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Aims: To develop a disease risk score for COVID-19-related hospitalization and 
mortality in Sweden and externally validate it in Norway.

Method: We employed linked data from the national health registries of Sweden 
and Norway to conduct our study. We  focused on individuals in Sweden with 
confirmed SARS-CoV-2 infection through RT-PCR testing up to August 2022 as 
our study cohort. Within this group, we  identified hospitalized cases as those 
who were admitted to the hospital within 14  days of testing positive for SARS-
CoV-2 and matched them with five controls from the same cohort who were 
not hospitalized due to SARS-CoV-2. Additionally, we identified individuals who 
died within 30  days after being hospitalized for COVID-19. To develop our disease 
risk scores, we considered various factors, including demographics, infectious, 
somatic, and mental health conditions, recorded diagnoses, and pharmacological 
treatments. We  also conducted age-specific analyses and assessed model 
performance through 5-fold cross-validation. Finally, we  performed external 
validation using data from the Norwegian population with COVID-19 up to 
December 2021.

Results: During the study period, a total of 124,560 individuals in Sweden were 
hospitalized, and 15,877 individuals died within 30  days following COVID-19 
hospitalization. Disease risk scores for both hospitalization and mortality 
demonstrated predictive capabilities with ROC-AUC values of 0.70 and 0.72, 
respectively, across the entire study period. Notably, these scores exhibited a 
positive correlation with the likelihood of hospitalization or death. In the external 
validation using data from the Norwegian COVID-19 population (consisting of 
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53,744 individuals), the disease risk score predicted hospitalization with an AUC 
of 0.47 and death with an AUC of 0.74.

Conclusion: The disease risk score showed moderately good performance 
to predict COVID-19-related mortality but performed poorly in predicting 
hospitalization when externally validated.

KEYWORDS

COVID-19, machine learning, disease risk score, prediction modeling, artificial 
intelligence

1 Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 
has had a profound impact on global health, the economy, and 
education (1). Mitigation/containment strategies and vaccination 
programs have been designed to reduce the incidence of coronavirus 
disease 2019 (COVID-19), to prevent major surges of patients being 
hospitalized, to protect vulnerable populations with a high risk of 
severe illness or poor prognosis, and to save lives (2–5). Neither 
vaccines nor mitigation or containment strategies have been fully able 
to prevent the transmission of SARS-CoV-2 and the development of 
severe illness or death from COVID-19. Important reasons are the 
unavailability of vaccines that confer 100% protection (6, 7), emerging 
SARS-CoV-2 variants (8, 9), and the uncertainty of which individuals 
are at higher risk of severe COVID-19 or poor prognosis (10–15).

Understanding the heterogeneity in risk of severe COVID-19 and 
identifying patients with poor prognosis has been a global public 
health priority since the pandemic started, as it was quickly 
understood that identifying risk factors is crucial to contextualize the 
response and focus resources and mitigation and containment 
strategies (16). Prognostic tools for the prediction of COVID-19 
disease severity or poor prognosis have been extensively developed. 
However, so far, achievements have been limited, as available 
prediction tools showed a lack of robustness and generalizability in 
performance across populations and settings (17).

Heterogeneity of populations and risk factors across geographical 
settings (10), including the effects of social determinants and their 
interplay (14) and the lack of validation of prognostic tools in multiple 
cohorts (17) has played a key role for lack of robustness and 
generalizability in performance across populations and settings. 
We recently conducted a systematic review and found that previous 
machine learning and artificial intelligence (AI)-based predictive 
models for COVID-19 hospitalization and mortality were affected by 
a high risk of bias or lack of applicability, especially due to lack of 
external validation of prognostic models (18). Of note, there are 
examples of studies that have developed AI-driven models for 
COVID-19 hospitalization or death, which underwent external 
validation (19, 20). However, it is worth mentioning that we consider 
these studies as having a high risk of bias (18). Therefore, this study 
aimed at overcoming the limitations of the previously developed AI 
models by more stringently identifying predictors of COVID-19 
severity and using them to develop a disease risk score (DRS) for 
COVID-19-related hospitalization and for COVID-19 death – overall 
and across the COVID-19 waves – for residents in Sweden, and 
externally validate the DRS in Norway.

2 Methods

2.1 Study design and setting

This is a population-based study including all residents in Sweden 
from November 2019 and from February 2020 in Norway who tested 
positive for SARS-CoV-2 infection by real-time polymerase chain 
reaction (RT-PCR) up to the latest available data (August 2022 in 
Sweden and December 2021 in Norway).

2.2 Study population

The source populations were 2.6 million in Sweden and 0.4 
million in Norway. From the source populations, we  identified 
individuals that were admitted to hospital for COVID-19 as primary 
diagnosis (International Classification of Diseases version 10, ICD-10: 
U07) up to 14 days after the positive test (i.e., cases) as done by prior 
research (21). Among the cases, we further identified fatal cases who 
died within 30 days of COVID hospitalization. For cases, the date of 
hospitalization was defined as the index date. Up to five individuals 
per case were randomly selected as controls among those eligible in 
the study population and in the risk set on the case index date, 
matched by year of birth and sex, and who at the time of the matching 
had not emigrated, and were not hospitalized, and had not died of 
SARS-CoV-2 infection.

2.3 Data sources

2.3.1 Sweden
The Swedish data originated from the SCIFI-PEARL (Swedish 

COVID-19 Investigation for Future Insights – a Population 
Epidemiology Approach using Register Linkage) project (22), which 
has expanded to include all individuals in the Swedish population 
(approximately 10.2 million inhabitants) and is being updated 
regularly. The national database of notifiable diseases (Sminet) was 
used to identify positive SARS-CoV-2 RT-PCR test results (22). The 
Swedish National Patient Register and the Cause-of-Death Register 
were used to identify individuals that were hospitalized and 
subsequently died (22, 23). Data from the National Prescribed Drug 
Register and the Swedish National Patient Register were used to 
identify predictors. The unique identification number assigned to 
Swedish residents was used to link individual records across these 
registers (24), and the database was then pseudonymized. The data 
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from the National Patient Register and Cause-of-Death Register was 
available from 1 January 2015 and onward, while data from the 
National Prescribed Drug Register from 1 January 2018 and onward. 
In Swedish registers, due to the restrictions of health data, ICD-10 
codes in the Swedish data are of varied levels of detail 
(Supplementary Table  1). Anatomical Therapeutic Chemical 
Classification (ATC) codes in the Swedish data are also of varied levels 
(Supplementary Table 2).

2.3.2 Norway
The Norwegian data sources included healthcare registries 

covering the entire Norwegian population, approximately 5.5 million 
inhabitants. Specifically, the Norwegian Surveillance System for 
Communicable Diseases (MSIS) (25) was used to obtain information 
on notified infectious diseases including SARS-Cov-2, and the 
Norwegian Patient Registry (NPR) (19, 20) to identify individuals 
hospitalized for COVID-19. Mortality was assessed in the Norwegian 
Cause of Death Registry (26). The Norwegian Prescription Database 
(NorPD) (27) and the NPR were used to identify predictors. Similar 
to Sweden, due to the data minimization policy, the ICD-10 codes 
from the NPR are of level-3, except for diagnostic codes for COVID-19 
which are of full length. The COVID-19 ICD-10 codes used for this 
study is U07.1 and U07.2. The ATC codes from Norwegian data are of 
level-5.

