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Abstract. In this paper, we consider the noise effects on a class of stochastic evolution equations including the stochastic Camassa–
Holm equations with or without rotation. We first obtain the existence, uniqueness and a blow-up criterion of pathwise solutions in
Sobolev space Hs with s > 3/2. Then we prove that strong enough noise can prevent blow-up with probability 1, which justifies the
regularization effect of strong nonlinear noise in preventing singularities. Besides, such strengths of noise are estimated in different
examples. Finally, for the interplay between regularization effect induced by the noise and the dependence on initial conditions, we
introduce and investigate the stability of the exiting time and construct an example to show that the multiplicative noise cannot improve
both the stability of the exiting time and the continuity of the dependence on initial data simultaneously.

Résumé. Dans cet article, nous considérons les effets du bruit sur une classe d’équations d’évolution stochastiques y compris les
équations stochastiques de Camassa–Holm avec ou sans rotation. Nous obtenons d’abord l’existence, l’unicité et un critère d’explosion
de solutions pathwise dans l’espace de Sobolev Hs avec s > 3/2. Ensuite, nous prouvons qu’un bruit suffisamment fort peut empêcher
l’explosion avec probabilité 1, ce qui justifie l’effet régularisant du bruit non linéaire fort dans la prévention des singularités. De plus,
de telles forces de bruit sont estimées dans les différents exemples. Enfin, pour l’interaction entre l’effet de régularisation induit par le
bruit et la dépendance par rapport aux conditions initiales, nous introduisons et étudions la stabilité du temps de sortie et construisons
un exemple pour montrer que le bruit multiplicatif ne peut pas améliorer simultanément la stabilité du temps de sortie et la continuité
de la dépendance par rapport aux données initiales.

MSC2020 subject classifications: Primary 60H15; 35Q51; secondary 35A01; 35B30

Keywords: Stochastic evolution equations; Pathwise solution; Blow-up criterion; Regularization effect of noise; Weak instability

1. Introduction and main results

In this paper, we consider a class of stochastic evolution equations under random perturbation. The equation is given by

ut + uux + (1 − ∂2
xx

)−1
∂x

(
a0u + a1u

2 + a2u
2
x + a3u

3 + a4u
4)= h(t, u)Ẇ .(1.1)

In (1.1), h is a nonlinear function in (t, u), a0, . . . , a4 are constants and W is a cylindrical Wiener process.
When h = 0, a1 = 1, a2 = 1

2 and a0 = a3 = a4 = 0, (1.1) is the Camassa–Holm (CH) equation [10,33],

ut + uux + (1 − ∂2
xx

)−1
∂x

(
u2 + 1

2
u2

x

)
= 0.(1.2)

The CH equation (1.2) models the unidirectional propagation of shallow water waves over a flat bottom and it appeared
initially in the context of hereditary symmetries studied by Fuchssteiner and Fokas [33] as a bi-Hamiltonian generalization
of KdV equation. Later, Camassa and Holm [10] also derived it by approximating directly in the Hamiltonian for Euler’s
equations in the shallow water regime. It is well known that (1.2) exhibits both phenomena of (peaked) soliton interaction
and wave breaking, and singularities can only occur in the form of breaking waves, cf. [13,17]. We refer to [14–16,58]
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for the global existence and wave breaking phenomenon of CH equation. Global existences of weak solutions to (1.2) are
established in [19,75]. The global conservative and dissipative solutions are obtained in [5,6], and in [45,46].

When h = 0, a1 = b
2 , a2 = 3−b

2 with b ∈R and a0 = a3 = a4 = 0, (1.1) becomes the b-family equations, cf. [18,47],

ut + uux + (1 − ∂2
xx

)−1
∂x

(
b

2
u2 + 3 − b

2
u2

x

)
= 0.(1.3)

For general b ∈ R, there have been extensive studies on (1.3). The well-posedness, blow-up phenomena and global
existence (depending on b) of (1.3) can be found in [28,77] and the references therein. Particularly, if b = 3, then (1.3)
turns out to be the Degasperis–Procesi (DP) equation, cf. [25]. Its complete integrability, bi-Hamilton structure and
peakons are studied in [24]. The global existence of strong solutions, weak solutions and the blow-up phenomena for DP
equation (b = 3 in (1.3)) can be found in [26,27] and the references therein.

When h = 0 and ai (i = 0,1,2,3,4) are suitably chosen, (1.1) becomes the recently derived rotation-Camassa–Holm
equation describing the motion of the fluid with the Coriolis effect from the incompressible shallow water in the equa-
torial region, cf. [38, equation (4.9)]. In this case, a3 �= 0 and a4 �= 0 so that the equation has a cubic and even quartic
nonlinearity.

In this paper, we are interested in the stochastic case, i.e., h �= 0. For the deterministic counterpart of (1.1), the so-called
weakly dissipative variants have been proposed and studied, cf. [56,73,74] and the reference therein. For example, the
weakly disspative Camassa–Holm equation

ut + uux + (1 − ∂2
xx

)−1
∂x

(
u2 + 1

2
u2

x

)
= λu, λ < 0

is studied in [56,74]. However, the energy exchanging mechanisms in real life can include both energy consuming and
energy absorbing and it can also be connected with randomness through external perturbation. Therefore, for some non-
linear function h, we replace λu by h(t, u)Ẇ to account for time-dependent, nonlinear and random energy exchanging
mechanisms (since Ẇ has no fixed sign) rather than simple linear energy dissipation (λ < 0).

Hence the first goal of this paper is to consider the Cauchy problem for (1.1) on the whole line R. We reformulate the
problem in the following non-local form:{

du + [uux + F(u)
]

dt = h(t, u)dW, x ∈ R, t > 0,

u(ω,0, x) = u0(ω, x), x ∈R,
(1.4)

where F(u) =∑5
i=1 Fi(u) with ⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F1(u) = a0∂x

(
1 − ∂2

xx

)−1
u,

F2(u) = a1∂x

(
1 − ∂2

xx

)−1(
u2),

F3(u) = a2∂x

(
1 − ∂2

xx

)−1(
u2

x

)
,

F4(u) = a3∂x

(
1 − ∂2

xx

)−1(
u3),

F5(u) = a4∂x

(
1 − ∂2

xx

)−1(
u4).

(1.5)

In this paper, under some natural assumptions included in Assumption (A), we obtain the local existence, uniqueness and
a blow-up criterion of pathwise solutions to (1.4). The detailed results are stated in Theorem 1.1. For more discussions and
comparisons regarding Theorem 1.1, we refer to Remark 1.3. Here we also recall some relevant works on stochastic CH
type equations. For the CH equation with additive noise, we refer to [12]. Stochastic CH type equations with nonlinear
multiplicative noise are considered in [62–64]. When the noise is of convection type, we refer to [1]. For the stochastic
modified CH equation with linear multiplicative noise, we refer to [11].

On the other hand, for SPDEs, the noise effect is one of the probabilistically important questions and the regularization
effects have been well observed. For example, it is known that the well-posedness of the linear stochastic transport equa-
tion with noise can be established under weaker hypotheses than its deterministic counterpart, cf. [29,31]. For stochastic
scalar conservation laws, noise on flux may bring in some regularization effects [35]. In terms of numerics, the regular-
ization effects of noise can be found in [53]. In [37,52,64] the dissipation of energy caused by linear multiplicative noise
was analyzed.

Inspired by the above works, the second goal of this paper is to study the effects of nonlinear noise. We mainly consider
the following two cases:
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• Noise effect on preventing blow-up;
• Noise effect on initial-data dependence.

For the noise effect on blow-up in the current setting, there are essential differences and difficulties because the ex-
isting results on the regularization effects by noises for transport type equations are mainly for linear equations or with
linear growing (transport) noises. However, our target problem (1.4) is nonlinear and non-local. Indeed, the noise effects
become more complicated in nonlinear equations with nonlinear noise. There are both examples in positive direction, i.e.,
noises can regularize singularities, and negative direction, i.e., noises cannot regularize singularities. For example, for
the stochastic 2-D Euler equations, coalescence of vortices disappears (see [32]) but noise cannot prevent the formation
of shock in the Burgers equation (see [30]). Moreover, it is observed that regularizing effects depend on the strength of
noise, see for example [37,61].

To analyze the validity of the regularization effects by noise in the current setting, we will study how the noise prevents
blow-up in (1.4) and how to estimate its strength for this purpose. As is mentioned above, many existing results on the
regularization effects by noises are obtained for linear equations or linear growing noises. This particularly motivates us
to consider the nonlinear-noise case. Mathematically, searching for nonlinear noise such that blow-up can be prevented
is important because it helps us understand the regularizing mechanisms of noise. This in turn brings us one further step
to find the really correct and physical noise which provides such regularization. To present our idea, we simply consider
the case that h(t, u)dW = σ(t, u)dW , where W is a standard 1-D Brownian motion and σ : [0,∞) × Hs → Hs is a
nonlinear function. Here we use the notation σ rather than h because in this case σ can take values in Hs , whereas h

should be a Hilbert–Schmidt operator (see (1.8)) to define stochastic integral with respect to cylindrical Wiener process.
Then we focus on {

du + [uux + F(u)
]

dt = σ(t, u)dW, x ∈ R, t > 0,

u(ω,0, x) = u0(ω, x), x ∈ R,
(1.6)

where F(·) is given in (1.5). Motivated by [60], we will show in Theorem 1.2 that if σ(t, ·) grows fast enough (see
Assumption (B)), then global existence holds true with probability 1. In different deterministic counterparts of (1.4),
blow-up develops even for smooth initial data, we refer to [14–16,58] for the case of CH equation (h = 0, a1 = 1,
a2 = 1

2 and a0 = a3 = a4 = 0) and to [28,77] for the b-family equations (h = 0, a1 = b
2 , a2 = 3−b

2 with b ∈ R and
a0 = a3 = a4 = 0). Hence we justify the idea that strong noise has regularization effect in preventing singularities. The
strengths of the noise to achieve this in different examples will be given in Section 4.2.

Now we turn to noise effect on the initial-data dependence. We notice that in most of the known results on noise effects,
they are studied in terms of the regularity or uniqueness of solutions. Much less is known concerning the noise effect in
the direction of dependence on initial data. However, the question whether (and how) noise can affect the dependence on
initial data is interesting. Formally, regularization produced by noise may be linked to the regularization effects induced
by an additional Laplacian. But if one would add a real Laplacian to the governing equations, then it is possible to improve
the continuity of the solution map, i.e., more than continuous, by using parabolic techniques. Indeed, for the deterministic
incompressible Euler equations, the solution map u0 �→ u cannot be better than continuity [43], but for the deterministic
incompressible Navier–Stokes equations with sufficiently large viscosity, it is at least Lipschitz continuous in sufficiently
high Sobolev spaces (see pp. 79–81 in [40]). This motivates us to study whether (and how) noise can affect initial-data
dependence. With noise, the interplay between regularization provided by noise and the dependence on initial conditions
is first studied in [62,65]. However, in [62,65], the nonlinear terms are of the same order. In this paper, the nonlinear terms
are of different orders (see (1.5)), which requires new estimates.

Therefore the final goal of the present work is to investigate the noise effects on the dependence of solution on its
initial data. We will consider (1.1) on the torus T =R/2πZ. More precisely, we consider{

du + [uux + F(u)
]

dt = h(t, u)dW, x ∈ T, t > 0,

u(ω,0, x) = u0(ω, x), x ∈ T,
(1.7)

where F(·) is given in (1.5). Following [62,65], we introduce the concept of the stability of the exiting time (this notion
refers to the continuous changes of the point in time with respect to the initial condition, where such point is defined as
the time when solution leaves a certain range and hence it is called exiting time, see Definition 1.2 below), and then we
give a negative statement on the noise effects in terms of initial-data dependence for the problem (1.7). More precisely,
in Theorem 1.3, we will show that, when h(t, u) is controlled by the nonlocal term F(·) (see Assumption (C)), the
multiplicative noise can not improve the stability of the exiting time, and, at the same time, improve the continuity of the
map u0 �→ u defined by (1.7).
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1.1. Notations, definitions and assumptions

We now introduce some notations. L2(R) is the usual space of square–integrable functions on R. For s ∈ R, Ds =
(1 − ∂2

xx)
s/2 is defined by D̂sf (ξ) = (1 + ξ2)s/2f̂ (ξ), where f̂ denotes the Fourier transform of a function f . The

Sobolev space

Hs(R) �
{
f ∈ L2(R) : ‖f ‖2

Hs(R) =
∫
R

(
1 + ξ2)s∣∣f̂ (ξ)

∣∣2 dξ < +∞
}

is a Hilbert space with inner product

(f, g)Hs �
∫
R

(
1 + ξ2)s f̂ (ξ) · ĝ(ξ)dξ = (Dsf,Dsg

)
L2 .

When the function space refers to R, we will drop R if there is no ambiguity. We will use � and � to denote estimates
that hold up to some universal deterministic constant which may change from line to line. For linear operators A and B ,
we denote [A,B] = AB − BA.

In the sequel, S = (�,F, {Ft }t≥0,P,W) is called a stochastic basis where W(t) = W(ω, t),ω ∈ � is a cylindrical
Wiener process with respect to a complete filtration probability space (�,F, {Ft }t≥0,P). Formally, we consider a separa-
ble Hilbert space U and let {ek} be a complete orthonormal basis of U. Let {Wk}k≥1 be a sequence of mutually independent
standard 1-D Brownian motions on (�,F, {Ft }t≥0,P). Then we define

W �
∞∑

k=1

Wkek.

Let X be a separable Hilbert space. As in [21,59], we see that for a predictable process Z ∈ L2(U;X ) (Hilbert–Schmidt
operators from U to X ), ∫ t

0
Z dW �

∞∑
k=1

∫ t

0
Zek dWk(1.8)

is a well-defined X -valued continuous square integrable martingale. In the sequel, when a stopping time is defined, we
set inf∅ � ∞ by convention.

We now give the precise notion of a pathwise solution to (1.4).

Definition 1.1 (Pathwise solutions). Let S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis. Let s > 3/2 and u0 be
an Hs -valued F0-measurable random variable (relative to S).

1. A local pathwise solution to (1.4) is a pair (u, τ ), where τ is a stopping time satisfying P{τ > 0} = 1 and u : � ×
[0,∞] → Hs is an Ft -predictable Hs -valued process satisfying

u(· ∧ τ) ∈ C
([0,∞);Hs

)
P-a.s.,

and for all t > 0,

u(t ∧ τ) − u(0) +
∫ t∧τ

0

[
uux + F(u)

]
dt ′ =

∫ t∧τ

0
h
(
t ′, u
)

dW P-a.s.

