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Based on the work done by an electromagnetic field on an atomic or molecular electronic sys-
tem, a general gauge invariant formulation of transient absorption spectroscopy is presented within
the semi-classical approximation. Avoiding multipole expansions, a computationally viable expres-
sion for the spectral response function is derived from the minimal-coupling Hamiltonian of an
electronic system interacting with one or more laser pulses described by a source-free, enveloped
electromagnetic vector potential. With a fixed-basis expansion of the electronic wave function, the
computational cost of simulations of laser-driven electron dynamics beyond the dipole approxima-
tion is the same as simulations adopting the dipole approximation. We illustrate the theory by
time-dependent configuration interaction and coupled-cluster simulations of core-level absorption
and circular dichroism spectra.

I. INTRODUCTION

Using technology developed in the past two decades,
ultrashort laser pulses with attosecond duration have en-
abled the observation and manipulation of multi-electron
dynamics in atoms, molecules, and materials, thus open-
ing new research avenues in physics and chemistry [1–
3]. Quantum-mechanical simulations are mandatory to
properly understand, interpret, and predict advanced at-
tosecond experiments. While nuclear motion becomes
important on longer time-scales (femtoseconds), one-
and multi-electron ionization dynamics constitute major
challenges for time-dependent electronic-structure simu-
lations, along with electron-correlation effects [4].

Single active electron (SAE) models [5–7] that, at best,
only account for electron correlation through an effective
potential are widely used to study processes induced by
lasers with frequency well below any multi-electron exci-
tation energy. As the frequency increases and approaches
resonance with a multi-electron excited state, the SAE
approximation breaks down and a correlated many-body
method should be applied instead [8, 9].

Regardless whether the SAE model or a many-body de-
scription is used, most simulations of laser-induced pro-
cesses employ the electric-dipole approximation where
the magnetic component of the laser field is neglected
and the electric component is assumed to be spatially
uniform. This is an excellent approximation when the
spatial extent of the electronic system is small com-
pared with the wavelength of the laser field. Attosec-
ond laser pulses, however, are commonly generated by
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high harmonic generation in the extreme ultraviolet and
X-ray spectral regions where beyond-dipole effects may
become non-negligible. It is, therefore, of interest to in-
clude higher-order electric and magnetic multipole inter-
actions in simulations of laser-driven electron dynamics,
preferably without incurring a significant computational
penalty.
Within response theory [10], which is essentially time-

dependent perturbation theory Fourier-transformed to
the frequency domain, beyond-dipole effects have been
studied using the full plane-wave vector potential for the
semiclassical description of the matter-field interaction
[11–14]. Due to the use of perturbation theory and the
neglect of terms quadratic in the vector potential, these
studies are limited to weak laser fields but do not suffer
from issues such as origin-dependence and slow basis-
set convergence that may arise from the use of multi-
pole expansions [15–18]. Conceptually, at least, it is
rather straightforward to generalize the response-theory
approaches to the time domain, avoiding perturbation
theory altogether and hence enabling the study of both
weak- and strong-field processes without multipole ex-
pansions.
The theory of transient absorption spectroscopy

(TAS), see, e.g., recent work by Wu et al. [19], has been
formulated in the framework of the electric-dipole ap-
proximation. In the present work, we present a general-
ization that accounts for the presence of spatially non-
uniform fields, which reduces to the original formula-
tion in the long-wavelength (electric-dipole) limit. In line
with the previous work based on response theory [11–14],
we present initial test simulations on small molecules in
the weak-field limit using time-dependent configuration-
interaction (TDCI) [20–24] and time-dependent coupled-
cluster (TDCC) [25] theories. Ignoring ionization pro-
cesses, we use static, atom-centered Gaussian basis sets
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such that the prerequisite integrals involving the full
plane-wave vector potential can be computed using the
recent implementation reported by Sørensen et al. [13].
This allows us to validate our implementation of the gen-
eralized theory of TAS by comparing with previously
reported theoretical pump-probe and X-ray absorption
spectra. In addition, we compute the anisotropic X-ray
circular dichroism (CD) spectrum of hydrogen peroxide
generated from simulations of the electrons interacting
with circularly polarized laser pulses [26–31], comparing
with the CD spectrum predicted by the rotatory strength
tensor [32].

II. THEORY

Atomic and molecular transient (as well as steady-
state) absorption spectra can be obtained by computing
the spectral response function S(ω) which, in turn, is
obtained from a frequency-resolved analysis of the total
energy transfer ∆E between an electromagnetic field and
the electronic system. The spectral response function
S(ω) is defined such that it satisfies the relation

∆E =

∫ ∞

0

dω ωS(ω). (1)

The absorption cross section σ(ω) can be computed as

σ(ω) =
ωS(ω)

I(ω)
, (2)

where I(ω) is the total field energy per unit area at fre-
quency ω. In this work, however, we shall focus on the
spectral response function. We first formulate a general,
gauge invariant theory for the energy transfer, proceeding
to the derivation of the spectral response function for the
specific case of an enveloped, source-free electromagnetic
field without multipole expansion.

We will closely follow the theory previously formulated
within (and restricted to) the electric-dipole approxima-
tion [19, 33–35]. The key difference between the theory
within and without the electric-dipole approximation is
the definition of the proper gauge invariant energy trans-
fer ∆E . Once this has been established, the derivation
of the spectral response function S(ω) proceeds in essen-
tially the same manner within and without the electric-
dipole approximation.

