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ABSTRACT 

A newly developed deterministic numerical model for air pollution from road traffic is 
combined with stochastic models in order to predict hourly average concentrations of 
nitrogen oxides (NOx) with estimated uncertainty. Four stochastic models are considered: 
Three non-hierarchical models, treating the air pollution model as a black box, and a fourth, 
hierarchical model, where some of the input variables of this model are also treated as 
uncertain. The probabilistic models are evaluated by comparing sample or ensemble based 
probability distributions of concentrations with hourly observed values of NOx at 
Nordbysletta, Norway, during a 3.5 months campaign period in 2002, where we focus on 
verification issues such as calibration and sharpness of the predictive distributions. 
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1. INTRODUCTION 

 

 

1.1 Background 

In cities and urban areas, where population densities are high, emission from road and street 
traffic constitutes one of the most important sources of air pollution. Despite recent 
improvements in air quality regulation, and introduction of new technologies for reduction of 
vehicle emissions, increases in traffic volume continues to impose a negative threat to the 
health and well-being of people living in affected areas. The adverse effects of long-term 
exposure to air pollution have been well-documented both globally (WHO, 2004; 2006a; 
2006b), and within the European Union (EU, 2006). In Norway, recent exposure and health 
assessments carried out by e.g., the Norwegian Institute of Public Health (FHI), have also 
indicated significant negative health effects from poor air quality (Oftedal et al., 2008; 
Nafstad et al., 2004). 

It is, therefore, both from a regulatory, and surveillance, point of view, important to be able to 
predict air pollution from road and street traffic as accurately as possible and on a regular 
basis, e.g., on an hourly or daily basis. Traditionally this has been done, almost exclusively, 
using deterministic air pollution models. Such models are typically mechanistic or process-
driven, where physical and chemical laws are used to describe the coupling between 
emissions of pollutants from each road or street, and concentrations of the same pollutants in 
arbitrary spatial locations (receptor points) in the vicinity of the road, using information about 
local meteorology. Such predictions are then usually produced in the form of single 
concentration values without any attached estimate of uncertainty. 

Modelling of air pollution in the atmosphere will, however, always be uncertain due to the 
inevitable uncertainties associated with input data (emission, meteorology etc.), and 
formulations (physical and chemical equations) used to describe the dispersion process 
(Chatwin, 1982; Lewellen and Sykes, 1989; Rao, 2005). It is, therefore, important to try to 
quantify such uncertainties in order to ensure more transparency and trust of accuracy in the 
modelling result. A probabilistic air pollution model aims at exactly that: Namely to extend a 
given deterministic air pollution model with a stochastic model in order to describe the 
uncertainties involved. Such a model will, thus, produce as its output, not merely 
concentrations as single values, but rather as probability distributions of such values. These 
should then, ideally, reflect all uncertainties involved as accurately as possible, and give us 
improved insights and confidence in the modelling results (Dabbert and Miller, 2000; 
Hogrefe and Rao, 2001). 

The idea of coupling deterministic process models with stochastic models is not new. Since 
the seminal work of Kennedy and O’Hagan (2001), there has been an increased interest in 
calibration and uncertainty assessment of such models, as described in e.g., Higdon et al. 
(2008), Bayarri et al. (2007), Wikle and Berliner (2007), O’Hagan (2006) and Bates et al. 
(2003). An application for air pollution can e.g., be found in Fuentes and Raftery (2005). 
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Campbell (2006) contains a discussion of statistical calibration of physics-based computer 
process models and simulators.  

Probabilistic treatment of input and output of quantitative models is more generally known as 
uncertainty analysis. A good overview and description of this field is given in the recent book 
by Kurowicka and Cooke (2006). 

Rao (2005) discusses various types of uncertainties in atmospheric dispersion model 
predictions and reviews how sensitivity and uncertainty analysis methods can be used to 
characterize and reduce them. Dabbert and Miller (2000) also consider uncertainties in 
connection with air pollution dispersion modeling, and describe how they may be quantified 
through the use of ensemble simulations. For a discussion of how model uncertainties needs 
to be considered in various policy related contexts, such as e.g., assessment of future air 
quality against various targets and objectives, see Colvile et al. (2002), and Hogrefe and Rao 
(2001). 

Shaddick et al. (2008; 2006a) and Zidek et al., (2005) describe how probabilistic models can 
be used to estimate personal exposure to airborne pollutants in urban environments, in order 
to assess the potential effects on human health. Shaddick et al. (2006b) describe how 
Bayesian hierarchical modeling can be used to produce high resolution maps of air pollution 
in the EU. Pinder et al. (2009) describes probabilistic estimation of surface ozone, using an 
ensemble of models and sensitivity calculations, in order to calculate reliable estimates of the 
probability of exceeding ozone threshold values on a larger regional scale. An early 
application of model sensitivity and uncertainty analysis for predicting air pollutant 
concentrations with confidence bounds, using a multi-model approach involving three street 
canyon models and roadside observations, is given in Vardoulakis et al. (2002). 

 

1.2 Aim of the work 

This report deals with probabilistic modelling of air pollution in connection with a newly 
developed deterministic numerical model for open roads and highways at NILU called 
WORM (Weak Wind Open Road Model). Four stochastic models (named A-D) are proposed 
in connection with the WORM model, each attempting to describe the uncertainties involved. 
The probabilistic models are evaluated by comparing the predicted probability distributions 
of hourly average concentrations of nitrogen oxides (NOx) with observations of the same 
species at three monitoring stations at Nordbysletta, Norway, during a 3.5 months 
observation period in the winter/spring of 2002. The main aim of the work is thus to try to 
develop a probabilistic version of the WORM model which can be used as part of NILUs 
model system. 

 

1.3 Outline of the report 

The report is organized as follows: In Chapter 2, we describe the Nordbysletta measurement 
data campaign together with the WORM deterministic model and the proposed stochastic 
frameworks and ensuing models. In Chapter 3, methodology related to probabilistic model 
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evaluation is provided, together with a review of other techniques used as part of this work, 
such as Metropolis-within-Gibbs sampling and circular block bootstrapping. In Chapter 4, we 
present the results of comparing predictions from the four probabilistic models against 
observations at Nordbysletta, before we discuss the results and give some main conclusions 
in Chapter 5. 

Appendix A contains a complete description of the WORM deterministic model equations, 
including equations of the built-in meteorological pre-processor WMPP. Appendix B 
contains details of the adaptive random-walk Metropolis-within-Gibbs algorithm which is 
used as part of model C. 

  



10 

 

 

 

 



 

2. DATA AND MODEL DESCRIPTIONS

 

 

In this chapter, we describe data and models which are used in this work. First in Section 2.1, 
we describe data from the Nordbysletta measurement data 
deterministic air pollution model WORM is presented. In Sections 2.3
stochastic frameworks and derived stochastic models that are used in combination with the 
WORM model to produce the probabilistic mod

 

 

2.1 The Nordbysletta measurement data campaign

Nordbysletta is situated at about 60
easterly direction from Oslo (Figure 2.1a). 

Figure 2.1a. Map of the Nordbysletta area and the main
quality, meteorology and traffic counting are indicated in the figure by the red dots and red arrow.

The site consists of a relatively flat area containing an approximatel
roadway with 4 separate lanes with traffic (Figure 2.1b). 

During morning hours, the traffic is mainly headed towards Oslo (to the left in Figure 2.1a), 
while, in the afternoon and evening
Lillestrøm. The average peak traffic volume during morning and afternoon rush hours is 
typically around 3-4000 vehicles per hour.

In the period 1 January – 15 April 2002, a measurement campaign was 
(Hagen et al., 2003). Location
during the campaign period and an indication of th
Figure 2.1a. A more detailed overview of the 4
stations is shown in Figure 2.1b.

                                                          
1
 The text in this section is largely taken from Walker et al. (2006).
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2. DATA AND MODEL DESCRIPTIONS 

data and models which are used in this work. First in Section 2.1, 
we describe data from the Nordbysletta measurement data campaign. Then in Section 2.2
deterministic air pollution model WORM is presented. In Sections 2.3-
stochastic frameworks and derived stochastic models that are used in combination with the 

ce the probabilistic model evaluation results as given in Chapter 4.

2.1 The Nordbysletta measurement data campaign1 

Nordbysletta is situated at about 60ºN and 11ºE in the municipality of Lørenskog in a north
easterly direction from Oslo (Figure 2.1a).  

ordbysletta area and the main roadway. Locations of monitori
traffic counting are indicated in the figure by the red dots and red arrow.

The site consists of a relatively flat area containing an approximately 850 m long segment of 
roadway with 4 separate lanes with traffic (Figure 2.1b).  

the traffic is mainly headed towards Oslo (to the left in Figure 2.1a), 
in the afternoon and evening, most of the traffic is in the opposite direction towards 

Lillestrøm. The average peak traffic volume during morning and afternoon rush hours is 
4000 vehicles per hour. 

15 April 2002, a measurement campaign was conducted at the site 
Locations of monitoring stations for air quality and meteorology 

and an indication of the site for traffic counting
Figure 2.1a. A more detailed overview of the 4-lane roadway geometry with placement of the 
stations is shown in Figure 2.1b. 

                   

The text in this section is largely taken from Walker et al. (2006). 

data and models which are used in this work. First in Section 2.1, 
campaign. Then in Section 2.2, the 

-4, we describe the 
stochastic frameworks and derived stochastic models that are used in combination with the 

results as given in Chapter 4. 

E in the municipality of Lørenskog in a north-

 

roadway. Locations of monitoring stations for air 
traffic counting are indicated in the figure by the red dots and red arrow. 

y 850 m long segment of 

the traffic is mainly headed towards Oslo (to the left in Figure 2.1a), 
most of the traffic is in the opposite direction towards 

Lillestrøm. The average peak traffic volume during morning and afternoon rush hours is 

conducted at the site 
s of monitoring stations for air quality and meteorology used 

e site for traffic counting are shown in 
roadway geometry with placement of the 
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Figure 2.1b. The Nordbysletta 4-lane roadway with monitoring stations for air quality (1-3), meteorology (M), 
and background concentrations (B) at the opposite side of the roadway. Direction is 238º towards Oslo and 58° 

from Oslo towards Lillestrøm. 

As shown in the figure, each lane has a width of 3.5 m and the distance between the 
physically separate lanes are 5.4 m. The total width of the roadway is thus 19.4 m. 

Stations 1-3 and B are air quality stations, measuring (among other components) hourly 
average concentrations of nitrogen oxides NOx 

2 at a height of 3.5 m above ground, while 
Station M is a 10 m high meteorological mast coinciding with air quality Station 2. Stations 
1-3 and M are all placed on one side of the roadway, on a line approximately midway 
between the end points of the segment considered, and at distances 7.3 m, 16.8 m and 46.8 m 
respectively from the nearest lane. Station B is a background station, measuring hourly 
average concentrations of NOx from other sources than the roadway, placed around 350 m 
from the roadway in the opposite direction. The exact location of Station B is shown in 
Figure 2.1a.  

(As can be seen from Figure 2.1a, there is also a road running parallel to the roadway 
(Parallellveien) but this has quite small traffic as compared to the roadway, so need not be 
included regarding modelling of air pollution at Stations 1-3 (Hagen et al., 2003).) 

During the campaign period, traffic counting was performed locally on an hourly basis. For 
each hour, the number of light and heavy-duty vehicles (with length > 5.6 m), were counted 
separately on each of the 4 lanes of the roadway. The heavy-duty vehicles constituted around 
4-14% of the traffic volume on average. The average speed of all vehicles was approximately 
90 kmhr-1. Based on this, hourly emissions of NOx were calculated using different emission 
factors for the different vehicle classes primarily based on NILU's AirQUIS system 
(AirQUIS, 2005).  

Data recorded at Station M consist of hourly average values of the following meteorological 
quantities: 

 

                                                           
2 Alternatively, we could have used observations of nitrogen dioxide (NO2) or particulate matter (PM10), but 
both of these are somewhat more complicated to model than NOx, especially emissions of PM10. 

To Oslo

From Oslo

3.5 + 3.5 m

7.3 m

16.8 m

46.8 m

3.5 + 3.5 m

5.4 m

1 2 + M 3

B
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• Wind speed and wind direction at 10 m above ground 
• Air temperature at 2 m above ground 

• Vertical air temperature difference between 10 m and 2 m above ground (an indicator 
of atmospheric stability) 

• Relative humidity at 2 m above ground 

A standard meteorological pre-processor (WMPP) based on Monin-Obukhov similarity 
theory (see Appendix A, section A.5), is used to calculate other derived meteorological 
quantities needed by the model such as friction velocity, temperature scale, Obukhov length 
and mixing height. In these calculations, momentum surface roughness at Nordbysletta has 
been set to 0.25 m based on the Davenport & Wieringa site classification (Davenport et al., 
2000). 

Net observed concentrations of NOx 

Emission from the traffic at Nordbysletta will only affect the concentration levels at the 
monitoring Stations 1-3 when the wind direction is from the roadway and towards the 
stations. According to the geometry of the roadway and location of the stations, this happens 
when the wind direction is between approximately 58° and 238°. In such cases, Station B will 
be very little influenced by the roadway and observed concentrations at this station should, 
therefore, be representative as a constant background field for the contribution from all other 
sources of NOx in the area to the observed values at Stations 1-3. The concentrations at 
Station B can, therefore, be subtracted from the corresponding observed concentrations at 
Stations 1-3, to make net observed concentrations of NOx at Stations 1-3, which can be 
directly compared with modelled concentrations from the roadway.  

When the wind is headed in the opposite direction, the roadway will have very little impact 
on the concentration levels at Stations 1-3. In this case, concentrations at Station B will 
instead be (more or less) influenced by the roadway so can no longer be used as a background 
station for the concentration levels at Stations 1-3. In such cases, which constitutes roughly 
half of the total 2520 hours of observations, net observed concentrations of NOx at Stations 1-
3 will be defined as missing data (coded as -9900.0). 

To summarize the above: If ( )ic t , 1,2,3i =  and B , represent observed concentrations of NOx 

at Stations 1-3 and B at time (hour) t , net observed concentrations of NOx at Stations 1-3 is 
calculated as 

 ( ) ( ) ( ) ( )
,

   when  60 240

-9900.0   otherwise (missing data) 
i B

i net

c t c t t
c t

ϕ − ° ≤ ≤ °= 


 

where ( )tϕ  denotes observed wind direction at Station 2 at time (hour) t . 

All evaluation results presented in Chapter 4 is based on comparing model output 
concentrations with such net observed concentrations of NOx at the monitoring Stations 1-3. 
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2.2 The WORM air pollution model  

The WORM model (Weak Wind Open Road Model) (Walker, 2008) is a newly developed air 
pollution dispersion model capable of calculating hourly average concentrations of various 
inert chemical species, including nitrogen oxides (NOx), from one or several open roads (or 
highways) in an arbitrary set of receptor points, up to a certain maximum distance, typically 
200-300 m, from the roads. 

The hourly average concentration sC (µgm-3) at a given receptor point ( ), ,s s ss x y z=  and time 

t  (hour), based on emissions of pollutants from a given road lane, is calculated by integrating 
a standard Gaussian plume equation over the length L  (m) of the road, as follows: 

 
( ) 2 22

2 2 2
0

( - ) ( )
exp - exp - exp -  

2 ( ) ( ) 2 ( ) 2 ( ) 2 ( )

L
s eff s effs

s
eff y l z l y l z l z ll

z H z Hy lQ
C dl

U t t t t tπ σ σ σ σ σ=

      + = +          
      

∫    (2.2a) 

where Q  is the emission intensity of the lane (gm-1s-1), effU  is the plume (effective) wind 

speed (ms-1), effH  is the plume (effective) height above ground (m), ( )sy l  is the plume 

crosswind distance from the emission point l  on the lane to the receptor location (m), and 
where yσ  and zσ  are total dispersion parameters for the plume (m), given as functions of 

atmospheric transport time lt  (s) from emission points l  on the lane to the given receptor 

point s .  

Section A.1 in Appendix A contains a description of how the crosswind distance ( )sy l  and 

the atmospheric transport time lt  are related to the lane and receptor geometry, and to the 

hourly varying wind direction. All quantities in (2.2a) will generally vary with time (hour) 
depending on emission and meteorological conditions close to the road or roadway, except 
for the length of the road (lane) L , and vertical receptor coordinate sz , which are fixed. 

The total hourly average concentration ( ),cf s t  from all roads influencing a given spatial 

location s  at time (hour) t  is calculated by adding the contributions from each road lane as 
follows: 

 ( ) ( )
1 1

, ,
q l

q l

n n

c s q l
i i

f s t C i i
= =

=∑∑  (2.2b) 

where qn  is the number of roads influencing point s , ln  is the number of lanes on each road, 

and where ( ),s q lC i i  represents the concentration contribution from road qi  and lane li , as 

calculated by (2.2a). Since s  and t  can be arbitrarily chosen (within certain limits depending 

on available data), ( ),cf s t  can be viewed as a given (deterministic) function of space s  and 

time (hour) t . At Nordbysletta 1qn =  and 4ln = . 
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A complete description of all WORM model equations is given in Appendix A, which also 
includes equations of the built-in meteorological pre-processor WMPP. 

The WORM model is similar to other integrated Gaussian open road line source models 
currently in operational use in the other Nordic countries, such as e.g., the Danish OML 
Highway model (Berkowicz et al., 2007), the Finnish CAR-FMI model (Härkönen et al., 
1996), and the Swedish OpenRoad model (Gidhagen et al., 2005). Compared to the CAR-
FMI and OpenRoad models, the WORM model has a more advanced treatment of traffic 
produced turbulence from the moving vehicles similar to the OML Highway model, and a 
more up-to-date formulation of ambient atmospheric dispersion similar to the newly proposed 
OML Research Version model (Olesen et al., 2007). 

A recent evaluation and inter comparison of the OML Highway, CAR-FMI and a previous 
beta release of the WORM model is given in Berger et al. (2010), which also contains a 
description of other operational integrated Gaussian open road line source models currently in 
use, such as e.g., the CALINE3 and CALINE4 models (Benson, 1992), and the older US 
EPA HIWAY-2 model (Peterson, 1980). A review of these and other models for open roads 
and highways can be found in Sharma et al. (2004). 

For an earlier attempt of probabilistic modelling with the previous beta release of WORM, 
see Walker (2007). For earlier attempts of combining the previous beta release of WORM 
with observations of NOx at Nordbysletta using data assimilation, see Walker and Berger 
(2007) and Walker et al. (2006). 

For a recent evaluation of the current WORM model against observations of NOx at 
Nordbysletta, see Walker (2008). 

 
 
2.3 Non-hierarchical stochastic framework and models 

We will first describe a non-hierarchical stochastic framework for the WORM model. The 
term non-hierarchical is used here to indicate that the WORM model will be treated simply 
as a given “black box” deterministic function, with no uncertainties explicitly associated with 
any input or intermediately calculated variables in this model. Then three concrete stochastic 
models (A, B and C) will be described which are derived from this framework. 

 
2.3.1 Non-hierarchical stochastic framework 

A non-hierarchical stochastic framework for modelling the relationship between true3 hourly 

average concentrations ( ),c s t  of an air pollutant (such as e.g., NOx) at a set of spatial points 

1,...,s S=  ( ( , , )s x y z= ) and times (hours) 1,...,t T=  and WORM model output concentrations 

                                                           
3 With true hourly average concentrations we here mean hourly average concentrations that would have been 
observed had there not been any measurement errors. 



16 

 

( ),cf s t  for the same pollutant and space and time locations, can tentatively be defined by the 

following set of basic linear regression equations 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, , ,cc s t s s f s t s tλ λβ β ε= + +  (2.3.1a) 

where the residuals ( ),s tε  are assumed to be normally distributed, and where the model value 
( ) ( ),cf s tλ  represents the main explanatory variable, or covariate, for the true concentration 

( ) ( ),c s tλ . Since these concentrations are defined on the nonnegative axis, with distributions 

typically skewed to the right, we will allow for a power transformation of these quantities of 
the Box-Cox type in (2.3.1a), i.e., we define 

 ( ) ( )
( )

( )( )

, 1
   for  0

,

ln ,     for  0

c s t

c s t

c s t

λ

λ λ
λ

λ

 −
≠

= 
 =

 (2.3.1b) 

and similarly for ( ) ( ),cf s tλ , where λ  is the parameter of the transform (Box and Cox, 1964). 

Applying such a transform for an appropriate value of λ  in (2.3.1a) will help create variables 
which are more symmetric (less skewed), and most importantly, normally distributed 

residuals ( ),s tε . 

Note that in (2.3.1a) the regression coefficients 0β  and 1β  are assumed to depend on the 

spatial position s . Thus, for each spatial location s , we may consider (2.3.1a) as defining a 

separate linear regression model with coefficients ( )0 sβ  and ( )1 sβ . We will, however, 

assume that these coefficients have some degree of smoothness in space. 

Furthermore, regression errors ( ),s tε  are assumed to be dependent, both in space and time.  

In particular, we assume that ( ),s tε  at any given point s  follows a stationary zero-mean 

ARMA( ,p q )-process, i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )
1 1

, , , ,
p q

i j
i j

s t s s t i s t s s t jε φ ε η θ η
= =

= − + + −∑ ∑  (2.3.1c) 

where the autoregressive and moving average parameters iφ  and jθ  are assumed to depend 

on s , for 1,...,i p= , 1,...,j q= , and where ( ),s tη  denotes a zero-mean white Gaussian noise 

process with standard deviation ( )sσ . We limit ourselves to ARMA-models in this context 

since it is reasonable to believe that there should be no trends in these errors over time, since 
they represent differences between (transformed) true and model calculated values, which 
should not exhibit any particular trend over time. 

Likewise, at any given time (hour) t , errors ( ),s tε  are assumed to be spatially dependent.  