2. The local pathwise solutions are said to be pathwise unique, if given any two pairs of local pathwise solutions (u1, τ1)

and (u2, τ2) with P{u1(0) = u2(0)} = 1, we have

P
{
u1(t, x) = u2(t, x) ∀(t, x) ∈ [0, τ1 ∧ τ2] ×R

}= 1.

3. In addition, (u, τ ∗) is called a maximal pathwise solution to (1.4) if there is an increasing sequence τn → τ ∗ such that
for any n ∈N, (u, τn) is a pathwise solution to (1.4) and

sup
t∈[0,τn]

‖u‖Hs ≥ n on the set
{
τ ∗ < ∞}.
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4. If (u, τ ∗) is a maximal pathwise solution and τ ∗ = ∞ almost surely, then we say that the pathwise solution exists
globally.

Next, we introduce the following notion of the stability of exiting time (exiting time is the time when solution leaves
a certain range) in Sobolev spaces.

Definition 1.2 (Stability of exiting time). Let s > 3/2 and S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis. Let u0
be an Hs -valued F0-measurable random variable such that E‖u0‖2

Hs < ∞. Assume that {u0,n} is an arbitrary sequence of
Hs -valued F0-measurable random variables satisfying E‖u0,n‖2

Hs < ∞. For each n, let u and un be the unique pathwise
solutions to (1.4) with initial values u0 and u0,n, respectively. For any R > 0 and n ∈N, we define the R-exiting times

τR
n = inf

{
t ≥ 0 : ∥∥un(t)

∥∥
Hs > R

}
and τR = inf

{
t ≥ 0 : ∥∥u(t)

∥∥
Hs > R

}
.

Then we define the following properties:

1. If u0,n → u0 in Hs
P-a.s. implies that

lim
n→∞ τR

n = τR
P-a.s.,(1.9)

then the R-exiting time of u is said to be stable.
2. If u0,n → u0 in Hs′

for all s′ < s almost surely implies that (1.9) holds true, the R-exiting time of u is said to be
strongly stable.

To study the existence of pathwise solutions to (1.4), we need the following assumptions on the h:

Assumption (A). Let s > 1
2 . We assume that h : [0,∞) × Hs 
 (t, u) �→ h(t, u) ∈ L2(U;Hs) such that if u : � ×

[0, T ] → Hs is predictable, then h(t, u) is also predictable. Furthermore, we assume that there are two non-decreasing
locally bounded functions f (·), q(·) : [0,∞) → [0,∞) such that the following assumptions hold true:

(A-1) For all t ≥ 0 and s > 3/2, ∥∥h(t, u)
∥∥
L2(U;Hs)

≤ f
(‖u‖W 1,∞

)(
1 + ‖u‖Hs

)
.

(A-2) For any t ≥ 0,

sup
‖u‖Hs ,‖v‖Hs ≤N

{
1{u �=v}

‖h(t, u) − h(t, v)‖L2(U,H s)

‖u − v‖Hs

}
≤ q(N), N ≥ 1, s > 3/2.

(A-3) For any t ≥ 0,

sup
‖u‖

Hs+1 ,‖v‖
Hs+1 ≤N

{
1{u �=v}

‖h(t, u) − h(t, v)‖L2(U,H s)

‖u − v‖Hs

}
≤ q(N), N ≥ 1,3/2 ≥ s > 1/2.

As for the noise effect vs blow-up, we impose the following condition on σ in (1.6):

Assumption (B). We assume that when s > 3
2 , σ : [0,∞)×Hs 
 (t, u) �→ σ(t, u) ∈ Hs satisfies that if u : �×[0, T ] →

Hs is predictable, then σ(t, u) is also predictable. Moreover, we assume the following properties hold true:

(B-1) σ(·, u) is locally bounded for all u ∈ Hs and there is a non-decreasing locally bounded function l(·) : [0,∞) →
[0,∞) such that for any t ≥ 0,

sup
‖u‖Hs ,‖v‖Hs ≤N

{
1{u �=v}

‖σ(t, u) − σ(t, v)‖Hs

‖u − v‖Hs

}
≤ l(N), N ≥ 1, s > 3/2.

(B-2) Define

V =
{
V ∈ C2([0,∞); [0,∞)

) : V (0) = 0,V ′(x) > 0,V (x) ≤ x,V ′′(x) ≤ 0 and lim
x→∞V (x) = ∞

}
,
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and we assume that there is a function V ∈ V and constants M1,M2 > 0 such that

V ′(‖u‖2
Hs

){
2Ag
(‖u‖W 1,∞

)‖u‖2
Hs + ∥∥σ(t, u)

∥∥2
Hs

}+ 2V ′′(‖u‖2
Hs

)∣∣(σ(t, u), u
)
Hs

∣∣2
≤ M1 − M2

{V ′(‖u‖2
Hs )|(σ (t, u),u)Hs |}2

1 + V (‖u‖2
Hs )

, (t, u) ∈ [0,∞) × Hs,(1.10)

where A and g(·) are given in Lemma 2.5.

When we consider the initial-data dependence for (1.7) in Section 6, we need the following assumption on h(t, ·).

Assumption (C). For s > 1
2 and u ∈ Hs , h : [0,∞)×Hs 
 (t, u) �→ h(t, u) ∈ L2(U;Hs) satisfies that if u : �×[0, T ] →

Hs is predictable, then h(t, u) is also predictable. Moreover, we assume that there is a constant C > 0 such that for all
t ≥ 0 and u ∈ Hs with s > 1

2 ,∥∥h(t, u)
∥∥
L2(U;Hs)

≤ C
∥∥F(u)

∥∥
Hs ,

∥∥h(t, u) − h(t, v)
∥∥
L2(U;Hs)

≤ C
∥∥F(u) − F(v)

∥∥
Hs ,

where F(·) is defined by (1.5).

1.2. Main results

Now we are ready to state the main results in this paper.

Theorem 1.1. Let S = (�,F,P, {Ft }t≥0,W) be a given stochastic basis. Let s > 3/2, ai ∈ R (i = 1,2,3,4) and let
h(t, u) satisfy Assumption (A). If u0 is an Hs -valued F0-measurable random variable satisfying E‖u0‖2

Hs < ∞, then
there is a local pathwise solution (u, τ ) to (1.4) in the sense of Definition 1.1 with

u(· ∧ τ) ∈ L2(�;C([0,∞);Hs
))

.(1.11)

Moreover, (u, τ ) is unique and it can be extended to a unique maximal pathwise solution (u, τ ∗) with

1{lim supt→τ∗ ‖u(t)‖Hs =∞} = 1{lim supt→τ∗ ‖u(t)‖
W1,∞=∞} P-a.s.(1.12)

On the noise effect vs blow-up, we consider (1.6) and we have

Theorem 1.2 (Noise vs blow-up). Let S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis. Let s > 5
2 , ai ∈ R (i =

1,2,3,4) and u0 ∈ Hs be an Hs -valued F0-measurable random variable with E‖u0‖2
Hs < ∞. If Assumption (B) holds

true, then (1.6) has a unique global solution. Precisely, if τ ∗ is the maximal existence time of u ∈ Hs , then

P
{
τ ∗ = ∞}= 1.

For the interplay between regularization effects induced by the noise and the dependence on initial conditions, the next
result gives a partial (negative) result.

Theorem 1.3 (Weak instability). Let S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis, s > 3/2 and ai ∈ R (i =
1,2,3,4). Consider the periodic initial value problem (1.7). If h satisfies Assumption (C), then at least one of the following
properties holds true:

1. For any R � 1, the R-exiting time is not strongly stable for the zero solution, i.e., u ≡ 0, to (1.7) in the sense of
Definition 1.2;

2. The solution map u0 �→ u defined by solving (1.7) is not uniformly continuous as a map from L2(�,Hs) into
L2(�;C([0, T ];Hs)) for any T > 0. More precisely, there exist two sequences of solutions u1,n(t) and u2,n(t), and
two sequences of stopping times τ1,n and τ2,n, such that

• P{τi,n > 0} = 1 for each n > 1 and i = 1,2. Besides,

lim
n→∞ τ1,n = lim

n→∞ τ2,n = ∞ P-a.s.(1.13)
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• For i = 1,2, ui,n ∈ C([0, τi,n];Hs) P-a.s., and

E

(
sup

t∈[0,τ1,n]

∥∥u1,n(t)
∥∥2

Hs + sup
t∈[0,τ2,n]

∥∥u2,n(t)
∥∥2

Hs

)
� 1.(1.14)

• At t = 0,

lim
n→∞E

∥∥u1,n(0) − u2,n(0)
∥∥2

Hs = 0.(1.15)

• For any T > 0,

lim inf
n→∞ E sup

t∈[0,T ∧τ1,n∧τ2,n]

∥∥u1,n(t) − u2,n(t)
∥∥2

Hs �
(

sup
t∈[0,T ]

| sin t |
)2

.(1.16)

1.3. Remarks on the difficulties, proofs and comparison

Remark 1.1. To begin with, we notice that our target models involve a difficulty a priori, i.e., the classical Itô formulae
cannot be directly used to estimate E‖u(t)‖2

Hs . Indeed, to use the Itô formula in a Hilbert space (cf. [21, Theorem 4.32]
or [34, Theorem 2.10]), the inner product (uux,u)Hs needs to be well-defined. Likewise, to fit into the Itô formula under
a Gelfand triplet ([54, Theorem I.3.1] or [59, Theorem 4.2.5]), the dual product 〈uux,u〉

Hs−1 Hs+1 is required to be well-
defined. However, for given u0 ∈ Hs , since the deterministic counterpart of the target models is a transport type PDE, we
can only expect u ∈ Hs and therefore uux ∈ Hs−1. As a result, neither (uux,u)Hs nor 〈uux,u〉

Hs−1 Hs+1 is well-defined
in our case. To overcome this difficulty, we will first mollify the equation and then use the Itô formula in a Hilbert space
to E‖Jεu(t)‖2

Hs , where Jε is a mollifier (see (2.1) below). Then we take limit to obtain the estimate for E‖u(t)‖2
Hs (see

(3.19), (3.24) and (4.1) for example).

Remark 1.2. Now we give some explanations on the Assumptions (A), (B) and (C).

• Assumption (A-1) allows us to consider general growing noise coefficient. The classical local Lipschtiz condition
(A-2) is used to guarantee the existence of approximation solutions in Hs with s > 3/2 (cf. Proposition 3.1) and the
convergence of approximation solutions (cf. Lemma 3.2). As is mentioned in Remark 1.1, the map u �→ uux is not
invariant in Hs . Hence the difference between two solutions u,v ∈ Hs should be measured in Hs−1 rather than in Hs .
Indeed, if Hs -topology is used to measure u−v, we will have to deal with (uux −vvx,u−v)Hs , which will lead to one
term with undefined Hs+1-norm. Therefore, we need an assumption on ‖h(t, u)−h(t, v)‖L2(U,H s−1) for u,v ∈ Hs with
s > 3/2, which is (A-3). We outline that it is not difficult to construct examples satisfying Assumption (A). Particularly,
if b(t) is a continuous and bounded function, F(u) is given in (1.5) and W is a standard 1-D Brownian motion, then
h(t, u)dW = b(t)F (u)dW is an example such that Assumption (A) is verified with L2(U;Hs) replaced by Hs (cf.
Lemma 2.4 below).

• Assumption (B) is used in proving Theorem 1.2 and it is highly motivated by [60] (see also [7,63]). Particularly, (B-2)
in Assumption (B) is a Lyapunov type condition. Because V ′′ ≤ 0, (B-2) actually requires that the noise is large enough
such that the growth of uux + F(u) can be cancelled and V can be viewed as a Lyapunov function. However, different
from (A-2) and (A-3), we require s > 3/2 for both (B-1) and (B-2). Mathematically, it seems that one can only require
s > 1/2 in (B-1) (so uniqueness still holds true in Hs with s > 3/2, in the same reason as uux loses one derivative),
but if this is the case, it is not clear how to construct an example at present. So far we have only given examples (see
Section 4.2) with requiring s > 3/2 in both (B-1) and (B-2). This technical assumption brings a little gap, that is, even
though one may use (B-2) to find global existence only in Hs with s > 3/2, (B-1) means we can only prove uniqueness
for solutions in Hr with r > 5/2.

• Finally, Assumption (C) is used in the proof for Theorem 1.3. Indeed, since Theorem 1.3 is proved by constructing
counterexample (see Remark 1.5 below), it is natural to first consider the case that the noise is controlled by the non-
local term F in (1.4) and hence we need Assumption (C). For more general cases, when the noise is large or the
stochastic integral is in the sense of Stratonovich, whether the noise can improve the stability is still unknown.

Remark 1.3. Now we give some remarks regarding the proof for Theorem 1.1.

(I): Difficulties and strategies. We first briefly outline the main difficulties encountered in proving Theorem 1.1 and our
strategies.
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• (Step 1: Approximation scheme) The starting point of the proof for Theorem 1.1 is to mollify the problem (1.4)
such that the mollified version can be viewed as an SDE in Sobolev spaces Hs . Then we obtain the approximation
solutions {uε}. Since the diffusion coefficient satisfies (A-1) and the non-local term F(·) satisfies a nonlinear growth
condition (see (2.7) below), the a priori estimate for E‖uε‖2

Hs involves E[�(‖uε‖W 1,∞)(1 + ‖uε‖2
Hs )] for some

nonlinear function � . Because the expectation cannot be split generally, we cannot close the a priori L2(�;Hs)

estimate for uε . To overcome this difficulty, we will add a cut-off function into the problem (see (3.1)). Without the
cut-off, when we consider the L2(�;Hs) estimate, we have to introduce a sequence of stopping times to localize
the process uε , that is, if τε = inf{‖uε‖W 1,∞ > R}, then E

∫ t∧τε

0 �(‖uε‖W 1,∞)(1 + ‖uε‖2
Hs )dt ′ ≤ �(R)

∫ t

0 E(1 +
‖uε‖2

Hs )dt ′. However, usually it is not clear how to prove P{infε τε > 0} = 1, and we think this is a common
difficulty in nonlinear SPDEs. If infε τε = 0 with positive probability, then we can not take limit to obtain a pathwise
solution in the sense of Definition 1.1.

