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Abstract
Many research questions concern treatment effects on outcomes that can recur several
times in the same individual. For example, medical researchers are interested in treat-
ment effects on hospitalizations in heart failure patients and sports injuries in athletes.
Competing events, such as death, complicate causal inference in studies of recurrent
events because once a competing event occurs, an individual cannot have more recur-
rent events. Several statistical estimands have been studied in recurrent event settings,
with and without competing events. However, the causal interpretations of these esti-
mands, and the conditions that are required to identify these estimands from observed
data, have yet to be formalized. Here we use a formal framework for causal inference
to formulate several causal estimands in recurrent event settings, with and without
competing events. When competing events exist, we clarify when commonly used
classical statistical estimands can be interpreted as causal quantities from the causal
mediation literature, such as (controlled) direct effects and total effects. Furthermore,
we show that recent results on interventionist mediation estimands allow us to define
new causal estimands with recurrent and competing events that may be of particu-
lar clinical relevance in many subject matter settings. We use causal directed acyclic
graphs and single world intervention graphs to illustrate how to reason about identifi-
cation conditions for the various causal estimands based on subject matter knowledge.
Furthermore, using results on counting processes, we show that our causal estimands
and their identification conditions, which are articulated in discrete time, converge to
classical continuous time counterparts in the limit of fine discretizations of time. We
propose estimators and establish their consistency for the various identifying function-
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als. Finally, we use the proposed estimators to compute the effect of blood pressure
lowering treatment on the recurrence of acute kidney injury using data from the Sys-
tolic Blood Pressure Intervention Trial.

Keywords Causal inference · Separable effects · Recurrent events · Competing
events · Event history analysis

1 Introduction

Practitioners and researchers are often interested in treatment effects on outcomes that
can recur in the same individual over time. Such outcomes include hospitalizations in
heart failure patients (Anker and McMurray 2012), fractures in breast cancer patients
with skeletal metastases (Chen and Cook 2004) and rejection episodes in recipients of
kidney transplants (Cook and Lawless 1997). However, in many studies of recurrent
events, individuals may also experience competing events, such as death. These events
may substantially complicate causal inference.

For example, in the Systolic Blood Pressure Intervention Trial (SPRINT Research
Group 2015), investigators found that intensive blood pressure lowering therapy
increased the expected number of acute kidney injury episodes (a possible harmful
side effect of blood pressure treatment) compared to standard blood pressure treat-
ment. However, individuals on intensive blood pressure therapy had a lower incidence
of all-cause mortality.

In this example, all-cause mortality is a competing event for the outcome of interest
(number of recurrences of acute kidney injury) because once an individual dies they
cannot subsequently experience the recurrent event.1 Due to the randomized design
these findings indeed have a “causal” interpretation: the results support an average
harmful effect of intensive blood pressure treatment on the number of acute kidney
injury recurrences. However, analogous to previous arguments in the case where the
outcome of interest is an incident (rather than a recurrent) event subject to compet-
ing events (Young et al. 2020; Stensrud et al. 2020), this “protection” is difficult to
interpret in light of the finding that mortality risk is lowered by intensive blood pres-
sure treatment. The increased number of acute kidney injury episodes in the intensive
treatment arm might only be due to the treatment effect on mortality.

Early works on competing events (Tsiatis 1975; Gail 1975; Prentice et al. 1978)
considered the problem of identifying the survival function of the event of interest
under elimination of competing events, and concluded that this is often unfeasible as
it requires strong independence assumptions between the competing events, as well
as a clear conceptualization of how to eliminate a competing event without affecting
the risk of the other events. Instead, Prentice et al. (1978) advocated for the cause-
specific hazard as an identifiable estimand in the competing event setting. Although
these early works are clearly based on an insightful intuition, they are not grounded in
a formal framework for characterizing causal effects and their identifying conditions,
which makes it difficult to interpret the effect estimates from these procedures and to

1 What we define as a competing event is often called a terminating event in the recurrent events literature.
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assess recommendations regarding analytic choices. For example, it has been clarified
that cause-specific hazards do not have a desirable causal effect interpretation (Robins
1986; Young et al. 2020; Aalen et al. 2015; Martinussen et al. 2020; Hernán 2010;
Stensrud and Hernán 2020; Stensrud et al. 2022).

The importance of characterizing the causal interpretation of statistical estimands is
increasingly acknowledged both within and outside of the academic causal inference
community (EuropeanMedicinesAgency 2020). In a series of articles by theRecurrent
Event QualificationOpinion Consortium (Schmidli et al. 2021;Wei et al. 2021; Fritsch
et al. 2021), six candidate causal estimands were proposed in recurrent event settings
with competing events, defined by counterfactual contrasts under different treatment
scenarios in the following: (1) the expected number of events in the study population;
(2) the expectation over a composite of the recurrent and competing events in the study
population; (3) the expected number of events under an intervention which prevents
the competing event from occurring in the study population; (4) the expected number
of events in a subset of the study population consisting of the principal stratum of
individuals that would survive regardless of treatment; (5) the ratio of the expected
number of recurrences to the restricted mean survival by the end of follow-up in the
study population and (6) the ratio of the expectation over a composite of the recurrent
and competing events to the restricted mean survival by the end of follow-up in the
study population.

In addition to defining these various counterfactual estimands, Schmidli et al.
(2021) considered some aspects of their differences in interpretation, as well as, for
some of the estimands, approaches to statistical analysis. However, they did not con-
sider assumptions needed to identify any of these counterfactual estimands in a given
study with a function of the observed data. Once a causal estimand is chosen, this
identification step is required to justify a choice of approach to statistical analysis.
Furthermore, Schmidli et al. (2021) did not consider how underlying questions about
treatment mechanism may be important to the choice of estimand in recurrent events
studies when treatment has a causal effect on competing events, as illustrated in the
example above.

In thiswork,we formalize the interpretation, identification and estimation of various
counterfactual estimands in recurrent event settingswith competing events using coun-
terfactual causal models (Robins 1986; Pearl 2009; Richardson and Robins 2013b;
Robins and Richardson 2011; Robins et al. 2020). Building on ideas in Young et al.
(2020) and Stensrud et al. (2020) for the case where the outcome of interest is an inci-
dent event (e.g. diagnosis of prostate cancer), we show that several of these estimands
in recurrent event settings can be interpreted as special cases of causal effects from
the mediation literature—total, controlled direct, and separable effects—by concep-
tualizing the competing event as a time-varying “mediator” (Robins and Greenland
1992; Robins and Richardson 2011; Robins et al. 2020). We give identification con-
ditions and derive identification formulas for these estimands and demonstrate how
single world intervention graphs (SWIGs) (Richardson and Robins 2013b) can be
used to reason about identification conditions with subject matter knowledge. Our
results will also formalize the counterfactual interpretation of statistical estimands for
recurrent events from the counting process literature (Cook and Lawless 2007; Ander-
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sen et al. 2019), which has not adopted a formal causal (counterfactual) framework
for motivating results.

The article is organized as follows. In Sect. 2, we present the structure of the
observed data, without the complication of loss to follow-up. In Sect. 3, we define
and describe several causal estimands for recurrent events in settings with competing
events. In Sect. 4 we give our own prescription for choosing an appropriate causal
estimand for recurrent outcomes. In Sect. 5, we consider how to treat the censoring of
events, including by loss to follow-up. In Sect. 6 we discuss identifiability conditions
and give identification formulas for the proposed causal estimands. Furthermore, we
demonstrate the convergence of discrete time estimands to continuous time estimands,
and establish the correspondence between the discrete time identification conditions
and the classical independent censoring assumption in event history analysis.2 In
Sect. 7, we describe statistical methods for the proposed estimands, and establish
conditions for their consistency. InSect. 8,we illustrate our results using a data example
on acute kidney injury under blood pressure treatment. Finally, in Sect. 9, we provide
a discussion.

2 Factual data structure

Consider a randomized trial, like SPRINT, where i ∈ {1, . . . , n} i.i.d. individuals
with elevated risk of cardiovascular disease were randomized to intensive versus stan-
dard blood pressure lowering therapy A ∈ {0, 1} (0 indicates assignment to standard
treatment, 1 assignment to intensive treatment). Because the individuals are i.i.d., we
suppress the subscript i . Let k ∈ {0, . . . , K + 1} denote K + 2 consecutive ordered
intervals of time comprising the follow-up (e.g. days,weeks,months)with time interval
k = 0 corresponding to the interval of treatment assignment (baseline) and k = K +1
corresponding to the last possible follow-up interval, beyond which no information
has been recorded. Without loss of generality, we choose a timescale such that all
intervals have a duration of 1 unit of time until Sect. 6.4.

Let Yk ∈ {0, 1, 2, . . . } denote the cumulative count of acute kidney injury episodes
by the end of interval k and Dk ∈ {0, 1} an indicator of death by the end of interval k.
Define D0 ≡ Y0 ≡ 0, that is, individuals are alive and have not yet experienced any
post-treatment recurrent events at baseline. Let L0 be a vector of baseline covariates
measured before the treatment assignment A, capturing pre-treatment common causes
of acute kidney injury and death. For k > 0, let Lk ∈ L denote a vector of time-
varying covariates measured in interval k, containing the most recent blood pressure
measurements.3

2 While these results are shown for recurrent event outcomes, they also apply to themore classical competing
event setting described in Young et al. (2020), which constitutes a special case of the current work.
3 Our presentation focuses on intention-to-treat effects by defining A as an indicator of baseline assignment
to a particular treatment arm. Our results trivially extend to accommodate effects of adherence to a particular
protocol at baseline by instead taking A to be the actual treatment strategy followed at baseline and by
including common causes of treatment adherence, acute kidney injury and death in L0. In either case,
indicators of time-varying adherence to the protocol may be important to include in Lk , k > 0, for the
purposes of identification to be discussed in later sections.
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Fig. 1 An example of a possible
causal model describing the
Systolic Blood Pressure
Intervention Trial (SPRINT
Research Group 2015), where
individuals are randomized to
intensive versus standard blood
pressure therapy. The trial
outcomes are recurrent episodes
of acute kidney injury (Yk ) and
survival (Dk )

Yk

Dk Dk+1

Yk+1

AL0 Lk−1

The history of a random variable through k is denoted by an overbar (i.e. Y k ≡
(Y0, . . . , Yk) and Lk ≡ (L0, . . . , Lk)) and future events are denoted by underbars (i.e.
Dk ≡ (Dk, . . . , DK+1)).

We assume no loss to follow-up until Sect. 5, and we assume that variables are tem-
porally (and topologically4) ordered as Dk, Yk, Lk within each follow-up interval. We
adopt the notational convention that any variable with a negative time index occurring
in a conditioning set is taken to be the empty set ∅ (e.g. P(A = a|L−1, B) = P(A =
a|B) for an event B).

An individual cannot experience recurrent events after a competing event, such as
death, has occurred: if an individual experiences death at time k†, then Y j = Yk†−1 and
D j = 1 for all j ≥ k†. Thus, the type of outcome that is the focus of this manuscript
is defined in the factual data after death occurs. This is in contrast to what we will
refer to as a ’truncation by death’ setting, where the outcome of interest is undefined
after an individual experiences the competing event (Young et al. 2020; Young and
Stensrud 2021; Stensrud et al. 2021b, 2022). For example, when the outcome of
interest is quality of life in cancer patients, this is only defined for individuals who
are alive unless the investigator chooses to assign an arbitrary quality of life value to
dead individuals. Ultimately, the true distinction between a “competing event” setting
(where outcomes are defined as absent post-death) and a “truncation by death” setting
comes down to the estimands that the investigator is willing to consider. When the
outcome is undefined after death then certain estimands will not be available that are
available when such outcomes are defined (Young and Stensrud 2021). We consider
this further in Sect. 3.

In what follows, we will use causal directed acyclic graphs (Pearl 2009) (DAGs)
to represent underlying data generating models. We assume that the DAG represents
a Finest Fully Randomized Causally Interpreted Structural Tree Graph (FFRCISTG)
model (Robins 1986; Richardson and Robins 2013b). Furthermore, we will assume
that statistical independencies in the data are faithful to the DAG (see Appendix D
for the definition of faithfulness that we adopt here). An example of a DAG, encoding
a set of possible assumptions on the data generating model for the trial in the data
example described in Sect. 1 is shown in Fig. 1.

4 A topological order is a linear ordering of nodes in a graph from first to last.
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3 Counterfactual estimands

In this section, we consider various counterfactual estimands in settings with recurrent
and competing events. We propose extensions of previously considered counterfac-
tual estimands that quantify causal effects on incident failure in the face of competing
events (Stensrud et al. 2020; Young et al. 2020; Stensrud et al. 2021a) to the recurrent
events setting. This includes a new type of separable effect, inspired by the seminal
decomposition idea of Robins and Richardson (2011), that may disentangle the treat-
ment effect on recurrent acute kidney injury from its effect on survival.We also discuss
additional counterfactual estimands in recurrent event settings.

We denote counterfactual random variables by superscripts, such that Y a
k is the

recurrent event count that would be observed at time k had, possibly contrary to fact,
treatment been set to A = a. By causal effect, we mean a contrast of some functional
(e.g. the mean) of the counterfactual distribution in the same subset of individuals.

3.1 Total effect

The counterfactual marginal mean number of recurrent events by time k under an
intervention that sets A to a is

E[Y a
k ] for k ∈ {0, . . . , K + 1} .

In turn, the counterfactual contrast

E[Y a=1
k ] vs. E[Y a=0

k ] (1)

quantifies a causal effect of treatment assignment on the mean number of recurrent
events by k. Schmidli et al. (2021) referred to this effect as the ’treatment policy’
estimand.However, in order to understand the interpretational implications of choosing
this effect measure when competing events exist, it is important to understand that (1)
also coincides with an example of a total effect as historically defined in the causal
mediation literature (Robins and Greenland 1992; Young et al. 2020).

In our running example, the total effect quantifies the effect of intensive versus
standard blood pressure treatment (A) on recurrent acute kidney injury (Yk) through all
causal pathways, including pathways through survival (Dk), as depicted by all directed
paths connecting A and Y nodes intersected by D nodes in the causal diagram in Fig. 1
(Young et al. 2020). Therefore, a non-null value of the total effect is not sufficient to
conclude that the treatment exerts direct effects on acute kidney injury (outside of
death): the total effect may also (or only) be due to an (indirect) effect on survival,
keeping individuals at risk of acute kidney injury for a longer (or shorter) period of time.

In addition to the total effect on recurrent acute kidney injury (Yk ),wemight consider
the total (marginal) effect of treatment on survival, given by the marginal contrast in
cumulative incidences

E[Da=1
k ] vs. E[Da=0

k ] . (2)
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However, simultaneously considering the total effect of treatment on acute kidney
injury and on survival is still insufficient to determine by which mechanisms the treat-
ment affects acute kidney injury and death. For example, suppose that individuals in
treatment arm A = 1 experience the competing event shortly after treatment initiation.
In this case, no recurrent events would be recorded in this treatment arm. Clearly, in
this setting it would not be possible for an investigator to draw any conclusions about
themechanism bywhich treatment acts on the recurrent event outside of the competing
event.

3.2 Controlled direct effect

Following Robins and Greenland (1992), consider the counterfactual mean number
of events under an intervention that prevents the competing event from occurring and
sets treatment to A = a,

E[Y a,d=0
k ] for k ∈ {0, . . . , K + 1} ,

where the overline in the superscript denotes an intervention on all respective inter-

vention nodes in the history of the counterfactual, i.e. Y a,d=0
k ≡ Y a,dk=0

k .
In turn, the counterfactual contrast

E[Y a=1,d=0
k ] vs. E[Y a=0,d=0

k ] (3)

quantifies a causal effect of treatment assignment on the mean number of recurrent
events by k under an additional intervention that somehow “eliminates competing
events”. Schmidli et al. (2021) referred to this effect as the ’hypothetical strategy’
estimand. However, it is useful to notice that the effect (3) coincides with an example
of a controlled direct effect as defined in the causal mediation literature (Robins and

Greenland 1992; Young et al. 2020). The quantity E[Y a,d=0
k ] is closely related to the

survival function under the elimination of competing events, as discussed in the early
competing events literature by e.g. Tsiatis (1975); Prentice et al. (1978); Putter et al.
(2007), although without using a formal causal framework.

