
HAZniCS – Software Components for Multiphysics Problems

ANA BUDIŠA, Simula Research Laboratory, Norway
XIAOZHE HU, Department of Mathematics, Tufts University, USA
MIROSLAV KUCHTA, Simula Research Laboratory, Norway
KENT–ANDRÉ MARDAL, Department of Mathematics, University of Oslo, Norway
LUDMIL T. ZIKATANOV, Department of Mathematics, Penn State, USA

We introduce the software toolbox HAZniCS for solving interface-coupled multiphysics problems. HAZniCS
is a suite of modules that combines the well-known FEniCS framework for finite element discretization with
solver and graph library HAZmath. The focus of the paper is on the design and implementation of a pool of
robust and efficient solver algorithms which tackle issues related to the complex interfacial coupling of the
physical problems often encountered in applications in brain biomechanics. The robustness and efficiency of
the numerical algorithms and methods is shown in several numerical examples, namely the Darcy-Stokes
equations that model flow of cerebrospinal fluid in the human brain and the mixed-dimensional model of
electrodiffusion in the brain tissue.

1 INTRODUCTION
The present paper aims to introduce a novel collection of tools for interface coupled multiphysics
problems modeled by partial differential equations (PDEs). The interface is a main driver of the
processes in a way that strategies relying on decoupled single-physics problems typically suffer
from slow convergence. Furthermore, we target multiphysics problems with geometrically complex
interfaces and slow dynamics – promoting monolithic solvers. Specifically, we exploit fractional
operators and low-order interface perturbations as preconditioning techniques.

Fractional operators appear naturally on interfaces in multiphysics problems. One common ap-
proach has been using Poincaré-Steklov operators for fluid-structure interaction problems [Agoshkov
1988; Deparis et al. 2006; Quarteroni and Valli 1991], which exploits Dirichlet-to-Neumann map-
pings. As the Poincaré-Steklov operator takes functions in the fractional Sobolev space 𝐻 1/2 to
functions in its dual 𝐻−1/2, it is equivalent to a fractional Laplacian operator (−Δ)1/2. However, the
Poincaré-Steklov operator is not sufficient for parameter-dependent problems as it is sensitive to
problem parameters, and often many sub-iterations are required. More sophisticated techniques
that include problem parameters such as Robin-to-Dirichlet, -Neumann, or -Robin maps have
been explored [Badia et al. 2009], but the approach still requires tuning. We remark that the
Poincaré-Steklov operator involves the extension to a domain in a higher dimension and is, as
such, computationally expensive. However, the computational complexity is usually the same as
the involved single-physics problems.
As an alternative or generalization of Poincaré-Steklov operators, several recent papers [Boon

et al. 2022a,b; Holter et al. 2021; Kuchta et al. 2021] have considered multiphysics problems and
derived order-optimal and parameter-robust algorithms. They are obtained by exploiting fractional
Laplacians (or sums thereof) and metric terms on the interface. Here, the fractional Laplacians
arise naturally due to trace operators appearing in the coupling conditions, e.g., conservation
of mass, that connect the unknowns of the different single-physics problems. We note that the

Authors’ addresses: Ana Budiša, ana@simula.no, Simula Research Laboratory, P.O. Box 134, 1325, Lysaker, Norway;
Xiaozhe Hu, Department of Mathematics, Tufts University, 503 Boston Avenue, Medford, 02155, Massachusetts, USA,
xiaozhe.hu@tufts.edu; Miroslav Kuchta, Simula Research Laboratory, P.O. Box 134, 1325, Lysaker, Norway, miroslav@
simula.no; Kent–André Mardal, Department of Mathematics, University of Oslo, P.O. Box 1053, Blindern, 0316, Oslo, Norway,
kent-and@math.uio.no; Ludmil T. Zikatanov, Department of Mathematics, Penn State, 239 McAllister Building, University
Park, 16802, Pennsylvania, USA, ludmil@psu.edu.

ar
X

iv
:2

21
0.

13
27

4v
2

 [
m

at
h.

N
A

]
 6

 N
ov

 2
02

2

0:2 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

fractional operators arise both when Lagrange multipliers are used to prescribe the interface
conditions, e.g., [Holter et al. 2020; Layton et al. 2002], and when they are avoided [Boon et al.
2022a,b]. The metric terms then arise because interface conditions, such as the balance of forces,
are often expressed in terms of differences of a quantity (e.g., displacement) across the interface
rather than the quantity itself [Boon et al. 2022b; D’Angelo and Quarteroni 2008; Kuchta et al.
2021]. Recently, fast solution algorithms for fractional Laplacians have been proposed based on
multilevel approaches [Bærland 2019; Bærland et al. 2019; Bramble et al. 2000; Führer 2022; Zhao
et al. 2017] and rational approximations [Harizanov et al. 2020, 2018, 2022]. Here, we explore the
latter for sums of fractional Laplacians. In addition to rational approximations, we will consider
multilevel algorithms that work robustly in the presence of strong metric terms at interfaces. That
is multilevel algorithms with a space decomposition aware of the metric kernel.

The software tools we developed aim to solve computational mesoscale multiphysics problems.
By computational mesoscale, in this context, we refer to problems in the range of a few hundred
thousand to tens ofmillions of degrees of freedom. These problems do not require parallel computing,
but they may benefit significantly from advanced algorithms. The collection of tools presented
in this paper are FEniCS [Logg et al. 2012] add-ons for block assembly [Kuchta 2021] and block
preconditioning [Mardal and Haga 2012] combined with a flexible algebraic multigrid (AMG)
toolbox, implemented in C, called HAZmath [Adler et al. 2009]. Hence, we have named the tool
collection HAZniCS. One of the reasons for developing HAZniCS is precisely the mentioned
flexibility and variety of the implementation of the AMG method in HAZmath. It allows us to easily
modify available linear solvers and preconditioners or create new model-specific solvers for the
multiphysics problems at hand. Additionally, with HAZniCS, we provide another wide range of
efficient computational methods for solving PDEs with FEniCS, but also a bridge to Python for
HAZmath to be used with other PDE simulation tools. Further in the paper, we highlight with a
series of code snippets the implementation of several solvers, namely the aggregation-based and
metric-perturbed AMG methods and the rational approximation method.
Moreover, we consider a series of examples of multiphysics problems mainly related to biome-

chanical processes. Namely, we include: (1) a simple three-dimensional example of a elliptic problem
on a regular domain, (2) Darcy-Stokes equations describing the interaction of the viscous flow
of cerebrospinal fluid flow surrounding the brain and interacting with the porous media flow of
interstitial fluid inside the brain, and (3) the mixed-dimensional equations representing electric
signal propagation in neurons and the surrounding matter.

The outline of the current paper is as follows: in Section 2 we introduce the multiphysics models
together with the necessary mathematical concepts and numerical methods. Section 3 focuses
on the implementation of those methods and the interface between the software components. In
Section 4 we present the solver capabilities of our software to simulate relevant biomechanical
phenomena. Finally, we draw concluding remarks in Section 5.

2 EXAMPLES
The following three examples illustrate different single- and multiphysics PDE models, as well as
the relevant mathematical and computational concepts. More specifically, the examples provide
an overview of iterative methods and preconditioning techniques for interface-coupled problems
that lead, e.g., to the utilization of sums of fractional operators weighted by material parameters.
Additionally, we include several code snippets in each example that highlight the most important
features of the implementation, while the full codes can be found in [Budiša et al. 2022a].

HAZniCS – Software Components for Multiphysics Problems 0:3

2.1 Linear elliptic problem
We start with a linear elliptic problem on a three-dimensional (3𝑑) regular domain. This example
will serve as a baseline for the solvers in HAZniCS. Our goal is to demonstrate that our solver
performance is comparable to other established software. Additionally, the solution methods that
we use here will be incorporated and adapted to the multiphysics problems in the later examples.

Let Ω = [0, 1]3 be the unit cube and let 𝜕Ω denote its boundary. Given external force 𝑓 : Ω → R
and the boundary data 𝑔 : 𝜕Ω → R, we set to find the solution 𝑢 : Ω → R that satisfies

−Δ𝑢 + 𝑢 = 𝑓 in Ω, (1a)
𝜕𝑢

𝜕𝒏
= 𝑔 on 𝜕Ω. (1b)

To solve (1) computationally, we relate to (1) the variational formulation and the discrete problem
using the finite element method (FEM). First, let 𝐿2 = 𝐿2 (Ω) be the space of square-integrable
functions on Ω and 𝐻𝑠 = 𝐻𝑠 (Ω) the Sobolev spaces with 𝑠 derivatives in 𝐿2. The corresponding
inner products and norms for any function space 𝑋 are denoted with (·, ·)𝑋 and ∥ · ∥𝑋 , respectively.
Furthermore, we let ⟨·, ·⟩ denote a duality pairing between 𝑋 ′, the dual of 𝑋 and 𝑋 .

Now, let𝑉ℎ ⊂ 𝐻 1 (Ω) be a finite element space on triangulation of Ω, e.g., of continuous piecewise
linear functions (P1) . A discrete variational formulation of (1) states to find 𝑢 ∈ 𝑉ℎ such that

𝑎(𝑢, 𝑣) = ⟨𝑓 , 𝑣⟩ ∀𝑣 ∈ 𝑉ℎ, (2)

with 𝑎(𝑢, 𝑣) = (𝑢, 𝑣)𝐿2 (Ω) + (∇𝑢,∇𝑣)𝐿2 (Ω) and ⟨𝑓 , 𝑣⟩ = (𝑓 , 𝑣)𝐿2 (Ω) + (𝑔, 𝑣)𝐿2 (𝜕Ω) .
Furthermore, it is important for the solvers to obtain matrix-vector representation of the above

system. Let the discrete operator 𝐴 : 𝑉ℎ → 𝑉 ′
ℎ
satisfy

⟨𝐴𝑢, 𝑣⟩ = 𝑎(𝑢, 𝑣), 𝑢, 𝑣 ∈ 𝑉ℎ (3)

with 𝑉 ′
ℎ
denoting the dual space of 𝑉ℎ . Its actual implementation can be derived as follows. Let

𝜓𝑖 , 𝑖 = 1, 2, . . . ,𝑚 be the finite element basis functions of 𝑉ℎ . Define matrix A ∈ R𝑚×𝑚 and vectors
f ∈ R𝑚 as

(A)𝑖 𝑗 = ⟨𝐴𝜓 𝑗 ,𝜓𝑖⟩, and f𝑖 = ⟨𝑓 ,𝜓𝑖⟩, for 𝑖, 𝑗 = 1, 2, . . . ,𝑚. (4)
Consequently, we get the discrete system of equations related to (1), i.e. we aim to solve for u ∈ R𝑚
the algebraic system

Au = f. (5)
We remark that u and f above are both vectors in R𝑚 , but that u is in the so-called nodal represen-
tation, i.e. 𝑢 =

∑
𝑖 u𝑖𝜓𝑖 , while f is in the dual representation [Bramble 2019; Mardal and Winther

2011]. As such, the matrix A maps the nodal representations of R𝑚 to its dual representation.
Since A is symmetric positive definite (SPD), we solve (5) with the Conjugate Gradient (CG)

method. It is well known that the number of iterations of a Krylov iterative scheme can be bounded
in terms of the condition number of the system, that is ^ (A) = |||A||| |||A−1 ||| for some matrix norm
||| · |||. Therefore, to efficiently solve the problem (5) we want as few iterations as possible and order
optimal scalability of the solver with regards to the number of degrees of freedom. To that aim, we
introduce a preconditioner B such that

^ (BA) = |||BA||| ||| (BA)−1 ||| ≈ O(1), (6)

that is, ^ (BA) stays bounded from above independently of discretization and other problem parame-
ters. It is important tomake sure thatBmaps dual representations of vectors to nodal representations
as the preconditioner B is an approximation of the inverse of A.
The previous result is also true in the general case for symmetric operators on Hilbert spaces.

Specifically, for 𝐴 in (3) we find an operator 𝐵 : 𝑉 ′
ℎ
→ 𝑉ℎ such that ^ (𝐵𝐴) is uniformly bounded,

0:4 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

where the matrix norm is replaced with the operator norm in the space of continuous linear
operators defined on 𝑉ℎ . In context of operator preconditioning [Mardal and Winther 2011], a
common choice for the preconditioner operator 𝐵 is the Riesz mapping, that is

(𝐵𝑓 , 𝑣)𝑉ℎ = ⟨𝑓 , 𝑣⟩, ∀𝑓 ∈ 𝑉 ′
ℎ
, 𝑣 ∈ 𝑉ℎ . (7)

The Riesz map guarantees a uniform bound on ^ (𝐵𝐴) when 𝐴 is a bounded operator that satisfies
the inf-sup conditions [Babuška 1971; Babuška and Aziz 1972] independent of system parameters,
such as in the case of the operator in (3). Moreover, we can use any other preconditioner that gives
a uniform bound on the condition number. If we find a spectrally equivalent operator 𝐵𝑆𝐸 such that
for parameter-independent constants 𝑐1, 𝑐2 > 0 it satisfies

𝑐1∥𝑣 ∥2𝐴 ≤ ∥𝑣 ∥2𝐵−1
𝑆𝐸

≤ 𝑐2∥𝑣 ∥2𝐴, (8)

with ∥𝑣 ∥2
𝐴
= ⟨𝐴𝑣, 𝑣⟩, then we retain a uniform bound on the condition number ^ (𝐵𝑆𝐸𝐴) ≤ 𝑐2

𝑐1
^ (𝐵𝐴).

This is relevant when an application of 𝐵 on a function in𝑉 ′
ℎ
is infeasible or inefficient. We want to

replace it with a method that applies a spectrally equivalent operation. In the rest of the paper, we
will note ^ (𝐵𝐴) as the condition number for both operators (𝐴, 𝐵) and their matrix representations
(A, B), clarifying along the way if ambiguity occurs.

In our case, it is well-known that multilevel methods, such as AMG, provide spectrally equivalent
and order optimal algorithms for the inverse of discretizations of 𝐼 − Δ. Thus, we define the
preconditioner for (5) as B = AMG(A).