• (Step 2:Building a pathwise solution) Another main difficulty lies in the lack of compact Sobolev embedding in
the whole space R, and this brings us an obstacle to prove the convergence of the approximation solutions {uε}.
Motivated by [57] and based on a careful analysis on the differences between any two approximation layers, we can

show that there is a subsequence of the approximation solutions converging in C([0, T ];Hs− 3
2 ) almost surely. After

taking limits to obtain a solution u, one can improve the regularity of u to C([0, T ];Hs) again, and the technical
difficulty here is to prove the time continuity of the solution because the classical Itô formula is not applicable (cf.
Remark 1.1). Under an additional L∞(�) condition on u0, one can a posteriori introduce a positive stopping time
τ (as in (3.22)) to remove the cut-off. To remove the additional condition on u0 and guarantee that τ > 0 almost
surely, the cutting-combining argument will be used (see Section 3.4 for the details). Technically, to take limit in
the cut-off function, where the W 1,∞-norm is involved, we require s > 3 as an intermediate requirement such that

Hs− 3
2 ↪→ W 1,∞. After removing the cut-off, the range of s can be extended to s > 3/2 by mollifying the initial data,

cf. [37,64].

(II): Comparison of approaches. As is mentioned in Remark 1.1, because the map u �→ uux is not invariant in Hs , the
concept of (weak) monotonicity fails to be defined for (1.4) and hence the monotone method in a Gelfand-triple is
not applicable in our case. This is the first motivation to consider new methods to prove existence. To see the second
motivation to do so, and for the convenience of readers, we first briefly review the martingale approach widely used to
prove existence of nonlinear SPDEs.

• Roughly speaking, the martingale approach includes obtaining martingale solution first and then establishing path-
wise uniqueness to obtain the pathwise solution. As is explained above, when one tries to find a solution to a
nonlinear SPDE in some space X , if the growth of the nonlinear terms in X can be controlled by a product of a
linear function of ‖ · ‖X and a nonlinear function of ‖ · ‖Z with X ↪→Z , one may need to consider a cut-off version
of the problem first, in which the additional L∞(�;Z) condition provided by the cut-off enables us to close the
L2(�;X ) estimate. It is usually not difficult to approximate the problem and obtain certain uniform estimates for
the approximation solutions in X . To obtain a martingale solution to the cut-off version of the target SPDE, one can
first find a space Y such that X ↪→↪→ Y ↪→Z (here ↪→↪→ means the embedding is compact). Then, by X ↪→↪→ Y
and the uniform estimates in X , one can establish the tightness of the measures defined by the approximation so-
lutions in Y . By Prokhorov’s Theorem and Skorokhod’s Theorem, we can get almost sure convergence in Y . By
the martingale representation theorem, we can identify the limit of the stochastic integral. This, together with the
embedding Y ↪→ Z , enables us to take limit to obtain a martingale solution to the cut-off problem. Additionally,
if pathwise uniqueness holds for the cut-off problem, one can use an infinite dimensional Yamada–Watanabe type
result (cf. [55]) or use the Gyöngy–Krylov characterization of the convergence in probability (see [39]) to obtain a
pathwise solution. Finally one can remove the cut-off to obtain a solution to the original problem, cf. [4,36,64] for
the techniques.

• If the target SPDE is defined in a bounded domain, it is not difficult to find suitable Sobolev spaces X ,Y such that
X ↪→↪→ Y ↪→Z and we refer to [2,3,23,37,44,64] for different examples. In unbounded domains, compact Sobolev
embedding fails to be true and a possible way is to consider compact embedding of local space Xloc ↪→↪→ Yloc.
Repeating the above approach, we can then obtain almost sure convergence in Yloc. However, as above, to take
limit in the cut-off, we have to require Yloc ↪→ Z . Otherwise, convergence in Yloc can not imply convergence in Z
and then taking limit will not go back to the cut-off problem. When the equation has some cancellation properties
(for example, divergence free) and the noise grows linearly, we refer to [8,9] for different examples such that
the construction of X ,Y and Z can be carried out to satisfy this requirement. However, this can not be always
guaranteed for general nonlinear SPDEs where strong nonlinear multiplicative noise is involved. For example, in
our target problem (1.4), the growth of both the drift and diffusion coefficients involves W 1,∞-norm (see (A-1) and
Lemma 2.4), and hence we have to introduce the cut-off on ‖ · ‖W 1,∞ (see (3.2) below). i.e., Z = W 1,∞. We also
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establish the uniform estimate of the Hs -norm for approximation solutions in Proposition 3.1. However, even if
one can employ Prokhorov’s Theorem and Skorokhod’s Theorem to find almost sure convergence in local Sobolev
space Hs′

loc for some s′ < s, we can not pass limit to find a solution to the cut-off problem. This is because ‖ · ‖W 1,∞
is a global quantity involving all x ∈ R, but the convergence is only a local one, i.e., convergence is in Hs′

loc (even

though s′ can be large enough such that Hs′
↪→ W 1,∞).

• The above unsolved technical issue is the second motivation to propose new approximation schemes to study non-
linear SPDEs with nonlinear noise in unbounded domains. In this work, motivated by [57], we set the target so-
lution space as C([0, T ];Hs) = X , and we mollify the problem to consider its approximation version as an SDE
in Sobolev spaces Hs . The advantage of this approximation scheme is that we are able to prove convergence (up

to a subsequence) in C([0, T ];Hs− 3
2 ) = Y directly without compactness. Indeed, in this case X is not compactly

embedded in Y (compared to the martingale approach, convergence/tightness usually comes from the compact em-

bedding X ↪→↪→ Y). We also notice that the convergence in C([0, T ];Hs− 3
2 ) a priori looks interesting because it

is usually expected that the convergence holds true up to some stopping times (see (3.10), (3.11), (3.12)), and as is
mentioned above, lower bound for stopping times is difficult to obtain in the stochastic setting. In this work, due to
the uniform-in-ε estimate, stopping times can be removed.

Remark 1.4. We notice that blow-up of the solutions actually occurs in the deterministic counterpart of (1.1) (i.e.,
h = 0 in (1.1)) with different ai (i = 0,1,2,3,4) and we refer to [14–16,28,38,78] and the references therein. Therefore
Theorem 1.2 justifies that strong enough noise can regularize the solutions in terms of preventing singularities. This result
is motivated by [7,60,63]. Examples of such noise structure are given in Section 4.2. As a corollary, Theorem 1.2 implies
that in the stochastic case, blow-up of pathwise solutions might only be observed if the noise is weak.

Remark 1.5. Theorem 1.3 demonstrates that one cannot improve the stability of the exiting time for the zero solution, and
simultaneously improve the continuous dependence of solutions on initial data. It is also worthwhile noticing that Theo-
rem 1.3 is proved under the assumption that noise can not grow very fast (cf. Assumption (C)) whereas in Theorem 1.2,
fast growing noise can prevent singularities. Now we outline the idea in proving Theorem 1.3.

• Since we are not able to get an explicit expression of the solution to (1.7), our idea to obtain (1.16) is to find two
sequences of approximation solutions {ui,n}n≥1 (i ∈ {1,2}) such that when n tends to ∞, ui,n tends to the actual
solution ui,n for t > 0. Then one can prove (1.16) by estimating ui,n rather than ui,n. We choose two sequences of
approximation solutions {ui,n} in the form of the explicit periodic solutions to the incompressible Euler equations, cf.
[43,66]. We will see that the actual solutions ui,n starting from ui,n(0) = ui,n(0) satisfy

lim
n→∞E sup

[0,τi,n]

∥∥ui,n − ui,n
∥∥

Hs = 0,(1.17)

where ui,n exists at least on [0, τi,n]. With (1.17) at hand, one can establish (1.16) by using ui,n. However, as before,
in this step we again face the problem how to prove infn τi,n > 0 almost surely. If τi,n → 0, we will get nothing. This
is one main difference between the deterministic and the stochastic cases. Indeed, such approximation solutions have
been used in deterministic CH type equations, see [42,68,69] and the references therein. But in the deterministic cases,
one has the lifespan estimate (see (4.7)–(4.8) in [68] and (3.8)–(3.9) in [69] for example), which enables us to find a
T > 0 independent of n such that all actual solutions ui,n exist on the common interval [0, T ].

• The key observation in dealing with the property infn τi,n > 0 is the connection between this property and the stability
property of the exiting time (see Definition 1.2). We find that if for some R0 � 1, the R0-exiting time is strongly stable
at the zero solution, then τi,n → ∞ (see (6.16)). Technically, to get (1.17), we estimate the error in H 2s−δ and Hδ with
suitable δ, respectively. Then (1.17) is a consequence of the interpolation. Here we notice that our target problem (1.4)
includes nonlinearities from order 1 to order 4, which is different from [62,65], where the nonlinearities are of the same
order. Therefore more estimates are involved to balance different orders. Moreover, it is also important to notice that
what we have actually obtained is that the solution map u0 �→ u is not uniformly continuous as a map from L∞(�,Hs)

into L1(�;C([0, T ],H s)). Indeed, because the approximation solutions ui,n are constructed deterministically, (1.15)
can be changed into limn→∞ ‖u1,n(0) − u2,n(0)‖Lp(�;Hs) = 0 for p ∈ [1,∞] (see (6.17) for example), and (1.16) can
be changed into (6.19). However, to be consist with the existence part, we formulate the result in L2(�).

• In deterministic cases, the optimal continuity of solution map has been extensively investigated for various nonlinear
dispersive and integrable equations. Kato [49] proved that the solution map u0 �→ u of the inviscid Burgers equation
is continuous but cannot be Hölder continuous in Hs(T) (s > 3/2), regardless of the Hölder exponent. Since then,
various nonlinear evolution PDEs have been studied in terms of this property and here we only mention a few related
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results. For the CH equation we refer the readers to [41,42] for the non-uniform dependence on initial data in Sobolev
spaces Hs . The results of this type in Besov spaces first appear in [66–69], where the critical case can be also included.
Particularly, we extend the recent work [76] on deterministic rotation-CH to the stochastic setting.

We outline the rest of the paper. In next section we formulate and prove some estimates will be employed throughout
the paper. In Section 3, we prove Theorem 1.1 by using an approximation method. In Section 4, we study the effect of
strong noise and prove Theorem 1.2. Finally, in Section 6, we prove Theorem 1.3.

2. Preliminaries

For any ε ∈ (0,1), we let j (x) be a Schwartz function such that 0 ≤ ĵ (ξ ) ≤ 1 for all ξ ∈ R and ĵ (ξ ) = 1 for any |ξ | ≤ 1.
Then we let jε(x) = 1

ε
j ( x

ε
). Using jε , we define the Friedrichs mollifier Jε as

[Jεf ](x) = [jε ∗ f ](x),(2.1)

where ∗ represents convolution. From the construction of Jε , we have ‖Jεu‖L∞ � ‖u‖L∞ . Let L(X ;Y) be the space of
bounded linear operators from X to Y . As in [64,65], for any s > 0, ε > 0 and u,v ∈ Hs , we have

‖I − Jε‖L(Hs ;Hr) � εs−r , r < s,(2.2)

‖Jε‖L(Hs ;Hr) � O
(
εs−r
)
, r > s,(2.3)

DsJε = JεD
s,(2.4)

(Jεu, v)L2 = (u, Jεv)L2 ,(2.5)

and

‖Jεu‖Hs ≤ ‖u‖Hs .(2.6)

Lemma 2.1 (Page 3 in [71]). Let Jε be defined as in the above. Then there is a constant C > 0 such that∥∥[Jε, g]∂xf
∥∥

L2 ≤ C‖∂xg‖L∞‖f ‖L2 , g ∈ W 1,∞, f ∈ L2.

We also recall the following well-known estimates.

Lemma 2.2 ([50,51]). If f,g ∈ Hs ∩W 1,∞ with s > 0, then for p,pi ∈ (1,∞) with i = 2,3 and 1
p

= 1
p1

+ 1
p2

= 1
p3

+ 1
p4

,
there is a C > 0 such that ∥∥[Ds,f

]
g
∥∥

Lp ≤ C
(‖∇f ‖Lp1

∥∥Ds−1g
∥∥

Lp2 + ∥∥Dsf
∥∥

Lp3 ‖g‖Lp4

)
,

and ∥∥Ds(fg)
∥∥

Lp ≤ C
(‖f ‖Lp1

∥∥Dsg
∥∥

Lp2 + ∥∥Dsf
∥∥

Lp3 ‖g‖Lp4

)
.

Lemma 2.3 (Proposition 4.2, [70]). If ρ > 3/2 and 0 ≤ η + 1 ≤ ρ, then for some c > 0,∥∥[Dη∂x,f
]
v
∥∥

L2 ≤ c‖f ‖Hρ ‖v‖Hη ∀f ∈ Hρ, v ∈ Hη.

For the non-local term F(·) defined in (1.5), we have the following lemma.

Lemma 2.4. Let s > 1
2 . There is a constant C = C(s) > 0 such that for any u,v in Hs and Is(u, v) = ‖u‖Hs + ‖v‖Hs ,

F(·) satisfies the following estimates:

• When s > 3/2, ∥∥F(v)
∥∥

Hs ≤ C
(|a0| +

(|a1| + |a2|
)‖v‖W 1,∞ + |a3|‖v‖2

W 1,∞ + |a4|‖v‖3
W 1,∞

)‖v‖Hs ,(2.7) ∥∥F(u) − F(v)
∥∥

Hs ≤ C
[|a0| +

(|a1| + |a2|
)
Is(u, v) + |a3|I 2

s (u, v) + |a4|I 3
s (u, v)

]‖u − v‖Hs .(2.8)
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• When 3/2 ≥ s > 1/2,∥∥F(u) − F(v)
∥∥

Hs ≤ C
[|a0| +

(|a1| + |a2|
)
Is+1(u, v) + |a3|I 2

s (u, v) + |a4|I 3
s (u, v)

]‖u − v‖Hs .(2.9)

Proof. Since Hs ↪→ W 1,∞ for s > 3/2, (2.7) and (2.8) immediately come from Lemma 2.2 and the fact ∂x(1 − ∂2
xx)

−1

is bounded from Hs to Hs+1. Here we only prove (2.9). We first claim that for 1/2 < σ ≤ 3/2,

‖fg‖Hσ−1 ≤ cσ ‖f ‖Hσ−1‖g‖Hσ .(2.10)

Actually, (2.10) is a special case of the following estimate in Besov space (see [22, (1.4)]). For all s1 ≤ 1
p

< s2(s2 ≥
1
p

if r = 1) and s1 + s2 > 0, it follows that

‖fg‖
B

s1
p,r

≤ C‖f ‖
B

s1
p,r

‖g‖
B

s2
p,r

∀f ∈ Bs1
p,r , g ∈ Bs2

p,r .