In our example, the controlled direct effect isolates direct effects of treatment on
recurrent acute kidney injury by considering a (hypothetical) intervention which pre-
vents death from occurring in all individuals. An important reservation against the
controlled direct effect is that it is often difficult to conceptualize an intervention
which prevents the competing event from occurring (Young et al. 2020). For exam-
ple, there exists no practically feasible intervention that can eliminate death due to all
causes. Without clearly establishing the intervention being targeted, the interpretation
of the direct effect is ambiguous and its role in informing decision-making is unclear.
The unclear role of the controlled direct effect in decision-making was reiterated
by Schmidli et al. (2021) in their discussion of the ’hypothetical strategy’, although
the authors did not discuss the role of the estimand in clarifying the mechanism by
which treatment affects the outcome.
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3.3 Separable effects

Following Robins and Richardson (2011) Robins et al. (2020) and Stensrud et al.
(2020, 2022), we will define an actionable notion of direct (indirect) effects that
refers to an intervention that might be implemented currently or in the future. These
effects require that the investigator pose candidates for modified versions of the study
treatment, denoted AY and AD , with the following properties: let MY and MD be
two random variables, and suppose that the following conditions hold for the original
treatment A and the modified treatments AY , AD:

All effects of A, AY and AD on Yk and Dk, k ∈ {0, . . . , K }, are intersected
by MY or MD, and

MaY =a,aD
Y = Ma

Y for aD ∈ {0, 1} ,

MaY ,aD=a
D = Ma

D for aY ∈ {0, 1} . (4)

"Intersection" refers to the paths in the respective causal DAG. Assumption (4) is
referred to as the modified treatment assumption and is discussed in Stensrud et al.
(2022). According to (4), receiving AY = AD = a results in the same outcomes as
receiving A = a for a ∈ {0, 1}. While a physical treatment decomposition is one
way in which assumption (4) may hold, it may also hold for modified treatments
that are not a physical decomposition (Stensrud et al. 2021a, 2022). The modified
treatment assumption (4) can in principle be falsified in a future six-armed trial where
individuals are exposed to A, AY , AD ∈ {0, 1} once the modified treatment becomes
available (Stensrud et al. 2022).

In the case of a decomposition, an individual receiving AY = AD = 0 has received
the same treatment as A = 0 (assignment to neither of the treatment components) and
an individual receiving AY = AD = 1 the same treatment as A = 1 (assignment to
both treatment components). Themarginalmeannumber of events under a hypothetical
intervention where we jointly assign AY = aY and AD = aD for any combination of
aD ∈ {0, 1} and aY ∈ {0, 1}, possibly such that aY �= aD is

E[Y aY ,aD
k ] for k ∈ {0, . . . , K + 1} .

Contrasts of this estimand for different levels of AY and AD constitute particular
examples of separable effects (Stensrud et al. 2020, 2021a), a type of interventionist
mediation estimand (Robins and Richardson 2011; Robins et al. 2020; Didelez 2019).
For example, the separable effect of AY evaluated at AD = 0 is

E[Y aY =1,aD=0
k ] vs. E[Y aY =0,aD=0

k ] for k ∈ {0, . . . , K + 1} . (5)

Expression (5) quantifies the effect of only treating with the AY component versus
neither of the components.

These estimands correspond to the effects of joint interventions on candidate mod-
ified treatments AY and AD , even when the modified treatment assumption (4) does
not hold. However, the modified treatment assumption (4) is sufficient in order for the
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separable effects to explain the mechanism by which the original treatment A exerts
its effects on the recurrent outcome (Stensrud et al. 2021a, Appendix A).

Returning to the data example, a well-known biological effect of angiotensin con-
verting enzyme inhibitors (ACE) and angiotensin II receptor blockers (ARB) (two
common antihypertensive medications) is that they reduce the renal filtration pres-
sure by binding to receptors in the kidneys which dilate efferent glomerular arterioles,
which in turn can lead to a substatial drug-induced fall in kidney function (Brunton
et al. 2018). In light of this, drug developers and doctors could be interested in the
effect of a hypothetical modified version of an antihypertensive drug, which preserves
its effects on systemic blood pressure but does not lead to dilation of efferent glomeru-
lar arterioles. In principle, such a modified drug might have similar cardioprotective
effects as the original antihypertensive agent, but without the harmful side-effect that
can lead to acute kidney injury.

This working background knowledge on the mechanisms by which the study treat-
ment affects recurrent acute kidney injury and competing events allows us to pose
candidates for AY and AD in this example and, as we will discuss further below,
interpret separable effects in terms of direct, indirect, or path-specific effects of A.
Specifically, the modified treatment assumption is conceivable in this example by
defining AY to be the component of blood pressure therapy that binds to efferent
arterioles in the kidneys, causing their dilatation (MY ), and AD as the remaining com-
ponents of the treatment, including those that exert their effects by lowering systemic
blood pressure (MD). Thus, AY and AD are the treatment levels of these two com-
ponents under intensive versus standard therapy respectively. A further discussion of
this decomposition of blood pressure therapy into the aforementioned AY and AD

components is given in Stensrud et al. (2021a).
Additional assumptions or isolation conditions (Stensrud et al. 2021a), are then

required in order to interpret any given separable effect as a direct, indirect, or other-
wise path-specific effect of the original study treatment: if the AY component has no
effect on survival, then E[Y aY =1,aD

k ] vs. E[Y aY =0,aD
k ] captures exclusively the effect

of the AY component on acute kidney injury not mediated by survival. We can for-
malize this statement using the condition of strong AY partial isolation, inspired by
Stensrud et al. (2021a):

A treatment decomposition satisfies strong AY partial isolation if

There are no causal paths from AY to Dk for all k ∈ {0, . . . , K + 1} . (6)

Under strong AY partial isolation, (5) captures only treatment effects on the recurrent
event not via treatment effects on competing events, and is therefore a direct effect.
In our example on blood pressure treatment, strong AY partial isolation likely fails,
as acute kidney injury may in and of itself increase the risk of death, and therefore
effects through the path AY → Y j → Dk> j cannot be ruled out.

Consequently, (5) also captures effects of AY on Yk via Dk , and therefore cannot
be interpreted as a direct effect outside of Dk .

Another isolation condition, AD partial isolation, allows us to interpret separable
effects as indirect effects of treatment on the recurrent outcome via effects on survival.
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A brief account of the isolation conditions is given in Appendix B, and is discussed in
detail for the competing events setting in Stensrud et al. (2021a). If we had access to
a four arm randomized trial where individuals are observed under all four treatment
combinations (AY , AD) ∈ {0, 1}2, and there is no loss to follow-up, these effects
could easily be identified and estimated by two-way comparisons of the four different
treatment combinations. Such two-way comparisons would also allow the strong AY

partial isolation condition (6) to be tested: in particular, a non-null value of the two-
way comparison E[DaY =1,aD

k ] vs. E[DaY =0,aD
k ] implies a violation of (6). Conversely,

inspection of the contrast E[Y aY ,aD=1
k ] vs. E[Y aY ,aD=0

k ] can strengthen or weaken our
belief in the AD partial isolation condition, although cannot be used to falsify the
assumption. Because we only observe two of the four treatment combinations in the
trial described in Sect. 2, namely AY = AD = 1 and AY = AD = 0, the separable
effects target effects that require identifying assumptions beyond those that hold by
design in this two arm trial. We will consider these assumptions in Sect. 6.3.

3.4 Estimands with composite outcomes

Schmidli et al. (2021) proposed the estimands

E[Y a
k ]

E[μa
k ] for k ∈ {1, . . . , K + 1} , (7)

E

[
Y a

k

μa
k

]
for k ∈ {0, . . . , K + 1} , (8)

where μa
k = ∑k

i=0 I (Da
i = 0) is the counterfactual restricted survival under an

intervention that sets treatment to a.5 Expressions (7)–(8) differ subtly: (8) is the
mean of a ratio and implicitly reflects the association between recurrent and competing
events, whereas any information about this association is erased by (7), which is a ratio
of means. Schmidli et al. (2021) referred to (7) as the ‘while alive strategy’ estimand.
A contrast in (7)–(8) under different levels of a captures both treatment effects on
acute kidney injury and on the competing event.

Different types of composite outcomes have also been suggested. For exam-
ple, Schmidli et al. (2021) described the estimand

E
[
I (Da

k = 0) + Y a
k

]
,

which could also be extended bymultiplying Da
k or Y a

k by aweight. Likewise, Claggett
et al. (2018) introduced a reverse counting process, which can be formulated as

E

⎡
⎣ M∑

j=1

I (Y a
k < j)I (Da

k = 0)

⎤
⎦

5 In continuous time, the restricted survival can be written as
∫ t
0 I (T D ≥ s)ds, where T D is the time of the

competing event. Taking the expectation gives
∫ t
0 S(s)ds for survival function S(t), which is the restricted

mean survival in continuous time (Aalen et al. 2008).
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for recurrent outcomes. The estimand is the expectation over a counting process which
starts at M and decrements in steps of one every time the recurrent event occurs. If
the terminating event occurs, the process drops to zero.

There are common limitations to all estimands in this subsection:

(I) Neither can be used to draw formal conclusions about the mechanism by which
the treatment affects the recurrent event and the event of interest for the same
reason as the total effect (Sect. 3.1).

(II) The estimands (implicitly or explicitly) assign weight to the competing and
recurrent events by combining them into a single effect measure. However, the
choice of ’weights’ is not obvious and can differ on a case-by-case basis.

(III) The estimands represent a coarsening of the information in the cumulative
incidence and mean frequency, and therefore provide less information than
simultaneously inspecting the mean frequency of acute kidney injury and the
cumulative incidence of death. Inspecting the mean frequency and cumulative
incidence curves separately gives the additional advantage of showing the (abso-
lute) magnitude of each estimand separately as functions of time, which is not
visible from the composite estimand alone.

Points (I)–(III) also apply to composite estimands in settings with truncation by death.

3.5 Estimands that condition on the event history

The counterfactual intensity of the recurrent event process is defined as

E[Y a
k+1 − Y a

k | L
a
k , Y

a
k , D

a
k , A] for k ∈ {0, . . . , K + 1} . (9)

Expression (9) is a discrete time intensity of Y a
k , conditional on the past history of

recurrent events and measured covariates. One could then consider contrasts such as

E[Y a=1
k+1 − Y a=1

k | L
a=1
k = lk, Y

a=1
k = yk, D

a=1
k = 0, A = 1]

vs.

E[Y a=0
k+1 − Y a=0

k | L
a=0
k = lk, Y

a=0
k = yk, D

a=0
k = 0, A = 0] . (10)

However, because (9) conditions on the history of the recurrent event process up to time
k, (10) generally cannot be interpreted as a causal effect, even though it is a contrast of
counterfactual outcomes. This is because it compares different groups of individuals—
thosewith a particular recurrent event and covariate process history under a = 1 versus
those with that same history under a = 0. Thus, a nonnull value of (10) does not imply
that A has a nonnull causal effect on Y at time k. This is analogous to the difficulty in
causally interpreting contrasts of hazards for survival outcomes, and has already been
discussed extensively in the literature (Robins 1986; Young et al. 2020; Martinussen
et al. 2020; Hernán 2010; Stensrud and Hernán 2020; Stensrud et al. 2022).

An alternative estimand is the expanded notion of separable effects called condi-
tional separable effects (Stensrud et al. 2022), where consideration of causal effects
is restricted to a particular subset of “survivors” (Stensrud et al. 2022). When strong

123



70 M. Janvin et al.

AY partial isolation holds, the conditional separable effect evaluated at AD = aD is
defined as the contrast

E[Y aY =1,aD
k | DaD

k = 0] vs. E[Y aY =0,aD
k | DaD

k = 0] .

Unlike (10), the conditional separable effect can be interpreted as a contrast of
counterfactual outcomes in the same subset of individuals. Like themarginal separable
effects discussed in Sect. 3.3, the conditional separable effects rely on assumptions
that are testable in a future randomized trial (Stensrud et al. 2022). However, the
conditional separable effects require the assumption of strong AY partial isolation in
order to be well-defined, which is not required by the marginal separable effects. The
conditional separable effects can be used even if the investigator considers the outcome
of interest to be ill-defined after the competing event.

3.6 Principal stratum estimand

Schmidli et al. (2021) also considered the principal stratum estimand

E[Y a
k | Da=0

k = 0, Da=1
k = 0] for k ∈ {0, . . . , K + 1} , (11)

which is closely related to the conditional separable effect. Contrasts of (11), given by

E[Y a=1
k | Da=0

k = 0, Da=1
k = 0] vs. E[Y a=0

k | Da=0
k = 0, Da=1

k = 0] ,

correspond to principal stratum effects, e.g. the survivor average causal effect (Robins
1986; Frangakis and Rubin 2002; Schmidli et al. 2021). Identification of (11) was also
considered by Xu et al. (2022) in the semi-competing events setting. The principal
stratum estimand targets an unknown subset of the population (Robins 1986; Robins
et al. 2007; Joffe 2011; Dawid and Didelez 2012; Stensrud et al. 2020; Stensrud and
Dukes 2022). In cases where this subset is small, or non-existent, the principal stratum
effects may play an unclear role in decision-making. Integrally linked to the unknown
nature of the population to whom a principal stratum effect refers, this estimand
depends on cross-world independence assumptions for identification that can not be
falsified in any real-world experiment, in contrast to the (conditional) separable effects.

3.7 Natural direct effect

The natural (pure) direct effects, originally described by Robins and Greenland (1992)
and later reconsidered by Pearl (2001), give another way of defining treatment effects
on the recurrent outcome which do not capture the effect on the competing event. One
way of doing so is through the contrast

E

[
Y

a=1,Da=0
k

k

]
vs. E

[
Y

a=0,Da=0
k

k

]
.

Like the controlled direct effect, the natural direct effect also requires the concep-
tualization of an intervention on the competing event.
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Recentwork has also considered identification of path specific effectswhich capture
direct and indirect effects through longitudinal mediators (Vansteelandt et al. 2019;
Mittinty and Vansteelandt 2020) as well as natural effects formulated using random
interventions on longitudinal mediators (Zheng and van der Laan 2017).

4 Choosing an estimand

The choice of estimand for a particular problem must be motivated by subject matter
arguments. When there is no subject matter support for a causal effect of the treatment
on the competing event (i.e. there are no directed arrows from A into Dk at any k) or
when this mechanism does not create ambiguities with regard to mechanisms of the
treatment then the total effect may be enough.

However, if treatment effects on the competing event could create mechanisms that
lead to an ambiguous interpretation of the total effect, then other estimands may help
supplement information quantified by the total effect.Unlike other proposals for effects
to quantify treatment mechanism outlined above, strong assumptions are required to
even define the separable effects, putting aside even the issue of identifying them in
the study data in hand, and to ascribe them a particular mechanistic interpretation.
Unfortunately, the alternative estimands provided do not avoid such assumptions but
rather bury them: for example, an estimate obtained from a real-world study of a
controlled direct effect defined relative to an ill-defined intervention on death, or a
natural effect defined relative to setting death to a cross-world unobservable value, can
never be refuted in the future without additional assumptions on par with the modified
treatment assumption/isolation conditions required to understand a separable effect.
The required transparency for proceeding with a separable effects analysis can, and in
our view should, be viewed as a benefit of this approach: it shines needed light on the
reality that using real-world data to answer mechanistic questions is hard and requires
detailed assumptions about how the study treatment works. When an investigator is
lacking that knowledge, the solution should not be to revert to untestable questions but
to acknowledge the need for more time and thought to sharpen hypotheses. In such
cases, one may proceed with a total effect, acknowledging its mechanism is not yet
understood. Alternatively, one may proceed with considering separable effects for yet
to be elucidated candidates AY and AD . Such an approach is arguably no more vague
than previous (in)direct effect notions but, unlike those former notions, has a hope of
being sharpened as more knowledge develops.

Finally, the identifying functions for separable effects coincides with those for
certain path specific effects in certain settings, including those where full isolation
holds. Thus, numerous advancements in statistics for path specific effects, such as
natural effects, can still be leveraged for estimation of separable effects (see for
example Zheng and van der Laan 2017; Vansteelandt et al. 2019).
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5 Censoring

DefineCk+1, k ∈ {0, . . . , K } as an indicator of loss to follow-up by k +1 such that, for
an individual with Ck = 0, Ck+1 = 1, the outcome (and covariate) processes defined
in Sect. 2 are only fully observed through interval k. Loss to follow-up (e.g. due to
failure to return for study visits) is commonly understood as a form of censoring. We
adopt a more general definition of censoring from Young et al. (2020) which captures
loss to follow-up but also possibly other events, depending on the choice of estimand.

Definition 1 [Censoring, Young et al. (2020)] A censoring event is any event occur-
ring in the study by k + 1, for any k ∈ {0, . . . , K }, that ensures the values of all
future counterfactual outcomes of interest under a are unknown even for an individual
receiving the intervention a.