17 

 

There are many ways to model such dependencies (Le and Zidek, 2006). One possible 
approach here is to assume an exponential form for the covariance between the Gaussian 

noise terms ( ),s tη  at arbitrary locations s  and 's , e.g., modelled as follows: 

 ( ) ( )( ) ( ) ( ) ( )( )2
cov , , ', ' exp ' ss t s t s s s s

α
η η σ σ δ= − −  (2.3.1d) 

where ( ) ( )( )2
Var ,s s tσ η= ; 

2
's s− denotes the usual 2-norm or Euclidian distance between 

the locations s and 's ; sδ  is a given distance-scale parameter; and where α  is typically set to 

e.g., 1 or 2 , depending on the degree of smoothness we seek to obtain. 

Modelling spatial or temporal dependencies are important for making multivariate 
probabilistic predictions, i.e., when we want to calculate the probability distribution of 
concentrations at several spatial and temporal locations simultaneously. Examples here could 
be e.g., to calculate the probability that a daily mean value at a given point exceeds a given 
(limit) value; or to calculate the probability that an average concentration over a given spatial 
domain at a given hour will exceed a given (limit) value. We could also conceive of 
applications where we average both in space and time simultaneously. For univariate 
probabilistic predictions (one-point-at-a-time) in space and time, modelling dependencies will 
be of minor importance. 

In addition to the basic framework equations represented by (2.3a-d), we may also define 
observation equations 

 ( ) ( ) ( ) ( )( ), ( , ), , ,  1,...,m m y my s t H c s t s t m Mλ λ η= =
 

(2.3.1e) 

where M  denotes the number of observational points (monitoring stations), and the function 

H  is an observation operator linking transformed air quality observations ( ) ( ),my s tλ  of the 

given pollutant with corresponding transformed true concentrations ( ) ( ),mc s tλ  at each 

measurement point ms , for 1,...,m M= , where ( ),y ms tη  represents observational errors. For 

air quality observations, it is often the case that such errors can be assumed to be normally 
distributed and additive, e.g., 

 ( ) ( ) ( ) ( ) ( ), , , , 1,...,m m y my s t c s t s t m Mλ λ η= + =  (2.3.1f) 

where ( ) ( )2, 0,
iid

y m ys t Nη σ∼  for all observation points ms  and times (hours) t . 

One of the main assumptions above is that the residual errors ( ),s tε  are normally distributed 

and follows an ARMA-process. Since the errors represent differences between (transformed) 
true and regression adjusted modelled concentrations it is not unreasonable to believe that 
they (theoretically) will form a stationary, zero-mean time series at any given spatial point s . 
The existence of a Wold decomposition for any such process (Shumway and Stoffer, 2006, 
Appendix B.4) gives us some confidence that the above residuals might follow an ARMA-
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process. Furthermore, according to Irwin et al. (2007), differences between observed and 
model calculated concentrations using Gaussian plume dispersion models are typically 
lognormally (most cases) or normally distributed, or will have some distribution close to 
these. Including the Box-Cox transformation parameter in (2.3.1a) thus gives us some 
confidence that such differences (appropriately transformed) can be modelled in terms of 
normal distributions. 

As stated earlier, the stochastic framework defined in terms of the (state-space) equations 
(2.3.1a-f) is called non-hierarchical since it does not explicitly address any internal 
uncertainties in the WORM model itself, but rather treats this model as a given “black box” 
deterministic function of space and time (and other input data which are given as functions of 
time). An alternative way of handling modelling uncertainties is to consider uncertainties also 
in one or several of the internal variables of the WORM model. This leads naturally to a 
hierarchical approach of handling model uncertainty, which is described in Section 2.4. 

In the next three sections, however, we will present three concrete stochastic models (A-C) 
derived from the above non-hierarchical framework. 

 
2.3.2 Model A: Box-Cox linear regression with autocorrelated errors 

If we replace the (state-space) variables ( ) ( ),c s tλ  in (2.3.1a), representing transformed true 

concentrations, with similarly transformed conceived observations ( ) ( ),y s tλ , e.g., by 

assuming that any observational error has already been included in the noise term ( ),s tη  in 

(2.3.1c), we obtain a Box-Cox linear regression model with autocorrelated errors: 

 ( ) ( ) ( ) ( ) ( ) ( ) ( )0 1, , ,cy s t s s f s t s tλ λβ β ε= + +  (2.3.2a) 

                  ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2

1 1

, , , , ;  , 0,
p q

i j
i j

s t s s t i s t s s t j s t N sε φ ε η θ η η σ
= =

= − + + −∑ ∑ ∼  (2.3.2b) 

with a separate set of parameters for each spatial location s . This model can alternatively be 
written as a univariate ARMA(,p q ) model in time series form 

 

( ) ( ) ( ) ( ) ( ) ( )( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )( )
( ) ( ) ( )

0 1 0 1
1

1

, , , ,

                                                              , ,

p

c i c
i

q

j
j

y s t s s f s t s y s t i s s f s t i

s t s s t j

λ λ λ λβ β φ β β

η θ η

=

=

− + = − − + − +

+ −

∑

∑
 

with the linear regression terms in (2.3.2a) included as external regressors. 

If observations ( ),y s t  are available, parameters of this model at the point s  can be estimated 

e.g., by using maximum likelihood estimation (MLE) based on the given observations and 
model calculated values. In practice, this can be done e.g., by first estimating the Box-Cox 
parameter λ  using the profile log-likelihood method as described in Box and Cox (1964), 
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using independent data from the original time series of observed and model calculated values, 
e.g., every n th value of the series, for large enough n , to make the data independent, and then 

estimating the other parameters in the model using the transformed observations ( )( ) ,y s tλ  and 

model calculated values ( ) ( ),cf s tλ . The latter can e.g., be accomplished using the R-routine 

ARIMA since this is capable of including external regressors in the ARMA-model and is also 
able to handle missing data since it is based internally on a Kalman filter.  

In order to be able to use this model also at spatial locations where there are no observations, 
we need somehow to interpolate or extrapolate estimated parameters from the observation 
points ms , 1,...,m M= , to any new location s . We prefer here to interpolate or extrapolate 

parameters to the new point s , rather than interpolating predictions, since we prefer to use 

the actual model calculated value ( ),cf s t  at the point s , rather than interpolated values of 

( ),c mf s t  from the observation points. Interpolation of parameters can be accomplished by 

using spatial interpolation techniques, such as e.g., Kriging (Le and Zidek, 2006), or simply 
by selecting a nearby representative point ms  and use the estimated model parameters from 

this point also at location s . Special care must be taken when e.g., interpolating the 
parameters of the ARMA-models to ensure that the resulting new model remains causal and 
invertible. 

In practice, there will usually not be many observations available close to roads in a city or 
urban area, so in most cases M  will be relatively small, e.g., typically in the range 1-10. The 
procedure of interpolating or extrapolating parameters will, therefore, only work if the true 
parameters do not vary too much over the area of interest. 

In the following, let the estimated model parameters used for location s  simply be denoted 
by 0β , 1β , iφ , jθ , σ  and λ . Probabilistic predictions of concentrations at arbitrary individual 

spatial locations 1,...,s S=  and times (hours) 1,...,t T=  can now be obtained by drawing a 

large number N  (e.g., 100) of samples (ensemble members) as follows: 

 

where the last expression involves the use of the inverse Box-Cox transformation, and where 

we assume that ( )( ) ,k s tη  and ( )( ) ,k s tε , for 1t < , are either given, or simply set to zero. The 

MODEL A: ALGORITHM FOR PROBABILISTIC PREDICTIONS 

For 1,...,s S= , 1,...,t T= and 1,...,k N= do: 

1. Draw ( ) ( )( ) 2, 0,k s t Nη σ∼ . 

2. Calculate ( ) ( ) ( ) ( )( ) ( ) ( ) ( )

1 1

, , , ,
p q

k k k k
i j

i j

s t s t i s t s t jε φ ε η θ η
= =

= − + + −∑ ∑ . 

3. Calculate ( ) ( ) ( ) ( ){ }
1

( ) ( )
0 1, , , 1k k

cy s t f s t s tλ λλ β β ε = + + + 
ɶ . 
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resulting set of predicted concentration values ( ){ }( ) , , 1,...,ky s t k N=ɶ  then forms a discrete 

approximation of the underlying continuous predictive PDF of concentrations at each point 
1,...,s S=  and times (hours) 1,...,t T= . 

The above algorithm is oriented towards univariate (one-point-at-a-time) predictions in space, 
but is able to handle multivariate predictions in time, since time dependencies are taken into 
account via the ARMA model. Multivariate predictions in space can be accomplished by 

drawing ( )( ) ,k s tη  in Step 1 of the above procedure using a multivariate normal distribution 

with a spatial covariance matrix as described in Section 2.3.1, but in practice it might be 
difficult to obtain estimates of the distance scale parameter sδ  in (2.3.1d), at least we need 

then several observations, and even then it might be difficult since we only have one set of 
estimated parameters at each spatial point. It may be necessary then, to use just some 
predetermined value for this parameter in order to obtain smoothness in space. We focus 
here, however, on the univariate version since this is the way model A will be applied at 
Nordbysletta.  

Using model A at Nordbysletta, the first third of the period (840 hours) with observations at 
Station 2 will be used to obtain parameter estimates, which then will be used to make 
probabilistic predictions with this model at the same station for the rest of the period, and at 
Stations 1 and 3 for the whole period. The predictions will be compared with corresponding 
(independent) observations at the stations, the results of which are shown in Section 4.1. 

 
2.3.3 Model B: Bayesian non-hierarchical prior predictive model 

Irwin et al. (2007) provides a description of uncertainties associated with Gaussian plume 
models based on numerous field studies from the early 1950s to the present, comparing the 
output of such models with observations. The results from this extensive work seem to 
indicate that the ratio of observed over predicted hourly average concentrations typically has 
a lognormal distribution with a geometrical standard deviation4 which in the different studies, 
and trials within each study, typically ranges from 1.5 to 2.5 with a median value of about 
2.0. 

Even though the field studies in Irwin et al. (2007) is based on modelling single point sources 
rather than integration of line sources, as is the case with the WORM model, there are many 
similarities between the field studies and the present Nordbysletta campaign data, e.g., a good 
characterization of the meteorological conditions through the use of local meteorological 
observations, and a good control with emissions and background sources. Thus, we think that 
the historic field studies should be relevant and applicable also for the case at Nordbysletta. 

The fact that the ratios of observed and model calculated values seems to follow lognormal 
distributions supports the non-hierarchical stochastic framework as defined in Section 2.3.1, 

                                                           
4
 LognormalX ∼  has geometrical standard deviation σ  if and only if ( )log NormalX ∼  with standard deviation 

( )log σ . 
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since this is equivalent with stating that the logarithmic differences between observed and 
model calculated values should follow normal distributions, which is in conformance with the 
framework using the transformation parameter 0λ = .  

Within the non-hierarchical stochastic framework, we interpret this as stating that Equations 
2.3.1a-b holds with 0 0β = , 1 1β = , and with standard deviations σ  in the range from about 

log(1.5) to log(2.5), with a median value of about log(2.0), using no autoregressive or moving 
average terms, i.e., 0p q= = , since the empirical standard deviations in the field studies 

apparently have been calculated without taking into account any such terms. 

We may give this general result a Bayesian interpretation within the non-hierarchical 
stochastic framework by letting σ  have a prior distribution with a high probability (say 95%) 
of being in the range log(1.5) to log(2.5), while allowing for some chance (say 5%) of being 
outside this interval. It is, however, not easy to decide on a distributional form. 

One possibility here could perhaps simply be to use the empirical distribution of all the σ -
values from all the field studies, and this may well be a reasonable choice as an entire general 
prior for any new place with conditions similar to those in the field studies. 

However, according to Irwin (2007), values of σ  seems to depend on the complexity of the 
situation. Dispersion over flat uncomplicated rural terrain (e.g., prairie grass) tends to give 
lower values of σ  than dispersion in environments with many obstacles, e.g., as in cities and 
urban environments. We consider the situation at Nordbysletta (which is relatively flat but 
with some larger obstacles nearby), to be somewhere in between, which makes it perhaps 
somewhat more likely for σ  to be in the middle part of the above range than at either end. 
Thus, it seems more natural to think of a prior for σ  at Nordbysletta to be unimodal with a 
median value of about log(2.0). A 95% prior probability for σ  being in the interval [log(1.5), 
log(2.5)] can then e.g., be obtained by letting the 0.025 and 0.975 quantiles of the prior 
distribution have the values log(1.5) and log(2.5) respectively. 

We still have not decided on the actual distributional form. A typical and traditional choice 

for a scale parameter, such as σ , is to give the corresponding precision parameter 2τ σ −=  a 
Gamma distribution. Although this may appear as a somewhat arbitrary choice, which to 
some extent is true, we have nevertheless decided here, at least tentatively, to give τ  a 
Gamma( ,a b) distribution with shape and scale parameters a  and b , corresponding to a prior 

distribution on σ  with 0.025, 0.50 and 0.975 quantiles being as close as possible to log(2.5), 
log(2.0) and log(1.5) respectively. The best fitted parameter values using minimum least 
squares fitting of quantiles was found to be 14.98a =  and 0.14b = , which gives 0.025, 0.5, 
and 0.975 quantiles equal to log(1.73), log(2.0), and log(2.5) respectively. The adjusted value 
for the lower quantile was found to be acceptable.  

Figure 2.3.3a (left) shows the resulting Gamma prior for the precision parameter τ  with the 
0.025, 0.5 and 0.975 quantiles of this distribution indicated by the dashed vertical lines. 
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Figure 2.3.3a. Left: Gamma prior for precision parameter τ with 0.025, 0.5 and 0.975 quantiles indicated by 

dashed vertical lines. Right: Marginal t-distributed prior for error residual ( ),s tη  (black curve) with 

corresponding  normal approximation (red curve). 

The resulting model, which is a Bayesian non-hierarchical prior predictive model, will be 
called model B. It is defined as follows: 

 ( ) ( ) ( )log , log , ,cy s t f s t s tη= +  (2.3.3a) 

 ( ) ( ) ( )2 2, 0, ;    Gamma ,s t N a bη σ τ σ −=∼ ∼  (2.3.3b) 

with 14.98a =  and 0.14b = . Also shown in Figure 2.3.3a (right) is the resulting marginal 

distribution of ( ),s tη (black curve), which will be a Student’s t -distribution5  with 

approximately 30 degrees of freedom (d.f.), and with mean 0 and scale log(1.99)s ≈ . As can 

be seen from the figure, due to the high value of a , this distribution will be very close to a 
normal (shown as the red curve). Thus, using the above prior on τ  will essentially have the 

same effect as operating with a fixed value of ( )log 1.99σ ≈ , i.e. very close to using the 

simple prior ( )20,log(2)N  on ( ),s tη , which may indicate that the above Gamma prior on τ  is 

perhaps somewhat too informative.  

Using a less informative prior on τ , e.g., by making it less peaked, leads to marginal 

distributions of ( ),s tη  more t -like, i.e., less peaked and with heavier tails. Unfortunately, we 

did not have time to test any such alternatives in the present work. It is also then very difficult 
to actually decide on a “best” a priori distributional form for τ  (or for σ  for that matter). 

However, in contrast to model A, model B can also be used in cases where there are no local 
air quality observations available close to the road, which typically will be the case for most 
roads in cities and urban areas.  

                                                           
5
 We here use the fact that if ( )2,X N µ σ∼ , and if ( )2 Gamma ,a bτ σ −= ∼  where a  is the shape parameter and b  

is the scale parameter of the Gamma-distribution, then marginally ( )2 ,aX t sµ∼
 
where µ  is the mean and 

( )
1
2s ab

−=  is the scale of this (non-central) t -distribution with 2a  degrees of freedom. 
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Probabilistic predictions of concentrations at arbitrary individual spatial locations 1,...,s S=  

and times (hours) 1,...,t T=  can now be obtained by drawing a large number N  (e.g., 100) of 

samples (ensemble members) as follows: 

 

The resulting set of predicted concentrations ( ){ }( ) , , 1,...,ky s t k N=ɶ  forms a discrete 

approximation of the underlying continuous predictive PDF of concentrations at each point 
1,...,s S=  and times (hours) 1,...,t T= .  

The above algorithm is oriented towards univariate predictions in both space and time. As for 

model A, multivariate predictions in space can be accomplished by drawing ( )( ) ,k s tη  in Step 

2 using a multivariate normal distribution with a spatial covariance matrix as described in 
Section 2.3.1. Same comments then apply as for model A. We focus here on the univariate 
version, however, since this is how model B will be applied at Nordbysletta, where 
probabilistic predictions will be compared with observations from all three stations, the 
results of which are shown in Section 4.2. 

 
2.3.4 Model C: Bayesian non-hierarchical posterior predictive model 

Model C is defined by the following system equations: 

 ( ) ( ) ( ) ( )0log , log , ,cc s t s f s t s tβ ε= + +  (2.3.4a) 

 ( ) ( ) ( ) ( ) ( ) ( )( )2
, , 1 , ;    , 0,s t s s t s t s t N sε φ ε η η σ= − + ∼  (2.3.4b) 

and observation equations 

 ( ) ( ) ( ) ( ) ( )2log , log , , ;    , 0, ;    1,...,m m y m y m yy s t c s t s t s t N m Mη η σ= + =∼  (2.3.4c) 

where yσ  represents the standard deviation of the observational errors, here assumed to be 

equal for all stations which is a reasonable assumption. 

MODEL B: ALGORITHM FOR PROBABILISTIC PREDICTIONS 

For 1,...,s S= , 1,...,t T= and 1,...,k N= do 

1. Draw ( ) Gamma( , )k a bτ ∼  with 14.98a =  (shape parameter) and 

0.14b =  (scale parameter) and calculate 
2( ) ( )1k kσ τ=  

2. Draw ( ) ( )2( ) ( ), 0,k ks t Nη σ∼  

3. Calculate ( ) ( ) ( ){ }( ) ( ), , exp ,k k
cy s t f s t s tη=ɶ  
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This model is simpler than model A, but slightly more general than model B, since it also 

includes a bias term ( )0 sβ  and an autoregressive AR(1) parameter ( )sφ . Contrary to the two 

previous models it is formulated in terms of (logarithm of) state-space variables ( ),c s t  

representing true concentrations at locations s  and times (hours) t . Like model B, this model 
is also Bayesian since we will be operating with prior distributions on all parameters, but 

contrary to model B, however, observations ( ),my s t  will here be used to define posterior 

distributions for all parameters, which then subsequently will be used in the predictive model. 
Appendix C describes how posterior distributions of the parameters can be obtained at a 
given observation point ms  using observations there over a given time period 1,..., 'T . 

In order to use this model also at spatial locations where there are no observations, we need 
somehow to interpolate or extrapolate the posterior distributions for the parameters from the 
observation points ms , 1,...,m M= , to any new location s . The same comments that were 

made for model A is, therefore, valid also here. In the following, therefore, let the true model 
parameters for location s  simply be denoted by0β , φ , and σ , and let the posterior 

distributions of these parameters be denoted by ( )0 |p β ⋅ , ( )|p φ ⋅  and ( )|p τ ⋅  respectively. 

The prior distribution suggested for each of these parameters is shown in Table 2.3.4a. 

Table 2.3.4a. Prior distributions for the parameters in model C. 

Parameter Distribution 
0β  Non-informative Uniform 

φ  Uniform[0,1] 

τ  
Gamma( ,a b) with shape 

14.98a =  and scale 0.14b =  
 

The prior for τ  is the same as was suggested for model B, representing the same prior belief 
regarding dispersion model uncertainty. See Figure 2.3.3a (left) for a plot of this distribution. 
Furthermore, for the bias parameter 0β , which is a location type parameter, we will use a 

non-informative (constant) prior, since we have no prior opinion regarding the value of this 
parameter. This is also the case for the autoregressive parameter φ , except that, for this 

parameter, the value should lie in the interval [0,1] since we believe errors ( ),s tε  to be 

positively correlated in time and that the ARMA-process is causal.  

In order for the predicted concentrations from this model to be compatible with observed 
concentrations, we should add simulated observational errors ( ),y s tη  so that the final 

predicted concentrations are given by 

 ( ) ( ) ( ) ( ) ( )2log , log , , ;    , 0,y y yy s t c s t s t s t Nη η σ= +ɶ ɶ ∼ . (2.3.4d) 
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Probabilistic predictions of concentrations at arbitrary individual spatial locations 1,...,s S=  

and times (hours) 1,...,t T=  can now be obtained by drawing a large number N  (e.g., 100) of 

samples (ensemble members) as follows: 

 

The resulting set of predicted concentrations ( ){ }( ) , , 1,...,ky s t k N=ɶ  forms a discrete 

approximation of the underlying continuous predictive PDF of concentrations at each point 
1,...,s S=  and times (hours) 1,...,t T= .  

The above algorithm is oriented towards univariate predictions in space, but may handle 
multivariate predictions in time, since time dependencies are taken into account via the 
AR(1)-model. As for the previous two models, multivariate predictions in space can be 

accomplished by drawing ( )( ) ,k s tη  in Step 1 using a multivariate normal distribution with a 

spatial covariance matrix as described in Section 2.3.1. Same comments then apply as for 
model A. We focus here again, however, on the univariate version since this is how model C 
will be applied at Nordbysletta.  

Using model C at Nordbysletta, the first third of the period with observations at Station 2 will 
be used to obtain posterior distributions of the parameters which then subsequently will be 
used to make probabilistic predictions with this model at Station 2 for the rest of the period, 
and at Stations 1 and 3 for the whole period. The predictions will be compared with 
observations, the results of which are shown in Section 4.3. 

 
 
2.4 Hierarchical stochastic framework and models 

We will first describe a hierarchical stochastic framework for the WORM model. Then we 
will describe a concrete stochastic model (D) which is derived from this framework. 

MODEL C: ALGORITHM FOR PROBABILISTIC PREDICTIONS 

For 1,...,s S= , 1,...,t T= and 1,...,k N= do 

1. Draw ( )( ) |k pτ τ ⋅∼  and calculate 
2( ) ( )1k kσ τ=  

2. Draw ( )( ) |k pφ φ ⋅∼  

3. Draw ( )( )
0 0 |k pβ β ⋅∼  

4. Draw ( ) ( )2( ) ( ), 0,k ks t Nη σ∼  and calculate 

( ) ( ) ( )( ) ( ) ( ) ( ), , 1 ,k k k ks t s t s tε φ ε η= − +  

5. Draw ( ) ( )( ) 2, 0,k
y ys t Nη σ∼  and calculate 

( ) ( ) ( ) ( ){ } ( ){ }( ) ( ) ( ) ( )
0, exp , exp , exp ,k k k k

c yy s t f s t s t s tβ ε η=ɶ  



 

The term hierarchical is used here to indicate
with input and intermediate variables
addition to any final model output uncertainty.

