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ABSTRACT

A newly developed deterministic numerical model &r pollution from road traffic is
combined with stochastic models in order to prediourly average concentrations of
nitrogen oxides (N@Q with estimated uncertainty. Four stochastic medske considered:
Three non-hierarchical models, treating the aifypioin model as a black box, and a fourth,
hierarchical model, where some of the input vaaabbf this model are also treated as
uncertain. The probabilistic models are evaluatgeddmparing sample or ensemble based
probability distributions of concentrations with Uity observed values of NOat
Nordbysletta, Norway, during a 3.5 months campagnod in 2002, where we focus on
verification issues such as calibration and shapoéthe predictive distributions.






1. INTRODUCTION

1.1 Background

In cities and urban areas, where population dessére high, emission from road and street
traffic constitutes one of the most important searcf air pollution. Despite recent
improvements in air quality regulation, and introtion of new technologies for reduction of
vehicle emissions, increases in traffic volume twds to impose a negative threat to the
health and well-being of people living in affectatkas. The adverse effects of long-term
exposure to air pollution have been well-documertieth globally (WHO, 2004; 2006a,;
2006b), and within the European Union (EU, 2006)Nbrway, recent exposure and health
assessments carried out by e.g., the Norwegianutesof Public Health (FHI), have also
indicated significant negative health effects fr@mor air quality (Oftedal et al., 2008;
Nafstad et al., 2004).

It is, therefore, both from a regulatory, and sulaece, point of view, important to be able to
predict air pollution from road and street traffis accurately as possible and on a regular
basis, e.g., on an hourly or daily basis. Traddlbnthis has been done, almost exclusively,
using deterministic air pollution models. Such med&e typically mechanistic or process-
driven, where physical and chemical laws are usedldscribe the coupling between
emissions of pollutants from each road or stra&d, @ncentrations of the same pollutants in
arbitrary spatial locations (receptor points) ia thcinity of the road, using information about
local meteorology. Such predictions are then uguploduced in the form of single
concentration values without any attached estimbtmcertainty.

Modelling of air pollution in the atmosphere wilpwever, always be uncertain due to the
inevitable uncertainties associated with input dé&mnission, meteorology etc.), and
formulations (physical and chemical equations) usedlescribe the dispersion process
(Chatwin, 1982; Lewellen and Sykes, 1989; Rao, 20[5s, therefore, important to try to
guantify such uncertainties in order to ensure nti@esparency and trust of accuracy in the
modelling result. A probabilistic air pollution meldaims at exactly that: Namely to extend a
given deterministic air pollution model with a dhastic model in order to describe the
uncertainties involved. Such a model will, thusoduce as its output, not merely
concentrations as single values, but rather asapitity distributions of such values. These
should then, ideally, reflect all uncertaintiesalwed as accurately as possible, and give us
improved insights and confidence in the modellimgults (Dabbert and Miller, 2000;
Hogrefe and Rao, 2001).

The idea of coupling deterministic process modeth wtochastic models is not new. Since
the seminal work of Kennedy and O’Hagan (2001)rdéHeas been an increased interest in
calibration and uncertainty assessment of such Isode described in e.g., Higdon et al.
(2008), Bayarri et al. (2007), Wikle and Berlin@00Q7), O’Hagan (2006) and Bates et al.
(2003). An application for air pollution can e.pg found in Fuentes and Raftery (2005).



Campbell (2006) contains a discussion of statistedibration of physics-based computer
process models and simulators.

Probabilistic treatment of input and output of ditative models is more generally known as
uncertainty analysis. A good overview and desaiptf this field is given in the recent book
by Kurowicka and Cooke (2006).

Rao (2005) discusses various types of uncertaintiesatmospheric dispersion model
predictions and reviews how sensitivity and undetyaanalysis methods can be used to
characterize and reduce them. Dabbert and Mill@0@2 also consider uncertainties in
connection with air pollution dispersion modelimgd describe how they may be quantified
through the use of ensemble simulations. For audson of how model uncertainties needs
to be considered in various policy related contesteh as e.g., assessment of future air
guality against various targets and objectives,Garile et al. (2002), and Hogrefe and Rao
(2001).

Shaddick et al. (2008; 2006a) and Zidek et al.0fR2@escribe how probabilistic models can
be used to estimate personal exposure to airbarthggnts in urban environments, in order
to assess the potential effects on human healtadditk et al. (2006b) describe how
Bayesian hierarchical modeling can be used to m®dhigh resolution maps of air pollution
in the EU. Pinder et al. (2009) describes probstizliestimation of surface ozone, using an
ensemble of models and sensitivity calculationgraer to calculate reliable estimates of the
probability of exceeding ozone threshold values arlarger regional scale. An early
application of model sensitivity and uncertaintyalysis for predicting air pollutant
concentrations with confidence bounds, using aimutidel approach involving three street
canyon models and roadside observations, is giv&fardoulakis et al. (2002).

1.2 Aim of the work

This report deals with probabilistic modelling af pollution in connection with a newly

developed deterministic numerical model for opeads and highways at NILU called
WORM (Weak Wind Open Road Model). Four stochastorlels (named A-D) are proposed
in connection with the WORM model, each attemptmgdescribe the uncertainties involved.
The probabilistic models are evaluated by compatiegpredicted probability distributions
of hourly average concentrations of nitrogen oxi(l®y) with observations of the same
species at three monitoring stations at Nordbysletiorway, during a 3.5 months
observation period in the winter/spring of 2002eThain aim of the work is thus to try to
develop a probabilistic version of the WORM moddiiethh can be used as part of NILUs
model system.

1.3 Ouitline of the report

The report is organized as follows: In Chapter 8 describe the Nordbysletta measurement
data campaign together with the WORM deterministicdel and the proposed stochastic
frameworks and ensuing models. In Chapter 3, metbgyg related to probabilistic model
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evaluation is provided, together with a review tier techniques used as part of this work,
such as Metropolis-within-Gibbs sampling and ciacudlock bootstrapping. In Chapter 4, we
present the results of comparing predictions frdra four probabilistic models against

observations at Nordbysletta, before we discussdbelts and give some main conclusions
in Chapter 5.

Appendix A contains a complete description of th©RM deterministic model equations,
including equations of the built-in meteorologicpie-processor WMPP. Appendix B
contains details of the adaptive random-walk Matfispwithin-Gibbs algorithm which is

used as part of model C.
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2. DATA AND MODEL DESCRIPTIONY

In this chapter, we descriloata and models which are used in this work. Hir§&ection 2.1
we describe data from the Nordbysletta measurede@acampaign. Then in Section ;, the
deterministic air pollution model WORM is presentda Sections 2-4, we describe the
stochastic frameworks and derived stochastic mathaisare used in combination with f
WORM model to prodee the probabilistic meel evaluatiorresults as given in Chaptel

2.1 The Nordbysletta measurement data camj*

Nordbysletta is situated at about’N and 11E in the municipality of Lgrenskog in a nc-

easterly direction from Oslo (Figure 2.1
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Figure 2.1a. Map of the dfdbysletta area and the mroadway. Locations of moniting stations for air
quality, meteorology anttaffic counting are indicated in the figure by tieel dots and red arrc

The site consists of a relatively flat area contegjran approximaty 850 m long segment

roadway with 4 separate lanes with traffic (FigRreb).

During morning hoursthe traffic is mainly headed towards Oslo (to thk in Figure 2.1a)
while, in the afternoon and eveni, most of the traffic is in the opposite directiorwtrds
Lillestram. The average peak traffic volume durmgrning and afternoon rush hours

typically around 34000 vehicles per hot

In the period 1 January15 April 2002, a measurement campaign '‘conducted at the si
(Hagen et al., 2003).ocatiors of monitoring stations for air quality and metdogy used
during the campaign perioghd an indication of e site for traffic countin are shown in
Figure 2.1a. A more detailed overview of tt-laneroadway geometry with placement of 1

stations is shown in Figure 2.

! The text in this section is largely taken from Walket al. (2006
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Figure 2.1b. The Nordbysletta 4-lane roadway witinitoring stations for air quality (1-3), meteorgjo(M),
and background concentrations (B) at the oppogiteaf the roadway. Direction is 238° towards Csid 58°
from Oslo towards Lillestrgm.

As shown in the figure, each lane has a width & @B and the distance between the
physically separate lanes are 5.4 m. The totalhwadithe roadway is thus 19.4 m.

Stations 1-3 and B are air quality stations, meagufamong other components) hourly
average concentrations of nitrogen oxides,N@& a height of 3.5 m above ground, while
Station M is a 10 m high meteorological mast calmg with air quality Station 2. Stations
1-3 and M are all placed on one side of the roadvesty a line approximately midway
between the end points of the segment considenedatadistances 7.3 m, 16.8 m and 46.8 m
respectively from the nearest lane. Station B ibaakground station, measuring hourly
average concentrations of N@om other sources than the roadway, placed ar@s@dm
from the roadway in the opposite direction. TheotXacation of Station B is shown in
Figure 2.1a.

(As can be seen from Figure 2.1a, there is alsoaa running parallel to the roadway
(Parallellveien) but this has quite small traffe @@mpared to the roadway, so need not be
included regarding modelling of air pollution aasbns 1-3 (Hagen et al., 2003).)

During the campaign period, traffic counting wasf@ened locally on an hourly basis. For
each hour, the number of light and heavy-duty Jeki¢with length > 5.6 m), were counted
separately on each of the 4 lanes of the roadwlag .hEavy-duty vehicles constituted around
4-14% of the traffic volume on average. The avergmeed of all vehicles was approximately
90 kmhf*. Based on this, hourly emissions of N®@ere calculated using different emission
factors for the different vehicle classes primarlbased on NILU's AirQUIS system
(AiIrQUIS, 2005).

Data recorded at Station M consist of hourly averagiues of the following meteorological
guantities:

2 Alternatively, we could have used observationsitogen dioxide (NG or particulate matter (PM10), but
both of these are somewhat more complicated to htbde NQ, especially emissions of PM10.
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* Wind speed and wind direction at 10 m above ground

» Air temperature at 2 m above ground

» Vertical air temperature difference between 10 mh 2m above ground (an indicator
of atmospheric stability)

* Relative humidity at 2 m above ground

A standard meteorological pre-processor (WMPP) dase Monin-Obukhov similarity
theory (see Appendix A, section A.5), is used ttcudate other derived meteorological
guantities needed by the model such as frictionoisl, temperature scale, Obukhov length
and mixing height. In these calculations, momensurface roughness at Nordbysletta has
been set to 0.25 m based on the Davenport & Wiarsitg classificatioriDavenport et al.,
2000).

Net observed concentrations of NOy

Emission from the traffic at Nordbysletta will onbffect the concentration levels at the
monitoring Stations 1-3 when the wind directionfiem the roadway and towards the
stations. According to the geometry of the roadaag location of the stations, this happens
when the wind direction is between approximately &8d 238°. In such cases, Station B will
be very little influenced by the roadway and obsdreoncentrations at this station should,
therefore, be representative as a constant baakgrioeld for the contribution from all other
sources of NQin the area to the observed values at Stations Th8 concentrations at
Station B can, therefore, be subtracted from theeesponding observed concentrations at
Stations 1-3, to makeet observed concentratiord NOy at Stations 1-3, which can be
directly compared with modelled concentrations friv@ roadway.

When the wind is headed in the opposite directibae,roadway will have very little impact
on the concentration levels at Stations 1-3. s tase, concentrations at Station B will
instead be (more or less) influenced by the roadseagan no longer be used as a background
station for the concentration levels at Statior& 1n such cases, which constitutes roughly
half of the total 2520 hours of observations, ritesved concentrations of M@t Stations 1-

3 will be defined as missing data (coded as -9900.0

To summarize the above: ¢f(t), i =1,2,3 and B, represent observed concentrations of,NO

at Stations 1-3 and B at time (hour)net observed concentrations of N& Stations 1-3 is
calculated as

6 ()= c(t)-c(t) when 60<¢(t)< 240
hnet -9900.0 otherwise (missing data)

where ¢(t) denotes observed wind direction at Station 2na tfhour)t .

All evaluation results presented in Chapter 4 iseblaon comparing model output
concentrations with such net observed concentratddMNG, at the monitoring Stations 1-3.

13



2.2 The WORM air pollution model

The WORM model (Weak Wind Open Road Model) (Wall2808) is a newly developed air
pollution dispersion model capable of calculatirautty average concentrations of various
inert chemical species, including nitrogen oxidd®y), from one or several open roads (or
highways) in an arbitrary set of receptor poings,to a certain maximum distance, typically
200-300 m, from the roads.

The hourly average concentratimg(ugm‘s) at a given receptor poirst=(x, y,, z) and time

t (hour), based on emissions of pollutants fromvamgiroad lane, is calculated by integrating
a standard Gaussian plume equation over the lendth) of the road, as follows:

.T exp( y522(|)j exp[ (Zs—i_'e“)z]+ exé Mj dl  (2.2a)
20270, (t )o, () 20, () 2, ¢) o, ¢)

whereQ is the emission intensity of the lane ({g1), U,, is the plume (effective) wind

speed (m3), H,, is the plume (effective) height above ground (m)!) is the plume

crosswind distance from the emission poimn the lane to the receptor location (m), and
whereo, ando, are total dispersion parameters for the plume @iven as functions of

atmospheric transport time (s) from emission points on the lane to the given receptor
point s.

Section A.1 in Appendix A contains a descriptionhofv the crosswind distanog(1) and

the atmospheric transport timeare related to the lane and receptor geometry,taritie

hourly varying wind direction. All quantities in .@a) will generally vary with time (hour)
depending on emission and meteorological conditmase to the road or roadway, except
for the length of the road (lan&), and vertical receptor coordinate, which are fixed.