Loss to follow-up by time k is always a form of censoring by the above definition.
However, other eventsmay ormay not be defined as censoring events depending on the
choice of causal estimand. For example, competing events are censoring events by the
above definition when the controlled direct effect is of interest, but are not censoring
events when the total effect is of interest (Young et al. 2020). This is because the

occurrence of a competing event at time k† prevents knowledge of Y a,d=0
k†

, but does not
prevent knowledge of Y a

k†
. By similar arguments, competing events are not censoring

eventswhen separable effects are of interest because they do not involve counterfactual
outcomes indexed by d = 0 ("elimination of competing events").When loss to follow-
up is present in a study, we will define all effects relative to interventions that include
“eliminating loss to follow-up” with the added superscript c = 0 to denote relevant
counterfactual outcomes, e.g. Y c=0

k . For example, if loss to follow-up is due to the
administrative end of a study, the intervention that eliminates loss to follow-up could
be conceived as the hypothetical continuation of the study such that every individual
is followed until the end of interval K + 1. Contrasts of such effects are examples
of controlled direct effects with respect to interventions on loss to follow-up. The
identification assumptions outlined below are sufficient for identifying estimands with
this additional interpretation. Young et al. (2020) discuss additional assumptions that
would allow an interpretation without this additional intervention on loss to follow-up.
In Sect. 6.4, we establish the correspondence between the notion of censoring adopted
in this article and the classical independent censoring assumption in event history
analysis.

6 Identification of the causal estimands

In this section, we give sufficient conditions for identifying the total, controlled direct
and the separable effects as functionals of the observed data. Proofs can be found in
Appendix C. Identification of estimands in Sects. 3.5–3.7 is beyond the scope of this
work.
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6.1 Total effect

Consider the following conditions for k ∈ {0, . . . , K }:
Exchangeability

Y
a,c=0
K+1 ⊥⊥ A|L0 , (12)

Y a,c=0
k+1 ⊥⊥ Ca,c=0

k+1 |La,c=0
k , Y

a,c=0
k , D

a,c=0
k , C

a,c=0
k , A . (13)

Assumption (12) states that the baseline treatment is unconfounded given L0. This
holds by design with L0 = ∅ when treatment assignment A is (unconditionally)
randomized, such as in the blood pressure trial considered in our running example.
Assumption (13) states that the censoring is unconfounded. As we will discuss in
Sect. 6.4, this assumption is closely related to the independent censoring assumption
in survival analysis.

Positivity

P(L0 = l0) > 0 	⇒ P(A = a | L0 = l0) > 0 , (14)

f A,Lk ,Dk ,Ck ,Y k
(a, lk, 0, 0, yk) > 0

	⇒ P(Ck+1 = 0 | A = a, Lk = lk, Dk = 0, Ck = 0, Y k = yk) > 0 . (15)

Assumption (14) states that for every level of the baseline covariates, there are some
individuals that receive either treatment. Once again, this will hold by design in a
trial where A is assigned by randomization, such as in the data example. The second
assumption requires that, for any possible observed level of treatment and covariate
history amongst those remaining alive and uncensored through k, some individuals
continue to remain uncensored through k + 1 with positive probability.

Consistency

If A = a and Ck+1 = 0,

then Lk+1 = L
a,c=0
k+1 , Dk+1 = D

a,c=0
k+1 , Y k+1 = Y

a,c=0
k+1 , Ck+1 = C

a,c=0
k+1 . (16)

Let �Xk = Xk − Xk−1 denote an increment of the process X . In Appendix C we
show that, under assumptions (12)–(16),

E[�Y a,c=0
i ] =

∑
�yi

∑
di

∑
li−1

i∏
j=0

�yi · P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1,�Y j−1 = �y j−1, A = a)

× P(D j = d j | C j = 0, L j−1 = l j−1,�Y j−1 = �y j−1, D j−1 = d j−1, A = a)
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× P(L j−1 = l j−1 | �Y j−1 = �y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2, A = a)

(17)

for intervals i ∈ {0, . . . , K +1}. Expression (17) is an example of a g-formula (Robins
1986). Another equivalent formulation is

E[�Y a,c=0
i ] = E

[
I (A = a)I (Ci = 0)

πA(A)
∏i

j=0 πC j (C j )
· �Yi

]
, (18)

where

πC j (•) = P(C j = • | C j−1, D j−1, L j−1, Y j−1, A) ,

πA(•) = P(A = • | L0) .

Expression (18) is an example of an inverse probability weighted (IPW) identification
formula (Robins and Rotnitzky 1992; Rotnitzky and Robins 1995; Hernán et al. 2000).
In turn, the total effect defined in (1) under an additional intervention that “eliminates
loss to follow-up” can be expressed as contrasts of

E[Y a,c=0
k+1 ] =

k+1∑
i=0

E[�Y a,c=0
i ]

for different levels of a with E[�Y a,c=0
i ] identified by (17) or (18). In the survival

setting, with support Yk ∈ {0, 1}, (17) corresponds to Expression (30) in Young et al.
(2020). A key difference from the survival setting is that the conditional probability of
new recurrent events now depends on the history of the recurrent event process, which
may take many possible levels, whereas in the survival setting considered by Young
et al. (2020), the terms of the relevant g-formula are restricted to those with fixed event
history consistent with no failure (Y k = 0). The identification formula for the total
effect on the competing event (2) is shown in Appendix C.

6.1.1 Graphical evaluation of the exchangeability conditions

In Fig. 2 we show a single world intervention graph (SWIG) for the intervention
considered under the total effect. This is a transformation (Richardson and Robins
2013b, a) of the causal DAG in Fig. 1, which also includes unmeasured variables
illustrating sufficient data generating models under which exchangeability conditions
(12)–(13) would be violated. In particular, (12)–(13) can be violated by the presence
of unmeasured confounders (common causes of treatment, loss to follow-up, and
outcomes) such as UAY or UCY in Fig. 2a. This is well-known from before, and
demonstrates how SWIGs can be used to reason about the identification conditions.

However, (12)–(13) are not violated by unmeasured common causes of the out-
comes Yk and Dk such as UY , UDY and UD in Fig. 2b, which we often expect to be
present in practice. Examples of common causes of recurrent events and death in the
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L0 La,c=0
k−1

UCY

UAY Y a,c=0
k Y a,c=0

k+1

Da,c=0
k Da,c=0

k+1

Ca,c=0
k ck = 0 Ca,c=0

k+1 ck+1 = 0

A a

a

L0 La,c=0
k−1

UY

UD

UDY

Y a,c=0
k Y a,c=0

k+1

Da,c=0
k Da,c =0

k+1

Ca,c=0
k ck = 0 Ca,c=0

k+1 ck+1 = 0

A a

b

Fig. 2 Identification of total effect. Unmeasured variables are denoted by U•. a shows unmeasured con-
founders (common causes of treatment, loss to follow-up, and outcomes), which violate the exchangeability
conditions (12)–(13) through the red paths: UAY violates (12) and UCY violates (13). b shows examples

of unmeasured effect modifiers, which are common in practice (arrows from UDY to Y a,c=0
k and Da,c=0

k
are not shown to reduce clutter). In the data example, common causes of D and Y could for example be
the previous history of cardiovascular disease and blood pressure history. The action of such unmeasured
effect modifiers, shown by blue paths, does not violate any of the exchangeability conditions (12)–(13)
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data example include prognostic factors related to disease progression such as pre-
vious cardiovascular disease history and blood pressure history, many of which are
measured in the observed data. In contrast, the controlled direct effect and separable
effects are not identified in the presence of open backdoor paths between recurrent
events and death, as we will see next.

6.2 Controlled direct effects

The identification of the (controlled) direct effect (3) proceeds analogously to the total
effect, with the main difference being that we also intervene to remove the occurrence
of the competing event. This amounts to re-defining the censoring event as a composite
of loss to follow-up and the competing event. The identification conditions then take
the following form for k ∈ {1, . . . , K }:

Exchangeability

Y
a,c=d=0
K+1 ⊥⊥ A|L0 , (19)

Y a,c=d=0
k+1 ⊥⊥ (Ca,c=d=0

k+1 , Da,c=d=0
k+1 )|La,c=d=0

k , Y
a,c=d=0
k , D

a,c=d=0
k , C

a,c=d=0
k , A .

(20)

Positivity

f A,Lk ,Dk ,Ck ,Y k
(a, lk , 0, 0, yk) > 0

	⇒ P(Ck+1 = 0, Dk+1 = 0 | A = a, Lk = lk , Dk = 0, Ck = 0, Y k = yk) > 0 . (21)

We also assume the positivity assumption (14), and a modified version of the consis-
tency assumption in (16) which requires us to conceptualize an intervention on the
competing event (see Appendix C for further details).

Under assumptions (20)–(21), an identification formula is given by

E[�Y a,c=d=0
i ] =

∑
�yi

∑
li−1

i∏
j=0

�yi · P(�Y j = �y j | D j = 0, C j = 0, L j−1 = l j−1,�Y j−1 = �y j−1, A = a)

× P(L j−1 = l j−1 | �Y j−1 = �y j−1, D j−1 = 0, C j−1 = 0, L j−2 = l j−2, A = a) ,

(22)

or equivalently by the IPW formula

E[�Y a,c=d=0
i ] = E

[
I (A = a)I (Ci = 0)I (Di = 0)

πA(A)
∏i

j=0 πC j (C j )πD j (D j )
· �Yi

]
, (23)
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L0 La,c=d=0
k−1

UY

UD

UAY

UDYUCY

Y a,c=d=0
k Y a,c=d=0

k+1

Da,c=d=0
k dk = 0 Da,c=d=0

k+1 dk+1 = 0

Ca,c=d=0
k ck = 0 Ca,c=d=0

k+1 ck+1 = 0

A a

UDU

Fig. 3 Identification of the (controlled) direct effect. In contrast to Fig. 2a and b, open backdoor paths

between Y and D, exemplified by the red path Da,c=d=0
k+1 ← UDY → Y a,c=d=0

k+1 , can violate exchange-
ability (20)

where we have defined

πD j (•) = P(D j = • | C j , D j−1, L j−1Y j−1, A).

For survival outcomes (Yk ∈ {0, 1}), (22) reduces to Expression (23) in Young et al.
(2020). In the absence of death and loss to follow-up and for randomized treatment
assignment, both the total effect (18) and controlled direct effect (23) reduce to E[�Yi |
A = a].

6.2.1 Graphical evaluation of the exchangeability conditions

Examples of unmeasured variables which violate the exchangeability conditions (19)–
(20) are shown in Fig. 3. Importantly, (20) is violated by open backdoor paths between

D andY , such as the path Da,c=0,d=0
k+1 ← UDY → Y a,c=0,d=0

k+1 through the unmeasured
common cause UDY . Therefore, the exchangeability assumption for the controlled
direct effect (20) is stronger than the exchangeability assumption for the total effect
(13). In the data example, we have measured several important common causes of
acute kidney injury and death, as we will see in Sect. 8.

6.3 Separable effects

We begin by assuming the following three identification conditions.
Exchangeability

(Y
a,c=0
K+1 , D

a,c=0
K+1 , L

a,c=0
K+1 ) ⊥⊥ A | L0 , (24)
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(Y a,c=0
k+1 , Da,c=0

k+1 , La,c=0
k+1 ) ⊥⊥ Ca,c=0

k+1 | Y
a,c=0
k , D

a,c=0
k , C

a,c=0
k , L

a,c=0
k , A . (25)

Expressions (24)–(25) imply the exchangeability conditions for total effect (12)–(13)
due to the decomposition rule of conditional independence.

Positivity

fLk ,Dk+1,Ck+1,Yk
(lk, dk+1, 0, yk) > 0 	⇒

P(A = a | Dk+1 = dk+1, Ck+1 = 0, Y k+1 = yk+1, Lk = lk) > 0 (26)

for all a ∈ {0, 1}, k ∈ {0, . . . , K } and Lk ∈ L. We also assume the positivity and
consistency assumptions (14)–(15) and (16). Expression (26) requires that for any
possibly observed level of measured time-varying covariate history amongst those
who remain uncensored through each follow-up time, there are individuals with A = 0
and A = 1.

Consider a setting where the AY and AD components are assigned independently
one at a time. We require the following dismissible component conditions to hold for
all k ∈ {0, . . . , K }:

Y c=0
k+1 ⊥⊥ AD | AY , D

c=0
k+1, Y

c=0
k , L

c=0
k , (27)

Dc=0
k+1 ⊥⊥ AY | AD, D

c=0
k , Y

c=0
k , L

c=0
k , (28)

Lc=0
Y ,k ⊥⊥ AD | AY , Y

c=0
k , D

c=0
k , L

c=0
k−1, Lc=0

D,k , (29)

Lc=0
D,k ⊥⊥ AY | AD, D

c=0
k , Y

c=0
k , L

c=0
k−1 , (30)

where we have supposed that Lk = (LY ,k, L D,k) consists of components LY ,k and
L D,k satisfying (29)–(30) respectively. Assumptions (27)–(30) express independen-
cies between quantities that are observable in a future four armed trial without loss
to follow-up, and can therefore be tested in such a trial. These conditions require that
L D,k captures all effects of AD on Y c=0

k+1, whereas LY ,k captures all effects of AY on
Dc=0

k+1. In the example on acute kidney injury discussed in Sect. 8, we suppose that
(27)–(30) hold with a set of baseline covariates L0, LY ,k = ∅ and L D,k given by the
latest blood pressure measurement by time k, which influences the cardiac risk and
also the perfusion of the kidneys. The implications and plausibility of this assumption
in the context of the data example are discussed in Sect. 7.4. Furthermore, Stensrud
et al. (2021a) describes a sensitivity analysis strategy for the dismissible component
conditions.
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Under the identification conditions for separable effects and the modified treatment
assumption (4), we have

E[�Y aY ,aD ,c=0
i ]

=
∑
�yi

∑
di

∑
li−1

i∏
j=0

�yi · P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, A = aY )

× P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = aD)

× P(LY , j−1 = lY , j−1 | L AD , j−1 = l AD , j−1, Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0,

L j−2 = l j−2, A = aY )

× P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2, A = aD) .

(31)

Expression (31) can also be written on IPW weighted form as

E[�Y aY ,aD ,c=0
i ] = E

⎡
⎣ I (A = aY )

πA(A)
· I (Ci = 0)∏i

j=0 πC j (C j )
·

∏i
l=0 π

aD
Dl∏i

m=0 π
aY
Dm

·
∏i−1

n=0 π
aD
L D,n∏i−1

q=0 π
aY
L D,q

· �Yi

⎤
⎦ ,

(32)

or

E[�Y aY ,aD ,c=0
i ] = E

⎡
⎣ I (A = aD)

πA(A)
· I (Ci = 0)∏i

j=0 πC j (C j )
·

∏i
l=0 π

aY
Yl∏i

m=0 π
aD
Ym

·
∏i−1

n=0 π
aY
LY ,n∏i−1

q=0 π
aD
LY ,q

· �Yi

⎤
⎦ .

(33)

Here, we have defined

π z
X j

= f z
X j

(X j ) where f z
X j

(x) = P(X j = x | HC,L,Y ,D
X j

, A = z) (34)

with z = aD, aY and HC,L,Y ,D
X j

being the history of C, L, Y , D prior to X j (i.e. the
subset containing all variables in {Ck, Lk, Yk, Dk : k = 0, . . . , K +1} that are ordered
topologically prior to X j ).

The identification formula for separable effects on the competing event with time-
varying covariates was first shown in Stensrud et al. (2021a) and can also be found in
Appendix C.

When full isolation holds, the identification formulas for separable effects are equal
to identification formulas derived for certain path-specific effects (Stensrud et al. 2022;
Robins andRichardson2011;Robins et al. 2020).Otherwise, natural direct and indirect
effects are not identified because time-varying blood pressuremeasurements Lk , which
are themselves affected by treatment, act as a recanting witness.
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6.3.1 Graphical evaluation of the identification conditions

The exchangeability conditions (24)–(25) can be evaluated in a similar way as for
the total effect in Fig. 2. However, identification of the separable effects also require
the dismissible component conditions to hold. These conditions can be evaluated
in a DAG representing a four armed trial where the AD and AY components can
be assigned different values (Stensrud et al. 2021a), shown in Fig. 4. Like for the
controlled direct effect, Lk must contain sufficient variables to block all backdoor
paths between D and Y in order for the dismissible component conditions to hold. In
particular, unmeasured common causes of D and Y such as UDY in Fig. 4 can violate
the dismissible component conditions.

6.4 Correspondence with continuous time estimands

Up to this section,wehave considered afixed timegridwhere the duration of each inter-
val is 1 unit of time. In this section we will consider limiting cases of the identification
results where we allow the grid-spacing to become arbitrarily small. Let the endpoints
of the intervals k ∈ {0, . . . , K + 1} correspond to times {0, t1, . . . , tK+1} ⊆ [0,∞).
As before, we assume the duration of all intervals is equal, and denote this by �t .