A. Energy transfer

We consider an atomic or molecular electronic system
exposed to the classical electromagnetic fields

E(r, t) = −∂tA(r, t)−∇ϕ(r, t), (3)

B(r, t) = ∇×A(r, t), (4)

where A(r, t) and ϕ(r, t) are the vector and scalar poten-
tials, respectively. Specifically, we will consider the inter-
actions of the electrons with laser pulses, i.e., the physical
electric and magnetic fields, E and B, are nonzero only
in a finite time interval and vanish as t → ±∞. Within
the nonrelativistic, clamped-nuclei Born-Oppenheimer
approximation the time evolution of the electronic sys-
tem is governed by the electronic Schrödinger equation

i |Ψ̇(t)⟩ = H(t) |Ψ(t)⟩ , |Ψ(t → −∞)⟩ = |Ψ0⟩ , (5)

where |Ψ0⟩ is the initial wave function of the electrons,
typically the ground-state wave function in the absence
of external fields. The semiclassical, minimal-coupling
Hamiltonian is given by

H(t) =
1

2
π2(r, t) +W − ϕ(r, t), (6)

where π(r, t) = p+A(r, t) is the kinetic momentum op-
erator and W represents all Coulomb interactions among
the electrons and (clamped) nuclei. Throughout this pa-
per, summation over electrons will be implicitly assumed
for brevity of notation, and Hartree atomic units are
used. We have also skipped the spin-Zeeman term as we
will use only closed-shell, spin-restricted wave functions
in the present work.
We wish to derive a general expression for the spec-

tral response function S(ω) in Eq. (1). Physically, the
total energy transfer ∆E expresses the work performed
on the electronic system by the external electromagnetic
fields, and the rate of change of the energy is referred
to as the power. In classical electrodynamics [36], the
power function of an electron in an electromagnetic field
is given by P = −E ·v, where v is the velocity of the elec-
tron. This is also the energy lost by the electromagnetic
field as calculated by Poynting’s theorem [36], ensuring
energy conservation (of the particle and field systems to-
gether). Assuming that the electric field E(r, t) is an
analytic function of r, the quantum-mechanical power
operator can be obtained from McCoy’s formulation of
Weyl quantization as [37–39]

P (r, t) = −1

2
(E(r, t) · π(r, t) + π(r, t) ·E(r, t)) . (7)

Hence, we may express the total energy transferred from
the field to the electronic system as

∆E =

∫ ∞

−∞
dt ⟨P (r, t)⟩ . (8)

In previous work on transient absorption
spectroscopy—see, e.g., Refs. [19, 33–35]—the en-
ergy transfer is expressed as the integral

∆E =

∫ ∞

−∞
dt

dE(t)
dt

, (9)

where E(t) is the instantaneous energy of the electrons.
At this point, the instantaneous energy is typically



3

equated with the quantum-mechanical expectation value
of the Hamiltonian, ⟨H(t)⟩ = ⟨Ψ(t)|H(t)|Ψ(t)⟩. In gen-
eral, however, neither the expectation value ⟨H(t)⟩ nor
the Hamilton function in classical mechanics [40] equals
the energy of the electrons when a time-dependent ex-
ternal electromagnetic field is present. This is clear from
the fact that both ⟨H(t)⟩ and d ⟨H(t)⟩ /dt are gauge-
dependent quantities. Instead, the operator [39, 41, 42]

K(t) = H(t) + ϕ(r, t) =
1

2
π2(r, t) +W, (10)

can be regarded as a (generally time-dependent) energy
operator which yields gauge invariant expansion coeffi-
cients and transition probabilities when the wave func-
tion is expanded in its (generally time-dependent) eigen-
states. Using the energy operator, Eq. (10), and the
Ehrenfest theorem, we find

dE(t)
dt

=
d ⟨K(t)⟩

dt
= ⟨P (r, t)⟩ , (11)

which leads to Eq. (8) upon substitution in Eq. (9). We
refer to references [41–48] for further discussions of the
intricacies of gauge invariance in external time-varying
fields.

Within the electric-dipole approximation, A(r, t) ≈
A(0, t) = A(t), ϕ(r, t) = 0, which was assumed in
previous work [19, 33–35], the power operator becomes
P (t) = −π(t)·E(t). Inserting this expression into Eq. (8)
yields

∆E = −
∫ ∞

−∞
dt ⟨π(t)⟩ ·E(t). (12)

Using the Ehrenfest theorem,

d ⟨r⟩
dt

= ⟨π(t)⟩ , (13)

and integration by parts, we arrive at

∆E =

∫ ∞

−∞
dt ⟨r⟩ · Ė(t), (14)

which agrees with the expressions obtained in Refs. [19,
33–35].

Identifying the instantaneous energy as the expecta-
tion value ⟨H(t)⟩ is valid when the scalar potential van-
ishes which, in turn, is a valid choice with the Coulomb
gauge condition ∇·A(r, t) = 0 whenever the electric field
is divergence-free (no charge contributions to the electric
field), i.e. within radiation gauge [49]. Caused by the ab-
sence of magnetic fields, it is a peculiarity of the electric-
dipole approximation that the correct energy transfer is
obtained from ⟨H(t)⟩ with the choices A(r, t) = 0 and
ϕ(r, t) = −r ·E(t).