The implementation of the elliptic problem in FEniCS follows straightforwardly from the varia-
tional formulation (2) and is one of the basic examples of FEniCS software, see Listing 1.

from block.iterative import ConjGrad
from block.algebraic.hazmath import AMG
from dolfin import *

mesh = UnitCubeMesh (32, 32, 32)
V = FunctionSpace(mesh , "CG", 1)
u, v = TrialFunction(V), TestFunction(V)
f = Expression("sin(pi*x[0])", degree =4)

a = inner(u, v) * dx + inner(grad(u), grad(v)) * dx
L = inner(f, v) * dx
A = assemble(a)
b = assemble(L)

B = AMG(A, parameters ={"max_levels": 10, "AMG_type": 1})
Ainv = ConjGrad(A, precond=B, tolerance =1e-10)
x = Ainv * b # Solve for the coefficient vector of foo in V

Listing 1. Implementation of the linear elliptic problem (1). Complete code can be found in scripts
HAZniCS-examples/demo_elliptic*.py

For the preconditioner, we utilize the AMG method implemented in HAZmath, available through
our HAZniCS library. We describe the AMG method and its implementation in more detail in
Section 3.1 and showcase the performance of HAZmath AMG as compared with HYPRE [Falgout
and Yang 2002] AMG in Section 4.1.

2.2 Modeling brain clearance during sleep with Darcy-Stokes equations
We consider a multiphysics problem arising in modeling processes of waste clearance in the brain
during sleep [Eide et al. 2021; Xie et al. 2013] with potential links to the development of Alzheimer’s

HAZniCS – Software Components for Multiphysics Problems 0:5

ν

Γ

Ω

y Cρ(y)
ρ

Fig. 1. (Left) Geometry and computational mesh from [Boon et al. 2022a] of the Darcy-Stokes model of brain
clearance. Mesh and indicator functions for tracking subdomains making up the Darcy-(light blue) and the
Stokes domains (dark blue and orange subregions) and their interfaces are generated with SVMTK [Mardal
et al. 2022]. (Right) Model reduction from 3𝑑-3𝑑 to 3𝑑-1𝑑 problem. Dendrites (in blue) are reduced to their
centerline while the coupling with the surrounding Ω is accounted for by averaging over-idealized cylindrical
surfaces with radius 𝜌 .

disease. The novel model, called the glymphatic model [Iliff et al. 2012], states that the viscous
flow of cerebrospinal fluid (CSF) is tightly coupled to the porous flow in the brain tissue and that
during sleep, in particular, it clears metabolic waste from the brain, for computational models see
e.g. [Boon et al. 2022a; Holter et al. 2020; Kedarasetti et al. 2020]. To this end we will consider
patient-specific geometries generated from MRI images by SVTMK library [Mardal et al. 2022]
used in [Boon et al. 2022a], see Figure 1. Using SVMTK, the segmented brain geometry is enclosed
in a thin shell, which, together with the ventricles (the orange subregion in Figure 1), makes up the
Stokes domain. We remark that the diameter of the Stokes domain is roughly 15 cm while the shell
thickness is on average 0.8mm.

In order to model the waste clearance, let Ω𝐷 ⊂ R𝑑 , 𝑑 = 2, 3 be the domain of the porous medium
flow that represents the brain tissue1, and let Ω𝑆 ⊂ R𝑑 be the domain of viscous flow representing
the subarachnoid space around it saturated by CSF. Let Γ denote the interface between the domains,
which in this case corresponds to the surface of the brain. We then consider the Darcy-Stokes
model which seeks to find Stokes velocity 𝒖𝑆 : Ω𝑆 → R𝑑 and pressure 𝑝𝑆 : Ω𝑆 → R, and Darcy
velocity 𝒖𝐷 : Ω𝐷 → R𝑑 and pressure 𝑝𝐷 : Ω𝐷 → R that satisfy

−∇ · 𝝈𝑆 (𝒖𝑆 , 𝑝𝑆) = 𝒇𝑆 in Ω𝑆 , (9a)
∇ · 𝒖𝑆 = 0 in Ω𝑆 , (9b)

𝒖𝐷 = −𝐾∇𝑝𝐷 in Ω𝐷 , (9c)
∇ · 𝒖𝐷 = 𝑓𝐷 in Ω𝐷 , (9d)

with interface conditions

𝒖𝑆 · 𝒏 − 𝒖𝐷 · 𝒏 = 0 on Γ, (9e)
𝒏 · 𝝈𝑠 (𝒖𝑆 , 𝑝𝑆) · 𝒏 + 𝑝𝐷 = 0 on Γ, (9f)

𝒏 · 𝝈𝑠 (𝒖𝑆 , 𝑝𝑆) · 𝝉 + 𝐷𝒖𝑆 · 𝝉 = 0 on Γ. (9g)

1In the context of brain mechanics, the case 𝑑 = 2 is relevant, e.g., for the slices of the brain geometry.

0:6 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

Here, 𝝈𝑆 (𝒖𝑆 , 𝑝𝑆) = `∇𝒖𝑆 − 𝑝𝑆 𝐼 . We remark that for simplicity, 𝝈𝑆 is defined in terms of the full
velocity gradient and not only its symmetric part, cf. [Layton et al. 2002]. The parameters `, 𝐾 ,
and 𝐷 are positive constants related to the problem’s physical parameters, i.e., the fluid viscosity,
permeability, and the Beavers-Joseph-Saffman (BJS) coefficient. Functions 𝒇𝑆 and 𝑓𝐷 represent the
external forces. Additionally, 𝒏 denotes the unit outer normal of Ω𝑆 and 𝝉 is any unit vector tangent
to the interface. In particular, for 𝑑 = 3 the condition (9g) represents a pair of constraints. Finally,
we assume the following boundary conditions

𝒖𝑆 = 0 on 𝜕Ω𝑆,𝐷 , (10a)
𝝈𝑆 (𝒖𝑆 , 𝑝𝑆) · 𝒏 = 𝒈 on 𝜕Ω𝑆,𝑁 , (10b)

for 𝜕Ω𝑆,𝐷 ∪ 𝜕Ω𝑆,𝑁 = 𝜕Ω𝑆\Γ and 𝜕Ω𝑆,𝐷 ∩ 𝜕Ω𝑆,𝑁 = ∅.
To arrive at the finite element formulation of (9) let us introduce a Lagrange multiplier _ : Γ → R,

_ ∈ Λ = Λ(Γ) for enforcing the mass conservation across the interface (9e). In addition we consider
conforming discrete subspaces 𝑽𝑆 ×𝑄𝑆 ⊂ 𝑯 1 (Ω𝑆)×𝐿2 (Ω𝑆) and 𝑽𝑑 ×𝑄𝐷 ⊂ 𝑯 (div,Ω𝐷)×𝐿2 (Ω𝐷) for
the Stokes and Darcy subproblems respectively. In the following numerical examples, such spaces
are constructed by Taylor-Hood (P2-P1) elements and lowest order Raviart-Thomas elements RT0
pairedwith discontinuous Lagrange elements Pdisc0 for𝑄𝐷 . Themultiplier space is discretized by Pdisc0
elements. The variation formulation of (9) then states to find (𝒖𝑆 , 𝑝𝑆 , 𝒖𝐷 , 𝑝𝐷 , _) ∈ 𝑽𝑠×𝑄𝑠×𝑽𝑑×𝑄𝑑×Λ
that satisfy ©«

−`∇ · ∇ + 𝐷𝑇 ′𝝉𝑇𝝉 −∇ 𝑇 ′𝒏
∇·

𝐾−1𝐼 −∇ −𝑇 ′𝒏
∇·

𝑇𝒏 −𝑇𝒏

ª®®®®®¬︸ ︷︷ ︸
𝐴

©«
𝒖𝑆
𝑝𝑆
𝒖𝐷
𝑝𝐷
_

ª®®®®®¬︸︷︷︸
𝑥

=

©«
𝒇𝑠
0
0
𝑓𝑑
0

ª®®®®®¬︸︷︷︸
𝑏

. (11)

The operators 𝑇𝒏 and 𝑇𝝉 denote the normal and the tangential trace operators on Γ.
Mesh definitions , FEM space W declaration [...]
uS , pS , uD , pD , lmbda = map(TrialFunction , W)
vS , qS , vD , qD , dlmbda = map(TestFunction , W)

TuS , TvS = (Trace(f, Gamma) for f in (uS, vS))
TuD , TvD = (Trace(f, Gamma) for f in (uD, vD))
dx_ = Measure('dx', domain=Gamma)

a = block_form(W, 2)
Stokes
a[0][0] = inner(mu * grad(uS), grad(vS)) * dx +
D * inner(dot(TvS , tau_), dot(TuS , tau_)) * dx_
Stabize Crouzeix -Raviart
if VS.ufl_element ().family () == 'Crouzeix -Raviart ':

tdim = meshS.topology ().dim()
hS = avg(FacetArea(meshS)) if tdim == 2 else sqrt(avg(FacetArea(meshS)))
a[0][0] += (mu*Constant (10)/hS)*inner(jump(uS), jump(vS))*dS

a[0][1] = -inner(pS, div(vS)) * dx
a[0][4] = inner(lmbda , dot(TvS , n_)) * dx_
Darcy
a[2][2] = K ** -1 * inner(uD, vD) * dx
a[2][3] = -inner(pD, div(vD)) * dx
a[2][4] = -inner(lmbda , dot(TvD , n_)) * dx_
Symmetrize [...]

HAZniCS – Software Components for Multiphysics Problems 0:7

Listing 2. Implementation of the bilinear form of the Darcy-Stokes system (11). Complete code can be found
in scripts HAZniCS-examples/demo_darcy_stokes*.py

In Listing 2 we see that the block structure of the problem operator 𝐴 in (11) is mirrored in its
implementation in FEniCS/cbc.block and that trace operators are implemented using [Kuchta 2021].
In addition, Listing 2 includes interior facet stabilization employed when the 𝐻 1-nonconforming
Crouzeix-Raviart (CR1) elements are used to discretize the Stokes velocity.
A parameter robust preconditioner for Darcy-Stokes problem (11) is derived in [Holter et al.

2020] within the framework of operator preconditioning [Mardal and Winther 2011]. Specifically,
[Holter et al. 2020] propose the following block-diagonal operator

𝐵 =

©«
−`∇ · ∇ + 𝐷𝑇 ′𝑡 𝑇𝑡

`−1𝐼
𝐾−1 (𝐼 − ∇∇·)

𝐾𝐼

`−1 (−Δ + 𝐼)− 1
2 + 𝐾 (−Δ + 𝐼) 12

ª®®®®®¬

−1

, (12)

which is a Riesz map with respect to the inner products of parameter-weighted Sobolev spaces.
In particular, the preconditioner for the Λ-block reflects posing of the Lagrange multiplier in the
intersection space `−1/2𝐻− 1

2 (Γ) ∩ 𝐾1/2𝐻
1
2 (Γ). We also note that the 𝑽𝑆 -block of the preconditioner

𝐵 is identical to the (0, 0)-component of the problem operator 𝐴 in (11).
Implementation of the preconditioner within HAZniCS is given in Listing 3. First, we recognize

that the preconditioner extracts the relevant block from the operator 𝐴 to construct the Stokes
velocity preconditioner while the remaining inner product operators are assembled (as they are not
part of𝐴). The option to extract or assemble the (auxiliary) operators to define the preconditioner is
a powerful feature of HAZniCS/cbc.block. Similar functionality [Kirby and Mitchell 2018] enables
flexible specification of preconditioners in the Firedrake [Rathgeber et al. 2016] finite element
library.

In Listing 3, we use scalable algorithms from HAZniCS, and PETSc [Balay et al. 2022] to approxi-
mate the inverses of all the blocks. Algebraic multilevel schemes are used for the Riesz maps on
𝑽𝑆 and 𝑽𝐷 where in particular, in the latter, the HAZniCS preconditioner class HXDiv implements
the auxiliary space method for 𝐻 (div) problems [Kolev and Vassilevski 2012]. Riesz maps due to
the 𝐿2 inner products on the pressure spaces are realized via simple iterative schemes such as the
symmetric successive over-relaxation SSOR. Finally, the preconditioner for the Lagrange multiplier,
which involves the inverse of a sum of fractional operators, is solved with a rational approximation
that employs AMG internally. These components will be discussed in detail in Section 3.

from block.algebraic.hazmath import RA, AMG , HXDiv
from block.algebraic.petsc import SOR

VS , QS , VD , QD , Q = W
Define SPD operators defining inner products on the spaces
Stokes velocity block is taken from the system matrix
B0 = AA [0][0]
L^2 inner product on QS
B1 = assemble ((1/mu)*inner(TrialFunction(QS), TestFunction(QS))*dx)
H(div) inner product on VD
uD , vD = TrialFunction(VD), TestFunction(VD)
B2 = assemble ((1 / K) * (inner(u2, v2) * dx + inner(div(u2), div(v2)) * dx))
L^2 inner product on QD
B3 = assemble(K*inner(TrialFunction(QD), TestFunction(QD))*dx)

0:8 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

Lagrange Multiplier requires -\Delta + I and I on Q
p, q = TrialFunction(Q), TestFunction(Q)
h = CellDiameter(bmesh)
A = assemble(avg(h) ** (-1) * dot(jump(p), jump(q)) * dS + inner(p, q) * dx)
M = assemble(inner(p, q) * dx) # in A we use DG discretization

For inversion we require parameters for RA
params = {'coefs ': [1. / mu(0), K(0)], 'pwrs': [-0.5, 0.5], '#[...] '}
B4 = RA(A, M, parameters=params)
define the approximate Riesz map
B = block_diag_mat ([AMG(B0), SOR(B1), HXDiv(B2), SOR(B3), B4])

Listing 3. Scalable implementation of preconditioner for Darcy-Stokes problem (11). Complete code can be
found in scripts HAZniCS-examples/demo_darcy_stokes*.py

2.3 Mixed-dimensional modeling of signal propagation in neurons
The interaction of slender bodies with its surrounding is of frequent interest in models of blood
flow and oxygen transfer [Berg et al. 2020; Hartung et al. 2021]. It has recently received signif-
icant attention as it is a coupling of high dimensional gap (codimension two) which introduces
mathematical difficulties [D’Angelo and Quarteroni 2008; Gjerde et al. 2020; Koch et al. 2020; Köppl
et al. 2018]. Here, we consider an alternative application in neuroscience. In particular, we apply
the coupled 3𝑑-1𝑑 model [Laurino and Zunino 2019] to study electric signaling in neurons and
its interaction with the extra-cellular matrix. We note that the complete model involves a system
of partial differential equations (PDE) that represents the electrodiffusion, and a set of ordinary
differential equations (ODE) representing the membrane dynamics. Our focus is on the PDE part
that arises as part of the operator splitting approach to obtain the solution of the full PDE-ODE
problem [Jæger et al. 2021].

