o)) +E f Hoo1 (', u)df’
0

2
VIl (g ), ) o
L+ V(Jlull,0)

dr’,

IA

AT, [
EV (luolys 1) + N1t — ]E/O N

where H, (¢, u) (u € H? and 0 > 3/2) is defined in Hypothesis H3(3). Then we can
infer from the above estimate that there is a constant C (ug, N1, N2, t) > 0 such that

dt’ < C(ug, N1, Na, 1). (5.3)

2
i /A (Vim0 [ w.u) o |}
0 L4+ V(llul?,-))
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Next, for any 7' > 0, it follows from the BDG inequality that

E  sup  V(lul3-) —EV(luollF)
tel0, T Aty ]
1

T ATy 2 2
< CE(/O [viauid, o @@ w. o} df)

2
T ATy [V/(”u”ilv—l) }(Q(t: u)7 u)H""71 |}

+ N\ T +N2E/ 5 dr
0 T+ VulZ)
1
=B swp (14 V()
t€[0, T Aty
/ 2 2
T At |v Ul (e 1), ) g ]}
+CE/ 3 dt
0 T+ VulZ)

dr.

2
P (V) (@) 0 1|}
+N1T+NQIE/ 5

Thus we use (5.3) to obtain

E  sup  V(lull3)

tel0,T Aty ]

2
X P (VU0 (@), 0 1|
< 14 2EV (lugll%o 1) + CE / : dr
0 1+V(”u”H§71)

2
T (V) [ ) 01|}
+2N1T+2N2]E/ 3
0 1+ V(”u”Hcfl)

IA

dt

2
e AVl a0, ) et
C(u(),N1,T)+C(N2)E/ 2
0 TVl )

IA

C(ug, N1, N2, T).
As aresult, forallm > 1,

P{t* < T} <Pty < T}

C(ug, N1, N, T)

<P {te[sup V(llullfper) = V(mz)} = Vm?)

0,T ATy ]

Since P{t* < T} does not depend onm, sendingm — oo givesrisetoP{t* < T} = 0.
Since T > 0 is arbitrary, we obtain (5.2), which completes the proof for Theorem 1.3.
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5.2 Example

As in (1.12), for the solution to (1.4), its H*-norm blows up if and only if its wloo.

norm blows up. On the other hand, H3(3) means that the growth of 2A;||u ||’;V],OO |u ||%1S

can be canceled by 2V (|| u|| %{S ) (g(t, u), u)ys|. Motivated by these two observations,
we consider the following examples where the W !-°-norm of « will be involved, that
is,

q(t,u) =B, llullyre)u, (5.4

where S(t, x) satisfies the following conditions:

Hypothesis Hy We assume that

— The function (¢, x) € C ([0, c0) x [0, 00)) such that for any x > 0, B(-, x) is
bounded as a function of ¢, and for all > 0, B(¢, -) is locally Lipschitz continuous
as a function of x;

— The function B(z, x) # Oforall (z, x) € [0, 00)x[0, c0),and lim sup, _, | o,
< 1 forall > 0, where A; > 01is given in Lemma A.6.

Z)LSxk

B2(1.x)

Now we give a concrete example S(¢, x) satisfying Hypothesis Hy. Let b :
[0, 00) — [0, 00) be a continuous function and there are constants b, b* > 0 such
that by, < bz(t) < b* < ooforallt. Forall k > 1, if

either 0 > k/2, b* > b, >0 or 0 =k/2, b* > b, > 2A;,

then B(t,x) = b(t)(1 + x)? satisfies Hypothesis Hs. Moreover, by the following two
lemmas, we will see that g (¢, u) = b(t)(1 + ||u||W1.oo)9u satisfies Hypothesis H3.

Lemma 5.1 Let A be given in Lemma A.6. Let K > 0. If Hypothesis Hy holds true,
then there is an My > 0 such that for any My > 0 and all0 < x < Ky < 09,

2hsxky? + B2t x)y2 2871, x)y* 28%(t, x)y*
2 - 3o = Mi— M 232 N
I+y (1+y%) (I 4+ y2)2(1 4+ log(1 + y?))
(5.5)
Proof By Hypothesis Hy, we have
. 22k y? + B2 (1. x)y? 287t x)y* 2821, x)y*
lim sup 2 - 22 2 272 2
x—400 1+y (I4+y9) (I 4+ y=)=(1 +log(1 + y4))
4
. 2hgxk 2(%) 2 ) )
< limsup | — +1- 5 +M; B, x) <0,
t, 2 x)2
s gy i)

which implies (5.5). O

Lemma 5.2 If B(t, x) satisfies Hypothesis Ha, then q(t, u) defined by (5.4) satisfies
Hypothesis H3.
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Proof 1t follows from Lemma 5.1 that H3(3) holds true with the choice V(x) =
log(1 +x) € V. Since H* — W' with s > 3/2, it is obvious that the other
requirements in Hypothesis H3 are verified. O
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A Appendix: Auxiliary results