By modelling more precisely 
through the numerical model,
of model output concentrations 
can be achieved by using predictive distributions from non
doing so, in a sense try to mimic
sufficiently close to the real process
through the model. 

 
2.4.1 Hierarchical stochastic framework

Uncertainties and errors in the 
inevitably lead to uncertainties and errors 
model, as well as in the final 
calculated in the model in a 
expressions (functions or equations
hierarchical framework for describing the 

To fix ideas, let 1 2, ,..., rv v v  denote 

of generality, we may assume here
ordered according to the flow
calculates variable kv  at time (hour) 

 

where kf  denotes the deterministic model func

and where ( )pa kv
 
denotes the vector of other

the parents of kv  using graph-

Figure 2.4.1a. In this graph6 (part of a Directed Acyclic G

from variables 1 2, ,...,v v v

                                                          
6
 The graph in this and the next section were produced using GeNIe 2.0 (Graphical Network Interface) program 

from the Decision Systems Laboratory, University of Pittsburg (
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is used here to indicate that, in this framework, uncertainties associate
variables of the WORM model also might be treated

final model output uncertainty.  

y modelling more precisely input and intermediate uncertainties as they arise and propagate 
, hopefully, we might be able to obtain predictive

concentrations which are sharper (see Chapter 3), and more dynamic, than 
can be achieved by using predictive distributions from non-hierarchical models

try to mimic nature, this will usually require the simulation 
real process, so it will be meaningful to propagate such

2.4.1 Hierarchical stochastic framework  

the input and intermediate variables of the WORM 
o uncertainties and errors also in other derived intermediate

final output concentrations. Since all variables 
in a sequential and hierarchical manner, usin
equations) for each model variable, this leads 

framework for describing the propagation of such uncertainties

denote the complete set of WORM model variables. 

assume here for simplicity that the indices of the variables 
according to the flow of internal model calculations involving these

at time (hour) t  internally by 

( ) ( )( )( ),k k pa kv t f t v t=  

denotes the deterministic model function (equation) used for calculating 

denotes the vector of other model variables that kv  explicitly 

-theoretical terminology. This is illustrated in Figure 2.4.1a.

 

(part of a Directed Acyclic Graph (DAG)), variable kv  (child node) 

, ,..., jv v v  (parent nodes) with associated propagation of uncertainties.

                   

The graph in this and the next section were produced using GeNIe 2.0 (Graphical Network Interface) program 
from the Decision Systems Laboratory, University of Pittsburg (http://genie.sis.pitt.edu/). 

uncertainties associated 
treated explicitly, in 

uncertainties as they arise and propagate 
predictive distributions 

(see Chapter 3), and more dynamic, than 
hierarchical models. Since we, in 

simulation model to be 
meaningful to propagate such uncertainties 

WORM model, will 
diate variables of this 

variables are defined or 
, using given physical 

leads naturally to a 
propagation of such uncertainties and errors. 

the complete set of WORM model variables. Without loss 

of the variables have been 
these. The model thus 

(2.4.1a) 

calculating variable kv  

explicitly depends on, i.e. 

illustrated in Figure 2.4.1a. 

(child node) is calculated 

with associated propagation of uncertainties. 

The graph in this and the next section were produced using GeNIe 2.0 (Graphical Network Interface) program 
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The figure shows a graph depicting a model variable kv , the child node, being calculated 

from model variables 1v , 2v , …, jv , the parent nodes (for simplicity assumed here to be the 

nodes 1 toj ). 

If one or more of the input variables are uncertain, this uncertainty will also propagate to the 
calculated output variable through (2.4.1a). Also, since no variables are used, either directly 
or indirectly, to calculate itself, the resulting graph of all nodes (variables) and arcs 
(dependencies) will necessarily be a Directed Acyclic Graph, or DAG.  

Ultimately, in this framework, the last model variable rv  to be calculated is the model output 

concentration. This is the only WORM model variable that (in addition to time) also will 
depend on the spatial location s , and is calculated by 

 ( ) ( )( )( ), , ,r r pa rv s t f s t v t=  (2.4.1b) 

where rf  is the same function cf  as used in (2.3.1a) and (2.2b), but where we now explicitly 

have included the vector ( )pa rv  of parent variables that rv  depend on as arguments to this 

function. 

We will now describe the corresponding hierarchical stochastic framework. 

For each uncertain input or intermediate model variable kv , 1,..., 1k r= − , which we explicitly 

want to model, we will introduce a corresponding (state-space) variable kx  representing the 

conceived underlying true7 value of this variable. Each variable ( )kx t  is then assumed to 

evolve in time according to the following set of linear regression equations 

 ( ) ( ) ( ) ( )( ) ( )0 1 ( ),k k

k k k k pa k kx t f t x t tλ λβ β ε= + +  (2.4.1c) 

where kf  represents the deterministic model function for model variable kv  as used in 

(2.4.1a), and where kλ  represents the possible use of a local Box-Cox power transform 

parameter. In (2.4.1c), 0kβ  and  1kβ  represents local regression coefficients for variable k , 

while the error terms ( )k tε  are assumed to be dependent in time. In particular, we will 

assume ( )k tε  to be normal and follow a stationary zero-mean ARMA( ,k kp q )-process, i.e., 

 ( ) ( ) ( ) ( ) ( ) ( )2

1 1

;    0,
k kp q

k ik k jk k k k
i j

t t i t t j t Nε φ ε η θ η η σ
= =

= − + + −∑ ∑ ∼  (2.4.1d) 

for 1,..., 1k r= − . We limit ourselves to ARMA-models in this context since it is reasonable to 

believe that there are no trends in such errors over time, since they represent differences 
between (power transformed) true and model calculated values of the given variable, which 
should not show any particular trend over time. 

                                                           
7
 For some such variables it may be difficult to give a precise definition of what we mean by a true value. We 

will attempt to give such definitions for the variables of model D in the next section.  
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For the last (state-space) variable ( ),rx s t , representing true concentration at point s  and time 

(hour) t , we may use the same stochastic model as described in Section 2.3, i.e. 

 ( ) ( ) ( ) ( ) ( ) ( )( ) ( )0 1 ( ), , , ,r r

r r r r pa r rx s t s s f s t x t s tλ λβ β ε= + +  (2.4.1e) 

 ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )( )2

1 1

, , , , ;    , 0,
r rp q

r ir r jr r r r
i j

s t s s t i s t s s t j s t N sε φ ε η θ η η σ
= =

= − + + −∑ ∑ ∼     (2.4.1f) 

where model output concentration rf  represents the main explanatory variable or covariate 

for the true concentration rx . In (2.4.1e) regression coefficients 0rβ  and 1rβ  are again assumed to 

be dependent on the location s , and multivariate predictions can be performed as described in 

Section 2.3, e.g., by drawing ( ),r s tη  as a multivariate normal with a given spatial covariance 

matrix. 

It is possible to include observation equations for (transformed) model variables ( )( )k
kx tλ  by 

using equations similar to (2.3.1e-f). Furthermore, we may want to include, for physical 
reasons, truncation of some of the variables, either from above, from below or both. 

In some cases, dependencies may exist between variables that we may wish to include in a 
more direct way than through the flow of model calculations, e.g., between input variables. 

Also, in the above hierarchical stochastic framework we have tacitly assumed that residual 

errors kε  are independent of explanatory variables( )k
kf

λ . This may well be an unrealistic 

assumption in many cases (Goldstein and Rougier, 2008). One may, therefore, envision 
extensions of the above framework where such dependencies are modelled, e.g., using 
methods such as dependence vines and copulas (Kurowicka and Cooke, 2006). 

Finally, on the negative side, it must also be said that, due to the large number of parameters, 
models derived from the above framework might well encounter problems of identifiability. 

 
2.4.2 Model D: Bayesian hierarchical prior predictive model 

Based on general knowledge about uncertainties in Gaussian plume modelling (Irwin et al., 
2007), and an extensive sensitivity analysis performed with the WORM model using data 
from Nordbysletta (not shown here), the following three model variables were selected to be 
included in a Bayesian hierarchical prior predictive model, which will be called model D: 

• Effective plume height effH  

• Wind speed at 10 m above ground 10mu  

• Wind direction at 10 m above ground 10mϕ  

(The total dispersion parameter zσ  could also have been included here, but, unfortunately, we 

did not have time to do this in the present work.) 
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Bayesian uncertainty models for the above three variables have been developed partly using 
local meteorological and dispersion modelling expertise at NILU (Tønnesen, 2010), and 
partly from Irwin et al. (2007), providing a characterization of typical uncertainties in local 
meteorological parameters associated with Gaussian plume models based on a large number 
of field studies. 

As stated earlier, a potential benefit, in our view, with hierarchical models, such as model D, 
as compared with the previous non-hierarchical models, is that, by propagating some of the 
uncertainties through the model, we might be able to achieve predictive distributions of 
modelled concentrations which are sharper, and more dynamic, than predictive distributions 
obtained using non-hierarchical models. This, however, requires the model to be sufficiently 
close to the real process in the atmosphere and that uncertainties that we specify, more or less 
subjectively if we use the Bayesian approach, be close to the actual uncertainties of the 
variables involved, the latter of which might not be an easy task. We will describe this 
somewhat more concretely at the end of this section. 

A tentative uncertainty model for the true, effective plume height effH 8

 
at time (hour) t  is 

defined as (Tønnesen, 2010) 

 ( ) ( ) ( ) ( ) ( ) ( )2;   0, ;   1
eff eff eff effeff H H H H effH t f t t t N H tη η σ= + ≥∼

 
m (2.4.2a) 

where ( ) 3
effHf t =

 
m (constant for all hours).  

The precision parameter 2

eff effH Hτ σ −=  is here given a Gamma distribution with parameters as 

shown in Table 2.4.2a, corresponding to a prior distribution on 
effHσ  with 0.025, 0.5 and 

0.975 quantiles equal to 0.6 m, 0.75 m and 1.0 m respectively. 

Table 2.4.2a. Prior Gamma distributions for precision parameters of model D. 

Parameter Shape a  Scale b  Corresponding σ -quantiles 
   0.025 0.5 0.975 

effHτ  14.0 0.13 0.6 m 0.75 m 1.0 m 

10muτ  7.8 0.54 0.36 ms-1 0.5 ms-1 0.75 ms-1 

10mϕτ  7.7 1.4e-3 7° 10° 15° 
τ  8.4 0.56 log(1.4) = 0.34 log(1.6) = 0.47 log(2.0) = 0.69 

 

A plot of the distribution for 
effHτ is shown in Figure 2.4.2a (left). 

                                                           
8
 This is defined here as the correct height of the plume mass centerline at the current hour, taken as an average 

over the downwind area between the road and the furthermost receptor point. 
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Figure 2.4.2a. Left: Gamma prior for precision parameter 
effHτ  with 0.025, 0.50 and 0.975 quantiles indicated as 

the dashed vertical lines. Right: Marginal t-distributed prior for WORM model variable ( )effH t  (black curve) 

with normal approximation (red curve), both truncated at 1 m. 

The parameters of this distribution were found using least squares fitting with target quantiles 
equal to 0.5 m, 0.75 m and 1.0 m respectively. The adjustment of the smallest of these 
quantiles was found to be acceptable. The selection of the Gamma distribution here is in large 
part due to tradition and mathematical convenience, rather than specific knowledge of the 
shape of this distribution. However, we consider it to be more likely that 

effHσ  should be 

around the value of the median (0.75 m) rather than being closer to 0.5 m or 1.0 m.  

The resulting marginal distribution of ( )effH t  will be that of a (non-central) t-distribution 

with parameters as shown in Table 2.4.2b, but truncated at 1 m above ground. 

As seen from Figure 2.4.2a (right), this distribution will be very close to a normal distribution 
since the number of d.f. (2a ) is quite high (28.0). Using the above prior on 

effHτ  will thus, 

essentially, have the same effect as operating with a fixed value of 0.74
effHσ ≈  m, i.e. very 

close to using the simple prior ( )20,0.75N  for ( )effH t , which may indicate that the above 

Gamma prior on 
effHτ  is perhaps somewhat too informative.  

Using a less informative prior on 
effHτ , e.g., by making it less peaked, will lead to marginal 

distributions for ( )effH t  more t -like, i.e., less peaked and with heavier tails. Unfortunately, 

we did not have time to test any such alternatives in the present work. It is then also very 
difficult to actually decide on a “best” a priori distributional form for 

effHτ  (or ( )effH t  for that 

matter). 

 

 

 

 

0 1 2 3 4

0.
0

0.
2

0.
4

0.
6

0.
8

Prior for tau_H_eff

tau_H_eff

D
is

tri
bu

tio
n

0 1 2 3 4 5 6

0.
0

0.
1

0.
2

0.
3

0.
4

Marginal prior for H_eff

H_eff

D
is

tri
bu

tio
n



31 

 

Table 2.4.2b. Prior distributions for model variables of model D. 

Variable Marginal distr. D.f 
2a  

Mean µ  
Scale 

( ) 1/2
s ab

−=  
Approx. distr. Truncation 

( )effH t  ( )2 ,at sµ  28.0 3.0 m 0.74 m ( )2,N sµ  1 m 

( )10mu t  ( )2 ,at sµ  15.6 ( )
10muf t  0.49 ms-1 ( )2,N sµ  0.1 ms-1 

( )10m tϕ  ( )2 ,at sµ  15.4 ( )
10m

f tϕ  9.8° ( )2,N sµ  None 

( ),s tη  ( )2 ,at sµ  16.8 0 0.46 ( )2,N sµ  None 

( ),y s tɶ  * N/A  N/A N/A * None 
 

A tentative uncertainty model for the true hourly average wind speed at 10 m above ground 

10mu 9 at time (hour) t  is defined as (Tønnesen, 2010; Irwin et al., 2007) 

 ( ) ( ) ( ) ( ) ( ) ( )
10 10 10 10

2
10 10;   0, ;   0.1

m m m mm u u u u mu t f t t t N u tη η σ= + ≥∼
 
ms-1 (2.4.2b) 

where ( )
10muf t  is the observed hourly average wind speed at time (hour) t  at Station 2 .  

The precision parameter 
10 10

2

m mu uτ σ −=  is again given a Gamma distribution with parameters as 

shown in Table 2.4.2a, corresponding to a prior distribution on 
10muσ  with 0.025, 0.50 and 

0.975 quantiles equal to 0.36 ms-1, 0.50 ms-1 and 0.75 ms-1 respectively.  

A plot of the distribution for 
10muτ is shown in Figure 2.4.2b (left). 

 

Figure 2.4.2b. Left: Gamma prior for precision parameter 
10muτ . Right: Marginal t-distributed prior for WORM 

model variable 10mu  (black curve), here shown for an arbitrary value of ( )
10

1.0
muf t = ms-1 with normal 

approximation (red curve), both truncated at 0.1 ms-1. 

The parameters of this Gamma distribution were found using least squares fitting with target 
quantiles equal to 0.25 ms-1, 0.50 ms-1 and 0.75 ms-1 respectively, with the adjustment of the 

                                                           
9
 This is defined here as the correct hourly average wind speed at 10 m height at the current hour, taken as an 

average over the downwind area between the road and the furthermost receptor point. 
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smallest of these quantiles found to be acceptable. The same type of comments that were 
made regarding the distributional form of 

effHτ  can also be made here. 

The resulting marginal distribution of ( )10mu t , given ( )
10muf t , will be that of a (non-central) t-

distribution with parameters as shown in Table 2.4.2b, but truncated at 0.1 m/s. Again, as 
seen in Figure 2.4.2b (right), the distribution will be close to a truncated normal since the 
number of d.f. is relatively high (15.6). The same type of comments that were made regarding 
the distributional form of ( )effH t  can also be made here. 

A tentative uncertainty model for the true hourly average wind direction at 10 m above 
ground 10mϕ 10 at time (hour) t  is defined as (Tønnesen, 2010; Irwin et al., 2007) 

 ( ) ( ) ( ) ( ) ( )
10 10 10 10

2
10 ;   0,

m m m mm t f t t t Nϕ ϕ ϕ ϕϕ η η σ= + ∼
 
 (2.4.2c) 

where ( )
10m

f tϕ  is the observed hourly average wind direction at time (hour) t  at Station 2.  

The precision parameter 
10 10

2

m mϕ ϕτ σ −=  is again given a Gamma distribution with parameters as 

shown in Table 2.4.2a, corresponding to a prior distribution on 
10mϕσ  with 0.025, 0.50 and 

0.975 quantiles equal to 7°, 10° and 15° respectively.  

A plot of the distribution for 
10mϕτ is shown in Figure 2.4.2c (left). 

 

Figure 2.4.2c. Left: Gamma prior for precision parameter 
10mϕτ . Right: Marginal t-distributed prior for WORM 

model variable 10mϕ  (black curve), here shown for an arbitrary value of ( )
10

150.0
m

f tϕ = °  with normal 

approximation (red curve). 

The parameters of this Gamma distribution were found using least squares fitting with target 
quantiles equal to 5°, 10° and 15° respectively, with the adjustment of the smallest of these 

quantiles found to be acceptable. The same type of comments that were made regarding the 
distributional form of 

effHτ  can also be made here. 

                                                           
10

 This is defined here as the correct hourly average wind direction at 10 m height at the current hour, taken as 
an average over the downwind area between the road and the furthermost receptor point. 
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The resulting marginal distribution of ( )10m tϕ  given ( )
10m

f tϕ  will be a (non-central) t-

distribution with parameters as shown in Table 2.4.2b. Again, as seen in Figure 2.4.2c, the 
distribution will be close to a normal since the number of d.f. is relatively high (15.4). The 
same type of comments that were made regarding the distributional form of ( )effH t  can also 

be made here. 

The above prior distributions for ( )effH t , ( )10mu t  and ( )10m tϕ  are assumed to be independent.  

Ideally here, we should have included dependency modelling between wind speed and wind 
direction since clearly the uncertainty in wind direction increases with decreasing wind 
speed. However, since the above prior model for uncertainty in wind direction is actually 
oriented towards low wind speeds, we have, as a first approximation, defined the priors here 
to be independent. Even though this will result in wind directions being somewhat too 
uncertain in situations with strong wind, concentrations will then be much lower, so the 
consequences of this approximation on uncertainty in concentration will not be so severe. 

A tentative uncertainty model for the hourly average predictive concentration ( ),y s tɶ  at an 

arbitrary spatial location s and time (hour) t , given true values of ( )effH t , ( )10mu t  and ( )10m tϕ  

is defined as 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )2
10 10log , log , , , , , ;    , 0,c eff m my s t f s t H t u t t s t s t Nϕ η η σ= +ɶ ∼   (2.4.2d) 

where ( ) ( ) ( )( )10 10, , , ,c eff m mf s t H t u t tϕ  is the hourly average concentration calculated with the 

WORM model at the same space and time locations using true input values of the WORM 

model variables ( )effH t , ( )10mu t  and ( )10m tϕ . 

The precision parameter 2τ σ −=  is again given a Gamma distribution with parameters as 
shown in Table 2.4.2a, corresponding to a prior distribution on σ  with 0.025, 0.50 and 0.975 
quantiles equal to ( )log 1.4 0.34≈ , ( )log 1.6 0.47≈ , and ( )log 2.0 0.69≈  respectively.  

A plot of the distribution for τ  is shown in Figure 2.4.2d (left). 
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Figure 2.4.2d. Left: Gamma prior for precision parameter τ . Right: Marginal t-distributed prior for ( ),s tη  

(black curve) with normal approximation (red curve). 

The parameters of the Gamma distribution were found using least squares fitting with target 

quantiles equal to ( )log 1.2 , ( )log 1.6  and ( )log 2.0  respectively, with the adjustment of the 

smallest of these quantiles found to be acceptable.  

This has been subjectively judged by us to be the remaining uncertainty in the WORM model 
predictions after removing uncertainties associated with effective plume height and wind 
speed and direction at 10 m above ground. It corresponds to removing about one third of the 
original uncertainty as was defined in models B and C. Furthermore, the same type of 
comments that were made regarding the distributional form of 

effHτ  can also be made here. 

The resulting marginal distribution of ( ),s tη  will be a t-distribution with parameters as 

shown in Table 2.4.2b. Again, as seen in Figure 2.4.2d (right), the distribution will be close to 
a normal since the number of d.f. is relatively high (16.8). The same type of comments that 
were made regarding the distributional form of ( )effH t  can also be made here.  

From the above, the resulting conditional marginal prior distribution of ( ),y s tɶ , given ( )cf ⋅ , 

will be close to a lognormal distribution.  

The unconditional marginal prior distribution of ( ),y s tɶ  might, however, be more complicated 

since, unconditionally, ( )cf ⋅  will be stochastic due to the stochastic input variables ( )effH t , 

( )10mu t  and ( )10m tϕ . If we use a first order Taylor approximation we can write 

 

( ) ( ) ( )( )
( )( ) ( ) ( )( ) ( ) ( )( )

( )

10 10

10 1010 10
10 10

log , log , ,3.0, ,

log log log
                    3.0

                    ,

m m

m m

c u

c c c
eff m u m

eff m m

y s t f s t f t f t

f f f
H t u t f t t f t

H u

s t

ϕ

ϕϕ
ϕ

η

≈ +

∂ ∂ ∂
− + − + − +

∂ ∂ ∂

ɶ
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and since ( )effH t , ( )10mu t  and ( )10m tϕ  are all approximately normally distributed, as shown in 

Figures 2.4.2a-c, ( )log ,y s tɶ  will also be approximately normal, with the following first and 

second order moments: 

 ( ) ( ) ( )( )
10 10

log , log , ,3.0, ,
m mc uE y s t f s t f t f tϕ≈ɶ  

 and 

 ( )
10 10

2 2 2

2 2 2 2

10 10

log log log
var log ,

eff m m

c c c
H u

eff m m

f f f
y s t

H u ϕσ σ σ σ
ϕ

     ∂ ∂ ∂
≈ + + +      ∂ ∂ ∂    

ɶ  

where 
effHσ , 

10muσ  and 
10mϕσ  are given by the scale values in Table 2.4.2b, 0.47σ ≈ , and 

where the partial derivatives will vary with time (hour) t .  