2.4 Candidate empirical covariates for 
COVID-19-related hospitalization and 
mortality

Two different covariate assessment windows were used to generate 
the high-dimensional set of variables further used in machine learning 
models to develop the DRS for COVID-19 hospitalization and 
mortality. We  identified dispensed prescriptions for medicine in 
Sweden and Norway using a covariate assessment window of 365 days 
before the index date, while for diagnoses and surgery/procedures 
from hospital inpatient admissions and specialist outpatient visits, 
we used all the information available in Sweden and Norway before 
the index date.

We did not set rules for the granularity regarding ICD-10 codes 
or the ATC codes, as the data from Sweden and Norway did not have 
homogeneous granularity to set such rules.

Within each of the p data dimensions (i.e., inpatient/outpatient 
diagnostic codes, procedures/surgeries, and drugs dispensed) codes 
were sorted by their prevalence. Prevalence was measured as the code 
period prevalence, i.e., the proportion of individuals having a specific 
code at least once during the covariate assessment windows. The most 
prevalent codes were identified as candidate empirical covariates in 
each data dimension and we assessed how frequently those codes were 
recorded for each patient during the covariate assessment windows. 
We created three binary variables for each code: code occurred 1 time 
(no/yes), code occurred more than the median number of times, and 
code occurred more than the 75th percentile number of times. A code 
that appeared above the 75th percentile number of times would have 
a true value for all three occurrence variables. Therefore, three 
covariates (code occurring 1 time, median number of times, and 75th 
percentile number of times) were generated for each ICD-10/
ATC code.

2.5 Data analysis

2.5.1 Filtering and prioritization of candidate 
empirical covariates

The first filtering approach was based on variance. The total list of 
features generated using the approach described in section 2.4 was 
screened and variables having ≥95% identical values across individuals 
in the study population were removed. Then, an ensemble feature 
selection (EFS) approach (28) was implemented to rank features’ 
importance for COVID-19 hospitalization and death with the final 
goal of prioritizing the most important predictors for these outcomes. 
EFS incorporates six different feature prioritization methods for 
binary classifications, namely:

(1) p-value from the Mann–Whitney-U Test of being classified as 
being or not being hospitalized or dying for COVID-19.

(2) and (3) p-value from the Pearson and Spearman correlation 
analysis based on relevance and redundancy according to Yu and 
Liu (29).

(4) β-coefficients from a logistic regression of 
Z-transformed predictors.

(5) Area under receiver operating characteristic curve (AUC)-
based variable importance measure from ensembles of multiple 
decision trees based on the random forest algorithm according to 
Breiman et al. (30).

(6) AUC-based variable importance measure from ensembles of 
multiple decision trees based on the Gini impurity index (31).

The results of each feature prioritization method were 
normalized. The normalized ensemble score of the 6 prioritization 
methods was used for ranking features’ importance which was then 
used to identify the optimal number of features. The optimal 
number of features was identified by looking at the deviation of the 
AUC, which was perfectly correlated with the deviation of the 
ensemble score, which was computed by sequentially including the 
top-ranked features for predicting COVID-19 hospitalization or 
mortality one at a time. Specifically, if the standard deviation of the 
further improvements of the AUC was less than 0.0035, we stopped 
adding more predictors. In order to build a parsimonious model, 
we computed the standard deviation of the AUC each time a new 
feature was included. We  stopped including predictors if the 
standard deviation of the further improvement from the next model 
turned out to be  less than 0.0035. We  chose 0.0035 because it 
empirically appeared to be the largest hence optimal value. In other 
words, when the standard deviation of the subsequent AUC 
improvements is less than 0.0035, the improvement of the 
performance of expanded models was either negligible or negative. 
Then, we used 3 commonly used machine learning classification 
models to incorporate the prioritized set of features: random 
partitioning, ranger random forest, and logistic regression from the 
R package caret versions 6.0–93 (Sweden) and 6.0–91 (Norway) 
(32). The prioritized features were used to develop the DRS (section 
2.5.2). The machine learning model with the best performance was 
used for the prediction of COVID-19 hospitalization and mortality 
using the DRS. All analyses were conducted using the R versions 
4.2.2 (Sweden) and 4.1.3 (Norway) (33).

2.5.2 Disease risk score
After identifying the optimal number of predictors, we applied the 

following formula to obtain weights for each selected predictor that 
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were > 0 (Formula 1). This formula was previously validated in a 
similar research context (34).

weights normalized ensemble score
normalized ensambl

= + ∗  

 

2 | min

ee score ( )

Formula 1. Development of the weights using the normalized 
ensemble score.

By applying the weights to each predictor, we calculated the DRS 
for each individual and we used it to calculate the predicted probability 
of developing the outcomes. The probability of developing the 
outcomes was based on the DRS by average AUC based on a 5-fold 
cross-validation (explained in section 2.5.3) using only one control per 
case to avoid an unbalanced performance matrix. This choice was 
crucial as we did not’ rely solely on AUC as a performance metric; 
thus, utilizing a balanced dataset was important.

Calibration was performed to get bias-corrected (overfitting-
corrected) estimates of predicted probabilities using the DRS.

2.5.3 Models performance
To estimate the models’ performance and to avoid any overfitting 

problem of benchmarked classification models, a 5-fold cross-
validation method was applied. Finally, overall model performance 
was assessed by averaging model performances for each fold of the 
cross-validation. For assessing the model performance, the accuracy, 
AUC, sensitivity, and specificity were measured for all models using a 
confusion matrix (35). The gold standard in this analysis was the 
hospitalization/death record in Swedish or Norwegian registers and 
we compared the gold standard with the prediction from the models.

2.5.4 External validation
The DRS developed using the Swedish data was externally 

validated in Norway and the model’s performance in Norwegian data 
was assessed according to approaches described in section 2.5.3.

2.5.5 Stratified analysis by COVID-19’s waves & 
patients’ age and sex

The approaches described in sections 2.5.1–2.5.3 were also 
performed separately within data from the COVID-19 waves. 
Although there is no formal epidemiological definition of a wave of 
infection, for SARS-CoV-2 it has been characterized as ‘a rising 
number of sick individuals, a defined peak and then a decline’; this 
was the working definition of a wave of infection for our study (36). 
According to this definition, 3 waves were identified in Sweden and 
Norway during the study period (Supplementary Figure 1). Variability 
between Sweden and Norway regarding the time of onset of waves of 
COVID-19 disease (and therefore hospitalizations and mortality) has 
been observed and described in the scientific literature (36). Therefore, 
we have used a different period for each wave in Sweden and Norway 
(Supplementary Table 3).