Since Hs = Bs
2,2 and 1/2 < σ ≤ 3/2, we let p = r = 2, s1 = σ − 1 ≤ 1

2 < σ = s2 to find (2.10). By (2.10), we arrive at∥∥u2
x − v2

x

∥∥
Hs−1 � ‖ux + vx‖Hs ‖ux − vx‖Hs−1 � Is+1(u, v)‖u − v‖Hs .

When 1/2 < s ≤ 3/2, we use Hs ↪→ L∞ and the above estimate to derive∥∥F(u) − F(v)
∥∥

Hs

� |a0|‖u − v‖Hs−1 + |a1|
∥∥u2 − v2

∥∥
Hs−1 + |a2|

∥∥u2
x − v2

x

∥∥
Hs−1 + |a3|

∥∥u3 − v3
∥∥

Hs−1 + |a4|
∥∥u4 − v4

∥∥
Hs−1

�
[|a0| +

(|a1| + |a2|
)
Is+1(u, v) + |a3|I 2

s (u, v) + |a4|I 3
s (u, v)

]‖u − v‖Hs ,

which implies (2.9). �

Lemma 2.5. Let s > 3/2. Let F(·) be given in (1.5) and Jε be the Friedrichs mollifier defined in (2.1). Let

g(x) = |a0| +
(
1 + |a1| + |a2|

)
x + |a3|x2 + |a4|x3.

Then there is a constant A = A(s) > 0 such that for all ε > 0,∣∣(Jε[uux], Jεu
)
Hs

∣∣+ ∣∣(JεF (u), Jεu
)
Hs

∣∣≤ Ag
(‖u‖W 1,∞

)‖u‖2
Hs .

Proof. Due to (2.4) and (2.5), we commute the operator to derive(
DsJε[uux],DsJεu

)
L2

= ([Ds,u
]
ux,D

sJ 2
ε u
)
L2 + ([Jε,u]Dsux,D

sJεu
)
L2 + (uDsJεux,D

sJεu
)
L2 .

Then it follows from Lemmas 2.1 and 2.2, integration by parts, (2.6) and Hs ↪→ W 1,∞ that∣∣(Jε[uux], Jεu
)
Hs

∣∣� ‖u‖W 1,∞‖u‖2
Hs .

Using Lemma 2.4 and (2.6) directly, we have∣∣(JεF (u), Jεu
)
Hs

∣∣� (|a0| +
(|a1| + |a2|

)‖u‖W 1,∞ + |a3|‖u‖2
W 1,∞ + |a4|‖u‖3

W 1,∞
)‖u‖2

Hs .

Combining the above two inequalities gives rise to the desired estimate. �

Finally, on the torus T =R/2πZ, the following estimate will be used.

Lemma 2.6 ([42,69]). Let η,ρ ∈ R. If n ∈ Z
+ and n � 1, then∥∥sin(nx − ρ)
∥∥

Hη(T)
= ∥∥cos(nx − ρ)

∥∥
Hη(T)

≈ nη.
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3. Local-in-time theory

In this section, we prove Theorem 1.1. For clarity, the proof is divided into several subsections.

3.1. Approximation scheme and uniform estimates

The first step is to construct a suitable approximation scheme. For any R > 1, we let χR(x) : [0,∞) → [0,1] be a C∞
function such that χR(x) = 1 for x ∈ [0,R] and χR(x) = 0 for x > 2R. Then we consider the following cut-off problem{

du + χR

(‖u‖W 1,∞
)[

uux + F(u)
]

dt = χR

(‖u‖W 1,∞
)
h(t, u)dW,

u(ω,0, x) = u0(ω, x) ∈ Hs.
(3.1)

From Lemma 2.4, we see that the nonlinear term F(u) preserves the Hs -regularity of u ∈ Hs for any s > 3/2. However,
to apply the theory of SDEs in Hilbert space to (3.1), we will have to mollify the transport term uux since the product
uux loses one regularity. To this end, we consider the following approximation scheme:⎧⎪⎪⎪⎨⎪⎪⎪⎩

du + H1,ε(u)dt = H2(t, u)dW,

H1,ε(u) = χR

(‖u‖W 1,∞
)[

Jε(Jεu∂xJεu) + F(u)
]
,

H2(t, u) = χR

(‖u‖W 1,∞
)
h(t, u),

u(0, x) = u0(x) ∈ Hs,

(3.2)

where Jε is the Friedrichs mollifier defined by (2.1).

Proposition 3.1. Let S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis. Let s > 3/2, R > 1 and ε ∈ (0,1). As-
sume h satisfies Assumption (A) and u0 ∈ L2(�;Hs) is an Hs -valued F0-measurable random variable. Then (3.2) ad-
mits a unique solution uε ∈ C([0,∞);Hs) P-a.s. Moreover, for any T > 0, there is a constant C > 0 depending on
a0, . . . , a4,R,T and u0 such that

sup
ε>0

E sup
t∈[0,T ]

∥∥uε(t)
∥∥2

Hs ≤ C(3.3)

Proof. For each fixed ε, it follows from (2.3), (2.8) and (A-2) that H1,ε(·) and H2(t, ·) are locally Lipschitz continuous in
Hs with s > 3/2. Moreover, by (A-1), (2.6) and (2.7), there are constants l1 = l1(ε,R) > 0 and l2 = l2(R) > 0 such that
for all t ≥ 0 and s > 3/2,∥∥H1,ε(u)

∥∥
Hs ≤ l1

(
1 + ‖u‖Hs

)
,
∥∥H2(t, u)

∥∥
L2(U;Hs)

≤ l2
(
1 + ‖u‖Hs

)
, t ∈ [0, T ].(3.4)

Therefore, for u0 ∈ L2(�;Hs) with s > 3/2, the existence theory of SDE in Hilbert space (see for example [59, Theo-
rem 4.2.4 with Example 4.1.3] and [48]) implies that (3.2) admits a unique solution uε ∈ C([0,∞),H s) P-a.s. Now we
prove (3.3). Using the Itô formula for ‖uε‖2

Hs , we have

d
∥∥uε(t)

∥∥2
Hs = 2χR

(‖uε‖W 1,∞
)(

h(t, uε)dW, uε

)
Hs

− 2χR

(‖uε‖W 1,∞
)(

DsJε[Jεuε∂xJεuε],Dsuε

)
L2 dt

− 2χR

(‖uε‖W 1,∞
)(

DsF(uε),D
suε

)
L2 dt

+ χ2
R

(‖uε‖W 1,∞
)∥∥h(t, uε)

∥∥2
L2(U;Hs)

dt.

Using the BDG inequality, (A-1) and Lemma 2.4 yields that for some constant C1 = C1(a0, . . . , a4,R) > 0,

E sup
t∈[0,T ]

∥∥uε(t)
∥∥2

Hs −E‖u0‖2
Hs

� E

(∫ T

0
χ2

R

(‖uε‖W 1,∞
)
f 2(‖uε‖W 1,∞

)(
1 + ‖uε‖2

Hs

)‖uε‖2
Hs dt

) 1
2

+ 2E
∫ T

0
χR

(‖uε‖W 1,∞
)∣∣(DsJε[Jεuε∂xJεuε],Dsuε

)
L2

∣∣dt
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+ 2E
∫ T

0
χR

(‖uε‖W 1,∞
)∣∣(DsF(uε),D

suε

)
L2

∣∣dt

+E

∫ T

0
χ2

R

(‖uε‖W 1,∞
)
f 2(‖uε‖W 1,∞

)(
1 + ‖uε‖2

Hs

)
dt

≤ 1

2
E sup

t∈[0,T ]
‖uε‖2

Hs + C1E

∫ T

0

(
1 + ‖uε‖2

Hs

)
dt

+ 2E
∫ T

0
χR

(‖uε‖W 1,∞
)∣∣(DsJε[Jεuε∂xJεuε],Dsuε

)
L2

∣∣dt.

Let Jεuε = v. It follows from (2.4), (2.5), Lemma 2.2, integration by parts, Hs ↪→ W 1,∞ and (2.6) that∣∣(DsJε[Jεuε∂xJεuε],Dsuε

)
L2

∣∣≤ ∣∣([Ds,v
]
vx,D

sv
)
L2

∣∣+ ∣∣(vDsvx,D
sv
)
L2

∣∣≤C‖uε‖W 1,∞‖uε‖2
Hs ,

which implies

2E
∫ T

0
χR

(‖uε‖W 1,∞
)∣∣(DsJε[Jεuε∂xJεuε],Dsuε

)
L2

∣∣dt ≤ C(R)E

∫ T

0
‖uε‖2

Hs dt.

Therefore we obtain for some constant C2 = C2(a0, . . . , a4,R) > 0 that

E sup
t∈[0,T ]

∥∥uε(t)
∥∥2

Hs ≤ 2E‖u0‖2
Hs + C2

∫ T

0

(
1 +E sup

t ′∈[0,t]

∥∥u(t ′)∥∥2
Hs

)
dt.

Using Grönwall’s inequality to the above estimate implies that for some C = C(a0, . . . , a4,R,T ,u0) > 0,

E sup
t∈[0,T ]

∥∥uε(t)
∥∥2

Hs ≤ C,

which is (3.3). �

3.2. Convergence of approximation solutions

The target is to show that when s > 3, there is a subsequence of uε(0 < ε < 1) converging in C([0, T ],H s− 3
2 ) almost

surely. To this end, we consider the difference between two layers uε and uη, where uε and uη are two solutions to (3.2).
Let vε,η = uε − uη , then we have

dvε,η + [H1,ε(uε) − H1,η(uη)
]

dt = [H2(t, uε) − H2(t, uη)
]

dW, vε,η = 0.(3.5)

Direct computation yields that

H1,ε(uε) − H1,η(uη)

= χR

(‖uε‖W 1,∞
)[

Jε(Jεuε∂xJεuε)
]− χR

(‖uη‖W 1,∞
)[

Jη(Jηuη∂xJηuη)
]

+ χR

(‖uε‖W 1,∞
)
F(uε) − χR

(‖uη‖W 1,∞
)
F(uη)

= [χR

(‖uε‖W 1,∞
)− χR

(‖uη‖W 1,∞
)]

Jε[Jεuε∂xJεuε] + χR

(‖uη‖W 1,∞
)
(Jε − Jη)[Jεuε∂xJεuε]

+ χR

(‖uη‖W 1,∞
)
Jη

[
(Jε − Jη)uε∂xJεuε

]+ χR

(‖uη‖W 1,∞
)
Jη

[
Jη(uε − uη)∂xJεuε

]
+ χR

(‖uη‖W 1,∞
)
Jη

[
Jηuη∂x(Jε − Jη)uε

]+ χR

(‖uη‖W 1,∞
)
Jη

[
Jηuη∂xJη(uε − uη)

]
+ [χR

(‖uε‖W 1,∞
)− χR

(‖uη‖W 1,∞
)]

F(uε) + χR

(‖uη‖W 1,∞
)[

F(uε) − F(uη)
]

=
8∑

i=1

Ri.(3.6)
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and

H2(t, uε) − H2(t, uη)

= χR

(‖uε‖W 1,∞
)
h(t, uε) − χR

(‖uη‖W 1,∞
)
h(t, uη)

= [χR

(‖uε‖W 1,∞
)− χR

(‖uη‖W 1,∞
)]

h(t, uε) + χR

(‖uη‖W 1,∞
)[

h(t, uε) − h(t, uη)
]

=
10∑
i=9

Ri.(3.7)

Then we use the Itô formula to (3.5) with noticing (3.6) and (3.7) to find that for any t > 0,

∥∥vε,η(t)
∥∥2

H
s− 3

2
=N1 −

∫ t

0
N2 dt ′ +

∫ t

0
N3 dt ′,(3.8)

where

N1 = 2
∫ t

0

(
10∑
i=9

Ri dW, vε,η

)
H

s− 3
2

, N2 = 2
8∑

i=1

(Ri, vε,η)
H

s− 3
2
, N3 =

∥∥∥∥∥
10∑
i=9

Ri

∥∥∥∥∥
2

L2(U;Hs− 3
2 )

.(3.9)

Lemma 3.1. Let s > 3. For any ε, η ∈ (0,1), there is a constant C > 0 and a locally bounded non-decreasing function
�(·) : [0,∞) → [0,∞) such that N2 given by (3.9) satisfies

|N2| ≤C�
(‖uε‖Hs + ‖uη‖Hs

)‖vε,η‖2

H
s− 3

2
+ C�

(‖uε‖Hs + ‖uη‖Hs

)
max{ε, η}.

Proof. Fix a constant D = D(a0, . . . , a4) � 1 and let �(·) be a locally bounded function such that

�(x) ≥ D
(
1 + x4).

Using the mean value theorem for χR(·), the embedding Hs− 3
2 ↪→ W 1,∞, Lemma 2.4 and (2.6), and noticing that 0 ≤

χR(·) ≤ 1, we have

‖R1‖
H

s− 3
2

� ‖vε,η‖
H

s− 3
2
‖uε‖2

Hs ,

‖R7‖
H

s− 3
2

� ‖vε,η‖
H

s− 3
2

(|a0|‖uε‖Hs + (|a1| + |a2|
)‖uε‖2

Hs + |a3|‖uε‖3
Hs + |a4|‖uε‖4

Hs

)
� ‖vε,η‖

H
s− 3

2
�
(‖uε‖Hs + ‖uη‖Hs

)
,

and

‖R8‖
H

s− 3
2

�
(|a0| +

(|a1| + |a2|
)
Is(uε, uη) + |a3|I 2

s (uε, uη) + |a4|I 3
s (uε, uη)

)‖vε,η‖
H

s− 3
2

� ‖vε,η‖
H

s− 3
2
�
(‖uε‖Hs + ‖uη‖Hs

)
.

Using (2.2) and (2.6) yields

‖Ri‖
H

s− 3
2

� max
{
ε1/2, η1/2}‖uε‖2

Hs , i = 2,3,

‖R4‖
H

s− 3
2

� ‖vε,η‖
H

s− 3
2
‖uε‖Hs ,

‖R5‖
H

s− 3
2

� max
{
ε1/2, η1/2}‖uε‖Hs ‖uη‖Hs .