The total hourly average concentratidy(s,t) from all roads influencing a given spatial

location s at time (hour)t is calculated by adding the contributions fromheemad lane as
follows:

f.(s1) =§:z C.( g i) (2.2b)

iq=1i =1

wheren, is the number of roads influencing pow n, is the number of lanes on each road,
and whereCs(iq,i,) represents the concentration contribution fromdrqaand lanei, , as

calculated by (2.2a). Since andt can be arbitrarily chosen (within certain limitspgnding
on available data)f, (s,t) can be viewed as a given (deterministic) functbispaces and

time (hour)t. At Nordbyslettan, =1 andn =4

14



A complete description of all WORM model equatiosngjiven in Appendix A, which also
includes equations of the built-in meteorologica-processor WMPP.

The WORM model is similar to other integrated Gaussopen road line source models
currently in operational use in the other Nordiumies, such as e.g., the Danish OML
Highway model (Berkowicz et al., 2007), the FinniSAR-FMI model (Harkénen et al.,

1996), and the Swedish OpenRoad model (Gidhageh,e2005). Compared to the CAR-
FMI and OpenRoad models, the WORM model has a raduanced treatment of traffic

produced turbulence from the moving vehicles simitathe OML Highway model, and a
more up-to-date formulation of ambient atmosphéispersion similar to the newly proposed
OML Research Version model (Olesen et al., 2007).

A recent evaluation and inter comparison of the ONighway, CAR-FMI and a previous
beta release of the WORM model is given in Bergeale(2010), which also contains a
description of other operational integrated Gaumssf@en road line source models currently in
use, such as e.g., the CALINE3 and CALINE4 modBlengon, 1992), and the older US
EPA HIWAY-2 model (Peterson, 1980). A review of skeand other models for open roads
and highways can be found in Sharma et al. (2004).

For an earlier attempt of probabilistic modellinghwthe previous beta release of WORM,
see Walker (2007). For earlier attempts of comlgrtime previous beta release of WORM
with observations of NQat Nordbysletta using data assimilation, see Waikel Berger
(2007) and Walker et al. (2006).

For a recent evaluation of the current WORM modghiast observations of NQOat
Nordbysletta, see Walker (2008).

2.3 Non-hierarchical stochastic framework and medel

We will first describe a non-hierarchical stochastamework for the WORM model. The
term non-hierarchicalis used here to indicate that the WORM model balltreated simply
as a given “black box” deterministic function, witlh uncertainties explicitly associated with
any input or intermediately calculated variableshis model. Then three concrete stochastic
models (A, B and C) will be described which aredt from this framework.

2.3.1 Non-hierarchical stochastic framework

A non-hierarchical stochastic framework for modwilithe relationship between tfuwurly
average concentrationgs, t) of an air pollutant (such as e.g., N@t a set of spatial points

s=1,...,.S (s=(x Y, 2) and times (hours)=1,...,T and WORM model output concentrations

$with true hourly average concentrations we heranreourly average concentrations that would hawn be
observed had there not been any measurement errors.

15



f.(s.t) for the same pollutant and space and time locstioan tentatively be defined by the
following set of basic linear regression equations

N(s)=8,(9+B(39 ' (s)+e( sk (2.3.1a)

where the residuals(s,t) are assumed to be normally distributed, and wtierenodel value
fc“)(s, t) represents the main explanatory variable, or daterfor the true concentration

¢ (s 1). Since these concentrations are defined on theewative axis, with distributions

typically skewed to the right, we will allow forgower transformation of these quantities of
the Box-Cox type in (2.3.1a), i.e., we define

c(st)A -1
M(sy=" 4 OrA*0 (2.3.1b)

In(c(s ) for A=0

and similarly for ") (s,t), where, is the parameter of the transform (Box and C0%4).9

Applying such a transform for an appropriate vasti@ in (2.3.1a) will help create variables
which are more symmetric (less skewed), and mogioitantly, normally distributed
residualss (s, t).

Note that in (2.3.1a) the regression coefficiegfsand g are assumed to depend on the
spatial positions. Thus, for each spatial locatian we may consider (2.3.1a) as defining a
separate linear regression model with coefficiefités) and g (s) . We will, however,

assume that these coefficients have some degeraithness in space.

Furthermore, regression errargs, t) are assumed to be dependent, both in space aed tim

In particular, we assume thafst) at any given point follows a stationary zero-mean
ARMA( p,q)-process, i.e.,

p

e(s)=Ya(9e(s = )+n( s)éq( (st ) (2.3.10)

i=1

where the autoregressive and moving average pageswetand g, are assumed to depend
ons, fori=1..,p,j=1..q9, and wherey(s,t) denotes a zero-mean white Gaussian noise

process with standard deviatiar(s). We limit ourselves to ARMA-models in this context

since it is reasonable to believe that there shbealdo trends in these errors over time, since
they represent differences between (transformea &nd model calculated values, which
should not exhibit any particular trend over time.

Likewise, at any given time (hout) errorse(s,t) are assumed to be spatially dependent.

16



There are many ways to model such dependenciesaifdeZidek, 2006). One possible
approach here is to assume an exponential fornthforcovariance between the Gaussian
noise termsy(s,t) at arbitrary locations ands', e.g., modelled as follows:

cov(n(s.t) 7(s"9)=a(9o( 9 expi(—” s #2/53)”) (2.3.1d)

whereo(s)” =Var(n(s 1); |s- s|,denotes the usual 2-norm or Euclidian distance detw

the locationssands'; J; is a given distance-scale parameter; and where typically set to
e.g.,1 or 2, depending on the degree of smoothness we sadkdm.

Modelling spatial or temporal dependencies are mamd for making multivariate
probabilistic predictions, i.e., when we want tdca&ate the probability distribution of
concentrations at several spatial and temporatitwta simultaneously. Examples here could
be e.g., to calculate the probability that a daigan value at a given point exceeds a given
(limit) value; or to calculate the probability theat average concentration over a given spatial
domain at a given hour will exceed a given (limiglue. We could also conceive of
applications where we average both in space ané simultaneously. For univariate
probabilistic predictions (one-point-at-a-time)sipace and time, modelling dependencies will
be of minor importance.

In addition to the basic framework equations regmé=d by (2.3a-d), we may also define
observation equations

Y (s 0=H( (s, 00,( 5 }), MLV (2.3.1€)

where M denotes the number of observational points (mangostations), and the function
H is an observation operator linking transformed cpiality observationsl(”)(sﬂ,t) of the
given pollutant with corresponding transformed truencentrationsc“)(sn,t) at each
measurement poirg,, for m=1,..,.M, wherens, (s,.t) represents observational errors. For

air quality observations, it is often the case thath errors can be assumed to be normally
distributed and additive, e.g.,

Y (50 0= (s d+m,( 50 )0 MEL N (2.3.17)
Where/7y(sm,t)i£i N(O,Jzy) for all observation points, and times (hours).

One of the main assumptions above is that theuabgtrorse(s,t) are normally distributed

and follows an ARMA-process. Since the errors repné differences between (transformed)
true and regression adjusted modelled concentsaiiois not unreasonable to believe that
they (theoretically) will form a stationary, zeraean time series at any given spatial paint
The existence of a Wold decomposition for any spidtess (Shumway and Stoffer, 2006,
Appendix B.4) gives us some confidence that thevabesiduals might follow an ARMA-

17



process. Furthermore, according to Irwin et al.O@0 differences between observed and
model calculated concentrations using Gaussian elalispersion models are typically

lognormally (most cases) or normally distributed,vwoll have some distribution close to

these. Including the Box-Cox transformation paranet (2.3.1a) thus gives us some
confidence that such differences (appropriatelpnsi@rmed) can be modelled in terms of
normal distributions.

As stated earlier, the stochastic framework defimeterms of the (state-space) equations
(2.3.1a-f) is callednon-hierarchical since it does not explicitly address any internal
uncertainties in the WORM model itself, but ratheats this model as a given “black box”

deterministic function of space and time (and othput data which are given as functions of
time). An alternative way of handling modelling en@inties is to consider uncertainties also
in one or several of the internal variables of WORM model. This leads naturally to a

hierarchicalapproach of handling model uncertainty, whichasatibed in Section 2.4.

In the next three sections, however, we will présbree concrete stochastic models (A-C)
derived from the above non-hierarchical framework.

2.3.2 Model A: Box-Cox linear regression with autwelated errors

If we replace the (state-space) variabtg)(s 1) in (2.3.1a), representing transformed true
concentrations, with similarly transformed concelivebservationSy“)(s ), eg., by
assuming that any observational error has alreaéy lincluded in the noise temis,t) in
(2.3.1c), we obtain a Box-Cox linear regression eh@dth autocorrelated errors:

Y (s)=B(9+B8(9 £ (s)+e( sk (2.3.2a)

p q
e(s)=Ya(9e(st )+n(s)+2.6,(3n( st Yin( sk foo( §) (2.3.20)
i=1 j=1
with a separate set of parameters for each spatialion s. This model can alternatively be
written as a univariate ARMA{, g) model in time series form

(s 9-(A(3+A(3 £ (s)=Xal X 9 st)-(a40A(JsH( st

i=1
q

(s 1)+ 2.6, (st )

j=1
with the linear regression terms in (2.3.2a) ineldids external regressors.

If observationsy(s t) are available, parameters of this model at thatpoican be estimated

e.g., by using maximum likelihood estimation (MLEAsed on the given observations and
model calculated values. In practice, this can tweede.g., by first estimating the Box-Cox
parameterd using the profile log-likelihood method as desedhin Box and Cox (1964),
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using independent data from the original time sevfeobserved and model calculated values,
e.g., everyn™ value of the series, for large enoughto make the data independent, and then
estimating the other parameters in the model usiegransformed observations” (s t) and

model calculated valuesb“)(s, t). The latter can e.g., be accomplished using theuline

ARIMA since this is capable of including externagiressors in the ARMA-model and is also
able to handle missing data since it is basednatlron a Kalman filter.

In order to be able to use this model also at aplattations where there are no observations,
we need somehow to interpolate or extrapolate astithparameters from the observation
pointss,,m=1,..,M, to any new locatiors. We prefer here to interpolate or extrapolate
parameters to the new poisit rather than interpolating predictions, since wefgr to use
the actual model calculated valdg(s,t) at the points, rather than interpolated values of
f.(s.t) from the observation points. Interpolation of paeters can be accomplished by
using spatial interpolation techniques, such as &Kmging (Le and Zidek, 2006), or simply
by selecting a nearby representative pajpand use the estimated model parameters from
this point also at locatiors . Special care must be taken when e.g., interpgjathe

parameters of the ARMA-models to ensure that tealtieg new model remains causal and
invertible.

In practice, there will usually not be many obséores available close to roads in a city or
urban area, so in most cagdswill be relatively small, e.g., typically in thamge 1-10. The
procedure of interpolating or extrapolating pararewill, therefore, only work if the true
parameters do not vary too much over the areateifdst.

In the following, let the estimated model paranmetesed for locatiors simply be denoted
bys,, B, @, 6, o andA. Probabilistic predictions of concentrations datitaary individual

spatial locations=1,...,S and times (hours)=1,...T can now be obtained by drawing a
large numbem (e.g., 100) of samples (ensemble members) asnsillo

MODEL A: ALGORITHM FOR PROBABILISTIC PREDICTIONS

For s=1,...,S, t=1,...Tandk =1,...,Ndo:
1. Draw 7% (st)~ N(O,az).

2. Calculates™ (s,1) =Zp:¢g£(k’(s t=i)+7%(s t)+Zq:Hj/7(k’( st ).
i=1 =1

3. Calculatey™ (s 1) :{/1 B+ B (s)+e(s)]+ ]}j :

where the last expression involves the use ofrithierse Box-Cox transformation, and where
we assume thap® (s,t) ande® (s,t), for t <1, are either given, or simply set to zero. The
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resulting set of predicted concentration vall{le@(s,t),kz 1|\} then forms a discrete

approximation of the underlying continuous predietPDF of concentrations at each point
s=1,...,S and times (hours)=1,....,T .

The above algorithm is oriented towards univar{atee-point-at-a-time) predictions in space,

but is able to handle multivariate predictionsime, since time dependencies are taken into
account via the ARMA model. Multivariate predict®im space can be accomplished by
drawing ;" (s,t) in Step 1 of the above procedure using a mulétarnormal distribution

with a spatial covariance matrix as described intiSe 2.3.1, but in practice it might be
difficult to obtain estimates of the distance sgadeameterd, in (2.3.1d), at least we need

then several observations, and even then it mighdifficult since we only have one set of
estimated parameters at each spatial point. It beynecessary then, to use just some
predetermined value for this parameter in ordeolitain smoothness in space. We focus
here, however, on the univariate version since ithithe way model A will be applied at
Nordbysletta.

Using model A at Nordbysletta, the first third betperiod (840 hours) with observations at
Station 2 will be used to obtain parameter estimjatehich then will be used to make

probabilistic predictions with this model at thergastation for the rest of the period, and at
Stations 1 and 3 for the whole period. The predngiwill be compared with corresponding

(independent) observations at the stations, thétsesf which are shown in Section 4.1.

2.3.3 Model B: Bayesian non-hierarchical prior prettye model

Irwin et al. (2007) provides a description of urtagties associated with Gaussian plume
models based on numerous field studies from thig €860s to the present, comparing the
output of such models with observations. The resfrithm this extensive work seem to
indicate that the ratio of observed over predi¢tedrly average concentrations typically has
a lognormal distribution with a geometrical stamtideviatiorf which in the different studies,
and trials within each study, typically ranges framd to 2.5 with a median value of about
2.0.

Even though the field studies in Irwin et al. (2D&/based on modelling single point sources
rather than integration of line sources, as iscthge with the WORM model, there are many
similarities between the field studies and the gme®ordbysletta campaign data, e.g., a good
characterization of the meteorological conditiohsotigh the use of local meteorological
observations, and a good control with emissionskawiground sources. Thus, we think that
the historic field studies should be relevant gopliaable also for the case at Nordbysletta.