Hence, ( ),y s tɶ  will also be approximately lognormally distributed with median 

 ( ) ( )( )
10 10

, ,3.0, ,
m mc uf s t f t f tϕ  

and with geometrical standard deviation 

 ( )( )
10 10

2 2 2

2 2 2 2

10 10

log log log
, exp

eff m m

c c c
g H u

eff m m

f f f
SD y s t

H u ϕσ σ σ σ
ϕ

      ∂ ∂ ∂ ≈ + + +      ∂ ∂ ∂      

ɶ .     (2.4.2e) 

Thus, geometrical standard deviations of predictive distributions from model D will, 
according to (2.4.2e), dynamically vary with time depending on the numerical values of the 
partial derivatives (associated with model sensitivity), and variances of the model variables 
involved. 

For example, partial derivatives with respect to wind speed will be higher when the wind 
speed is low than when it is high, since the model is more sensitive to changes in the wind 
speed when the wind speed is lower. Likewise, partial derivatives with respect to wind 
direction will be higher when the wind direction is almost parallel to the road than in a 
situation where the wind direction is more perpendicular on the road. The partial derivatives 
with respect to effective plume height will vary with the meteorological conditions and also 
with the transport time of the plume from source to receptor. 

Predictive distributions from model D might therefore be sharper than predictive distributions 
from other non-hierarchical models, such as e.g., models A-C, but this then depends on the 
accuracies of the partial derivatives (which again depends on the accuracy of the WORM 
model), and on how accurate the variances of the three WORM model variables and the 
residual have been specified. 
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Figure 2.4.2e. A directed acyclic graph (DAG) showing 
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The resulting set of predicted concentrations ( ){ }( ) , , 1,...,ky s t k N=ɶ  forms a discrete 

approximation of the underlying continuous predictive PDF of concentrations at each point 
1,...,s S=  and times (hours) 1,...,t T= .  

The above algorithm is oriented towards univariate predictions in both space and time. As for 

model A, multivariate predictions in space can be accomplished by drawing ( )( ) ,k s tη  in Step 

8 using a multivariate normal distribution with a spatial covariance matrix as described in 
Section 2.3.1. Same comments then apply as for model A. We focus here on the univariate 
version, however, since this is how model D will be applied at Nordbysletta, where 
probabilistic predictions will be compared with observations from all three stations, the 
results of which are shown in Section 4.4. 

  

MODEL D: ALGORITHM FOR PROBABILISTIC PREDICTIONS 

For 1,...,s S= , 1,...,t T=  and 1,...,k N=  do: 

1. Draw ( ) Gamma( , )
eff eff eff

k
H H Ha bτ ∼  where 14.0

effHa =  (shape) and 0.13
effHb =  (scale) 

and calculate 
2( ) ( )1

eff eff

k k
H Hσ τ= . 

2. Draw ( ) ( )2( ) ( )0,
eff eff

k k
H Ht Nη σ∼  and calculate ( ) ( ) ( ) ( )( )

eff eff

k k
eff H HH t f t tη= +  where 

( ) 3.0
effHf t = m. Redraw if ( ) ( ) 1.0k

effH t < m. 

3. Draw 
10 10 10

( ) Gamma( , )
m m m

k
u u ua bτ ∼  where 

10
7.8

mua =  (shape) and 
10

0.54
mub =  (scale) 

and calculate 
2

10 10

( ) ( )1
m m

k k
u uσ τ= . 

4. Draw ( ) ( )2

10 10

( ) ( )0,
m m

k k
u ut Nη σ∼  and calculate ( ) ( ) ( )

10 10

( ) ( )
10 m m

k k
m u uu t f t tη= +  where ( )

10muf t  

is observed wind speed (10 m) at Station 2. Redraw if ( )10 0.1mu t < ms-1. 

5. Draw 
10 10 10

( ) Gamma( , )
m m m

k a bϕ ϕ ϕτ ∼  where 
10

7.7
m

aϕ =  (shape) and 
10

1.4 3
m

b eϕ = −  

(scale) and calculate 
2

10 10

( ) ( )1
m m

k k
ϕ ϕσ τ= . 

6. Draw ( ) ( )2

10 10

( ) ( )0,
m m

k kt Nϕ ϕη σ∼  and calculate ( ) ( ) ( )
10 10

( ) ( )
10 m m

k k
m t f t tϕ ϕϕ η= +  where 

( )
10m

f tϕ  is observed wind direction (10 m) at Station 2. 

7. Draw ( ) Gamma( , )k a bτ ∼  where 8.0a =  (shape) and 0.38b =  (scale) and 

calculate 
2( ) ( )1k kσ τ= . 

8. Draw ( ) ( )2( ) ( ), 0,k ks t Nη σ∼  and calculate

( ) ( ) ( ) ( ) ( ) ( ) ( )( ) ( ){ }( ) ( )
10 10, , , , , exp ,k k kk k

c eff m my s t f s t H t u t t s tϕ η=ɶ . 
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3. METHODOLOGIES 

 
 
In this chapter we describe some statistical methodologies that are used to produce most of 
the results in Chapter 4. First in Sections 3.1 and 3.2 we describe some tools and measures 
which are used to evaluate and characterize the performance of probabilistic predictions made 
by the models A-D as compared with observations. In Section 3.3 we review the Metropolis-
within-Gibbs sampling algorithm as this is used as part of model C to produce posterior 
distributions of the parameters in this model. Section 3.4 shortly reviews circular block 
bootstrapping since this is used as a technique to preserve the dependence structure of the 
time-series of observed and model calculated values which is important for the proper 
bootstrap calculation of some of the measures introduced in Sections 3.1-2.  

 
 
3.1 Calibration and sharpness of predictive distributions11 

We review the concepts of calibration and sharpness of predictive distributions of continuous 
variables as defined and discussed in Gneiting et al. (2007a). These issues are central and 
important for evaluating performance of probabilistic predictions of continuous variables.  

These concepts form part of the much broader field of forecast verification, which have been 
evolved, especially in the meteorological communities, over the past decades. The book by 
Joliffe and Stephenson (2003), and Chapters 6-7 in Wilks (2006), provide a good exposition 
of this rapidly growing field. An excellent and recent survey of the state-of-the-science in 
verification practice, research and development, is given in Casati et al. (2008). 

Calibration is associated with the statistical consistency between predictive distributions and 
accompanying observations, and is thus a common property of these. Sharpness refers to 
spread or width of the predictive distributions only and is, therefore, not dependent on any 
observations. The spread can e.g., be measured using standard deviation, or 50% or 90% 
central interval widths. 

According to Gneiting et al. (2007a) we may distinguish between three types of calibration: 

1. Probabilistic (or time) calibration 
2. Exceedance calibration 
3. Marginal calibration 

A system is probabilistically calibrated if observations are virtually indistinguishable from 
samples taken from the predictive distributions, which means that the rank or PIT 
(Probability Integral Transform) histograms as defined below will have a uniform 
appearance. A system is exceedance calibrated if there is a consistency between predicted and 

                                                           
11

 This text draws heavily on Gneiting et al. (2007a), including use of part of phrases, description of concepts, 
stated definitions and theorems.  
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observed thresholds. Finally, a system is marginally calibrated if predictions and observations 
as taken over time have the same (or nearly the same) marginal distribution.  

We will first formally define these concepts before describing diagnostic tools for evaluation 
using sample based distributions. 

Let the predictive distributions be denoted by tF , and the outcomes (observations) be denoted 

by  ty , for a sequence of time instances 1,2,...,t T= , where the observations are thought to be 

generated by some underlying true (but unknown) data generating process with distributions 

tG , 1,2,...,t T= . The asymptotic compliance between the data generating process tG  and the 

predictive distributions tF  will now be defined in terms of the above three main types of 

calibration. Since the distribution may depend on parameters being stochastic, convergence is 
here defined in terms of almost sure convergence as T → ∞ . 

Definition 3.1a (types of calibration). 

1. The sequence ( )tF , 1,2,...t =  is probabilistically calibrated relative to the sequence 

( )tG , 1,2,...t =  if 

 ( ) ( )1

1

1
   for all   0,1 .

T

t t
t

G F p p p
T

−

=

→ ∈∑ �  

2. The sequence ( )tF , 1,2,...t =  is exceedance calibrated relative to the sequence ( )tG ,

1,2,...t =  if 

 ( )1

1

1
   for all y .

T

t t
t

G F y y
T

−

=

→ ∈∑ � ℝ  

3. The sequence ( )tF , 1,2,...t =  is marginally calibrated relative to ( )tG , 1,2,...t =  if the 

limits 

 ( ) ( )
1

1
lim

T

tT
t

G y G y
T→∞ =

 =  
 
∑  

 and 

 ( ) ( )
1

1
lim

T

tT
t

F y F y
T→∞ =

 =  
 
∑  

 exists and are equal for all y∈ℝ , and if the common limit distribution has all its mass 

on a finite volume. 

4. The sequence ( )tF , 1,2,...t = is strongly calibrated relative to ( )tG , 1,2,...t =  if it is 

probabilistically calibrated, exceedance calibrated and marginally calibrated. 
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In Gneiting et al. (2007a) it is shown that the first three types of calibration are logically 
independent and that they may occur in any combination. The existence of the marginal 

distribution G  associated with the true data generating process, corresponds to the existence 
of a stable climate over time. In our context of air pollution modelling it corresponds to a 
stable, long term average pattern regarding local emissions and meteorological conditions. 

We now turn to sample versions of the above definitions by using empirical distribution 
functions based on observations. In Gneiting et al. (2007a) sample based analogues to the 
above definitions are provided for probabilistic and marginal calibration, which will be 
described below. Exceedance calibration, however, does not seem to have an obvious sample 
analogue, and it is not known whether such an analogue exists (Gneiting et al. 2007a). We 
will, therefore, not pursue the concept of exceedance calibration any further here. 

Assessing probabilistic calibration. 

As stated above, probabilistic calibration can be assessed by the PIT-histogram. The PIT-
histogram can be viewed as a continuous limit of the rank histogram (also known as the 
Talagrand diagram), as defined in e.g., Wilks (2006) or Joliffe and Stephenson (2003).  

The PIT is the value of the predictive CDF (tF ) at the observation (ty ), i.e., the value

( )t t tp F y= . The link to probabilistic calibration is established by substituting the empirical 

indicator function ( )1 ty y≤  for the data generating distribution ( )tG y , y∈ℝ , in the 

probabilistic calibration condition, and noting that ( )1
t ty F p−≤  if and only if tp p≤ . The 

following theorem links probabilistic calibration with the asymptotic uniformity of an 
empirical sequence of PIT-values. 

Theorem 3.1a. Let ( )tF , 1,2,...t =  and ( )tG , 1,2,...t =  be sequences of continuous strictly 

increasing distribution functions. Suppose further that ty  has distribution tG  and that ty  form 

a “*-mixing” sequence of random variables (Blum et al, 1963). Then 

 ( )
1

1
1    almost surely for all 

T

t
t

p p p p
T =

≤ →∑  

if and only if ( )tF , 1,2,...t =  is probabilistically calibrated with respect to ( )tG , 1,2,...t = . 

For a proof of this theorem, see Gneiting et al. (2007a). 

Thus for a probabilistically well-calibrated system, histograms of PIT-values, will essentially 
be uniform or close to uniform. The number of bins to be used in the histograms will depend 
on the application and amount of data available, but for most purposes, however, 10-20 bins 
seem to be sufficient (Gneiting et al., 2007a). 

Another measure associated with probabilistic calibration, but weaker, is the concept of 
central interval coverage. If we e.g., calculate the 50% or 90% central intervals for each 
predictive distribution, observations should appear in these intervals around 50% or 90% of 
the time, respectively, if the system is well-calibrated. Even though this is a weaker (less 
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ambitious) measure than full uniformity of the PIT-histogram, it can be of great value in 
practice. 

A visual inspection of the shape of the PIT-histogram provides valuable information as to the 
reasons for deficiency of predictions. Figure 3.1a illustrates this. 

 

 

Figure 3.1a. PIT-histograms for different cases of probabilistic predictions, with linear and 

quadratic curves (dashed lines) with slope 1̂β  and quadratic term 2β̂  coefficients, fitted to the 

histogram values using the method of least squares. Middle: Well calibrated predictions with 

a nearly uniform histogram1 2
ˆ ˆ 0β β≈ ≈ ; Left: Too high predictions1̂ 0β < ; Right: Too low 

predictions 1̂ 0β > ; Top: Too narrow predictions2
ˆ 0β > ; Bottom: Too wide predictions2ˆ 0β < . 

Shown in the middle of the figure is a nearly uniform histogram corresponding to the case 
where the predictive distributions are probabilistically well-calibrated. 

The triangle shaped histograms to the left and right in the figure corresponds to cases where 
the predictive distributions are biased as compared to the observations. The histogram on the 
left corresponds to a case where the predictions are too high as compared to the observations, 
so that the PIT-values tend to be (too) low. Conversely, the histogram on the right 
corresponds to the opposite case, where the predictions are too low, so that the PIT-values 
tend to be (too) high. 

The U- and inverse-U shaped histograms at the top and bottom of the figure corresponds to 
cases where the predictive distributions are too narrow or too wide, respectively, as compared 
to the observations. The U-shaped histogram at the top corresponds to a case where the 
predictive distributions are too narrow, so that the PIT-values tend to fall on either side, i.e., 
being (too) often close to 0 or 1. Conversely, the inverse U-shaped histogram at the bottom 
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corresponds to the opposite case, where the predictive distributions are too wide, so that the 
PIT-values tend to occur in the middle, i.e., being (too) often close to 0.5. 

Also shown in the figure are linear ( 0 1
ˆ ˆh pβ β= + ⋅ ) and quadratic ( 2

0 1 2
ˆ ˆ ˆh p pβ β β= + ⋅ + ⋅ ) 

curves fitted to the histogram values using the method of least squares. Predictive 
distributions, which are well-calibrated, give rise to histograms which are nearly uniform, 

hence corresponding to curves with 1 2
ˆ ˆ 0β β≈ ≈ . Cases with too high (too low) predictions 

typically give rise to triangular shaped histograms with 1̂ 0β <  and 2
ˆ 0β ≈  ( 1̂ 0β >  and 2

ˆ 0β ≈ ). 

Cases with too narrow (too wide) predictions give rise to U- (inverse-U-) shaped histograms 

with 2
ˆ 0β >  ( 2

ˆ 0β < ). We may therefore use these estimated coefficients to characterise the 

PIT-histogram according to the above classification, e.g., by plotting the coordinate pair 

( )1 2,β β  as a point in a 2D-diagram. This is done in Chapter 4 in combination with 

bootstrapping in order to characterise the uncertainty of calculated PIT-histograms.12  

Assessing marginal calibration. 

Marginal calibration can be checked by plotting observed and predicted empirical CDFs of 
all observations and prediction samples. Alternatively, or in addition, we may also plot 
observed and predicted quantiles. 

We thus propose to compare the average predictive CDF 

 ( ) ( )
1

1
,   y

T

T t
t

F y F y
T =

= ∈∑ ℝ  

with the empirical CDF of the observations 

 ( ) ( )
1

1ˆ 1 ,   y .
T

T t
t

G y y y
T =

= ≤ ∈∑ ℝ  

If we substitute the indicator function ( )1 ty y≤  for the data generating distribution ( )tG y ,

y∈ℝ , in the definition of marginal calibration, asymptotic equality of TF  and ˆ
TG  is obtained. 

Theorem 3.1b describes this correspondence theoretically. Assuming some mild regularity 
conditions, marginal calibration will be both a necessary and a sufficient condition for the 

asymptotic equivalence of ˆTG  and TF . 

Theorem 3.1b. Let ( )tF , 1,2,...t =  and ( )tG , 1,2,...t =  be sequences of continuous, strictly 

increasing distribution functions. Suppose that each ty  has distribution tG  and that the ty  
form a *-mixing sequence of random variables. Suppose further that 

                                                           
12

 This idea seems to be new, at least we have not seen this technique been applied elsewhere to characterise 
uncertainties of PIT-histograms. 
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 ( ) ( )
1

1
lim

T

tT
t

F y F y
T→∞ =

 =  
 
∑  

exists for all y∈ℝ and that the limit function is strictly increasing on ℝ . Then 

 ( ) ( ) ( )
1

1ˆ 1    almost surely for all y
T

T t
t

G y y y F y
T =

= ≤ → ∈∑ ℝ  

if and only if ( )tF , 1,2,...t = is marginally calibrated with respect to ( )tG , 1,2,...t = . 

For a proof of this theorem see Gneiting et al. (2007a). 

The most obvious graphical tool when assessing marginal calibration is a plot of ( )ˆ
TG y  and 

( )TF y  versus y . However, it may often be more useful to plot the difference of the two 

CDFs ( ) ( )ˆ
T TF y G y− , y∈ℝ . The same information may alternatively, or in addition, be 

plotted using quantiles of these distributions. 

Assessing sharpness. 

The more concentrated the predictive distribution, the sharper the prediction, and the sharper 
the better subject to calibration. To assess the sharpness we may use numerical and graphical 
summaries of the spread or width of the predictive distributions. This may be calculated 
based on e.g., standard deviations or central interval lengths. For example, we may use 50% 
or 90% central intervals. Following Bremnes (2004) it may be useful to use box plots for 
graphically displaying such values, which are also known as sharpness diagrams. 

Tools such as the PIT-histogram, marginal calibration plots and sharpness diagrams are 
widely applicable since they are nonparametric and can be used for predictive distributions 
that are represented by samples in various ensemble or sample based prediction systems. 

In addition to the above graphical tools, we may also use numerical measures of predictive 
performance addressing calibration and sharpness simultaneously. One such numerical 
measure is the Continuous Ranked Probability Score (CRPS), which is described in the next 
section.  

 
 
3.2 The Continuous Ranked Probability Score (CRPS) 

The Continuous Ranked Probability Score (CRPS) (Gneiting and Raftery, 2007b; Wilks, 
2006; Joliffe and Stephenson, 2003) is a numerical measure of predictive performance 
addressing both calibration and sharpness at the same time. 

The CRPS at time t  is defined directly in terms of the CDF of the predictive distribution ( tF ) 

and the correspondingly realized observation (ty ) as follows: 
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 ( ) ( ) ( ){ }2
, 1t t t t tCRPS CRPS F y F y y y dy

+∞

−∞

= = − ≥∫  

where ( )1 ty y≥  denotes the usual indicator function. For CRPS, smaller values are better, the 

optimal value being CRPS = 0, which corresponds to a predictive distribution ( )tF y  being 

equal to the indicator function ( )1 ty y≥ , i.e., the predictive density being equal to a Dirac-δ  

density placed exactly at the observation value ty , which of course is virtually impossible to 

achieve in practice unless we know the observation in beforehand. Smaller values of CRPS, 
however, will correspond to distributions being “close” to the observations, while larger 
values will indicate the opposite. This is illustrated in Figure 3.2a. 

 

Figure 3.2a. Three predictive distributions are shown in relation to an arbitrary observed 
value (50), giving rise to three different values of CRPS. Distribution 1 (red curves) has the 
lowest value of CRPS, while distributions 2 and 3 (blue and orange curves) will have higher 

values. The black curve in the right plot corresponds to the indicator function ( )1 50y ≥ . 

In the figure, three predictive distributions are shown in relation to an arbitrary observed 
value (50). In the plot to the left, PDFs of the predictive distributions are shown, while 

corresponding CDFs are shown in the right plot, together with the indicator function ( )1 ty y≥  

shown as the black curve. Distribution 1 (red curves) is centred on the observation with a 
small spread and thus has a small (good) CRPS value, while distributions 2 and 3 (blue and 
orange curves) have higher (worse) values due to bias and lack of sharpness, respectively. 

Note that the CRPS has the same unit as the observations. It is also worth to mention that if 

tF  is a deterministic point prediction, e.g., ( )ˆ1t tF y y= ≥ , the CRPS reduces to the absolute 

error (AE) ˆt ty y− . 

In practice we will work with averages of CRPS values taken over all time instances of 
interest, 1,2,...,t T= , i.e., we calculate 

 
1

1 T

t
t

CRPS CRPS
T =

= ∑ . 
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According to Hersbach (2000), CRPS can be decomposed into a reliability part, a resolution 
part, and a climatological uncertainty part13 as follows: 

 cliCRPS Reli Reso CRPS= − +  (3.2a) 

where the reliability part is closely connected to the probabilistic calibration condition, i.e., to 
the uniformity of rank or PIT-histograms, while the resolution and climatological uncertainty 
parts are connected to the sharpness (average spread or width) of the predictive distributions. 
Formulae for how to calculate these parts for a sequence of discrete predictive distributions 
are, unfortunately, too lengthy to be reproduced here, but can be found in Hersbach (2000). 

In (3.2a) cliCRPS  is the value of the CRPS if we only use the overall observed climatology as 
the predictive distribution for each time instance t , i.e., when  

 ( ) ( )
1

1
1( )   for 1,...,

T

t cli t
t

F y F y y y t T
T =

= = ≥ =∑ . 

In this case, we will have 0Reli Reso= = . Generally, the reliability part is a nonnegative 

quantity, i.e., 0Reli≥ , with 0Reli =  only for a perfectly reliable system, i.e., for a system that 
are perfectly probabilistically calibrated with a uniform rank or PIT-histogram, which 
incidentally will be the case for predictions based on the above observed climatology. Such a 

predictive system will, however, have zero resolution, 0Reso= , i.e., no sharpness, since all 
predictions will be based on the same (average) climatology. 

We may, however, obtain lower values of CRPSfor predictive systems with 0Reli Reso− < . 
The optimal case will be achieved if we use perfect deterministic point predictions, i.e., if we 
use predictive distributions equal to Dirac-δ  distributions centred at each observed value ty , 

i.e., 

 ( ) ( )1    for 1,...,t tF y y y t T= ≥ = . 