We use the reduced EMI model [Buccino et al. 2021] that represents the extracellular space as a
3𝑑 domain and the neuronal body, consisting of soma, axons, and dendrites, as one-dimensional
curves. This 3𝑑-1𝑑 coupled system states to find extracellular and intracellular potentials (𝑝3, 𝑝1)
that satisfy

−∇ · (𝜎3∇𝑝3) + 𝛿Γ
𝜌𝐶𝑚

Δ𝑡
(Π𝜌

Γ𝑝3 − 𝑝1) = 𝑓3 in Ω, (13a)

−∇ · (𝜌2𝜎1∇𝑝1) +
𝜌𝐶𝑚

Δ𝑡
(𝑝1 − Π𝜌

Γ𝑝3) = 𝑓1 in Γ. (13b)

Here, Ω is a domain in 3𝑑 while Γ is the 1𝑑 networks of curves, Γ, represents the neuron by
centerlines of soma, axons, and dendrites, see Figure 1. Coupling between the domains is realized by
the averaging operator Π𝜌

Γ which computes the mean of functions in Ω on the idealized cylindrical
surface that represents the interface between the dendrites and their surroundings. More precisely,
given a point 𝑦 ∈ Γ and 𝑝 : Ω → R, Π𝜌

Γ𝑝 : Γ → R is such that Π𝜌

Γ𝑝 (𝑦) = |𝐶𝜌 (𝑦) |−1
∫
𝐶𝜌 (𝑦)

𝑢 d𝑙 where
𝐶𝜌 (𝑦) is a circle centered at 𝑦 with radius 𝜌 in plane whose normal a is given by tangent to Γ at
𝑦, cf. Figure 1. That is, 𝜌 represents the radius of a neuron segment and, as such, typically varies
in space. However, for simplicity of the presentation, we assume 𝜌 to be constant. Moreover, by
𝛿Γ we denote the Dirac measure of Γ. The term 𝜌𝐶𝑚

Δ𝑡 (𝑝1 − Π
𝜌

Γ𝑝3) represents the electric current
flow exchange between the domains across dimensions due to the potential differences with Δ𝑡
being the time step size. The parameters 𝜎3, 𝜎1 and 𝐶𝑚 represent the extracellular and intracellular
conductivity and the membrane capacitance respectively. We also impose boundary conditions to

HAZniCS – Software Components for Multiphysics Problems 0:9

the system (13) as follows

𝑝3 = 𝑔3 on 𝜕Ω𝐷 , (14a)
−𝜎3∇𝑝3 · 𝒏 = 0 on 𝜕Ω𝑁 , (14b)

−𝜌2𝜎1∇𝑝1 · 𝒏 = 0 on 𝜕Γ, (14c)

where 𝜕Ω𝐷 ∪ 𝜕Ω𝑁 = 𝜕Ω\Γ and 𝜕Ω𝐷 ∩ 𝜕Ω𝑁 = ∅.
As in the previous example, we relate a linear system of equations to (13) that will be used in our

software to obtain reliable numerical solutions. Let 𝑄3 ⊂ 𝐻 1 (Ω) and 𝑄1 ⊂ 𝐻 1 (Γ) be conforming
finite element spaces (e.g. P1) on the shape-regular triangulation of Ω and Γ, respectively. Then, a
discrete variational formulation of the problem (13) states to find (𝑝3, 𝑝1) ∈ 𝑄3 ×𝑄1 such that(

−𝜎3ΔΩ + 𝜌𝑡Π𝜌

Γ
′
Π
𝜌

Γ −𝜌𝑡Π𝜌

Γ
′

−𝜌𝑡Π𝜌

Γ −𝜌2𝜎1ΔΓ + 𝜌𝑡 𝐼

)
︸ ︷︷ ︸

𝐴

(
𝑝3
𝑝1

)
︸︷︷︸

𝑥

=

(
𝑓3
𝑓1

)
︸︷︷︸

𝑏

, (15)

with 𝜌𝑡 =
𝜌𝐶𝑚

Δ𝑡 . In Listing 4 we show the implementation of the linear system (15) in FEniCS and
cbc.block.

cylinder = Circle(radius=rho , degree =10)
Rp3 , Rq3 = Average(p3, Gamma , cylinder), Average(q3, Gamma , cylinder)

a = block_form(W, 2)
Second -order operators
a[0][0] = sigma3 * (inner(grad(p3), grad(q3)) * dx + inner(p3, q3)) * dx
a[1][1] = sigma1 * (inner(grad(p1), grad(q1)) * dx + inner(p1, q1)) * dx
Metric term
m = block_form(W, 2)
m[0][0] = inner(Rp3 , Rq3) * dx_
m[0][1] = -inner(p1, Rv3) * dx_
m[1][0] = -inner(q1, Ru3) * dx_
m[1][1] = inner(p1, q1) * dx_
Sources
L = block_form(W, 1)
L[0] = inner(f3, q3) * dx
L[1] = inner(f1, q1) * dx
Assemble
AD , M, b = map(ii_assemble , (a, m, L))

Listing 4. Implementation of the 3𝑑-1𝑑 coupled system (15). Complete code can be found in script
HAZniCS-examples/demo_3d1d.py

The operator 𝐴 is symmetric positive definite and we can use the CG method to solve the system
(15). If we decompose the system as

𝐴 =

(
−𝜎3ΔΩ

−𝜌2𝜎1ΔΓ

)
︸ ︷︷ ︸

𝐴𝐷

+𝜌𝑡
(
Π
𝜌

Γ
′

−𝐼

) (
Π
𝜌

Γ −𝐼
)

︸ ︷︷ ︸
𝑀

(16)

we can identify that the operator𝑀 induces an 𝐿2-based metric space

M(Γ) = {(𝑞3, 𝑞1) ∈ 𝑄3 ×𝑄1 :
∫
Γ
(ΠΓ𝑞3 − 𝑞1)2 < ∞}. (17)

We observe that the bilinear form represented by𝑀 is degenerate. More specifically, we can see that
for very large values of the coupling parameter 𝜌𝑡 , the semi-definite coupling part𝑀 dominates,

0:10 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

and the system becomes nearly singular. The singular part is related to the kernel of the coupling
operator, that is ker(𝑀) = {(𝑞3, 𝑞1) ∈ 𝑄3 ×𝑄1 : ΠΓ𝑞3 −𝑞1 = 0} which can be a large subspace of the
solution space. Consequently, the condition number of the system grows rapidly with increasing 𝜌𝑡 ,
which results in slow convergence of the CG solver, even when using the standard AMG method
as the preconditioner as in Section 2.1. We remark that [Cerroni et al. 2019] demonstrate that
(standard, smoothed aggregation) AMG leads to robust solvers when the coupling is weak (𝜌𝑡 ≪ 1).

To ensure uniform convergence of the AMG in the parameter 𝜌𝑡 , we follow the theory of subspace
correction method in [Lee et al. 2007] to construct block Schwarz smoothers for the AMG method.
The blocks are chosen specifically to obtain the 𝜌𝑡 -uniformly convergent method. We call the linear
systems induced by operators such as (16)metric-perturbed problems. In Section 3.3 we demonstrate
how to solve the system (15) with HAZniCS methods based on the AMG with specialized block
Schwarz smoothers. In Section 4.3 we showcase some key performance points of the solver.

3 IMPLEMENTATION

HAZniCSHAZmath cbc.block

FEniCS fenics_ii

Fig. 2. Structure of the HAZniCS framework and relevant components.

The software module HAZniCS combines several libraries, each providing a key functionality
for multiphysics simulations. The main components include:

(i) HAZmath [Adler et al. 2009] - a finite element, graph, and solver library built in C;
(ii) FEniCS [Logg et al. 2012] - a computing platform in Python for solving PDE;
(iii) cbc.block [Mardal and Haga 2012] - an extension to FEniCS that enables assembling and

solving block-partitioned problems;
(iv) FEniCS𝑖𝑖 [Kuchta 2021] - an extension to FEniCS that enables assembling systems of equa-

tions posed on domains with different dimensionality (that are not necesarrily embedded
manifolds).

We note that while Python and FEniCS use memory management systems, HAZmath requires
that the users keep track of the memory themselves. As such, any object transferred between the
two systems is copied to make the interactions between FEniCS and HAZmath as simple as possible.
Hence, pointers to the underlying data are not passed across the interface, even though this would
decrease memory usage. In particular, we then reduce the risk of segmentation fault caused by a
pointer in HAZmath that points to some data that Python has deleted. Furthermore, while SWIG
provides the means to create Pythonic interfaces to C libraries, e.g., by specifying the input and
output of functions, we have decided on making the interface as close as possible to the underlying
C code.

In HAZniCS, each of the approximation methods for preconditioners mentioned in the Section 2
is implemented in HAZmath as a C function with the same signature - it takes in a vector (an array
of double values), applies a set of operations and returns a solution vector. To be able to use it in

HAZniCS – Software Components for Multiphysics Problems 0:11

Python, the HAZniCS Python library is generated using SWIG [Beazley 1996] and, in turn, can be
imported simply as

import haznics

In the following code snippets, we demonstrate how this interface is built.
For each preconditioner, HAZniCS stores two functions - a setup and an application function.

The setup functions take in different variables depending on the type of the preconditioner but
always return a pointer to HAZmath data type precond of a general preconditioner. This data type
has two components: data data and matrix-vector operation function fct(), see Listing 5,

typedef struct {
void *data;
void (*fct)(REAL *, REAL *, void *);

} precond;

Listing 5. HAZmath structure for type precond.

where type REAL is a macro of the standard C type double. During setup, HAZmath saves all
data necessary for applying the preconditioner and points to the right function that executes the
application algorithm. Hence, the matrix-vector function fct() serves as the application function
for the preconditioner. It always has the same signature - it takes in two arrays of REAL values (one
store’s input and the other output vector) and any data related to the matrix-vector operation as
void*.

Now, using the generated HAZniCS Python library, we wrap the HAZmath preconditioner
functions as class methods in cbc.block. In this way, efficient HAZmath preconditioners (in C) can
be used with FEniCS (or PETSc) operators and cbc.block iterative methods (in Python) in a code
that is easily readable and simple to utilize.

We show an example of the implementation of the AMG preconditioner class in Listing 6. Before
calling the preconditioner setup function, some input FEniCS data types need to be converted to
HAZmath data types. For example, an auxiliary function PETSC_to_dCSRmat() converts types
dolfin.GenericMatrix or dolfin.PETScMatrix to HAZmath matrix type dCSRmat. This conver-
sion is simple, as PETSc and HAZmath utilize compressed sparse row (CSR) format for matrices
where each non-zero element is of double-precision floating-point (double) format. Note that all
PETSc-HAZmath conversion functions copy the matrix data rather than copying references to data.

class AMG(Precond):
def __init__(self , A, parameters=None):

change data type for the matrix (to dCSRmat pointer)
A_ptr = PETSc_to_dCSRmat(A)
initialize amg parameters (AMG_param pointer)
amgparam = haznics.AMG_param ()
set extra amg parameters
if parameters:

haznics.param_amg_set_dict(parameters , amgparam)
set AMG preconditioner
precond = haznics.create_precond_amg(A_ptr , amgparam)
#[...]
Precond.__init__(self , A, "AMG", parameters , amgparam , precond)

Listing 6. Preconditioner class AMG implemented in HAZmath backend of cbc.block.

We comment that in HAZmath, all preconditioner application functions have the same signature.
On the other hand, in any cbc.block iterative method, all preconditioners are applied through a
matrix-vector product method matvec(). Therefore, we define a base class Precond equipped with

0:12 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

a matvec() method designed specifically to call of HAZmath preconditioners. The class is derived
from cbc.block data block_base, making the HAZmath preconditioners fully integrated with other
classes and methods of the cbc.block library.
class Precond(block_base):

#[...]
def matvec(self , b):

#[...]
create solution vector
x = self.A.create_vec(dim=1)
x = df.Vector(df.MPI.comm_self , x.size())
#[...]
convert rhs and lhs to numpy arrays
b_np = b[:]
x_np = x[:]
apply the preconditioner (solution saved in x_np)
haznics.apply_precond(b_np , x_np , self.precond)
convert x_np to GenericVector
x.set_local(x_np)
return x

Listing 7. Baseclass Precond with matvec() implemented in HAZmath backend of cbc.block.

Bridging matrix-vector operation functions of cbc.block (in Python) and HAZmath (in C) is
also done using SWIG [Beazley 1996]. In the file haznics.i, we make a typemap for function
apply_precond() that, before applying the preconditioner matrix-vector function, casts numpy
arrays to C arrays of doubles with an additional integer variable indicating array length. This is
demonstrated in Listing 8.

%include "numpy.ii"
%include "hazmath.h"
%numpy_typemaps(double , NPY_DOUBLE , REAL)
// [...]
%apply (int DIM1 , double* IN_ARRAY1) {(int len1 , double* vec1),

(int len2 , double* vec2)}
// [...]
%inline %{

void my_apply_precond(int len1 , double* vec1 , int len2 , double* vec2 ,
precond* pc) {

// [...]
apply_precond(vec1 , vec2 , pc);

}
%}

Listing 8. SWIG interface of HAZmath function apply_precond() that takes in numpy arrays.

Finally, within HAZmath, the apply_precond() function performs the application of the precon-
ditioner using the data and matrix-vector function that are passed in the input variable precond
*pc, see Listing 9.

void apply_precond(REAL *r, REAL *z, precond *pc) {
pc ->fct(r, z, pc->data);

}

Listing 9. HAZmath function apply_precond().

In the following, we detail the implementation of the preconditioners used in Section 2. In
Section 3.1 and Section 3.2 we show the AMG and the rational approximation preconditioners that

HAZniCS – Software Components for Multiphysics Problems 0:13

can be used through cbc.block extension. On the other hand, what we have described previously
is only one of the ways we can use HAZmath solvers and preconditioners with FEniCS. We can
also directly call HAZmath functions within FEniCS without relying on cbc.block since we already
have a compiled Python library HAZniCS. This use case is shown in Section 3.3 where we describe
solvers for metric-perturbed problems.