The fact that the ratios of observed and modelutaied values seems to follow lognormal
distributions supports the non-hierarchical stotbdsamework as defined in Section 2.3.1,

* X ~ Lognormal has geometrical standard deviatiorif and only if log(X) ~ Normal with standard deviation
log(o).
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since this is equivalent with stating that the liganic differences between observed and
model calculated values should follow normal disitions, which is in conformance with the
framework using the transformation parametero.

Within the non-hierarchical stochastic frameworle iuterpret this as stating that Equations
2.3.1a-b holds withg, =0, g =1, and with standard deviations in the range from about

log(1.5) to log(2.5), with a median value of ablmg(2.0), using no autoregressive or moving
average terms, i.ep=q=0, since the empirical standard deviations in thedfistudies

apparently have been calculated without taking amtwount any such terms.

We may give this general result a Bayesian intésiln within the non-hierarchical
stochastic framework by letting have a prior distribution with a high probabil{say 95%)
of being in the range log(1.5) to log(2.5), whileoaing for some chance (say 5%) of being
outside this interval. It is, however, not easylézide on a distributional form.

One possibility here could perhaps simply be to theeempirical distribution of all the -
values from all the field studies, and this maylwel a reasonable choice as an entire general
prior for any new place with conditions similarttmse in the field studies.

However, according to Irwin (2007), values @ofseems to depend on the complexity of the
situation. Dispersion over flat uncomplicated rulelrain (e.g., prairie grass) tends to give
lower values ofg than dispersion in environments with many obstaaeg., as in cities and
urban environments. We consider the situation atblgsletta (which is relatively flat but
with some larger obstacles nearby), to be somewimebetween, which makes it perhaps
somewhat more likely for to be in the middle part of the above range thagither end.
Thus, it seems more natural to think of a prior doat Nordbysletta to be unimodal with a
median value of about log(2.0). A 95% prior proligibfor o being in the interval [log(1.5),
log(2.5)] can then e.g., be obtained by letting th@25 and 0.975 quantiles of the prior
distribution have the values log(1.5) and log(2&spectively.

We still have not decided on the actual distribngioform. A typical and traditional choice
for a scale parameter, suchasis to give the corresponding precision parameter™ a
Gamma distribution. Although this may appear amewhat arbitrary choice, which to
some extent is true, we have nevertheless decideg, lat least tentatively, to givea
Gammag,b) distribution with shape and scale parameteendb, corresponding to a prior
distribution ong with 0.025, 0.50 and 0.9 &uantiles being as close as possible to log(2.5),
log(2.0) and log(1.5) respectively. The best fitigarameter values using minimum least
squares fitting of quantiles was found to &€14.98 and b =0.14, which gives 0.025, 0.5,
and 0.975 gquantiles equal to log(1.73), log(2.ay Bg(2.5) respectively. The adjusted value
for the lower quantile was found to be acceptable.

Figure 2.3.3a (left) shows the resulting Gammargioo the precision parameterwith the
0.025, 0.5 and 0.975 quantiles of this distributimicated by the dashed vertical lines.
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Figure 2.3.3a. Left: Gamma prior for precision paeger r with 0.025, 0.5 and 0.975 quantiles indicated by
dashed vertical lines. Right: Marginal t-distribaifgrior for error residuaﬂ(s, t) (black curve) with
corresponding normal approximation (red curve).

The resulting model, which is a Bayesian non-h@raal prior predictive model, will be
called model B. It is defined as follows:

logy(s.t)=log f (s d+n7( s} (2.3.3a)
n(s.t)~ N(0.0%); 7=07"~ Gamméa b (2.3.3b)

with a=14.98 andb=0.14. Also shown in Figure 2.3.3a (right) is the resigit marginal
distribution of 77(s,t) (black curve), which will be a Student's -distribution® with
approximately 30 degrees of freedom (d.f.), andhwiean O and scake=log(1.99). As can

be seen from the figure, due to the high valua pthis distribution will be very close to a
normal (shown as the red curve). Thus, using tlevalprior onr will essentially have the
same effect as operating with a fixed valueooflog(1.99, i.e. very close to using the

simple priorN(0,log(2}) on ;(s,t), which may indicate that the above Gamma prior ds

perhaps somewhat too informative.

Using a less informative prior on, e.g., by making it less peaked, leads to marginal
distributions ofr(s,t) moret-like, i.e., less peaked and with heavier tailsfdgunately, we

did not have time to test any such alternativebénpresent work. It is also then very difficult
to actually decide on a “best” a priori distributad form for 7 (or for o for that matter).

However, in contrast to model A, model B can alsaibed in cases where there are no local
air quality observations available close to thedraghich typically will be the case for most
roads in cities and urban areas.

®We here use the fact that¥ ~ N(u,0?), and if r = 0% ~ Gammga b) wherea is the shape parameter abd

is the scale parameter of the Gamma-distributibentmarginallyX ~t,,(«,s) where i is the mean and

s= (ab)'% is the scale of this (non-centrdldistribution with 2a degrees of freedom.
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Probabilistic predictions of concentrations at @épy individual spatial locations=1,...,S
and times (hours)=1,....,T can now be obtained by drawing a large numidje.g., 100) of
samples (ensemble members) as follows:

MODEL B: ALGORITHM FOR PROBABILISTIC PREDICTIONS
Fors=1,...,S, t=1,..Tandk=1,....Ndo

1. Draw r" ~Gammaé b ' with a=14.98 (shape parameter) and

b=0.14 (Scale parameter) and calculat&” =1/7®

2. Draw 7% (s,t)~ N(O,a(k’z)
3. Calculatey™ (s t)= £ (s Jexg{n® (s}

The resulting set of predicted concentratiof” (s1),k=1..,N forms a discrete

approximation of the underlying continuous preaetPDF of concentrations at each point
s=1,...,S and times (hours)=1,....T .

The above algorithm is oriented towards univanmglictions in both space and time. As for
model A, multivariate predictions in space can beoanplished by drawing™ (s,t) in Step

2 using a multivariate normal distribution with pasial covariance matrix as described in
Section 2.3.1. Same comments then apply as for fadé/e focus here on the univariate
version, however, since this is how model B will Bpplied at Nordbysletta, where
probabilistic predictions will be compared with ebgtions from all three stations, the
results of which are shown in Section 4.2.

2.3.4 Model C: Bayesian non-hierarchical postenqoedictive model

Model C is defined by the following system equasion
loge(s,t)=5,(9+log f(s)+e( s} (2.3.4a)
e(st)=¢(9e(st)+n(s}; n( sk PQOU( )52) (2.3.4b)
and observation equations
0gy(sn,9=logq( 5.3 +77,( s }5 7,( X~ NOg?); m L. N (23.4c)

where o, represents the standard deviation of the obsenadtierrors, here assumed to be

equal for all stations which is a reasonable assiomp
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This model is simpler than model A, but slightly raaeneral than model B, since it also
includes a bias tern®, (s) and an autoregressive AR(1) parameggs) . Contrary to the two
previous models it is formulated in terms of (lagan of) state-space variablegs, t)
representing true concentrations at locatisrend times (hours)). Like model B, this model
is also Bayesian since we will be operating witfopdistributions on all parameters, but
contrary to model B, however, observatioy(s,, t) will here be used to define posterior

distributions for all parameters, which then sulosgdly will be used in the predictive model.
Appendix C describes how posterior distributionstité parameters can be obtained at a
given observation poing, using observations there over a given time petjodr .

In order to use this model also at spatial locatiere there are no observations, we need
somehow to interpolate or extrapolate the postetistributions for the parameters from the
observation points,,m=1,...,.M, to any new locatiors. The same comments that were

made for model A is, therefore, valid also herethim following, therefore, let the true model
parameters for locatios simply be denoted bg,, ¢, and o, and let the posterior

distributions of these parameters be denotegp %, |, p(¢|0) and p(7 |0} respectively.

The prior distribution suggested for each of them@meters is shown in Table 2.3.4a.

Table 2.3.4a. Prior distributions for the parangtermodel C.

Parameter Distribution
B, Non-informative Uniform
4 Uniform[0,1]

Gammag,b) with shape

T
a=14.98 and scalebh=0.14

The prior forr is the same as was suggested for model B, repiregehe same prior belief
regarding dispersion model uncertainty. See Figude3a (left) for a plot of this distribution.
Furthermore, for the bias paramegr, which is a location type parameter, we will use a

non-informative (constant) prior, since we havepmnior opinion regarding the value of this
parameter. This is also the case for the autorsgeparametey, except that, for this

parameter, the value should lie in the intervall]Gince we believe errors(s,t) to be
positively correlated in time and that the ARMA-pess is causal.

In order for the predicted concentrations from timedel to be compatible with observed
concentrations, we should add simulated obseniti@nrors;, (s,t) so that the final

predicted concentrations are given by

log¥(s.9)=loge(sy+n,(s}: n,( sk~ Nog?). (2.3.4d)
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Probabilistic predictions of concentrations at @épy individual spatial locations=1,...,S
and times (hours)=1,....,T can now be obtained by drawing a large numidje.g., 100) of
samples (ensemble members) as follows:

MODEL C: ALGORITHM FOR PROBABILISTIC PREDICTIONS
Fors=1..,S,t=1..Tandk=1,..,Ndo
1. Draw ™ ~ p(r |0 and calculater®™” =1/7™
2. Draw ¢ ~ p(g|J)
3. Draw B ~ p(5, |0
4

. Draw % (s,t) ~ N(O,a(k)z) and calculate

£09(5,1) = #¥e® (5 t-1) +7 (5 )

5. Draw 7% (s,t)~ N(0,02) and calculate

y(k)(st):exp(ﬂék)) (s ex;{e(k)( s)} equyo( s)}

The resulting set of predicted concentratiof” (s1),k=1..,N forms a discrete

approximation of the underlying continuous preaetPDF of concentrations at each point
s=1,...,S and times (hours)=1,....T .

The above algorithm is oriented towards univariatedictions in space, but may handle
multivariate predictions in time, since time depemdes are taken into account via the
AR(1)-model. As for the previous two models, mudtinate predictions in space can be
accomplished by drawing® (s,t) in Step 1 using a multivariate normal distributieith a

spatial covariance matrix as described in Secti@12 Same comments then apply as for
model A. We focus here again, however, on the urat@aversion since this is how model C
will be applied at Nordbysletta.

Using model C at Nordbysletta, the first third loé tperiod with observations at Station 2 will
be used to obtain posterior distributions of theapeeters which then subsequently will be
used to make probabilistic predictions with thisdaloat Station 2 for the rest of the period,
and at Stations 1 and 3 for the whole period. Thediptions will be compared with
observations, the results of which are shown irtiGed.3.

2.4 Hierarchical stochastic framework and models

We will first describe a hierarchical stochastianrework for the WORM model. Then we
will describe a concrete stochastic model (D) whecterived from this framework.
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The termhierarchicalis used here to indice that, in this frameworkyncertainties associd
with input and intermediateariable: of the WORM model also might lieeate« explicitly, in
addition to anyiinal model output uncertain

By modelling more preciselinput and intermediatencertainties as they arise and propa
through the numerical modéiopefully, we might be able to obtgmmedictive distributions
of model outputtoncentrationwhich aresharper(see Chapter 3), and more dynamic, t
can be achieved by using predictive distributiasnf nor-hierarchical mode. Since we, in
doing so, in a sendey to mimic nature, this will usually require tremulationmodel to be
sufficiently close to theeal proces, so it will bemeaningful to propagate st uncertainties
through the model.

2.4.1 Hierarchical stochastic framewt

Uncertainties and errors the input and intermediate variables of tA§ORM model, will
inevitably lead @ uncertainties and erroalso in other derived interrdite variables of this
model, as well as in thénal output concentrations. Since alariablesare defined or
calculated in the modeh a sequential and hierarchical manneisirg given physical
expressions (functions oequation) for each model variable, thieads naturally to a
hierarchicalframework for describing thpropagation of such uncertaint and errors.

To fix ideas, letv,,v,,...,v denotethe complete set of WORM model variablWithout loss

of generality, we mayssume he for simplicity that the indicesf the variableshave been
orderedaccording to the flo' of internal model calculations involvirtest. The model thus
calculates variable, at time (hour't internally by

Vi (1) = (6 Vo (1) (2.4.1a)

where f, denotes the deterministic model ftion (equation) used faralculatingvariableyv,
and wherev,, ,, denotes the vector of ott model variables that, explicitly depends on, i.e.

the parents of, using grapktheoretical terminology. This iustrated in Figure 2.4.1

Figure 2.4.1a. In this graptpart of a Directed Acyclic raph (DAG)), variablev, (child node)is calculated

from variablesv;, V,,...,v; (parent nodes)yith associated propagation of uncertain

® The graph in this and the next section were prodlusing GeNle 2.0 (Graphical Network Interface)gvean
from the Decision Systems Laboratory, Universitydfsburg http://genie.sis.pitt.edy/
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The figure shows a graph depicting a model variaplethe child node, being calculated
from model variables, , v,, ..., v;, the parent nodes (for simplicity assumed hereetthe

nodes 1 tq).

If one or more of the input variables are uncerttirs uncertainty will also propagate to the
calculated output variable through (2.4.1a). Alsace no variables are used, either directly
or indirectly, to calculate itself, the resultingagh of all nodes (variables) and arcs
(dependencies) will necessarily be a Directed Acy@laph, or DAG.