Such a system will still be perfectly reliable, i.e., 0Reli = , corresponding to a uniform rank or 
PIT-histogram, but in contrast to the climatological system, it will have optimal positive 

resolution (sharpness) in the sense that cliReso CRPS= , with a resulting value of 0CRPS= . 

For practical, predictive systems, where the observations are not known in beforehand, we 
will generally obtain values of reliability and resolution between the above two extremes, i.e., 

0cliCRPS Reli Reso− ≤ − ≤ , and thus 0 cliCRPS CRPS≤ ≤ . A good predictive system is hence 
characterized as one having a small (positive) value of reliability, and a high (positive) value 

of resolution, resulting in a small (positive) value of CRPS. 

 
 
 

                                                           

13
 In Hersbach (2000) the climatological uncertainty part is denoted by U . 
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3.3 Adaptive Random Walk Metropolis-within-Gibbs (AdapRWMwG) 

We address the problem of generating samples from a general multivariate distribution 

 ( ) ( )1 2, ,..., nf x f x x x=� . (3.3a) 

When it is difficult or impossible to draw samples from (3.3a) directly, many approximate 
methods exists which can be used to produce samples, the most well-known perhaps being 
the Monte Carlo Markov Chain (MCMC) based Metropolis-Hastings (MH) algorithm, and as 
a special case of this, the Gibbs sampler (Robert and Casella, 2004; Gelman et al. 2004). Both 

of these algorithms are iterative in nature and produce a sequence of iterates kx
�

 for 1,2,...k =  

with the target distribution (3.3a) as a limiting distribution, i.e., for k  large enough we will 

have (approximately) kx f
�
∼ . 

We focus here on the classical systematic scan Gibbs sampler. Associated with (3.3a) we can 
define the following n  conditional distributions 

 ( ) ( )1 1 1| | ,..., , ,..., ;    1,...,i i i i i nf x x f x x x x x i n− − += =�
. (3.3b) 

The Gibbs sampler generates iterates ( )1 2, ,...,k k k k
nx x x x=�  for 1,2,...k = , with (3.3a) as a limiting 

distribution, by drawing samples kix , for 1,...,i n= , from the n  univariate distributions in 

(3.3b) as follows: 

 ( )1 1
1 2 1 1| , ,..., , ,..., ;    1,...,k k k k k k

i i i i nx f x x x x x x i n− −
− + =∼  (3.3c) 

where new samples kix  are being used immediately as conditioned values on the right hand 

side of (3.3c). The method is thus based on the premise that it is simple to draw samples 
directly from the conditional distributions. 

In cases when it is difficult or impossible to sample directly from some of the conditional 
distributions in (3.3c), MH-steps can be introduced in the Gibbs sampler. For each such 
conditional distribution, a proposal distribution is introduced from which we easily can create 
samples. Such samples are then accepted or rejected based on the usual MH acceptance 
criterion. 

To fix ideas, assume it is not possible to sample directly from the i th conditional distribution 

in the Gibbs sampler. We then introduce a proposal distribution ( )* 1| k
i iq x x −  from which it is 

easy to draw a new proposal *
ix . We accept *

ix  as the new iterative value kix  with probability 

 
( )

( )
( )
( )

* 1 1 1 *
1 1 1

1 1 1 * 1
1 1 1

| ,..., , ,..., |
min ,1

| ,..., , ,..., |

k k k k k
i i i n i ik

i k k k k k k
i i i n i i

f x x x x x q x x
p

f x x x x x q x x

− − −
− +

− − − −
− +

  = ⋅ 
  

 

i.e., we set *k
i ix x=  with probability k

ip . If the new proposal is not accepted, the new iterative 

value will remain equal to the old value, i.e., 1k k
i ix x −= . 
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A special case occurs when the proposal distribution is symmetric in its arguments, i.e., when 

( ) ( )* *| |i i i iq x x q x x= . The probability k
ip  can then be calculated more simply as: 

 
( )

( )
* 1 1

1 1 1

1 1 1
1 1 1

| ,..., , ,...,
min ,1

| ,..., , ,...,

k k k k
i i i nk

i k k k k k
i i i n

f x x x x x
p

f x x x x x

− −
− +

− − −
− +

  =  
  

. 

This is the case e.g., if the proposal step corresponds to a symmetric random walk step, i.e., 

 * 1 *k
i i ix x η−= +  

where *
iη  is drawn from some symmetric distribution with mean 0, e.g., ( )20, iN σ . The 

resulting algorithm is known as a Random Walk Metropolis-within-Gibbs (RWMwG) 

algorithm. We will in the following assume that ( )* 20,i iNη σ∼ , so that ( )* 1 2,k
i i ix N x σ−
∼ . 

The choice of iσ , for 1,...,i n= , is important for the success of the resulting algorithm. Too 

small and the chain will move too slowly; too large and the proposals will usually be rejected. 
Thus, in order to obtain good mixing, i.e., fast convergence and efficient exploration of the 
sample space, an RWMwG-algorithm needs to be tuned carefully, i.e., good values of iσ  

needs to be found. 

When the number of dimensions n  is large, it is usually difficult or impossible to find good 
values of iσ  manually for each direction 1,...,i n= . In this case adaptive approaches, where 

the algorithm tries to find good values of iσ
 
automatically, will be more attractive. One such 

adaptive technique has recently been described in Rosenthal (2010) (Section 3.3, pp. 17-18) 
(see also Roberts and Rosenthal (2009) (Section 3, pp. 7-10)). Here one attempts to adjust the 

iσ -values so that the resulting acceptance rates in the Metropolis-step are all close to 0.44, 

which are considered to be optimal (or close to optimal) for one-dimensional distributions 
(Rosenthal 2010; Robert and Casella, 2004; Gelman et al. 2004). 

Initially, in this method, each iσ  is set equal to some fixed given value, e.g., 0 1.0iσ = . The 

algorithm then proceeds in batches with a fixed number 50bN =  iterations in each batch. 

After each such batch of iterations, average acceptance rates ip , for 1,...,i n= , are calculated 

based on the last bN  iterations. The algorithm then updates the iσ -values based on an 

adjustment value δ  which is calculated as follows: 

 ( ) 1
min 0.01,b

b

n
n

δ δ
 

= =  
 
 

  

where bn  is the current batch number, i.e., b bn k N= . Updating of the standard deviation 

along each direction is then done as follows: 
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For 1,...,i n=  do: 

1. If 0.44ip <  set ( )expi iσ σ δ=  

2. If 0.44ip >  set ( )expi iσ σ δ= ⋅  

3. If 0.44ip =  iσ  is unchanged 

i.e., iσ  is reduced (divided by ( )exp δ ) if the current acceptance rate ip  is lower than 0.44, 

and increased (multiplied by ( )exp δ ) if it is higher than 0.44. Otherwise it is left unchanged. 

The overall algorithm is referred to as an Adaptive Random Walk Metropolis-within-Gibbs 
algorithm (AdapRWMwG). 

A key to the validity ( kx f
�
∼ when k → ∞ ) of the above adaptive algorithm are the following 

two conditions: 

1. Diminishing Adaptation 
2. Containment 

as described in Rosenthal (2010). See also Bai (2009), Bai et al. (2009), and Roberts and 
Rosenthal (2007). These references contain precise mathematical definitions of these 
concepts.  

The first condition is the most important and is fulfilled by the above algorithm since the 

adaptation diminishes, i.e., ( ) 0bnδ → , as the number of iterations or batches bn → ∞ . 

Condition 2 is fulfilled if all iσ  are constrained to lie in some fixed interval, which may be 

obtained e.g., by simply limiting the values generated by the above algorithm.   

Recently it has been shown, however (Bai, 2009; Bai et al., 2009), that the containment 
condition is always satisfied for this algorithm, provided only that the target distribution f  
decreases at least polynomially in each direction, which is a very mild condition. 
Containment should hence not actually be much of a practical concern. 

Computer simulations (Roberts and Rosenthal (2009)) have indicated that the above adaptive 
algorithm does a good job of correctly setting the iσ -values, even (and perhaps especially) in 

dimensions as high as 500, leading to much faster mixing than if we use pre-chosen values. 

 
 
3.4 Circular block bootstrapping 

We shortly review the Circular Block Bootstrap (CB) method of Politis and White (2004) for 
time series of dependent data. Let the data values be denoted by 1,..., TX X , and let α  be a 

quantity that depends on these values, i.e., 

 ( )1,..., TX Xα α= . 
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We are interested in the uncertainty distribution of α , and thus we wish to define B  new 

bootstrapped time series 1 ,...,b b
TX X   with corresponding values bα , for 1,...,b B= , which can 

be taken as an approximation to this distribution. Creating new bootstrapped time series by 

simply drawing individual values b
tX  with replacement from the original series is not 

recommended, since this will generally destroy the dependence structure of the original time 
series, which may be of importance for the proper calculation of bootstrapped values of α . 

The CB method is a nonparametric method which attempts to preserve the dependence 
structure of the original time series by sampling new values consecutively in blocks of fixed 
length. If we let N  denote the number of blocks, L  the fixed block length, and T NL=  the 
total number of values in the time series, the CB algorithm is defined as follows: 

For 1,...,b B=  do: 

1. Set 1k = . 

2. Draw a new start index t  uniformly from{ }1,...,T . 

3. Define a new block of values 1 1,..., ,...,b b
k k L t t LX X X X+ − + −=  where the new values are 

picked from the original series in a sequential and circular fashion, i.e., by replacing 
index t j+  by mod( , ) 1t j T+ +  when t j T+ > . 

4. Set k k L= + . 
5. Repeat steps 2-4 N  times to define a new bootstrapped time series 1 ,...,b b

TX X . 

The algorithm thus uses potentially overlapping blocks in a circular fashion to define each 
new bootstrapped time series. Within each block, except when we wrap around, the original 
time series structure is preserved. It will, however, not be preserved at the joints between the 
different blocks, and thus the block length L  is an important parameter. 

According to Politis and White (2004) an estimated optimal block length for the circular 
block bootstrap can be calculated as follows: 

 
1 3
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1 3
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where [ ]x  denotes the nearest integer to the real number x , and where 
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t
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and where ( )R̂ k  is the estimated auto-covariance function of the original time series.  

It is shown in Politis and White (2004) that this calculated block length is optimal in an 
asymptotic large sample MSE sense of being best for estimating the variance of the time 

series meanX . In the most recent tests conducted in Patton et al. (2009) it is shown that the 
above calculations give block lengths within around 10% (on average) of the theoretically 
optimal values, when the time series follows an ARMA process. See also this latter reference 
for some recent corrections to the article by Politis and White (2004). 
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4. RESULTS 

 
 
In this chapter, all probabilistic model evaluation results using the four probabilistic models 
A-D is given in Sections 4.1-4 respectively. 

 
 
4.1 Model A: Box-Cox linear regression with autocorrelated errors 

Net observed concentrations of nitrogen oxides (NOx) at Station 2 for the first 1/3 (840 hours) 
of the total period of 2520 hours is used here to estimate parameters of the Box-Cox linear 
regression model described in Section 2.3.2, with errors modelled as an ARMA(,p q )-process 

for various values of p  and q . As a part of this procedure the observed and model calculated 

values were first transformed using the Box-Cox power transformation (Box and Cox, 1964).  

The traditional method of maximizing the profile log-likelihood function (Box and Cox, 
1964) was used in order to estimate the parameter λ . Since this method requires independent 
linear regression cases, we selected to retain only every n th non-missing observation and 
model value as input data to this procedure, where 4n ≥  was found to be needed in order to 
obtain approximately independent data. The resulting profile log-likelihood function using 

4n =  is shown in Figure 4.1a. 

 

Figure 4.1a. Profile log-likelihood function for the Box-Cox parameter λ , based on every fourth observed and 

model calculated value at Station 2, and using the first 1/3 (840 hours) of data of the total 2520 hours of data. 

As seen from the figure, a value of 0.32λ ≈  in this case maximizes the profile log-likelihood 

function, with [ ]0.21,0.43 as an approximate 95% confidence interval. A final value of 

0.35λ =  was, however, selected based on several trials with different ways of selecting every 
n th input data, which included also higher values of n . 

The Box-Cox transformation using the selected value of λ  helps to stabilize the dependence 
of variability or variance of the time series on the level of observed and model calculated 
values as shown in Figure 4.1b. 
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Figure 4.1b. Untransformed (left) and transformed (right) time series plots of net observed (blue curve) and 
model calculated (red curve) values of nitrogen oxides (NOx) at Station 2 for the first 1/3 (840 hours) of the 

period.  

We can also look at the resulting distribution of transformed observed and model calculated 
values, which for the selected parameter above, resulted in approximately symmetric normal 
looking data as shown in Figure 4.1c for the 532 (of 840) non-missing observations. A 
similar picture was obtained for the transformed model calculated values (not shown here). 

 

Figure 4.1c. Untransformed (left) and transformed (right) net observed concentrations of nitrogen oxides (NOx) 
at Station 2 using the Box-Cox transformation with parameter 0.35λ = . 

Conditioned on 0.35λ = , the other parameters of the Box-Cox regression model were then 
estimated for various values of p  and q , using maximum likelihood estimation (MLE) based 

on the 532 non-missing observations at Station 2. Table 4.1a shows the results of the fitting 
procedure in terms of calculated AIC (Akaike Information Criterion) and BIC (Bayesian 
Information Criterion) values for , 2p q≤ . Higher values of p  and/or q  all gave worse results 

with respect to these criteria. 
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Table 4.1a. Calculated AIC- and BIC-values for the various Box-Cox ARMA ( ,p q ) regression models fitted 

using MLE estimation of the parameters based on 840 hours of observations of nitrogen oxides (NOx) at Station 
2. Smaller values are better. An asterisk (*) indicates best model according to the given criteria. 

p q AIC BIC 
0 0 2626.9 2641.1 
1 0 2373.7 2392.6 
0 1 2749.4 2498.4 
1 1 2358.9 2382.5 
2 0 2356.3* 2380.0* 
2 1 2357.1 2385.5 
2 2 2357.5 2390.6 

 

As seen from the table, the best model according to these criteria is the AR(2)-model. Table 
4.1b shows estimated parameters in this model with standard errors in parentheses. 

Table 4.1b. MLE estimated parameters for the Box-Cox AR(2) model with standard errors. 

0β̂  1̂β  1̂φ  2̂φ  σ̂  

2.16 (0.48) 0.79 (0.03) 0.51 (0.05) 0.23 (0.05) 2.13 
 

Figures 4.1d and 4.1e show model diagnostic results for standardized residuals ˆ
tη  and ˆ

tε , 

respectively, for this model. 

 

Figure 4.1d. Model diagnostic plots for the standardized residuals ̂tη  in the Box-Cox AR(2) regression model.    

Top left: Residuals against time (hours); Top right: Autocorrelations against lag; Bottom left: Histogram of 
residuals; Bottom right: A normal Q-Q plot with 45° line and a line passing through 1st and 3rd quartiles. 
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Figure 4.1e. Model diagnostic plots for standardized residuals ̂ tε  in the Box-Cox AR(2) regression model. Left: 

Residuals against time (hours); Middle: Histogram; Right: Normal Q-Q plot with same lines as in Figure 4.1d. 

As seen from these figures, ˆ
tη  seems to be relatively uncorrelated in time, and both ˆ

tη  and ˆtε  

seems to be approximately normally distributed. 

We now use this Box-Cox AR(2) model (hereafter called model A), to make probabilistic 
predictions of net observed concentrations of nitrogen oxides (NOx) at Station 2 for the rest 
of the period (5.2.2002 – 15.4.2002 (1680 hours)), and at Stations 1 and 3 for the whole 
period 1.1.2002 – 15.4.2002 (2520 hours). In these calculations, 100N =  ensemble members 
were used. The ensemble of predicted values is then compared with the corresponding 
observations at each hour.  

Assessments of probabilistic (time) calibration are shown in Figure 4.1f, in the form of PIT 
(Probability Integral Transform) histograms, as described in Section 3.1. 

 

Figure 4.1f. PIT-histogram for model A at Station 1 (left), 2 (middle) and 3 (right) based on data for the whole 
period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. 

Ideally these histograms should be uniform (or close to uniform), for a probabilistically well-
calibrated system. As we can see, the obtained histograms seem to fall somewhat short of 
this. For example, at Station 1, the model seems to be somewhat negatively biased, with 
predictive values that are too low as compared with the observations. At Station 3, the 
predictive values seem to be somewhat too widely spread, so that many PIT-values tend to 
fall in the middle part, being (too) often close to 0.5. At Station 2, there seems to be a 
combination of both effects.  
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Figure 4.1g shows bootstrapped PIT-histogram shape coefficients, with linear regression 
slope coefficient 1β  along the x-axis, and quadratic regression 2nd order term coefficient 2β  

along the y-axis, as described in Section 3.1. 

 

Figure 4.1g. Bootstrapped PIT-histogram shape coefficients for model A at Station 1 (left), 2 (middle) and 3 
(right) based on data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-

15.4.2002. The red dots correspond to the original (non-bootstrapped) PIT-histograms.  

The results here are based on 1000B =  bootstrapped PIT-histograms using the circular block 
bootstrap (CB) method of Politis and White (2004). An optimal block length based on the 
time series of model calculated values was found to be 105L = , which means that the 2520 
hours of data were divided into 24 blocks of contiguous data for each bootstrapped replica of 
the original time series.  

In the figure, points to the left (right) of the y-axis corresponds to triangle shaped PIT-
histograms which are increasing (decreasing) to the right, while points above (below) the x-
axis corresponds to PIT-histograms that are U-shaped (inverse U-shaped). As described in 
Section 3.1, the first case corresponds to predictions that are too low (high), while the second 
case corresponds to predictions that are too narrow (wide). The red dot in each figure 

corresponds to the calculated coefficient pair ( )1 2,β β  for the original non-bootstrapped PIT-

histogram (Figure 4.1f). 

As seen in Figure 4.1g, the model predictions are clearly too low at Station 1, and also, but 
less so, at Station 2. At Station 3 there are cases of both over- and under-prediction. At all 
three stations, predictions are too wide, least at Station 1, and most at Station 3. 

As for central interval coverage, it is calculated here that observations falls into the central 
90% prediction interval with frequencies 89.2%, 95.6% and 93.4% at Stations 1, 2 and 3, 
respectively. Thus, as for this measure, the predictive model seems to be reasonably well-
calibrated at Station 1, while giving somewhat too high percentages at Stations 2 and 3. 

Empirical CDFs of the PIT-values using the original non-bootstrapped data (Figure 4.1f) are 
shown in Figure 4.1h. 
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Figure 4.1h. Empirical CDFs of PIT-values for model A at Station 1 (left), 2 (middle) and 3 (right) based on 
data for the same periods as in Figure 4.1f. The dashed line indicates a 45° line of equal probabilities. 

From this figure, we can clearly see that the model predictions are too low as compared to the 
observations at all cumulative probability levels p , except for 0.8p ≥  at Station 2 and 

0.4p ≥  at Station 3, where the model predictions are too high. This is also reflected in the 

marginal calibration evaluation using observed and predicted empirical CDFs as shown in 
Figure 4.1i. 

 

Figure 4.1i. Marginal empirical CDFs of observed (solid line) and predicted (dashed line) concentration values 
for model A at Station 1 (left), 2 (middle) and 3 (right) based on data for the same periods as in Figure 4.1f. 

As seen from the figure, the observed empirical CDF is always lower than the predicted, but 
the curves fit better as we move away from the road, i.e., from Station 1 to 3. 

Sharpness diagrams (box plots) and associated data based on standard deviations and 90% 
central intervals for the predictive distributions at each of the three stations are shown in 
Figure 4.1j and Table 4.1c. 
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Figure 4.1j. Box plot of standard deviations and 90% central intervals for predictive distributions for model A at 
Station 1 (left), 2 (middle) and 3 (right) based on data for the whole period 1.1.2002-15.4.2002. 

Table 4.1c. Data from the box plots shown in Figure 4.1j. 

 Standard deviation 90% central interval 
 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 
Min. 4.3 4.8 3.9 9.9 11.4 10.9 
1st Qu. 23.1 20.4 16.0 67.3 58.3 45.5 
Median 41.7 38.0 30.3 127.3 114.7 90.6 
Mean 48.0 43.2 36.5 147.6 131.8 110.5 
3rd Qu. 65.3 58.7 48.4 202.9 179.7 150.4 
Max. 185.7 195.9 167.8 592.3 655.8 563.7 

 

As seen from the figure and table, both standard deviations and 90% central intervals 
decrease with distance from the road (from Station 1 to 3), which is a natural consequence of 
the fact that the concentration level generally decreases with distance from the road. 

An extract of the time series of observed and predicted hourly concentrations at Stations 1, 2 
and 3 are shown in Figures 4.1k, 4.1l and 4.1m respectively. 
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Figure 4.1k. Time series of observed and predicted hourly average concentrations for model A at Station 1 for 
the period Monday 7.1.2002 1h – Sunday 13.1.2002 24h. Blue line: Observation values; Red and orange lines: 
Predicted ensemble mean and median values; Black line: Deterministic model values; Lower and upper green 

lines: 90% central prediction interval. Unit: µgm-3. 

 

Figure 4.1l. Time series of observed and predicted hourly average concentrations for model A at Station 2 for 
the period Monday 4.2.2002 1h – Sunday 10.2.2002 24h. Same colours used as in Figure 4.1k. Unit: µgm-3. 
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Figure 4.1m. Time series of observed and predicted hourly average concentrations for model A at Station 3 for 
the period Monday 4.3.2002 1h – Sunday 10.3.2002 24h. Same colours used as in Figure 4.1k. Unit: µgm-3. 

In the figures, net observed concentrations of NOx are shown by the blue curve, while 
predicted mean and median values based on the ensemble of model calculated values are 
shown as the red and orange curves respectively. The original WORM deterministic model 
values are shown as the black curve, and a 90% central prediction interval based on the 0.05 
and 0.95 quantiles of model calculated ensemble values is indicated by the lower and upper 
green lines. 