B. Representation of laser pulses without
multipole expansion

From here on we will assume a divergence-free elec-
tric field and work in the radiation gauge such that

K(t) = H(t). Following common practice, we separate
the Hamiltonian into a time-independent and a time-
dependent part,

H(t) = H0 + V (t), (15)

H0 =
1

2
p2 +W, (16)

V (t) = A(r, t) · p+
1

2
A2(r, t). (17)

In the context of time-dependent perturbation theory
or frequency-dependent response theory, the weak-field
approximation—i.e., neglecting the term quadratic in the
vector potential—is usually invoked, although it is not
formally necessary to do so [11–14]. For the real-time
simulations pursued in the present work, invoking the
weak-field approximation does not lead to any simplifi-
cations and, hence, we retain the quadratic term in all
simulations.
The vector potential that solves the Maxwell equa-

tions within the Coulomb gauge is a linear combination of
plane waves. However, this is impractical for modelling
ultra-fast laser pulses. We will instead model the vec-
tor potential as a linear combination of enveloped plane
waves

A(r, t) =
∑
m

Am(r, t)Gm(t)

=
∑
m

AmRe{umei(km·r−ωmt−γm)}Gm(t), (18)

where each term in the sum models a single pulse
with amplitude Am, carrier frequency ωm, and carrier-
envelope phase γm. The Coulomb gauge condition im-
plies that the (complex) polarization vector um is or-
thogonal to the real wave vector km, which has length
ωm/c where c is the speed of light. The electric- and
magnetic-field amplitudes of each pulse are Em = ωmAm

and Bm = Em/c, respectively, and we define the peak
intensity of each pulse to be

Im =
1

2
ϵ0cE

2
m. (19)

Chirped laser pulses can be modelled by letting γm be
time-dependent.
In experimental work, Gaussian functions are often fa-

vored for the envelopesGm(t). In numerical studies, how-
ever, Gaussians are inconvenient due to their long tails
and infinite support. For this reason, we use trigonomet-
ric envelopes on the form [50]

Gm(t) =

{
cosn

(
π(t−tm)

Tmn

)
|t− tm| ≤ Tmn

2

0 |t− tm| > Tmn

2

(20)

where n > 0 is a chosen parameter, tm is the central time
of pulse m, and Tmn is the total duration of Am. The
total duration depends on n and may be computed from

Tmn =
πτm

2 arccos(2−1/(2n))
, (21)
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where τm is the full width at half maximum of G2
m(t),

i.e., τm is approximately the desired experimental pulse
duration defined from the intensity distribution [50].

The trigonometric envelopes, Eq. (20), define a se-
quence of functions that rapidly and uniformly converges
to the Gaussian function exp(−2 ln (2)(t − tm)2/τ2m) for
increasing values of n [50]. Moreover, in contrast to
finite numerical representations of Gaussian envelopes,
the trigonometric envelopes guarantee that the dc (zero-
frequency) component of the electric field vanishes iden-
tically for any choice of n > 0, in agreement with the
far-field approximation of the Maxwell equations [51].

A similar setup has been used before in grid treat-
ments of single-electron systems [52–54] where pulses on
the form

A(r, t) = A0 sin
2

(
π(ωt− k · r)

ωT

)
sin (ωt− k · r)u,

(22)

were used. Here, u is a real polarization vector and
the envelope depends both on time and on spatial co-
ordinates. This has the benefit of modelling the overall
shape of the pulse in space, albeit with potential edge
effects if the approximation A(r, t) ≈ 0 at t = 0 and
t = T is made along with a neglect of the spatial non-
periodicity. The pulse with the purely time-dependent
envelope, Eq. (20) with n = 2, may be regained from the
spatio-temporal envelope by an expansion through lowest
order in k · r/ncyc, where ncyc is the number of optical
cycles of the pulse.

C. The spectral response function

Since we have assumed a divergence-free electric field,
the power operator becomes P (r, t) = −E(r, t) · π(r, t),
and Eq. (8) simplifies to

∆E = −
∫ ∞

−∞
dt ⟨E(r, t) · π(r, t)⟩. (23)

Using the Fourier transform convention

f(t) = Fω

[
f̃(ω)

]
=

1√
2π

∫ ∞

−∞
dω f̃(ω)eiωt, (24)

f̃(ω) = Ft

[
f(t)

]
=

1√
2π

∫ ∞

−∞
dt f(t)e−iωt, (25)

the integration over time in Eq. (23) can be turned into
an integration over frequency,

∆E =

∫ ∞

−∞
dω Y (ω), (26)

with

Y (ω) = −Ft

[
iω⟨Ã(r, ω)∗ · π(r, t)⟩

]
, (27)

where we have used Ẽ(r, ω)∗ = iωÃ(r, ω)∗.

Introducing

f1,m(r) = cos (km · r), (28)

f2,m(r) = sin (km · r), (29)

g1,m(t) = cos (ωmt+ γm)Gm(t), (30)

g2,m(t) = sin (ωmt+ γm)Gm(t), (31)

uij
m = δijRe(um) + ϵijIm(um), (32)

where δij is the Kronecker delta and ϵij is the Levi-Civita
symbol, the vector potential, Eq. (18), can be recast as

Am(r, t)Gm(t) = Am

2∑
i,j=1

uij
mfi,m(r)gj,m(t). (33)

Equation (27) can now be written as

Y (ω) = ω
∑
m

2∑
i,j=1

F̃ij,m(ω)g̃j,m(−ω), (34)

where F̃ij,m(ω) is the Fourier transform of the function

Fij,m(t) = −iAmuij
m ·

[
⟨fi,m(r)p⟩

+
∑
n

2∑
k,l=1

Anu
kl
n ⟨fk,n(r)fi,m(r)⟩gl,n(t)

 . (35)

Hence,

∆E =

∫ ∞

0

dω ω
∑
m

2∑
i,j=1

[
(1− P)F̃ij,m(ω)g̃j,m(−ω)

]
,

(36)
where P is the parity operator defined by Pf(ω) =
f(−ω). The spectral response function thus becomes

S(ω) =
∑
m

2∑
ij=1

(1− P)F̃ij,m(ω)g̃j,m(−ω), (37)

which can be computed by sampling Fij,m(t) during a
simulation, followed by Fourier transformation in a post-
processing step.
In the electric-dipole approximation, f1,m(r) = 1 and

f2,m(r) = 0, and in this case the spectral response func-
tion reduces to

S(ω) = 2Im
[
⟨π̃⟩(ω) · Ã(ω)∗

]
, (38)

or, equivalently,

S(ω) = −2Im
[
⟨d̃⟩(ω) · Ẽ(ω)∗

]
, (39)

in terms of the dipole operator d = −r. The latter ex-
pression, Eq. (39), was used in Refs. [19, 33–35]. We
remark that Eqs. (38) and (39) are equivalent only if
the Ehrenfest theorem, Eq. (13), is satisfied, i.e., for
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fully variational many-body wave function approxima-
tions, and in the limit of complete one-electron basis set.