3.1 Algebraic multigrid method
As the main preconditioning routine, we use the Algebraic MultiGrid Method (AMG) [Brandt
et al. 1982], which constructs a multilevel hierarchy of vector spaces, each of which is responsible
for correcting different components of the error. More specifically, our approach is based on the
Unsmoothed Aggregation (UA-AMG) and the Smoothed Aggregation (SA-AMG)method. The UA-AMG
method was proposed in [Vakhutinsky et al. 1979] and further developed in [Blaheta 1986; Marek
1991]. Some popular UA-AMG algorithms are based on graph matching (or pairwise aggregation).
Such algorithms with different level of sophistication are found in several works [D’Ambra and
Vassilevski 2014; Hu et al. 2019, 2020; Kim et al. 2003; Livne and Brandt 2012; Notay 2010; Urschel
et al. 2015; Vaněk et al. 1996]. The SA-AMG method was first proposed in [Míka and Vaněk 1992;
Míka and Vaněk 1992] and later extended and analyzed in [Hu et al. 2016; Vaněk et al. 1998; Vaněk
et al. 1996].
Compared to classical AMG, one advantage of the aggregation-based AMG methods is that

several approximations of near kernel components of the matrix describing the linear system can
be preserved as elements of every subspace in the hierarchy. We now briefly explain the basic
constructions involved in obtaining multilevel hierarchies of spaces via aggregation, which is
known as the setup phase of an AMG algorithm.
For a linear system with symmetric and positive definite matrix A ∈ R𝑛×𝑛 , we introduce the

undirected graph G(A) associated with the sparsity pattern of A. The vertices of G(A) are labeled
as {1, . . . , 𝑛} and for the set of edges E we have (𝑖, 𝑗) ∈ E ⇐⇒ 𝑎𝑖 𝑗 ≠ 0. A typical aggregation
method consists of four steps stated in the Algorithm 1. The near kernel components needed in
algorithm Algorithm 1 are often known from the differential operator in hand. When solving a
discretized elliptic equation, usually only one near kernel component (the constant function/vector)
is used, while for linear elasticity the rigid body modes are utilized in the setup phase. For the

Algorithm 1 Setup phase of the two-level aggregation-based AMG method.

1: Filter values: Set G(A) ≔ G(Ã), where Ã is the matrix obtained from A obtained after filtering
out all entries of A for which |𝑎𝑖 𝑗 |√

𝑎𝑖𝑖𝑎 𝑗 𝑗
is smaller than a given threshold.

2: Create aggregates: Split the set of vertices {1, 2, . . . , 𝑛} as a union of 𝑛𝑐 non-overlapping
subsets {𝔞𝑖 }𝑛𝑐𝑖=1.

3: Construct coarse space: Let 1𝔞𝑖 be the indicator vectors of the aggregates 𝔞𝑖 , 𝑖 =

1, . . . , 𝑛𝑐 . For given 𝑘 near kernel components [𝜓1, . . . ,𝜓𝑘] ∈ R𝑛×𝑘 , define vectors 𝜙𝑖 =

[diag(𝜓1)1𝔞𝑖 , . . . , diag(𝜓𝑘)1𝔞𝑖] for each aggregate 𝑖 = 1, . . . , 𝑛𝑐 . With that, define the coarse
space𝑉𝑐 ⊂ 𝑉 = R𝑛 of dim𝑉𝑐 = 𝑘𝑛𝑐 as the span of the columns of the matrix P = [𝜙1, . . . , 𝜙𝑛𝑐] ∈
R𝑛×(𝑘𝑛𝑐) .

4: Construct course level matrix: Compute A𝑐 = P𝑇AP.

multilevel methods, we can repeat the steps in the Algorithm 1 recursively by applying it to A𝑐

in place of A. The recursive process is halted if the maximum number of levels is reached or the
dimension 𝑛𝑐 is smaller than a minimal coarse space dimension.

0:14 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

Furthermore, the SA-AMG algorithm adds a smoother to the definition of P, i.e. in Step 3 of
Algorithm 1 we have P = 𝑝 (SA) [𝜙1, . . . , 𝜙𝑛𝑐] ∈ R𝑛×(𝑘𝑛𝑐) . Here, 𝑝 (·) is a fixed degree polynomial.
Most often the polynomial is chosen to be 𝑝 (𝑡) = 1 − 𝑡 , while in the UA-AMG it is set to 𝑝 (𝑡) = 1.
We note that the (polynomial) smoothing of the basis vectors improves the stability of the coarse
spaces. However, unlike in the UA-AMG, the smoothing necessarily results in a larger number of
nonzeroes per row in the coarse grid matrices, while smoothing with higher degree polynomials
may lead to an inefficient setup algorithm. Thus, the appropriate choice of the smoother S and the
polynomial 𝑝 (·) is essential to the stable and fast convergence of the SA-AMG method.
The applications of the aggregation-based AMG preconditioners are summarized in the Al-

gorithm 2. We state only the two-level preconditioning iteration, which utilizes a multiplicative
preconditioner B = AMG(A) ≈ A−1.

Algorithm 2 Two-level AMG algorithm.
Require: Given g ∈ R𝑛 , do
1: Pre-smoothing: v = Sg.
2: Coarse grid correction: w = v + PB𝑐P𝑇 (g − Av).
3: Post-smoothing: Bg = w + S𝑇 (g − Aw).

The action of B𝑐 is determined by the coarse space solver, which can be a direct or another
iterative method. In multilevel setting, B𝑐 represents the recursive application of the Algorithm 2
where we replace the fine-level matrix A with the coarse-level matrix A𝑐 . The recursion stops
when reaching the maximal coarsest level. This multilevel algorithm is called the V-cycle, but more
sophisticated cycling procedures can often be employed. In HAZmath, other cycles can be used,
such as the linear Algebraic Multilevel Iteration (AMLI) methods [Axelsson and Vassilevski 1989,
1990; Kraus and Margenov 2009] and the nonlinear AMLI methods [Axelsson and Vassilevski 1991,
1994; Hu et al. 2013a; Kraus 2002; Notay 2010; Vassilevski 2008] which correspond to optimized
polynomial accelerations.

The implementation of Algorithm 1 and Algorithm 2 can be found in HAZmath in files
src/solver/amg_setup_ua.c and src/solver/mgcycle.c, respectively. Due to the extensive
length, we skip the implementation code in this paper, but rather show the interface of the HAZ-
math’s AMG method in HAZniCS.

from haznics import AMG
AMG setup parameters
params = {

"AMG_type": haznics.UA_AMG ,
"cycle_type": haznics.NL_AMLI_CYCLE ,
"smoother": haznics.SMOOTHER_GS ,
"coarse_solver": haznics.DIRECT ,
"aggregation_type": haznics.VMB ,
"strong_coupled": 0.0,
"max_aggregation": 100,

}
Solver setup
B = AMG(A, params)
Ainv = ConjGrad(A, precond=B, tolerance =1e-10)
Solve
x = Ainv * b

Listing 10. Call of the AMG preconditioner for the linear elliptic problem. Complete code can be found in
script HAZniCS-examples/demo_elliptic_test.py

HAZniCS – Software Components for Multiphysics Problems 0:15

In Listing 10 we showcase how to use the AMG method from HAZmath as the precondi-
tioner in FEniCS-related examples. We import the preconditioner class AMG from cbc.block im-
plementation of which has been shown in Listing 6. It takes the coefficient matrix A and an
optional dictionary of setup parameters. Such parameters are set through HAZmath macros
and are integrated within the HAZniCS Python library through a dictionary. For example, we
can specify the type of the AMG method we will apply using the keyword "AMG_type" and
the value haznics.UA_AMG. Other listed keywords determine "cycle_type" (cycling algorithm),
"smoother" (type of smoother), "coarse_solver" (coarse grid solver), "aggregation_type"
(type of aggregation), "strong_coupled" (the filtering threshold in Step 1 of Algorithm 1) and
"max_aggregation" (maximum number of vertices in an aggregate). Full list of parameters is
found in the structure AMG_param in the HAZmath’s include/params.h and values of different
macros are given in HAZmath’s include/macro.h.

void precond_amg(REAL *r, REAL *z, void *data) {
precond_data *pcdata =(precond_data *)data; // data for the preconditioner
const INT m = pcdata ->mgl_data [0].A.row; // general size of the system
const INT maxit = pcdata ->maxit; // how many times to apply AMG
INT i;

AMG_param amgparam; param_amg_init (& amgparam);
param_prec_to_amg (&amgparam , pcdata); // set up AMG parameters

AMG_data *mgl = pcdata ->mgl_data; // data for the AMG
mgl ->b.row = m; array_cp(m, r, mgl ->b.val); // residual is the rhs
mgl ->x.row = m; dvec_set(m, &mgl ->x, 0.0);

for (i = 0; i < maxit; ++i) mgcycle(mgl , &amgparam); // apply AMG

array_cp(m, mgl ->x.val , z); // copy the result to z
}

Listing 11. Implementation of the AMG preconditioner in HAZmath.

Furthermore, the AMG preconditioner is passed to the CG iterative solver ConjGrad from
cbc.block to act on the residual in each iteration. As shown in the previous section, the application
of the preconditioner is made as a matrix-vector operation, which in the case of the AMG method
corresponds to the function precond_amg() stated in Listing 11. It is a simple function that reads
the AMG setup data through the variable pcdata->mgl_data, sets up the right-hand side vector
(the residual variable r of the outer iterative method) and initializes the solution vector, applies
the AMG algorithm from Algorithm 2 through the function mgcycle() and returns the computed
solution through the increment variable z.
Using HAZmath’s implementation of the AMG method through the function mgcycle() gives

the flexibility to apply and modify the algorithm to other relevant methods and applications. The
following two sections present how we use it in algorithms that approximate inverses of fractional
and metric-perturbed operators.

3.2 Rational approximation
In Section 2.2, we have introduced a preconditioner based on the (sum of) fractional powers
of SPD operators. In particular, in solving the Darcy-Stokes system (11) iteratively the operator

𝐵 =

(
`−1 (−Δ)− 1

2 + 𝐾 (−Δ) 12
)−1

is used in the preconditioner. That means that in each iteration, we
need to compute 𝑧 = 𝐵𝑟 . We discuss in this section how to use and implement rational approximation

0:16 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

[Hofreither 2020] that acts as an application of the inverse of a fractional operator (𝛼𝐴𝑠 + 𝛽𝐴𝑡), for
𝐴 a symmetric positive definite operator, 𝑠, 𝑡 ∈ [−1, 1] and 𝛼, 𝛽 ≥ 0.

The basic idea is to find a rational function approximating 𝑓 (𝑥) = (𝛼𝑥𝑠 + 𝛽𝑥𝑡)−1 for 𝑥 > 0,
𝛼, 𝛽 ≥ 0 and 𝑠, 𝑡 ∈ [−1, 1], that is,

(𝛼𝑥𝑠 + 𝛽𝑥𝑡)−1 ≈ 𝑅(𝑥) = 𝑃𝑘′ (𝑥)
𝑄𝑘 (𝑥)

, (18)

where 𝑃𝑘′ and 𝑄𝑘 are polynomials of degree 𝑘 ′ and 𝑘 , respectively. Assuming 𝑘 ′ ≤ 𝑘 , the rational
function can be given in partial fraction form

𝑅(𝑥) = 𝑐0 +
𝑛𝑝∑︁
𝑖=1

𝑐𝑖

𝑥 − 𝑝𝑖
, (19)

for 𝑐0 ∈ R, 𝑐𝑖 , 𝑝𝑖 ∈ C, 𝑖 = 1, 2, . . . , 𝑛𝑝 . Let 𝐴 be a symmetric positive definite operator. Then, the
rational function 𝑅(·) can be used to approximate 𝑓 (𝐴) as follows,

𝑧 = 𝑓 (𝐴)𝑟 ≈ 𝑐0𝑟 +
𝑛𝑝∑︁
𝑖=1

𝑐𝑖 (𝐴 − 𝑝𝑖 𝐼)−1 𝑟 . (20)

The overall algorithm is shown in Algorithm 3.

Algorithm 3 Compute 𝑧 = 𝑓 (𝐴)𝑟 using rational approximation.
1: Solve for𝑤𝑖 : (𝐴 − 𝑝𝑖 𝐼)𝑤𝑖 = 𝑟, 𝑖 = 1, 2, . . . , 𝑛𝑝 .

2: Compute: 𝑧 = 𝑐0𝑟 +
𝑛𝑝∑
𝑖=1
𝑐𝑖𝑤𝑖

In our case, the operator 𝐴 is a discretization of the Laplacian operator −Δ, and 𝐼 is the discrete
operator of the 𝐿2 inner product. Therefore, the equations in Step 1 of Algorithm 3 can be viewed
as discretizations of the shifted Laplacian problems −Δ𝑤𝑖 − 𝑝𝑖 𝑤𝑖 = 𝑟 . For real non-positive poles,
the problem is SPD, so we may define fractions or functions of the operator −Δ − 𝑝𝑖 𝐼 .