Ultimately, in this framework, the last model védniav, to be calculated is the model output

concentration. This is the only WORM model variatiat (in addition to time) also will
depend on the spatial locatian and is calculated by

Vi (s9=£(St () (2.4.1b)

where f_is the same functior, as used in (2.3.1a) and (2.2b), but where we nqMicétly

have included the vector

oy Of parent variables that depend on as arguments to this

function.
We will now describe the corresponding hierarchgtathastic framework.

For each uncertain input or intermediate modela@ev, , k=1,...,r — 1, which we explicitly
want to model, we will introduce a correspondintts-space) variablg representing the
conceived underlying trievalue of this variable. Each variabig(t) is then assumed to
evolve in time according to the following set afdar regression equations

Xt(fk) (t) = Bow + Buc fIEAK) (t' Xpa(k)(t)) +e (1) (2.4.1¢)

where f, represents the deterministic model function fordelovariablev, as used in
(2.4.1a), and where, represents the possible use of a local Box-Cox pdvansform
parameter. In (2.4.1c)3, and g, represents local regression coefficients for \dei ,
while the error termg, (t) are assumed to be dependent in time. In particwar will

assumes, (t) to be normal and follow a stationary zero-mean ARM, , q,)-process, i.e.,
Bx %
g ()= aget-i)+n (t)+D 6 (t=i); n(t)~N (O,azk) (2.4.1d)
i=1 i=1

for k=1,...,r— 1. We limit ourselves to ARMA-models in this contesiice it is reasonable to

believe that there are no trends in such errors tkee, since they represent differences
between (power transformed) true and model caledlablues of the given variable, which
should not show any particular trend over time.

’ For some such variables it may be difficult to givprecise definition of what we mean by a trueigaWe
will attempt to give such definitions for the varias of model D in the next section.
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For the last (state-space) varial€ s, t), representing true concentration at painand time
(hour) t, we may use the same stochastic model as desanilssttion 2.3, i.e.

X (s9=8, (948 (9 ) (stxe,(N)+a( sk (2.4.1e)
Pr 9
£(s)=2a(9e(st-)+n(s)+28 (3 (st Ji a2 (s fog’( )y (24.10
i=1 j=1
where model output concentratidp represents the main explanatory variable or catari
for the true concentratior . In (2.4.1e) regressiaroefficients 3, and 3, are again assumed to
be dependent on the locatien and multivariate predictions can be performediescribed in
Section 2.3, e.g., by drawing (s,t) as a multivariate normal with a given spatial c@ace
matrix.

It is possible to include observation equations(fransformed) model variable¢™ (t) by

using equations similar to (2.3.1e-f). Furthermore may want to include, for physical
reasons, truncation of some of the variables, eftben above, from below or both.

In some cases, dependencies may exist betweerblearihat we may wish to include in a
more direct way than through the flow of model aétions, e.g., between input variables.

Also, in the above hierarchical stochastic framéwwee have tacitly assumed that residual
errors ¢, are independent of explanatory variabigs . This may well be an unrealistic

assumption in many cases (Goldstein and Rougidd8)200ne may, therefore, envision
extensions of the above framework where such depemels are modelled, e.g., using
methods such as dependence vines and copulas (Kkeoand Cooke, 2006).

Finally, on the negative side, it must also be #a&d, due to the large number of parameters,
models derived from the above framework might waltounter problems of identifiability.

2.4.2 Model D: Bayesian hierarchical prior prediai model

Based on general knowledge about uncertaintiesams8&8an plume modelling (Irwin et al.,
2007), and an extensive sensitivity analysis peréa with the WORM model using data
from Nordbysletta (not shown here), the followitgete model variables were selected to be
included in a Bayesian hierarchical prior predietimodel, which will be called model D:

» Effective plume heighH,,

* Wind speed at 10 m above grouag,
» Wind direction at 10 m above groumg,

(The total dispersion parameter could also have been included here, but, unfotélyave
did not have time to do this in the present work.)
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Bayesian uncertainty models for the above thre@abims have been developed partly using
local meteorological and dispersion modelling ekperat NILU (Tgnnesen, 2010), and
partly from Irwin et al. (2007), providing a charagzation of typical uncertainties in local
meteorological parameters associated with Gaugdiane models based on a large number
of field studies.

As stated earlier, a potential benefit, in our viewth hierarchical models, such as model D,
as compared with the previous non-hierarchical rspde that, by propagating some of the
uncertainties through the model, we might be ableathieve predictive distributions of

modelled concentrations which are sharper, and mgnamic, than predictive distributions

obtained using non-hierarchical models. This, havekequires the model to be sufficiently
close to the real process in the atmosphere anditicartainties that we specify, more or less
subjectively if we use the Bayesian approach, loseclto the actual uncertainties of the
variables involved, the latter of which might na¢ bn easy task. We will describe this
somewhat more concretely at the end of this section

A tentative uncertainty model for the true, effeetiplume heighH_, ® at time (hour)}t is

defined as (Tgnnesen, 2010)
Her (1) = fi, (0 +72, (1); 724, ()~ N(0G%,); Hu()21m  (2.4.22)
where f, (t)=3 m (constant for all hours).

The precision parameter, =a,feﬁ is here given a Gamma distribution with paramegsrs
shown in Table 2.4.2a, corresponding to a priotrihigtion ong,  with 0.025, 0.5 and

0.975 quantiles equal to 0.6 m, 0.75 m and 1.0gpeively.

Table 2.4.2a. Prior Gamma distributions for precigparameters of model D.

Parameter | Shape a | Scale b Corresponding o -quantiles
0.025 0.5 0.975
Th, 14.0 0.13 0.6 m 0.75m 1.0m
T, 7.8 0.54 0.36 m& 0.5 ms 0.75 m&
Ty 7.7 1.4e-3 7° 10° 15°
4 8.4 0.56 | log(1.4) = 0.34log(1.6) = 0.47| log(2.0) = 0.69

A plot of the distribution forr,, is shown in Figure 2.4.2a (left).

® This is defined here as the correct height of ibenp mass centerline at the current hour, takemas/erage
over the downwind area between the road and thieeitmost receptor point.
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Prior for tau_H_eff Marginal prior for H_eff
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Figure 2.4.2a. Left: Gamma prior for precision paeter Ty, with 0.025, 0.50 and 0.975 quantiles indicated as
the dashed vertical lines. Right: Marginal t-distited prior for WORM model variabléi (t) (black curve)

with normal approximation (red curve), both trumchat 1 m.

The parameters of this distribution were found gdeast squares fitting with target quantiles
equal to 0.5 m, 0.75 m and 1.0 m respectively. @abgistment of the smallest of these
guantiles was found to be acceptable. The seleofitihe Gamma distribution here is in large
part due to tradition and mathematical convenienather than specific knowledge of the
shape of this distribution. However, we considetoitbe more likely that,, should be

around the value of the median (0.75 m) rather tteng closer to 0.5 m or 1.0 m.

The resulting marginal distribution of,, (t) will be that of a (non-central) t-distribution
with parameters as shown in Table 2.4.2b, but &tettat 1 m above ground.

As seen from Figure 2.4.2a (right), this distribatiwill be very close to a normal distribution
since the number of d.f24) is quite high (28.0). Using the above prior gn will thus,
essentially, have the same effect as operating avitited value ofo,, =0.74 m, i.e. very
close to using the simple pridN‘(0,0.?%) for H, (t), which may indicate that the above

Gamma prior orr,,  is perhaps somewhat too informative.

Using a less informative prior on, , e.g., by making it less peaked, will lead to nzat

distributions forH,, (t) moret-like, i.e., less peaked and with heavier tailsfddunately,

we did not have time to test any such alternativethe present work. It is then also very
difficult to actually decide on a “best” a prioristtibutional form forz,, (or H,, (t) for that

matter).
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Table 2.4.2b. Prior distributions for model varedbbf model D.

Variable | Marginal distr. Df Mean u _Scale_llz Approx. distr. | Truncation
2a s=(ab)
He (1) to(#s) 280 3.0m | 074m | N(u¢) 1m
Uyon (1) ta(4s) | 15.6| f, (1) | 0.49ms | N(u¢) 0.1 ms*
Biom (t) toa (14,9) 15.4| f, (t) 9.8° N(u.¢) None
n(s1) to(ts) |168] 0O 0.46 N(xs) None
(st * N/A | N/A N/A * None

A tentative uncertainty model for the true houryeege wind speed at 10 m above ground
u,, at time (hour is defined as (Tennesen, 2010; Irwin et al., 2007)

U (1) = f, (1) +7,, () 72, (1)~ N(O,aimm); Uom(t)2 0.1Ms™  (2.4.2b)
where f, (t) is the observed hourly average wind speed at (iroer) t at Station2.

The precision paramete; =o,? is again given a Gamma distribution with paramsetes
shown in Table 2.4.2a, corresponding to a priotrilistion ong, ~with 0.025, 0.50 and
0.975 quantiles equal to 0.36 T€.50 m& and 0.75 mis respectively.

A plot of the distribution forr, is shown in Figure 2.4.2b (left).

Prior for tau_u_10m Marginal prior for u_10m

0.10 015 0.20 0.25
0.

0.05

0.00

=
i j \ o |

T T T T T T T T

2 4 6 8 10 05 1.0 15 20

Figure 2.4.2b. Left: Gamma prior for precision paeter LA Right: Marginal t-distributed prior for WORM

model variableu,,, (black curve), here shown for an arbitrary valtiefg (t) =1.0ms" with normal

approximation (red curve), both truncated at 0.%.ms

The parameters of this Gamma distribution were dousing least squares fitting with target
quantiles equal to 0.25 Ms0.50 m& and 0.75 ms respectively, with the adjustment of the

° This is defined here as the correct hourly averdige speed at 10 m height at the current hour rtaeean
average over the downwind area between the roatherfdrthermost receptor point.
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smallest of these quantiles found to be acceptdlfie. same type of comments that were
made regarding the distributional formgf can also be made here.

The resulting marginal distribution of,,(t), given f, (t), will be that of a (non-central) t-

distribution with parameters as shown in TableZh4but truncated at 0.1 m/s. Again, as
seen in Figure 2.4.2b (right), the distributionIviaé close to a truncated normal since the
number of d.f. is relatively high (15.6). The satyyige of comments that were made regarding
the distributional form oH,, (t) can also be made here.

A tentative uncertainty model for the true hourleeage wind direction at 10 m above
ground g, 19at time (hour)t is defined as (Tegnnesen, 2010; Irwin et al., 2007)

o (1) = T, ()47, (1): 7, (1)~ N(0.0% ) (2.4.2c)
where f, (t) is the observed hourly average wind directiorinag t(hour)t at Station 2.

The precision parametej, =g,’ is again given a Gamma distribution with paramsetes
shown in Table 2.4.2a, corresponding to a priotridistion ono, with 0.025, 0.50 and
0.975quantiles equal to’710 and 15 respectively.

A plot of the distribution forr, is shown in Figure 2.4.2c (left).

Prior for tau_phi_10m Marginal prior for phi_10m

100

80

Distribution
Distribution
0.

I/ N

0.000 0.005 0.010 0.015 0.020 0.025 120 130 140 150 160 170 180

tau_phi_10m phi_1om

Figure 2.4.2c. Left: Gamma prior for precision paeser Ty - Right: Marginal t-distributed prior for WORM

model variableg,,, (black curve), here shown for an arbitrary valtid,o (t) =150.0" with normal

approximation (red curve).

The parameters of this Gamma distribution were dousing least squares fitting with target
guantiles equal to°510 and 15 respectively, with the adjustment of the smallefsthese

guantiles found to be acceptable. The same tym®minments that were made regarding the
distributional form ofr, can also be made here.

' This is defined here as the correct hourly avereige direction at 10 m height at the current haaken as
an average over the downwind area between theanodthe furthermost receptor point.
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The resulting marginal distribution aof,,, (t) given f, (t) will be a (non-central) t-

distribution with parameters as shown in TableZzh4Again, as seen in Figure 2.4.2c, the
distribution will be close to a normal since themher of d.f. is relatively high (15.4). The
same type of comments that were made regardindishébutional form ofH,, (t) can also

be made here.

The above prior distributions fai. (t), u,,(t) and ¢, (t) are assumed to be independent.

Ideally here, we should have included dependenagetiing between wind speed and wind
direction since clearly the uncertainty in wind edition increases with decreasing wind
speed. However, since the above prior model foredamty in wind direction is actually

oriented towards low wind speeds, we have, assadpproximation, defined the priors here
to be independent. Even though this will resultwmd directions being somewhat too
uncertain in situations with strong wind, concettrzs will then be much lower, so the
consequences of this approximation on uncertamgpncentration will not be so severe.

A tentative uncertainty model for the hourly averggedictive concentratiofi(s,t) at an
arbitrary spatial location s and time (hour)given true values ofi, (t), Uy, (t) andg,,, ()
is defined as

logy(s,t)=log £t He (D Uon( ) 2ol ) +2(sY: 7( s}~ N 00?) (2.4.20)

where fc(s, t, Hoe (1), Uom( 1) ,¢10m(t)) is the hourly average concentration calculatedh wie

WORM model at the same space and time locationgyusue input values of the WORM
model variablesH, (t), u,,(t) and ¢, (t).

The precision parameter=c is again given a Gamma distribution with paransetes
shown in Table 2.4.2a, corresponding to a priatridistion ono with 0.025, 0.50 and 0.975
quantiles equal téog(1.4) = 0.34, log(1.6) = 0.47, andlog(2.0) = 0.6¢ respectively.

A plot of the distribution forr is shown in Figure 2.4.2d (left).
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Prior for tau_y_tilde Marginal prior for eta_y_tilde
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Figure 2.4.2d. Left: Gamma prior for precision paeter 7 . Right: Marginal t-distributed prior fon](s, t)

(black curve) with normal approximation (red curve)

The parameters of the Gamma distribution were fausidg least squares fitting with target
quantiles equal tdog(1.2), log(1.6) andlog(2.0) respectively, with the adjustment of the

smallest of these quantiles found to be acceptable.