Additionally, the approaches described in sections 2.5.1–2.5.3 
were performed separately by age group ([0–18), (18–65)), [65–75), 
[75-maximum age in the data] and sex (Male, Female).

2.5.6 Descriptive analysis
We performed a descriptive analysis by providing summary 

tables with information on the age and sex of cases and controls for 

the overall period and separately by waves. Additionally, 
we tabulated and plotted the featured predictors (including their 
predicted probability, weights, and prevalence), the models’ 
performance, and the deviation of the ensemble score to identify 
the optimal set of predictors for each study outcome – for the 
overall period and separately by waves, age and sex. Pairwise 
correlation plots visualize the correlation between the DRS, 
prevalence, weights, and the probability of the outcome separately 
for hospitalization and mortality, overall and stratified by waves, age 
group, and sex. Fisher and chi-square tests were used to calculate 
p-values for descriptive statistics.

2.5.7 Reporting guidelines and bias assessment
To develop our prediction model, we  followed a rigorous 

methodology in accordance with the TRIPOD guidelines (37). To 
assess bias in our prediction model, we followed the domain-specific 
criteria outlined in the PROBAST guidelines (38). Firstly, we evaluated 
the participant selection process for potential biases, considering 
factors such as sampling methods, inclusion/exclusion criteria, and 
representativeness of the study population. Secondly, we examined the 
predictor variables to ensure they were measured accurately, avoiding 
any potential bias due to measurement errors or missing. Similarly, 
we  assessed the outcome measurement process, considering any 
potential biases that could arise from misclassification or 
measurement variability.

3 Results

3.1 Demographic characteristics

In our study population of cases and selected controls, across 
Sweden and Norway, there were 124,560 out of 538,277 (23.1%) and 
10,835 out of 53,744 (20.2%) individuals hospitalized for COVID-
19, respectively. In total, 15,877 (2.9%) and 928 (1.7%) died within 
30 days following COVID-19 hospitalization in Sweden and 
Norway, respectively. Demographic characteristics of hospitalized 
cases and selected controls in Sweden, including age and sex, are 
provided in Table  1 and Supplementary Table  4 overall and 
separately by waves, for Norway and Sweden, respectively. There 
was a significantly higher mortality and hospitalization for 
COVID-19 among men (value of p <0.001) (Figures 1, 2). Younger 
patients showed a fewer hospitalization for COVID-19 (for all 
comparisons among age groups, value of p < 0.001) (Figure 1). These 
findings remained consistent in the external validation set 
(Supplementary Figure  2) and across multiple waves of data 
collection, indicating the robustness and reliability of the observed 
trends (for all comparisons among age groups and sex across waves, 
value of p < 0.05).

3.2 Filtering and prioritization of candidate 
empirical covariates

In total, there were 23,607 candidate empirical covariates 
generated during the data management phase for Swedish data 
sources, and the number of variables after filtering by variance was 
reduced to 69 (Supplementary Table 5). Plots of the ensemble score 
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along with the deviation of the ensemble score when top-ranked 
predictors were sequentially included are provided in 
Supplementary Figures 3–10.

The most important predictors for COVID-19 hospitalization and 
mortality during the study period and for the different waves are 
provided in Tables 2, 3. Signs and symptoms like dyspnea and fever 
emerged as key predictors of hospitalization and death, both overall 
and across all waves. Chronic conditions such as type 2 diabetes and 
atrial fibrillation were identified as predictors for COVID 19-related 
hospitalization and death. Several drugs were also identified as 
predictors, which are likely to be proxies for diseases (Tables 2, 3). For 
example, individuals with diabetes (for which metformin is commonly 
prescribed) or cardiovascular disorders (for which drugs like enalapril, 
amlodipine, bisoprolol, and metoprolol are used) were found to have 
a higher risk of severe COVID-19 outcomes. Similarly, individuals 
with respiratory conditions (for which drugs for inhalation like 
prednisolone, bronchodilators, and expectorants were used) were 

found to be  associated with a higher risk of hospitalization and/
or death.

3.3 Disease risk score

The DRS included weights in a range between 1 and 5 (Tables 2, 
3) which resulted in a DRS ranging between 0 and 8. The performance 
metrics for COVID 19-related hospitalization and mortality using the 
DRS are shown in Tables 4, 5 for Sweden and for the external 
validation in Norway, respectively. The density distribution of 
predicted probability of COVID-19 hospitalization and mortality 
including the density distribution of weights and prevalence in 
Sweden (overall and stratified by waves, age groups, and sex separately) 
are provided in Supplementary Figures 11–18.

In the analysis stratified by age group and sex using the Swedish 
data, the density plots showed that the probability of hospitalization 

TABLE 1 Age and sex distribution of cases (COVID-19 hospitalization and COVID-19 death) and respective selected age/sex-matched controls among 
COVID-19 test-positive individuals in Sweden January 2020 to August 2021.

Hospitalization Mortality

Waves Variable Group Control Cases Overall Group Control Cases Overall

Overall (%)

N = 413,717 N = 124,560 N = 538,277 N = 88,388 N = 15,877 N = 104,265

Age – group 1 [0, 18) 15,593 (3.8) 5,102 (4.1) 20,695 (3.8) [0, 18) 140 (0.2) 24 (0.2) 164 (0.2)

Age – group 2 [18, 65) 276,472 (66.8) 63,579 (51.0) 340,051 (63.2) [18, 65) 19,114 (21.6) 1,372 (8.6) 20,486 (19.6)

Age – group 3 [65, 75) 52,744 (12.7) 18,837 (15.1) 71,581 (13.3) [65, 75) 21,052 (23.8) 2,567 (16.2) 23,619 (22.7)

Age – group 4 [75, 108] 68,908 (16.7) 37,042 (29.7) 105,950 (19.7) [75, 108] 48,082 (54.4) 11,914 (75.0) 59,996 (57.5)

Sex Male 202,115 (48.9) 65,667 (52.7) 267,782 (49.7) Male 51,528 (58.3) 9,331 (58.8) 60,859 (58.4)

Female 211,602 (51.1) 58,893 (47.3) 270,495 (50.3) Female 36,860 (41.7) 6,546 (41.2) 43,406 (41.6)

Wave 1 (%)

N = 51,878 N = 20,856 N = 72,734 N = 20,169 N = 3,994 N = 24,163

Age – group 1 [0, 18) 921 (1.8) 265 (1.3) 1,186 (1.6) [0, 18) 13 (0.1) 3 (0.1) 16 (0.1)

Age – group 2 [18, 65) 36,195 (69.8) 9,556 (45.8) 45,751 (62.9) [18, 65) 5,254 (26.0) 415 (10.4) 5,669 (23.5)

Age – group 3 [65, 75) 6,352 (12.2) 3,461 (16.6) 9,813 (13.5) [65, 75) 4,731 (23.5) 684 (17.1) 5,415 (22.4)

Age – group 4 [75, 108] 8,410 (16.2) 7,574 (36.3) 15,984 (22.0) [75, 108] 10,171 (50.4) 2,892 (72.4) 13,063 (54.1)