For the visual presentation of spectra we use normal-
ized spectral response functions

S̄(ω) =
S(ω)

max(Sref(ω))
(40)

where Sref is the spectral response function of some ref-
erence system.

III. NUMERICAL EXPERIMENTS

In order to test the multipole-expansion-free theory
outlined above, we will investigate the following aspects:

1. Reproducibility of results obtained within the
electric-dipole approximation in the long wave-
length limit: Core-level pump-probe spectrum of
LiH (section III B).

2. Reproducibility of results obtained with low-order
multipole expansions for short wavelengths: Pre-K-
edge quadrupole transitions in Ti (section III C).

3. Intrinsically beyond-dipole phenomena:
Anisotropic circular dichroism (section IIID).

A. Computational details

All simulations are performed with the open-source
software Hylleraas Quantum Dynamics (HyQD) [55].
We employ a series of nonrelativistic, closed-shell, spin-
restricted time-dependent electronic-structure methods
based on a single reference Slater determinant built
from spin orbitals expanded in a fixed atom-centered
Gaussian basis set. The orbital expansion coefficients
are either kept constant (static orbitals) at the ground-
state Hartree-Fock (HF) level or allowed to vary in re-
sponse to the external field (dynamic orbitals). Static
orbitals are used in the time-dependent configuration in-
teraction singles (TDCIS) [56], time-dependent second-
order approximate coupled-cluster singles-and-doubles
(TDCC2) [57, 58], and time-dependent coupled-cluster
singles-and-doubles (TDCCSD) [59] methods. Dynamic
orbitals are used in the time-dependent Hartree-Fock
(TDHF) [56], time-dependent orbital-optimized second-
order Møller-Plesset (TDOMP2) [58, 60], and orbital-
adaptive time-dependent coupled-cluster doubles (OAT-
DCCD) [61] methods. Only the methods using dynamic
orbitals are gauge invariant (in the limit of complete basis
set) [62–65]. No splitting of the orbital space is used in
the OATDCCD method which, therefore, is identical to
the nonorthogonal orbital-optimized coupled-cluster dou-
bles model [65]. In the TDHF and TDOMP2 models the
dynamic-orbital evolution is constrained to maintain or-
thonormality throughout, whereas in OATDCCD theory
the dynamic orbitals are biorthonormal [61, 65].

The methods can be roughly divided into three ap-
proximation levels. The TDCIS and TDHF methods are
the least computationally demanding ones (with formal
scaling O(K4) with K the number of basis functions)
and do not account for electron correlation. The TD-
CCSD and OATDCCD methods are the most accurate
and most expensive (O(K6)) methods with full treatment
of double excitations. Finally, the TDCC2 and TDOMP2
methods are intermediate in both accuracy and compu-
tational cost (O(K5)). The TDCC2 method is a second-
order approximation to the TDCCSD model, while the
TDOMP2 model is the analogous second-order approxi-
mation to the orbital-optimized coupled-cluster doubles
model [64, 66]. The doubles treatment of TDOMP2
theory is essentially identical to that of TDCC2 theory
but provides full orbital relaxation through unitary or-
bital rotations instead of the singles excitations of static-
orbital coupled-cluster theory.

Since fixed, atom-centered Gaussian basis sets are
used, ionization cannot be described and, therefore, the
simulations are restricted to weak electromagnetic field
strengths. On the other hand, the fixed basis set allows
us to compute matrix elements of the plane-wave inter-
action operators using the OpenMolcas software pack-
age [67, 68] via a Python interface implemented in the
Dalton Project [69]. The remainder of the Hamiltonian
matrix elements and the ground-state HF orbitals are
computed using the PySCF program [70] with the ex-
ception of the LiH system for which the Dalton quantum
chemistry package [71] was used. The convergence tol-
erance for the HF ground states is set to 10−10 a.u. for
both the HF energy and the norm of the orbital gradi-
ents in the PySCF calculations, while the default value
of 10−6 a.u. on the HF energy was used in the Dalton cal-
culations. The basis sets were obtained from the Python
library Basis Set Exchange [72]. The systems are initially
in the ground state which is calculated with ground-state
solvers implemented in HyQD for all the methods except
the TDHF and TDCIS models, for which the ground-
state wave function is computed using PySCF. A conver-
gence tolerance of 10−10 is also used for the amplitude
residuals in the ground-state coupled-cluster calculations.

The integration of the equations of motion is done with
the symplectic Gauss-Legendre integrator [59, 73] of or-
der six and with a convergence threshold on the residual
norm of 10−10 for the implicit equations. The simula-
tions are performed with the pulse defined in Eq. (18).
The laser pulse parameters will be given for each system
below.

In actual simulations, time-dependent functions such
as Fij,m(t) and gi,m(t) are computed as discrete time se-
ries, forcing us to use the fast Fourier transform algo-
rithm. To reduce the appearance of broad oscillations
around the peaks due to spectral leakage, we roughly fol-
low the procedure used by Skeidsvoll et al. [34]. The
simulation is started at time t < 0 when the first pulse is
switched on and continued until time tmax > 0 after the
last pulse is switched off. We then extend the recorded
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time series such that tmin = −tmax to obtain a symmetric
time range about t = 0. To do so, we use thatA(r, t) = 0
and hence V (t) = 0 in the time interval before the pulse is
switched on. We then multiply the resulting time series
defined on the uniformly discretized time interval from
tmin to tmax with the Hann function,

wH(t) = cos2
(

πt

2tmax

)
, (41)

before the fast Fourier transform is performed.