This has beesubjectively judged by ue be the remaining uncertainty in the WORM model
predictions after removing uncertainties associatgti effective plume height and wind
speed and direction at 10 m above ground. It cpomds to removing abowne third of the
original uncertaintyas was defined in models B and C. Furthermore,stirae type of
comments that were made regarding the distributtimnan of 7, can also be made here.

The resulting marginal distribution of(s,t) will be a t-distribution with parameters as

shown in Table 2.4.2b. Again, as seen in Figure2d.fright), the distribution will be close to
a normal since the number of d.f. is relativelyth{d6.8). The same type of comments that
were made regarding the distributional formHof; (t) can also be made here.

From the above, the resulting conditional margjmabr distribution ofy(s t), given f (I,
will be close to a lognormal distribution.

The unconditional marginal prior distribution ¢{s, t) might, however, be more complicated
since, unconditionallyf. (0} will be stochastic due to the stochastic inpuialdesH., (t),

Uon (t) @and gy, (t). If we use a first order Taylor approximation vemavrite

logy(s,9=log £(st3.0,f, (9., (9)+

dlog f, dlogf, 0 logf,
e (Har (0= 3P0 (0= 1, (0)+ 52 () - 1, (0) +

n(s)
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and sinceH., (t), u,,(t) andg,,,(t) are all approximately normally distributed, aswhan

Figures 2.4.2a-dpg y(s,t) will also be approximately normal, with the follwg first and
second order moments:

Elogy(s ) =log {(st3.0,1, (.5, (})

and

2 2 2
var Iogy(s,t) = (%} gﬁeﬁ +(%j auzmm + (aalzg fcj 0’¢210m +0?
eff 10m 10m

whereo, , o

Uiom

andog, are given by the scale values in Table 2.425,0.47, and

where the partial derivatives will vary with timieoQr) t.

Hence, (s t) will also be approximately lognormally distributedth median

fc(s, £3.0,1, (1).f, (t))

and with geometrical standard deviation

2 2 2
~ dlog f ) dlogf ) dlogf ) )
SD = ex <l gt o+ c|l g’ + <l g’ +0°}. 2.4.2e
(o ( y( S D) \/( aHeﬁ J Herr ( J Uiom a¢10m Prom ( )

au10m

Thus, geometrical standard deviations of predictdistributions from model D will,
according to (2.4.2e), dynamically vary with timepeénding on the numerical values of the
partial derivatives (associated with model sengjy and variances of the model variables
involved.

For example, partial derivatives with respect tmdvspeed will be higher when the wind
speed is low than when it is high, since the maslehore sensitive to changes in the wind
speed when the wind speed is lower. Likewise, gladerivatives with respect to wind

direction will be higher when the wind direction aémost parallel to the road than in a
situation where the wind direction is more perpeuldir on the road. The partial derivatives
with respect to effective plume height will varytlvithe meteorological conditions and also
with the transport time of the plume from sourcegoceptor.

Predictive distributions from model D might thenefde sharper than predictive distributions
from other non-hierarchical models, such as e.gdets A-C, but this then depends on the
accuracies of the partial derivatives (which aga@épends on the accuracy of the WORM
model), and on how accurate the variances of theettWVORM model variables and the
residual have been specified.
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A directed acglic graph (DAG) depictin the connection between tiieree WORM model
variables(the three top node@and the resulting predicted model output conceptre(the
bottom node)s shown in Figure 2.4.Z

Figure 2.4.2e. A directed acychraph (DAG) showinpropagation of WORMnNodel variable uncertaintie

The diagram illustratebow uncertainties in the three moderiables will bi propagated
through intermediatelgalculated quantities the WARM model (see Appendix A fcthe
involved equations) befor@fluencing uncertainty ithe output concentratic. In the graph,
yellow nodes corresponds &mission related variables (here oelyective plume heigh;
blue nodes to metedamical variable (wind speed, wind direction a other derived
meteorological quantitiesjgink nodesto dispersion related variables; athe final red node,
to the model outputoncentratior

Probabilistic prediction®f concentrationat arbitary individual spatial locatiors=1,...,S
and times (hours)=1,....,T can now be obtained by drawing a large nunN (e.g., 100) of
samples (ensemble membaeas)follows:
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MODEL D: ALGORITHM FOR PROBABILISTIC PREDICTIONS
Fors=1,...,S, t=1,...T andk=1,...,N do:

1. Draw r{ ~Gammaé, b, wherea, =14.0 (shape)and, =0.13(scale)
and calculater()” =1/7{0 .

2. Draw 7 (t)~ N(O,aﬂ‘j:) and calculated () (t) = f,,_ (t)+7% (t) where
.. (t)=3.0m. Redraw ifH{ (t) <1.0m.

3. Draw 1) ~Gammag, h, wherea, =7.8 (shape)andy, =0.54 (scale)
and calculates$” =1/7{9 .

4. Draw {9 (t)~ N(O,af,lkgj) and calculatesy (t)= f, (t)+7% (t) where f, (t)
is observed wind speed (10 m) at Station 2. Redray, (t) <0.1ms™.

5. Draw 7, ~Gammag§, b, ~wherea, =7.7 (shape)and, =1.4e-3
(scale) and calculate(”” =1/74" .

6. Draw 7 (1)~ N(0.0§") and calculatep(1)= 1, (1)+72. (1) where
f,. (t) is observed wind direction (10 m) at Station 2.

7. Draw r ~Gammag b wherea=8.0 (shape) and=0.38 (scale) and

calculatec®’ =1/7®

8. Draw 7 (s,t)~ N(O,a(k)z) and calculate

7 (s 9= £ (st HI(Y, () 40 3) exdn® (s}

The resulting set of predicted concentratiof” (s1),k=1..,N forms a discrete

approximation of the underlying continuous preaetPDF of concentrations at each point
s=1,...,S and times (hours)=1,....T .

The above algorithm is oriented towards univaragglictions in both space and time. As for
model A, multivariate predictions in space can beoanplished by drawing™ (s,t) in Step

8 using a multivariate normal distribution with pasial covariance matrix as described in
Section 2.3.1. Same comments then apply as for n#adé/e focus here on the univariate
version, however, since this is how model D will bpplied at Nordbysletta, where
probabilistic predictions will be compared with ebgtions from all three stations, the
results of which are shown in Section 4.4.
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3. METHODOLOGIES

In this chapter we describe some statistical meilogies that are used to produce most of
the results in Chapter 4. First in Sections 3.1 &2dwe describe some tools and measures
which are used to evaluate and characterize tHerpgance of probabilistic predictions made
by the models A-D as compared with observation§&dation 3.3 we review the Metropolis-
within-Gibbs sampling algorithm as this is usedpast of model C to produce posterior
distributions of the parameters in this model. Bec3.4 shortly reviews circular block
bootstrapping since this is used as a techniquedserve the dependence structure of the
time-series of observed and model calculated valueh is important for the proper
bootstrap calculation of some of the measuresdntred in Sections 3.1-2.

3.1 Calibration and sharpness of predictive digitibns™

We review the concepts of calibration and sharpoégsedictive distributions of continuous
variables as defined and discussed in Gneitind.gR8@07a). These issues are central and
important for evaluating performance of probalidigredictions of continuous variables.

These concepts form part of the much broader d6&fdrecast verification, which have been
evolved, especially in the meteorological commesitiover the past decades. The book by
Joliffe and Stephenson (2003), and Chapters 6Wilks (2006), provide a good exposition
of this rapidly growing field. An excellent and estt survey of the state-of-the-science in
verification practice, research and developmerdivien in Casati et al. (2008).

Calibration is associated with the statistical cstesicy between predictive distributions and

accompanying observations, and is thus a commopepro of these. Sharpness refers to
spread or width of the predictive distributionsyoahd is, therefore, not dependent on any
observations. The spread can e.g., be measured stEindard deviation, or 50% or 90%

central interval widths.

According to Gneiting et al. (2007a) we may distiistp between three types of calibration:

1. Probabilistic (or time) calibration
2. Exceedance calibration
3. Marginal calibration

A system is probabilistically calibrated if obseieas are virtually indistinguishable from
samples taken from the predictive distributions,ickhmeans that the rank or PIT
(Probability Integral Transform) histograms as defi below will have a uniform
appearance. A system is exceedance calibratedré th a consistency between predicted and

" This text draws heavily on Gneiting et al. (2007ayjuding use of part of phrases, description aiaepts,
stated definitions and theorems.
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observed thresholds. Finally, a system is margirallibrated if predictions and observations
as taken over time have the same (or nearly the)sararginal distribution.

We will first formally define these concepts befaiescribing diagnostic tools for evaluation
using sample based distributions.

Let the predictive distributions be denoted By and the outcomes (observations) be denoted
by vy,, for a sequence of time instandesl, 2,...T , where the observations are thought to be

generated by some underlying true (but unknowrnd danherating process with distributions
G, t=1,2,...T . The asymptotic compliance between the data gengrprocessG and the

predictive distributionsF, will now be defined in terms of the above threeimmgpes of

calibration. Since the distribution may depend arameters being stochastic, convergence is
here defined in terms of almost sure convergence -aso .

Definition 3.1a (types of calibration).
1. The sequencdF,),t=12,... is probabilistically calibratedrelative to the sequence
(G).t=12,..if

%iGtoE'l(p)—» p forall pd(0,3
=1

2. The sequencgF,),t=12,... is exceedance calibrateglative to the sequendg,),
t=12,..if

.
%zGt‘loFt(y) -y forallydR.

t=1

3. The sequenc¢F,),t=12,... is marginally calibratedrelative to(G,),t=12,... if the
limits

é(y)zli[rl{%ZQ( y)}

and

t=1

F(v)=im 23R ()

exists and are equal for all 1R , and if the common limit distribution has all itess
on a finite volume.

4. The sequencdF,),t=12,..is strongly calibratedrelative to (G,),t=12,... if it is
probabilistically calibrated, exceedance calibrated marginally calibrated.
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In Gneiting et al. (2007a) it is shown that thestfithree types of calibration are logically
independent and that they may occur in any comibbimafThe existence of the marginal
distribution G associated with the true data generating processesponds to the existence
of a stable climate over time. In our context af @llution modelling it corresponds to a
stable, long term average pattern regarding lategsgons and meteorological conditions.

We now turn to sample versions of the above dé&dimst by using empirical distribution
functions based on observations. In Gneiting e(20007a) sample based analogues to the
above definitions are provided for probabilisticdamarginal calibration, which will be
described below. Exceedance calibration, howewwss chot seem to have an obvious sample
analogue, and it is not known whether such an gonal@xists (Gneiting et al. 2007a). We
will, therefore, not pursue the concept of exceedaralibration any further here.

Assessing probabilistic calibration.

As stated above, probabilistic calibration can bseased by the PIT-histogram. The PIT-
histogram can be viewed as a continuous limit ef thnk histogram (also known as the
Talagrand diagram), as defined in e.g., Wilks (3@@6&Joliffe and Stephenson (2003).

The PIT is the value of the predictive CDF, ) at the observationy(), i.e., the value
p.=F (). The link to probabilistic calibration is estabksl by substituting the empirical
indicator function 1(y,<y) for the data generating distributio®,(y),yOR, in the
probabilistic calibration condition, and noting thg < F™(p) if and only if p, < p. The

following theorem links probabilistic calibrationitv the asymptotic uniformity of an
empirical sequence of PIT-values.

Theorem 3.1lalet (F),t=12,... and (G,),t=12,.. be sequences of continuous strictly
increasing distribution functions. Suppose furtet y, has distributiong and thaty, form
a “*-mixing” sequence of random variables (Blumagt1963). Then

1a

?Zl( p < p) -~ p almost surely for alp
t=1

if and only if (F),t=1,2,... is probabilistically calibrated with respect(6,),t=1,2,...

For a proof of this theorem, see Gneiting et D0{A).

Thus for a probabilistically well-calibrated systenistograms of PIT-values, will essentially
be uniform or close to uniform. The number of iode used in the histograms will depend
on the application and amount of data availablé fetwumost purposes, however, 10-20 bins
seem to be sufficient (Gneiting et al., 2007a).

Another measure associated with probabilistic cafibn, but weaker, is the concept of
central interval coverage. If we e.g., calculate 8% or 90% central intervals for each
predictive distribution, observations should appeathese intervals around 50% or 90% of
the time, respectively, if the system is well-cedied. Even though this is a weaker (less
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ambitious) measure than full uniformity of the RiiBtogram, it can be of great value in
practice.

A visual inspection of the shape of the PIT-histmgrmprovides valuable information as to the
reasons for deficiency of predictions. Figure 3llLstrates this.

Too narrow
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PIT-values

Too high Uniform Too low
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PIT-values PT-values
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00 02 04 06 08 10

PIT-values

Figure 3.1a. PIT-histograms for different caseguodbabilistic predictions, with linear and
guadratic curves (dashed lines) with slo,ﬁeand guadratic terrr)é’2 coefficients, fitted to the
histogram values using the method of least squaetdle: Well calibrated predictions with
a nearly uniform histogrami = 3,=0; Left: Too high predictiong, <0; Right: Too low
predictionss, >0; Top: Too narrow predictiong, >0; Bottom: Too wide predictions <0.

Shown in the middle of the figure is a nearly umfiohistogram corresponding to the case
where the predictive distributions are probabiily well-calibrated.

The triangle shaped histograms to the left and: iiiglthe figure corresponds to cases where
the predictive distributions are biased as comp#&wdtle observations. The histogram on the
left corresponds to a case where the predictiomsoar high as compared to the observations,
so that the PIT-values tend to be (too) low. Coselyr the histogram on the right
corresponds to the opposite case, where the pi@ticare too low, so that the PIT-values
tend to be (too) high.