Sex Male 26,283 (50.7) 11,698 (56.1) 37,981 (52.2) Male 11,811 (58.6) 2,340 (58.6) 14,151 (58.6)

Female 25,595 (49.3) 9,158 (43.9) 34,753 (47.8) Female 8,358 (41.4) 1,654 (41.4) 10,012 (41.4)

Wave 2 (%)

N = 188,245 N = 59,356 N = 247,601 N = 56,988 N = 8,334 N = 65,322

Age – group 1 [0, 18) 3,449 (1.8) 1,195 (2.0) 4,644 (1.9) [0, 18) 61 (0.1) 13 (0.2) 74 (0.1)

Age – group 2 [18, 65) 131,232 (69.7) 30,783 (51.9) 162,015 (65.4) [18, 65) 11,051 (19.4) 690 (8.3) 11,741 (18.0)

Age – group 3 [65, 75) 25,988 (13.8) 9,886 (16.7) 35,874 (14.5) [65, 75) 13,873 (24.3) 1,365 (16.4) 15,238 (23.3)

Age – group 4 [75, 108] 27,576 (14.6) 17,492 (29.5) 45,068 (18.2) [75, 108] 32,003 (56.2) 6,266 (75.2) 38,269 (58.6)

Sex Male 97,249 (51.7) 32,557 (54.9) 129,806 (52.4) Male 33,516 (58.8) 4,887 (58.6) 38,403 (58.8)

Female 90,996 (48.3) 26,799 (45.1) 117,795 (47.6) Female 23,472 (41.2) 3,447 (41.4) 26,919 (41.2)

Wave 3 (%)

N = 34,055 N = 8,359 N = 42,414 N = 5,767 N = 724 N = 6,491

Age – group 1 [0, 18) 1,754 (5.2) 553 (6.6) 2,307 (5.4) [0, 18) 14 (0.2) 1 (0.1) 15 (0.2)

Age – group 2 [18, 65) 26,641 (78.2) 5,714 (68.4) 32,355 (76.3) [18, 65) 855 (14.8) 87 (12.0) 942 (14.5)

Age – group 3 [65, 75) 2,972 (8.7) 864 (10.3) 3,836 (9.0) [65, 75) 1,365 (23.7) 146 (20.2) 1,511 (23.3)

Age – group 4 [75, 108] 2,688 (7.9) 1,228 (14.7) 3,916 (9.2) [75, 108] 3,533 (61.3) 490 (67.7) 4,023 (62.0)

Sex Male 16,425 (48.2) 4,149 (49.6) 20,574 (48.5) Male 3,640 (63.1) 432 (59.7) 4,072 (62.7)

Female 17,630 (51.8) 4,210 (50.4) 21,840 (51.5) Female 2,127 (36.9) 292 (40.3) 2,419 (37.3)

Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021.
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FIGURE 1

Sweden: stratified analysis by sex and age group for top-ranked predictors, their prevalence, weight, and predicted probability for COVID-19 
hospitalization.
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was positively correlated to DRS across the age groups and sex with 
some variation across the waves in the younger age groups 
(Supplementary Figures 11–14). Across all age groups and waves, the 
correlation between DRS and weights was consistently positive 
(p < 0.05) (Table 1 and Supplementary Table 2). When examining the 
relationship between DRS and prevalence, there was no correlation 
between the two variables among age groups and across waves 
(Supplementary Figures 11–14).

In all analyses, the peak of the density function reached the highest 
levels in the age groups above 65, suggesting higher median values of 
standardized DRS in these age groups when compared to the others 
(p < 0.05) (Supplementary Figures  11–14, Table  1, and 
Supplementary Table 2). This result was consistent in all single waves, 
too (Supplementary Figures 11–14, Table 1, and Supplementary Table 4). 
In wave 1 and 3, we observed higher median values of DRS among 
females while in wave 2 there was a slightly higher value of DRS among 
males (p < 0.05) (Supplementary Figures  11–14, Table  1, and 
Supplementary Table 4). No significant differences with respect to sex 
were observed across all waves (Supplementary Figures 15–18, Table 1, 
and Supplementary Table 4).

3.4 Models performance of the disease risk 
score and external validation

The performance of classification models is provided in Tables 4, 
5. In the overall analysis for predicting COVID-19-related 

hospitalizations, various models were developed and externally 
validated. Logistic regression and Ranger random forest models had 
the best performance (Tables 4, 5). Logistic regression was prioritized 
over random forest due to its easily interpretable output.

3.4.1 Hospitalization
The logistic regression model using the DRS had an AUC of 0.70, 

an accuracy of 0.67, a sensitivity of 0.88, and a specificity of 0.45 in 
Swedish data (Tables 4, 5). During external validation, the model had 
a performance of AUC 0.47, an accuracy of 0.61, a sensitivity of 0.73, 
and a specificity of 0.44. Similar performances were observed across 
waves (Tables 4, 5).

3.4.2 Mortality
The logistic regression model using the DRS had an AUC of 0.72, 

an accuracy of 0.68, a sensitivity of 0.75, and a specificity of 0.60 in 
Swedish data (Tables 4, 5). During external validation, the model had 
a performance of AUC 0.74, an accuracy of 0.73, a sensitivity of 0.67, 
and a specificity of 0.73. Similar performances were observed across 
waves (Tables 4, 5).

3.4.3 TRIPOD and PROBAST
The model’s performance was assessed using various evaluation 

metrics, including calibration and overall predictive accuracy, as 
recommended by the TRIPOD guidelines (Appendix 1). Overall, the 
model was classified as having a low risk of bias according to 
PROBAST (Appendix 2).

FIGURE 2

Sweden: stratified analysis by sex and age group for top-ranked predictors, their prevalence, weight, and predicted probability for COVID-19 death.
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3.5 Formulas to calculate the probability of 
the outcome from the DRS

The formulas for the predicted probability of developing the outcome 
in the Swedish model for the overall period and separately by waves are 
provided in Table 6. These formulas were developed using the intercept 
and coefficients derived from the best classification model, specifically the 
logistic regression model. To express the mathematical representation of 
these formulas, we provide Formula 2 as follows:

Probability of the outcome
intercept

coefficient DRS
=

−

− ∗1 / exp






















Formula 2. Formula to calculate the probability of the outcome 
using the DRS.

In Formula 2, “intercept” represents the intercept term obtained 
from the logistic regression model, “coefficient” refers to the respective 

coefficient associated with the DRS, and “DRS” represents the value of 
the DRS for a given individual. By substituting the appropriate values 
of DRS into this formula, it is possible to estimate the probability of 
the outcome.

For example, an individual who experienced severe dyspnea and 
high fever during the first wave of a COVID-19 infection, along with 
having type 2 diabetes as a risk factor, would be assigned a DRS of 12. 
This DRS indicates a high risk level and is associated with a 90% 
probability of hospitalization and subsequent mortality within 30 days 
following hospital admission.

4 Discussion

To our knowledge, this study represents the first register-based 
analysis utilizing high-quality Nordic data from Sweden and Norway 
to develop a comprehensive disease risk score for severe COVID-19 
outcomes, including hospitalization and mortality.