B. Core-level pump-probe spectrum of LiH

The most common experimental methods for spectral
analysis of attosecond interactions employ pump-probe
setups. Therefore, we start by simulating a pump-probe
spectrum for LiH. The K pre-edge features of Li are ex-
pected at less than 60 eV, corresponding to a wavelength
of ∼ 200 Å. In the weak-field limit, the beyond-dipole ef-
fects are expected to be quite small, allowing us to com-
pare with the TDCCSD simulations carried out within
the electric-dipole approximation by Skeidsvoll et al. [34].

For the most part we follow the setup of Skeidsvoll
et al. [34]. We start the TDCCSD simulations at t =
−200 a.u. and end it at tmax = 5000 a.u. The pump
pulse centered at t1 = −40 a.u. has a carrier frequency
of 3.55247 eV and maximum electric field strength of
0.01 a.u. (corresponding to a peak intensity of 3.51 ×
1012 W/cm

2
), while the probe pulse centered at t2 =

0a.u. has a carrier frequency of 57.6527 eV and max-
imum electric field strength of 0.1 a.u. (peak intensity

3.51 × 1014 W/cm
2
). Both pulses are linearly polarized

in the z-direction (parallel to the molecular axis) with
zero carrier-envelope phases, and the propagation direc-
tion is along the x-axis. The beyond-dipole spectrum
was generated using Eq. (37) while Eq. (38) was used to
generate the dipole spectrum. The dipole simulation was
done in velocity gauge to eliminate any gauge differences
between the two simulations. We note in passing that
the intensity of the probe pulse is too strong to warrant
the complete neglect of ionization processes, but to facil-
itate comparison with the spectra reported in Ref. 34 we
choose to keep it.

Skeidsvoll et al. used a Gaussian envelope on the elec-
tric field with root-mean-square width σ1 = 20 a.u. for
the pump pulse and σ2 = 10 a.u. for the probe pulse.
Here, we instead use the trigonometric approximation in
Eq. (20) placed on the vector potential with

Tmn =
π
√
ln (2)σm

arccos(2−1/(2n))
, m = 1, 2, (42)

and n = 19, which is the largest integer for which the
pump pulse is strictly zero at t = −200 a.u.

There are mainly three aspects of our simulations that
will make our dipole spectrum different from that in

Ref. [34]: (1) placement of a trigonometric envelope on
the vector potential rather than a Gaussian envelope on
the electric field, (2) simulating in velocity gauge instead
of length gauge, and (3) using Eq. (38) rather than Eq.
(39) to generate the spectra. The first point corresponds
to effectively a different electric field component of the
physical pulse. This difference will diminish with in-
creasing number of cycles in the pulses. Both points (2)
and (3) are due to lacking gauge invariance. Illustrat-
ing the difference between the two pulse setups, Fig. 1
shows the z-component of the electric field at the ori-
gin, Ez(0, t), with Gaussian envelope on the electric field
and trigonometric envelope on the vector potential. The
bottom panel shows the difference between the two pulse
setups, and the contribution to the difference due to the
trigonometric approximation and due the placement of
the envelope on the vector potential rather than on the
electric field. We see that the placement of the envelope
is the dominating contribution, especially in the pump
region. The difference in the pump region is also more
significant due to the smaller amplitude and consequently
larger relative difference.
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FIG. 1. Top: Electric field with a Gaussian envelope on
the electric field and trigonometric envelope on the vector
potential with exponent n = 19. Bottom: the difference be-
tween the two pulses and contributions to it from two distinct
sources.

Fig. 2 shows the TDCCSD dipole spectra generated
with the two alternative setups. The length-gauge spec-
trum is identical to that reported by Skeidsvoll et al. [34],
and although differences are visible on the scale of the
plot, we conclude that the velocity-gauge spectrum con-
veys the same physics.
Acknowledging the differences between the two setups,

we will now focus on the difference between the simula-
tions with and without the dipole approximation. Fig-
ure 3 compares the pump-probe spectrum simulated in
the dipole approximation and with a plane-wave opera-
tor generated with equations (38) and (37), respectively.
Evidently, beyond-dipole effects are utterly negligible in
this case: The simulation with the plane-wave operator
produces a spectrum with the same transition frequencies



7

0 10 20 30 40 50 60 70

0.0

0.5

1.0 Length gauge, envelope on electric field
Velocity gauge, trigonometric envelope

0 10 20 30 40 50 60 70
Energy (eV)

0.10

0.05

0.00

0.05 Difference

No
rm

ali
ze

d a
bs

orp
tio

n

FIG. 2. Top: TDCCSD pump-probe spectra computed in
the electric-dipole approximation in length gauge using the
Gaussian envelope placed on the electric field, and in velocity
gauge with the trigonometric envelope (n = 19) on the vector
potential. Bottom: difference between the solid and dashed
lines.

as the velocity-gauge electric-dipole simulations, deviat-
ing by at most 4.5× 10−5, corresponding to 0.0087 %, in
relative intensity.

C. K pre-edge quadrupole transitions in Ti

For heavier elements, the bound core-valence excita-
tions move up in energy and the shorter wavelengths be-
come comparable to the “size” of the atoms in terms of,
e.g., covalent atomic radii. This implies that higher-order
multipole effects become visible in high-resolution spec-
tra. The K-edge of Ti is expected at just below 5000 eV.
This corresponds to a wavelength of roughly 2.5 Å which
is comparable to the covalent radius of Ti (1.60 Å [74]).
Consequently, one can expect visible beyond-dipole ef-
fects even in the low-intensity limit.