In this appendix we formulate and prove some estimates employed in the above proofs.
We first recall the Friedrichs mollifier J; defined as

[Je f1(x) = [Jexf1(x), € € (0, 1), (A.D)
where % stands for the convolution, j.(x) = é j(;—‘) and j(x) is a Schwartz func-

tion satisfying 7(5) :R — [0,1] and j(&) = 1 for & € [—1, 1]. From the above
construction, we have

LemmaA.1 [41,48] Foralle € (0, 1), s,r € Randu € H*, J, constructed in (A.1)
satisfies

I = Jellcsinry S €77 llu— Jsullpr ~ 0o(€®™"), r <s,

W ellzeas;ry ~O0E™), r>s,
and

[D*, J 1 =0, (Jsf. 82 = ([ Je®) 2 Wellcwe:re) S 1, Welles;msy < 1,

where L(X; Y) is the space of bounded linear operators from X to ).
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LemmaA.2 [58] Let f, g be two functions such that g € W and f € L>. Then for
some C > 0,

Ve, g1 fxll2 < CligxllL Il fll 2

LemmaA3 [36]If f € HH W', g € H""' (L™ fors > 0, then there exists a
constant Cg > 0 such that

I[P, £lgll 2 < CUiD* fll2lighioe + 19x fllze 1D gl o).
Besides, if s > 0, then we have for all f, g € H* (L,
I fgllas = Cs(ULf s ligllieoe + Wl flle gl as)-

Lemma A.4 (Proposition 4.2, [57]) Let p > 3/2 and 0 < n+ 1 < p. We have for
some ¢ > 0,

IID"3x, flvll2 < cllfllmellvllgn ¥ f € H v e H".
Lemma A.5 For F(.) defined in (1.5), we have for all k > 1 the following estimates:

IF @) S Mol llvllas, s > 3/2,
IF@) s S ol (llas + locllas), 0 <s <372,
IF@) = FO)las S (lullas + lvlas)* e —vllas, s > 3/2,
IF@) = F)llas S (lull g + IIUIIHs+1)k lu—vlgs, 1/2 <s=3/2.

Proof We only estimate || F(v) || gs for 0 < s < 3/2 since the other cases can be found
in [46, 52, 56]. When s > 0, by using (1.5) and Lemma A.3, we derive

IF ) s S 105 s S olbsellvllgs, & > 1. (A2)

When k& > 2, we have

k—1,2
IRl S oo

HS
Shvllas I8 vl 0o + 0I5 Toell s vyl 2o

Sl (ollas + loxllas) -
When k = 1, F,(v) = (1 — 32)7'9, (v?) and hence

2

Uy

IR S s S lloellizee oxllas < Mvllwiee lvllas + loxllas) -
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Combining the above two cases for F>, we arrive at
F2()llgs S ||vI|I§V1,oo (lvllgs + llvellas), k> 1. (A.3)

Now we consider F3. When k > 3, we have

X

k=23
IR S |2

HS
k=3 3 k=2 2
S Mvllas Il vellzee + vl Toxll s Toxllz e

Sl e Allas + llvellas) -
When k = 2, we have F3(v) = %(l — 8)%)_l (vf) and then

3

Uy

IF3)las <

s S loclms lvxlzoe S M0l 10 (0las + lvelms) -
Combining the above two cases for F3 with noticing that F3 = 0 for k = 1, we find
IEs)llgs S Mollyice (ollas + loxllas) . k> 1. (A4)

Then the desired estimate is a consequence of (A.2), (A.3) and (A.4). O

LemmaA.6 Lets > 3/2, k > 1, F(-) be given in (1.5) and J; be the mollifier defined
in (A.1). There exists a constant Ly > O such that for all ¢ > 0,

(0 [wtu]. D2 geu) |+ |(D* 1 F o). D Jow) o
L2
< Allullfyillullys. ue HY, s>3/2.

Ifu e H*L then uFu, € H®, and the above estimate also holds true without J,.

Proof We only prove the case that u € H*. It follows from Lemmas A.1, A.2 and A.3,
integration by parts and H® < W1 that

(e [ubur] . D)

= ([0 e D2 92u) |+ | (e "D s, D o)

2
2l
+ | (4D Jowr, D* et |
L2
< COMullfy o llulFys-
From Lemma A.5, we also have

| (DS JoF (), D* Jeut) 1 | < CO)luell¥, o0 lluell s

Combining the above two inequalities gives rise to the desired estimate of the lemma.
O
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The following technique has been used in [4, 5, 25]. Here we formulate such a
technique result in an abstract way.