TABLE 2 Candidate empirical covariates used for the development of the disease risk score for COVID-19 hospitalization in Sweden.

Overall Wave 1 Wave 2 Wave 3

Weights Predictors Weights Predictors Weights Predictors Weights Predictors

5 5
Hospital admission: Dyspnea, 

Fever
5 5

Hospital admission: 

Dyspnea

3
Hospital admission: 

Dyspnea, Fever
3 Drugs: Paracetamol 3

Hospital admission: 

Dyspnea
3

Hospital admission: 

Fever

Drugs: Paracetamol

2 2

Hospital admission: Type 2 

diabetes, Unspecified tubal 

pregnancy, Unspecified atrial 

fibrillation, atrial flutter

Drugs: Furosemide, 

Acetylsalicylic acid

2 2

Hospital admission: 

Type 2 diabetes, 

Unspecified tubal 

pregnancy

Drugs: Prednisolone, 

Furosemide, 

Omeprazole, Drugs 

for constipation, 

Acetylsalicylic acid

1

Hospital admission: 

Type 2 diabetes, 

Unspecified tubal 

pregnancy, 

Personal history of 

long-term (current) 

use of 

anticoagulants

Drugs: Paracetamol 

(reimbursed)

1

Hospital admission: Personal 

history of long-term (current) 

use of anticoagulants, Age-

related incipient cataract, 

Urinary infection, Presence of 

intraocular lens, Other retinal 

disorders, Cataract

Drugs: Metformin, Emollients 

and protectives, Enalapril, 

Bisoprolol, Omeprazole, 

Zopiclone, Apixaban, 

Oxycodone, Metoprolol, 

Paracetamol, Simvastatin, 

Drugs for constipation, 

Cyanocobalamin, Mineral 

supplements, Amlodipine, 

Prednisolone, Opium 

derivatives and expectorants

1

Hospital admission: 

Fever, Type 2 

diabetes, 

Unspecified tubal 

pregnancy

Drugs: Furosemide, 

Paracetamol

1

Hospital admission: 

Urinary infection, 

Personal history of 

long-term (current) 

use of anticoagulants

Drugs: 

Cyanocobalamin, 

Mineral supplements

Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021. Hospital admission: diagnoses from both inpatient and 
outpatient specialist care. Predictors type.
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TABLE 3 Candidate empirical covariates used for the development of the disease risk score for COVOID-19 mortality in Sweden.

Overall Wave 1 Wave 2 Wave 3

Weights Predictors Weights Predictors Weights Predictors Weights Predictors

5 Drugs: Furosemide 5 Drugs: Furosemide 5 Drugs: Furosemide 5

4

Hospital admission: 

Dyspnea, 

Unspecified tubal 

pregnancy, 

Unspecified atrial 

fibrillation and atrial 

flutter

4

Hospital admission: 

Unspecified tubal 

pregnancy, Dyspnea, 

Fever, Unspecified 

atrial fibrillation and 

atrial flutter

Drugs: Paracetamol

4 4

Hospital admission: 

Unspecified tubal 

pregnancy

Drugs: Furosemide

3

Hospital admission: 

Personal history of 

long-term (current) 

use of anticoagulants, 

Type 2 diabetes

Drugs: Paracetamol, 

Drugs for 

constipation

3

Hospital admission: 

Type 2 diabetes, 

Personal history of 

long-term (current) 

use of anticoagulants, 

Urinary infection

Drugs: Drugs for 

constipation

3

Hospital admission: 

Dyspnea, 

Unspecified atrial 

fibrillation and 

atrial flutter, 

Unspecified tubal, 

pregnancy

Drugs: Paracetamol

3

Hospital admission: 

Unspecified atrial 

fibrillation and atrial 

flutter, Type 2 

diabetes, Dyspnea, 

Personal, history of 

long-term (current) 

use of anticoagulants, 

Cataract, 

Nontraumatic 

compartment 

syndrome of left 

upper extremity

Drugs: Paracetamol, 

Apixaban, Drugs for 

constipation

2

Hospital admission: 

Cataract, Fever, 

Urinary infection

Drugs: Acetylsalicylic 

acid, Paracetamol, 

Metoprolol, 

Emollients and 

protectives, 

Cyanocobalamin, 

Mineral supplements

2

Hospital admission: 

Cataract

Drugs: Acetylsalicylic 

acid, Metoprolol, 

Cyanocobalamin, 

Emollients and 

protectives, Mineral 

supplements, 

Paracetamol

2

Hospital admission: 

Personal history of 

long-term 

(current) use of 

anticoagulants, 

Type 2 diabetes

Drugs: Paracetamol

2

Drugs: Metoprolol, 

Cyanocobalamin, 

Acetylsalicylic acid

1

Hospital admission: 

Age-related incipient 

cataract, Other 

retinal disorders, 

Presence of 

intraocular lens

Drugs: Apixaban, 

Paracetamol, 

Oxycodone, 

Oxazepam, 

Omeprazole, Mineral 

supplements, 

Zopiclone, 

Bisoprolol, 

Cyanocobalamin, 

Metoprolol, Folic 

acid

1 Drugs: Apixaban
Drugs: Drugs for 

constipation
1

Hospital admission: 

Fever, Other 

specified disorders of 

skin and 

subcutaneous tissue, 

Age-related cataract, 

Presence of 

intraocular lens

Drugs: Prednisolone, 

Emollients and 

protectives, 

Bisoprolol, 

Atorvastatin, 

Paracetamol, 

Oxycodone, 

Oxazepam, 

Simvastatin

Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021. Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 
2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021. Hospital admission: diagnoses from both inpatient and outpatient specialist care. Predictors type.
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TABLE 4 Models’ performance for COVID-19 hospitalization.

Wave Stage Model AUC Accuracy Sensitivity Specificity

Overall

Model development 

(Sweden)

Logistic regression 0.71 0.68 0.87 0.47

Ranger random forest 0.71 0.68 0.86 0.50

Random partitioning 0.64 0.66 0.90 0.34

Logistic regression 

(DRS)
0.70 0.67 0.88 0.45

External validation 

(Norway)

Logistic regression 

(DRS)
0.47 0.61 0.73 0.44

Wave 1

Model development 

(Sweden)

Logistic regression 0.77 0.74 0.88 0.58

Logistic regression 

using the DRS
0.77 0.74 0.87 0.60

External validation 

(Norway)

Logistic regression 

(DRS)
0.64 0.65 0.73 0.45

Wave 2

Model development 

(Sweden)

Logistic regression 0.73 0.69 0.85 0.51

Logistic regression 

using the DRS
0.72 0.68 0.80 0.56

External validation 

(Norway)

Logistic regression 

(DRS)
0.65 0.65 0.88 0.39

Wave 3

Model development 

(Sweden)

Logistic regression 0.68 0.65 0.84 0.45

Logistic regression 

using the DRS
0.68 0.65 0.77 0.50

External validation 

(Norway)

Logistic regression 

(DRS)
0.63 0.63 0.76 0.48

Disease Risk Score = DRS; Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021.