For R6, using (2.4), (2.5) and then integrating by parts, we have

(R6, vε,η)
H

s− 3
2

= χR

(‖uη‖W 1,∞
)∫

R

Ds− 3
2 [Jηuη∂xJηvε,η] · Ds− 3

2 Jηvε,η dx

= χR

(‖uη‖W 1,∞
)∫

R

[
Ds− 3

2 , Jηuη

]
∂xJηvε,η · Ds− 3

2 Jηvε,η dx
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+ χR

(‖uη‖W 1,∞
)∫

R

Jηuη∂xD
s− 3

2 Jηvε,η · Ds− 3
2 Jηvε,η dx

= χR

(‖uη‖W 1,∞
)∫

R

[
Ds− 3

2 , Jηuη

]
∂xJηvε,η · Ds− 3

2 Jηvε,η dx

− 1

2
χR

(‖uη‖W 1,∞
)∫

R

Jη∂xuη

(
Ds− 3

2 Jηvε,η

)2 dx.

Then Lemma 2.2, (2.6) and the embedding Hs− 3
2 ↪→ W 1,∞ bring us

(R6, vε,η)
H

s− 3
2

�
(‖uη‖

H
s− 3

2
‖∂xJηvε,η‖L∞ + ‖∂xJηuη‖L∞‖vε,η‖

H
s− 3

2

)‖vε,η‖
H

s− 3
2

� ‖uη‖Hs ‖vε,η‖2

H
s− 3

2
.

Putting all these together, we find a constant C > 0 such that

|N2| ≤C�
(‖uε‖Hs + ‖uη‖Hs

)‖vε,η‖2

H
s− 3

2
+ C�

(‖uε‖Hs + ‖uη‖Hs

)
max{ε, η},

which is the desired estimate. �

Lemma 3.2. Let S = (�,F,P, {Ft }t≥0,W) be a fixed stochastic basis. Let s > 3, R > 1 and ε ∈ (0,1). Let uε ∈
C([0,∞);Hs) solve (3.2) P-a.s. For any T > 0 and K > 1, we define

τT
ε,K = inf

{
t ≥ 0 : ∥∥uε(t)

∥∥
Hs ≥ K

}∧ T ,(3.10)

and

τT
ε,η,K = τT

ε,K ∧ τT
η,K .(3.11)

Then it has that

lim
ε→0

sup
η≤ε

E sup
t∈[0,τT

ε,η,K ]
‖uε − uη‖

H
s− 3

2
= 0, K > 1.(3.12)

Proof. Recalling (3.8) and (3.9), we have

∥∥vε,η(t)
∥∥2

H
s− 3

2
≤|N1| +

∫ t

0
|N2|dt ′ +

∫ t

0
|N3|dt ′.(3.13)

By (3.11), the mean value theorem for χR(·), (A-1) and (A-2), we see that

‖R9‖L2(U;Hs− 3
2 )

≤ ‖vε,η‖
H

s− 3
2
f (K)(1 + K), t ∈ [0, τ T

ε,η,K

]
P-a.s.,

and

‖R10‖L2(U;Hs− 3
2 )

≤ ‖vε,η‖
H

s− 3
2
q(K), t ∈ [0, τ T

ε,η,K

]
P-a.s.,

where R9 and R10 are given in (3.7), f (·) and q(·) are given in Assumption (A). To sum up, there exists a constant
C = C(K) > 0 such that

E

∫ τT
ε,η,K

0
|N3|dt ≤C(K)E

∫ τT
ε,η,K

0
‖vε,η‖2

H
s− 3

2
dt ≤ C(K)

∫ T

0
E sup

t ′∈[0,τ t
ε,η,K ]

∥∥vε,η

(
t ′
)∥∥2

H
s− 3

2
dt.(3.14)

Then we employ the BDG inequality to (3.8) to find

E sup
t∈[0,τT

ε,η,K ]

∥∥vε,η(t)
∥∥2

H
s− 3

2
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≤ C(K)E

(∫ τT
ε,η,K

0
‖vε,η‖4

H
s− 3

2
dt

) 1
2 +

3∑
i=2

E

∫ τT
ε,η,K

0
|Ni |dt

≤ 1

2
E sup

t∈[0,τT
ε,η,K ]

‖vε,η‖2

H
s− 3

2
+ C(K)E

∫ τT
ε,η,K

0
‖vε,η‖2

H
s− 3

2
dt +

3∑
i=2

E

∫ τT
ε,η,K

0
|Ni |dt

≤ 1

2
E sup

t∈[0,τT
ε,η,K ]

‖vε,η‖2

H
s− 3

2
+ C(K)

∫ T

0
E sup

t ′∈[0,τ t
ε,η,K ]

∥∥vε,η

(
t ′
)∥∥2

H
s− 3

2
dt +E

∫ τT
ε,η,K

0
|N2|dt,

On account of Lemma 3.1, we arrive at

E

∫ τT
ε,η,K

0
|N2|dt ≤ C(K)E

∫ τT
ε,η,K

0
‖vε,η‖2

H
s− 3

2
dt + C(K)T max{ε, η}

≤ C(K)

∫ T

0
E sup

t ′∈[0,τ t
ε,η,K ]

∥∥vε,η

(
t ′
)∥∥2

H
s− 3

2
dt + C(K)T max{ε, η}.

Hence we arrive at

E sup
t∈[0,τT

ε,η,K ]

∥∥vε,η(t)
∥∥2

H
s− 3

2
≤ C(K)

∫ T

0
E sup

t ′∈[0,τ t
ε,η,K ]

∥∥vε,η

(
t ′
)∥∥2

H
s− 3

2
dt + C(K)T max{ε, η},

which means that

E sup
t∈[0,τT

ε,η,K ]

∥∥vε,η(t)
∥∥2

H
s− 3

2
≤ C(K,T )max{ε, η},(3.15)

and hence (3.12) holds true. �

Lemma 3.3. For any fixed s > 3 and T > 0, there is a countable subsequence of {uε} (still denoted as {uε}) such that

uε
ε→0−−→ u in C

([0, T ];Hs− 3
2
)
P-a.s.,(3.16)

where u is an {Ft }t≥0 progressive measurable Hs -valued process satisfying

u ∈ L2(�;L∞(0, T ;Hs
))

.(3.17)

Proof. We notice that for each ε ∈ (0,1), the approximation problem (3.2) has a solution uε almost surely. Now we take
{ε}ε∈(0,1) to be a countable set {εn}n∈N such that for all n, uεn can be defined on the same set �̃ with P{�̃} = 1 (otherwise
(3.16) may fail). For simplicity, we still use the notation {uε}. Recall (3.10) and (3.11). For any ε > 0, we can infer from
Proposition 3.1 and Chebyshev’s inequality that

P

{
sup

t∈[0,T ]
‖uε − uη‖

H
s− 3

2
> ε
}

= P

{({
τT
ε,η,K < T

}∪ {τT
ε,η,K = T

})∩ { sup
t∈[0,T ]

‖uε − uη‖
H

s− 3
2

> ε
}}

≤ P
{
τT
ε,K < T

}+ P
{
τT
η,K < T

}+ P

{
sup

t∈[0,τT
ε,η,K ]

‖uε − uη‖
H

s− 3
2

> ε
}

≤ 2C(a0, . . . , a4,R,T ,u0)

K2
+ P

{
sup

t∈[0,τT
ε,η,K ]

‖uε − uη‖
H

s− 3
2

> ε
}
.

It follows from (3.12) that

lim
ε→0

sup
η≤ε

P

{
sup

t∈[0,T ]
‖uε − uη‖

H
s− 3

2
> ε
}

≤ 2C(a0, . . . , a4,R,T ,u0)

K2
, K > 1.
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Letting K → ∞, we see that uε converges in probability in C([0, T ];Hs− 3
2 ). Therefore, there is a subsequence of {uε}

satisfying (3.16).
It remains to prove (3.17). Since Hs ↪→ Hs−3/2 is continuous, there exist continuous maps φm : Hs−3/2 → Hs(m ≥ 1)

such that

‖φmu‖Hs ≤ ‖u‖Hs and lim
m→∞‖φmu‖Hs = ‖u‖Hs , u ∈ Hs−3/2,

where ‖u‖Hs � ∞ if u /∈ Hs . Then it follows from Proposition 3.1 and Fatou’s lemma that

E sup
t∈[0,T ]

∥∥u(t)
∥∥2

Hs ≤ lim inf
m→∞ E sup

t∈[0,T ]
∥∥φmu(t)

∥∥2
Hs

≤ lim inf
m→∞ lim inf

ε→0
E sup

t∈[0,T ]

∥∥φmuε(t)
∥∥2

Hs

≤ lim inf
m→∞ lim inf

ε→0
E sup

t∈[0,T ]

∥∥uε(t)
∥∥2

Hs < C(a0, . . . , a4,R,u0, T ).

Hence we obtain (3.17). Since for each ε ∈ (0,1), uε is {Ft }t≥0 progressive measurable, so is u. �

3.3. Global pathwise solution to the cut-off problem

Proposition 3.2. Let S = (�,F,P, {Ft }t≥0,W) be a stochastic basis fixed in advance. Let s > 3 and R > 1. Suppose
that Assumption (A) is satisfied. Let u0 ∈ L2(�;Hs) be an Hs -valued F0 measurable random variable. Then for any
T > 0, (3.1) has a solution u ∈ L2(�;C([0, T ];Hs)). That is to say, u solves{

du + χR

(‖u‖W 1,∞
)[

uux + F(u)
]

dt = χR

(‖u‖W 1,∞
)
h(t, u)dW,

u(ω,0, x) = u0(ω, x) ∈ Hs,

and there is a constant C = C(a0, . . . , a4,R,T ,u0) > 0 such that

E sup
t∈[0,T ]

‖u‖2
Hs ≤ C.(3.18)

Proof. By Lemma 3.3 and the embedding Hs−3/2 ↪→ W 1,∞, we can send ε → 0 in (3.2) to conclude that u solves (3.1)
and estimate (3.18) holds true.

To finish the proof for this proposition, it remains to prove that u ∈ C([0, T ];Hs) almost surely. Due to Lemma 3.3,
u ∈ C([0, T ];Hs−3/2) ∩ L∞(0, T ;Hs) almost surely. Since Hs is dense in Hs−3/2, we know that (cf. [72, page 263,
Lemma 1.4]) u ∈ Cw([0, T ];Hs), where Cw([0, T ];Hs) is the space of weakly continuous functions with values in Hs .
Therefore we only need to prove the continuity of [0, T ] 
 t �→ ‖u(t)‖Hs .

In Remark 1.1, we have noticed that the Itô formula may fail in our problem. In order to use the Itô formula in a Hilbert
space, we recall the mollifier Jε defined in (2.1) and then we arrive at

d
∥∥Jεu(t)

∥∥2
Hs = 2χR

(‖u‖W 1,∞
)(

Jεh(t, u)dW, Jεu
)
Hs

− 2χR

(‖u‖W 1,∞
)(

Jε

[
uux + F(u)

]
, Jεu

)
Hs dt

+ χ2
R

(‖u‖W 1,∞
)∥∥Jεh(t, u)

∥∥2
L2(U;Hs)

dt.(3.19)

On account of (3.17), we have

τN = inf
{
t ≥ 0 : ∥∥u(t)

∥∥
Hs > N

}→ ∞ as N → ∞ P-a.s.(3.20)

Consequently, it is enough to prove the continuity up to time τN ∧T for each N ≥ 1. We notice that Jε satisfies (2.4), (2.5)
and (2.6). Therefore for any [t2, t1] ⊂ [0, T ] with t1 − t2 < 1, we use Lemma 2.5, the BDG inequality and Assumption (A)
and (3.20) to find

E
[(∥∥Jεu(t1 ∧ τN)

∥∥2
Hs − ∥∥Jεu(t2 ∧ τN)

∥∥2
Hs

)4]≤C(a0, . . . , a4,N,T )|t1 − t2|2.
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Moreover, since

Jεu → u as ε → 0 in C
([0, T ],H s

)
P-a.s.,(3.21)

we use Fatou’s lemma to find

E
[(∥∥u(t1 ∧ τN)

∥∥2
Hs − ∥∥u(t2 ∧ τN)

∥∥2
Hs

)4]≤C(a0, . . . , a4,N,T )|t1 − t2|2.
Therefore the continuity of t �→ ‖u(t ∧ τN)‖Hs comes from the above inequality and Kolmogorov’s continuity theorem.
We complete the proof. �

3.4. Concluding the proof for Theorem 1.1

Finally, we are in the position to finish the proof for Theorem 1.1. For clarity, we split the proof into three steps.
Step 1: Existence. For u0(ω, x) ∈ L2(�;Hs) with s > 3, we let

�k = {k − 1 ≤ ‖u0‖Hs < k
}
, k ∈ N, k ≥ 1.

Since E‖u0‖2
Hs < ∞, we have

u0(ω, x) =
∑
k≥1

1�k
u0(ω, x) =

∑
k≥1

u0,k(ω, x) P-a.s.

On account of Proposition 3.2, we let uk,R be the pathwise global solution to the cut-off problem (3.1) with initial value
u0,k and cut-off function χR(·). Define

τk,R = inf
{
t > 0 : sup

t ′∈[0,t]

∥∥uk,R

(
t ′
)∥∥2

Hs > ‖u0,k‖2
Hs + 2

}
.(3.22)

Then for any R > 0 and k ≥ 1, we have P{τk,R > 0} = 1. The difficulty here is that we have to take R to be deterministic.
Otherwise Proposition 3.1 will fail. To overcome this difficulty, we let R = Rk be discrete (with k ≥ 1) and then denote
(uk, τk) = (uk,Rk

, τk,Rk
). It is clear that P{τk > 0 ∀k ≥ 1} = 1. Let E > 0 be the embedding constant such that ‖ · ‖W 1,∞ ≤

E‖ · ‖Hs for s > 3. Particularly, we let R2
k > E2‖u0,k‖2

Hs + 2E2, and then we have

P
{‖uk‖2

W 1,∞ ≤ E2‖uk‖2
Hs ≤ E2‖u0,k‖2

Hs + 2E2 < R2
k ∀t ∈ [0, τk] ∀k ≥ 1

}= 1,

which means

P
{
χRk

(‖uk‖W 1,∞
)= 1 ∀t ∈ [0, τk] ∀k ≥ 1

}= 1.