As seen from these figures, there is generally a good agreement between observed and 
predicted (deterministic, mean and median) values. According to the regression, the mean 
and median values are seldom far off from the corresponding deterministic value. We also 
note that the 90% central prediction intervals vary with the situation, being smallest when 
concentrations are close to 0 and larger when concentrations are higher. 

Calculated average CRPS values (CRPS), with corresponding reliability (Reli) (calibration), 

resolution (Reso) (sharpness), and climatological uncertainty ( cliCRPS ) decomposition parts, 
for each of the three stations, are shown in Table 4.1d. 

Table 4.1d. Average CRPS value, with corresponding reliability, resolution and climatological uncertainty parts, 
for model A at Stations 1, 2 and 3, using data for the whole period 1.1.2002-15.4.2002, except at Station 2 
where the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

Station CRPS Reli  Reso cliCRPS  
1 38.6 4.9 33.7 67.3 
2 24.7 2.0 20.8 43.5 
3 20.9 0.5 16.6 37.0 

 

As described in Section 3.2, the reliability part is closely linked to the uniformity of rank or 
PIT histograms, and should be (close to) zero for a system having the correct statistical 
properties, while the resolution describes the superiority of the predictive system as compared 
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to a system which is only based on climatology. The uncertainty part represents the best 

achievable CRPS value when we only use observed climatology as the predictive distribution 
for all hours.  

As seen from Table 4.1d, the probabilistic predictions based on this model seems to have 
good properties at each of the three stations, since the reliability values are all fairly small, 
and resolution values fairly large, as compared to the climatological uncertainty part. 

In Figure 4.1n, a picture of the uncertainty of the calculated CRPS, and its different parts, at 
each of the three stations, is shown in the form of box plots, based on 1000B =  bootstrapped 
values, using the same circular block bootstrap (CB) method of Politis and White (2004) as 
described above. 

 

Figure 4.1n. Box plots of 1000B =  bootstrapped values of CRPSwith corresponding reliability, resolution 

and uncertainty decomposition parts, for model A at Stations 1, 2 and 3, using data for the whole period 
1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

Note the relatively large (small) uncertainty of the reliability part of the CRPS value at 
Station 1 (3). Otherwise, the calculated uncertainties do not seem to depend much on station.  

In Figure 4.1o we also show for Station 2, how the hourly CRPS values depends on observed 
and predicted concentrations and on observed values of wind speed, wind direction and 
temperature difference between 10 and 2 m, and corresponding Pasquill-Gifford stability 
classes A-F (1-6)14.  

                                                           
14The first three classes (A-C) corresponds to an unstable atmosphere, where the temperature typically decreases 
with more than 1°C per 100 m in the vertical, with A (C) being the most (least) unstable class. Class D 
corresponds to neutral conditions, where the temperature decreases approximately with 1°C per 100 m, while 
classes E-F defines stable conditions, with F being the most stable, where the temperature decrease less than 
this, or increase with height. It is during such strongly stable and low wind speed conditions we typically get the 
highest levels of air pollution concentrations. 
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Figure 4.1o. Scatter plot of hourly values of CRPS vs. concentrations and meteorology for model A at Station 2, 
using data for the period 5.2.2002-15.4.2002. Upper left: Vs. observed concentrations (µgm-3); Lower left: Vs. 
mean predicted concentrations (µgm-3); Upper middle: Vs. wind speed (ms-1); Upper right: Vs. wind direction 
(°); Lower middle: Vs. vertical temperature difference between 10 and 2 m (°C); Lower right: Vs. corresponding 
Pasquill-Gifford stability class A-F (1-6). 

As seen from the figure, CRPS values tend to increase with the concentration level, with 
highest values, i.e., poor probabilistic predictions, during low wind speed and strongly stable 
conditions. This should perhaps not come as a surprise, since these are the situations which 
are well-known to be the most difficult to get right for (almost) any air pollution model. We 
also note that there is a larger spread in the CRPS values when concentrations are higher. 

Results at Stations 1 and 3 show a similar picture (not shown here). 

 
 
4.2 Model B: Bayesian non-hierarchical prior predictive model 

We use model B, as described in Section 2.3.3, to make probabilistic predictions of net 
observed concentrations of nitrogen oxides (NOx) for the same periods as for the previous 
model (model A), i.e., at Stations 1 and 3 for the whole period 1.1.2002-15.4.2002 (2520 
hours), and at Station 2 for the period 5.2.2002-15.4.2002 (1680 hours). Again, in these 
calculations, 100N =  ensemble members were used, and ensembles of predicted values are 
compared with corresponding observations at each hour.  

We recall from Section 2.3.3, that probabilistic predictions with model B is based on the 
empirical findings in Irwin et al. (2007) that for Gaussian plume models, ratios of observed 
over predicted hourly average concentrations will typically have geometrical standard 
deviations in the range from 1.5 to 2.5, with a median value of about 2.0.  
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If we calculate such geometrical standard deviations at Nordbysletta (using the first 840 
hours with data), we obtain the values 1.67, 1.93 and 2.04 at Stations 1-3, respectively, so in 
remarkable conformance with the results in Irwin et al. (2007). 

Figure 4.2a shows assessments of probabilistic (time) calibration, in the form of PIT 
(Probability Integral Transform) histograms, as described in Section 3.1. 

 

Figure 4.2a. PIT-histogram for model B at Station 1 (left), 2 (middle) and 3 (right) based on data for the whole 
period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. 

Again we note that it is difficult to obtain uniform histograms. For example, at Station 1, the 
predictive values are generally too low and too widely spread as compared with the 
observations, resulting in a partly triangular and partly inverse-U shaped histogram. This is 
also the case at Stations 2 and 3, but to a lesser degree. 

Figure 4.2b shows bootstrapped PIT-histogram shape coefficients as described in Section 3.1. 

 

Figure 4.2b. Bootstrapped PIT-histogram shape coefficients for model B at Station 1 (left), 2 (middle) and 3 
(right) based on data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-

15.4.2002. The red dots correspond to the original (non-bootstrapped) PIT-histograms. 

The results are again based on 1000B =  bootstrapped PIT-histograms using the circular block 
bootstrap (CB) method of Politis and White (2004), with 24 blocks of contiguous data, each 
of length 105, for each bootstrapped replica of the original time series. 

As we can see in Figure 4.2b, the bootstrapped values confirm the above findings, regarding 
bias and spread of the predictive distributions. 
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As for central interval coverage, it is calculated here that observations falls into the central 
90% prediction interval with frequencies 97.1%, 96.6% and 92.7% at Stations 1, 2 and 3 
respectively. Thus, as for this measure, the predictive model seems to give somewhat too 
high percentages at all three stations. 

Empirical CDFs of the PIT-values using the original non-bootstrapped data (Figure 4.2a) are 
shown in Figure 4.2c. 

 

Figure 4.2c. Empirical CDFs of PIT-values for model B at Station 1 (left), 2 (middle) and 3 (right) based on data 
for the same periods as in Figure 4.2a. The dashed line indicates a 45° line of equal probabilities. 

From this figure, we clearly see that the model predictions are again too low as compared to 
the observations at all cumulative probability levels p , except for 0.8p ≥  (approximately), 

where model predictions are too high. This is also reflected in the marginal calibration 
evaluation using observed and predicted empirical CDFs as shown in Figure 4.2d. 

 

Figure 4.2d. Marginal empirical CDFs of observed (solid line) and predicted (dashed line) concentration values 
for model B at Station 1 (left), 2 (middle) and 3 (right) based on data for the same periods as in Figure 4.2a. 

As seen from the figure, the observed empirical CDF is always lower than the predicted, but 
again the curves fit better as we move away from the road, i.e., from Station 1 to 3. 

Sharpness diagrams (box plots) and associated data based on standard deviations and 90% 
central intervals for the predictive distributions at each of the three stations are shown in 
Figure 4.2e and Table 4.2a. 
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Figure 4.2e. Box plot of standard deviations and 90% central intervals for model B predictive distributions at 
Station 1 (left), 2 (middle) and 3 (right) based on data for the whole period 1.1.2002-15.4.2002. 

Table 4.2a. Data from the box plots shown in Figure 4.2e. 

 Standard deviation 90% central interval 
 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 
Min. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
1st Qu. 11.9 7.5 3.3 29.8 20.6 8.9 
Median 51.4 39.7 23.6 135.4 104.7 63.9 
Mean 95.6 79.3 57.3 248.0 205.5 148.7 
3rd Qu. 126.4 103.3 70.2 340.6 266.7 184.4 
Max. 1436.0 1142.0 1055.0 2843.0 2838.0 2054.0 

 

As seen from the figure and table, both standard deviations and 90% central intervals 
decrease with distance from the road (from Station 1 to 3), which is a natural consequence of 
the fact that the concentration level generally decreases with distance from the road. 

An extract of the time series of observed and predicted hourly concentrations at Stations 1, 2 
and 3 are shown in Figures 4.2f, 4.2g and 4.2h respectively, where we have used the same 
colour scheme as in Figure 4.1h. 
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Figure 4.2f. Time series of observed and predicted hourly average concentrations for model B at Station 1 for 
the period Monday 7.1.2002 1h – Sunday 13.1.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

 

Figure 4.2g. Time series of observed and predicted hourly average concentrations for model B at Station 2 for 
the period Monday 4.2.2002 1h – Sunday 10.2.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 
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Figure 4.2h. Time series of observed and predicted hourly average concentrations for model B at Station 3 for 
the period Monday 4.3.2002 1h – Sunday 10.3.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

As seen from these figures, there is generally a good agreement between observed and 
predicted (deterministic, mean and median) values. According to the regression, the mean 
and median values are seldom far off from the corresponding deterministic value. We also 
note that the 90% central prediction intervals vary with the situation, being smallest when 
concentrations are close to 0 and larger when concentrations are higher. 

Calculated average CRPS values (CRPS), with corresponding reliability (Reli) (calibration), 

resolution (Reso) (sharpness), and climatological uncertainty ( cliCRPS ) decomposition parts, 
as described in Section 3.2, for each of the three stations, are shown in Table 4.2b. 

Table 4.2b. Average CRPS value, with corresponding reliability, resolution and climatological uncertainty parts, 
for model B at Stations 1, 2 and 3, using data for the whole period 1.1.2002-15.4.2002, except at Station 2 where 
the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

Station CRPS Reli  Reso cliCRPS  
1 38.4 2.6 31.5 67.3 
2 25.0 2.4 20.9 43.5 
3 24.3 1.7 14.4 37.0 

 

As seen from the table, the probabilistic predictions based on this model seems to have good 
properties at each of the three stations, since the reliability values are all fairly small, and 
resolution values fairly large, as compared to the climatological uncertainty part. 

In Figure 4.2i, a picture of the uncertainty of the calculated CRPS, and its different parts, at 
each of the three stations, is shown in the form of box plots, based on 1000B =  bootstrapped 
values, using the same circular block bootstrap (CB) method of Politis and White (2004) as 
described above. 
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Figure 4.2i. Box plots of 1000B =  bootstrapped values of CRPSwith corresponding reliability, resolution and 

uncertainty decomposition parts, for model B at Stations 1, 2 and 3, using data for the whole period 1.1.2002-
15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

In Figure 4.2j we again show for Station 2, how the hourly CRPS values depends on observed 
and predicted concentrations and on observed values of wind speed, wind direction and 
temperature difference between 10 and 2 m, and corresponding Pasquill-Gifford stability 
classes A-F (1-6). 

 

Figure 4.2j. Scatter plot of hourly values of CRPS vs. concentrations and meteorology for model B at Station 2, 
using data for the period 5.2.2002-15.4.2002. Upper left: Vs. observed concentrations (µgm-3); Lower left: Vs. 
mean predicted concentrations (µgm-3); Upper middle: Vs. wind speed (ms-1); Upper right: Vs. wind direction 
(°); Lower middle: Vs. vertical temperature difference between 10 and 2 m (°C); Lower right: Vs. corresponding 
Pasquill-Gifford stability classes A-F (1-6). 
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Again, as seen from the figure, CRPS values tend to increase with the concentration level, 
with the highest values, i.e., poorest probabilistic predictions, during low wind speed and 
strongly stable conditions. This should perhaps not come as a surprise, since these are the 
situations which are well-known to be the most difficult to simulate for any air pollution 
model. We also note again that there is a larger spread in the CRPS values when 
concentrations are higher. 

Results at Stations 1 and 3 show a similar picture (not shown here). 

 
 
4.3 Model C: Bayesian non-hierarchical posterior predictive model 

We use model C, as described in Section 2.3.4, to make probabilistic predictions of net 
observed concentrations of nitrogen oxides (NOx) for the same periods as for the previous 
models (models A and B), i.e., at Stations 1 and 3 for the whole period 1.1.2002-15.4.2002 
(2520 hours), and at Station 2 for the period 5.2.2002-15.4.2002 (1680 hours). Again, we use 

100N =  samples (ensemble members) in the calculations, and compare the ensemble of 
predicted values with corresponding observations at each hour. At Nordbysletta we use air 
quality observational error standard deviation 0.05yσ = (Tørnkvist, 2006). 

Posterior distributions, in the form of histograms and box plots of the parameters0β , φ  and 
2τ σ −= , based on the last 410  from a total of 42 10⋅  iterations from the Adaptive Random-

Walk Metropolis-within-Gibbs (AdapRWMwG) algorithm for model C as described in 
Appendix B, are shown in Figure 4.3a.  

 

Figure 4.3a. Posterior distribution histogram and box plot of parameters 0β  (left), φ  (middle) and 2τ σ −=  

(right) for model C, based on net observed concentrations of NOx at Station 2 from the period 1.1.2002-4.2.2002 
(532 non-missing values (of 840)). 
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For these calculations, the first 840T =  hours of observations from Station 2 ( 2m= ) at 
Nordbysletta were used. Different initial values for parameters, state variables and adaptive 
standard deviations were tested, but in the run corresponding to the results shown in Figure 

4.3a, the following initial values were used:(0)
0 0β = , (0) 0.5φ = , (0) 1τ = , 0tx = , and 0.1td = , 

for 1,...,t T= .  

Table 4.3a shows mean values of the parameters with standard errors in parentheses. 

Table 4.3a. Mean estimated parameters for model C with standard errors in parentheses. 

0β̂  φ̂  τ̂  σ̂  

-0.059 (0.052) 0.590 (0.037) 3.340 (0.204) 0.548 (0.017) 
 

Figure 4.3b shows assessments of probabilistic (time) calibration, in the form of PIT 
(Probability Integral Transform) histograms, as described in Section 3.1. 

 

Figure 4.3b. PIT-histogram for model C at Station 1 (left), 2 (middle) and 3 (right) based on data for the whole 
period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. 

Again we note that the histograms have a non-uniform shape. At Station 1, the predictive 
values are generally too low and too widely spread as compared with the observations, 
resulting in a partly triangular and partly inverse-U shaped histogram. This is also the case at 
Station 2 and 3, but to a lesser degree.  

Figure 4.3c shows bootstrapped PIT-histogram shape coefficients, as described in Section 
3.1. 
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Figure 4.3c. Bootstrapped PIT-histogram shape coefficients for model C at Station 1 (left), 2 (middle) and 3 
(right) based on data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-

15.4.2002. The red dots correspond to the original (non-bootstrapped) PIT-histograms. 

The results are again based on 1000B =  bootstrapped PIT-histograms using the circular block 
bootstrap (CB) method of Politis and White (2004), with 24 blocks of contiguous data, each 
of length 105, for each bootstrapped replica of the original time series. 

As we can see in Figure 4.3c, the bootstrapped values confirm the above findings, regarding 
bias and spread of the predictive distributions. 

As for central interval coverage, calculations show that observations here falls into the central 
90% prediction interval with frequencies 96.0%, 95.6% and 90.8% at Stations 1, 2 and 3 
respectively. Thus, as for this measure, the predictive model seems to give somewhat too 
high percentages at all three stations. 

Empirical CDFs of the PIT-values using the original non-bootstrapped data (Figure 4.3b) are 
shown in Figure 4.3d. 

 

Figure 4.3d. Empirical CDFs of PIT-values for model C at Station 1 (left), 2 (middle) and 3 (right) based on data 
for the same periods as in Figure 4.3b. The dashed line indicates a 45° line of equal probabilities. 

From this figure, we clearly see that the model predictions are again too low as compared to 
the observations at all cumulative probability levels p , except for 0.8p ≥  (approximately), 

where model predictions are slightly too high. This is also reflected in the marginal 
calibration evaluation using observed and predicted empirical CDFs as shown in Figure 4.3e. 
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Figure 4.3e. Marginal empirical CDFs of observed (solid line) and predicted (dashed line) concentration values 
for model C at Station 1 (left), 2 (middle) and 3 (right) based on data for the same periods as in Figure 4.3b. 

As seen from the figure, the observed empirical CDF is lower than the predicted up to a 
certain concentration level, and then becomes higher than predicted for higher levels. Again 
the curves fit better as we move away from the road, i.e., from Station 1 to 3. 

Sharpness diagrams (box plots) and associated data based on standard deviations and 90% 
central intervals for the predictive distributions at each of the three stations are shown in 
Figure 4.3f and Table 4.3b. 

 

Figure 4.3f. Box plot of standard deviations and 90% central intervals for model B predictive distributions at 
Station 1 (left), 2 (middle) and 3 (right) based on data for the whole period 1.1.2002-15.4.2002. 

Table 4.3b. Data from the box plots shown in Figure 4.3f. 

 Standard deviation 90% central interval 
 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 
Min. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
1st Qu. 9.6 6.5 2.9 27.0 18.2 8.0 
Median 44.1 33.5 19.4 122.3 93.0 54.2 
Mean 78.8 64.5 46.8 218.8 177.5 130.3 
3rd Qu. 109.8 86.5 56.7 303.3 240.8 159.3 
Max. 886.3 746.8 833.4 2493.0 1848.0 2325.0 
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As seen from the figure and table, both standard deviations and 90% central intervals 
decrease with distance from the road (from Station 1 to 3), which is a natural consequence of 
the fact that the concentration level generally decreases with distance from the road. 

An extract of the time series of observed and predicted hourly concentrations at Stations 1, 2 
and 3 are shown in Figures 4.3g, 4.3h and 4.3i respectively.  

 

Figure 4.3g. Time series of observed and predicted hourly average concentrations for model C at Station 1 for 
the period Monday 7.1.2002 1h – Sunday 13.1.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

 

 

Figure 4.3h. Time series of observed and predicted hourly average concentrations for model C at Station 2 for 
the period Monday 4.2.2002 1h – Sunday 10.2.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 
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Figure 4.3i. Time series of observed and predicted hourly average concentrations for model C at Station 3 for 
the period Monday 4.3.2002 1h – Sunday 10.3.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

As seen from these figures, there is generally a good agreement between observed and 
predicted (deterministic, mean and median) values. According to the model, the mean and 
median values are seldom far off from the corresponding deterministic value. We also note 
that the 90% central prediction intervals vary with the situation, being smallest when 
concentrations are close to 0 and larger when concentrations are higher. 

Calculated average CRPS values (CRPS), with corresponding reliability (Reli) (calibration), 

resolution (Reso) (sharpness), and climatological uncertainty ( cliCRPS ) decomposition parts, 
as described in Section 3.2, for each of the three stations, are shown in Table 4.3c. 

Table 4.3c. Average CRPS value, with corresponding reliability, resolution and uncertainty parts, for model C at 
Stations 1, 2 and 3, using data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period is 
5.2.2002-15.4.2002. Unit: µgm-3. 

Station CRPS Reli  Reso cliCRPS  
1 38.3 2.9 31.9 67.3 
2 25.1 2.7 21.1 43.5 
3 23.7 0.9 14.2 37.0 

 

As seen from the table, the probabilistic predictions based on this model seems to have good 
properties at each of the three stations, since the reliability values are all fairly small and 
resolution values fairly large, as compared to the climatological uncertainty part. 

In Figure 4.3j, a picture of the uncertainty of the calculated CRPS, and its different parts, at 
each of the three stations, is shown in the form of box plots, based on 1000B =  bootstrapped 
values, using the same circular block bootstrap (CB) method of Politis and White (2004) as 
described above. 
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Figure 4.3j. Box plots of 1000B =  bootstrapped values of CRPSwith corresponding reliability, resolution and 

uncertainty decomposition parts, for model C at Stations 1, 2 and 3, using data for the whole period 1.1.2002-
15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

In Figure 4.3k we again show for Station 2, how the hourly CRPS values depends on 
observed and predicted concentrations and on observed values of wind speed, wind direction 
and temperature difference between 10 and 2 m, and corresponding Pasquill-Gifford stability 
classes A-F (1-6). 

 

Figure 4.3k. Scatter plot of hourly values of CRPS vs. concentrations and meteorology for model C at Station 2, 
using data for the period 5.2.2002-15.4.2002. Upper left: Vs. observed concentrations (µgm-3); Lower left: Vs. 
mean predicted concentrations (µgm-3); Upper middle: Vs. wind speed (ms-1); Upper right: Vs. wind direction 
(°); Lower middle: Vs. vertical temperature difference between 10 and 2 m (°C); Lower right: Vs. corresponding 
Pasquill-Gifford stability classes A-F (1-6). 
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Again, as seen from the figure, CRPS values tend to increase with the concentration level, 
with highest values, i.e., poor probabilistic predictions, during low wind speed and strongly 
stable conditions. This should perhaps not come as a surprise, since these are the situations 
which are well-known to be the most difficult to get right for (almost) any air pollution 
model. We also note again that there is a larger spread in the CRPS values when 
concentrations are higher. 

Results at Stations 1 and 3 show a similar picture (not shown here). 

 
 
4.4 Model D: Bayesian hierarchical prior predictive model 

We use model D, as described in Section 2.4.2, to make probabilistic predictions of net 
observed concentrations of nitrogen oxides (NOx) for the same periods as for the previous 
models (models A-C), i.e., at Stations 1 and 3 for the whole period 1.1.2002-15.4.2002 (2520 
hours), and at Station 2 for the period 5.2.2002-15.4.2002 (1680 hours). Again, we use 

100N =  samples (ensemble members) in the calculations, and compare the ensemble of 
predicted values with corresponding observations at each hour.  

Figure 4.4a shows assessments of probabilistic (time) calibration, in the form of PIT 
(Probability Integral Transform) histograms, as described in Section 3.1. 