TABLE 5 Models’ performance for COVID-19 mortality.

Wave Stage Model AUC Accuracy Sensitivity Specificity

Overall

Model development 

(Sweden)

Logistic regression 0.72 0.68 0.81 0.54

Logistic regression 

(DRS)
0.72 0.68 0.75 0.60

External validation 

(Norway)

Logistic regression 

(DRS)
0.74 0.73 0.67 0.73

Wave 1

Model development 

(Sweden)

Logistic regression 0.77 0.72 0.81 0.62

Logistic regression 

using the DRS
0.76 0.72 0.75 0.67

External validation 

(Norway)

Logistic regression 

(DRS)
0.58 0.65 0.81 0.33

Wave 2

Model development 

(Sweden)

Logistic regression 0.73 0.67 0.77 0.56

Logistic regression 

using the DRS
0.71 0.67 0.72 0.59

External validation 

(Norway)

Logistic regression 

(DRS)
0.70 0.72 0.60 0.74

Wave 3

Model development 

(Sweden)

Logistic regression 0.70 0.68 0.71 0.53

Logistic regression 

using the DRS
0.66 0.67 0.60 0.61

External validation 

(Norway)

Logistic regression 

(DRS)
0.75 0.73 0.61 0.74

Disease Risk Score = DRS; Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021.
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4.1 Age and sex association with COVID-19 
hospitalization and mortality

We observed a significantly higher risk of mortality and 
hospitalization for COVID-19 among men in both Sweden and 
Norway. This sex disparity aligns with previous research that has 
consistently reported a higher susceptibility and worse outcomes for 
males with COVID-19. The reasons behind this disparity may involve 
biological, behavioral, and social factors (39, 40). Additionally, our 
study found that younger patients (<65 years) had a lower risk of 
hospitalization and mortality for COVID-19. This finding is in line 
with previous studies (39, 40). The lower risk observed among younger 
individuals might be attributed to a more robust immune response or 
fewer underlying health conditions.

4.2 Predictors of COVID-19 hospitalization 
and mortality

It is not surprising to find dyspnea as one of the most 
important predictors. Dyspnea, or difficulty in breathing, is a 
common symptom associated with COVID-19 and is often linked 
to severe respiratory complications. It is a significant predictor of 
COVID-19 hospitalization, as individuals experiencing dyspnea 
may require specialized medical care to manage respiratory 
distress (41, 42).

High fever is another predictor that we found to be commonly 
associated with severe COVID-19, and its presence may indicate a 
more severe infection. While fever alone might not be sufficient to 
predict hospitalization, persistent or high-grade fevers can 
be indicative of systemic inflammation and severity of illness. In this 
regards, it is not surprising to find reimbursed prescriptions of 
paracetamol as a key predictor (43, 44).

We identified type 2 diabetes as a predictor for severe outcomes 
in COVID-19. Type 2 diabetes can contribute to an impaired immune 
response and increased vulnerability, which may necessitate 
hospitalization for appropriate clinical management (45–47). 
Individuals with type 2 diabetes are also more likely to have other 
comorbidities such as obesity, cardiovascular disease, and 
hypertension. Additionally, type 2 diabetes can cause damage to the 
blood vessels, leading to endothelial dysfunction. This impaired 
vascular function can contribute to the development of blood clots 
and other cardiovascular complications, which are seen in severe cases 

of COVID-19 (45–47). It is not surprising to find metformin among 
the predictors for COVID-19 hospitalization and mortality as this 
drug is often the first line treatment in type 2 diabetes.

Anticoagulant therapy was identified as a key predictor of 
COVID-19 hospitalization and mortality. The need for anticoagulants 
could reflect an underlying cardiovascular condition that increases the 
risk of severe COVID-19 and, consequently, the likelihood of 
hospitalization and mortality (48–50). We  have identified atrial 
fibrillation as a predictors among cardiovascular conditions. Of note, 
amlodipine, enalapril, bisoprolol, apixaban, metoprolol, and 
simvastatin were identified as predictors for COVID 19-related 
hospitalization and mortality, serving as proxies of cardiovascular 
disorders. In this regard, it is important to emphasize that 
cardiovascular disorders previously have been identified as significant 
risk factors for COVID-19 hospitalization and mortality (48–50). 
Individuals with pre-existing conditions such as hypertension, 
coronary artery disease, congestive heart failure, and arrhythmias are 
more susceptible to severe outcomes. COVID-19 can exacerbate 
underlying cardiovascular issues, leading to increased risk of 
complications and poorer prognosis. The interaction between the 
virus and the cardiovascular system can cause inflammation, 
endothelial dysfunction, and thrombotic events (48–50).

While the direct relationship between cataracts and COVID-19 
hospitalization is not clear, it is possible that older individuals with 
cataracts may have comorbidities or age-related vulnerabilities that 
contribute to a higher risk of hospitalization. A similar consideration 
applies to other ocular conditions such as the presence of intraocular 
lens and retinal disorders which, were identified as predictors in 
this study.

Urinary infections, or urinary tract infections (UTIs), are not 
directly caused by COVID-19 but can indirectly contribute to 
COVID-19 hospitalization and mortality. UTIs can lead to 
complications and worsen the health of individuals already susceptible 
to severe illness, such as older adults or those with underlying 
conditions. The presence of a UTI can trigger an immune response 
and systemic inflammation, potentially exacerbating the severity of 
COVID-19 (51, 52). While UTIs alone may not directly cause 
hospitalization or mortality in COVID-19 patients, their presence can 
indicate advanced age, underlying vulnerabilities and/or complications 
that may require hospitalization for specialized care (51, 52).

Oxycodone and other opioids are not directly linked to COVID-19 
hospitalization or mortality. However, individuals prescribed these 
drugs may have underlying health conditions (e.g., cancer) or pain 

TABLE 6 Formulas to predict the probability of COVID-19-related hospitalization and mortality in Sweden.

Period Hospitalization Mortality

Overall Probability hosp DRS.
exp . .

( ) = − ∗( )
1

0 58 0 52
Probability mort DRS.

exp . .
( ) = − ∗( )

1
0 77 0 30

Wave 1 Probability hosp DRS.
exp . .

( ) = − ∗( )
1

0 88 0 60
Probability mort DRS.

exp . .
( ) = − ∗( )

1
1 25 0 36

Wave 2 Probability hosp DRS.
exp . .

( ) = − ∗( )
1

0 75 0 33
Probability mort DRS.

exp . .
( ) = − ∗( )

1
0 89 0 27

Wave 3 Probability hosp DRS.
exp . .