Therefore (uk, τk) is the pathwise solution to (1.4) with initial value u0,k . Notice that

1�k
uk(t ∧ τk) − 1�k

u0,k = −
∫ t∧1�k

τk

0
1�k

[
uk∂xuk + F(uk)

]
dt ′ +

∫ t∧1�k
τk

0
1�k

h
(
t ′, uk

)
dW .

Besides, it has that

1�k
h(t, uk) = h(t,1�k

uk) − 1�C
k
h(t,0)

and

1�k

[
uk∂xuk + F(uk)

]= [1�k
uk∂x1�k

uk + F(1�k
uk)
]
.

By Assumption (A), ‖h(t,0)‖L2(U;Hs) < ∞. This in turn brings us

1�k
uk(t ∧ τk) − 1�k

u0,k

= 1�k
uk(t ∧ 1�k

τk) − u0,k

= −
∫ t∧1�k

τk

0

[
(1�k

uk)∂x(1�k
uk) + F(1�k

uk)
]

dt ′ +
∫ t∧1�k

τk

0
h
(
t ′,1�k

uk

)
dW,

which implies that (1�k
uk,1�k

τk) is a solution to (1.4)1 with initial data u0,k .
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Since �k ∩ �k′ =∅ for k �= k′ and
⋃

k≥1 �k is a set of full measure, we see that(
u =
∑
k≥1

1�k
uk, τ =

∑
k≥1

1�k
τk

)
is a pathwise solution to (1.4) corresponding to the initial condition u0. Besides, by virtue of (3.22), we have

sup
t∈[0,τ ]

‖u‖2
Hs =

∑
k≥1

1�k
sup

t∈[0,τk]
‖uk‖2

Hs

≤
∑
k≥1

1�k

(‖u0,k‖2
Hs + 2

)≤ 2‖u0‖2
Hs + 4.

Taking expectation gives rise to (1.11). Finally, mollifying initial data, analyzing the convergence and employing the
argument as in [37,64,65] lead to a local pathwise solution (u, τ ) to (1.4) with u(· ∧ τ) ∈ L2(�;C([0,∞);Hs)) for
u0 ∈ L2(�;Hs) with s > 3/2.

Step 2: Uniqueness. Let (u1, τ1) and (u2, τ2) be two solutions to (1.4) such that uj (0) = u0 almost surely and uj (· ∧
τj ) ∈ L2(�;C([0,∞);Hs)) with s > 3

2 for j = 1,2. Let 1
2 < δ < min{s − 1, 3

2 } and define

τT
K = inf

{
t ≥ 0 : ∥∥u1(t)

∥∥
Hs + ∥∥u2(t)

∥∥
Hs ≥ K

}∧ T , K ≥ 1, T > 0.

Using (A-3) instead of (A-2) and using (2.9), then the estimate of E supt∈[0,τT
K ] ‖u1(t) − u2(t)‖2

Hδ is essential as in the
derivation of (3.12) and we have

E sup
t∈[0,τT

K ]

∥∥u1(t) − u2(t)
∥∥2

Hδ = 0.

Since uj (· ∧ τj ) ∈ L2(�;C([0,∞);Hs)) for j = 1,2 almost surely, we have

P

{
lim inf
K,T →∞ τT

K ≥ τ1 ∧ τ2

}
= 1.

Hence, by sending K,T → ∞ and using the monotone convergence theorem, we obtain

E sup
t∈[0,τ1∧τ2]

∥∥u1(t) − u2(t)
∥∥2

Hδ = 0,

which implies the uniqueness of the solution.
Step 3: Blow-up criterion of the maximal solution. With a local pathwise solution (u, τ ) in hand, the extending of u to

a maximal pathwise solution (u, τ ∗) in the sense of Definition 1.1 may be carried out as in [20,36,37,61]. Here we only
prove the blow-up criterion (1.12). To this end, we first define

τ1,m = inf
{
t ≥ 0 : ∥∥u(t)

∥∥
Hs ≥ m

}
, τ2,n = inf

{
t ≥ 0 : ∥∥u(t)

∥∥
W 1,∞ ≥ n

}
,

and then let τ1 = limm→∞ τ1,m and τ2 = limn→∞ τ2,n. By the continuity of ‖u(t)‖Hs and the uniqueness of u, it is easy
to check that τ1 is actually the maximal existence time τ ∗ of u in the sense of Definition 1.1. Therefore to prove (1.12),
we only need to verify that τ1 = τ2 P-a.s. The approach here is motivated by [20,62,65].

Due to the embedding Hs ↪→ W 1,∞ for s > 3/2, there is a constant M > 0 such that,

sup
t∈[0,τ1,m]

∥∥u(t)
∥∥

W 1,∞ ≤ M sup
t∈[0,τ1,m]

∥∥u(t)
∥∥

Hs ≤ ([M] + 1
)
m,

where [M] means the integer part of M . Therefore we have τ1,m ≤ τ2,([M]+1)m ≤ τ2 P-a.s., which means that τ1 ≤ τ2
P-a.s.

Now we prove τ2 ≤ τ1 P-a.s. To this end, we first prove the following
Claim:

P

{
sup

t∈[0,τ2,n1∧n2]
∥∥u(t)

∥∥
Hs < ∞

}
= 1 ∀n1, n2 ∈ N.(3.23)
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As is explained in Remark 1.1, we cannot directly apply the Itô formula for ‖u‖2
Hs to control E‖u(t)‖2

Hs . Similar to
(3.19), by applying Jε to (1.4) and using the Itô formula for ‖Jεu‖2

Hs , we have that for any t > 0,

∥∥Jεu(t)
∥∥2

Hs − ∥∥Jεu(0)
∥∥2

Hs = 2
∫ t

0

(
Jεh
(
t ′, u
)

dW, Jεu
)
Hs

− 2
∫ t

0

(
DsJε[uux],DsJεu

)
L2 dt ′

− 2
∫ t

0

(
DsJεF (u),DsJεu

)
L2 dt ′

+
∫ t

0

∥∥Jεh
(
t ′, u
)∥∥2

L2(U;Hs)
dt ′

= Q1 +
4∑

i=2

∫ t

0
Qi dt ′.(3.24)

Therefore, for any n1, n2 ≥ 1 and t ∈ [0, τ2,n1 ∧ n2], it follows from the BDG inequality that

E sup
t∈[0,τ2,n1∧n2]

∥∥Jεu(t)
∥∥2

Hs

≤ E‖Jεu0‖2
Hs + CE

(∫ τ2,n1∧n2

0

∥∥Jεh(t, u)
∥∥2
L2(U;Hs)

‖Jεu‖2
Hs dt

) 1
2 +

4∑
i=2

E

∫ τ2,n1 ∧n2

0
|Qi |dt.

Then (A-1) and (2.6) lead to

CE

(∫ τ2,n1 ∧n2

0

∥∥Jεh(t, u)
∥∥2
L2(U;Hs)

‖Jεu‖2
Hs dt

) 1
2

≤ 1

2
E sup

t∈[0,τ2,n1∧n2]
‖Jεu‖2

Hs + Cf 2(n1)

∫ n2

0

(
1 +E‖u‖2

Hs

)
dt.

For Q2 and Q3, we use Lemma 2.5 to find

E

∫ τ2,n1∧n2

0
|Q2| + |Q3|dt ≤ Cg(n1)

∫ n2

0

(
1 +E‖u‖2

Hs

)
dt,

where g(·) is given in Lemma 2.5. It follows from (A-1) that

E

∫ τ2,n1∧n2

0
|Q4|dt ≤ Cf 2(n1)

∫ n2

0

(
1 +E‖u‖2

Hs

)
dt,

Therefore we combine the above estimates with using (2.6), and then send ε → 0 in the resulting inequality to obtain

E sup
t∈[0,τ2,n1∧n2]

∥∥u(t)
∥∥2

Hs ≤ CE‖u0‖2
Hs + C

∫ n2

0

(
1 +E sup

t ′∈[0,t∧τ2,n1 ]

∥∥u(t ′)∥∥2
Hs

)
dt,(3.25)

where C = C(a0, . . . , a4, n1) > 0. Then Grönwall’s inequality shows that for each n1, n2 ∈ N, there is a constant C =
C(a0, . . . , a4, n1, n2, u0) > 0 such that

E sup
t∈[0,τ2,n1∧n2]

∥∥u(t)
∥∥2

Hs < C,

which leads to (3.23).
In view of (3.23), we find for all n1, n2 ∈N that,

1 = P

{
sup

t∈[0,τ2,n1∧n2]

∥∥u(t)
∥∥

Hs < ∞
}

≤ P

{⋃
m∈N

{τ2,n1 ∧ n2 ≤ τ1,m}
}

≤ P{τ2,n1 ∧ n2 ≤ τ1}.
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Consequently, P{⋂n1,n2∈N{τ2,n1 ∧ n2 ≤ τ1}} = 1 and

P{τ2 ≤ τ1} = P

{ ⋂
n1∈N

{τ2,n1 ≤ τ1}
}

= P

{ ⋂
n1,n2∈N

{τ2,n1 ∧ n2 ≤ τ1}
}

= 1,(3.26)

which means τ1 = τ2 P-a.s. We complete the proof for Theorem 1.1.

4. Noise effect on preventing blow-up

Following [60] (see also [7,63]), we are now ready to prove Theorem 1.2. Here we notice that (B-2) in Assumption (B)
means that one can find a Lyapunov type function V such that the growth of uux + F(u) can be canceled by the noise.

4.1. Proof for Theorem 1.2

Proof for Theorem 1.2. As is mentioned in Remark 1.2, by the local Lipschitz continuity of σ(t, ·) in Hs with s > 3/2,
one can follow the steps as in the proof for Theorem 1.1 to obtain that, if u0 is an Hs -valued F0-measurable random
variable satisfying E‖u0‖2

Hs < ∞ with s > 5/2, then (1.6) has a unique pathwise solution u ∈ Hs with maximal existence
time τ ∗. In other words, on [0, τ ∗), u solves the following problem almost surely:{

du + [uux + F(u)
]

dt = σ(t, u)dW,

u(ω,0, x) = u0(ω, x).

Now the target is to prove P{τ ∗ = ∞} = 1. To this end, we define

τm = inf
{
t ≥ 0 : ∥∥u(t)

∥∥
Hs ≥ m

}
.

As is mentioned in Remark 1.1, we have to mollify the equation first such that Itô formula can be employed. Hence we
apply the Itô formula to ‖Jεu(t)‖2

Hs to derive

d‖Jεu‖2
Hs = 2

(
Jεσ (t, u), Jεu

)
Hs dW − 2

(
Jε[uux], Jεu

)
Hs dt

− 2
(
JεF (u), Jεu

)
Hs dt + ∥∥Jεσ (t, u)

∥∥2
Hs dt.(4.1)

Let V ∈ V . Applying the Itô formula again, we find

dV
(‖Jεu‖2

Hs

)= 2V ′(‖Jεu‖2
Hs

)(
Jεσ (t, u), Jεu

)
Hs dW

+ V ′(‖Jεu‖2
Hs

){−2
(
Jε[uux], Jεu

)
Hs − 2

(
JεF (u), Jεu

)
Hs

}
dt

+ V ′(‖Jεu‖2
Hs

)∥∥Jεσ (t, u)
∥∥2

Hs dt + 2V ′′(‖Jεu‖2
Hs

)∣∣(Jεσ (t, u), Jεu
)
Hs

∣∣2 dt.

Now we take expectation and use (2.6), Lemma 2.5 to find that for any t > 0,

EV
(∥∥Jεu(t ∧ τm)

∥∥2
Hs

)
= EV

(‖Jεu0‖2
Hs

)+E

∫ t∧τm

0
V ′(‖Jεu‖2

Hs

){−2
(
Jε[uux], Jεu

)
Hs − 2

(
JεF (u), Jεu

)
Hs

}
dt ′

+E

∫ t∧τm

0
V ′(‖Jεu‖2

Hs

)∥∥Jεσ
(
t ′, u
)∥∥2

Hs dt ′ +E

∫ t∧τm

0
2V ′′(‖Jεu‖2

Hs

)∣∣(Jεσ
(
t ′, u
)
, Jεu

)
Hs

∣∣2 dt ′

≤ EV
(‖u0‖2

Hs

)+E

∫ t∧τm

0
V ′(‖Jεu‖2

Hs

){
2Ag
(‖u‖W 1,∞

)‖u‖2
Hs + ∥∥σ (t ′, u)∥∥2

Hs

}
dt ′

+E

∫ t∧τm

0
2V ′′(‖Jεu‖2

Hs

)∣∣(Jεσ
(
t ′, u
)
, Jεu

)
Hs

∣∣2 dt ′.
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By virtue of (2.6), (3.21), Fatou’s lemma, the dominated convergence theorem and Assumption (B), one has

EV
(∥∥u(t ∧ τm)

∥∥2
Hs

)
≤ lim

ε→0
EV
(∥∥Jεu(t ∧ τm)

∥∥2
Hs

)
≤ EV

(‖u0‖2
Hs

)+ lim
ε→0

E

∫ t∧τm

0
V ′(‖Jεu‖2

Hs

){
2Ag
(‖u‖W 1,∞

)‖u‖2
Hs + ∥∥σ (t ′, u)∥∥2

Hs

}
dt ′

+ lim
ε→0

E

∫ t∧τm

0
2V ′′(‖Jεu‖2

Hs

)∣∣(Jεσ
(
t ′, u
)
, Jεu

)
Hs

∣∣2 dt ′

≤ EV
(‖u0‖2

Hs

)+ M1t −E

∫ t∧τm

0
M2

{V ′(‖u‖2
Hs )|(σ (t ′, u), u)Hs |}2

1 + V (‖u‖2
Hs )

dt ′,

which means that there is a constant C = C(u0,M1,M2, t) > 0 such that

E

∫ t∧τm

0

{V ′(‖u‖2
Hs )|(σ (t ′, u), u)Hs |}2

1 + V (‖u‖2
Hs )

dt ′ ≤ C(u0,M1,M2, t).(4.2)

For any t > 0, m ≥ 1, by (3.21), the dominated convergence theorem and Assumption (B), we can find a positive function
ηt,m(ε) such that ηt,m(ε) → 0 when ε → 0 and

E

∫ t∧τm

0
V ′(‖Jεu‖2

Hs

){
2Ag
(‖u‖W 1,∞

)‖u‖2
Hs + ∥∥σ (t ′, u)∥∥2

Hs

}+ 2V ′′(‖Jεu‖2
Hs

)∣∣(Jεσ
(
t ′, u
)
, Jεu

)
Hs

∣∣2 dt ′

≤ E

∫ t∧τm

0
V ′(‖u‖2

Hs

){
2Ag
(‖u‖W 1,∞

)‖u‖2
Hs + ∥∥σ (t ′, u)∥∥2

Hs

}
+ 2V ′′(‖u‖2

Hs

)∣∣(σ (t ′, u), u)
Hs

∣∣2 dt ′ + ηt,m(ε)

≤ M1t + M2E

∫ t∧τm

0

{V ′(‖u‖2
Hs )|(σ (t ′, u), u)Hs |}2

1 + V (‖u‖2
Hs )

dt ′ + ηt,m(ε).(4.3)

Therefore, for any T > 0, it follows from (4.3) and the BDG inequality that

E sup
t∈[0,T ∧τm]

V
(‖Jεu‖2

Hs

)
≤ EV

(‖u0‖2
Hs

)+ CE

(∫ T ∧τm

0

{
V ′(‖Jεu‖2

Hs

)∣∣(Jεσ (t, u), Jεu
)
Hs

∣∣}2 dt

) 1
2

+ M1T + M2E

∫ T ∧τm

0

{V ′(‖u‖2
Hs )|(σ (t, u),u)Hs |}2

1 + V (‖u‖2
Hs )

dt + ηT,m(ε)

≤ EV
(‖u0‖2

Hs

)+ 1

2
E sup

t∈[0,T ∧τm]
(
1 + V

(‖Jεu‖2
Hs

))+ CE

∫ T ∧τm

0

{V ′(‖Jεu‖2
Hs )|(Jεσ (t, u), Jεu)Hs |}2

1 + V (‖Jεu‖2
Hs )

dt

+ M1T + M2E

∫ T ∧τm

0

{V ′(‖u‖2
Hs )|(σ (t, u),u)Hs |}2

1 + V (‖u‖2
Hs )

dt + ηT,m(ε).