 

Figure 4.4a. PIT-histogram for model D at Station 1 (left), 2 (middle) and 3 (right) based on data for the whole 
period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. 

Again we see that the histograms have a non-uniform shape. At Station 1, the predictive 
values are generally too low and too widely spread as compared with the observations, 
resulting in a partly triangular and partly inverse-U shaped histogram. This is also the case at 
Station 2 and 3, but to a lesser degree.  

Figure 4.4b shows bootstrapped PIT-histogram shape coefficients, as described in Section 
3.1. 
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Figure 4.4b. Bootstrapped PIT-histogram shape coefficients for model D at Station 1 (left), 2 (middle) and 3 
(right) based on data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period is 5.2.2002-

15.4.2002. 

The results are again based on 1000B =  bootstrapped PIT-histograms using the circular block 
bootstrap (CB) method of Politis and White (2004), with 24 blocks of contiguous data, each 
of length 105, for each bootstrapped replica of the original time series. 

As we can see in Figure 4.4b, the bootstrapped values confirm the above findings, regarding 
bias and spread of the predictive distributions. 

As for central interval coverage, calculations show that observations here falls into the central 
90% prediction interval with frequencies 94.2%, 94.1% and 90.6% at Stations 1, 2 and 3 
respectively. Thus, as for this measure, the predictive model seems to give somewhat too 
high percentages at all three stations. 

Empirical CDFs of the PIT-values using the original non-bootstrapped data (Figure 4.3b) are 
shown in Figure 4.4c. 

 

Figure 4.4c. Empirical CDFs of PIT-values for model D at Station 1 (left), 2 (middle) and 3 (right) based on data 
for the same periods as in Figure 4.4a. The dashed line indicates a 45° line of equal probabilities. 

From this figure, we clearly see that the model predictions are again too low as compared to 
the observations at all cumulative probability levels p , except for 0.9p ≥  (approximately), 

where model predictions are slightly too high. This is also reflected in the marginal 
calibration evaluation using observed and predicted empirical CDFs as shown in Figure 4.4d. 
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Figure 4.4d. Marginal empirical CDFs of observed (solid line) and predicted (dashed line) concentration values 
for model D at Station 1 (left), 2 (middle) and 3 (right) based on data for the same periods as in Figure 4.4a. 

As seen from the figure, the observed empirical CDF is lower than the predicted up to a 
certain concentration level, and then becomes higher than predicted for higher levels. Again 
the curves fit better as we move away from the road, i.e., from Station 1 to 3. 

Sharpness diagrams (box plots) and associated data based on standard deviations and 90% 
central intervals for the predictive distributions at each of the three stations are shown in 
Figure 4.4e and Table 4.4a. 

 

Figure 4.4e. Box plot of standard deviations and 90% central intervals for model D predictive distributions at 
Station 1 (left), 2 (middle) and 3 (right) based on data for the whole period 1.1.2002-15.4.2002. 

Table 4.4a. Data from the box plots shown in Figure 4.4e. 

 Standard deviation 90% central interval 
 Station 1 Station 2 Station 3 Station 1 Station 2 Station 3 
Min. < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 < 0.1 
1st Qu. 16.8 13.4 7.7 42.0 33.1 18.1 
Median 46.4 36.0 22.7 122.1 96.3 59.3 
Mean 72.6 60.7 44.6 196.2 163.4 118.9 
3rd Qu. 100.9 82.6 58.8 276.5 229.7 157.0 
Max. 605.7 541.6 435.5 1365.0 1672.0 1206.0 
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As seen from the figure and table, both standard deviations and 90% central intervals 
decrease with distance from the road (from Station 1 to 3), which is a natural consequence of 
the fact that the concentration level generally decreases with distance from the road. 

An extract of the time series of observed and predicted hourly concentrations at Stations 1, 2 
and 3 are shown in Figures 4.4f, 4.4g and 4.4h respectively.  

 

Figure 4.4f. Time series of observed and predicted hourly average concentrations for model D at Station 1 for 
the period Monday 7.1.2002 1h – Sunday 13.1.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

 

Figure 4.4g. Time series of observed and predicted hourly average concentrations for model D at Station 2 for 
the period Monday 4.2.2002 1h – Sunday 10.2.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 
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Figure 4.4h. Time series of observed and predicted hourly average concentrations for model D at Station 3 for 
the period Monday 4.3.2002 1h – Sunday 10.3.2002 24h. Same colours used as in Figure 4.1h. Unit: µgm-3. 

As seen from these figures, there is generally a good agreement between observed and 
predicted (deterministic, mean and median) values. According to the model, the mean and 
median values are seldom far off from the corresponding deterministic value. We also note 
that the 90% central prediction intervals vary with the situation, being smallest when 
concentrations are close to 0 and larger when concentrations are higher. 

Calculated average CRPS values (CRPS), with corresponding reliability (Reli) (calibration), 

resolution (Reso) (sharpness), and climatological uncertainty ( cliCRPS ) decomposition parts, 
as described in Section 3.2, for each of the three stations, are shown in Table 4.4b. 

Table 4.4b. Average CRPS value, with corresponding reliability, resolution and uncertainty parts, for model D 
at Stations 1, 2 and 3, using data for the whole period 1.1.2002-15.4.2002, except at Station 2 where the period 
is 5.2.2002-15.4.2002. Unit: µgm-3. 

Station CRPS Reli  Reso cliCRPS  
1 35.5 6.5 38.4 67.3 
2 23.9 3.2 22.8 43.5 
3 20.2 0.8 17.6 37.0 

 

As seen from Table 4.4b, the probabilistic predictions based on this model seems to have 
good properties at each of the three stations, since the reliability values are all fairly small 
and resolution values fairly large, as compared to the climatological uncertainty part. 

In Figure 4.4i, a picture of the uncertainty of the calculated CRPS, and its different parts, at 
each of the three stations, is shown in the form of box plots, based on 1000B =  bootstrapped 
values, using the same circular block bootstrap (CB) method of Politis and White (2004) as 
described above. 
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Figure 4.4i. Box plots of 1000B =  bootstrapped values of CRPSwith corresponding reliability, resolution and 

uncertainty decomposition parts, for model D at Stations 1, 2 and 3, using data for the whole period 1.1.2002-
15.4.2002, except at Station 2 where the period is 5.2.2002-15.4.2002. Unit: µgm-3. 

In Figure 4.4j we again show for Station 2, how the hourly CRPS values depends on observed 
and predicted concentrations and on observed (ensemble mean) values of wind speed, wind 
direction and temperature difference between 10 and 2 m, and Pasquill-Gifford stability 
classes A-F (1-6). The latter is here given as a continuous variable from 1 to 6 based on the 
calculated mean of the various integer values in the ensemble. This is different from the 
previous models (A-C) were all ensemble members had the same meteorology (wind speed 
and direction), and the same (integer) stability class value. 
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Figure 4.4j. Scatter plot of hourly values of CRPS vs. concentrations and meteorology for model D at Station 2, 
using data for the period 5.2.2002-15.4.2002. Upper left: Vs. observed concentrations (µgm-3); Lower left: Vs. 
mean predicted concentrations (µgm-3); Upper middle: Vs. mean wind speed (ms-1); Upper right: Vs. mean wind 
direction (°); Lower middle: Vs. vertical temperature difference between 10 and 2 m (°C); Lower right: Vs. 
mean Pasquill-Gifford stability classes A-F (1-6) (continuous variable here based on ensemble average).  

Again, as seen from the figure, CRPS values tend to increase with the concentration level, 
with highest values, i.e., poor probabilistic predictions, during low wind speed and strongly 
stable conditions. This should perhaps not come as a surprise, since these are the situations 
which are well-known to be the most difficult to get right for (almost) any air pollution 
model. We also note again that there is a larger spread in the CRPS values when 
concentrations are higher. 

Results at Stations 1 and 3 shows a similar picture (not shown here). 
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5. DISCUSSION AND CONCLUSIONS 

 

 

5.1 Discussion 

Four probabilistic models for prediction of NOx concentrations with uncertainty from road 
traffic are presented. All models use the deterministic WORM model for defining the mean 
spatial and temporal characteristics of concentrations from the given roads or road-segments. 
In connection to this, four stochastic models were developed and tested using data from 
Nordbysletta in 2002. The following table summarizes some of the main characteristics of 
these models. 

Table 5.1a. Main characteristics of proposed stochastic models. 

Model Type 
Treating WORM 
as a black box? 

Transform 
of conc. Handling of parameters 

A Classical Yes Box-Cox 
MLE based on local NOx 

observations 

B Bayesian Yes Logarithmic 
Prior based on international 

monitoring campaigns 

C Bayesian Yes Logarithmic 
Posterior based on local NOx 

observations 

D Bayesian No Logarithmic 
Prior based on NILU expert 

elicitation 
 

We will first shortly discuss results of the probabilistic model evaluations performed for these 
models as given in Chapter 4, before we give some main conclusions in the next section. 

All models generate somewhat too low predicted concentrations as compared with 
observations, especially at Stations 1 and 2, resulting in triangle shaped PIT-histograms. The 
main reason for this is that the WORM model predicts somewhat too low concentrations as 
compared with observations at Nordbysletta. The stochastic models have thus, not managed 
to fully correct for this bias in the dispersion model.  

Models A and B (and partly also C) produces somewhat too wide predictions compared with 
observations, resulting in inverse-U shaped PIT-histograms. This is especially the case for 
model A at Station 3, and for model B at Station 1. 

As for the 90% predicted central interval coverage, all models give higher values than 90% at 
all stations, except for model A at Station 1 with 89.2%, the worst case being model B at 
Station 1 with a coverage value of 97.1%. 

Observed and predicted marginal CDFs fits best at Station 3 and worst at Station 1 for all 
models. Otherwise, it is difficult to rank the models regarding this. 

Comparing sharpness using mean and maximum values of standard deviations and 90% 
central prediction intervals, we find that model A is clearly best, followed by model D, and 
with models C and B being worse than these two. This is also evident when we look at time 
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series plot of observed and model calculated values, where model A exhibits a much tighter 
and less variable 90% central prediction interval than the other models, which shows a large 
variability in the length of this interval depending on the concentration level, mainly due to 
the use of the logarithmic transformation of concentrations as used by these models. 

Calculated CRPS values with reliability (Reli) and resolution (Reso) decomposition parts 
are almost the same for all models, except for model D at Station 1, and models A and D at 

Station 3, where values of CRPSare slightly lower, and values of Reso are slightly higher 
than for the other models. The calculated values are, however, somewhat uncertain for all 
four models as shown by the bootstrapped box plots. 

As for the scatter plot of hourly values of CRPS vs. observed and model calculated 
concentrations and meteorology, all models show a similar pattern, with highest values of 
CRPS during low wind speed and strongly stable situations where the concentrations are at 
the highest. As stated before, this should not come as a surprise, since these are the situations 
which are well-known to be difficult to simulate for any air pollution model. 

 
 
5.2 Conclusions 

Based on the results in Chapter 4 and the above discussion, we conclude that model A seems 
to perform best at Nordbysletta, with model D as a strong number two, the latter performing 
somewhat better than models C and B, regarding sharpness and level of resolution. 

Further work are needed, however, to ensure that parameters of such models are defined 
properly so that the probabilistic models will be optimally sharp and calibrated when 
compared with local (roadside) observations. For a given city or urban area, this might 
involve the need for modelling uncertainties using separate emission and local meteorological 
models. 

Defining Bayesian prior distributions of parameters for probabilistic models, especially for 
hierarchical models such as D, was found to be more difficult and time-consuming than we 
had anticipated. It will, therefore, be of interest also to look into some alternative methods for 
estimating parameters of such models, e.g., as suggested in Gneiting et al. (2007b). 

We hope to be able to pursue this work further, and aim to work towards including a 
probabilistic version of the WORM model in future versions of NILUs model system. 
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APPENDIX A. WORM AND WMPP MODEL EQUATIONS 
 

 

A.1 Calculating concentrations in receptor points 

The WORM model (Walker, 2008) calculates hourly average concentrations of various inert 
chemical species, including nitrogen oxides (NOx), in one or more receptor points up to a 
certain distance (typically 200-300 m) from an open road (or highway), by integrating a 
Gaussian plume function along each lane of the road, adding up the concentration 
contribution from each lane.  

The hourly average concentration rC  (µgm-3) at a given receptor location ( ), ,r r rr x y z= , 

based on emission of pollutants from a given lane, is then calculated as15 

 
2 22

2 2 2
0

( - ) ( )( )
exp - exp - exp -  

2 ( ) ( ) 2 ( ) 2 ( ) 2 ( )

S
r eff r effr

r
eff y z y z zs

z H z Hy sQ
C ds

U t t t t tπ σ σ σ σ σ=

      + = +          
      

∫ (A.1a) 

 
where S  is the length of the lane (m), Q  is the emission intensity of the lane (gm-1s-1), effU  is 

the plume effective wind speed (ms-1), effH  is the plume effective height above ground (m), 

and where yσ  and zσ  are total dispersion parameters (m) for the plume, given here as 

functions of atmospheric transport time ( )t t s=  (s) from emission points s  on the lane to the 

given receptor point r . This is illustrated in Figure A.1a. 

 

Figure A.1a. Geometry of road lane and receptor point in wind-directed coordinate system. 

                                                           
15

 Note that the variables s  and t  have a different interpretation here than in Chapter 1-5. Here they denote 

local emission point s  on a lane and atmosperic transport time ( )t t s=  from this point to the receptor point. 

S

0

s

Receptor 
point

Lane

Wind-directed 
coordinate system

ϕ
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At each hour, a local wind-directed coordinate system is introduced with origin at one end of 
the lane, and with the x-axis pointing in the downwind direction, and y-axis 90° on this in the 
crosswind direction. 

Downwind and crosswind distance functions ( )rx s  and ( )ry s  from points s  on the lane to 

the given receptor point r  are then uniquely defined by the geometry of the lane and the 

position of the receptor point. The transport time function ( )t t s=  as used by yσ  and zσ  in 

(A.1a) is then defined by dividing the downwind distance function by the plume effective 
wind speed: 

 ( ) ( )r

eff

x s
t t s

U
= = . 

 

Note that in (A.1a) the vertical coordinate rz  of the receptor point will be independent of the 

various local wind-directed coordinate systems, and of s . 

The integration in (A.1a) is performed using an adaptive (nested) Gaussian quadrature 
formula (Patterson’s QUAD) (Kythe and Schäferkotter, 2005), which is fast and highly 
accurate, also for wind directions more parallel to the road. 
 
 
A.2 Total dispersion parameters 

The (total) horizontal and vertical dispersion parameters in (A.1a) are calculated as follows: 

 
2 2 2

, ,

2 2 2
, ,

( ) ( ) ( )

( ) ( ) ( )

y y Atm y TPT

z z Atm z TPT

t t t

t t t

σ σ σ

σ σ σ

= +

= +
 (A.2a) 

 

where , ( )y Atm tσ  (m) and , ( )z Atm tσ  (m) defines the growth of the plumes due to ambient 

atmospheric turbulent conditions divided into mechanical and turbulent parts, and where  

, ( )y TPT tσ  (m) and , ( )z TPT tσ  (m) describes the growth of the plumes due to traffic produced 

turbulence (TPT). In (A.2a), , ( )y Atm tσ  also includes the effect of plume meandering. We now 

describe each of these parts in more detail. 

 
 
A.3 Dispersion due to ambient atmospheric conditions 

We divide the description of this into horizontal and vertical parts. The formulations here are 
mainly taken from Olesen et al. (2007). 

Horizontal dispersion 

Horizontal dispersion is calculated using the following formula: 

 2 2 2 2
, , , ,( ) ( ) ( ) ( )y Atm y Mech y Conv y Meandt t t tσ σ σ σ= + +  (A.3a) 
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where , ( )y Mech tσ  is the growth of the plume due to mechanically  induced turbulence, which is 

caused by movement of the air over terrain and various obstacles; , ( )y Conv tσ  is the growth of 

the plume due to convective driven turbulence, which is caused by sunlight heating the 
ground during the daytime; and , ( )y Meand tσ  is the growth of the plume due to horizontal 

meandering, which is additional horizontal movement of air typically noticeable during low 
wind speed conditions, i.e., when 2 3effU ≤ −  ms-1. 

Horizontal dispersion due to mechanical turbulence is calculated as 

 *
, ( ) 1 0.8 1eff

y Mech v
mix m

H u
t t t

H z
σ σ

   
= ⋅ ⋅ − +   

   
 (A.3b) 

  

where vσ  is horizontal turbulent mechanical diffusivity (ms-1), mixH  is the mixing height (m), 

*u  is the friction velocity (ms-1), and mz  is a height (m) calculated as 

 lim limmin( 2.15 , );   min(max( ,0.1 ), )m eff z mix mixz H z z L H Hσ= + = ⋅  (A.3c) 

 

where L  is the Obukhov length (m). In (A.3b), *1.6v uσ =  where *u  is the friction velocity 

(ms-1). 

Horizontal dispersion due to convective turbulence is calculated as 

 
1

* *
,

0.5 1 0.9 /    if  0

0   otherwise
mix

y Conv

w t w t H Lσ
− + <= 


 (A.3d) 

 

where *w  denotes the convective velocity scale (ms-1). 

Horizontal dispersion due to meandering is calculated as 

 , ,miny Meand v tσ σ= ⋅  (A.3e) 

 

where ,min 0.2vσ = ms-1. 

Vertical dispersion 

Vertical dispersion (combined mechanical and convective) is calculated as follows 

 
( ) ( ) ( )
( ) ( )

2 1 1
* *

,
2

*

0.7 exp( 0.7 ) 1 0.8 / / 1    if  0
( )

0.7 exp( 0.7 ) 1 0.8 /    otherwise

eff mix

z Atm

eff mix

u t a H H u tL L
t

u t a H H
σ

− − − − + >= 
 − −


 (A.3f) 

 

where a  is defined as 

 *min(1, / )effa u t H=  (A.3g) 
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There is no extra vertical dispersion due to meandering (only horizontally). 

 
 
A.4 Dispersion due to traffic produced turbulence 

For roadway models, it is important to include dispersion due to traffic produced turbulence 
(TPT) generated by the moving vehicles, especially in situations with low wind speeds 
(Berkowicz et al., 2007). The formulation in the WORM model is based on the same scheme 
as used in the OML Highway model (Berkowicz et al., 2007). In this formulation , 0y TPTσ = , 

while ,z TPTσ  is calculated as 

 ( ), 0( )    1 -  exp(- / )z TPT z TPTt u tσ σ τ τ= + ⋅ ⋅  (A.4a) 
 

where 0zσ  is the initial value of ,z TPTσ  close to the roadway;   TPTu E= , where E  is the 

turbulent kinetic energy (TKE) calculated from the moving vehicles; t  is the effective 
transport time from the road to the receptor point ( / efft x U= ); τ  is a time constant as defined 

below, and where E  is calculated as 

 ( )    /L L L H H HE N A V N A V Wα= ⋅ ⋅ ⋅ + ⋅ ⋅  (A.4b) 
 

with xN  the number of vehicles per second; xV  the vehicles average speed; xA  the average 

frontal areas of light- (X L= ) and heavy-duty (X H= ) vehicles respectively; α  an empirical 
(dimensionless) constant; and W the total width of the roadway (m). In the current version of 
the model the above empirical quantities have been set to 4LA = m2, 16HA = m2, 0.04α =  and 

0 1zσ = m. Furthermore, the time constant τ  in (A.4a) is defined as 

 *  30 exp(- / 0.273)  3uτ = ⋅ +  (A.4c) 
 

where *u  is the friction velocity (ms-1). From (A.4c) it follows that 3τ ≈ s for large *u , while 

33τ ≈ s for *u  close to zero, thus (A.4c) expresses that TKE dissipates faster (slower) in 

stronger (weaker) wind conditions. 

 
 
A.5 Calculation of various meteorological parameters using WMPP 

As part of the WORM model, a new meteorological pre-processor (WMPP) has been 
developed to calculate various meteorological parameters needed by the model. In the current 
version, the profile method is applied, using hourly observations of wind speed at one height 
(usually 10 m), and temperature difference between two heights (usually 10 and 2 m), in 
order to calculate other derived meteorological parameters. Given these data, and an estimate 
of the momentum surface roughness 0mz , WMPP calculates friction velocity (*u ), 

temperature scale (*θ ) and inverse Obukhov length scale (1L− ) according to Monin-Obukhov 
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similarity theory. These latter quantities are calculated by solving the following three 
nonlinear equations: 

 
2 2

1 1

1 *
* * 2

*1 1

;    ;    

( , ) ( , )
u t

u t

z z
ref

m h

z z

u g
u L

T u
z L dz z L dz

θκ κ θ κθ
ϕ ϕ

−

− −

⋅ ∆ ⋅ ∆ ⋅= = =

∫ ∫
 (A.5a) 

 

where κ  is Von Kármán’s constant (0.41); g  is the acceleration of gravity (9.81 ms-2); u∆  is 

the wind speed difference between heights 2uz  and 1uz , where 2uz  here is 10 m, and 1 0u mz z=

where the wind speed is zero, so that 10 100m mu u u∆ = − = ; θ∆  is the difference in potential 

temperature between heights 2tz  and 1tz , which are here 10 m and 2 m respectively, so that 

10 2 0.01m mT Tθ∆ = − + ; and where refT
 
is a reference temperature, here taken to be the average 

of 2mT  and 10mT . 

In (A.5a), the similarity functions mϕ  and hϕ  are defined as follows (Högström, 1996): 

 

( )( )
( )

1
1 14

1 1 1

1

1    if  0  (unstable atm.)

( , ) 1           if  0  (stable atm.)  

1                             if  0  (neutral atm.)

m

m m

zL L

z L zL L

L

α

ϕ β

−− −

− − −

−


+ <

= + >


=


 (A.5b) 

 

and 

 

( )( )
( )( )

1
1 12

0

1 1 1
0

1
0

Pr 1    if  0  (unstable atm.)

( , ) Pr 1        if  0  (stable atm.)  