The U- and inverse-U shaped histograms at the ridpbattom of the figure corresponds to
cases where the predictive distributions are taoomaor too wide, respectively, as compared
to the observations. The U-shaped histogram attdpecorresponds to a case where the
predictive distributions are too narrow, so tha BiT-values tend to fall on either side, i.e.,
being (too) often close to 0 or 1. Conversely, itheerse U-shaped histogram at the bottom
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corresponds to the opposite case, where the pretdidistributions are too wide, so that the
PIT-values tend to occur in the middle, i.e., bditog) often close to 0.5.

Also shown in the figure are lineah€ 3, +,(p) and quadratic =2, + 3,0+ 3,0¢°)

curves fitted to the histogram values using the hoetof least squares. Predictive
distributions, which are well-calibrated, give rise histograms which are nearly uniform,

hence corresponding to curves with=3,=0. Cases with too high (too low) predictions
typically give rise to triangular shaped histogramith 4, <0 and 3,=0 (4,>0 and 3,=0).
Cases with too narrow (too wide) predictions giise to U- (inverse-U-) shaped histograms
with 3,>0 (3,<0). We may therefore use these estimated coeffiitmicharacterise the
PIT-histogram according to the above classificgtiery., by plotting the coordinate pair
(B.B,) as a point in a 2D-diagram. This is done in Chagtein combination with
bootstrapping in order to characterise the unaestaif calculated PIT-histograms.

Assessing marginal calibration.

Marginal calibration can be checked by plotting ereed and predicted empirical CDFs of
all observations and prediction samples. Alterredyiv or in addition, we may also plot
observed and predicted quantiles.

We thus propose to compare the average predicidfe C
T

R ()= R() yOR

t=1

with the empirical CDF of the observations

.
D1y <y), yoR.

t=1

|

G (y)=

If we substitute the indicator functiot{y, <y) for the data generating distributiag (),

yOR, in the definition of marginal calibration, asyrafit equality of F, and éT Is obtained.

Theorem 3.1b describes this correspondence thealigti Assuming some mild regularity
conditions, marginal calibration will be both a assary and a sufficient condition for the

asymptotic equivalence miT andF, .

Theorem 3.1blet (F),t=12,... and (G,),t=12,.. be sequences of continuous, strictly
increasing distribution functions. Suppose thathegc has distributionG and that they,
form a *-mixing sequence of random variables. Sgpgdorther that

2 This idea seems to be new, at least we have natteéetechnique been applied elsewhere to charsete
uncertainties of PIT-histograms.
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= . 13
F(y)=lims=> F
(y)=im {235 (3)}
exists for allyJR and that the limit function is strictly increasiog R . Then
A 1Jd _
G, (y)=?21( v.<y) - F(y almostsurely for all R
t=1

if and only if (F) ,t=1,2,..is marginally calibrated with respect (G,),t=1,2,...
For a proof of this theorem see Gneiting et alOf20).

The most obvious graphical tool when assessing imalrgalibration is a plot of5, (y) and
F (y) versusy. However, it may often be more useful to plot thifference of the two
CDFs F (y)-G;(y),yOR. The same information may alternatively, or in itidd, be
plotted using quantiles of these distributions.

Assessing shar pness.

The more concentrated the predictive distributtbe, sharper the prediction, and the sharper
the better subject to calibration. To assess thepsiess we may use numerical and graphical
summaries of the spread or width of the predicti&ributions. This may be calculated
based on e.g., standard deviations or centraivaltéengths. For example, we may use 50%
or 90% central intervals. Following Bremnes (20@4nay be useful to use box plots for
graphically displaying such values, which are &isown as sharpness diagrams.

Tools such as the PIT-histogram, marginal calibratplots and sharpness diagrams are
widely applicable since they are nonparametric eaml be used for predictive distributions
that are represented by samples in various ensenbbmple based prediction systems.

In addition to the above graphical tools, we magoalse numerical measures of predictive
performance addressing calibration and sharpneassiltaneously. One such numerical
measure is the Continuous Ranked Probability SEORPS), which is described in the next
section.

3.2 The Continuous Ranked Probability Score (CRPS)

The Continuous Ranked Probability Score (CRPS) ifteigeand Raftery, 2007b; Wilks,
2006; Joliffe and Stephenson, 2003) is a numencahsure of predictive performance
addressing both calibration and sharpness at the see.

The CRPS at time is defined directly in terms of the CDF of the gistive distribution E )
and the correspondingly realized observatign) as follows:
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CRPS = CRP(SlFt)'zif{ £y vy )

wherel(y=y;) denotes the usual indicator function. For CRPSillsmvalues are better, the
optimal value being CRPS = 0, which corresponda fwedictive distributionF, (y) being
equal to the indicator functio{y=y,), i.e., the predictive density being equal to zabis

density placed exactly at the observation vajuewhich of course is virtually impossible to

achieve in practice unless we know the observatidreforehand. Smaller values of CRPS,
however, will correspond to distributions beingd®st” to the observations, while larger
values will indicate the opposite. This is illuse@d in Figure 3.2a.

Predictive PDFs Predictive CDFs

0.08

0.06

)
004

002

0.00

Figure 3.2a. Three predictive distributions are wimoin relation to an arbitrary observed
value (50), giving rise to three different valudsGiRPS. Distribution 1 (red curves) has the
lowest value of CRPS, while distributions 2 andI8€ and orange curves) will have higher
values. The black curve in the right plot corresgi®io the indicator functiof(y = 50).

In the figure, three predictive distributions ateown in relation to an arbitrary observed
value (50). In the plot to the left, PDFs of theedictive distributions are shown, while
corresponding CDFs are shown in the right plotetbgr with the indicator functiot{y = y)

shown as the black curve. Distribution 1 (red cejvs centred on the observation with a
small spread and thus has a small (good) CRPS ,wahite distributions 2 and 3 (blue and
orange curves) have higher (worse) values dueatdnd lack of sharpness, respectively.

Note that the CRPS has the same unit as the obis&~alt is also worth to mention that if
F, is a deterministic point prediction, e.g5,=1(y= §,), the CRPS reduces to the absolute

error (AE) |y, - %|.

In practice we will work with averages of CRPS \edutaken over all time instances of
interestt =1,2,...T, i.e., we calculate

- T
CRPS=12 CRPE.
T
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According to Hersbach (2000ERPS can be decomposed intadiability part, aresolution
part, and alimatological uncertaintypart= as follows:

CRPS= Relr Rest CRRS (3.2a)

where the reliability part is closely connectedhe probabilistic calibration condition, i.e., to
the uniformity of rank or PIT-histograms, while tressolution and climatological uncertainty
parts are connected to the sharpness (averagalspreadth) of the predictive distributions.

Formulae for how to calculate these parts for aisege of discrete predictive distributions
are, unfortunately, too lengthy to be reproduce® Heut can be found in Hersbach (2000).

In (3.2a) CRPS; is the value of the&€RPS if we only use the overatibserved climatologgs
the predictive distribution for each time instange.e., when

F(y)=F, (y):%til(yz y) fort=1,..T.
In this case, we will haveReli= Resc=0. Generally, the reliability part is a nonnegative
quantity, i.e.,Reli=0, with Reli=0 only for a perfectly reliable system, i.e., forystem that
are perfectly probabilistically calibrated with aniferm rank or PIT-histogram, which
incidentally will be the case for predictions basedthe above observed climatology. Such a
predictive system will, however, have zero resolutiReso=0, i.e., no sharpness, since all
predictions will be based on the same (averagejatblogy.

We may, however, obtain lower values ©RPSfor predictive systems witlReli- Reso<0.
The optimal case will be achieved if we use perfiterministic point predictions, i.e., if we
use predictive distributions equal to Diracdistributions centred at each observed vajue

i.e.,

Ft(y):]_(yz X) fort=1,...T.

Such a system will still be perfectly reliable, i.Reli=0, corresponding to a uniform rank or
PIT-histogram, but in contrast to the climatologisgstem, it will have optimal positive

resolution (sharpness) in the sense Redo= CRPS, with a resulting value oERPS=0.

For practical, predictive systems, where the oletems are not known in beforehand, we
will generally obtain values of reliability and o#stion between the above two extremes, i.e.,
~-CRPSi < Rel Ress0, and thusO<CRPSs CRPS. A good predictive system is hence
characterized as one having a small (positive)evafureliability, and a high (positive) value
of resolution, resulting in a small (positive) valaf CRPS.

3 In Hersbach (2000) the climatological uncertairdytjis denoted byJ .
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3.3 Adaptive Random Walk Metropolis-within-GibbddpRWMwG)

We address the problem of generating samples frgenaral multivariate distribution

f(X)=f(%, %, %) (3.33)

When it is difficult or impossible to draw samplegem (3.3a) directly, many approximate
methods exists which can be used to produce sajtpkesnost well-known perhaps being
the Monte Carlo Markov Chain (MCMC) based Metropdtiastings (MH) algorithm, and as
a special case of this, the Gibbs sampler (RolmerCGasella, 2004; Gelman et al. 2004). Both
of these algorithms are iterative in nature andipee a sequence of iteratg’s for k=1,2,...
with the target distribution (3.3a) as a limitinggtdbution, i.e., fork large enough we will
have (approximatelyx* ~ f .

We focus here on the classical systematic scansGbimpler. Associated with (3.3a) we can
define the followingn conditional distributions

F(% %)= F(X1%0Xa Xy X)) 5 F Lol (3.3b)

The Gibbs sampler generates iterastés(&k, X, >¢) for k=1,2,.., with (3.3a) as a limiting

distribution, by drawing sampleg’, for i=1,...n, from the n univariate distributions in
(3.3b) as follows:

X<~ f()g|>{‘,>§,...,>{_l,?{‘ll xﬂ) B L.r (3.3c)

where new sampleg‘ are being used immediately as conditioned valuethe right hand

side of (3.3c). The method is thus based on theigeethat it is simple to draw samples
directly from the conditional distributions.

In cases when it is difficult or impossible to sdendirectly from some of the conditional
distributions in (3.3c), MH-steps can be introdugadthe Gibbs sampler. For each such
conditional distribution, a proposal distributianintroduced from which we easily can create
samples. Such samples are then accepted or rejpatstl on the usual MH acceptance
criterion.

To fix ideas, assume it is not possible to samtectly from thei ™ conditional distribution
in the Gibbs sampler. We then introduce a propdistibution q(){ | >{‘1) from which it is

easy to draw a new proposél. We acceptx as the new iterative value® with probability

K in{ff()qlﬁ”“’*il’*:_i""’K_l) D({ e |5<)11}

=0 TR ot R o) R 1)

i.e., we setx =X with probabilityp*. If the new proposal is not accepted, the nevaiitez

value will remain equal to the old value, i.&%,= x**.
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A special case occurs when the proposal distribuieymmetric in its arguments, i.e., when
q(X %)= o x| x). The probabilityp’ can then be calculated more simply as:

o :min{ D¢ s 4T ) 1}
T e ) T

This is the case e.qg., if the proposal step coomspto a symmetric random walk step, i.e.,
X =X7+7q

where 77 is drawn from some symmetric distribution with me@, e.g., N(O,af). The

resulting algorithm is known as a Random Walk Metis-within-Gibbs (RWMwG)
algorithm. We will in the following assume thgt- N(0,07), so thak’ ~ N(%,07).

The choice ofg,, for i=1,...n, is important for the success of the resultingpatgm. Too

small and the chain will move too slowly; too layed the proposals will usually be rejected.
Thus, in order to obtain good mixing, i.e., fasheergence and efficient exploration of the
sample space, an RWMwG-algorithm needs to be twaeefully, i.e., good values of;

needs to be found.

When the number of dimensioms is large, it is usually difficult or impossible fmd good
values of g, manually for each direction=1,...n. In this case adaptive approaches, where

the algorithm tries to find good values gf automatically, will be more attractive. One such

adaptive technique has recently been describedgemhal (2010) (Section 3.3, pp. 17-18)
(see also Roberts and Rosenthal (2009) (Sectipp.3-10)). Here one attempts to adjust the
o -values so that the resulting acceptance rateserMetropolis-step are all close to 0.44,

which are considered to be optimal (or close tanogl) for one-dimensional distributions
(Rosenthal 2010; Robert and Casella, 2004; Gelrhah 2004).

Initially, in this method, eacly, is set equal to some fixed given value, edf.=1.0. The
algorithm then proceeds in batches with a fixed loeirmN, =50 iterations in each batch.
After each such batch of iterations, average aeceptratesy, for i =1,...n, are calculated
based on the lasN, iterations. The algorithm then updates thevalues based on an
adjustment valu&g which is calculated as follows:

5=3(n,) =min[0.01ﬁ]

where n, is the current batch number, i.ey,=k/N,. Updating of the standard deviation
along each direction is then done as follows:
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Fori=1,...n do:

1. If p <0.44seto, =g, /exp(d)
2. If p >0.44 seto =g [exp(I)
3. If p =0.44 g is unchanged

i.e., g is reduced (divided bgxp(d)) if the current acceptance rafe is lower than 0.44,

and increased (multiplied byxp(J) ) if it is higher than 0.44. Otherwise it is lefaichanged.

The overall algorithm is referred to as an Adap®Rendom Walk Metropolis-within-Gibbs
algorithm (AdapRWMwG).

A key to the validity & ~ f whenk - « ) of the above adaptive algorithm are the following
two conditions:

1. Diminishing Adaptation
2. Containment

as described in Rosenthal (2010). See also Bai9j2@xi et al. (2009), and Roberts and
Rosenthal (2007). These references contain preciathematical definitions of these
concepts.

The first condition is the most important and iffilled by the above algorithm since the
adaptation diminishes, i.ed(n,) - 0, as the number of iterations or batches- «.
Condition 2 is fulfilled if all o; are constrained to lie in some fixed interval, ebhimay be
obtained e.g., by simply limiting the values getedeby the above algorithm.