Let A be the stiffness matrix associated with −Δ and M a corresponding mass matrix. Consider
the following generalized eigenvalue problem

AU = MUΛ, U𝑇MU = I =⇒ U𝑇AU = Λ. (21)

For any continuous function 𝐹 (𝑥), 𝑥 ∈ [0, 𝜌] we define

𝐹 (A) ≔ MU𝑓 (Λ)U𝑇M, (22)

where 𝜌 ≔ 𝜌
(
M−1A

)
is the spectral radius of the matrix M−1A. We would like to approximate

𝑓 (A) = (𝐹 (A))−1 using the rational approximation 𝑅(𝑥) of 𝑓 (𝑥) = 1
𝐹 (𝑥) . We note that, if we have a

function 𝑔(𝑡) = 𝑓 (𝜌𝑡) defined on the unit interval [0, 1] and 𝑟 (𝑡) is the best rational approximation
to 𝑔(𝑡), then

𝑓 (𝑥) ≈ 𝑅(𝑥) = 𝑟
(
𝑥

𝜌

)
≈ 𝑔

(
𝑥

𝜌

)
, 𝑟

(
𝑥

𝜌

)
= 𝑐0 +

𝑛𝑝∑︁
𝑖=1

𝑐𝑖
𝑥
𝜌
− 𝑝𝑖

. (23)

Therefore, if we know 𝑐𝑖 and 𝑝𝑖 for 𝑔(𝑡) on the interval [0, 1] we immediately get

𝑓 (𝑥) ≈ 𝑐0 +
𝑛𝑝∑︁
𝑖=1

𝜌𝑐𝑖

𝑥 − 𝜌𝑝𝑖
. (24)

HAZniCS – Software Components for Multiphysics Problems 0:17

Then, using (21), (22) and (24), the rational approximation of 𝑓 (A) is

𝑓 (A) ≈ 𝑐0M−1 +
𝑛𝑝∑︁
𝑖=1

𝜌𝑐𝑖 (A − 𝜌𝑝𝑖M)−1 . (25)

We remark that 𝑓 (A) is a dual to nodal mapping.
In summary, to apply the rational approximation, we need to find solvers to apply M−1 and each
(A − 𝜌𝑝𝑖M)−1. If 𝑝𝑖 ∈ R, 𝑝𝑖 ≤ 0, we end up solving a series of elliptic problems where multigrid
methods are very efficient. As mentioned in Section 3.1, the HAZmath library contains several
fast-performing implementations of the AMG method, such as SA-AMG and UA-AMG methods.

Furthermore, many methods compute the coefficients 𝑐𝑖 and 𝑝𝑖 , see e.g., an overview in [Hofrei-
ther 2020]. In HAZmath, we have implemented the Adaptive Antoulas-Anderson (AAA) algorithm
proposed in [Nakatsukasa et al. 2018]. The AAA method is based on a representation of the rational
approximation in barycentric form and greedy selection of the interpolation points. In most cases,
this approach leads to 𝑝𝑖 ≤ 0. Thus we can use the AMG method to solve each problem in Step 1 of
Algorithm 3. We show in the following how we use the rational approximation and other methods
from the HAZmath library to solve the Darcy-Stokes problem in Section 2.2.

In the demo examples HAZniCS-examples/demo_darcy_stokes*.pywe have specified the block
problem and the preconditioner using FEniCS extensions FEniCS𝑖𝑖 and cbc.block, see also Listing 2
and Listing 3. For the fractional block in (12), we use the rational approximation from HAZmath.

from block.algebraic.hazmath import RA
#[...]
parameters = {'coefs ': [1./mu(0), K(0)], 'pwrs': [-0.5, 0.5], [...]}
B4 = RA(A, M, parameters)

Listing 12. Call of the HAZmath rational approximation preconditioner in the demo examples
HAZniCS-examples/demo_darcy_stokes*.py.

First, we import the preconditioner class RA representing the rational approximation method from
the cbc.block backend designated for HAZmath methods. It takes in two matrices, A andM, that
are the discretizations of 𝐻 1 and 𝐿2 inner products on the solution function space. It also takes in
an optional dictionary of parameters that, among others, specify weights 𝛼, 𝛽 and fractional powers
𝑠, 𝑡 . The call of RA sets up the data from the preconditioner, see Listing 13. That is, it computes:
• the coefficients 𝑐𝑖 , 𝑝𝑖 with the AAA algorithm based on matrices A andM and parameters
𝛼, 𝛽 in keyword ’coefs’ and 𝑠, 𝑡 in keyword ’pwrs’;
• AMG levels for each A − 𝑝𝑖M based on optional additional parameters in the parameters
dictionary.

These two steps are performed in the function create_precond_ra() in HAZmath.

class RA(Precond):
def __init__(self , A, M, parameters=None):

change data type for the matrices (to dCSRmat pointer)
A_ptr , M_ptr = map(PETSc_to_dCSRmat , (A, M))
initialize amg parameters (AMG_param pointer)
amgparam = haznics.AMG_param ()
#[...]
haznics.param_amg_set_dict(parameters , amgparam)
get scalings
scaling_a = 1. / A.norm("linf")
scaling_m = 1. / df.as_backend_type(M).mat().getDiagonal ().min()[1]
get coefs and powers
alpha , beta = parameters['coefs ']

0:18 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

s_power , t_power = parameters['pwrs']
set RA preconditioner
precond = haznics.create_precond_ra(A_ptr , M_ptr , s_power , t_power ,

alpha , beta , scaling_a , scaling_m ,
amgparam)

[...]
Precond.__init__(self , A, "RA", parameters , precond)

Listing 13. Class RA implemented in HAZmath backend of cbc.block.

Additionally, we need to compute the upper bound on 𝜌 = 𝜌
(
M−1A

)
. In case of P1 finite elements,

we have

𝜌
(
M−1A

)
≤ 1
_min (M)

∥A∥∞ ≤
𝑑 (𝑑 + 1)

min{diag(M)} ∥A∥∞, (26)

where 𝑑 is the topological dimension of the problem. Thus, the function create_precond_ra()
also takes scaling parameters to approximate the spectral radius. We note that, in practice, M−1
scales as (at least) inverse of the discretization parameterℎ−1, so the dimension 𝑑 is not an important
factor in the scalings.
The rational approximation preconditioner is then applied in each iteration through a matrix-

vector function, as explained at the beginning of Section 3. In the case of the rational approximation
preconditioner, the matrix-vector function is the HAZmath function precond_ra_fenics() that
applies the two steps from Algorithm 3. In Listing 14 we show the implementation snippet of the
key parts of the preconditioner algorithm from Algorithm 3.

void precond_ra_fenics(REAL *r, REAL *z, void *data) {
// [...]
// z = z + residues [0] * M^{-1} r
if(fabs(residues ->val [0]) > 0.) {

status = dcsr_pcg(scaled_M , &r_vec , &z_vec , &pc_scaled_M , 1e-6, 100, 1, 0);
}
array_ax(n, residues ->val[0], z_vec.val);
// [...]
for(i = 0; i < npoles; ++i) {

// [...]
dvec_set(update.row , &update , 0.0);
// solve (A - poles[i] * M) update = r
status = dcsr_pcg (&(mgl[i][0].A), &r_vec , &update , &pc_frac_A ,1e-6,100,1,0);
// [...]
// z = z + residues[i+1]* update
array_axpy(n, residues ->val[i+1], update.val , z_vec.val);

}
}

Listing 14. HAZmath function precond_ra_fenics().

3.3 Solvers for interface metric-perturbed problems
In this section, we continue with presenting the implementation of the solver for the 3𝑑-1𝑑 coupled
problem (15) in Section 2.3. Additionally, we introduce an alternative way to use HAZmath solvers
in FEniCS. In the previous section, we have bridged the two libraries via a class of preconditioners
implemented in cbc.block, while here we directly call functions from HAZmath through the
generated Python interface.

HAZniCS – Software Components for Multiphysics Problems 0:19

In the demo example demo_3d1d.py we have specified the block problem (15) using FEniCS
extensions FEniCS𝑖𝑖 and cbc.block, see also Listing 4. Next, we display in Listing 15 the steps
necessary to use HAZmath solver for this block problem directly through the library haznics.

convert vectors
bb = ii_convert(b)
b_np = bb[:]
bhaz = haznics.create_dvector(b_np)
xhaz = haznics.dvec_create_p(n)
convert matrices; A = AD + rho * M
Ahaz = block_to_haz(A)
Mhaz = block_to_haz(M)
ADhaz = block_to_haz(AD)

call solver
niters = haznics.fenics_metric_amg_solver(Ahaz , bhaz , xhaz , ADhaz , Mhaz)

Listing 15. Call of HAZniCS solver for the 3𝑑-1𝑑 coupled system (15). Complete code can be found in script
HAZniCS-examples/demo_3d1d.py

The listing consists of three parts: data conversion, a wrapper for the solver function and specifying
solver parameters. First, after assembly, the system matrix A and the right hand side b are of
type block_mat and block_vec, respectively. We convert them to HAZmath data types dvector
and block_dCSRmat so we are able to use them in the solver that is called through the HAZniCS
function fenics_metric_amg_solver(). This auxiliary function acts as an intermediary to set
solver data and parameters and to run the solver. An excerpt from the function is given in Listing 16.
We remark that the signature of the wrapper function needs to be added to the interface file
haznics.i to be able to use it through the HAZniCS Python library since it is not a part of the
standard HAZmath library.

INT fenics_metric_amg_solver(block_dCSRmat *A, dvector *b, dvector *x,
block_dCSRmat *AD, block_dCSRmat *M)

{
/* set Parameters from Reading in Input File */
input_param inparam;
param_input_init (& inparam);
param_input("./ input_metric.dat", &inparam);

// [...]
/* Use Krylov Iterative Solver */
if ((linear_itparam.linear_precond_type >= 10) && \

(linear_itparam.linear_precond_type < 15)){
solver_flag = linear_solver_bdcsr_krylov_metric_amg(A, b, x,& linear_itparam ,

&amgparam , AD, M);
}
/* No preconditioner */
else{

solver_flag = linear_solver_bdcsr_krylov(A, b, x, &linear_itparam);
}
return solver_flag;

}

Listing 16. Wrapper function for the solver of the system (15).

Unless we want to use default values, it is required to set relevant parameters for the HAZmath
solver, such as the tolerance of the iterative method or the type of the preconditioner. This can be

0:20 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

done by creating an input file that passes the specific parameters to HAZmath to a variable of type
input_param. A snippet of the input file input_metric.dat for the 3𝑑-1𝑑 coupled problem can
be found in Listing 17.

// [...]
linear_itsolver_type = 1 % 1: CG
linear_itsolver_maxit = 1000
linear_itsolver_tol = 1e-8
linear_stop_type = 1 % 1: ||r||/||b||
linear_precond_type = 14 % 14: Schwarz on interface part (symm multipl)

% + AMG on the whole matrix
// [...]
AMG_type = SA
AMG_cycle_type = V
AMG_levels = 10
AMG_maxit = 1

Listing 17. Input file example. Complete code can be found in script HAZniCS-examples/input_metric.dat.

Finally, this parameter setup allows to apply the solver linear_solver_bdcsr_krylov_metric_amg().
We recall that we have chosen to solve the 3𝑑-1𝑑 problem (15) by the CG method preconditioned
with AMG that uses block Schwarz smoothers to obtain robustness in the coupling parameter
𝜌𝑡 ≫ 1. The HAZmath implementation of that solver has a slight modification that uses a combina-
tion of the block Schwarz and Gauss-Seidel smoothers. We give a few details on the algorithm and
its implementation in the following section.

3.3.1 Metric-perturbed algebraic multigrid method. Let us go back to the operator (16) and set
𝑉 = 𝑄3 ×𝑄1. The general subspace correction method looks for a stable space decomposition

𝑉 = 𝑉0 +𝑉1 + . . . +𝑉𝐽 (27)

to divide solving the system on the whole space 𝑉 to solving smaller problems on each subspace
and summing up the contributions in additive or multiplicative fashion [Xu 1992; Xu and Zikatanov
2002]. Furthermore, the following condition from [Lee et al. 2007] is sufficient to obtain a robust
subspace correction method to solve nearly singular system such as (15):

Ker(𝑀) ∩𝑉 = (Ker(𝑀) ∩𝑉0) + (Ker(𝑀) ∩𝑉1) + . . . + (Ker(𝑀) ∩𝑉𝐽). (28)

More specifically, we can employ this space decomposition to create a robust AMGmethod where𝑉0
represents the coarse space and𝑉𝑖 , 𝑖 = 1, . . . , 𝐽 , define a Schwarz-type smoother. By robustness, we
imply that the convergence of the method is independent of the values of the coupling parameter 𝜌𝑡
and mesh size parameter ℎ. To construct subspace splitting satisfying (28) it is necessary to choose
the subspaces so that the following holds: For each element of a frame spanning the null-space of
𝑀 , there exists a subspace containing this frame element. Notice that this is a requirement that
does not assume that the frame element is known, but rather, the assumption is that a subspace
where this element is contained is known.

Algorithm 4 Compute 𝑧 = 𝐵𝑟 using metric-perturbed AMG
Require: Given 𝑟 and 𝑧 ← 0
1: Solve on the interface using forward Schwarz smoother: 𝑧 ← 𝑧 + Π𝜌

Γ𝐵SchwarzΠ
′
Γ𝑟

2: Solve on the whole space using AMG method: 𝑧 ← 𝑧 + 𝐵AMG (𝑟 −𝐴𝑧)
3: Solve on the interface using backward Schwarz smoother: 𝑧 ← 𝑧 + Π𝜌

Γ𝐵
′
SchwarzΠ

′
Γ (𝑟 −𝐴𝑧)

HAZniCS – Software Components for Multiphysics Problems 0:21

From Algorithm 4, we can see that 𝐵 is defined as

𝐼 − 𝐵𝐴 := (𝐼 − Π𝜌

Γ𝐵
′
SchwarzΠ

′
Γ𝐴) (𝐼 − 𝐵AMG𝐴) (𝐼 − Π𝜌

Γ𝐵SchwarzΠ
′
Γ𝐴).

It is easy to see that 𝐵 is symmetric and, following the theory developed in [Hu et al. 2013b], 𝐵 is
also positive definite if 𝐵AMG is symmetric positive definite and 𝐵Schwarz is nonexpansive. Therefore,
it can be used as a preconditioner for the CG method. This preconditioner is implemented in
HAZmath and its excerpt from the function is given in Listing 18.

void precond_bdcsr_metric_amg_symmetric(REAL *r, REAL *z, void *data)
{

// [...]
// Schwarz method on the interface part
Schwarz_param *schwarz_param = predata ->schwarz_param;
Schwarz_data *schwarz_data = predata ->schwarz_data;
smoother_dcsr_Schwarz_forward(schwarz_data , schwarz_param , &zz, &rr);

// [...]
// AMG solve on the whole matrix
AMG_data_bdcsr *mgl = predata ->mgl_data;
mgl ->b.row total_row; array_cp(total_row , r, mgl ->b.val);
mgl ->x.row = total_col; array_cp(total_row , z, mgl ->x.val);
for (i=maxit; i--;) mgcycle_bdcsr(mgl ,& amgparam);

// [...]
// Schwarz method on the interface part
smoother_dcsr_Schwarz_backward(schwarz_data , schwarz_param , &zz, &rr);

// [...]
}

Listing 18. metric AMG preconditioner.