( ) = − ∗( )
1

0 52 0 32
Probability mort DRS.

exp . .
( ) = − ∗( )

1
0 98 0 22

DRS = Disease Risk Score; Wave 1: 15 February 2020–26 June 2020; Wave 2: 05 November 2020–24 June 2021; Wave 3: 25 June 2021–31 December 2021.

https://doi.org/10.3389/fpubh.2023.1258840
https://www.frontiersin.org/journals/public-health
https://www.frontiersin.org


Shakibfar et al. 10.3389/fpubh.2023.1258840

Frontiers in Public Health 12 frontiersin.org

management needs that could influence COVID-19 outcomes. Factors 
such as underlying health conditions, respiratory depression caused 
by opioids, and potential immune system suppression may impact the 
severity of COVID-19 and increase the risk of hospitalization (53–55).

The use of drugs for constipation is not directly related to 
COVID-19 hospitalization or mortality. However, it can indirectly 
indicate underlying health conditions, potential polypharmacy and 
related adverse events, and general poor health status, which may 
influence COVID-19 outcomes. Underlying health conditions 
associated with chronic constipation could impact an individual’s 
overall health and immune system function, potentially increasing 
their vulnerability to severe COVID-19 outcomes. Polypharmacy and 
compromised gastrointestinal function could further complicate the 
health profile, increasing the risk of complications (56, 57).

Cyanocobalamin, also known as vitamin B12, is a micronutrient 
essential for various bodily functions, including red blood cell 
production and neurological health. While the direct relationship 
between cyanocobalamin and COVID-19 hospitalization and 
mortality is not clear, it plays a crucial role in maintaining overall 
health and immune function, and is often prescribed to older patients. 
Adequate levels of vitamin B12 are necessary for a robust immune 
response, and deficiencies in this vitamin may weaken the immune 
system’s ability to combat infections effectively. Consequently, 
individuals with low levels of cyanocobalamin may potentially be at a 
higher risk of severe COVID-19 outcomes, leading to an increased 
likelihood of hospitalization or mortality (58). The relationship 
between mineral supplements and COVID-19 hospitalization or 
mortality is not well-defined. While mineral supplements can 
contribute to overall health and immune function, their direct impact 
on COVID-19 outcomes is uncertain. Adequate mineral intake, 
including zinc, selenium, and vitamin D, is essential for a well-
functioning immune system. However, the effectiveness of 
supplementation in preventing or treating COVID-19 is still under 
investigation. It is important to note that individual factors, such as 
baseline mineral levels, underlying health conditions, and dosage of 
supplements, can influence their impact (58–60).

Unspecified tubal pregnancy is not typically recognized as a direct 
risk factor for severe COVID-19 outcomes. Tubal pregnancy, also 
known as ectopic pregnancy, occurs when a fertilized egg implants 
outside of the uterus, usually in the fallopian tube. We  therefore 
should consider these patients as hospitalized due to pregnancy 
outcomes who went through a COVID-19 screening. While ectopic 
pregnancy itself is not directly related to COVID-19 severity, pregnant 
individuals, in general, may be at a higher risk for severe outcomes if 
they contract the virus (61). Pregnancy is considered a risk factor for 
severe COVID-19 due to physiological changes that occur during 
gestation, including alterations in the immune system and respiratory 
function (61). Additionally, pregnant individuals may have an 
increased risk of complications due to the potential strain on the 
cardiovascular system (62, 63).

4.3 DRS performance

The density plots for the DRS indicate a positive correlation 
between the probability of hospitalization and the DRS across age 
groups and sexes. This means that as the DRS increases, indicating a 
higher risk score, the likelihood of hospitalization or death related to 
COVID-19 also increases. This finding suggests that the DRS is 

effective in predicting severe COVID-19 outcomes such as death 
across different demographic groups. However, it is worth noting that 
there is some variation of prediction performance of the DRS across 
the waves, particularly in the younger age groups. This variation may 
indicate changing patterns or factors influencing hospitalization risk 
in different time periods.

Regarding the analysis focusing on the correlation between the 
DRS and weights, it reveals a consistently positive correlation between 
the DRS and weights across all age groups and waves. The weights in 
the DRS reflect the importance or contribution of different risk factors 
in predicting hospitalization and death related to COVID-19. The 
positive correlation indicates that higher DRS values are associated 
with higher weights. In other words, risk factors with higher weights 
have a stronger influence on predicting hospitalization and death risks.

In the logistic regression model using the DRS as a predictor, the 
AUC was 0.70  in the Swedish data. The AUC is a measure of the 
model’s ability to distinguish between individuals who are hospitalized 
and those who are not. An AUC of 0.70 indicates a moderate level of 
accuracy. The model’s accuracy, which measures the overall correct 
prediction rate, was 0.67. This means that the model correctly 
predicted hospitalization status in 67% of cases. The sensitivity of the 
model, which measures the proportion of true positives identified, was 
0.88 indicating that the model correctly identified 88% of individuals 
who were actually hospitalized. The specificity of the model, which 
measures the proportion of true negatives identified, was 0.45, 
meaning that the model correctly identified 45% of individuals who 
were not hospitalized.

During external validation, the performance of the model for 
predicting COVID-19 related hospitalization was low, with an 
AUC of 0.47, an accuracy of 0.61, a sensitivity of 0.73, and a 
specificity of 0.44. These results suggest that the model’s 
performance in predicting hospitalization was not as robust 
during external validation as it was within the Swedish data. 
Similar performances were observed across the different waves. 
Intuitively this might partly be attributed to loss of accuracy from 
using the section codes to build up the predictive model. We did 
not attempt to work the opposite way, to build up model with 
Norwegian data and validate with Swedish data. This was because 
the case numbers of individual waves in the Norwegian data was 
too small to have power at the first place. Additionally, this could 
also be due to differences in the healthcare systems in Sweden 
and Norway (e.g., thresholds for hospitalizations across waves). 
Additionally, significant differences in hospitalization criteria 
and the coding of ICD10 diagnoses may have been key factors in 
the observed results. These variations, influenced by differing 
reimbursement incentives, hindered the model’s effectiveness in 
a Norwegian context.

Regarding mortality, in the logistic regression model using the 
DRS as a predictor, the AUC for predicting mortality was 0.72 in the 
Swedish data. This indicates a moderately accurate model in 
distinguishing between individuals who died and those who survived. 
The accuracy of the model was 0.68, indicating an overall correct 
prediction rate of 68% for mortality. The sensitivity of the model was 
0.75, indicating that it correctly identified 75% of individuals who 
actually died. The specificity of the model was 0.60, meaning it 
correctly identified 60% of individuals who did not die. During 
external validation, the model performed better, with an AUC of 0.74, 
an accuracy of 0.73, a sensitivity of 0.67, and a specificity of 0.73. These 
results indicate that the model’s performance in predicting mortality 
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was relatively consistent across the Swedish data and the external 
validation set, with similar performances observed across waves.

In summary, the logistic regression model using the DRS showed 
moderate accuracy in predicting mortality but not hospitalization for 
COVID-19. The model had higher sensitivity, meaning it correctly 
identified a relatively high proportion of individuals who died. 
However, the specificity was lower, indicating a higher rate of false 
positives (individuals predicted to be hospitalized but who were not) 
when using hospitalization as an outcome.