We can associate the counterfactual quantities considered thus far in discrete time
with corresponding quantities in the counting process literature. An overview of the
corresponding quantities is presented in Table 1. Here, we use the term ’factual quanti-
ties’ to denote variables that take their natural values, i.e. quantities that are not subject
to any counterfactual intervention (see Richardson and Robins (2013b) for a formal
definition of natural value). These are different from observed quantities, which only
contain the factual events that have been recorded in subjects that are under follow-up.

Importantly, quantities indexed by the superscript c = 0 are controlled direct effects
with respect to an intervention which eliminates loss to follow-up, and do not have
an analog in the existing counting process literature. This includes the quantity Cc=0

k ,
which is the counterfactual value of the censoring indicator for interval k under an
intervention that eliminates censoring in previous intervals.

6.4.1 Correspondence of identification conditions

In the counting process literature, it is usual (see e.g. Aalen et al. 2008 and Cook and
Lawless 2007, Expression 7.22) to identify the intensity of the complete (i.e. uncen-
sored) counting process as a function of the intensity of the observed (i.e. censored)
counting process, using the independent censoring assumption

λF c

t = λGt , (35)

where

λF c

t dt = E[d N c
t | Fc

t−] , Fc
t− = σ(Lu, A, N c

u , I (T D ≥ u); 0 ≤ u < t) ,

λGt dt = E[d N c
t | Gt−] , Gt− = σ(Lu, A, N c

u , I (T D ≥ u), I (C ≥ u); 0 ≤ u < t) .
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L0

Y c=0
k Y c=0

k+1

Dc=0
k Dc=0

k+1

Cc=0
k ck = 0 Cc=0

k+1 ck+1 = 0
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MAY

MAD

L0 UDY

WDY

Y c=0
k Y c=0

k+1

Dc=0
k Dc=0

k+1

Cc=0
k ck = 0 Cc=0

k+1 ck+1 = 0

AY

AD

a

b

Fig. 4 Graphical evaluation of the dismissible component conditions (27)–(28) when only baseline covari-
ates aremeasured. Examples of violations of the conditions are shown as red paths. aDismissible component
conditions can be violated by unmeasured mediators such as MAY and MAD : (27) is violated by the path

AD → MAD → Y c=0
k+1 and (28) is violated by the path AY → MAY → Dc=0

k+1. However, if MAY
and MAD were measured and included in LY and L D respectively, the dismissble conditions conditions
would hold. b Assumption (27) is violated by open backdoor paths between Y and D, such as the path
AD → Dc=0

k+1 ← UDY → Y c=0
k+1 , a collider path which opens when conditioning on Dc=0

k+1. Likewise, (28)

is violated by the path AY → Y c=0
k ← WDY → Dc=0

k+1

A corresponding formulation of (35) within the discrete time framework is

1

�t
· E[�Y j | D j , L j−1, Y j−1, A] = 1

�t
· E[�Y j | D j , C j , L j−1, Y j−1, A] .

(36)
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Table 1 Correspondence between discrete time quantities and continuous time quantities

Discrete quantity Quantity in the counting process literature

Counterfactual quantity Y c=0
k

Dc=0
k

Factual quantity Yk N c
tk

Dk I (T D ≤ tk )

Observed quantity Ck
∫ tk
0 I (T D ≥ t)dCt∑k

j=1 I (C j = 0)�Y j
∫ tk
0 I (C ≥ t)d N c

t∑k
j=1 I (C j = 0)�D j

∫ tk
0 I (C ≥ t)d I (T D ≤ t)

C and T D are the time of loss to follow-up and time of the competing event respectively, and Lt is the
process of measured covariates by time t . The use of the superscript c in the right column represents a
complete process, that is, a process where no individuals are lost to follow-up

We assume that the possibility of experiencing more than one recurrent event during
a single interval becomes negligible, i.e. �Y j ∈ {0, 1}, for fine discretizations. Thus,
for small �t , (36) is closely related to

1

�t
· P(�Y j = �y j | D j , L j−1, Y j−1, A)

= 1

�t
· P(�Y j = �y j | D j , C j , L j−1, Y j−1, A) . (37)

We show in Appendix D that when the random variables in (37) are generated
under an FFRCISTG model, and when consistency (16) and faithfulness hold, then
exchangeability with respect to censoring (13) is implied by (37). In plain English,
this result states that a discrete time analog of the independent censoring assumption
implies the absence of backdoor paths between Ca,c=0

i and Y a,c=0
j for all i ≤ j in

Fig. 2. However, the reverse implication does not follow, as effects of Ci on future
�Y j (i.e. the presence of a path Ci → �Y j for i ≤ j in a DAG) violates (37)
without violating (13). The path Ci → �Y j for i ≤ j could represent the presence
of concomitant care which affects the recurrent outcome, and the consequences of
such a path for the interpretation of discrete versus continuous time estimands are
clarified in Sect. 6.4.3. A similar correspondence of identification conditions exists
for the competing event (Robins and Finkelstein 2000), and is stated in Appendix D.

6.4.2 Correspondence of identification formulas

In this section, we consider identifying functionals in the limit of fine discretizations
of time. Justifications for the results are given in Appendix C.

In the limit of fine discretizations, E[Y a,c=0
k ] can be formulated as

∫ tk

0
�

s<u
[1 − d AD

s (a)] · E[WAWC,u−d Nu | C ≥ u, T D ≥ u, A = a] , (38)
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where

WC,t = �u≤t [1 − d�C
u ]

�u≤t

[
1 − d�

C|F
u

] , (39)

d AD
t (a) = P(T D ∈ [t, t + dt)|T D ≥ t, C ≥ t, A = a) and WA = P(A=a)

πA(A)
. In

this setting, �C
t and �

C|F
t are the compensators of N C with respect to FC,D,A

t and
F L,Y ,C,D,A

t , which heuristically means that

d�C
t = P(C ∈ [t, t + dt)|FC,D,A

t− ) , (40)

d�
C|F
t = P(C ∈ [t, t + dt)|F L,Y ,C,D,A

t− ) . (41)

Here, F B
t denotes the filtration generated by the collection of variables and processes

B. Expression (38) is equivalent to

∫ tk

0

E

[
I (A=a)I (C>u)

πA(A) �s<u(1−d�
C |F
s )

· d Nu

]

E

[
I (A=a)I (C>u)

πA(A) �τ<u(1−d�
C |F
τ )

] . (42)

The product-integral terms are covariate-specific survival functions with respect to
the censoring event. Expression (42) corresponds to Expression (7.29) in Cook and
Lawless (2007) and targets a setting commonly called ’dependent censoring’ in the
counting process literature.

Under the strengthened independent censoring assumption

C ⊥⊥ (N c
t , T D) | A , (43)

which implies (35) without any covariates (Lt = ∅), we have that WC,t = 1 with
Lt = ∅. Furthermore, in settings where treatment A is assigned by randomization, we
have that WA = 1. Consequently, (38) reduces to

∫ tk

0
�

u<t
[1 − d AD

u (a)]E
[
d Nu | T D ≥ u, C ≥ u, A = a

]
. (44)

Expression (44) corresponds to Expression (13) in Cook and Lawless (1997).
The controlled direct effect (with respect to interventions on the competing event)

can be viewed as a special case of the total effect, where 1) we re-define the censoring
event as a composite of loss to follow-up and the competing event, hence the censoring
indicator takes the form I (C ∧ T D ≤ t), and 2) we re-define the "competing" event
as an event that never occurs. Under 1) and 2), Expression (43) becomes

N c
t ⊥⊥ C ∧ T D | A , (45)
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and (44) reduces further to

∫ tk

0
E

[
d Nu | T D ≥ u, C ≥ u, A = a

]
. (46)

Expression (46) is the continuous time limit of the controlled direct effect (23) if (45) is
satisfied for fine discretizations. It corresponds to the quantity R(t) in Andersen et al.
(2019) and is described by Cook and Lawless (1997) as a measure of the expected
number of events for subjects at risk over the entire observation period, under the
condition that the recurrent event is independent of the competing event.

The continuous time limit of the identification formula for separable effects (32) is
given by

∫ tk

0
�

s<u
[1 − d AD

s (aY )]

× E
[
WAWC,u−WD,u−(aY , aD)WL D,u− (aY , aD)d Nu | C ≥ u, T D ≥ u, A = aY

]

and

∫ tk

0
�

s<u
[1 − d AD

s (aD)]

× E
[
WAWC,u−θY

u WY ,u−(aY , aD)WLY ,u− (aY , aD)d Nu | C ≥ u, T D ≥ u, A = aD

]
.

The weights WD(aY , aD) and WY (aY , aD) take the form

WD,t (aY , aD) = θ D
t · �u≤t

[
1 − d�

D|F
u (aD)

]

�u≤t

[
1 − d�

D|F
u (aY )

] ,

WY ,t (aY , aD) =
∏
s≤t

θY
s

�u≤t [1 − d�
Y |F
u (aY )]

�u≤t

[
1 − d�

Y |F
u (aD)

]

where the compensators �D|F and �Y |F are defined analogously to (41). �
D|F
u (a)

is understood as the random function �
D|F
u evaluated in the argument A = a

(and likewise for �
Y |F
u (a)). Furthermore, θ D

t =
(

d�
D|F
t (aD)

d�
D|F
t (aY )

)I (T D≤t)
and θY

t =(
d�

Y |F
t (aY )

d�
Y |F
t (aD)

)Nt −Nt−
.

The mathematical characterization of the limit WL D ,t (aY , aD) of
∏i

j=0 π
aD
L D, j

/∏i
k=0 π

aY
L D,k

, where π•
L D, j

is defined in (34), depends on what type of process L D is.
Many applications are covered when L D is a marked point process on a finite mark
space. That is, L D takes values in a finite number ofmarks but can jump betweenmarks
over time. We will assume L D is such a process in Sect. 7. The same considerations
also apply to the limitWLY ,t (aY , aD) of

∏i
j=0 π

aY
LY , j

/
∏i

k=0 π
aD
LY ,k

. These weights are
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Table 2 Amapping of common recurrent events estimands in the literature to their counterfactual definition
of risk

Definition Description Alternative terminology

E[Y a,c=0
k ] Expected event count without

elimination of competing events
Marginal mean (Cook and Lawless
1997), treatment policy
strategy (Schmidli et al. 2021)

E[Y a,d=0,c=0
k ] Expected event count with elimination of

competing events
Cumulative rate (Ghosh and Lin 2000;
Cook and Lawless 1997), hypothetical
strategy (Schmidli et al. 2021)

E[Y aY ,aD ,c=0
k ] Expected event count under a

decomposed treatment
Does not correspond to classical
estimands

The third row shows a new proposed estimand, the separable effects for recurrent events, based on Stensrud
et al. (2020)

closely related to themediationweights considered by Zheng and van der Laan (2017);
Mittinty and Vansteelandt (2020); Tchetgen Tchetgen (2013).

Finally, a product integral representation of the total effect on the competing event
is given in Appendix C.

In Table 2, we show an overview of the correspondence between the causal esti-
mands discussed in Sect. 6 and common estimands that appear in the statistical
literature.

6.4.3 Differences in interpretation

In the counting process formalism of recurrent events, N c
t is interpreted as the count of

events that would be measured if we somehow could observe every individual’s future
outcomes (for example by implanting a ’tracker device’), even if they withdraw from
study participation or otherwise discontinue follow-up. This is a factual (as opposed to
a counterfactual) quantity, because it is not subject to any counterfactual intervention
to eliminate censoring. Next, the observed counting process Nt is interpreted as the
number of events that were recorded while the subject was alive and under follow-up,
i.e. Nt = ∫ t

0 I (T D ≥ s, C ≥ s)d N c
s .

If study participants receive concomitant care by virtue of being under follow-up
(e.g. additional medical exams that can lead to discovery of new conditions which
trigger initiation of additional, supportive treatments), then individuals who are lost
to follow-up may have different outcomes N c

t compared to subjects under follow-
up due to the termination of such concomitant care. This violates the independent
censoring condition (35). Therefore, E[N c

t ] is not identified when concomitant care
under follow-up affects future outcomes N c

t without additional strong assumptions. In
other words, one cannot make inference on individuals who are censored (who do not
receive concomitant care) by only observing uncensored individuals (who do receive
concomitant care).

In contrast to N c
t , the counterfactual quantityY c=0

k is often interpreted as the number
of recurrent events that would be observed by time k under an intervention which
prevented individuals from being lost to follow-up, i.e. in a pseudopopulation where
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all individuals receive the same level of the primary intervention (A) and concomitant
care. E[Y c=0

k ] is still identified under effects of concomitant care on the recurrent event,

i.e. the arrows ck = 0 → Y a,c=0
k in Fig. 2 do not violate the exchangeability condition

(13). In the special casewhere concomitant care does not affect future recurrent events,
the interpretations of E[Y c=0

k ] and E[N c
tk ] coincide. Similar arguments are given by

Young et al. (2020), Sect. 5, for the incident event setting.

7 Estimation

The identification formulas in Sect. 6 motivate a variety of estimators that have been
presented in the literature; examples can be found in Young et al. (2020); Stensrud
et al. (2021a); Martinussen and Stensrud (2021).

In survival and event history analysis, researchers have traditionally been accus-
tomed to estimands and estimators defined in continuous time. We mapped out
correspondences between the discrete time identification formulas and their continu-
ous time limits in Sect. 6.4.2. Next, we will consider6 the following general estimator
in continuous time, applicable to several of the estimands considered above,⎛

⎝ Ŷt

Ŝt

D̂t

⎞
⎠ =

⎛
⎝0
1
0

⎞
⎠ +

∫ t

0

⎛
⎝Ŝs− 0 0

0 −Ŝs− 0
0 0 Ŝs−

⎞
⎠ d

⎛
⎝ B̂Y

s

B̂ D
s

B̂ D,w
s

⎞
⎠ . (47)

Here, Ŷt is an estimator of a counterfactual mean frequency function under interven-
tions of interest and Ŝt is an auxiliary quantity used to define the system in (47). Finally,
D̂t is an estimator of a counterfactual competing event process under interventions of
interest.

The stochastic differential equation (47) is uniquely determined by the integrators.
Thus, presenting different estimators on this form amounts to presenting different
integrators. We restrict the focus to the case with no tied event times in the remainder
of this section for ease of presentation.

7.1 Risk set estimators

Identification formulas of the form (38), where the integrator conditions on the at-risk
event {T D ≥ t, C ≥ t}, motivate the risk set estimators

⎛
⎝ B̂Y

t

B̂ D
t

B̂ D,w
t

⎞
⎠ =

n∑
i=1

∫ t

0

⎛
⎜⎜⎜⎜⎜⎜⎝

ˆ̄θ i
s R̂i

s− I (Ai =a)Zi
s∑n

j=1 I (A j =a)Z j
s

0

0
R̂i,D

s− I (Ai =a)Zi
s∑n

j=1 I (A j =a)Z j
s

0
ˆ̄θ i
s R̂i

s− I (Ai =a)Zi
s∑n

j=1 I (A j =a)Z j
s

⎞
⎟⎟⎟⎟⎟⎟⎠

d

(
N i

s

N D,i
s

)
, (48)

6 Instead of considering estimators defined in continuous time, it would also possible to construct estimators
targeting the discrete identification formulas in Sects. 6.1–6.3, similarly to Young et al. (2020) and Stensrud
et al. (2021a).
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where Zi
t = I (T D,i ≥ t, Ci ≥ t) is the at-risk process. Here, N i

t = N c,i
t∧Ci

is the

observed counting process for the recurrent event, N D,i
t = I (T D,i ≤ t, T D,i < Ci )

is the observed countingprocess for death, and R̂i , R̂i,D are estimatedweight processes

of individual i (see Table 3). The ˆ̄θ i terms, specified in Table 3, are needed when the
driving counting processes share jump times with the weights, which is the case for
some separable effects estimands, as seen in Sect. 6.4.2.