Lemma A.7 Suppose ug is an H*-valued Fy-measurable random variable, and sup-
pose Hy(1) holds true. Let I be a countable index set and let {Q2;}icy satisfy

Qi CQ PlUc/Q)=land QNQ;=0foralli,jel,i#j. (AS5)

If (u;, T;) withi € I is a solution to (1.4) with initial value 1q;u, then

(u:ZIQiui, TZZIQ,.TI‘> (A.6)

iel iel
is a solution to (1.4) with initial data u.
Proof Since (u;, 7;) is a solution to (1.4) with initial value uolg,, we find

INAT;

INT;
it A ) — g,uo = —/ [ufaxu,- +F(u,~)] dt’+f h(t, u;)dW P-as.
0

0
Therefore, we restrict the above equation to €2; and we obtain

tAlgl, T;

loui(t A7) — 1guo = —/

g, [ufou; + Fup] dr
0

l/\lgi T
+/ IQih(t, u;)dW P-a.s.
0
It is clear that almost surely,

IQ,'h(ts M[) = h(ts 1qui) - IQCh(ta 0)7

1o, [ufouu + Fu) | = [ Agun*as (1o,ur) + F1gup) |

By Hi(1), we have ||h(t, 0)|| z,s; #5) < oo. Then, from the above three equations,
we have that almost surely

loui(t A7) — 1guuo =1gu;(t Ao, ;) — 1g,uo

l/\lgz’. T
= - / [ e o.(Agu) + Fgun| ar
0
tAlQi T
+ / h(t, 1g,u;)dW,
0

which means (1q,u;, 1g,7;) also solves (1.4) with initial data 1g,u. By summing
up both sides of the above equation with noticing (A.5), we derive that (A.6) is a
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solution to (1.4) with initial data u( almost surely. Indeed, for the initial data, we have
Uy = Zie, 1, uo P-a.s. For the nonlinear term uko,u, by (A.5), we have that P-a.s.,

t/\lQl. T
3 /0 (L, )8 (g, us) d’

iel
79 jer 1o
= Z/ T gty (Z 1Q,u,) dr’
ier V0 lel
INT
= / > (gui) oy (Z 1Qlu,> dr’
0 el lel
INT k INT
= f (Z lgiu,-> Oy (Z lglul) dt’' = f ukaxu dr’.
0 iel lel 0
The other terms can also be justified in the same way, here we omit the details. O

Finally, we recall the following estimate on the product of a Schwartz function and
a trigonometric function.

Lemma A.8 [29, 37] Let . (R) be the set of Schwartz functions. Let § > 0 and o € R.
Then for any r > 0 and ¢ € . (R), we have that

€
2

. _i_,
lim n™2
n—oo

v (55)eosnx —a| = =l (A7)

Relation (A.7) is also true if cos is replaced by sin.

B Appendix: Proof for Lemma 4.2

AS um n = ur + uy, is explictly given, we will firstly estimate E; (i = 1, 2, 3, 4). Let
T; > 0 be given in Lemma 4.1 such that u; exits on [0, 7;] for all n > 1 and (4.9) is
satisfied.

(i) Estimating || E || g~ . We apply the embedding H” <> L°°, Lemmas 4.1 and
A.8 to obtain

E1 N feo
< H I:uff(O) - u;‘(t):l nl_%_sd) (%) sin(nx — mt)

k _¥ X
+ukOn= %9, (ﬁ) cos(nx — mt)’

HP0

+ 1 Zk0xuill geo + 1 Zk0xttn |l o

key _ ok X\ _
uy (0) —uy (1) ¢ sin(nx — mt)

8
<l
~ S

n

Hro HPO

38 k
+n7 27 (D00

X
0.0 (55) costnx —mi)| -+ 1 Zidsull
n Hro
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+ | 2k 0xunll geo

_ e k_
ST NUE ) —uf ()| A TGS L 28 e + 1 2k 8 unl oo
I RS [

I—s+po
<n

uf©) —uf @[ 0"+ 12l gm + | Zdunlgn 1 € 0,771
(B.1)

Next, we estimate ||u¥ 1(0) — u; k) oo . Using the fundamental theorem of calculus
and the algebra property, we have that for all k > 1 and ¢ € [0, T;],

|ut @ — uf ) H H /OI W (Yo (1) de!