Thus we use the dominated convergence theorem, Fatou’s lemma and (4.2) to obtain

E sup
t∈[0,T ∧τm]

V
(‖u‖2

Hs

)
≤ lim

ε→0
E sup

t∈[0,T ∧τm]
V
(‖Jεu‖2

Hs

)
≤ 1 + 2EV

(‖u0‖2
Hs

)+ 2C lim
ε→0

E

∫ T ∧τm

0

{V ′(‖Jεu‖2
Hs )|(Jεσ (t, u), Jεu)Hs |}2

1 + V (‖Jεu‖2
Hs )

dt
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+ 2M1T + 2M2E

∫ T ∧τm

0

{V ′(‖u‖2
Hs )|(σ (t, u),u)Hs |}2

1 + V (‖u‖2
Hs )

dt

≤ C(u0,M1, T ) + C(M2)E

∫ T ∧τm

0

{V ′(‖u‖2
Hs )|(σ (t, u),u)Hs |}2

1 + V (‖u‖2
Hs )

dt

≤ C(u0,M1,M2, T ).

As a result, for all m ≥ 1,

P
{
τ ∗ < T

}≤ P{τm < T } ≤ P

{
V
(
m2)≤ sup

t∈[0,T ∧τm]
V
(‖u‖2

Hs

)}≤ C(u0,M1,M2, T )

V (m2)
.

Since limx→∞ V (x) = ∞, one can send m → ∞ to identify that P{τ ∗ < T } = 0. Since T > 0 is arbitrary, we have
P{τ ∗ = ∞} = 1. �

4.2. Examples

Now we give some examples of σ(t, x) such that Assumption (B) is verified. As in (1.12), for the solution to (1.4), its
Hs -norm blows up if and only if its W 1,∞-norm blows up. This and (1.10) in Assumption (B) suggest choosing a noise
coefficient involving the W 1,∞-norm of u. Therefore we let

σ(t, u) = α
(
t,‖u‖W 1,∞

)
u,(4.4)

and we assume α(t, x) satisfies

Assumption (D). We assume that

• α(t, x) ∈ C([0,∞) × [0,∞)) is locally bounded and α(t, ·) is locally Lipschitz continuous;
• α(t, x) �= 0 for all (t, x) ∈ [0,∞) × [0,∞), and for all t ≥ 0,

lim sup
x→+∞

2Ag(x)

α2(t, x)
< 1,

where A and g(x) are given in Lemma 2.5.

We first notice the following algebraic property.

Lemma 4.1. Let A and g(·) be given in Lemma 2.5. Let D > 0. If Assumption (D) holds true, then there is an M1 > 0
such that for any M2 > 0 and all 0 < x ≤ Dy < ∞,

2Ag(x)y2 + α2(t, x)y2

1 + y2
− 2α2(t, x)y4

(1 + y2)2
≤ M1 − M2

2α2(t, x)y4

(1 + y2)2(1 + log(1 + y2))
.(4.5)

Proof. By Assumption (D), we have

lim sup
x→+∞

2Ag(x)y2 + α2(t, x)y2

1 + y2
− 2α2(t, x)y4

(1 + y2)2
+ M2

2α2(t, x)y4

(1 + y2)2(1 + log(1 + y2))

≤ lim sup
x→+∞

(
2Ag(x)

α2(t, x)
+ 1 − 2( x

D
)4

(1 + ( x
D

)2)2
+ M2

2

(1 + log(1 + ( x
D

)2))

)
α2(t, x) < 0,

which implies (4.5). �

Lemma 4.2. If α(t, x) satisfies Assumption (D), then σ(t, u) defined by (4.4) satisfies Assumption (B) with V (x) =
log(1 + x).

Proof. Lemma 4.1 implies that (1.10) holds true with V (x) = log(1 + x). The other statements in Assumption (B)
obviously hold true. �
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We conclude this section with different examples of α(t, x). Let q : [0,∞) → [0,∞) be a continuous function and
there are constants q∗, q∗ > 0 such that q∗ ≤ q2(t) ≤ q∗ < ∞ for all t . Then we assume

α(t, x) = q(t)(1 + x)θ .(4.6)

• When Coriolis effect is involved, we consider the rotation-CH equation, i.e., ai �= 0 with i = 0,1,2,3,4, and we assume

θ > 3/2, q∗ > q∗ > 0 or θ = 3/2, q∗ > q∗ > 2A|a4|.
• When Coriolis effect is not involved, we set a3 = a4 = 0. In this case, we assume

θ > 1/2, q∗ > q∗ > 0 or θ = 1/2, q∗ > q∗ > 2A
(
1 + |a1| + |a2|

)
.

It is easy to see that, for the above two cases, α defined by (4.6) satisfies Assumption (D). Therefore, by Lemma 4.2,
Assumption (B) with V = log(1 + x) is verified for σ(t, u) defined by (4.4).

5. Remark on Theorems 1.1 and 1.2 on the torus

We point out that both Theorems 1.1 and 1.2 also hold true on the 1-D torus T = R/2πZ, i.e., x ∈ T. Indeed, in this
periodic case, Ds = (1 − ∂2

xx)
s/2 is defined by D̂sf (k) = (1 + k2)s/2f̂ (k), where f̂ (k) is the Fourier coefficient of f .

The Sobolev space Hs(T) is defined as

Hs(T) �
{
f ∈ L2(T) : ‖f ‖2

Hs(T) =
∑
k∈Z

(
1 + k2)s∣∣f̂ (k)

∣∣2 < ∞
}

with inner product (f, g)Hs �
∑

k∈Z(1 + k2)s f̂ (k) · ĝ(k) = (Dsf,Dsg)L2 . Moreover, the mollifier Jε can be defined as
in (2.1). We also define the regularizing operator Tε on T as

Tεf (x) �
(
1 − ε2∂2

xx

)−1
f (x) =

∑
k∈Z

(
1 + ε2|k|2)−1

f̂ (k)eixk, ε ∈ (0,1).(5.1)

Since Tε is defined by its Fourier multipliers, (2.4)-(2.6) also hold true if Jε is replaced by Tε . Furthermore, we have

Lemma 5.1 ([60,65]). Let f,g : T → R such that g ∈ W 1,∞ and f ∈ L2. Then for some C > 0,∥∥[Tε, g]∂xf
∥∥

L2 ≤ C‖g‖W 1,∞‖f ‖L2 .

With Lemma 5.1, in the same way as we prove Lemma 2.5, we also have

Lemma 5.2. Let s > 3/2. Let F(·) be given in (1.5) and Tε be given in (5.1). Let

g
(‖u‖W 1,∞

)= |a0| +
(
1 + |a1| + |a2|

)‖u‖W 1,∞ + |a3|‖u‖2
W 1,∞ + |a4|‖u‖3

W 1,∞ .

Then there is a constant A = A(s) > 0 such that for all ε > 0,∣∣(Tε[uux], Tεu
)
Hs

∣∣+ ∣∣(TεF (u), Tεu
)
Hs

∣∣≤ Ag
(‖u‖W 1,∞

)‖u‖2
Hs .

By using the mollifier Jε , we construct the same approximation scheme as in (3.2). When the Itô formula is not
applicable (see (3.19), (3.24) and (4.1)), one can use Tε to replace Jε to proceed the proof for Theorems 1.1 and 1.2 to
obtain the same statements, where Lemma 5.2 is needed to replace Lemma 2.5.

6. Noise effect on initial-data dependence

In this section, we will prove Theorem 1.3. Throughout this section, we suppose Assumption (C) holds true. Besides, all
the function spaces are over T in this section and for simplicity, we omit it in the notations of spaces. We will show that
if the exiting time of the zero solution is strongly stable, then there are two sequences of pathwise solutions such that
(1.13)–(1.16) are satisfied.
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6.1. Approximate and actual solutions

We define the approximate solutions as

ul,n = ln−1 + n−s cos θ with θ = nx − lt, n ∈ N and l ∈ {−1,1}.
Substituting ul,n into (1.4), we see that the error E l,n(t) is defined as

E l,n(t) = ul,n(t) − ul,n(0) +
∫ t

0

[
ul,n∂xu

l,n + F
(
ul,n
)]

dt ′ −
∫ t

0
h
(
t ′, ul,n

)
dW .(6.1)

On the other hand, we consider the following periodic boundary value problem with deterministic initial data ul,n(0, x),
i.e., {

du + [uux + F(u)
]

dt = h(t, u)dW, t > 0, x ∈ T,

u(0, x) = ul,n(0, x), x ∈ T.
(6.2)

Since Assumption (C) and Lemma 2.4 imply Assumption (A), Theorem 1.1 and Section 5 yield that for each n ∈N, (6.2)
has a uniqueness maximal pathwise solution (ul,n, τ

∗
l,n).

6.2. Estimates on the errors

Before we go further, we estimate E l,n(t) as follows:

Lemma 6.1. Let s > 3/2. For n � 1, δ ∈ (1/2,min{s − 1,3/2}) and any T > 0, there is a C = C(T ) > 0 such that

E sup
t∈[0,T ]

∥∥E l,n(t)
∥∥2

Hδ ≤ Cn−2rs ,

where

0 < rs =
⎧⎨⎩2s − δ − 1 if

3

2
< s ≤ 2,

s − δ + 1 if s > 2.

Proof. Direct computation shows that

ul,n(t) − ul,n(0)+
∫ t

0
ul,n∂xu

l,n dt ′ =
∫ t

0

(−n−2s+1 sin θ cos θ
)

dt ′.

Then it holds that

E l,n(t) −
∫ t

0

[−n−2s+1 sin θ cos θ + F
(
ul,n
)]

dt ′ +
∫ t

0
h
(
t ′, ul,n

)
dW = 0.(6.3)

In view of Lemma 2.6, we arrive at ∥∥−n−2s+1 sin θ cos θ
∥∥

Hδ �n−2s+1+δ � n−rs .(6.4)

Recall that F(·) is given by (1.5). Since (1 − ∂2
xx)

−1 is bounded from Hδ to Hδ+2, we can use Lemma 2.6 to estimate
‖Fi(u

l,n)‖Hδ (i = 1,2,3,4,5) as follows:∥∥F1
(
ul,n
)∥∥

Hδ �
∥∥n−s+1 sin θ

∥∥
Hδ−2 � n−s−1+δ,(6.5) ∥∥F2

(
ul,n
)∥∥

Hδ �
∥∥n−2s+1 sin θ cos θ + ln−s sin θ

∥∥
Hδ−2 � n−2s−1+δ + n−s−2+δ � n−s−2+δ,(6.6) ∥∥F3

(
ul,n
)∥∥

Hδ �
∥∥n−2s+3 sin 2θ

∥∥
Hδ−2 � n−2s+1+δ,(6.7)

∥∥F4
(
ul,n
)∥∥

Hδ �
2∑

j=0

n−(2−j)
∥∥(n−s cos θ

)j
n−s+1 sin θ

∥∥
Hδ−2
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�
2∑

j=0

n−2+j−sj−s+1
∥∥cosj θ sin θ

∥∥
Hδ

� max
0≤j≤2

{
n−2+j−sj−s+1+δ

}
� n−1−s+δ,(6.8)

and

∥∥F5
(
ul,n
)∥∥

Hδ �
3∑

j=0

n−(3−j)
∥∥(n−s cos θ

)j
n−s+1 sin θ

∥∥
Hδ−2

�
3∑

j=0

n−3+j−sj−s+1
∥∥cosj θ sin θ

∥∥
Hδ

� max
0≤j≤2

{
n−3+j−sj−s+1+δ

}
� n−2−s+δ.(6.9)

Combining (6.5), (6.6), (6.7), (6.8) and (6.9), we have∥∥F (ul,n
)∥∥

Hδ � max
{
n−s−1+δ, n−2s+1+δ

}
� n−rs .(6.10)

Then, for any T > 0 and t ∈ [0, T ], by virtue of the Itô formula, we arrive at

∥∥E l,n(t)
∥∥2

Hδ ≤
∣∣∣∣∫ t

0

(−2h
(
t ′, ul,n

)
dW,E l,n

)
Hδ

∣∣∣∣+ 4∑
i=2

∫ t

0
|Ji |dt ′,

where

J2 = 2
(
Dδ
(−n−2s+1 sin θ cos θ

)
,DδE l,n

)
L2 ,

J3 = 2
(
DδF

(
ul,n
)
,DδE l,n

)
L2 ,

J4 = ∥∥h(t ′, ul,n
)∥∥2

L2(U;Hδ)
.