7.2 Horvitz–Thompson and Hajek estimators

Identification formulas of the form (42) (which coincides with the discrete time
formulas (18) in the case of the total effect, (23) for the controlled direct effect
and (32)–(33) for the separable effect) motivate Hajek estimators (Hajek 1971) and
Horwitz–Thompson estimators (Horvitz and Thompson 1952), which give the inte-
grators

⎛
⎝ B̂Y

t

B̂ D
t

B̂ D,w
t

⎞
⎠ = 1

n

n∑
i=1

∫ t

0

ˆ̄θ i
s R̂

i

s− I (Ai = a)

Hs−

⎛
⎝1 0
0 0
0 1

⎞
⎠ d

(
N i

s

N D,i
s

)
. (49)

In the above expression, Ht = 1
n

∑n
j=1 R̂

j

t I (A j = a) gives Hajek estimators, and

Ht = 1 gives Horvitz–Thompson estimators. R̂
i
is an estimated weight processes for

individual i (see Table 3). These estimators are closely related to previously studied
inverse probability weighted estimators (Robins and Rotnitzky 1992; Rotnitzky and
Robins 1995; Hernán et al. 2000) and proportional odds estimators (Zheng and van der
Laan 2017; Mittinty and Vansteelandt 2020; Tchetgen Tchetgen 2013).

The estimator defined by (47) may be unfamiliar to some practitioners, but it has
the following properties:

• The estimator is generic in the sense that, given weight estimators it can be used to
estimate the total effect, the controlled direct effect, and the separable effect, and
other composite estimands (e.g. the ‘while alive’ strategy) as defined in Sect. 3.

• Expression (47) is easy to solve on a computer, as it defines a recursive equation
that can be solved using e.g. a for loop. General software that can be used to solve
systems like (47) is available for anyone to use at github.com/palryalen/.

In Theorem 1 in Appendix E we provide convergence results for the estimators in
(47)–(48) for the casewhen the trueweights are not known, but estimated.Convergence

is guaranteed when the weight estimators R̂t , R̂D
t , and R̂t converge in probability to

the true weights for each fixed t , which is established for the additive hazard weight
estimator we will consider in Sect. 7.3 (Ryalen et al. 2019, Theorem 2).

In Table 3 we present pairs of weights Ri , Ri,D , and R̄i as well as the parameter
θ̄ i

t that can be used in (47)–(48) to estimate the total effect, the direct effect, and the
separable effects as defined in Sect. 3. Define WD , the weights associated with the
intervention that prevents death from other causes, similarly to the censoring weights
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in (39),

WD,t = �u≤t [1 − d�D
u ]

�u≤t

[
1 − d�

D|F
u

] ,

where �D
t is the compensator of N D with respect to FC,D,A

t , defined analogously to
(40).WC and WD are the unstabilized versions of these weights, defined as

WC,t = I (C > t)

�u≤t

[
1 − d�

C|F
u

] , WD,t = I (T D > t)

�u≤t

[
1 − d�

D|F
u

] .

7.3 Estimating the weights

Suppose we have a consistent estimator of the propensity score πA, which will allow
us to estimate the treatment weights in Table 3.

The time-varying weights in Table 3 solve the Doléans–Dade equation

W i
t = 1 +

∫ t

0
W i

s−(θ i
s − 1)d N̄ i

s +
∫ t

0
W i

s−Zi
s(α

i
s − α∗,i

s )ds , (50)

where W i is the weight of interest, N̄ i is a counting process, αi and α∗,i are hazards,
and θ i = α∗,i/αi . In Table 4, we present αi , α∗,i , and N̄ i ’s corresponding to the
different weights in Table 3. We consider a weight estimator that is defined via plug-in
of cumulative hazard estimates,

Ŵ i
t = 1 +

∫ t

0
Ŵ i

s−(θ̂ i
s− − 1)d N̄ i

s +
∫ t

0
Ŵ i

s−Zi
s(d Âi

s − d Â∗,i
s ) , (51)

where Âi and Â∗,i are cumulative hazard estimates of Ai
t = ∫ t

0 αi
sds and A∗,i

t =∫ t
0 α

∗,i
s ds and θ̂ i

t = Â∗,i
t − Â∗,i

t−b

Âi
t − Âi

t−b
, where b is a smoothing parameter used to obtain the

hazard ratio θ̂ i
t . The solution to (51) is determined by the cumulative hazard estimates

and the counting process. Thus, the smoothing parameter b contributes to the estimator

only when N̄ i jumps, which will not happen for the weightsW i
C ,W i

C ,W i
D, andW i

D
in the exampleswe consider in Table 3. The counting process term in (51) can therefore
be neglected for the upper four weights in Table 4. For the other time-varying weights,
choosing b requires a trade-off between bias and variance, see Ryalen et al. (2019) for
a discussion.

To estimate W i
L D ,t , the weights associated with L D , we suppose that there are m

marks. We consider the counting processes {N i
h}m

h=1 that "counts" the occurrence of

each mark of individual i , having intensity Zi
t · αi

h,t dt = E[d N i
h,t |σ(Li

s, N i
s , N D,i

s ,
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Ci
s, A; s < t)]. Then,

W i
L D ,t =

m∏
h=1

W i
L D ,h,t ,

where W i
L D ,h,t solves (50) with αi

t = αi
h,t |A=aY , α

∗,i
t = α

∗,i
h,t |A=aD and N̄ i = N i

h .

We thus obtain an estimator of W i
L D ,t by multiplying the estimators W i

L D ,h,t , each
of which solve (51). A corresponding procedure can be used to estimate the weights
W i

LY ,t . We present the choices of αi and α∗,i for the different weights in Table 4.
For high-dimensional covariates Lk , these weight estimators may give rise to erratic
behavior (this is also described for the related mediation weights in Mittinty and
Vansteelandt 2020). In future work, one could also consider estimators motivated by
the alternative odds representation of the covariate weights, given in Appendix C,
along the lines of Zheng and van der Laan (2017) and Stensrud et al. (2021a), but this
is beyond the scope of the current work.

In summary, we suggest the following strategy for estimating the causal effects of
interest:

• Identify the requisite weights from Table 3 and specify hazard models αi , α∗,i

from Table 4.
• Solve (51) to obtain estimates of the weight processes.

• Obtain R̂i , R̂D,i , R̂
i
, and ˆ̄θ i from (48) or (49) by multiplying together the weight

estimates of individual i according to Table 3.
• Solve (47) to obtain Ŷt (and/or D̂t ), which estimates the expected number of events
under the chosen intervention at t .

• Repeat the previous steps with a contrasting intervention on treatment to obtain
the targeted causal contrast.

• Evaluate the uncertainty of the estimators using non-parametric bootstrap.

We use this estimation method in Sect. 8, assuming additive hazard models for
the different αi ’s and α∗,i ’s. The estimators are implemented in the R packages
transform.hazards and ahw (available at github.com/palryalen/). The
code is found in the online supplementary material.

7.4 Estimators under assumptions on Lk

There exist two important settings where we do not need to model the densities of
the covariate process Lt . Firstly, if the dismissible component conditions are satisfied
with LY ,k ≡ Lk and L D,k = ∅, then WL D ,t = 1 (a further elaboration on this point
is found in Appendix C). The assumption that L D,k = ∅ implies that AD partial
isolation holds (see Appendix B for a definition of AD partial isolation and Lemma
6 of Stensrud et al. (2021a) for a proof of this result). This is unlikely to hold in the
trial considered in Sect. 8, because we expect that the AD component of treatment
can cause acute kidney injury by lowering systemic blood pressure, i.e. through the
pathway AD → L j → Yk> j , which is not intersected by any Di≤k .
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Table 5 Frequency table for
recorded AKI events by
treatment group

0 1 2 3

A = 0 1273 36 1 2

A = 1 1253 52 4 2

Secondly, if the dismissible component conditions are satisfied under L D,k ≡ Lk

and LY ,k = ∅, we have that WLY ,t = 1. In the trial in Sect. 8, this assumption
implies that the component that binds to receptors in the kidneys (AY ) has no effect
on blood pressure outside of its possible effect on the risk of acute kidney injury (see
Lemma 5 of Stensrud et al. 2021a). This is plausible and serves as a sanity check of
the dismissible component conditions in this example. However, in practice we have
intermittent bloodpressuremeasurements Lk , and therefore the dismissible component
conditions under L D,k ≡ Lk and LY ,k = ∅ hold at best approximately.

Even in these two simplified settings, the natural direct effect is not identified as
the measured covariates LY ,k (or L D,k) act as a recanting witness (see Sect. 6.3).

8 Example: blood pressure treatment and acute kidney injury

In Sect. 3.3 we described a hypothetical modified version of antihypertensive therapy
that preserves the effect of existing treatments on systemic blood pressure but does
not lead to dilation of efferent arterioles in the kidneys, thereby potentially avoiding
a detrimental side effect of treatment which can give risk to acute kidney injury. In
this section, we apply the estimators proposed in the Sect. 7 to compute the effect
of such a modified blood pressure therapy on the recurrence of acute kidney injury,
as well as the total and controlled direct effect, using data from the Systolic Blood
Pressure Intervention Trial (SPRINT Research Group 2015). The illustrative example
considered in this section builds on Stensrud et al. (2021a), but now considers the
case where acute kidney injury (Yk) is a recurrent outcome as opposed to the (first)
incident event. Another, simulated example from a hypothetical trial on treatment
discontinuation is given in Appendix A along with R code in the Supplementary
Material.

In the SPRINT trial, individuals were randomized to standard (A = 0) or intensive
(A = 1) blood pressure (BP) lowering therapy. We consider the effect of intensive
versus standard treatment on the recurrence of acute kidney injury by time t during
the first 1000 days of follow-up.

We have restricted our analysis to subjects aged over 75 years of age. Furthermore,
we have only considered individuals with complete baseline covariates. This led to
1312 individuals under standard treatment and 1311 individuals under intensive treat-
ment. By the end of 1000 days, a total of 73 deaths were recorded in the standard
treatment group, versus 52 in the intensive treatment group. In total, 668 individuals
were lost to follow-up before day 1000. The frequencies of recorded AKI events by
treatment group are given in Table 5.
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Table 6 The left column includes the weights, the middle column includes the hazards that define (50), and
the right column includes the parametric hazard models that were used in the data analysis

Weight Hazards Hazard models fitted

W i
C,t αi

t dt β0
t + β A

t A + β
L0
t L0 + βL

t Lt + βY
t Yt−

α
∗,i
t dt β0

t + β A
t A

W i
D,t αi

t dt β0
t + β A

t A + β
L0
t L0 + βL

t Lt + βY
t Yt−

α
∗,i
t dt β0

t + β A
t A

W i
Y ,t (aY , aD) αi

t dt β0
t + β A

t I (A = aY ) + βL0 L0 + βL
t Lt + βY

t Yt−
α

∗,i
t dt β0

t + β A
t I (A = aD) + βL0 L0 + βL

t Lt + βY
t Yt−

We estimated total, controlled direct and separable effect using (49) with additive
regression models for the hazards, specified in Table 6.

Following Stensrud et al. (2021a), we included the following baseline covariates
(L0): smoking status, history of clinical or subclinical cardiovascular disease, clinical
or subclinical chronic kidney disease, statin use and sex. Additionally, we adjusted
for the most recent measurements of mean arterial pressure (Lk). We truncated the
stabilized weightsWC,t ,WD,t andWY ,t outside of the interval [0.2-5]. A smoothing
parameter of b = 250 was used (analyses with parameters b ∈ {100, 200, 500} gave
similar results).

The analysis relies on the identification assumptions in Sect. 6. The assumptions of
exchangebility of baseline treatment, positivity and consistencyhold bydesignbecause
blood pressure treatment is assigned by randomization in a controlled experiment.
We have further assumed that the measured covariates (L0, Lk) are sufficient for
identification. In particular, exchangeability (20) for the controlled direct effect and the
dismissible component conditions (27)–(28)would be violated if there are unmeasured
common causes of death and recurrent AKI, such as UDY in Figs. 3 and 4, that are
not captured by (L0, Lk), or causal paths such as AY → MAY → Dc=0

k+1 or AD →
MAD → Y c=0

k+1 in Fig. 4 that are not intersected by Lk .
The resulting estimates are shown in Fig. 5. At 1000 days, we found a total

effect of 0.017[−0.001, 0.037] and a controlled direct effect of 0.017[−0.003, 0.037]
(95% confidence intervals, obtained using 500 non-parametric bootstrap samples, are
reported in square brackets). Thus, the total effect for individuals over 75 years old
is (borderline) consistent with an increased occurrence of acute kidney injury under
intensive treatment, as reported by SPRINT Research Group (2015) for the full trial
population. However, there were more deaths in the standard group compared to the
intensive group (see Fig. 9a in Stensrud et al. 2021a). Thus, it is not clear whether the
increased occurrence of acute kidney injury in the intensive group is due to a protective
effect on survival or a direct effect on the recurrent outcome.

To quantify the mechanism by which treatment leads to increased risk of acute
kidney injury, we studied separable effects. The direct separable effect evaluated at
aD = 1 is equal to 0.011[−0.005, 0.034] at 1000 days, which is consistent with no
reduction in the recurrence of acute kidney injury by eliminating the AY component
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Fig. 5 Shows estimates of the
total effect, controlled direct
effect and separable effect on
recurrence of acute kidney
injury up to 1000 days. The
superscript c = 0, denoting an
intervention to prevent loss to
follow-up, has been suppressed
in plot legends to reduce clutter
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of treatment. This finding is also consistent with Stensrud et al. (2021a), who only
studied the incidence of the first kidney failure event. To conclude, the analysis of
separable effects does not provide evidence in favor of a reduction in the expected
number of acute kidney injury episodes in a modified blood pressure treatment that
does not dilate efferent glomerular arterioles. If a non-null effect had been found, this
would strengthen the hypothesis that we could change the number of acute kidney
injury occurrences by intervening on the treatment component that dilates efferent
arterioles, and thereby make it more attractive to test such a hypothesis in a future
randomized trial if such a treatment is developed.

9 Discussion

We have used a formal causal framework to define estimands for recurrent outcomes
that differ in the way they treat competing events. The controlled direct effect is a con-
trast of counterfactual outcomes which implies that competing events are considered
to be a form of censoring. The total effect captures all causal pathways between treat-
ment and the recurrent event, and the separable effect quantifies contrasts in expected
outcomes under independent prescription of treatment components.

Further, we have given formal conditions for identifying these effects, and demon-
strated how to evaluate the identification conditions in causal graphs. This allowed us
to formally describe how the causal estimands map to classical statistical estimands
for recurrent events based on counting processes in the limit of fine discretizations of
time.

In settings with competing events, it is often of interest to disentangle the effect on
the recurrent event from the effect on the competing event. The controlled direct effect
often fails to do so in a scientifically insightful way, because it is not clear which inter-
vention, if any, eliminates the occurrence of the competing event. The interpretation
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of the direct effect is therefore unclear. The separable effect corresponds (by design)
to interventions on components of the original treatment, which are assigned indepen-
dently of each other. The practical relevance of the estimand relies on the plausibility
of modified treatments. The process of conceptualizing modified treatments can moti-
vate future treatment development and sharpen research questions about mechanisms
(Robins and Richardson 2011; Robins et al. 2020; Stensrud et al. 2020).

Stronger assumptions are needed to identify the (controlled) direct effect and sep-
arable effects compared to the total effect. For example, these estimands require the
investigator to measure common causes of the recurrent event and failure time, even
in an ideal randomized trial such as in Sect. 2. The need for stronger assumptions is far
from unique to our setting, and it is analogous to the task of identifying per-protocol
effects in settings with imperfect adherence and mediation effects.

The use of a formal (counterfactual) framework to define causal effects elucidates
analytic choices regarding treatment recommendations. The formal causal framework
makes it possible to define effects with respect to explicit interventions, and to explic-
itly state the conditions under which such effects can be identified from observed data.
This also makes it possible to transparently assess the strength and validity of the
identifying assumptions in practice.

Supplementary Information The online version contains supplementary material available at https://doi.
org/10.1007/s10985-023-09594-8.
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Appendix A: Illustrative example: a simulated trial on treatment dis-
continuation

In this section, we illustrate an application of the concepts and estimators outlined in
Secs. 6-7 for the total effect, controlled direct effect and separable effect, using a simu-
lated data example. Consider investigators concernedwith the effects of over-treatment
of older adults with antihypertensive agents (AY ) and aspirin (AD). Over-treatment
might lead to episodes (Yk) of syncope (dizziness) caused by blood pressure becoming
too low (in turn, possibly leading to injurious falls), with all-cause mortality (Dk) as a
competing risk. Suppose these investigators conduct a randomized controlled trial in a
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a b

Fig. 6 a Causal graph illustrating a hypothetical four armed trial where AY (antihypertensive agents) and
AD (aspirin) are assigned freely. b Shows the observed two armed trial where AY and AD are assigned
jointly (AY ≡ AD ≡ A). Censoring nodes Ck are not shown because they are not connected to any other
nodes under the chosen data generating model

sample of patients admitted to nursing homes with a history of cardiovascular disease
and currently taking antihypertensives and aspirin. Patients are then randomly assigned
to either discontinue or to continue both treatments (A = 0 indicates assignment to
discontinuation of both aspirin and antihypertensives, A = 1 denotes assignment to
continuing both medications). A similar intervention is considered in Reeve et al.
(2020). Thus, (AY , AD) is a physical decomposition of treatment A such that receiv-
ing both components, i.e. AY = AD = 1, is equivalent to receiving A = 1 (and
conversely receiving neither component, AY = AD = 0, is equivalent to A = 0), and
therefore satisfies the modified treatment assumption (4).