4 RESULTS
In this section, we show the performance of the solvers and preconditioners developed for the
examples in Section 2. We recall that their complete code can be found in [Budiša et al. 2022a].

4.1 Linear elliptic problem
We use the 3𝑑 elliptic problem (1) to compare the HAZniCS solvers to already established solver
libraries. This way, we demonstrate that HAZniCS, specifically the AMG solver within, shows a
fast and reliable performance when solving common PDE problems. For the comparison, we use
the AMG method BoomerAMG from the HYPRE library [Falgout and Yang 2002] of scalable linear
solvers and multigrid method that is already integrated within FEniCS software through PETSc. We
note that all the computations are performed in serial on a workstation with an 11th Gen Intel(R)
Core(TM) i7-1165G7 @ 2.80GHz (8 cores) and 40GB of RAM.

The results are given in Table 1 and the right part of Figure 3. It is clear that the AMG methods
of HYPRE and HAZmath show similar performance. While the HYPRE BoomerAMG method
gives fewer total CG iterations and consequently less solving time, the setup of the HAZmath’s
UA-AMG method is multiple times faster while still taking comparable solving time. Therefore,
we are confident about using the methods from HAZniCS in our multiphysics solvers, namely the
HAZmath’s AMG method as a component of the rational approximation and metric-perturbed
preconditioners from Sections 3.2 and 3.3.

0:22 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

104 105 106 107

10−2

10−1

100

101

102

𝑁dof
𝑇
to
ta
l
in

se
co
nd

s

HYPRE
HAZmath
𝑂 (𝑁dof)

Fig. 3. (Left) Illustration of the domain of the elliptic problem (1) and its solution profile. (Right) Total CPU
time required to solve (1) with the CG method up to relative residual tolerance 10−6. The brown data points
represent the total elapsed time of the solver (setup + solve) when CG is preconditioned with the HAZmath
AMG method, while the magenta data points represent the total elapsed time when CG is preconditioned
with HYPRE AMG. Results are obtained by running HAZniCS-examples/demo_elliptic_test.py.

HAZmath HYPRE
𝑁dof 𝑁iter Setup (s) Solve (s) Total (s) 𝑁iter Setup (s) Solve (s) Total (s)

729 9 0.0004 0.0010 0.0014 7 0.0007 0.0007 0.0014
4913 10 0.0012 0.0052 0.0064 8 0.0040 0.0039 0.0079

35937 11 0.0077 0.0830 0.0907 8 0.0393 0.0551 0.0944
274625 11 0.0631 0.6805 0.7436 9 0.2507 0.5670 0.8177

2146689 12 0.5308 4.4215 4.9523 9 1.9855 3.8539 5.8394
16974593 12 4.6096 32.907 37.517 9 19.255 29.697 48.952

Table 1. Performance of the CG method preconditioned with either HAZmath AMG or HYPRE AMG, with
regards to the number of degrees of freedom 𝑁dof. We measure number of iterations (𝑁iter) and CPU time in
seconds for setup and solve part of the solver required to solve the elliptic problem (1) with relative residual
tolerance 10−6. Results are obtained by running HAZniCS-examples/demo_elliptic_test.py.

4.2 Darcy-Stokes problem
To demonstrate the performance of the rational approximation algorithms of HAZniCS, we next
focus on the Darcy-Stokes problem (9) and its preconditioner (12). Implementation of the precondi-
tioner in HAZniCS can be found in Listing 3, and we recall that we utilize multilevel methods for
the Stokes velocity and Darcy flux blocks while the multiplier block uses rational approximation
detailed in Section 3.2.

Let us first showcase the robustness and scalability of implementing the Darcy-Stokes precondi-
tioner. Here we focus on the (more challenging) case Ω𝑆 , Ω𝐷 ⊂ R3 while results for a similar study
in two dimensions are given in Appendix A. Let now Ω𝑆 =

[
0, 12

]
× [0, 1]2 and Ω𝐷 =

[1
2 , 1

]
× [0, 1]2.

We consider discretization of (11) by (stabilized, cf. Listing 2), CR1-P0 elements in the Stokes
domain, RT0-P0 elements in the Darcy domain and P0 elements on the interface. Using gradually
refined meshes of Ω𝑆 ∪ Ω𝐷 , which match on the interface Γ, the choice of elements leads to linear

HAZniCS – Software Components for Multiphysics Problems 0:23

systems with 2 · 103 < 𝑁dofs < 11 · 106. Furthermore, we shall vary the model parameters such that
10−6 ≤ `, 𝐾 ≤ 1 while 𝐷 = 0.1 is fixed.

The performance of the preconditioner is summarized in Figure 4, where we list the dependence
of the solution time and the number of MinRes iterations on mesh size and model parameters. Here
the convergence criterion is the reduction of the preconditioned residual norm by 1012. Moreover,
the tolerance in the rational approximation is set to 10−12 yielding roughly 𝑛𝑝 ≈ 20 poles in (20).
However, numerical experiments [Budiša et al. 2022b] suggest that a less accurate approximation,
leading to as little as 6 poles, could be sufficient. In Figure 4, it can be seen that iteration counts are
bounded in the parameters, that is, (12) defines a parameter robust Darcy-Stokes preconditioner.
Moreover, the implementation in Listing 3 leads to optimal, O(𝑁dofs), scaling.

103 104 105 106 107
80
100
120
140
160
180
200

103 104 105 106 107103 104 105 106 107103 104 105 106 107
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

M
in
R
es

it
er
at
io
n
s

103 104 105 106 10710−1

100
101
102
103
104

103 104 105 106 107103 104 105 106 107103 104 105 106 107
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

T
ot
al

ti
m
e
(s
)

Fig. 4. Performance of Darcy-Stokes preconditioner (12) implemented in Listing 3. Discretization by
(CR1 − P0) − (RT0 − P0) − P0 elements with 𝐷 = 0.1. (Top) Number of MinRes iterations until conver-
gence for different values of `, 𝐾 and mesh sizes. (Bottom) Total solution time for solving (11) including
the setup time of the preconditioner. Black line indicates linear scaling. Results are obtained by running
HAZniCS-examples/demo_darcy_stokes_3d_flat.py.

The experimental setup of our previous example led to rather small multiplier spaces with
dimΛ = 2048 for the finest mesh considered. To get larger interfaces and multiplier spaces, we
finally turn to the brain geometry in Figure 1. Although realistic, the geometry is still largely
simplified as we have excluded the cerebellum, the aqueduct, and the central canal and expanded
the subarachnoid space to allow more visible CSF pathways. Nevertheless, the geometry fully
represents the complexity of the interface (gyric and sulcal brain surface), which is an important
part and an additional difficulty when solving the coupled viscous-porous flow problem. Using the
same discretization as before the computational mesh leads to 𝑁dofs ≈ 11 · 106 with dimΛ ≈ 50 · 103
For the purpose of illustration we set ` = 3,𝐾 = 10−4,𝐷 = 0.5 and consider most of the outer surface
of Ω𝑆 with no-slip boundary condition except for a small region on the bottom where traction is
prescribed. The flow field computed after 500 iterations of MinRes is plotted in Figure 5. Therein
we also compare convergence of MinRes solver using preconditioner (12) with a simpler one which
uses in the Λ block the operator 𝐾 (−Δ + 𝐼)1/2, cf. the analysis in [Layton et al. 2002]. Importantly,
we observe that the new preconditioner, which ignores the intersection structure of the multiplier
space, leads to very slow convergence or even divergence of the unknowns. In contrast, with (12)
MinRes appears to be converging. We remark that the rather slow (in comparison to Figure 4)

0:24 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

convergence with block diagonal preconditioner (12) is related to the thin-shell geometry of the
Stokes domain. In particular, the performance of block-diagonal Stokes preconditioner using the
mass matrix approximation for the Schur complement is known to deteriorate for certain boundary
conditions when the aspect ratio of the domain is large [Sogn and Takacs 2022].

0 100 200 300 400 500
10−7

10−5

10−3

10−1

MinRes step k

‖(
A
xk
−

b)
i‖ l

2

i = 0 i = 1 i = 2
i = 3 i = 4

Fig. 5. Darcy-Stokes model on realistic brain geometry. (Left) Solution field when no-slip boundary conditions
are considered everywhere except on the small region on the base (cf. larger pressure in red). Here, the
traction locally increases pressure and induces flow in the Stokes domain. Pressure in the Darcy domain is
rather uniform. Flow in the Darcy domain is visualized by streamlines. (Right) Convergence of the solution
components (denoted by 0 ≤ 𝑖 ≤ 4 for subspaces 𝑽𝑆 ,𝑄𝑆 , 𝑽𝐷 ,𝑄𝐷 and Λ) of (11)when using preconditioner (12)
(solid lines). Dashed lines show (diverging) behavior when using a simpler preconditioner which utilized (−Δ+
𝐼)1/2 on the interface. Results are obtained by running HAZniCS-examples/demo_darcy_stokes_brain.py.

4.3 3d-1d coupled problem
Lastly, we demonstrate how the mixed-dimensional flow problem from Section 2.3 is solved using
the HAZniCS solver for metric-perturbed problems. The problem is defined by the geometry
illustrated in Figure 6. The neuron geometry is obtained from the NeuroMorpho.Org inventory
of digitally reconstructed neurons, and glia [NeuroMorpho 2017]. The neuron from a rat’s brain
includes a soma and 72 dendrite branches. It is embedded in a rectangular box of approximate
dimensions 281`𝑚 × 281`𝑚 × 106`𝑚. Then, the mixed-dimensional geometry is discretized with
an unstructured tetrahedron in a way conforming to Γ, i.e., the 1𝑑 neuron mesh consists of the
3𝑑 edges lying on Γ. As discretization, we have P1 finite elements for both the 3𝑑 and 1𝑑 function
spaces. Overall we end up with 641 788 degrees of freedom in 3𝑑 and 3156 degrees of freedom for
the 1𝑑 problem. Additionally, we enforce homogeneous Neumann conditions on the outer boundary
of both subdomains.

To obtain the numerical solution, we use the CG method to solve the system (15) preconditioned
with the metric-perturbed AMGmethod described in Section 3.3. The solver is executed through the
call of the HAZniCS wrapper function fenics_metric_amg_solver(), as presented in Listing 16.
The solver parameters are set through the input file input.dat. The convergence is considered
reached if the 𝑙2 relative residual norm is less than 10−6. We choose the SA-AMG that uses the
block Schwarz smoother (defined by the kernel decomposition (28)) for the interface degrees of
freedom and standard Gauss-Seidel smoother on the interior degrees of freedom. We note by the
interface degrees of freedom the sub-components of the 3𝑑 variable that contribute to the interface
current flow exchange, i.e., the nonzero components of Π𝜌

Γ𝑞3 for 𝑞3 ∈ 𝑄3. The application of the
block Schwarz smoothers is done in a symmetric multiplicative way.
We study the performance of our solver with regard to the time step size Δ𝑡 and the coupling/-

dendrite radius 𝜌 . Specifically, we are interested in the solver performance for very small time

HAZniCS – Software Components for Multiphysics Problems 0:25

Fig. 6. Domain geometry of the 3𝑑-1𝑑 problem (13). (Left) The 1𝑑 domain as the neuron and the network
of neuronal dendrites is marked in blue and a shallow clip of the 3𝑑 brain tissue domain is marked in grey.
The outline of the 3𝑑 domain is marked with black lines. (Right) A clip of the solution of potentials (𝑝3, 𝑝1).
Results are obtained by running HAZniCS-examples/demo_3d1d.py.

log10 (Δ𝑡) [𝑠]
-10 -8 -6 -4 -2 -10 -8 -6 -4 -2

𝜌 [`𝑚] 𝑁iter ^ (𝐵𝐴)
5.0 8 8 8 7 7 2.793 2.778 2.667 2.061 1.671
1.0 7 7 7 6 6 1.941 1.952 1.947 1.413 1.408
0.5 8 8 7 6 6 2.541 2.515 2.276 1.527 1.410
0.1 8 8 7 6 6 2.583 2.562 2.257 1.492 1.413

Table 2. Performance of the CG method preconditioned with metric-perturbed AMG method from HAZniCS,
with regards to parameters 𝜌 and Δ𝑡 . We measure number of iterations (𝑁iter) of the solver with relative
residual tolerance 10−6 and the approximate condition number ^ (𝐵𝐴) of the preconditioned system (15).
Results are obtained by running HAZniCS-examples/demo_3d1d.py.

steps since this results in the metric term in the system (15) to dominate. The conductivity and
membrane capacitance parameters remain constant and fixed throughout their respective domains
to 𝜎3 = 3 mS cm−1, 𝜎1 = 7 mS cm−1 and 𝐶𝑚 = 1 `F cm−2 [Buccino et al. 2019]. The results given
in Table 2 show stable number of iterations 𝑁iter and condition numbers ^ (BA), where A is the
matrix of the mixed-dimensional system (15) and B = metricAMG(A) is the metric-perturbed AMG
preconditioner. This is especially important in realistic cases when 𝜌 = 5`m and the time step
magnitude is in nanoseconds, which is represented in the top left part of the table. In summary, the
results show the method is robust with regard to problem parameters. Therefore we can confidently
incorporate the method as part of the solver for the full EMI model [Buccino et al. 2021; Jæger et al.
2021].

5 CONCLUSION
This paper introduces a collection of software solutions, HAZniCS, for solving interface-coupled
multiphysics problems. The software combines two frameworks, HAZmath and FEniCS, into a
flexible and powerful tool to obtain reliable and efficient simulators for various coupled problems.
The focus of this work has been the (3𝑑-2𝑑 coupled) Darcy-Stokes model and the 3𝑑-1𝑑 coupled

0:26 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

diffusion model for which we have presented the implementation and illustrated the performance of
our solvers. In addition, we believe that the results shown in the paper demonstrate a great potential
to utilize our framework in other relevant applications. The solver library allows interfacing with
other finite element libraries which support the discretization of multiphysics problems, such as the
new generation FEniCS platform FEniCSx or the Julia library Gridap.jl [Verdugo and Badia 2022].