We consider the Ti4+ ion and the TiCl4 molecule.
In the Ti4+ ion the 1s → 3d transition is dipole for-
bidden but quadrupole allowed. In TiCl4 the tetrahe-
dral symmetry splits the 3d-orbitals into groups of two
e orbitals and three t2 orbitals. The 1s → e transi-
tion is dipole-forbidden but quadrupole-allowed, while
the 1s → t2 transition attains a dominant electric-dipole
contribution due to 4p–3d mixing. Experimentally [75],
a broad peak around 4969 eV in the X-ray absorption
spectrum of TiCl4 has been assigned to the 1s → t2 and
1s → e with most of the intensity stemming from the
former. In the implementation presented in this paper,
electric-quadrupole and other higher-order contributions
from the electromagnetic field should automatically be
accounted for.

For both the Ti4+ and TiCl4 systems, we perform sim-
ulations with a 10-cycle pulse with n = 2 for the en-
velope, Eq. (20), carrier frequency 181 a.u. (4925.26 eV),
and carrier-envelope phase γ = 0. The duration of the

simulation is 100 a.u. for Ti4+, while for TiCl4 we use
a total simulation time of 600 a.u. to ensure a reason-
able resolution of the splitting of the d-orbitals. The
electric-field strength is E1 = 0.01 a.u. (peak intensity

3.51 × 1012 W/cm
2
) and time step ∆t = 2.5 × 10−4 a.u.

Linearly polarized along the x-axis, the pulse is propa-
gated along the z-axis (parallel to one of the four Ti–Cl
bonds in the case of TiCl4). All Ti4+ spectra are nor-
malized relative to the maximum peak in the TDCCSD
spectrum.

We first consider the 1s → 4p and 1s → 3d transi-
tions of Ti4+, which have been studied recently at the
equation-of-motion coupled-cluster singles and doubles
(EOM-CCSD) level of theory by Park et al. [76] us-
ing multipole expansion up to electric octupole/magnetic
quadrupole terms, for the full second-order contribution
in the ”mixed” length and velocity gauge [17, 77, 78],
in the framework of the Fermi golden rule. In order to
compare with their results, we use the ANO-RCC-VDZ
basis set [79]. Figure 4 displays the K pre-edge spec-
trum obtained for Ti4+ with the TDCC2, TDOMP2, TD-
CCSD, and OATDCCD methods, showing also the tran-
sition frequencies obtained by Park et al. [76]. To within
the spectral resolution of the simulation, the TDCCSD
method predicts the same transition frequencies as the
static EOM-CCSD method, as expected. The intensity
of the dipole-allowed 1s → 4p transition is very nearly the
same both with and without the dipole approximation.
The orbital-adaptive methods yield roughly the same in-
tensity profiles as their static-orbital counterparts, but
the transition frequencies are blue-shifted: ∼ 0.5 eV for
TDOMP2 versus TDCC2 and ∼2 eV for OATDCCD ver-
sus TDCCSD. As has been observed previously [58], these
blue-shifts are insignificant compared with other sources
of error such as basis-set incompleteness and higher-order
correlation effects. Electron-correlation effects are signif-
icantly more important than the orbital relaxation pro-
vided by dynamic orbitals, as seen in Fig. 5 where the
TDCCSD spectrum is compared to the spectra obtained
with the TDHF and TDCIS methods. While the TDHF
and TDCIS simulations produce virtually identical spec-
tra, electron correlation causes a red-shift of the transi-
tion frequencies by roughly 8 eV. The TDHF and TDCIS
intensities are comparable to but slightly higher than the
TDCCSD ones. The main source of error, besides rela-
tivistic effects, is the choice of basis set: Changing from
the ANO-RCC-VDZ basis set to the cc-pVTZ basis set
increases the EOM-CCSD transition frequencies by more
than 28 eV [76].

Since we are not aiming at prediction or interpretation
of experimental results in this work, we study the TiCl4
K pre-edge spectrum using the most affordable TDCIS
method with the ANO-RCC-VDZ basis set. The TDCIS
spectrum is shown in Fig. 6. The dipole-forbidden 1s → e
transition is visible at 4941.50 eV, roughly 1.5 eV below
the dipole-allowed 1s → t2 transition at 4942.99 eV. The
TDCIS frequencies are blue-shifted by approximately
12 eV relative to the EOM-CCSD results reported by
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FIG. 3. Top: pump-probe spectrum of LiH using the TDCCSD method in the dipole approximation and with a plane-wave
operator using the aug-cc-pCVDZ basis set. Bottom: the difference between the spectra generated from simulations in the
dipole approximation and with the plane-wave operator.

Park et al. [76]. The 1s → t2 transition has a slightly
higher intensity with the plane-wave interaction opera-
tor than with the dipole interaction operator. It should
also be noted, however, that the intensities of the dipole-
allowed transitions typically are slightly higher with the
dipole approximation and, therefore, one should be care-
ful using the dipole result as a reference for evaluating the
quadrupole contribution. The deviation may be caused
by a difference in the quality of the operator representa-
tion or the wave function, which may occur when propa-
gating with different operators in a finite basis set.