Taking the supremum with respect to t ∈ [0, T ], using the BDG inequality and using Assumption (C) and (6.10) yield

E sup
t∈[0,T ]

∣∣∣∣∫ t

0

(−2h
(
t ′, ul,n

)
dW,E l,n

)
Hδ

∣∣∣∣≤ 2CE

(∫ T

0

∥∥E l,n(t)
∥∥2

Hδ

∥∥F (ul,n
)∥∥2

Hδ dt

) 1
2

≤ 2CE

(
sup

t∈[0,T ]

∥∥E l,n(t)
∥∥2

Hδ

∫ T

0

∥∥F (ul,n
)∥∥2

Hδ dt

) 1
2

≤ 1

2
E sup

t∈[0,T ]
∥∥E l,n(t)

∥∥2
Hδ + CT n−2rs .

By virtue of (6.4) and (6.10), we obtain∫ T

0
E|J2|dt ≤ C

∫ T

0
E
(∥∥−n−2s+1 sin θ cos θ

∥∥
Hδ

∥∥E l,n(t)
∥∥

Hδ

)
dt

≤ C

∫ T

0
E
∥∥−n−2s+1 sin θ cos θ

∥∥2
Hδ dt + C

∫ T

0
E
∥∥E l,n(t)

∥∥2
Hδ dt

≤ CT n−2rs + C

∫ T

0
E
∥∥E l,n(t)

∥∥2
Hδ dt,∫ T

0
E|J3|dt ≤ C

∫ T

0
E
(∥∥F (ul,n

)∥∥
Hδ

∥∥E l,n(t)
∥∥

Hδ

)
dt
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≤ C

∫ T

0
E
∥∥F (ul,n

)∥∥2
Hδ dt + C

∫ T

0
E
∥∥E l,n(t)

∥∥2
Hδ dt

≤ CT n−2rs + C

∫ T

0
E
∥∥E l,n(t)

∥∥2
Hδ dt,

and by Assumption (C), ∫ T

0
E|J4|dt ≤C

∫ T

0
E
∥∥F (ul,n

)∥∥2
Hδ dt ≤ CT n−2rs .

Combining the above estimates gives

E sup
t∈[0,T ]

∥∥E l,n(t)
∥∥2

Hδ ≤ CT n−2rs + C

∫ T

0
E sup

t ′∈[0,t]

∥∥E l,n
(
t ′
)∥∥2

Hδ dt.

Obviously, for each n ≥ 1 and l ∈ {−1,1}, E supt ′∈[0,t] ‖E l,n(t ′)‖2
Hδ is finite. Then it follows from Grönwall’s inequality

that

E sup
t∈[0,T ]

∥∥E l,n(t)
∥∥2

Hδ ≤ Cn−2rs , C = C(T ).

This completes the proof for Lemma 6.1. �

For the difference ul,n − ul,n, we have the following estimates:

Lemma 6.2. Let s > 3
2 , 1

2 < δ < min{s − 1, 3
2 } and rs > 0 be given as in Lemma 6.1. For any R > 1, define

τR
l,n = inf

{
t ≥ 0 : ‖ul,n‖Hs > R

}
.(6.11)

Then for any T > 0, when n � 1,

E sup
t∈[0,T ∧τR

l,n]

∥∥ul,n − ul,n

∥∥2
Hδ ≤ Cn−2rs , C = C(R,T ),(6.12)

and

E sup
t∈[0,T ∧τR

l,n]

∥∥ul,n − ul,n

∥∥2
H 2s−δ ≤ Cn2s−2δ, C = C(R,T ).(6.13)

Proof. In view of Lemma 2.6, we have ∥∥ul,n(t)
∥∥

Hs � 1 ∀t > 0.(6.14)

Let q = ql,n = ul,n + ul,n and v = vl,n = ul,n − ul,n. In view of (6.1), (6.2) and (6.3), we have

v(t)+
∫ t

0

[
1

2
∂x(qv) − F(ul,n)

]
dt ′ = −

∫ t

0
h
(
t ′, ul,n

)
dW −

∫ t

0
n−2s+1 sin θ cos θ dt ′.

For any T > 0, by Itô formula on [0, T ∧ τR
l,n], taking the supremum over t ∈ [0, T ∧ τR

l,n] and the BDG inequality with
noticing Assumption (C), we obtain

E sup
t∈[0,T ∧τR

l,n]

∥∥v(t)
∥∥2

Hδ ≤ CE

(∫ T ∧τR
l,n

0
|K1|2 dt

) 1
2 +

5∑
i=2

E

∫ T ∧τR
l,n

0
|Ki |dt,

where

K1 = ‖v‖Hδ

∥∥F(ul,n)
∥∥

Hδ ,
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K2 = 2
(
Dδ
(−n−2s+1 sin θ cos θ

)
,Dδv

)
L2 ,

K3 = −(Dδ∂x[qv],Dδv
)
L2 ,

K4 = 2
(
DδF(ul,n),D

δv
)
L2,

K5 = ∥∥h(t, ul,n)
∥∥2
L2(U;Hδ)

.

From Lemma 2.4, we know that for some locally bounded increasing function � : [0,∞) �→ [0,∞),∥∥F(ul,n)
∥∥2

Hδ �
(∥∥F (ul,n

)− F(ul,n)
∥∥

Hδ + ∥∥F (ul,n
)∥∥

Hδ

)2
� �
(∥∥ul,n

∥∥
Hs + ‖ul,n‖Hs

)‖v‖2
Hδ + ∥∥F (ul,n

)∥∥2
Hδ .

Therefore, it follows from Lemmas 2.3 and 2.4, Assumption (C), Hδ ↪→ L∞, integrating by parts and (6.4) that

|K1|2 � �
(∥∥ul,n

∥∥
Hs + ‖ul,n‖Hs

)‖v‖4
Hδ + ∥∥F (ul,n

)∥∥2
Hδ‖v‖2

Hδ ,

|K2| � n−2rs + ‖v‖2
Hδ ,

|K3| � ‖q‖Hs ‖v‖2
Hδ + ‖qx‖L∞‖v‖2

Hδ � ‖q‖Hs‖v‖2
Hδ ,

|K4| � �
(∥∥ul,n

∥∥
Hs + ‖ul,n‖Hs

)‖v‖2
Hδ + ∥∥F (ul,n

)∥∥2
Hδ + ‖v‖2

Hδ ,

and

|K5| � �
(∥∥ul,n

∥∥
Hs + ‖ul,n‖Hs

)‖v‖2
Hδ + ∥∥F (ul,n

)∥∥2
Hδ .

Applying Lemma 2.4, (6.10), (6.11) and (6.14), we have

CE

(∫ T ∧τR
l,n

0
|K1|2 dt

) 1
2

≤ CE

(
sup

t∈[0,T ∧τR
l,n]

‖v‖2
Hδ

∫ T ∧τR
l,n

0
�
(∥∥ul,n

∥∥
Hs + ‖ul,n‖Hs

)‖v‖2
Hδ dt

) 1
2

+ CE

(
sup

t∈[0,T ∧τR
l,n]

‖v‖2
Hδ

∫ T ∧τR
l,n

0

∥∥F (ul,n
)∥∥2

Hδ dt

) 1
2

≤ 1

2
E sup

t∈[0,T ∧τR
l,n]

‖v‖2
Hδ + CRE

∫ T ∧τR
l,n

0

∥∥v(t)
∥∥2

Hδ dt + CE

∫ T ∧τR
l,n

0

∥∥F (ul,n
)∥∥2

Hδ dt

≤ 1

2
E sup

t∈[0,T ∧τR
l,n]

‖v‖2
Hδ + CRE

∫ T

0
sup

t ′∈[0,t∧τR
l,n]

∥∥v(t ′)∥∥2
Hδ dt + CT n−2rs ,

E

∫ T ∧τR
l,n

0
|K2| + |K4| + |K5|dt ≤ CT n−2rs + CR

∫ T

0
E sup

t ′∈[0,t∧τR
l,n]

∥∥v(t ′)∥∥2
Hδ dt,

and

E

∫ T ∧τR
l,n

0
|K3|dt ≤ CR

∫ T

0
E sup

t ′∈[0,t∧τR
l,n]

∥∥v(t ′)∥∥2
Hδ dt.

To sum up, we arrive at

E sup
t∈[0,T ∧τR

l,n]

∥∥v(t)
∥∥2

Hδ ≤ CT n−2rs + CR

∫ T

0
E sup

t ′∈[0,t∧τR
l,n]

∥∥v(t ′)∥∥2
Hδ dt.
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Using the Grönwall inequality, we obtain (6.12). For (6.13), we first notice that ul,n is the unique solution to (6.2). Since
2s − δ > 3/2, we repeat the derivation of (3.25) with using (6.11) to obtain that for each fixed n ∈ N,

E sup
t∈[0,T ∧τR

l,n]

∥∥ul,n(t)
∥∥2

H 2s−δ ≤CE
∥∥ul,n(0)

∥∥2
H 2s−δ + CR

∫ T

0

(
E sup

t ′∈[0,t∧τR
l,n]

∥∥ul,n

(
t ′
)∥∥2

H 2s−δ

)
dt.(6.15)

From (6.15), we can use the Grönwall inequality and Lemma 2.6 to have

E sup
t∈[0,T ∧τR

l,n]

∥∥ul,n(t)
∥∥2

H 2s−δ ≤ CE
∥∥ul,n(0)

∥∥2
H 2s−δ ≤ Cn2s−2δ, C = C(R,T ).

By Lemma 2.6 again, we have that for some C = C(R,T ),

E sup
t∈[0,T ∧τR

l,n]
‖v‖2

H 2s−δ ≤ CE sup
t∈[0,T ∧τR

l,n]
‖ul,n‖2

H 2s−δ + CE sup
t∈[0,T ∧τR

l,n]

∥∥ul,n
∥∥2

H 2s−δ ≤ Cn2s−2δ,

which is (6.13). We complete the proof for Lemma 6.2. �

6.3. Concluding the proof for Theorem 1.3

We first observe the following property:

Lemma 6.3. Let Assumption (C) hold true. Suppose that there is a R0 � 1 such that the R0-exiting time of the zero
solution to (1.4) is strongly stable. Then

lim
n→∞ τ

R0
l,n = ∞ P-a.s.(6.16)

Proof. We notice that for all s′ < s, limn→∞ ‖ul,n(0) − 0‖
Hs′ = limn→∞ ‖ul,n(0)‖

Hs′ = 0. Under Assumption (C), it is
clear that u ≡ 0 is a solution to (1.4) with u(0) = 0. Since the R0-exiting time of the zero solution is ∞, we see that (6.16)
holds provided the R0-exiting time of the zero solution to (1.4) is strongly stable. �

Finally we are in the position to finish the proof for Theorem 1.3.

Proof for Theorem 1.3. To prove Theorem 1.3, it suffices to show that if the R0-exiting time is strongly stable at the
zero solution for some R0 � 1, then the solution map u0 �→ u defined by (1.4) can not be uniformly continuous. For each
n > 1 and for such fixed R0 � 1, Lemma 2.6 and (6.11) give

P
{
τ

R0
l,n > 0

}= 1,

and Lemma 6.3 implies (1.13). In addition, it follows from Theorem 1.1 and (6.11) that

ul,n ∈ C
([

0, τ
R0
l,n

];Hs
)

P-a.s.,

and (1.14) holds. Clearly, (1.15) is given by∥∥u−1,n(0) − u1,n(0)
∥∥

Hs = ∥∥u−1,n(0) − u1,n(0)
∥∥

Hs � n−1 → 0, as n → ∞.(6.17)

It remains to prove (1.16). By interpolation, we have

E sup
t∈[0,T ∧τ

R0
l,n ]

∥∥ul,n − ul,n

∥∥
Hs

≤ C
(
E sup

t∈[0,T ∧τ
R0
l,n ]

∥∥ul,n − ul,n

∥∥
Hδ

) 1
2
(
E sup

t∈[0,T ∧τ
R0
l,n ]

∥∥ul,n − ul,n

∥∥
H 2s−δ

) 1
2

≤ C
(
E sup

t∈[0,T ∧τ
R0
l,n ]

∥∥ul,n − ul,n

∥∥2
Hδ

) 1
4
(
E sup

t∈[0,T ∧τ
R0
l,n ]

∥∥ul,n − ul,n

∥∥2
H 2s−δ

) 1
4
.
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For any T > 0, combining Lemma 6.2 and the above estimate yields

E sup
t∈[0,T ∧τ

R0
l,n ]

∥∥ul,n − ul,n

∥∥
Hs � n− 1

4 ·2rs · n 1
4 ·(2s−2δ) = nr ′

s ,(6.18)

where

0 > r ′
s = −rs · 1

2
+ (s − δ) · 1

2
=

⎧⎪⎨⎪⎩
− s

2
+ 1

2
if

3

2
< s ≤ 2,

−1

2
if s > 2.

Then we find

lim
n→∞E sup

t∈[0,T ∧τ
R0
l,n ]

∥∥ul,n − ul,n

∥∥
Hs = 0.

Consequently, for any T > 0, we have

lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥u−1,n(t) − u1,n(t)
∥∥

Hs

≥ lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥u−1,n(t) − u1,n(t)
∥∥

Hs

− lim
n→∞E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥u−1,n(t) − u−1,n(t)
∥∥

Hs

− lim
n→∞E sup

t∈[0,T ∧τR−1,n∧τR
1,n]

∥∥u1,n(t) − u1,n(t)
∥∥

Hs

� lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥u−1,n(t) − u1,n(t)
∥∥

Hs

� lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥−2n−1 + n−s cos(nx + t) − n−s cos(nx − t)
∥∥

Hs

� lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

(
n−s
∥∥sin(nx)

∥∥
Hs | sin t | − ∥∥2n−1

∥∥
Hs

)
� sup

t∈[0,T ]
| sin t |,(6.19)

where we have used Fatou’s lemma. Therefore,

lim inf
n→∞ E sup

t∈[0,T ∧τ
R0−1,n∧τ

R0
1,n ]

∥∥u−1,n(t) − u1,n(t)
∥∥2

Hs �
(

sup
t∈[0,T ]

| sin t |
)2

,

which implies (1.16). The proof for Theorem 1.3 is completed. �
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