ACKNOWLEDGMENTS
AB, MK, and KAM acknowledge the financial support from the SciML project funded by the
Norwegian Research Council grant 102155. The work of XH is partially supported by the National
Science Foundation under grant DMS-2208267.MK acknowledges support fromNorwegian Research
Council grant 303362. The research of LZ is supported in part by the U. S.-Norway Fulbright
Foundation and the U. S. National Science Foundation grant DMS-2208249. The collaborative efforts
of XH and LZ were supported in part by the NSF DMS-2132710 through theWorkshop on Numerical
Modeling with Neural Networks, Learning, and Multilevel FE.

REFERENCES
J. Adler, X. Hu, and L. Zikatanov. 2009. HAZMATH: A Simple Finite Element, Graph, and Solver Library. https://hazmathteam.

github.io/hazmath/
V. I. Agoshkov. 1988. Poincaré-Steklov operators and domain decomposition methods in finite dimensional spaces. In First

International Symposium on Domain Decomposition Methods for Partial Differential Equations. 73–112.
O. Axelsson and P. Vassilevski. 1989. Algebraic multilevel preconditioning methods. I. Numer. Math. 56 (1989), 157–177.
O. Axelsson and P. S. Vassilevski. 1990. Algebraic multilevel preconditioning methods. II. SIAM J. Numer. Anal. 27, 6 (1990),

1569–1590.
O. Axelsson and P. S. Vassilevski. 1991. A black box generalized conjugate gradient solver with inner iterations and

variable-step preconditioning. SIAM J. Matrix Anal. Appl. 12, 4 (1991), 625–644.
O. Axelsson and P. S. Vassilevski. 1994. Variable-step multilevel preconditioning methods. I. Selfadjoint and positive definite

elliptic problems. Numer. Linear Algebra Appl. 1, 1 (1994), 75–101.
I. Babuška. 1971. Error-bounds for finite element method. Numer. Math. 16 (1971), 322–333. Issue 4. https://doi.org/10.1007/

BF02165003
I. Babuška and A. K. Aziz. 1972. Survey lectures on the mathematical foundation of the finite element method. Academic Press,

New York, London, 3–345. https://doi.org/10.1016/C2013-0-10319-4
S. Badia, F. Nobile, and C. Vergara. 2009. Robin–Robin preconditioned Krylov methods for fluid–structure interaction

problems. Computer Methods in Applied Mechanics and Engineering 198, 33-36 (2009), 2768–2784.
T. Bærland. 2019. An auxiliary space preconditioner for fractional Laplacian of negative order. arXiv preprint arXiv:1908.04498

(2019).
T. Bærland, M. Kuchta, and K.-A. Mardal. 2019. Multigrid methods for discrete fractional Sobolev spaces. SIAM Journal on

Scientific Computing 41, 2 (2019), A948–A972. https://doi.org/10.1137/18M1191488
S. Balay, S. Abhyankar, M. F. Adams, S. Benson, J. Brown, P. Brune, K. Buschelman, and et. al. 2022. PETSc/TAO Users Manual.

Technical Report ANL-21/39 - Revision 3.18. Argonne National Laboratory.
D. M. Beazley. 1996. SWIG: An Easy to Use Tool for Integrating Scripting Languages with C and C++. In Proceedings of the

4th Conference on USENIX Tcl/Tk Workshop, 1996 - Volume 4 (Monterey, California) (TCLTK’96). USENIX Association,
USA, 15. https://www.swig.org/

M. Berg, Y. Davit, M. Quintard, and S. Lorthois. 2020. Modelling solute transport in the brain microcirculation: is it really
well mixed inside the blood vessels? Journal of Fluid Mechanics 884 (2020), A39. https://doi.org/10.1017/jfm.2019.866

R. Blaheta. 1986. A multilevel method with correction by aggregation for solving discrete elliptic problems. Aplikace
matematiky 31, 5 (1986), 365–378.

W. M. Boon, M. Hornkjøl, M. Kuchta, K.-A. Mardal, and R. Ruiz-Baier. 2022a. Parameter-robust methods for the Biot–Stokes
interfacial coupling without Lagrange multipliers. J. Comput. Phys. 467 (2022), 111464.

W. M. Boon, T. Koch, M. Kuchta, and K.-A. Mardal. 2022b. Robust Monolithic Solvers for the Stokes–Darcy Problem with
the Darcy Equation in Primal Form. SIAM Journal on Scientific Computing 44, 4 (2022), B1148–B1174.

J. Bramble, J. Pasciak, and P. Vassilevski. 2000. Computational scales of Sobolev norms with application to preconditioning.
Math. Comp. 69, 230 (2000), 463–480.

J. H. Bramble. 2019. Multigrid methods. Chapman and Hall/CRC.

https://hazmathteam.github.io/hazmath/
https://hazmathteam.github.io/hazmath/
https://doi.org/10.1007/BF02165003
https://doi.org/10.1007/BF02165003
https://doi.org/10.1016/C2013-0-10319-4
https://doi.org/10.1137/18M1191488
https://www.swig.org/
https://doi.org/10.1017/jfm.2019.866

HAZniCS – Software Components for Multiphysics Problems 0:27

A. Brandt, S. F. McCormick, and J. W. Ruge. 1982. Algebraic multigrid (AMG) for automatic multigrid solutions with application
to geodetic computations. Technical Report. Inst. for Computational Studies, Fort Collins, CO.

A. P. Buccino, M. Kuchta, K. H. Jæger, T. V. Ness, P. Berthet, K.-A. Mardal, G. Cauwenberghs, and A. Tveito. 2019. How does
the presence of neural probes affect extracellular potentials? Journal of Neural Engineering 16 (4 2019), 026030. Issue 2.
https://doi.org/10.1088/1741-2552/ab03a1

A. P. Buccino, M. Kuchta, J. Schreiner, and K.-A. Mardal. 2021. Improving Neural Simulations with the EMI Model. Springer
International Publishing, Cham, 87–98. https://doi.org/10.1007/978-3-030-61157-6_7

A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal, and L. Zikatanov. 2022a. HAZniCS examples. https://doi.org/10.5281/zenodo.
7220688

A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal, and L. Zikatanov. 2022b. Rational approximation preconditioners for multiphysics
problems. arXiv preprint arXiv:2209.11659 (2022).

D. Cerroni, F. Laurino, and P. Zunino. 2019. Mathematical analysis, finite element approximation and numerical solvers for
the interaction of 3d reservoirs with 1d wells. GEM-International Journal on Geomathematics 10, 1 (2019), 1–27.

P. D’Ambra and P. Vassilevski. 2014. Adaptive AMG based on weighted matching for systems of elliptic PDEs arising from
displacements and mixed methods. Submitted.

S. Deparis, M. Discacciati, G. Fourestey, and A. Quarteroni. 2006. Fluid–structure algorithms based on Steklov–Poincaré
operators. Computer Methods in Applied Mechanics and Engineering 195, 41-43 (2006), 5797–5812.

C. D’Angelo and A. Quarteroni. 2008. On the coupling of 1d and 3d diffusion-reaction equations: Application to tissue
perfusion problems. Mathematical Models and Methods in Applied Sciences 18, 8 (2008), 1481–1504.

P. K. Eide, V. Vinje, A. H. Pripp, K.-A. Mardal, and G. Ringstad. 2021. Sleep deprivation impairs molecular clearance from
the human brain. Brain 144, 3 (2021), 863–874.

R. D. Falgout and U. M. Yang. 2002. hypre: A Library of High Performance Preconditioners. In Computational Science — ICCS
2002, Peter M. A. Sloot, Alfons G. Hoekstra, C. J. Kenneth Tan, and Jack J. Dongarra (Eds.). Springer Berlin Heidelberg,
Berlin, Heidelberg, 632–641.

T. Führer. 2022. Multilevel decompositions and norms for negative order Sobolev spaces. Math. Comp. 91, 333 (2022),
183–218.

I. G. Gjerde, K. Kumar, and J. M. Nordbotten. 2020. A singularity removal method for coupled 1D–3D flow models.
Computational Geosciences 24, 2 (2020), 443–457.

S. Harizanov, R. Lazarov, S. Margenov, and P. Marinov. 2020. Numerical solution of fractional diffusion–reaction problems
based on BURA. Computers & Mathematics with Applications 80, 2 (2020), 316–331.

S. Harizanov, R. Lazarov, S. Margenov, P. Marinov, and Y. Vutov. 2018. Optimal solvers for linear systems with fractional
powers of sparse SPD matrices. Numerical Linear Algebra with Applications 25, 5 (2018), e2167.

S. Harizanov, I. Lirkov, and S. Margenov. 2022. Rational Approximations in Robust Preconditioning of Multiphysics Problems.
Mathematics 10, 5 (2022), 780.

G. Hartung, S. Badr, S. Mihelic, A. Dunn, X. Cheng, S. Kura, D. A. Boas, D. Kleinfeld, A. Alaraj, and A. A. Linninger.
2021. Mathematical synthesis of the cortical circulation for the whole mouse brain—part II: Microcirculatory closure.
Microcirculation 28, 5 (2021), e12687.

C. Hofreither. 2020. A unified view of some numerical methods for fractional diffusion. Computers and Mathematics with
Applications 80, 2 (2020), 332–350. https://doi.org/10.1016/j.camwa.2019.07.025

K.-E. Holter, M. Kuchta, and K.-A. Mardal. 2020. Robust preconditioning of monolithically coupled multiphysics problems.
arXiv preprint arXiv:2001.05527 (2020).

K. E. Holter, M. Kuchta, and K.-A. Mardal. 2021. Robust preconditioning for coupled Stokes–Darcy problems with the Darcy
problem in primal form. Computers & Mathematics with Applications 91 (2021), 53–66.

X. Hu, J. Lin, and L. T. Zikatanov. 2019. An Adaptive Multigrid Method Based on Path Cover. SIAM Journal on Scientific
Computing 41, 5 (Jan. 2019), S220–S241. https://doi.org/10.1137/18M1194493 Citation Key Alias: HuLinZikatanov2018.

X. Hu, P. S. Vassilevski, and J. Xu. 2013a. Comparative Convergence Analysis of Nonlinear AMLI-Cycle Multigrid. SIAM J.
Numer. Anal. 51, 2 (Jan. 2013), 1349–1369. https://doi.org/10.1137/110850049

X. Hu, P. S. Vassilevski, and J. Xu. 2016. A two-grid SA-AMG convergence bound that improves when increasing the
polynomial degree: Improving TG convergence with increasing smoothing steps. Numerical Linear Algebra with
Applications 23, 4 (Aug. 2016), 746–771. https://doi.org/10.1002/nla.2053

X. Hu, K. Wu, and L. T. Zikatanov. 2020. A Posteriori Error Estimates for Multilevel Methods for Graph Laplacians.
arXiv:2007.00189 [cs, math] (June 2020). http://arxiv.org/abs/2007.00189 arXiv: 2007.00189.

X. Hu, S. Wu, X.-H. Wu, J. Xu, C.-S. Zhang, S. Zhang, and L. Zikatanov. 2013b. Combined preconditioning with applications
in reservoir simulation. Multiscale Modeling & Simulation 11, 2 (2013), 507–521.

J. J. Iliff, M. Wang, Y. Liao, B. A. Plogg, W. Peng, G. A. Gundersen, H. Benveniste, G. E. Vates, R. Deane, S. A. Goldman,
E. A. Nagelhus, and M. Nedergaard. 2012. A Paravascular Pathway Facilitates CSF Flow Through the Brain Parenchyma
and the Clearance of Interstitial Solutes, Including Amyloid 𝛽 . Science Translational Medicine 4, 147 (2012), 147ra111.

https://doi.org/10.1088/1741-2552/ab03a1
https://doi.org/10.1007/978-3-030-61157-6_7
https://doi.org/10.5281/zenodo.7220688
https://doi.org/10.5281/zenodo.7220688
https://doi.org/10.1016/j.camwa.2019.07.025
https://doi.org/10.1137/18M1194493
https://doi.org/10.1137/110850049
https://doi.org/10.1002/nla.2053
http://arxiv.org/abs/2007.00189

0:28 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

https://doi.org/10.1126/scitranslmed.3003748
K. H. Jæger, K. G. Hustad, X. Cai, and A. Tveito. 2021. Operator Splitting and Finite Difference Schemes for Solving the EMI

Model. Springer International Publishing, Cham, 44–55. https://doi.org/10.1007/978-3-030-61157-6_4
R. T. Kedarasetti, K. L. Turner, C. Echagarruga, B. J. Gluckman, P. J. Drew, and F. Constanzo. 2020. Functional hyperemia drives

fluid exchange in the paravascular space. Fluids Barriers CNS 17, 52 (2020). https://doi.org/10.1186/s12987-020-00214-3
H. Kim, J. Xu, and L. Zikatanov. 2003. A multigrid method based on graph matching for convection diffusion equations.

Numerical linear algebra with applications (2003). http://onlinelibrary.wiley.com/doi/10.1002/nla.317/abstract
R. C. Kirby and L. Mitchell. 2018. Solver composition across the PDE/linear algebra barrier. SIAM Journal on Scientific

Computing 40, 1 (2018), C76–C98.
T. Koch, M. Schneider, R. Helmig, and P. Jenny. 2020. Modeling tissue perfusion in terms of 1d-3d embedded mixed-dimension

coupled problems with distributed sources. J. Comput. Phys. 410 (2020). https://doi.org/10.1016/j.jcp.2020.109370
T. V. Kolev and P. S. Vassilevski. 2012. Parallel auxiliary space amg solver for H(div) problems. SIAM Journal on Scientific

Computing 34 (2012), 1–21. Issue 6. https://doi.org/10.1137/110859361
T. Köppl, E. Vidotto, B. Wohlmuth, and P. Zunino. 2018. Mathematical modeling, analysis and numerical approximation

of second-order elliptic problems with inclusions. Mathematical Models and Methods in Applied Sciences 28, 5 (2018),
953–978.

J. Kraus and S. Margenov. 2009. Robust algebraic multilevel methods and algorithms. Radon series on computational and
applied mathematics, Vol. 5. de Gruyter, Berlin, New York.