D. Anisotropic circular dichroism

Circular dichroism (CD)—the difference in absorption
of left and right circularly polarized radiation exhibited
by chiral molecules—is a particularly interesting case
to test the implementation of the beyond-dipole inter-
action, since the observed effect cannot be explained
within the electric-dipole approximation. At least elec-
tric quadrupole and magnetic dipole terms must be in-
cluded [80–83] and, consequently, the differential absorp-
tion is weak compared with linear, electric-dipole absorp-

tion. Chiroptical spectroscopies, including CD, are im-
portant for determining the absolute configuration of chi-
ral molecules and core-resonant CD is particularly well
suited to gauge local molecular chirality [84]. As Eq. (37)
was derived assuming complex polarization vectors, the
implementation presented here can easily be used to gen-
erate spectra involving pulses with circular (or, more
general, elliptical) polarization, including at short wave-
lengths.

As alluded to above, the leading contributions to a
CD spectrum arise from the magnetic-dipole and electric-
quadrupole terms in the multipole expansion of the vec-
tor potential. In an isotropic sample, the quadrupole
contribution vanishes since the electric dipole–electric
quadrupole component of the rotatory strength tensor
is traceless [32]. As a prototypical example which previ-
ously has been used to test new implementations of CD
spectra [85–87], we will consider the H2O2 molecule in a
chiral conformation with fixed orientation relative to the
external laser pulse.

The CD spectrum is calculated as the difference be-
tween the spectral response functions of two distinct sim-
ulations: one with left circular polarization and one with
right circular polarization of the pulse. We define the
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FIG. 4. Ti4+ K pre-edge spectrum obtained from simula-
tions with the ANO-RCC-VDZ basis set. Solid lines are ob-
tained with the velocity-gauge electric-dipole approximation,
while dashed lines are obtained with the plane-wave opera-
tor. Top: The dipole-allowed 1s → 4p transition. Bottom:
The quadrupole-allowed 1s → 3d transition. Vertical black
lines indicate the EOM-CCSD frequencies reported by Park
et al. [76]. Note that, although difficult to see, the dashed
lines are present also in the top panel.
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FIG. 5. Ti4+ K pre-edge spectrum obtained from simulations
with the plane-wave operator. Top: The dipole-allowed 1s →
4p transition. Bottom: The quadrupole-allowed 1s → 3d
transition.

normalized differential absorption as

S̄l−r(ω) = S̄l(ω)− S̄r(ω) (43)

where S̄l(ω) and S̄r(ω) are the normalized spectral re-
sponse functions for the left and right circularly polarized
pulses.

The molecular geometry of H2O2, depicted in Fig. 7
along with the Cartesian axis definitions, is taken from
Ref. 88. See Ref. 39 for the Cartesian coordinates. We
choose the polarization vectors such that ul + ur = ĵ,

where ĵ is a unit vector aligned with the C2 axis and
superscripts r and l refer to right and left circular po-
larization, respectively, as seen from the source. We run
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FIG. 6. TiCl4 K pre-edge spectrum from a TDCIS simula-
tion with the plane-wave operator and with the velocity-gauge
electric-dipole approximation. Top: the dipole-forbidden
1s → e transition at 4941.50 eV and the 1s → t2 transition at
4942.99 eV. Bottom: zoomed in at the 1s → t2 peak.

FIG. 7. Definition of Cartesian coordinate system for H2O2

(C2 point group).

two pairs of simulations with the propagation direction
along the x-axis and along the z-axis. For the propaga-
tion direction along the x-axis we use ur = (0, 1, i) and
ul = (0, 1,−i), and for the propagation direction along
the z-axis we use ur = (−i, 1, 0) and ul = (i, 1, 0). We
use a carrier frequency in the K-edge region of oxygen,
ω = 20 a.u. (544.23 eV), and carrier-envelope phase γ =
0. The duration of the laser pulse is 10 optical cycles and
the trigonometric envelope is defined with n = 2, which
corresponds to τ = 1.14 a.u.. The electric-field strength
is E1 = 0.01 a.u. (peak intensity 3.51× 1012 W/cm

2
) and

the carrier-envelope phase is γ = 0. The time step is
∆t = 0.005 a.u. and the total simulation time is 1000 a.u.
We use the TDHF, TDCIS, TDCC2, TDOMP2, and TD-
CCSD methods with the cc-pVDZ basis set[89, 90], and
the spectra for propagation direction along the x- and
z-axes are normalized with respect to the corresponding
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TDCIS simulation.
The resulting CD spectra are plotted in Figs. 8 and

9. As in the Ti4+ simulations above, we see that
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FIG. 8. Differential spectra obtained with the cc-pVDZ basis
set in the K-edge region of H2O2 with propagation direction
along the x-axis.
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FIG. 9. Differential spectra obtained with the cc-pVDZ basis
set in the K-edge region of H2O2 with propagation direction
along the z-axis.

the TDCIS and TDHF methods produce nearly iden-
tical CD spectra with minor visual differences. The
TDCC2 and TDOMP2 methods also yield similar CD
spectra, producing the same sign pattern of the differ-
ential absorption peaks, although the TDOMP2 peak
positions are slightly more red-shifted than the TDCC2
ones relative to the TDHF peaks. The intensities of the
TDCC2 and TDOMP2 spectra are significantly reduced
compared with the TDHF and TDCIS spectra. The TD-
CCSD method shifts the transition frequencies somewhat
but produces an intensity of the dominant peak around
561-562 eV which is closer to that of TDHF theory than
the TDCC2 and TDOMP2 methods. Although this may
indicate that high-level electron-correlation treatment is
important, the deviation may also be caused by limited

frequency resolution (see below). Of course, the choice of
carrier frequency will affect the relative peak magnitudes
but further tests have shown that this effect is rather
marginal as long as ω is reasonably close to the transi-
tion energies.