Clinically, this score serves as a valuable tool for healthcare 
providers and researchers to gauge the potential risks associated with 
COVID-19. It enables a more precise identification of individuals who 
are at a higher risk of hospitalization and mortality, allowing for better 
resource allocation and patient management. However, it is crucial to 
recognize the inherent uncertainties in such risk prediction models. 
It is important to consider these performance metrics when 
interpreting and applying the DRS in clinical practice or public health 
decision-making, also taking into account that they may not 
be  generalizable to other populations than the ones they were 
developed on and, eventually, for other time periods. By substituting 
the appropriate values of the DRS in the formulas provided in this 
article, one can estimate the probability of the outcome (i.e., death or 
hospitalization). In a clinical context, these formulas can be utilized to 
assess and predict the risk of COVID-19 hospitalization and mortality 
for individual patients. Clinicians can calculate the DRS for a patient 
based on their specific risk factors and then use formulas to estimate 
the probability of the outcome. This information can aid in clinical 
decision-making, such as determining the level of care likely to 
be needed, identifying high-risk individuals who may benefit from 
proactive interventions, and providing personalized recommendations 
for patients.

4.4 Strengths

One of the key strengths of our study is that we  developed 
COVID-19 wave-specific models for hospitalization and mortality. 
Using a model developed to predict hospitalization and mortality for 
a wave of the COVID-19 pandemic for subsequent waves presents 
considerable challenges due to several critical factors. First and 
foremost, the virus itself has undergone significant evolution, giving 
rise to different variants with varying levels of aggressiveness. Notably, 
the Alpha variant demonstrated a heightened capacity to infect and 
impact the respiratory tract, thereby potentially leading to increased 
hospitalization and mortality rates compared to the earlier stages of 
the pandemic. Consequently, a model calibrated to the characteristics 
and dynamics of the first wave, where the original strain was 
predominant, may not adequately capture the distinct behaviors and 
outcomes associated with subsequent waves featuring novel variants.

Furthermore, it is crucial to consider the dynamic nature of the 
pandemic response. In the wake of the first wave, various countries 
and regions began implementing stringent public health contingency 
measures. The introduction of vaccines has had a profound impact on 
the epidemiological landscape, mitigating the severity of disease and 
reducing the strain on healthcare systems. Simultaneously, public 
health measures such as social distancing, mask mandates, and 
quarantine protocols have evolved in response to changing 

circumstances and scientific insights. These interventions, coupled 
with widespread vaccine distribution, have introduced new variables 
and altered the epidemiological dynamics, rendering a model 
developed for the first wave less applicable to subsequent waves.

In essence, the unique interplay of different virus variants, the 
evolving impact on the respiratory tract, and the introduction of 
vaccination and other contingency measures across various waves of 
the pandemic necessitate distinct models tailored to each specific 
wave. A model calibrated to the initial wave’s conditions and dynamics 
may not provide a comprehensive or accurate representation of the 
complex and evolving factors influencing hospitalization and 
mortality in later waves, making it crucial to adapt modeling 
approaches to the shifting landscape of the COVID-19 pandemic.

From a public health perspective, the formulas developed in our 
study can also be valuable for risk stratification at a population level. 
By applying the DRS to a larger population, public health officials can 
identify subgroups at higher risk of hospitalization or mortality. This 
information can guide resource allocation, public health interventions, 
and preventive measures, such as targeted vaccination campaigns or 
enhanced monitoring and support for high-risk individuals.

However, it is important to note that the predictive accuracy of 
these formulas should be considered in conjunction with other clinical 
information and the context in which they are applied. The 
performance metrics (AUC, accuracy, sensitivity, specificity) discussed 
earlier provide an assessment of the model’s overall predictive ability, 
but individual predictions may still have limitations and uncertainties, 
especially beyond the population that it was developed on. Therefore, 
these formulas should be  interpreted and used as part of a 
comprehensive clinical assessment, considering other relevant factors 
such as patient history, comorbidities, and clinical judgment. Regular 
validation and refinement of the DRS and associated formulas based 
on real-world data are also essential to ensure their ongoing accuracy 
and reliability.

4.5 Limitations

This study’s results should considered in virtue of a set of strengths 
and Limitations. The study used linked data from national health 
registries in both Sweden and Norway, providing a robust and 
extensive dataset for analysis. This comprehensive data allowed for a 
thorough examination of various predictors and outcomes related to 
COVID-19 hospitalization and mortality. This large sample size 
enhances the statistical power and generalizability of the findings. The 
prescribed drug registers in both Sweden and Norway were used as 
proxies for drug information, and they are known to have complete 
coverage and high data quality. This strengthens the reliability and 
accuracy of the medication-related predictors included in the disease 
risk score (64).

However, a notable limitation is the absence of information on 
Over The Counter (OTC) drugs and diagnoses recorded in primary 
care within the dataset. This could lead to some misclassification and 
potential underestimation or incomplete representation of certain 
predictors (65). Additionally, primary care plays a significant role in 
healthcare consumption, particularly for chronic diseases and mental 
health conditions. The study may not fully capture the impact of these 
aspects due to the focus on in- and outpatient specialist care (65).
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One potential limitation of our study is that we did not take into 
account ethnicity in Sweden when conducting the matching process 
between cases and controls, due to lack of such data in Sweden. Recent 
research has indicated that ethnicity can play a significant role in 
determining the severity of COVID-19 outcomes (66).

For future variants, the potential for utilizing our model under 
specific circumstances remains a possibility, contingent upon a couple 
of crucial factors. Firstly, there should be a substantial similarity in the 
pathophysiological aspects of the new COVID-19 variant with one of 
the previous strains. This is highly probable, given that the new 
variants detected thus far exhibit resemblances to those observed 
during the initial three waves of the pandemic. Secondly, an essential 
consideration is the presence of an epidemiological context akin to the 
one for which we  have developed wave-specific models. In other 
words, the circumstances surrounding the spread, containment, and 
impact of the virus should align with those encountered during the 
waves for which our models were designed.

However, it is vital to also acknowledge that there will always 
be  certain aspects that could significantly affect the validity and 
applicability of our models to future variants. These factors may include 
the emergence of entirely novel variants with distinct pathophysiological 
properties or epidemiological characteristics, or substantial changes in the 
public health and medical landscape, such as the introduction of new 
vaccines, treatments, or public health measures. Therefore, while our 
models provide a valuable framework, it’s imperative to approach each 
new variant with a degree of caution, recognizing that unforeseen 
variables can impact their predictive accuracy.

5 Conclusion

The DRS demonstrated moderate performance in predicting 
COVID-19-related mortality and poor performance for COVID-19-
related hospitalization, with variations observed during external 
validation. Our study provides formulas to calculate the probability of 
the outcome using the DRS, which can be useful in clinical contexts 
for predicting individual risk and guiding public health interventions.

Overall, our study underscores the importance of proactive 
measures to prevent COVID-19 transmission, particularly among 
high-risk individuals. By prioritizing risk identification and 
implementing appropriate preventive strategies, we  can strive to 
mitigate the impact of the pandemic on public health and improve 
patient outcomes.
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