We consider a simplified setting where there is one binary pre-treatment and post-
treatment common cause of future events (syncope and death), denoted by L0 (old age
at baseline) and L1 (binarized blood pressure after treatment initiation) respectively.

In the data generating model, we first sampled L0, L1 according to

P(L0 = 1) = 1

2
,

P(L1 = 1 | AY ) = 1

2
+ (2AY − 1) · βL1,AY .

Next, we generated the processes (Yk , Dk, Ck) on a discrete time grid using the hazards

P(Ck+1 = 1|Ck = Dk = 0, L0, L1, Y k , AY , AD) = βC,0 ,

P(Dk+1 = 1|Ck+1 = Dk = 0, L0, L1, Y k , AY , AD) = βD,0 + AD · βD,A + L0 · βD,L0

+ L1 · βD,L1 + Yk · βD,Y ,

P(�Yk+1 = 1|Ck+1 = Dk+1 = 0, L0, L1, Y k , AY , AD) = βY ,0 + L0 · βY ,L0 + L1 · βY ,L1 .

The data generatingmodel is constructed such that it satisfies all of the identification
conditions for total effect, controlled direct effect and separable effect, and is consistent
with the causal DAGs in Fig. 6. The implementation of the data generating model is
shown in the online Supplementary Material.

Figure 6 encodes the assumption that only the AY component (antihypertensive
treatment) affects L1 and does not directly affect death while the AD component
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(aspirin) acts directly on survival and has no effect on the recurrence of syncope except
through pathways intersected by survival (Dk). The parameters of the data generating
model were chosen such that antihypertensive treatment (AY = 1) increases the risk
of death through the pathway AY → L1 → Yk → Dk+1, i.e. by lowering blood
pressure, which in turn may lead to syncope and subsequent injurious falls. This
is seen in Fig. 7a, as individuals who received antihypertensives (AY = 1), shown
by the black and red curves, experience a larger number of syncope episodes. Next,
treatment with aspirin decreases the risk of death through cardiovascular protection via
the pathway AD → Dk+1. As illustrated by the crossing of the black and blue curves
in Fig. 7b, the decreased risk of death due to aspirin through pathway AD → Dk+1 is
compensated by the increased risk of death under antihypertensive treatment through
AY → L1 → Yk → Dk+1. Therefore, discontinuation of antihypertensives only, i.e.
(AY = 0, AD = 1), gives the highest survival in this example. This illustrates the
role and interpretation of the separable effect; even though a trial investigator only
observes individuals in treatment levels A ∈ {0, 1}, the separable effects allows us to
make inference under the hypothetical decomposed intervention (AY = 0, AD = 1),
which is not possible using conventional estimands such as the total effect or controlled
direct effect.

By transforming the graphs in Fig. 6 to singleworld intervention graphs (Richardson
and Robins 2013b) corresponding to Figs. 2, 3 and 4, it is straightforward to verify that
the exchangeability (12)–(13), (19)–(20) and (24)–(25) and dismissible component
conditions (27)–(30) are satisfied by the causal model. Because all positivity and
consistency conditions also hold by construction in the data generatingmodel, the total,
controlled direct and separable effects are identified by the respective functionals given
in Secs. 6.1–6.3. Furthermore, we can see from Fig. 6 that strong AY partial isolation
(6) is violated by the path AY → Yk → Dk+1, and thus the effect of antihypertensives
(AY ) on recurrent syncope (Yk) cannot be interpreted as a direct effect outside of
pathways intersected by survival (Dk).

A.1. Estimates

Figure 7c and d present estimates of E[Y a,c=0
k ] for a = aY = aD ∈ {0, 1} and

E[Y aY ,aD ,c=0
k ] for aY �= aD using the estimators described in Sect. 7 for 500 simulated

individuals in each of the treatment groups A = 0 and A = 1. It follows from the data
generatingmodel defined in the beginning of AppendixA and Table 7 that the assumed
hazard models are correctly specified. In principle, we could allow for a more involved
data generating model with time-varying coefficients. The assumed hazard models
would still provide consistent estimates if the additive structure is correctly specified.
Thus, an investigator can adapt the estimators in the supplementary Rmaterial to other
recurrent event problems.
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Fig. 7 Different effects of treatment (dis)continuation of antihypertensives (AY ) and aspirin (AD) on
recurrent syncope and survival are shown in a and b, under a hypothetical data generating model. The
superscript c = 0, denoting an intervention to prevent loss to follow-up, has been suppressed in plot
legends to reduce clutter. Estimates using the risk set estimator in (48) with a sample size of 500 individuals
in each treatment arm are shown in c and d

Table 7 The left column includes the weights, the middle column includes the hazards that define (50), and
the right column includes the parametric hazard models that were used in the data analysis

Weight Hazards Hazard models fitted

W i
C,t αi

t dt β0
t + β A

t A + β
L0
t L0 + β

L1
t L1 + βY

t Yt−
α

∗,i
t dt β0

t + β A
t A

W i
D,t αi

t dt β0
t + β A

t A + β
L0
t L0 + β

L1
t L1 + βY

t Yt−
α

∗,i
t dt β0

t + β A
t A

W i
D,t (aY , aD) αi

t dt β0
t + β A

t I (A = aY ) + β
L0
t L0 + β

L1
t L1 + βY

t Yt−
α

∗,i
t dt β0

t + β A
t I (A = aD) + β

L0
t L0 + β

L1
t L1 + βY

t Yt−
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Appendix B. Isolation conditions

Following Stensrud et al. (2021a), we define the AY separable effect on Yk as

E[Y aY =1,aD
k ] vs E[Y aY =0,aD

k ] . (52)

Likewise, we define the AD separable effect on Yk as

E[Y aY ,aD=1
k ] vs E[Y aY ,aD=0

k ] . (53)

Next, following Stensrud et al. (2021a), we define two isolation conditions:

Definition 2 [Strong AY partial isolation] A treatment decomposition satisfies strong
AY partial isolation if

There are no causal paths from AY to Dk for all k ∈ {0, . . . , K + 1} . (54)

Definition 3 [AD partial isolation] A treatment decomposition satisfies AD partial
isolation if

The causal paths from AD to Yk+1, k = 0, . . . , K are directed

paths intersected by D j+1, j ∈ {0, . . . , K } . (55)

Under strong AY partial isolation, the AY separable effects only capture direct
effects of AY on Yk , i.e. only pathways from AY to Yk not intersected by D. Under
AD partial isolation, the AD separable effects only capture indirect effects of AD on
Yk , that is only pathways from AD to Yk that are intersected by D.

If a treatment decomposition satisfies both (54) and (55), it is said to satisfy full
isolation. Under full isolation, (52)–(53) are the separable direct and indirect effects
on Yk respectively. In this case, (52) captures all pathways from A to Yk not intersected
by D, and (53) captures all pathways from A to Yk intersected by D.

Appendix C. Proof of identification results

C.1. Total effect

Assume the following identification conditions hold for k ∈ {0, . . . , K }.
Exchangeability

Y
a,c=0
K+1 ⊥⊥ A|L0 ,

Y a,c=0
k+1 ⊥⊥ Ca,c=0

k+1 |La,c=0
k , Y

a,c=0
k , D

a,c=0
k , C

a,c=0
k , A .

Positivity

P(L0 = l0) > 0 	⇒ P(A = a | L0 = l0) > 0 ,
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f A,Lk ,Dk ,Ck ,Y k
(a, lk, 0, 0, yk) > 0

	⇒ P(Ck+1 = 0 | A = a, Lk = lk, Dk = 0, Ck = 0, Y k = yk) > 0 .

Consistency

If A = a and Ck+1 = 0,

then Lk+1 = L
a,c=0
k+1 , Dk+1 = D

a,c=0
k+1 , Y k+1 = Y

a,c=0
k+1 , Ck+1 = C

a,c=0
k+1 .

Next, we use the identification conditions and the law of total probability (LOTP)
to add variables sequentially to the conditioning set in temporal order. We have that
P(�Y a,c=0

k = �yk) is given by

∑
l0

P(�Y a,c=0
k = �yk | L0 = l0)P(L0 = l0)

Y
a,c=0
K+1 ⊥⊥A|L0=

∑
l0

P(�Y a,c=0
k = �yk | A = a, L0 = l0)P(L0 = l0)

Y a,c=0
0 ⊥⊥Ca

0 |A,L0=
∑

l0

P(�Y a,c=0
k = �yk | Ca

0 = 0, A = a, L0 = l0)P(L0 = l0)

LOTP=
∑
d0

∑
l0

P(�Y a,c=0
k = �yk | Da,c0=0

0 = 0, Ca
0 = 0, A = a, L0 = l0)

× P(Da,c0=0
0 = 0 | Ca

0 = 0, A = a, L0 = l0)P(L0 = l0)
LOTP=

∑
�y0

∑
d0∑

l0

P(�Y a,c0=0
k = �yk | �Y a,c=0

0 = �y0, Da,c0=0
0 = 0, Ca

0 = 0, A = a, L0 = l0)

P(�Y a,c0=0
0 = �y0 | Da,c0=0

0 = 0, Ca
0 = 0, A = a, L0 = l0)

× P(Da,c0=0
0 = 0 | Ca

0 = 0, A = a, L0 = l0)P(L0 = l0) .

The conditional independence relation in the third line follows because C0 ≡ 0 deter-
ministically. Iterating this procedures for time indices k′ ∈ {1, . . . , k} gives

P(�Y a,c=0
k = �yk) =

∑
�yk−1

∑
dk

∑
lk−1

k∏
j=0

P(�Y a,c=0
j = �y j | D

a,c=0
j = d j , C

a,c=0
j = 0, L

a,c=0
j−1 = l j−1,�Y

a,c=0
j−1 = �y j−1, A = a)

× P(Da,c=0
j = d j | C

a,c=0
j = 0, L

a,c=0
j−1 = l j−1,�Y

a,c=0
j−1 = �y j−1, D

a,c=0
j−1 = d j−1, A = a)

× P(La,c=0
j−1 = l j−1 | �Y

a,c=0
j−1 = �y j−1, D

a,c=0
j−1 = d j−1, C

a,c=0
j−1 = 0, L

a,c=0
j−2 = l j−2, A = a).

Positivity ensures that the conditioning sets on RHS have a non-zero probability.
During the iterative procedure, we have use exchangeability with respect to censoring
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(13) to add the censoring indicator to the conditioning set. Finally, by consistency we
have that

P(�Y a,c=0
k = �yk)

=
∑

�yk−1

∑
dk

∑
lk−1

k∏
j=0

P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1,�Y j−1 = �y j−1, A = a)

× P(D j = d j | C j = 0, L j−1 = l j−1,�Y j−1 = �y j−1, D j−1 = d j−1, A = a)

× P(L j−1 = l j−1 | �Y j−1 = �y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2, A = a).

Next, we derive (18). By the presence of the indicator functions in (18) and by
consistency (16) we have that

E

[
I (A = a)I (Ci = 0)�Yi

πA(A)
∏i

j=0 πC j (C j )

]

=E

[
I (A = a)I (Ci = 0)�Y a,c=0

i

πA(A)
∏i

j=0 πC j (C j )

]

=E

⎡
⎣ I (A = a)I (Ca,c=0

i = 0)�Y a,c=0
i

P(A = a | L0)
∏i

j=0 P(Ca,c=0
j = 0 | L

a,c=0
j−1 , Y

a,c=0
j−1 , D

a,c=0
j−1 , C

a,c=0
j−1 , A)

⎤
⎦ .

Next, using the law of total expectation, the above is equal to

E

[
E

[
I (A = a)I (Ca,c=0

i = 0)�Y a,c=0
i

P(A = a | L0)
∏i

j=0 P(Ca,c=0
j = 0 | L

a,c=0
j−1 , Y

a,c=0
j−1 , D

a,c=0
j−1 , C

a,c=0
j−1 , A)∣∣∣∣ Y

a,c=0
i , L

a,c=0
i−1 , D

a,c=0
i−1 , C

a,c=0
i−1 , A

]]

=E

[
I (A = a)I (Ca,c=0

i−1 = 0)�Y a,c=0
i

P(A = a | L0)
∏i−1

j=0 P(Ca,c=0
j = 0 | L

a,c=0
j−1 , Y

a,c=0
j−1 , D

a,c=0
j−1 , C

a,c=0
j−1 , A)

× E[I (Ca,c=0
i = 0) | Y

a,c=0
i , L

a,c=0
i−1 , D

a,c=0
i−1 , C

a,c=0
i−1 , A]

P(Ca,c=0
i = 0 | L

a,c=0
i−1 , Y

a,c=0
i−1 , D

a,c=0
i−1 , C

a,c=0
i−1 , A)

]]
.

The numerator and denominator of the fraction in the final line differ only by the time

index of Y
a,c=0

in the conditioning set. Using the fact that

Y a,c=0
i ⊥⊥ I (Ca,c=0

i = 0) | Y a,c=0
i−1 , La,c=0

i−1 , Da,c=0
i−1 , Ca,c=0

i−1 = 0, A = a ,
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(which follows from 13) we have that the fraction is equal to 1, and thus by consistency
(16),

E

[
I (A = a)I (Ci = 0)�Y a,c=0

i

πA(A)
∏i

j=0 πC j (C j )

]
= E

[
I (A = a)I (Ci−1 = 0)�Y a,c=0

i

πA(A)
∏i−1

j=0 πC j (C j )

]
.

Iterating this procedure from j = i − 1 to j = 0 gives

E

[
I (A = a)I (Ci = 0)�Y a,c=0

i

πA(A)
∏i

j=0 πC j (C j )

]
= E

[
I (A = a)�Y a,c=0

i

πA(A)

]
.

Using the law of total expectation again, RHS is equal to

E

[
E

[
�Y a,c=0

i

P(A = a | L0)
· I (A = a)

∣∣∣∣ �Y a,c=0
i , L0

]]

=E

[
�Y a,c=0

i

P(A = a | L0)
· E

[
I (A = a) | �Y a,c=0

i , L0

]]

�Y a,c=0
i ⊥⊥I (A=a)|L0= E

[
�Y a,c=0

i · E[I (A = a) | L0]
P(A = a | L0)

]

=E[�Y a,c=0
i ] .

Another IPW representation also exists. We have that

E

[
I (A = a)I (Ci = 0)

πA(A)
∏i

j=0 πC j (C j )

]

=E

[
E

[
I (A = a)I (Ci−1 = 0)

πA(A)
∏i−1

j=0 πC j (C j )
· I (Ci = 0)

P(Ci = 0 | Li−1, Y i−1, Di−1, Ci−1, A = a)∣∣∣∣ Li−1, Y i−1, Di−1, Ci−1, A = a

]]

=E

[
I (A = a)I (Ci−1 = 0)

πA(A)
∏i−1

j=0 πC j (C j )
· E[I (Ci = 0) | Li−1, Y i−1, Di−1, Ci−1, A = a]

P(Ci = 0 | Li−1, Y i−1, Di−1, Ci−1, A = a)

]

=E

[
I (A = a)I (Ci−1 = 0)

πA(A)
∏i−1

j=0 πC j (C j )

]
.

Arguing iteratively from j = i − 1 to j = 0, the RHS is equal to

E

[
I (A = a)

P(A = a | L0)

]
= E

[
E

[
I (A = a)

P(A = a | L0)

∣∣∣∣ L0

]]

= E

[
E[I (A = a) | L0]

P(A = a | L0)

]
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= 1 .

Putting everything together, we have that

E[Y a,c=0
k ] =

k∑
i=0

E

[
I (A=a)I (Ci =0)

πA(A)
∏i

j=0 πC j (C j )
· �Yi

]

E

[
I (A=a)I (Ci =0)

πA(A)
∏i

j=0 πC j (C j )

] . (56)

To conclude, we remark that the exchangeability conditions (12)–(13) and identifica-
tion formulas (17)–(18) followdirectly fromageneral identification result, Theorem31
of Richardson and Robins (2013b), by choosing outcome Y ∗

k ≡ (Yk, DK+1), inter-

vention set A
∗
k ≡ (A, Ck) for k ∈ {0, . . . , K + 1} and time-varying covariates

L
∗
k ≡ (Lk, L) for k ∈ {0, . . . , K }.