Figure 10 shows the CD spectrum obtained from the
TDCIS simulations along with a stick spectrum calcu-
lated from the rotatory strength tensors [32] computed
by full diagonalization of the CIS Hamiltonian matrix.
For both propagation directions, the stick spectrum is
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FIG. 10. Differential spectra obtained with the cc-pVDZ
basis set in the K-edge region of H2O2 with propagation di-
rection along the x (top) and z (bottom) axes, along with
circular dichroism calculated from rotatory strengths.

normalized such that the maximum peak is equal to the
maximum peak from the corresponding TDCIS simula-
tion. Since the carrier frequency is 544.23 eV, it is ex-
pected that the peaks of the stick spectrum are smaller
than the simulated peaks to the immediate left of the
dominant peak, and larger further to the right of the
dominant peak. This is indeed what we observe in the
bottom panel of Fig. 10. In the top panel, however,
this is not the case. This can be ascribed to insufficient
convergence. The excited states of H2O2 in the C2 geom-
etry come in pairs, typically separated by 0.01 eV or less,
formed by the lowering of symmetry relative to a planar,
achiral (cis or trans) structure. For propagation in the x-
direction, the CD for these pairs of states are of about the
same magnitude but with opposite signs, causing lower-
ing of the peak intensities. Figure 11 shows the effect of
increasing the simulation time from 1000 a.u. to 7500 a.u.
The change in the bottom panel is relatively minor, while
the dominant peak in the top panel has increased by an
order of magnitude. This is closer to the expected dif-
ference calculated from rotatory strength tensors. How-
ever, the peak at 567 eV is still much suppressed, which
is caused by the states only being separated by about
0.0088 eV.

An overview of the occupied orbitals and the 11 lowest-
lying virtual orbitals is given in Table I. The core or-
bitals, 1σs and 1σ∗

s , are separated by 7.3483 × 10−3 eV
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FIG. 11. TDCIS differential spectra obtained with the cc-
pVDZ basis set in the K-edge region of H2O2 with propaga-
tion direction along the x (top) and z (bottom) axes, with
simulation times of 1000 a.u. and 7500 a.u.

TABLE I. Occupied orbitals and the 11 lowest-lying virtual
orbitals of H2O2 with the cc-pVDZ basis set. The orbital
types are based on similarity with the peroxide ion. Due to
the reduced symmetry, all orbitals are somewhat mixed.

No. Energy (a.u.)
Symmetry
label

Type

1 -561.27036 1A σ
2 -561.26301 1B σ∗

3 -39.992527 2A σ
4 -33.108905 2B σ
5 -19.465831 3B πz

6 -18.833153 3A πy

7 -16.202217 4A σpx

8 -14.251659 5A π∗
z

9 -13.038506 4B π∗
y

10 5.1526056 6A σ
11 5.2866155 5B σ∗

12 7.7990137 6B σ∗
px

13 22.642558 7A Mixed, dominant weight on H
14 22.835716 7B Mixed, dominant weight on H
15 30.276955 8B σ∗

s/px

16 30.673602 8A πy/π∗
z

17 31.260347 9A π∗
z

18 32.689754 9B σ∗
px/pi∗y

19 34.770868 10B Mixed σ/π
20 36.906177 10A σ∗

s/px

and, hence, excitations from either of the core orbitals
to low-lying virtual orbitals will fall in the K pre-edge
region. The TDCIS spectrum contains 5 main peaks be-
low 580 eV along with three smaller ones at 553.44 eV,
560.24 eV, and 576.82 eV. The first peak at 546.48 eV
can be viewed as a transition to virtual orbitals 5B and
6B. The main peak in Fig. 8 at 569.63 eV contains sig-
nificant excitations to orbitals 8A, 9A and 9B, which are
orbitals with significant π character, and with electron
density mostly located on the oxygen atoms. The main
peak in Fig. 9 at 573.97 eV is mainly due to excitations

to the 7B and 8B (and somewhat to 10A) orbitals.
Finally, noting that the cc-pVDZ basis set is insuffi-

cient for accurate predictions of CD spectra in general—
see, e.g., Ref. 85— we compare the TDCIS spectra with
those obtained with larger basis sets in Fig. 12. As ex-
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FIG. 12. TDCIS CD spectra in the K-edge region of H2O2

with propagation direction along the x-axis (top) and z-axis
(bottom).

pected, the basis-set effect is significant. Going from
double-zeta to triple-zeta basis retains some of the main
features but the energies are red-shifted, whereas the in-
clusion of diffuse orbitals in the aug-cc-pVDZ basis set
leads to a much more radical change of the underlying
dynamics due to a higher density of excited states in the
energy region around the carrier frequency. More accu-
rate predictions of transient CD spectra, especially with
the higher-level TDCC methods, clearly require larger
basis sets including diffuse functions.

IV. CONCLUDING REMARKS

We have derived a gauge invariant expression for the
spectral response function which is applicable to tran-
sient absorption and emission spectra. This expression is
applicable both within and beyond the electric-dipole ap-
proximation. Using an enveloped plane-wave vector po-
tential to formulate the semiclassical matter-field interac-
tion operator, simulations of laser-driven many-electron
dynamics with a fixed atom-centered Gaussian basis set
can be straightforwardly carried out with no additional
cost compared with the analogous electric-dipole simula-
tions. Numerical experiments show that beyond-dipole
effects are fully captured without explicit multipole ex-
pansions, and that electric-dipole results are correctly re-
produced in the long wavelength limit. Circular (or, more
general, elliptical) polarization is easily handled, as illus-
trated by preliminary simulations of anisotropic transient
X-ray circular dichroism spectra.
Aimed at electronic ground and bound excited states,

fixed atom-centered Gaussian basis sets do not support
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electronic continuum states and, consequently, we have
only considered low-intensity laser fields in this work. We
are currently extending the approach presented here to
more flexible bases that allow us to study highly non-
linear processes such as core ionization where the mag-
netic component of the electromagnetic field may play a
decisive role.
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