Pr                               if  0  (neutral atm.)

h

h h

zL L

z L zL L

L

α

ϕ β

−− −

− − −

−


+ <

= + >


=


 (A.5c) 

 

where 0Pr 0.95=  is the Prandtl number for neutral conditions, and where the coefficients are 

defined as  19.0mα = − , 11.6hα = − , 5.3mβ =  and 8.2hβ = . 

This set of similarity functions is then used to calculate vertical profiles of temperature and 
wind speed. The temperature at a height z  (m) above ground is thus calculated as 

 ( ) ( )1* ,
ref

ref

v z

z z ref h
p v z

g
T T z z v L dv

c

θ ϕ
κ

=
−

=

= − − + ∫  (A.5d) 

 

where 10refz = m. Similarly the wind speed at a height z  (m) above ground is calculated as 

 ( )1* ,
ref

ref

v z

z z m

v z

u
u u v L dvϕ

κ

=
−

=

= + ∫ . (A.5e) 
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The convective velocity scale *w  (ms-1) is calculated as 

 

1
1 3

1
* *    if  0 (unstable atm.)mixH L

w u L
κ

−
− −= < 

 
 (A.5f) 

 

and is only applied for unstable atmospheric conditions.  

Finally, the mixing height mixH  (m) is calculated as 

 ( )

1
*

1 1
*1

0.3                              if  0 (unstable and neutral atm.)

1
1 2.28    if  0 (stable atm.)

3.8

cor

mix

cor

u f L
H

u L f L
L

−

− −
−

 ≤
= 

+ >


 (A.5g) 

 

where corf  is the Coriolis parameter. This latter parameter is calculated as 2 sincorf θ= Ω ⋅ , 

where Ω  is the angular speed of rotation of the Earth, i.e. 2 / sidTπΩ = , with sidT  the sidereal 

period of rotation, i.e., 23 60 60 56 60 4.1sidT = ⋅ ⋅ + ⋅ +  (s), and where θ  is the site latitude (60°).  

For more details of these, and other recommended schemes, see the final reports from the 
COST 710 project (Fisher et al., 1998) and Högström (1996).  

Minimum values can be defined for some of the meteorological parameters in the WORM 
model such as the effective wind speed, Obukhov length, mixing height and horizontal and 
vertical diffusivities. Table A.5a gives an overview of the minimum values set for these 
parameters as has been used in the present calculations at Nordbysletta. 

Table A.5a. Minimum values for some of the meteorological parameters used by WORM. 

Parameter Minimum value 
effU  No lower limit, i.e., 0 ms-1 

L  10 m 

mixH  10 m 

vσ  0.2 ms-1 

wσ  No lower limit, i.e., 0 ms-1 
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APPENDIX B. ADAPTIVE RANDOM-WALK METROPOLIS-WITHIN-GIBBS FOR 
MODEL C 

 

 

B.1 Conditional distributions 

Using the original nomenclature from Section 2.3.4, model C equations for a given 
observation point ms s=  can be written 

 ( ) ( ) ( )0log , log , ,m c m mc s t f s t s tβ ε= + +  (B.1a) 
 

where 

 ( ) ( ) ( ) ( ) ( )2, , 1 , ;    , 0,m m m ms t s t s t s t Nε φε η η σ= − + ∼  (B.1b) 

and where the observation equation is 
 

 ( ) ( ) ( ) ( ) ( )2log , log , , ;    , 0,m m y m y m yy s t c s t s t s t Nη η σ= + ∼ . (B.1c) 

 

By inserting ( ),ms tε  from (B.1a) into (B.1b) we obtain 

 ( ) ( ) ( ) ( )( ) ( )0 0log , log , log , 1 log , 1 ,m c m m c m mc s t f s t c s t f s t s tβ φ β η− − = − − − − + . 

 

If we define state variables tx  as 

 ( ) ( )log , log ,t m c mx c s t f s t= −  
 

and replace ( ),my s t , ( ),ms tη , ( ),y ms tη  and ( ),c mf s t  with ty , tη , ,y tη  and tf , respectively, 

equations (B.1a-c) can alternatively be written  

 ( ) ( )2
0 1 0 ;    0,t t t tx x Nβ φ β η η σ−− = − + ∼  (B.1d) 

 ( )2
, ,log log ;    0,t t t y t y t yy x f Nη η σ= + + ∼ . (B.1e) 

 

Using these equations with initial state 0 0x β= , and priors for the parameters 0β , φ  and 
2τ σ −=  as defined in Section 2.3.4, it can be shown (not shown here) that the conditional 

posterior distributions of these parameters can be given analytically as follows16: 
 

 ( )
( )

( ) ( )
1

1
0 1: 1: 2

1
| , , , ,

1 1

T

t t
t

T T

x x
p x y N

T T

φ
β φ τ

φ τ φ

−
=

 − 
 =

− −
 
 

∑
 

 

and 

                                                           
16

 T  here is the same as 'T in Section 2.3.4. 
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 ( )
( )( )

( ) ( )

0 1 0
1

1: 1: 0
2 2

0 0
1 1

1
| , , , ,

T

t t
t

T T T T

t t
t t

x x
p x y N

x x

β β
φ β τ

β τ β

−
=

= =

 − − 
 =
 − − 
 

∑

∑ ∑
 

 

and 

 ( ) ( )( )
1

2

1: 1: 0 0 1
1

1 1 1
| , , , Gamma ,

2 2

T

T T t t
t

p x y a T x x
b

τ β φ β φ µ
−

−
=

  = + + − − −     
∑  

 

with parameters 14.98a =  (shape) and 0.14b =  (scale) from the prior Gamma-distribution for 
τ  as given in Section 2.3.4. In these expressions, we have used the short-hand notation 

( )1: 1,...,T Tx x x=  and ( )1: 1,...,T Ty y y= . 

Furthermore, it can be shown (not shown here) that the conditional posterior distribution of 
state variable tx  can be written 

 
( )

( )( ) ( )( )( ) ( )
1: 1 1: 1: 0

2 2

0 1 0 1 0 0

| , , , , ,

         exp 0.5 0.5 |

t t t T T

t t t t t t

p x x x y

x x x x p y x

β φ τ

β φ β β φ β

− +

− +

∝

− − − − − − − − ⋅
 

 

where the observational likelihood ( )|t tp y x   is obtained directly from (B.1e), i.e., 

 ( )
2

log log1
| exp

2
t t t

t t
y

y x f
p y x

σ

  − − ∝ −      

 

 

with yσ  being the observational error standard deviation. 

 
 
B.2 Adaptive random-walk Metropolis-within-Gibbs 

Based on the development in the previous section, and the general theory of Gibbs sampling 
as described in Section 3.3., an adaptive random-walk Metropolis-within-Gibbs 
(AdapRWMwG) algorithm for model C can be defined as follows: 
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According to the theory of Section 3.3, if the number of iterations N  is large enough, 

parameter values ( )( ) ( ) ( )
0 , ,k k kβ φ τ  from say the last half of the iterations can be taken as 

samples from the corresponding unconditional marginal posterior distributions, i.e., 

 ( ) ( )( ) ( ) ( )
0 0 1:, , , , |k k k

Tp yβ φ τ β φ τ∼  

 

for 2 1,...,k N N= + . 

  

MODEL C: AdapRWMwG ALGORITHM 

For 1,...,k N= do 

1. Draw ( )( ) ( 1) ( 1) ( 1)
0 0 1: 1:| , , ,k k k k

T Tp x yβ β φ τ− − −
∼ . 

2. Draw ( )( ) ( 1) ( ) ( 1)
1: 1: 0| , , ,k k k k

T Tp x yφ φ β τ− −
∼ . 

3. Draw ( )( ) ( 1) ( ) ( )
1: 1: 0| , , ,k k k k

T Tp x yτ τ β φ−
∼  and calculate 

2( ) ( )1k kσ τ= . 

 
For 1,...,t T= do 

 

4. Draw ( )* ( 1) 2,k
t t tx N x d−
∼  and accept the new proposal with 

probability 
( )

( )
* ( ) ( 1) ( ) ( ) ( )

1: 1 1: 1: 0( )

( 1) ( ) ( 1) ( ) ( ) ( )
1: 1 1: 1: 0

| , , , , ,
min ,1

| , , , , ,

k k k k k
t t t T Tk

t k k k k k k
t t t T T

p x x x y
p

p x x x y

β φ τ
β φ τ

−
− +

− −
− +

  =  
  

.  

If accepted ( ) *k
t tx x= , otherwise ( ) ( 1)k k

t tx x −= . 

 

5. If ( )mod ,50 0k =  calculate average acceptance probability 

( )

49

1

50

k
i

t t
i k

p p
= −

= ∑ , and update the proposal distribution standard 

deviations as follows:       
 

If 0.44tp < set ( )/ expt td d δ=  

If 0.44tp > set ( )expt td d δ= ⋅  

If 0.44tp =  td  is unchanged 

where ( ) 1
min 0.01,b

b

n
n

δ δ
 

= =  
 
 

 and / 50bn k= . 



96 

 

 

  



97 

 

REFERENCES 

 

 

AirQUIS. 2005. Emissions module. Norwegian Institute for Air Research. http://www.nilu.no. 

Bai Y. 2009. Convergence of adaptive Markov Chain Monte Carlo algorithms. Ph.D. Thesis. Department of 
Statistics, University of Toronto. http://www.utstat.utoronto.ca/~yanbai/. 

Bai Y, Roberts GO, Rosenthal JS. 2009. On the containment condition for adaptive Markov Chain Monte Carlo 
algorithms. Preprint. Department of Statistics, University of Toronto. http://www.utstat.utoronto.ca/~yanbai/. 

Bates SC, Cullen A, Raftery AE. 2003. Bayesian uncertainty assessment in multicompartment deterministic 
simulation models for environmental risk assessment. Environmetrics 14: 355-371. 

Bayarri MJ, Berger JO, Paulo R, Sacks J. 2007. A framework for validation of computer models. Technometrics 
49(2): 138-154. 

Benson P. 1992. A review of the development and application of the CALINE3 and 4 models. Atmospheric 
Environment 26B: 379-390. 

Berger J, Walker SE, Denby B, Berkowicz R, Løfstrøm P, Ketzel M, Härkönen J, Nikmo J, Karppinen A. 2010. 
Evaluation and inter-comparison of open road line source models currently in use in the Nordic countries. 
Boreal Environmental Research 15: 319-334. 

Berkowicz R, Løfstrøm P, Ketzel M, Jensen SS and Hvidberg M. 2007. OML Highway. Phase 1: Specifications 
for a Danish Highway Air Pollution Model. National Environmental Research Institute, University of Aarhus, 
Denmark. 62 pp. – NERI Technical Report No. 633. http://www.dmu.dk/Pub/FR633.pdf. 

Blum JR, Hanson DL, Koopmans LH. 1963. On the strong law of large numbers for a class of stochastic 
processes, Z. Wahrsch. Ver. Geb. 2: 1-11. 

Box GEP, Cox DR. 1964. An analysis of transformations (with discussion). Journal of the Royal Statistical 
Society B 26: 211-252. 

Bremnes JB. 2004. Probabilistic forecasts of precipitation in terms of quantiles using NWP model output. 
Monthly Weather Review 132: 338-347. 

Campbell K. 2006. Statistical calibration of computer simulations. Reliability Engineering and System Safety 
91: 1358-1363. 

Casati B, Wilson LJ, Stephenson DB, Nurmi P, Ghelli A, Pocernich M, Damrath U, Ebert EE, Brown BG, 
Mason S. 2008. Review forecast verification: current status and future directions. Meteorological Applications 
15: 3-18. 

Chatwin PC. 1982. The use of statistics in describing and predicting the effects of dispersing gas clouds. Journal 
on Hazardous Materials 6: 213-230. 

Colvile RN, Woodfield NK, Carruthers DJ, Fisher BEA, Rickard A, Neville S, Hughes A. 2002. Uncertainty in 
dispersion modelling and urban air quality mapping. Environmental Science & Policy 5: 207-220. 

Dabberdt WF, Miller E, Uncertainty, ensembles and air quality dispersion modelling: applications and 
challenges. 2000. Atmospheric Environment 34(27): 4667-4673(7). 

Davenport AG, Grimmond CSB, Oke TR, Wieringa J. 2000. Estimating the roughness of cities and sheltered 
country. Preprints of the AMS 12th Conference on Applied Climatology, 96-99. 



98 

 

EU. 2006. CAFE reference documents. http://ec.europa.eu/environment/archives/cafe/general/keydocs.htm. 

Fisher BEA., Erbrink JJ, Finardi S, Jeannet P, Joffre S, Morselli MG, Pechinger U, Seibert P, Thomson DJ. 
1998. COST Action 710 – Final report. Harmonisation of the pre-processing of meteorological data for 
atmospheric dispersion models. EUR 18195. Luxembourg: Office for Official Publications of the European 
Communities, 431. 

Fuentes M, Raftery AE. 2005. Model evaluation and spatial interpolation by Bayesian combination of 
observations with outputs from numerical models. Biometrics 61(1): 36-45. 

Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian Data Analysis (2nd ed.), Chapman & Hall/CRC: 
London. 

Gidhagen L, Kyrklund T, Johansson H. 2005. SIMAIR: Model för beräkning av luftkvalitet i vägars närområde 
– slutrapport mars 2005. SMHI rapport nr. 2005-37 (in Swedish). 

Gneiting T, Balabdaoui, F, Raftery AE. 2007a. Probabilistic forecasts, calibration and sharpness. Journal of the 
Royal Statistical Society B 69-2: 243-268. 

Gneiting T, Raftery AE. 2007b. Strictly proper scoring rules, prediction and estimation. Journal of the American 
Statistical Association 122(477), 359-378. 

Goldstein M, Rougier J. 2008. Reified Bayesian modelling and inference for physical systems. Journal of 
Statistical Planning and Inference 139: 1221-1239. 

Hagen LO, Larssen S, Walker SE. 2003. Forurensning som funksjon av avstand fra vei. Målinger på RV 159 
Nordby-sletta v/Skårer vinteren 2001-2002, og sammenligning med VLUFT. Kjeller, Norwegian Institute for 
Air Research, NILU OR 22/2003 (in Norwegian). 

Hersbach H. 2000. Decomposition of the continuous ranked probability score for ensemble prediction systems. 
Weather and Forecasting 15: 559-570. 

Härkönen J, Valkonen E, Kukkonen J, Rantakrans E, Lahtinen K, Karppinen A, Jalkanen L. 1996. A model for 
the dispersion of pollution from a road network. Publications on Air Quality 23, Finnish Meteorological 
Institute, Helsinki. 

Higdon D, Gattiker J, Williams B, Rightley M. 2008. Computer model calibration using high-dimensional 
output. Journal of the American Statistical Association 103(482): 570-583. 

Hogrefe C, Rao ST. 2001. Demonstrating attainment of the air quality standards: Integration  of observations 
and model predictions into the probabilistic framework. Journal of Air and Waste Management Association 51: 
1060-1072. 

Högström U. 1996. Review of some basic characteristics of the atmospheric surface layer. Boundary-Layer 
Meteorology 78: 215-246.  

Irwin JS, Petersen WB, Howard SC. 2007. Probabilistic characterization of atmospheric transport and diffusion. 
Journal of Applied Meteorology and Climatology 46: 980 – 993. 

Joliffe IT, Stephenson DB (eds.). 2003. Forecast Verification: A Practitioner’s Guide in Atmospheric Science, 
John Wiley & Sons, Ltd.: Chichester, West Sussex, England. 

Kennedy MC, O’Hagan A. 2001. Bayesian calibration of computer models. Journal of the Royal Statistical 
Society B 63: 425-450. 

Kurowicka D, Cooke R. 2006. Uncertainty Analysis with High Dimensional Dependence Modelling. John Wiley 
& Sons, Ltd: Chichester, West Sussex, England. 



99 

 

Kythe PK, Schäferkotter MR. 2005. Handbook of Computational Methods for Integration. Chapman & 
Hall/CRC, 598. 

Le NH, Zidek JV. 2006. Statistical Analysis of Environmental Space-Time Processes. Springer: New York. 

Lewellen WS, Sykes RI. 1989. Meteorological data needs for modeling air quality uncertainties. Journal of 
Atmospheric.and Oceanic Technology 6: 759-768. 

Nafstad P, Håheim LL, Wisløff T, Gram F, Oftedal B, Holme I, Hjermann I, Leren P. 2004. Urban air pollution 
and mortality in a cohort of Norwegian men. Environmental Health Perspective, 112(5). 

Oftedal B, Brunekreef B, Nystad W, Madsen C, Walker SE, Nafstad P. 2008. Residential outdoor air pollution 
and lung function in schoolchildren. Epidemiology 19: 129-137. 

Olesen HR, Berkowicz R, Løfstrøm P. 2007. OML: Review of model formulation. National Environmental 
Research Institute, University of Aarhus, Denmark. 130 pp. – NERI Technical Report No. 609, 
http://www.dmu.dk/Pub/FR609.pdf.  

O’Hagan A. 2006. Bayesian analysis of computer code outputs: A tutorial. Reliability Engineering and System 
Safety 91: 1290-1300. 

Patton A, Politis DN, White H. 2009. Correction to “Automatic block-length selection for the dependent 
bootstrap by D. Politis and H. White”. Econometric Reviews 28(4): 372-375. 

Petersen WB. 1980. User’s Guide for HIWAY-2. A highway air pollution model. EPA-600/8-80-018. U.S. 
EPA, Research Triangle Park, NC. 

Pinder RW, Gilliam RC, Appel KW, Napelenok SL, Foley KM, Gilliland AB. 2009. Efficient probabilistic 
estimates of surface ozone concentration using an ensemble of model configurations and direct sensitivity 
calculations. Environmental Science & Technology 43: 2388-2393. 

Politis DN, White H. 2004. Automatic block-length selection for the dependent bootstrap. Econometric Reviews 
23(1): 53-70. 

Rao KS. 2005. Uncertainty analysis in atmospheric dispersion modelling. Pure and applied geophysics 162: 
1893-1917. 

Robert CP, Casella G. 2004. Monte Carlo Statistical Methods (2nd ed.), Springer: New York. 

Roberts GO, Rosenthal JS. 2009. Examples of adaptive MCMC. Journal of Computational and Graphical 
Statistics 18(2): 349-367. 

Roberts GO, Rosenthal JS. 2007. Coupling and ergodicity of adaptive Markov Chain Monte Carlo algorithms. 
Journal of Applied Probability 44: 458-475. 

Rosenthal JS. 2010. Optimal proposal distributions and adaptive MCMC. Chapter for MCMC handbook, S. 
Brooks, A. Gelman, G. Jones and X.-L- Meng, eds. http://www.probability.ca/jeff/. 

Shaddick G, Lee D, Zidek JV, Salway R. 2008. Estimating exposure response functions using ambient pollution 
concentrations. Annals of Applied Statistics 2(4): 1249-1270. 

Shaddick G, Zidek J, Lee D, White R, Meloche J, Chatfield C. 2006a. Using a probabilistic model (pCNEM) to 
estimate personal exposure to air pollution in a study of the short-term effect of PM10 on mortality. University 
of Bath online publications store – OpuS, UK. http://opus.bath.ac.uk/7025. 



100 

 

Shaddick G, Kounali D, Briggs D, Beelan R, Hoek G, Hoogh CDE, Pebesma E, Vienneau D. 2006b. Using 
Bayesian hierarchical modelling to produce high resolution maps of air pollution in the EU. University of Bath 
online publications store – OpuS, UK. http://opus.bath.ac.uk/7026. 

Sharma N, Chaudry KK, Chalapati Rao CV. 2004. Vehicular pollution prediction modeling: a review of 
highway dispersion models. Transport Reviews 24: 409-435. 

Shumway RH, Stoffer DS. 2006. Time Series Analysis and Its Applications. With R Examples (2nd ed.), 
Springer: New York. 

Tønnesen D. 2010. Personal communication. Norwegian Institute for Air Research (NILU). 

Tørnkvist KK. 2006. Personal communication. Norwegian Institute for Air Research (NILU). 

Vardoulakis S, Fisher BEA, Gonzalez-Flescha N, Pericleous K. 2002. Model sensitivity and uncertainty analysis 
using roadside air quality measurements. Atmospheric Environment 36(13): 2121-2134. 

Walker SE. 2008. WORM – A new open road line source model for low wind speed conditions. Proceedings 
from the “12th International Conference on Harmonisation within Atmospheric Dispersion Modelling for 
Regulatory Purposes”. Cavtat, Croatia, October 6-9, 2008. http://www.harmo.org. 

Walker SE. 2007. Quantification of uncertainties associated with an integrated Gaussian line source model using 
ensembles. Proceedings from the “11th International Conference on Harmonisation within Atmospheric 
Dispersion Modelling for Regulatory Purposes”. Cambridge, UK, July 2-5, 2007. http://www.harmo.org. 

Walker SE, Berger J. 2007. Application of data assimilation in open road line source modelling, 6th 
International Conference on Urban Air Quality. Cyprus, March 27-29, 2007. 

Walker SE, Gjerstad KI, Berger J. 2006. Air4EU – Case Study D7.1.4. Data assimilation in open road line 
source modelling. http://www.air4eu.nl. 

WHO. 2006a. Air Quality Guidelines. Global update 2005. Particulate matter, ozone, nitrogen dioxide and 
sulphur dioxide. http://www.euro.who.int/InformationSources/Publications/Catalogue/20070323_1. 

WHO. 2006b. Health risks of particulate matter from long-range transboundary air pollution. World Health 
Organization. Regional Office for Europe. Copenhagen. 

WHO. 2004. Comparative quantification of health risks: global and regional burden of disease attributable to 
selected major risk factors. Ezzati M et al. (eds.) World Health Organization, 2004.  

Wikle CK, Berliner LM. 2007. A Bayesian tutorial for data assimilation. Physica D: Nonlinear Phenomena 
230(1-2): 1-16. 

Wilks DS. 2006. Statistical Methods in the Atmospheric Sciences (2nd ed.), Academic Press: London. 

Zidek JV, Shaddick G, White R, Meloche J, Chatfield C. 2005. Using a probabilistic model (pCNEM) to 
estimate personal exposure to air pollution. Environmetrics 16(5): 481-493. 

 