HPo

/ laes (") W0 19s260 ) | 2o it

Using (4.5) with ¢ € [0, T7], (1.5), Lemmas A.5 and 4.1 and the embedding Hrotl oy
Wl we get

k@ ], / o ||u18u,|\Hpo+||F<u1)||Hm+n)dz’

k+1 -H2
/ ||ul||[-1ﬂ0+] ”ul“[~;>0+1 dl, < n ) lev k = ]v e [0’ Tl]v

which implies

pl=stmo Huéf(o) _ u;c(t)HHﬂo < n17s+p()+k672Tl a7, k>1, t €0, T
(B.2)

Again, applying the algebra property and using Lemmas 4.1, A.8 and (4.7), we have
that forallk > 1 and ¢ € [0, T7],

120wl zgm < Wyt Netn g Noat I gy

k
=1

~.

< (Xk:n@—b(k—j)n(—wpo)j ni -t
j=1
k
_ Z J(=s+oo=3+H—1-}F+*k+D§ < < S~ 1Hpo+kg <. (B3)
Hereweusedthefactsthat—s+po—%—i—% < —s—i—l—%—i—l = —s+2—% <
—% — % < O for all k > 1, which means that the term corresponding to j = 1
dominates.
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For the last term Z;d,up, by using (4.4), (4.7), Lemma A.3, Lemmas 4.1 and A.8,
we obtain that

| Z0xupll geo

k
k=jy . J
Sl gy g dcunll oo
j=1

k
el .

S 3 gl el e e+ N o e |

j=1

k §_ 1 3 X
< nQmO*=D L, st ” —nlmas (—) sin(nx — mt H
~ Z ¢ nS ( ) L®

j=1

_3 x
+ Hn 270 ¢ (—8) cos(nx — mt) ”
n L
8 X J
+ Hn_f_sqﬁ <_6> cos(nx — mt) H n_s+p°+1}
n L
k

< Zn@—%)(k—j) {n<—s+po)j [n—s—%ﬂ + n—%—s] + n(—%—s)jn—s+po+1}

j=1

k k

< an(—s+po—%+%)—s+(k—l)% 4 an(—s—5+%)—s+po+k%’ k>1, te[0.Tj].

j=1 j=1

Whenk > 1, —s+ 00— %—f-% < 0Oand —s —8+% < 0, therefore, both sums are bounded

by n~ 2401 +=25  Burthermore, when k > 1, =25 + po + P+ k=235 <r,
which means

| Zedeunllgn SnT>TOHEHEDT St > 1 e [0, T (BA)

Finally, inserting (B.2), (B.3) and (B.4) into (B.1), we arrive at
IE\ a0 S, k=1, t €0, T (B.5)
(ii) Estimating || E> || geo. For E,, we first recall (4.7). Applying the embedding

H? «— L* and Lemma 4.1, and then taking the dominated term j = 1, we find that
forallk > 1and ¢ € [0, T7],

k+1
J k+1—j j
IE2llz0 S ch+1”1 uy
Jj=1 Hro
s §_1 8
< Zn(kJrl*j)(j*;)n(*erpo)j < n—s—1+potks <n's. (B.6)
j=1
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(iii) Estimating || E3|| gro. As in the estimate for (B.4), we have obtained that

1) 38 8
locupllzoe <n=S72H =275 <p=s72F1 0, 7).

When k = 1, Z;_1 = 0 and then we find

IE3l o0 S112@xuer) @xun) + @xten)? | oo
SN2(0u) @cun) + @yun)?ll 2
Sl g l1cun o + 8xunll g2 19un |l Loe
Slugll g2 l18xtenll oo + llunll g l1dun oo

3_

1, 1-8— —s+1, 1-3— —s —2542-3%
<n2"'n"2%4n n 2 < nF4n 2, t€[0,T1].

Since § > 0, —25+2—3 —r;=—s+3—py—38 < —34+3-3-36=-36 <0,
hence

8
IEsllgo Sn™* +n7 2273 Sn™, k=1, 1 €[0,T]. (B.7)

When k > 2, we can use the above estimate, Lemma 4.1, the facts || f | yoo-1 < || fll 2
and || fgll;2 < Il fllz2llgllLe and take the dominate term j = 1 to obtain

IE3|| gro

S [u = @ Gan) + @1+ | 2@+ 0?|

<

~

W 20,0 (D) + (axum\

k—1
1 5
2 + ZCILI"‘I Juil (0xu; + Oxup)
Jj=1 L2

k—1
k k—1 2 k+1—j J
Sl lldcunllzoe + a5 10xwn 1700 + Y Ml Nunll oo

j=1

k—1 k—1
+ D 15 e B oo + 3 sl N el o
j=1 j=1
k—1
<k G=Dpl=2=5 4 pk=D(G=p),2-8-2s 4 Zn<k+lfj><%f%)nj<f%fs)
j=1
k—1 k—1
+ Zn(kfj)(%f%)nje%fsmf%fs + Zn(kflfj><%f%>nj(f%fs>+27672s
j=1 j=1
k—1
R LTI LR B S (SO an(fsﬂSJr%)flf%nL(kJr])%