Recently it has been shown, however (Bai, 2009; &aal., 2009), that the containment
condition is always satisfied for this algorithmppided only that the target distributioh

decreases at least polynomially in each directiomjch is a very mild condition.
Containment should hence not actually be muchprhatical concern.

Computer simulations (Roberts and Rosenthal (20@8y¢ indicated that the above adaptive
algorithm does a good job of correctly setting thevalues, even (and perhaps especially) in

dimensions as high as 500, leading to much fastangithan if we use pre-chosen values.

3.4 Circular block bootstrapping

We shortly review the Circular Block Bootstrap (QBgthod of Politis and White (2004) for
time series of dependent data. Let the data vdleedenoted b¥,,...,X;, and leta be a

guantity that depends on these values, i.e.,

a=a(X,...X:).
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We are interested in the uncertainty distributiénaq and thus we wish to definB new
bootstrapped time series?,...,X; with corresponding values®, for b=1,...,.B, which can
be taken as an approximation to this distributi@reating new bootstrapped time series by
simply drawing individual valuesx? with replacement from the original series is not

recommended, since this will generally destroydbpendence structure of the original time
series, which may be of importance for the propéeudation of bootstrapped values @f

The CB method is a nonparametric method which gitento preserve the dependence
structure of the original time series by sampliegvrvalues consecutively in blocks of fixed
length. If we letN denote the number of blocks, the fixed block length, andt = NL the
total number of values in the time series, the @@r&hm is defined as follows:

For b=1,...,B do:

1. Setk=1.

2. Draw a new start index uniformly from{1,...;T} .

3. Define a new block of valueX;,...,X;.,, = X,,....X, ., where the new values are
picked from the original series in a sequential aimcular fashion, i.e., by replacing
indext+j by mod¢+jT)+1whent+j>T.

4, Setk=k+L.

5. Repeat steps 2-# times to define a new bootstrapped time sexgs.., X?.

The algorithm thus uses potentially overlappingck$oin a circular fashion to define each
new bootstrapped time series. Within each blockepkwhen we wrap around, the original
time series structure is preserved. It will, howewv®t be preserved at the joints between the
different blocks, and thus the block lendthis an important parameter.

According to Politis and White (2004) an estimatgatimal block length for the circular
block bootstrap can be calculated as follows:

2, \V3
I:opt,CB: (ZAG ] T
DCB

Where[x] denotes the nearest integer to the real numbend where

+M

6= 3 A MIKRR: Ru=39(0); (9= 3 A(11 M X

k=-M
with
M = 2r; IEQ( K =0 fork> Tr

and
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1 for (i|t|s1
2

—Jlo(1- 1
At) =42(1-]t]) for><lf/< 1

0 otherwise

and whereR(k) is the estimated auto-covariance function of thigial time series.

It is shown in Politis and White (2004) that thiglaulated block length is optimal in an
asymptotic large sample MSE sense of being besegomating the variance of the time
series meaK . In the most recent tests conducted in Pattoh €2@09) it is shown that the
above calculations give block lengths within arodr@® (on average) of the theoretically
optimal values, when the time series follows an ARptocess. See also this latter reference
for some recent corrections to the article by Boéihd White (2004).
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4. RESULTS

In this chapter, all probabilistic model evaluati@sults using the four probabilistic models
A-D is given in Sections 4.1-4 respectively.

4.1 Model A: Box-Cox linear regression with autaetated errors

Net observed concentrations of nitrogen oxidesJNtDStation 2 for the first 1/3 (840 hours)
of the total period of 2520 hours is used herestoreate parameters of the Box-Cox linear
regression model described in Section 2.3.2, witbre modelled as an ARMAq, q)-process

for various values ofp andq. As a part of this procedure the observed and huadeulated
values were first transformed using the Box-Cox @otsansformation (Box and Cox, 1964).

The traditional method of maximizing the profilegiikelihood function (Box and Cox,
1964) was used in order to estimate the paramet&ince this method requires independent
linear regression cases, we selected to retain evdyy n™ non-missing observation and
model value as input data to this procedure, wmerd was found to be needed in order to
obtain approximately independent data. The regulgrofile log-likelihood function using
n=4 is shown in Figure 4.1a.
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Profile log-likelihood
-1078
I

-1080
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-1082
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01 0.2 03 04 05

Lambda

Figure 4.1a. Profile log-likelihood function forelBox-Cox parameted , based on every fourth observed and
model calculated value at Station 2, and usinditse1/3 (840 hours) of data of the total 2520 fsoof data.

As seen from the figure, a value #% 0.32 in this case maximizes the profile log-likelihood
function, with [0.21,0.4:]3 as an approximate 95% confidence interval. A fimalue of

A=0.35 was, however, selected based on several trialsdiffierent ways of selecting every
n™ input data, which included also higher values of

The Box-Cox transformation using the selected valug helps to stabilize the dependence
of variability or variance of the time series ore tlevel of observed and model calculated
values as shown in Figure 4.1b.
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Before Box-Cox transformation After Box-Cox transformation
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Figure 4.1b. Untransformed (left) and transformghf) time series plots of net observed (blue ejiand
model calculated (red curve) values of nitrogeresi(NQ) at Station 2 for the first 1/3 (840 hours) of the
period.

We can also look at the resulting distribution rainsformed observed and model calculated
values, which for the selected parameter aboveltegsin approximately symmetric normal
looking data as shown in Figure 4.1c for the 532 §40) non-missing observations. A
similar picture was obtained for the transformedisi@alculated values (not shown here).

Before Box-Cox transformation After Box-Cox transformation
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Figure 4.1c. Untransformed (left) and transforméghf) net observed concentrations of nitrogen esi(NQ)
at Station 2 using the Box-Cox transformation vgislhameterd = 0.35.

Conditioned onA =0.35, the other parameters of the Box-Cox regressiodeinwaere then
estimated for various values @f and q, using maximum likelihood estimation (MLE) based

on the 532 non-missing observations at Stationablel'4.1a shows the results of the fitting
procedure in terms of calculated AIC (Akaike Infation Criterion) and BIC (Bayesian
Information Criterion) values fop, g< 2. Higher values ofp and/orq all gave worse results
with respect to these criteria.

54



Table 4.1a. Calculated AIC- and BIC-values for #agious Box-Cox ARMA (p, q) regression models fitted

using MLE estimation of the parameters based ont®d0s of observations of nitrogen oxides (N& Station
2. Smaller values are better. An asterisk (*) iaths best model according to the given criteria.

plg| AIC BIC

0|0] 2626.9| 2641.1
1|0| 2373.7| 2392.6
0| 1] 2749.4| 24984
1|1| 2358.9| 2382.5
2| 0] 2356.3*| 2380.0*
21| 2357.1| 2385.5
22| 2357.5| 2390.6

As seen from the table, the best model accordinbdse criteria is the AR(2)-model. Table
4.1b shows estimated parameters in this modelstéthdard errors in parentheses.

Table 4.1b. MLE estimated parameters for the Box-8B(2) modé with standard errors.

~ ~ ~ ~

ﬁO ﬁl ﬂ @
2.16 (0.48) 0.79 (0.03)| 0.51 (0.05) 0.23 (0.05)

o
2.13

Figures 4.1d and 4.1e show model diagnostic re$oitstandardized residual and &,
respectively, for this model.
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Figure 4.1d. Model diagnostic plots for the stadézed residualgj, in the Box-Cox AR(2) regression model.

Top left: Residuals against time (hours); Top righitocorrelations against lag; Bottom left: Histam of
residuals; Bottom right: A normal Q-Q plot with 4%ie and a line passing througt dnd & quartiles.
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Figure 4.1e. Model diagnostic plots for standardimsiduals, in the Box-Cox AR(2) regression model. Left:
Residuals against time (hours); Middle: Histogr&ight: Normal Q-Q plot with same lines as in Figdréd.

As seen from these figureg, seems to be relatively uncorrelated in time, aoith |j, and £,
seems to be approximately normally distributed.

We now use this Box-Cox AR(2) model (hereaftereadhlimodel A), to make probabilistic

predictions of net observed concentrations of garooxides (N¢) at Station 2 for the rest

of the period (5.2.2002 — 15.4.2002 (1680 hours)y at Stations 1 and 3 for the whole
period 1.1.2002 — 15.4.2002 (2520 hours). In tleageulations,N =100 ensemble members

were used. The ensemble of predicted values is toempared with the corresponding
observations at each hour.

Assessments of probabilistic (time) calibration sihewn in Figure 4.1f, in the form of PIT
(Probability Integral Transform) histograms, asatlié®d in Section 3.1.

PIT Histogram at Station 1 PIT Histogram at Station 2 PIT Histogram at Station 3
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Probabilty Integral Transform Probabilty Integral Transform Probabilty ntegral Transform

Figure 4.1f. PIT-histogram for model A at Statiofl€ft), 2 (middle) and 3 (right) based on datatfee whole
period 1.1.2002-15.4.2002, except at Station 2 e/tieg period is 5.2.2002-15.4.2002.

Ideally these histograms should be uniform (orelmsuniform), for a probabilistically well-
calibrated system. As we can see, the obtaineddgnains seem to fall somewhat short of
this. For example, at Station 1, the model seemiet@omewhat negatively biased, with
predictive values that are too low as compared \lig observations. At Station 3, the
predictive values seem to be somewhat too widetgagh so that many PIT-values tend to
fall in the middle part, being (too) often close @c&b. At Station 2, there seems to be a
combination of both effects.

56



Figure 4.1g shows bootstrapped PIT-histogram slwagdficients, with linear regression
slope coefficients, along the x-axis, and quadratic regressitthozder term coefficienis,

along the y-axis, as described in Section 3.1.

PIT Histogram Shape Coeff. at Station 1 PIT Histogram Shape Coeft. at Station 2 PIT Histogram Shape Coeft. at Station 3

Beta2

egression Beta2

egression Beta2

Quadratic reg
-0 r
Quadratic reg
Quadratic regression
o

Figure 4.1g. Bootstrapped PIT-histogram shape wiefits for model A at Station 1 (left), 2 (middid 3
(right) based on data for the whole period 1.1.20821.2002, except at Station 2 where the peri@dd2002-
15.4.2002. The red dots correspond to the oridimath-bootstrapped) PIT-histograms.

The results here are based Ba 1000 bootstrapped PIT-histograms using the circularkloc
bootstrap (CB) method of Politis and White (2004 optimal block length based on the
time series of model calculated values was foundeta@ =105, which means that the 2520
hours of data were divided into 24 blocks of cambigs data for each bootstrapped replica of
the original time series.

In the figure, points to the left (right) of theayds corresponds to triangle shaped PIT-
histograms which are increasing (decreasing) taittg, while points above (below) the x-
axis corresponds to PIT-histograms that are U-shdpwerse U-shaped). As described in
Section 3.1, the first case corresponds to predfistthat are too low (high), while the second
case corresponds to predictions that are too nafmie). The red dot in each figure

corresponds to the calculated coefficient {#ir, 5,) for the original non-bootstrapped PIT-
histogram (Figure 4.1f).

As seen in Figure 4.1g, the model predictions &arly too low at Station 1, and also, but
less so, at Station 2. At Station 3 there are casé®th over- and under-prediction. At all
three stations, predictions are too wide, leaStation 1, and most at Station 3.

As for central interval coverage, it is calculateste that observations falls into the central
90% prediction interval with frequencies 89.2%,895.and 93.4% at Stations 1, 2 and 3,
respectively. Thus, as for this measure, the ptiedienodel seems to be reasonably well-
calibrated at Station 1, while giving somewhat bigh percentages at Stations 2 and 3.

Empirical CDFs of the PIT-values using the originah-bootstrapped data (Figure 4.1f) are
shown in Figure 4.1h.
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Empirical CDF of PIT values at Station 1 Empirical CDF of PIT values at Station 2 Empirical CDF of PIT values at Station 3
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Figure 4.1h. Empirical CDFs of PIT-values for moAeht Station 1 (left), 2 (middle) and 3 (right)dea on
data for the same periods as in Figure 4.1f. Tishelhline indicates a 45° line of equal probabiiti

From this figure, we can clearly see that the modedlictions are too low as compared to the
observations at all cumulative probability levets except for p>0.8 at Station 2 and

p=0.4 at Station 3, where the model predictions arehigh. This is also reflected in the

marginal calibration evaluation using observed pretlicted empirical CDFs as shown in
Figure 4.1i.

Observed and Predicted Empirical CDFs at Station 1 Observed and Predicted Empirical CDFs at Station 2 Observed and Predicted Empirical CDFs at Station 3
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Figure 4.1i. Marginal empirical CDFs of observedligline) and predicted (dashed line) concentratialues
for model A at Station 1 (left), 2 (middle) andr&jfit) based on data for the same periods as r€&ig.1f.

As seen from the figure, the observed empirical GD&ways lower than the predicted, but
the curves fit better as we move away from the road from Station 1 to 3.

Sharpness diagrams (box plots) and associatedbdatad on standard deviations ag@bo
central intervals for the predictive distributioat each of the three stations are shown in
Figure 4.1j and Table 4.1c.
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Figure 4.1j. Box plot of standard deviations an&wentral intervals for predictive distributionsg foodel A at

Station 1 (left), 2 (middle) and 3 (right) baseddata for the whole period 1.1.2002-15.4.2002.

Table 4.1c. Data from the box plots shown in Figug.