C.1.1. Limit of fine discretizations

We begin by noting that �Yk in (56) can only be non-zero if the individual has not
experienced the competing event by the beginning of time interval k − 1. Therefore,

E[�Y a,c=0
i ] = E

[
I (A = a)I (Ci = 0)I (Di−1 = 0)�Yi

πA
∏i

j=0 πC j (C j )

]

= P(Ci = 0, Di−1 = 0, A = a)

× E

[
�Yi

πA
∏i

j=0 πCk (Ck)

∣∣∣∣ A = a, Ci = 0, Di−1 = 0

]
,

where we have used the laws of probability in the second line. Using Bayes’ law
sequentially, we have that

P(Ci = 0, Di−1 = 0, A = a) =
i−1∏
j=0

[
P(D j = 0 | C j = 0, D j−1 = 0, A = a)

]

×
i∏

n=0

[
P(Cn = 0 | Dn−1 = 0, Cn−1 = 0, A = a)

]
P(A = a) .

To proceed, we define modified intensities of the recurrent event process

�ΛC
i = P(Ci = 1 | Di−1, Ci−1, A)

�Λ
C|F
i = P(Ci = 1 | Li−1, Y i−1, Di−1, Ci−1, A) .

Next, let π(•) = P(A = •) and consider the stabilized weights

WA = π(A)

πA(A)
,
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WC,i =
∏i

j=0[1 − �ΛC
j ]

∏i
k=0

[
1 − �Λ

C|F
k

] .

The weight WC,i is a ratio of Kaplan-Meier survival terms with the respect to the
censoring event. Let us also define the hazard of the competing event by

�AD
i (a) = P(Di = 1 | Ci = 0, Di−1 = 0, A = a) .

Putting everything together, we have that

E[Y a,c=0
k ] =

k∑
i=0

i−1∏
j=0

[1 − �AD
j (a)] · E[WAWC,i�Yi | Ci = 0, Di−1 = 0, A = a] .

(57)

Expression (57) enables us to establish a correspondence with estimands in the count-
ing process literature, as discussed in Sect. 6.4.2, and also motivates estimators that
we described in Sect. 7. The product term in (57) is a survival term with respect to the
competing event, and the expectation is over weighted increments of recurrent acute
kidney injury. In the limit of fine discretization of time, (57) converges to

∫ tk

0
�

s<u
[1 − d AD

s (a)] · E[WAWC,u−d Nu | C ≥ u, T D ≥ u, A = a] .

C.1.2. Competing event

In order to identify E[Da,c=0
k ] from the observed data, we require the following two

exchangeability assumptions instead of (12) and (13)

D
a,c=0
K+1 ⊥⊥ A|L0 , (58)

Da,c=0
k+1 ⊥⊥ Ca,c=0

k+1 |La,c=0
k , Y

a,c=0
k , D

a,c=0
k , C

a,c=0
k , A . (59)

Using analogous arguments as for the recurrent event Y , identification of E[Da,c=0
k ]

is achieved under (58)–(59) and (14)–(16) by

E[Da,c=0
k ] =

k∑
i=0

i−1∏
j=0

[1 − �AD
j (a)] · E[WAWC,i�Di | Ci = 0, Di−1 = 0, A = a] .

(60)
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Likewise, in the limit of fine discretizations of time, the cumulative incidence of the
competing event is given by

∫ tk

0
�

s<u
[1 − d AD

s (a)] · E[WAWC,u−d N D
u | C ≥ u, T D ≥ u, A = a] . (61)

When treatment A is randomly assigned and (90) holds with L(t) = N c(t) = ∅
(which is the usual independent censoring condition in survival analysis without any
covariates (Aalen et al. 2008)), then WA = WC,t = 1 and (61) reduces to

∫ tk

0
�

u<t
[1 − d AD

u (a)]d AD
u (a) .

This demonstrates sufficient conditions under which the discrete time identification
formula given by Expression (29) in Young et al. (2020) converges to the usual repre-
sentation of the cumulative incidence function in survival analysis.

C.2. Controlled direct effect

The identification conditions and identification formulas for the controlled direct effect
are a special case of the identification results for total effect, redefining the censoring
indicator as max(Ci , Di ) (i.e. the first occurrence of the competing event and loss to
follow-up), and re-defining the competing event as an event that almost surely does
not occur. This gives us

E[�Y a,c=d=0
i ] = E

[
I (A = a)I (Ci = 0)I (Di = 0)

πA(A)
∏i

j=0 πC j (C j )πD j (D j )
· �Yi

]
, (62)

Next, we define

�ΛD
j (•) = P(D j = 1 | C j , D j−1, A = •) ,

�Λ
D|F
j (•) = P(D j = 1 | C j , L j−1, Y j−1, D j−1, A = •)

to be modified intensities of the competing event process. This allows us to re-write
(62) as

E[Y a,c=d=0
k ] =

k∑
i=0

E

[
WAWC,i WD,i�Yi

∣∣∣∣ Ci = 0, Di−1 = 0, A = a

]
, (63)

where

WD,i =
∏i

j=0[1 − �ΛD
j ]∏i

k=0[1 − �Λ
D|F
k ]

. (64)
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Under randomization of A and under the strong independent censoring assumption
(43), WA = WC,i = WD,i = 1 and thus (63) converges to

∫ tk

0
E

[
d Nu | T D ≥ u, C ≥ u, A = a

]

in the limit of fine discretizations of time.

C.3. Separable effects

We begin by assuming the modified treatment assumption (4) and the following iden-
tification conditions for all a ∈ {0, 1}, k ∈ {0, . . . , K + 1}.

Exchangeability

(Y
a,c=0
K+1 , D

a,c=0
K+1 , L

a,c=0
K+1 ) ⊥⊥ A | L0 ,

(Y a,c=0
k+1 , Da,c=0

k+1 , La,c=0
k+1 ) ⊥⊥ Ca,c=0

k+1 | Y
a,c=0
k , D

a,c=0
k , C

a,c=0
k , L

a,c=0
k , A .

Positivity

P(L0 = l0) > 0

	⇒ P(A = a | L0 = l0) > 0 , (65)

fLk ,Dk+1,Ck+1,Yk
(lk, 0, 0, yk) > 0 	⇒

P(A = a | Dk+1 = 0, Ck+1 = 0, Y k = yk, Lk = lk) > 0 (66)

f A,Lk ,Dk ,Ck ,Y k
(a, lk, 0, 0, yk) > 0

	⇒ P(Ck+1 = 0 | Lk = lk, Dk = 0, Ck = 0, Y k = yk) . (67)

Consistency

If A = a and Ck+1 = 0,

then Lk+1 = L
a,c=0
k+1 , Dk+1 = D

a,c=0
k+1 , Y k+1 = Y

a,c=0
k+1 . (68)

Consider a four armed trial where the AY and AD are randomly assigned, indepen-
dently of each other. We require the following dismissible component conditions to
hold in the four armed trial

Y c=0
k+1 ⊥⊥ AD | AY , D

c=0
k+1, Y

c=0
k , L

c=0
k ,

Dc=0
k+1 ⊥⊥ AY | AD, D

c=0
k , Y

c=0
k , L

c=0
k ,

Lc=0
Y ,k ⊥⊥ AD | AY , Y

c=0
k , D

c=0
k , L

c=0
k−1, Lc=0

D,k ,

Lc=0
D,k ⊥⊥ AY | AD, D

c=0
k , Y

c=0
k , L

c=0
k−1 .

To proceed, we introduce the following lemmas:
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Lemma 1 Under a FFRCISTG model, the dismissible component conditions (27)–(30)
imply the following equalities for aY , aD ∈ {0, 1}

P(Y aY ,aD=0,c=0
k+1 = yk+1 | Y

aY ,aD=0,c=0
k , D

aY ,aD=0,c=0
k+1 , L

aY ,aD=0,c=0
k )

=P(Y aY ,aD=1,c=0
k+1 = yk+1 | Y

aY ,aD=1,c=0
k , D

aY ,aD=1,c=0
k+1 , L

aY ,aD=1,c=0
k ) , (69)

P(DaY ,aD=0,c=0
k+1 = dk=1 | Y

aY ,aD=0,c=0
k , D

aY ,aD=0,c=0
k , L

aY ,aD=0,c=0
k )

=P(DaY ,aD=1,c=0
k+1 = dk=1 | Y

aY ,aD=1,c=0
k , D

aY ,aD=1,c=0
k , L

aY ,aD=1,c=0
k ) , (70)

P(LaY ,aD=0,c=0
Y ,k+1 = lY ,k+1 | Y

aY ,aD=0,c=0
k+1 , D

aY ,aD=0,c=0
k+1 , L

aY ,aD=0,c=0
k , LaY ,aD=0,c=0

D,k+1 )

=P(LaY ,aD=1,c=0
Y ,k+1 = lY ,k+1 | Y

aY ,aD=1,c=0
k+1 , D

aY ,aD=1,c=0
k+1 , L

aY ,aD=1,c=0
k , LaY ,aD=1,c=0

D,k+1 ) ,

(71)

P(LaY ,aD=0,c=0
D,k+1 = lD,k+1 | Y

aY ,aD=0,c=0
k+1 , D

aY ,aD=0,c=0
k+1 , L

aY ,aD=0,c=0
k )

=P(LaY ,aD=1,c=0
D,k+1 = lD,k+1 | Y

aY ,aD=1,c=0
k+1 , D

aY ,aD=1,c=0
k+1 , L

aY ,aD=1,c=0
k ) , (72)

Proof We show the equality of Expression (69), as (70)–(72) follow from analogous
arguments, using (28)–(30) instead of (27).

P(Y aY ,aD=0,c=0
k+1 = yk+1 | Y

aY ,aD=0,c=0
k , D

aY ,aD=0,c=0
k+1 , L

aY ,aD=0,c=0
k )

=P(Y c=0
k+1 = yk+1 | Y

c=0
k , D

c=0
k+1, L

c=0
k , AY = aY , AD = 0)

(27)= P(Y c=0
k+1 = yk+1 | Y

c=0
k , D

c=0
k+1, L

c=0
k , AY = aY , AD = 1)

P(Y aY ,aD=1,c=0
k+1 = yk+1 | Y

aY ,aD=1,c=0
k , D

aY ,aD=1,c=0
k+1 , L

aY ,aD=1,c=0
k ) .

The second and fourth line hold by consistency and by randomization of AY and AD

in the four armed trial. ��
Lemma 2 Suppose the exchangeability and positivity conditions (24)–(25) and (65)–
(67) hold. Define A = (AY , AD) and a = (aY , aD). We then have for all j ∈
{0, . . . , K + 1} that

P(�Y a,c=0
j = �y j | D

a,c=0
j , C

a,c=0
j , L

a,c=0
j−1 , Y

a,c=0
j−1 , A)

= P(�Y a,c=0
j = �y j | D

a,c=0
j , L

a,c=0
j−1 , Y

a,c=0
j−1 ) , (73)

P(Da,c=0
j = d j | Ca,c=0

j , L
a,c=0
j−1 , Y

a,c=0
j−1 , D

a,c=0
j−1 , A)

= P(Da,c=0
j = d j | L

a,c=0
j−1 , Y

a,c=0
j−1 , D

a,c=0
j−1 ) , (74)

P(La,c=0
Y , j−1 = lY , j−1 | L

a,c=0
D, j−1 = lD, j−1, Y

a,c=0
j−1 , D

a,c=0
j−1 , C

a,c=0
j−1 , L

a,c=0
j−2 , A)

= P(La,c=0
Y , j−1 = la,c=0

Y , j−1 | L
a,c=0
D, j−1 = lD, j−1, Y

a,c=0
j−1 , D

a,c=0
j−1 , L

a,c=0
j−2 ) , (75)

P(La,c=0
D, j−1 = lD, j−1 | Y

a,c=0
j−1 , D

a,c=0
j−1 , C

a,c=0
j−1 , L

a,c=0
j−2 , A)

= P(La,c=0
D, j−1 = lD, j−1 | Y

a,c=0
j−1 , D

a,c=0
j−1 , L

a,c=0
j−2 ) . (76)
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Proof We show the equality for Expression (73), as (74)–(76) follow from analogous
arguments, using (28)–(30) instead of (27). We have that

P(�Y a,c=0
j = �y j | D

a,c=0
j = d j , L

a,c=0
j−1 = l j−1, Y

a,c=0
j−1 = y j−1)

= P(�Y
a,c=0
j = �y j , D

a,c=0
j = d j , L

a,c=0
j−1 = l j−1 | L0 = l0)

P(D
a,c=0
j = d j , L

a,c=0
j−1 = l j−1,�Y

a,c=0
j−1 = �y j−1 | L0 = l0)

= P(�Y
a,c=0
j = �y j , D

a,c=0
j = d j , L

a,c=0
j−1 = l j−1 | A = a, L0 = l0)

P(D
a,c=0
j = d j , L

a,c=0
j−1 = l j−1,�Y

a,c=0
j−1 = �y j−1 | A = a, L0 = l0)

= P(�Y
a,c=0
j = �y j , D

a,c=0
j = d j , L

a,c=0
j−1 = l j−1 | Ca

0 = 0, A = a, L0 = l0)

P(D
a,c=0
j = d j , L

a,c=0
j−1 = l j−1,�Y

a,c=0
j−1 = �y j−1 | Ca

0 = 0, A = a, L0 = l0)
,

where we have used Bayes’ law in the first line, (24) and (65) in the second line
(expression (65) ensures that the conditioning sets have non-zero probability) and the
fact that all individuals are uncensored at time k = 0 in the third line. Next, using
Bayes’ law again, we have that the above is equal to

P(�Y a,c=0
j =�y j ,Da,c=0

j =d j ,L
a,c=0
j−1 =l j−1|Y a,c=0

0 =y0,Da,c=0
0 =d0,Ca

0=0,A=a,L0=l0)

P(Da,c=0
j =d j ,L

a,c=0
j−1 =l j−1,�Y a,c=0

j−1 =�y j−1|Y a,c=0
0 =y0,Da,c=0

0 =d0,Ca
0=0,A=a,L0=l0)

.

Using (25), the above is equal to

P(�Y a,c=0
j =�y j ,Da,c=0

j =d j ,L
a,c=0
j−1 =l j−1|Ca,c=0

1 =0,L0=l0,Y a,c=0
0 =y0,Da,c=0

0 =d0,A=a)

P(Da,c=0
j =d j ,L

a,c=0
j−1 =l j−1,�Y a,c=0

j−1 =�y j−1|Ca,c=0
1 =0,L0=l0,Y a,c=0

0 =y0,Da,c=0
0 =d0,A=a)

.

The conditioning set has non-zero probability by positivity (67). After iterating this
procedure, we obtain

P(�Y a,c=0
j =�y j ,Da,c=0

j =d j |Ca,c=0
j =0,La,c=0

j−1 =l j−1,Y a,c=0
j−1 =y j−1,Da,c=0

j−1 =d j−1,A=a)

P(Da,c=0
j =d j |Ca,c=0

j =0,La,c=0
j−1 =l j−1,Y a,c=0

j−1 =y j−1,Da,c=0
j−1 =d j−1,A=a)

.

Finally, using Bayes law again, the above is equal to

P(�Y a,c=0
j = �y j | D

a,c=0
j = d j , C

a,c=0
j = 0, L

a,c=0
j−1 = l j−1, Y

a,c=0
j−1 = y j−1, A = a) .

The final result follows because the above equality holds for any choice of
�y j , d j , c j , l j−1, a. ��
Lemma 3 Suppose that the identification conditions for separable effects (24)–(25),
(27)–(30), (65)–(68) and the modified treatment assumption (4) hold. We then have
that

P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, AY = aY , AD = aD)
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= P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, A = aY ) , (77)

P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, AY = aY , AD = aD)

= P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = aD) , (78)

P(LY , j−1 = lY , j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

L D, j−1 = lD, j−1, AY = aY , AD = aD)

= P(LY , j−1 = lY , j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

L D, j−1 = lD, j−1, A = aY ) , (79)

P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

AY = aY , AD = aD)

= P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

A = aD) . (80)

The quantities on the LHS are identified in the four armed trial, whereas the quantities
on the RHS are identified in the two armed trial.