J=1
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k—1 k—1
+ Z pd (Cs=0+ ) —s+k=D5 | Z il (Fs=0+ =25+ 14 1+ (=3)§
j=1 Jj=1
<n's, k>2, tel0,T]. (B.8)

Combining (B.8) and (B.7), we have the following conclusion for E3:
IE3llgeo Sn™, k=1, t€l0,T]. (B.9)

(iv) Estimating || E4| gro. For k = 1, E4 = 0 since F3 disappears. When k = 2,
Zr—» = 0 and then

1Eallm S |3 @cun) + 300 @uen)? + G|

2 2 2
S lluall g 0cunlize + ||uz||H2||3 upllzoo & Nunll gl 9xunliz oo

<nz(2 Dpl=3=s 4 p3-3,20=5-9) 4 ,l=s,201=5-5)

I I R T R N )

Finally, for k > 3 and t € [0, T;],

1Bl S [uf B30 @) + 300 @) + @)l

Zi_2(Byuy + dyup)’ H

HP0—2

A

Huf”B(axm)z(axuh) 43 o + @]

k—2—
+ ch Syl | @eug + Bgup)?

LZ
;S ||uz||Hz||axuh||Loo + g 155" 18 un 17 o0
k—2
k+1— j
A B o + D NI unll]
j=1

k—2
k—1— i 2
+Z|qull Il dyen | Lo +Z|qull Il @un)

—2— i
+Z|qull ] @un)? v
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Repeating the analysis in (B.8), one has that for k > 3 and r € [0, T;],
a8 2 el oo, N5 D un |7 o

k—2 k=2

k+1—j J k=j,,J
Dl Nunligees Y Ml g deunllzoo,
j=1 j=1

s

Vv

k=2

k—1—j i 2
D Nl Mg @) oe,
j=1

and therefore it suffices to estimate the different terms, which are

_ _oyd_1 _s_
g 1552 10xunll o0 Sn*2 G703 =570

SIREHEDT < e k>3, 1 e [0, T)),

=n
k=2 o k=2 s s s
o™ W )N S Y2 n 42D Em0RT 3005
j=1 j=1
k=2

I (—5=8+ D2+ =35+ (k=5)5

24\

1

j
3 )
Sp AT EEDY < pn k>3, 1 €0, 7))

Combining the above estimations, we get
IE4llgro S 1™, k=1, t€l0,T;]. (B.10)

(v) Estimating ||£|| geo. Let T; > 0 be given in Lemma 4.1 such that 7; does not
depend on n. Let ¢ € [0, Tj], by virtue of the It6 formula and (4.13), we derive that

€, )30 <

'
—2/ (h(t', um.n) AW, E) ro
0

4 t

+2Z/ (Ei E)pmo | dr’
i=170
t

+/() “h(l‘/, Mm,n)”%:z(u;[_[po) dr’.

Taking supremum with respect to ¢ € [0, 77] and then using the BDG inequality give
rise to

E sup €@
t€[0,77]

1 T
< 1B sup 1€ + CE / Ve, e ) g
2 tef0.13] 0
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T; 4
+C/O [ Y ENE i + EIEOI 0 | .

i=1

For any fixed s > %, since ||tm p|lgs S 1, on account of (1.10), Lemmas A.8 and 4.1,
we can pick N = N (s, k) > 1 such that

2
= s 1.\ 2
Az, um,")”%‘,z(u;H/’O) 5 <e|um,n|Hﬂo) 5 (nN(—s-i-po) _i_nN(f_E)) 5 n2r:.

This, (B.5), (B.6), (B.9) and (B.10) yield

1 T
E sup [E0)m <5E sup |ED]Gm + CE / At e )17 s 100, A2
tel0,77] t€[0,T;] 0

T 4
+C/O [ZEllEin%m +E||8(r)||%,po]dz

i=1

1
=;E sup IEE) 1300 + C(T)n"s
t€[0,77]

Ti
+C / E sup (€)1 dt
0 t'€[0,1]

Obviously, for each n > 1, Esup,¢ig 77 I€ (t)||%1,,0 is finite. Then by the Gronwall
inequality, we have

E sup |E@)|%0 < Cn*s, C = C(Th).
te[0,T;]
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