J. K. Kraus. 2002. An algebraic preconditioning method for𝑀-matrices: linear versus non-linear multilevel iteration. Numer.
Linear Algebra Appl. 9, 8 (2002), 599–618. https://doi.org/10.1002/nla.281

M. Kuchta. 2021. Assembly of Multiscale Linear PDE Operators. In Numerical Mathematics and Advanced Applications
ENUMATH 2019, Fred J. Vermolen and Cornelis Vuik (Eds.). Springer International Publishing, Cham, 641–650. https:
//doi.org/10.1007/978-3-030-55874-1_63

M. Kuchta, F. Laurino, K. A. Mardal, and P. Zunino. 2021. Analysis and approximation of mixed-dimensional PDEs on
3D-1D domains coupled with Lagrange multipliers. SIAM J. Numer. Anal. 59, 1 (2021), 558–582. https://doi.org/10.1137/
20M1329664

F. Laurino and P. Zunino. 2019. Derivation and analysis of coupled PDEs on manifolds with high dimensionality gap arising
from topological model reduction. ESAIM: Mathematical Modelling and Numerical Analysis 53, 6 (2019), 2047–2080.

W. J. Layton, F. Schieweck, and I. Yotov. 2002. Coupling fluid flow with porous media flow. SIAM J. Numer. Anal. 40, 6 (2002),
2195–2218.

Y. Lee, J. Wu, J. Xu, and L. T. Zikatanov. 2007. Robust subspace correction methods for nearly singular systems. Mathematical
Models and Methods in Applied Sciences 17, 11 (2007), 1937–1963.

O. Livne and A. Brandt. 2012. Lean algebraic multigrid (LAMG): fast graph Laplacian linear solver. SIAM Journal on Scientific
Computing 34, 4 (2012), 499–523.

A. Logg, K.-A. Mardal, G. N. Wells, et al. 2012. Automated Solution of Differential Equations by the Finite Element Method.
Springer, Berlin Heidelberg. https://doi.org/10.1007/978-3-642-23099-8

K.-A. Mardal and J. B. Haga. 2012. Block preconditioning of systems of PDEs. In Automated solution of differential equations
by the finite element method. Springer, Berlin Heidelberg, 643–655. https://doi.org/10.1007/978-3-642-23099-8_35

K.-A. Mardal, M. E. Rognes, T. B. Thompson, and L. M. Valnes. 2022. Mathematical modeling of the human brain: from
magnetic resonance images to finite element simulation. Springer, Berlin Heidelberg.

K.-A. Mardal and R. Winther. 2011. Preconditioning discretizations of systems of partial differential equations. Numerical
Linear Algebra with Applications 18, 1 (2011), 1–40. https://doi.org/10.1002/nla.716

I. Marek. 1991. Aggregation methods of computing stationary distributions of Markov processes. In Numerical Treatment of
Eigenvalue Problems Vol. 5/Numerische Behandlung von Eigenwertaufgaben Band 5. Springer, 155–169.

S. Míka and P. Vaněk. 1992. Acceleration of convergence of a two level algebraic algorithm by aggregation in smoothing
process. Appl. Math. 37 (1992), 343–356.

S. Míka and P. Vaněk. 1992. A Modification of the two-level algorithm with overcorrection. Appl. Math. 37 (1992), 13–28.
Y. Nakatsukasa, O. Sète, and L. N. Trefethen. 2018. The AAA Algorithm for Rational Approximation. SIAM Journal on

Scientific Computing 40, 3 (2018), A1494–A1522. https://doi.org/10.1137/16M1106122
NeuroMorpho 2017. Digital reconstruction of a neuron, ID NMO_72183. https://neuromorpho.org/neuron_info.jsp?neuron_

name=P14_rat1_layerIII_cell1
Y. Notay. 2010. An aggregation-based algebraic multigrid method. Electronic transactions on numerical analysis 37 (2010),

123–146. http://www.emis.ams.org/journals/ETNA/vol.37.2010/pp123-146.dir/pp123-146.pdf
A. Quarteroni and A. Valli. 1991. Theory and application of Steklov-Poincaré operators for boundary-value problems. In

Applied and Industrial Mathematics. Springer, 179–203.
F. Rathgeber, D. A. Ham, L. Mitchell, M. Lange, F. Luporini, A. T. T. Mcrae, G.-T. Bercea, G. R. Markall, and P. H. J. Kelly.

2016. Firedrake: Automating the Finite Element Method by Composing Abstractions. ACM Trans. Math. Softw. 43, 3,

https://doi.org/10.1126/scitranslmed.3003748
https://doi.org/10.1007/978-3-030-61157-6_4
https://doi.org/10.1186/s12987-020-00214-3
http://onlinelibrary.wiley.com/doi/10.1002/nla.317/abstract
https://doi.org/10.1016/j.jcp.2020.109370
https://doi.org/10.1137/110859361
https://doi.org/10.1002/nla.281
https://doi.org/10.1007/978-3-030-55874-1_63
https://doi.org/10.1007/978-3-030-55874-1_63
https://doi.org/10.1137/20M1329664
https://doi.org/10.1137/20M1329664
https://doi.org/10.1007/978-3-642-23099-8
https://doi.org/10.1007/978-3-642-23099-8_35
https://doi.org/10.1002/nla.716
https://doi.org/10.1137/16M1106122
https://neuromorpho.org/neuron_info.jsp?neuron_name=P14_rat1_layerIII_cell1
https://neuromorpho.org/neuron_info.jsp?neuron_name=P14_rat1_layerIII_cell1
http://www.emis.ams.org/journals/ETNA/vol.37.2010/pp123-146.dir/pp123-146.pdf

HAZniCS – Software Components for Multiphysics Problems 0:29

Article 24 (dec 2016), 27 pages.
J. Sogn and S. Takacs. 2022. Stable discretizations and IETI-DP solvers for the Stokes system in multi-patch Isogeometric

Analysis. arXiv preprint arXiv:2202.13707 (2022).
J. C. Urschel, J. Xu, X. Hu, and L. T. Zikatanov. 2015. A Cascadic Multigrid Algorithm for Computing the Fiedler Vector of

Graph Laplacians. Journal of Computational Mathematics 33, 2 (June 2015), 209–226. https://doi.org/10.4208/jcm.1412-
m2014-0041

I. Vakhutinsky, L. Dudkin, and A. Ryvkin. 1979. Iterative aggregation–A new approach to the solution of large-scale
problems. Econometrica: Journal of the Econometric Society (1979), 821–841.

P. Vaněk, J. Mandel, and M. Brezina. 1996. Algebraic multigrid based on smoothed aggregation for second and fourth order
problems. Computing 56 (1996), 179–196.

P. Vaněk, J. Mandel, and M. Brezina. 1998. Convergence of algebraic multigrid based on smoothed aggregation. Computing
56 (1998), 179–196.

P. Vaněk, J. Mandel, and M. Brezina. 1996. Algebraic multigrid by smoothed aggregation for second and fourth order elliptic
problems. Vol. 56. 179–196. https://doi.org/10.1007/BF02238511 International GAMM-Workshop on Multi-level Methods
(Meisdorf, 1994).

P. S. Vassilevski. 2008. Multilevel block factorization preconditioners. Springer, New York. xiv+529 pages.
F. Verdugo and S. Badia. 2022. The software design of Gridap: A Finite Element package based on the Julia JIT compiler.

Computer Physics Communications 276 (2022), 108341.
L. Xie, H. Kang, Q. Xu, M. J. Chen, Y. Liao, M. Thiyagarajan, J. O’Donnell, D. J. Christensen, C. Nicholson, J. J. Iliff, et al.

2013. Sleep drives metabolite clearance from the adult brain. science 342, 6156 (2013), 373–377.
J. Xu. 1992. Iterative methods by space decomposition and subspace correction. SIAM Rev. 34, 4 (1992), 581–613. https:

//doi.org/10.1137/1034116
J. Xu and L. Zikatanov. 2002. The method of alternating projections and the method of subspace corrections in Hilbert

space. J. Amer. Math. Soc. 15, 3 (2002), 573–597. https://doi.org/10.1090/S0894-0347-02-00398-3
X. Zhao, X. Hu, W. Cai, and G. E. Karniadakis. 2017. Adaptive finite element method for fractional differential equations

using hierarchical matrices. Computer Methods in Applied Mechanics and Engineering 325 (Oct. 2017), 56–76. https:
//doi.org/10.1016/j.cma.2017.06.017

A DARCY-STOKES PROBLEM IN 2D
To further illustrate robustness of Darcy-Stokes preconditioner (12) and scalability of its HAZniCS
implementation (Listing 3) we consider the experimental and solver setup of Section 4.2 in two-
dimensions. Namely, we let Ω𝑆 =

[
0, 12

]
× [0, 1] and Ω𝐷 =

[1
2 , 1

]
× [0, 1]. In addition, (11) will be

discretized in terms of (P2 − P1) − (RT0 − P0) − P0 elements as well as by the non-conforming
(stabilized) (CR1 − P0) − (RT0 − P0) − P0 elements. As in Section 4.2 we employ triangulations
of Ω𝑆 , Ω𝐷 whose trace meshes match on the interface Γ. We remark that on the finest level of
refinement the two discretizations lead to similar number of unknowns with 𝑁dof ≈ 1.84 · 106
and 𝑁dof ≈ 1.71 · 106 for Taylor-Hood and Crouzeix-Raviart based spaces respectively. Finally, the
two-dimensional setting allows for comparison between the inexact/multilevel based approximation
of the Darcy-Stokes preconditioner, cf. Listing 3, and its realization using LU decomposition for the
leading blocks. Such preconditioner can be defined in HAZniCS as shown in Listing 19. We note
that in both cases the multiplier block uses the rational approximation.

from block.algebraic.petsc import LU

[...] Setup blocks as of the preconditioner
B0 , B1 , B2 , B3 =
Only Multiplier block will be inexact
B4 = RA(A, M, parameters=params)

define the approximate Riesz map
B = block_diag_mat ([LU(B0), LU(B1), LU(B2), LU(B3), B4])

Listing 19. Implementation of preconditioner (12) for Darcy-Stokes problem (11) using exact inverses for the
leading/bulk blocks. Complete code can be found in scripts HAZniCS-examples/demo_darcy_stokes*.py

https://doi.org/10.4208/jcm.1412-m2014-0041
https://doi.org/10.4208/jcm.1412-m2014-0041
https://doi.org/10.1007/BF02238511
https://doi.org/10.1137/1034116
https://doi.org/10.1137/1034116
https://doi.org/10.1090/S0894-0347-02-00398-3
https://doi.org/10.1016/j.cma.2017.06.017
https://doi.org/10.1016/j.cma.2017.06.017

0:30 A. Budiša, X. Hu, M. Kuchta, K.-A. Mardal and L. T. Zikatanov

102 103 104 105 106
40

60

80

100

102 103 104 105 106 102 103 104 105 106 102 103 104 105 106
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

M
in
R
es

it
er
at
io
n
s

102 103 104 105 10610−2

10−1

100

101

102

102 103 104 105 106 102 103 104 105 106 102 103 104 105 106
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

T
ot
al

ti
m
e
(s
)

Fig. 7. Performance of Darcy-Stokes preconditioner (12) in case Ω𝑆 , Ω𝐷 ⊂ R2. Discretization by (P2 − P1) −
(RT0 − P0) − P0 elements with 𝐷 = 0.1. (Top) Number of MinRes iterations until convergence in relative
preconditioned residual norm and tolerance 10−12 for different values of `, 𝐾 and mesh sizes. (Bottom) Total
solution time for solving (11) including the setup time of the preconditioner. Black line indicates linear scaling.
In both plots data points marked with circles correspond to realization of the preconditioner using LU for
the leading blocks, see Listing 19, while square markers are due to the multilevel approximation in Listing 3.
Results are obtained by running HAZniCS-examples/demo_darcy_stokes_2d_flat.py with command line
switch -elm_family TH.

Performance of the two Darcy-Stokes preconditioners using Taylor-Hood- and Crouzeix-Raviart
based discretizations is shown Figure 7 and Figure 8 respectively. In all cases we observe that
the number of MinRes iterations is bounded in mesh size and parameters ` and 𝐾 . The exact
preconditioners lead to convergence in fewer iterations, e.g. for 𝐾 = 1, ` = 10−6 the difference is
30 iterations. However, the total solution time is smaller with the approximate preconditioners
using multilevel methods for 𝑽𝑆 and 𝑽𝐷 blocks. Moreover, it can be seen that multigrid leads to
(close to) optimal scalability of the preconditioner while the scaling of the exact preconditioner
becomes suboptimal. This is especially the case for the finest meshes and CR elements where
dim𝑽𝑆 = 787968, dim𝑄𝑆 = 262144, dim𝑽𝐷 = 393984, dim𝑄𝐷 = 262144, dimΛ = 512.

HAZniCS – Software Components for Multiphysics Problems 0:31

102 103 104 105 106
40

60

80

100

120

102 103 104 105 106 102 103 104 105 106 102 103 104 105 106
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

M
in
R
es

it
er
at
io
n
s

102 103 104 105 10610−2

10−1

100

101

102

102 103 104 105 106 102 103 104 105 106 102 103 104 105 106
−6

−4

−2

0
log10K

µ = 10−6 µ = 10−4 µ = 10−2 µ = 1Ndof

T
ot
al

ti
m
e
(s
)

Fig. 8. Performance of Darcy-Stokes preconditioner (12) in case Ω𝑆 , Ω𝐷 ⊂ R2. Discretization by (CR1 −P0) −
(RT0 − P0) − P0 elements with 𝐷 = 0.1. (Top) Number of MinRes iterations until convergence in relative
preconditioned residual norm and tolerance 10−12 for different values of `, 𝐾 and mesh sizes. (Bottom) Total
solution time for solving (11) including the setup time of the preconditioner. Black line indicates linear scaling.
In both plots data points marked with circles correspond to realization of the preconditioner using LU for
the leading blocks, see Listing 19, while square markers are due to the multilevel approximation in Listing 3.
Results are obtained by running HAZniCS-examples/demo_darcy_stokes_2d_flat.py with command line
switch -elm_family CR.

	Abstract
	1 Introduction
	2 Examples
	2.1 Linear elliptic problem
	2.2 Modeling brain clearance during sleep with Darcy-Stokes equations
	2.3 Mixed-dimensional modeling of signal propagation in neurons

	3 Implementation
	3.1 Algebraic multigrid method
	3.2 Rational approximation
	3.3 Solvers for interface metric-perturbed problems

	4 Results
	4.1 Linear elliptic problem
	4.2 Darcy-Stokes problem
	4.3 3d-1d coupled problem

	5 Conclusion
	Acknowledgments
	References
	A Darcy-Stokes problem in 2d