Proof We show the equality for (77), as (78)–(80) follow from analogous arguments
using (28)–(30) instead of (27). We have that

P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, AY = aY , AD = aD)

(68)= P(�Y aY ,aD ,c=0
j = �y j | D

aY ,aD ,c=0
j = d j , C

aY ,aD ,c=0
j = 0, L

aY ,aD ,c=0
j−1 = l j−1,

Y
aY ,aD ,c=0
j−1 = y j−1, AY = aY , AD = aD)

Lemma 2= P(�Y aY ,aD ,c=0
j = �y j | D

aY ,aD ,c=0
j = d j , L

aY ,aD ,c=0
j−1 = l j−1, Y

aY ,aD ,c=0
j−1 = y j−1)

Lemma 1= P(�Y a=(aY ,aY ),c=0
j = �y j | D

a=(aY ,aY ),c=0
j = d j , L

a=(aY ,aY ),c=0
j−1 = l j−1,

Y
a=(aY ,aY ),c=0
j−1 = y j−1)

Lemma 2= P(�Y a=(aY ,aY ),c=0
j = �y j | D

a=(aY ,aY ),c=0
j = d j , C

a=(aY ,aY ),c=0
j = 0,

L
a=(aY ,aY ),c=0
j−1 = l j−1, Y

a=(aY ,aY ),c=0
j−1 = y j−1,

AY = aY , AD = aY )

(4),(66)= P(�Y a=aY ,c=0
j = �y j | D

a=aY ,c=0
j = d j , C

a=aY ,c=0
j = 0, L

a=aY ,c=0
j−1 = l j−1,

Y
a=aY ,c=0
j−1 = y j−1, A = aY )

(68)= P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, A = aY ) .

��
To derive the identification formula for separable effects, we proceed by sequential

application of Bayes’ theorem

P(�Y
aY ,aD ,c=0
k = �yk , D

aY ,aD ,c=0
k = dk , L

aY ,aD ,c=0
k = lk)
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=
k∏

j=0

P(�Y aY ,aD ,c=0
j = �y j | D

aY ,aD ,c=0
j = d j , L

aY ,aD ,c=0
j−1 = l j−1, Y

aY ,aD ,c=0
j−1 = y j−1)

× P(DaY ,aD ,c=0
j = d j | L

aY ,aD ,c=0
j−1 = l j−1, Y

aY ,aD ,c=0
j−1 = y j−1, D

aY ,aD ,c=0
j−1 = d j−1)

× P(LaY ,aD ,c=0
Y , j−1 = lY , j−1 | Y

aY ,aD ,c=0
j−1 = y j−1, D

aY ,aD ,c=0
j−1 = d j−1, L

aY ,aD ,c=0
j−2 = l j−2,

LaY ,aD ,c=0
D, j−1 = lD, j−1)

× P(LaY ,aD ,c=0
D, j−1 = lD, j−1 | Y

aY ,aD ,c=0
j−1 = y j−1, D

aY ,aD ,c=0
j−1 = d j−1, L

aY ,aD ,c=0
j−2 = l j−2) .

Using Lemma 2 and (68), the above is equal to

k∏
j=0

P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, AY = aY , AD = aD)

× P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, AY = aY , AD = aD)

× P(LY , j−1 = lY , j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

L AD , j−1 = l AD , j−1, AY = aY , AD = aD)

× P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2,

AY = aY , AD = aD) . (81)

The quantities on RHS of (81) are identified in the four armed trial. The final
identification formula for separable effects, which is a function of observed quantities
in the two armed trial, follows directly from application of Lemma 3, which gives

P(�Y
aY ,aD ,c=0
k = �yk , D

aY ,aD ,c=0
k = dk , L

aY ,aD ,c=0
k−1 = lk−1)

=
k∏

j=0

P(�Y j = �y j | D j = d j , C j = 0, L j−1 = l j−1, Y j−1 = y j−1, A = aY )

× P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = aD)

× P(LY , j−1 = lY , j−1 | L AD , j−1 = l AD , j−1, Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0,

L j−2 = l j−2, A = aY )

× P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = 0, L j−2 = l j−2, A = aD) .

(82)

C.3.1. IPW representation

Next, we will show that

E[�Y aY ,aD ,c=0
i ] = E

⎡
⎣ I (A = aY )

πA(A)
· I (Ci = 0)∏i

j=0 πC j (C j )
·
∏i

j=0 π
aD
D j∏i

j=0 π
aY
D j

·
∏i−1

j=0 π
aD
L D, j∏i−1

j=0 π
aY
L D, j

· �Yi

⎤
⎦ .

(83)

To begin, we use Bayes’ theorem sequentially to write out the joint density

P(A = a, Ci = ci ,�Y i = �yi , Di = di , Li−1 = li−1) =
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i∏
j=0

P(�Y j = �y j | D j = d j , C j = c j , L j−1 = l j−1, Y j−1 = y j−1, A = a)

× P(D j = d j | C j = c j , L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = a)

× P(C j = c j | L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, C j−1 = c j−1, A = a)

× P(LY , j−1 = lY , j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = c j−1, L j−2 = l j−2,

L AD , j−1 = l AD , j−1, A = a)

× P(L D, j−1 = lD, j−1 | Y j−1 = y j−1, D j−1 = d j−1, C j−1 = c j−1, L j−2 = l j−2, A = a)

× P(A = a | L0 = l0) . (84)

Writing out RHS of (83) as a discrete sum over the density in (84), we have that RHS
of (83) is equal to

∑
a

∑
ci

∑
�yi

∑
di

∑
li−1

P(A = a, Ci = ci ,�Y i = �yi , Di = di , Li−1 = li−1) · �yi

× I (a = aY )

P(A = aY | L0 = l0)

× I (ci = 0)∏i
j=0 P(C j = 0 | C j−1 = 0, D j−1 = d j−1, L j−1 = l j−1, Y j−1 = y j−1, A = aY )

×
∏i

j=0 P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = aD)∏i
j=0 P(D j = d j | C j = 0, L j−1 = l j−1, Y j−1 = y j−1, D j−1 = d j−1, A = aY )

×
∏i−1

j=0 P(L D, j = lD, j | L j−1 = l j−1, Y j = y j , D j = d j , C j = c j , A = aD)∏i−1
j=0 P(L D, j = lD, j | L j−1 = l j−1, Y j = y j , D j = d j , C j = c j , A = aY )

(82)=
∑
�yi

∑
di

∑
li−1

P(�Y
aY ,aD ,c=0
i = �yi , D

aY ,aD ,c=0
i = di , L

aY ,aD ,c=0
i−1 = li−1) · �yi

=E[�Y aY ,aD ,c=0
i ] .

C.3.2. Limit of fine discretizations

To proceed, we define the weights

WL D ,i (aY , aD) =
∏i

j=0 π
aD
L D, j∏i

k=0 π
aY
L D,k

, (85)

and

WD,i (aY , aD) =
∏i

j=0[1 − �Λ
D|F
j (aD)]1−Di

∏i
j=0[1 − �Λ

D|F
j (aY )]1−Di

(
�Λ

D|F
j (aD)

�Λ
D|F
j (aY )

)Di

. (86)

Using the laws of probability, we may write (83) as

E[Y aY ,aD ,c=0
k ] =
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k∑
i=0

i−1∏
j=0

[1 − �AD
j (aY )]

× E

[
WAWC,i WD,i (aY , aD)WL D ,i−1(aY , aD)�Yi

∣∣∣∣ Ci = 0, Di−1 = 0, A = aY

]
. (87)

Using analogous arguments where we start from (84) and replace �Yk by �Dk ,
we have that E[DaY ,aD,c=0

k ] is identified by

E[DaY ,aD ,c=0
k ] =

k∑
i=0

i−1∏
j=0

[1 − �AD
j (aY )]

× E

[
WAWC,i WD,i (aY , aD)WL D ,i−1(aY , aD)�Di

∣∣∣∣ Ci = 0, Di−1 = 0, A = aY

]
. (88)

As expected, we recover the identification formulas for total effect when choosing
aY = aD = a in (87) and (88).

C.3.3. An alternative IPW representation

Through analogous arguments that we used to derive (83), it follows that

E[�Y aY ,aD ,c=0
i ] = E

⎡
⎣ I (A = aD)

πA(A)
· I (Ci = 0)∏i

j=0 πC j (C j )
·

∏i
j=0 π

aY
Y j∏i

j=0 π
aD
Y j

·
∏i−1

j=0 π
aY
LY , j∏i−1

j=0 π
aD
LY , j

· �Yi

⎤
⎦ .

Next, we define the weights

WLY ,i (aY , aD) =
∏i

j=0 π
aY
LY , j∏i

k=0 π
aD
LY ,k

.

By close analogy with the argument found in Appendix D of Stensrud et al. (2021a),
we can re-express the covariate weights as

WL D,i (aY , aD) =

∏i
j=0 P(A = aD | L D, j , L j−1, Y j , D j , C j )∏i
j=0 P(A = aY | L D, j , L j−1, Y j , D j , C j )

×
∏i

j=0 P(A = aY | L j−1, Y j , D j , C j )∏i
j=0 P(A = aD | L j−1, Y j , D j , C j )

,
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and

WLY ,i (aY , aD) =

∏i
j=0 P(A = aY | L j , Y j , D j , C j )∏i
j=0 P(A = aD | L j , Y j , D j , C j )

×
∏i

j=0 P(A = aD | L D, j , L j−1, Y j , D j , C j )∏i
j=0 P(A = aY | L D, j , L j−1, Y j , D j , C j )

.

Thus, when the dismissible component conditions holds with LY ,k = Lk and L D,k =
∅, it follows that WL D ,k(aY , aD) = 1. Conversely, when the dismissible component
conditions hold with L D,k = Lk and LY ,k = ∅, it follows that WLY ,k(aY , aD) = 1.

Appendix D. Correspondence of the independent censoring assump-
tion

We begin by introducing the notion of faithfulness, following Spirtes et al. (2000).

Definition 4 A law P is faithful to a causal directed acyclic graph G if for any disjoint
set of nodes A, B, C we have that A ⊥⊥ C | B under P implies (A ⊥⊥ C | B)G , where
(•)G is used to denote graphical d-separation.

In the following result, we establish a correspondence between the exchangeabil-
ity assumption and the classical independent censoring assumption in event history
analysis.

Proposition 1 Let the factual data in Sect. 2 be generated by an FFRCISTG model,
and assume consistency (16) and faithfulness (Definition 4) hold. Then, (37) implies
exchangeability with respect to censoring (13).

Proof Expression (37) is equivalent to the statement

�Y j ⊥⊥ C j | D j , L j−1, Y j−1, A for j ∈ {1, . . . , K + 1} . (89)

Under faithfulness, a violation of (89) is equivalent to the existence of one of the three
paths

(1) Ck ← U → Yk

(2) Ck ← U1 → X ← U2 → Yk

(3) Ck → Yk

for some k ∈ {1, . . . , K + 1}, where X ∈ {Lk, Y k−1, Dk, A}. Likewise, the violation
of (13) is equivalent to the existence of one of the paths

(1’) C
a,c=0
k ← U → Y a,c=0

k

(2’) C
a,c=0
k ← U1 → X∗ ← U2 → Y a,c=0

k

for some k ∈ {1, . . . , K + 1}, where X∗ ∈ {L
a,c=0
k−1 , Y

a,c=0
k−1 , D

a,c=0
k , A}.
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By the properties of transforming a DAG into a SWIG (Richardson and Robins
2013a), and by consistency (16), the existence of (1’) implies the existence of (1),
and the existence of (2’) implies the existence of (2).7 It follows that violation of (13)
implies violation of (89), and consequently of (37).

��
An analogous relation exists between identification conditions for the competing

event. The classical independent censoring assumption for the competing event takes
the form

λF c

D,t = λGD,t , (90)

where

λF c

D,t dt = E[d N D
t | Fc

t−] ,

λGD,t dt = E[d N D
t | Gt−] .

A corresponding relation to (90) in discrete time is

1

�t
· E[�D j | L j−1, Y j−1, D j−1, A] = 1

�t
· E[�D j | C j , L j−1, Y j−1, D j−1, A] .

Since �D j ∈ {0, 1}, this can be written as

1

�t
· P(�D j = 1 | L j−1, Y j−1, D j−1, A)

= 1

�t
· P(�D j = 1 | C j , L j−1, Y j−1, D j−1, A) . (91)

Under faithfulness, exchangeability (59) is implied by (91). The contrast of Expres-
sions (2) and (4) in Robins and Finkelstein (2000) is similar to this correspondence.

Appendix E. Estimation

Theorem 1 Suppose P(ZtK+1 = 1) > 0. We let R̂(n,i) be as in (51) (originally defined
in Ryalen et al. (2019)); an estimator of the weights Ri based on additive hazard
models with finite third moments on the covariates (see Ryalen et al. (2019, Theorem
2)). Suppose R(n,i), Ri are uniformly bounded and that the FN ,N D ,L,A-intensity of
N i satisfies E[∫ tK+1

0 λsds] < ∞. Then,

• the estimator defined by (48)–(49) are consistent and predictably uniformly tight
(P-UT).

• the estimator defined by the system (47) is consistent.

7 The reverse implications do not hold. A counterexample is given by partial exchangeability (Sarvet et al.
2020).
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Proof We show the result for the integrators in (48); the result for (49) follows by
similar arguments. Assume first that Ri , R(n,i) are orthogonal to N i . Define X (n) =
1
n

∑n
i=1 R(n,i)N i , Y (n) = n∑n

j=1 Z j . Then, Ryalen et al. (2019, Lemma 2) and the

law of large numbers imply that X (n) converges to E[Ri N i ] = E[∫ Ri
s−d N i

s ]. Y (n)

converges to 1/E[Z1] by the law of large numbers. Furthermore,

X (n) = 1

n

n∑
i=1

∫ ·

0
R(n,i)

s− d N i
s + 1

n

n∑
i=1

∫ ·

0
N i

s−d R(n,i)
s

is PUT (see Jacod and Shiryaev (2003, VI, 6.6.a)), as it is a sum of two processes
that are P-UT. The first term is P-UT from Ryalen et al. (2019, Proposition 1). The
latter term is P-UT because R(n,i) is driven by a P-UT process K (n,i) (see Ryalen et al.
(2019)) and N i− is predictable, by Jacod and Shiryaev (2003, Corollary VI.6.20). The

estimator of interest is
∫ ·
0 Y (n)

s− d X̃ (n)
s , where X̃ (n) = X (n) − 1

n

∑n
i=1

∫ t
0 N i

s−d R(n,i)
s .

Now, the last term on the right hand side has the following decomposition:

1

n

n∑
i=1

∫ ·

0
N i

s−d R(n,i)
s = 1

n

n∑
i=1

N i (R(n,i) − Ri ) − 1

n

n∑
i=1

∫ ·

0
(R(n,i)

s− − Ri
s−)d N i

s

+ 1

n

n∑
i=1

∫ ·

0
N i

s−d Ri
s .

By Ryalen et al. (2019, Lemma 2), the first term on the right hand side converges to
zero, while the third term converges to zero by the law of large numbers as it is a mean
zero martingale. Finally,

1

n

n∑
i=1

∫ ·

0
(R(n,i)

s− − Ri
s−)d N i

s = 1

n

n∑
i=1

∫ ·

0
(R(n,i)

s− − Ri
s−)d Mi

s

+ 1

n

n∑
i=1

∫ ·

0
(R(n,i)

s− − Ri
s−)λi

sds .

The first term on the right hand side converges to zero by the law of large numbers,
while the second term converges to zero by dominated convergence, as R(n,i)

t − Ri
t

converges in probability to zero for each t .
Thus, X̃ (n) and X (n) converge to the same limit. Because E[Z1] is continuous,

Jacod and Shiryaev (2003, Corollary VI 3.33) implies that (X̃ (n), Y (n)) converges
weakly (with respect to the Skorohodmetric), and Jacod and Shiryaev (2003, Theorem
VI 6.22) implies that also

∫ ·
0 Y (n)

s− d X̃ (n)
s converges weakly to the deterministic limit∫ ·

0 E[R1
s d N 1

s |Z1
s > 0].

If N i is not orthogonal to Ri and R(n,i), we have

Ri N i =
∫ ·

0
θ i

s Ri
s−d N i

s +
∫ ·

0
N i

s−d Ri
s ,
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and likewise

1

n

n∑
i=1

R(n,i)N i = 1

n

n∑
i=1

∫ ·

0
θ̂ i

s− R(n,i)
s− d N i

s + 1

n

n∑
i=1

∫ ·

0
N i

s−d R(n,i)
s

+ 1

n

n∑
i=1

∫ ·

0
R(n,i)

s− Zi
sd[N i , Âi − Â∗,i ]s ,

where the last term on the right-hand side can be neglected. We can then build on the
argument above, replacing Ri and R(n,i) with θ i Ri and θ̂ i R(n,i) when necessary, to
show the convergence.

The consistency of (47) follows from Ryalen et al. (2018, Theorem 1) because∫ ·
0 Y (n)

s− d X̃ (n)
s is consistent and P-UT. ��
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