Standard deviation 90% central interval

Station 1 | Station 2 | Station 3 | Station 1 | Station 2 | Station 3
Min. 4.3 4.8 3.9 9.9 11.4 10.9
1% Qu. 23.1 20.4 16.0 67.3 58.3 455
Median| 41.7 38.0 30.3 127.3 114.7 90.6
Mean 48.0 43.2 36.5 147.6 131.8 110.b
37 Qu. 65.3 58.7 48.4 202.9 179.7 150.4
Max. 185.7 195.9 167.8 592.3 655.8 563.7

As seen from the figure and table, both standandatens and 90% central intervals
decrease with distance from the road (from Statiom 3), which is a natural consequence of
the fact that the concentration level generallyreases with distance from the road.

An extract of the time series of observed and ptedihourly concentrations at Stations 1, 2
and 3 are shown in Figures 4.1k, 4.1l and 4.1mecsgely.
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Observed vs. Predicted conc. of NOx at Station 1

Concentration NOx (ug/m3)

71 8.1 9.1 10.1 111 12.1 13.1 14.1

Days and hours

Figure 4.1k. Time series of observed and predibtadly average concentrations for model A at Statidor

the period Monday 7.1.2002 1h — Sunday 13.1.2002 RHie line: Observation values; Red and orangesli

Predicted ensemble mean and median values; BlagkDieterministic model values; Lower and uppeegre
lines: 90% central prediction interval. Unit: pgm

Observed vs. Predicted conc. of NOx at Station 2

Concentration NOx (ug/m3)
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Figure 4.1l. Time series of observed and predibtadly average concentrations for model A at Stafidor
the period Monday 4.2.2002 1h — Sunday 10.2.2002 Sdme colours used as in Figure 4.1k. Unit: igm
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Observed vs. Predicted conc. of NOx at Station 3
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Figure 4.1m. Time series of observed and predictedly average concentrations for model A at Ste8dor
the period Monday 4.3.2002 1h — Sunday 10.3.2002 Sdme colours used as in Figure 4.1k. Unit: igm

In the figures, net observed concentrations ofy Ni@ shown by the blue curve, while
predicted mean and median values based on the blese@imodel calculated values are
shown as the red and orange curves respectively.ofiginal WORM deterministic model
values are shown as the black curve, and a 90%atgmédiction interval based on the 0.05
and 0.95 quantiles of model calculated ensembleegais indicated by the lower and upper
green lines.

As seen from these figures, there is generally adgagreement between observed and
predicted (deterministic, mean and median) valdesording to the regression, the mean
and median values are seldom far off from the spwading deterministic value. We also

note that the 90% central prediction intervals varth the situation, being smallest when

concentrations are close to 0 and larger when cdrat®ns are higher.

Calculated average CRPS valu€RPsS), with corresponding reliabilityReli) (calibration),

resolution Resc) (sharpness), and climatological uncertainRPS; ) decomposition parts,
for each of the three stations, are shown in Tadld.

Table 4.1d. Average CRPS value, with correspondatigbility, resolution and climatological uncengi parts,
for model A at Stations 1, 2 and 3, using datatf@r whole period 1.1.2002-15.4.2002, except atidste?
where the period is 5.2.2002-15.4.2002. Unit: fgm

Station | CRPS | Reli | Resc | CRPS:
1 38.6 49| 33.7 67.3
2 24.7 2.0 20.8 43.5
3 20.9 0.5| 16.6 37.0

As described in Section 3.2, the reliability pariclosely linked to the uniformity of rank or
PIT histograms, and should be (close to) zero faystem having the correct statistical
properties, while the resolution describes the sapty of the predictive system as compared
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to a system which is only based on climatology. Tineertainty part represents the best

achievableCRPS value when we only use observed climatology apthdictive distribution
for all hours.

As seen from Table 4.1d, the probabilistic preditsi based on this model seems to have
good properties at each of the three stationsedine reliability values are all fairly small,
and resolution values fairly large, as comparetthéoclimatological uncertainty part.

In Figure 4.1n, a picture of the uncertainty of taéculatedCRPS, and its different parts, at
each of the three stations, is shown in the forrhaf plots, based oB =1000 bootstrapped
values, using the same circular block bootstrap) (@Bthod of Politis and White (2004) as
described above.

CRPS Reliability
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Figure 4.1n. Box plots oB =1000 bootstrapped values & RPSwith corresponding reliability, resolution
and uncertainty decomposition parts, for model Stations 1, 2 and 3, using data for the wholeogleri
1.1.2002-15.4.2002, except at Station 2 where ¢hog is 5.2.2002-15.4.2002. Unit: pgm

Note the relatively large (small) uncertainty ok treliability part of theCRPS value at
Station 1 (3). Otherwise, the calculated unceriesnto not seem to depend much on station.

In Figure 4.10 we also show for Station 2, howhbearly CRPS values depends on observed
and predicted concentrations and on observed valtiegind speed, wind direction and
temperature difference between 10 and 2 m, ancesponding Pasquill-Gifford stability
classes A-F (1-8¥.

“The first three classes (A-C) corresponds to atebiesatmosphere, where the temperature typicaltyehses
with more than 1°C per 100 m in the vertical, wih(C) being the most (least) unstable class. Class
corresponds to neutral conditions, where the teatper decreases approximately with 1°C per 100 hilew
classes E-F defines stable conditions, with F bérgmost stable, where the temperature decreasehan
this, or increase with height. It is during suatosgly stable and low wind speed conditions wedgjly get the
highest levels of air pollution concentrations.
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CRPS vs. Net Observed Conc. of NOx at Station 2 CRPS at Station 2 vs. Wind Speed at 10 m CRPS at Station 2 vs. Wind Direction at 10 m
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Figure 4.10. Scatter plot of hourly values of CRBSconcentrations and meteorology for model Atatié 2,

using data for the period 5.2.2002-15.4.2002. Upgier VVs. observed concentrationsyfm®); Lower left: Vs.

mean predicted concentrationsy(n®); Upper middle: Vs. wind speed (s Upper right: Vs. wind direction
(°); Lower middle: Vs. vertical temperature difface between 10 and 2 m (°C); Lower right: Vs. cgponding

Pasquill-Gifford stability class A-F (1-6).

As seen from the figure, CRPS values tend to iseresith the concentration level, with
highest values, i.e., poor probabilistic predicsipduring low wind speed and strongly stable
conditions. This should perhaps not come as aisefmince these are the situations which
are well-known to be the most difficult to get righr (almost) any air pollution model. We
also note that there is a larger spread in the QRIRf2s when concentrations are higher.

Results at Stations 1 and 3 show a similar pidfoioé shown here).

4.2 Model B: Bayesian non-hierarchical prior pretive model

We use model B, as described in Section 2.3.3, akenprobabilistic predictions of net
observed concentrations of nitrogen oxides (Nfor the same periods as for the previous
model (model A), i.e., at Stations 1 and 3 for teole period 1.1.2002-15.4.2002 (2520
hours), and at Station 2 for the period 5.2.2002-P902 (1680 hours). Again, in these
calculations,N =100 ensemble members were used, and ensembles ottpredalues are
compared with corresponding observations at eaah ho

We recall from Section 2.3.3, that probabilistiegictions with model B is based on the

empirical findings in Irwin et al. (2007) that f@aussian plume models, ratios of observed
over predicted hourly average concentrations wjpidally have geometrical standard

deviations in the range from 1.5 to 2.5, with a med/alue of about 2.0.
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If we calculate such geometrical standard deviatiah Nordbysletta (using the first 840
hours with data), we obtain the values 1.67, 1188 204 at Stations 1-3, respectively, so in
remarkable conformance with the results in Irwiale(2007).

Figure 4.2a shows assessments of probabilisticejticalibration, in the form of PIT
(Probability Integral Transform) histograms, asatlié®d in Section 3.1.

PIT Histogram at Station 1 PIT Histogram at Station 2 PIT Histogram at Station 3
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Figure 4.2a. PIT-histogram for model B at Statioftett), 2 (middle) and 3 (right) based on datatfe whole
period 1.1.2002-15.4.2002, except at Station 2 evkteg period is 5.2.2002-15.4.2002.

Again we note that it is difficult to obtain uniforhistograms. For example, at Station 1, the
predictive values are generally too low and too elidspread as compared with the
observations, resulting in a partly triangular gadtly inverse-U shaped histogram. This is
also the case at Stations 2 and 3, but to a ldsggee.

Figure 4.2b shows bootstrapped PIT-histogram shap#icients as described in Section 3.1.

PIT Histogram Shape Coeff. at Station 1 PIT Histogram Shape Coeff. at Station 2 PIT Histogram Shape Coeff. at Station 3

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

sion Beta2
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Quadratic regres:
0.4
Quadratic regres:

Figure 4.2b. Bootstrapped PIT-histogram shape wiefits for model B at Station 1 (left), 2 (middb)d 3
(right) based on data for the whole period 1.1.20821.2002, except at Station 2 where the peri@dd2002-
15.4.2002. The red dots correspond to the oridimath-bootstrapped) PIT-histograms.

The results are again based Br1000 bootstrapped PIT-histograms using the circulacllo
bootstrap (CB) method of Politis and White (2004ith 24 blocks of contiguous data, each
of length 105, for each bootstrapped replica ofahginal time series.

As we can see in Figure 4.2b, the bootstrappedesatonfirm the above findings, regarding
bias and spread of the predictive distributions.
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As for central interval coverage, it is calculategte that observations falls into the central
90% prediction interval with frequencies 97.1%,696.and 92.7% at Stations 1, 2 and 3
respectively. Thus, as for this measure, the ptiedianodel seems to give somewhat too
high percentages at all three stations.

Empirical CDFs of the PIT-values using the originah-bootstrapped data (Figure 4.2a) are
shown in Figure 4.2c.

Empirical CDF of PIT values at Station 1 Empirical CDF of PIT values at Station 2 Empirical CDF of PIT values at Station 3

al Transform
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Figure 4.2c. Empirical CDFs of PIT-values for moBedt Station 1 (left), 2 (middle) and 3 (right)sed on data
for the same periods as in Figure 4.2a. The da#medhdicates a 45° line of equal probabilities.

From this figure, we clearly see that the modetimtéons are again too low as compared to
the observations at all cumulative probability leve, except for p>0.8 (approximately),

where model predictions are too high. This is alsfbected in the marginal calibration
evaluation using observed and predicted empiri€dfF£as shown in Figure 4.2d.

Observed and Predicted Empirical CDFs at Station 1 Observed and Predicted Empirical CDFs at Station 2 Observed and Predicted Empirical CDFs at Station 3
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Figure 4.2d. Marginal empirical CDFs of observedli(sline) and predicted (dashed line) concentratialues
for model B at Station 1 (left), 2 (middle) andrit) based on data for the same periods as iar€ig.2a.

As seen from the figure, the observed empirical GP&ways lower than the predicted, but
again the curves fit better as we move away froardlad, i.e., from Station 1 to 3.

Sharpness diagrams (box plots) and associatedbdatd on standard deviations a@@bo
central intervals for the predictive distributioat each of the three stations are shown in
Figure 4.2e and Table 4.2a.
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Figure 4.2e. Box plot of standard deviations anth@@ntral intervals for model B predictive disttiloms at

Station 1 (left), 2 (middle) and 3 (right) baseddata for the whole period 1.1.2002-15.4.2002.

Table 4.2a. Data from the box plots shown in Figuge.

Standard deviation 90% central interval

Station 1 | Station 2 | Station 3 | Station 1 | Station 2 | Station 3
Min. <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
1°' Qu. 11.9 7.5 3.3 29.8 20.6 8.9
Median 514 39.7 23.6 135.4 104.7 63.9
Mean 95.6 79.3 57.3 248.0 205.5 148.7
37 Qu. 126.4 103.3 70.2 340.6 266.7 184.4
Max. 1436.0 1142.0 1055.Q 2843.0 28380 2054.0

As seen from the figure and table, both standandatens and 90% central intervals
decrease with distance from the road (from Statiom 3), which is a natural consequence of
the fact that the concentration level generallyréases with distance from the road.

An extract of the time series of observed and ptedihourly concentrations at Stations 1, 2
and 3 are shown in Figures 4.2f, 4.2g and 4.2hexsely, where we have used the same
colour scheme as in Figure 4.1h.
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Observed vs. Predicted conc. of NOx at Station 1
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Figure 4.2f. Time series of observed and predibtadly average concentrations for model B at Statidor
the period Monday 7.1.2002 1h — Sunday 13.1.2062 S4me colours used as in Figure 4.1h. Yigim®.

Observed vs. Predicted conc. of NOx at Station 2

Concentration NOx (ug/m3)

f f
2 9.2 10.2 112

o Al

4.2 52 6.

Days and hours

Figure 4.2g. Time series of observed and predicteoly average concentrations for model B at Ste®idor
the period Monday 4.2.2002 1h — Sunday 10.2.2002 S4me colours used as in Figure 4.1h. Yigitri>.
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Observed vs. Predicted conc. of NOx at Station 3
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Figure 4.2h. Time series of observed and predicteotly average concentrations for model B at Stadidor
the period Monday 4.3.2002 1h — Sunday 10.3.2062 S4me colours used as in Figure 4.1h. Yigim®.

As seen from these figures, there is generally adgagreement between observed and
predicted (deterministic, mean and median) valéesording to the regression, the mean
and median values are seldom far off from the spwading deterministic value. We also

note that the 90% central prediction intervals vaith the situation, being smallest when

concentrations are close to 0 and larger when cdrat®ns are higher.

Calculated average CRPS valu€Rps), with corresponding reliabilityReli) (calibration),

resolution Resc) (sharpness), and climatological uncertainRPS; ) decomposition parts,
as described in Section 3.2, for each of the thta#ons, are shown in Table 4.2b.

Table 4.2b. Average CRPS value, with corresponditigbility, resolution and climatological uncengi parts,
for model B at Stations 1, 2 and 3, using dataHerwhole period 1.1.2002-15.4.2002, except ai@t& where
the period is 5.2.2002-15.4.2002. Unit: [igm

Station | CRPS | Reli | Resc | CRPS,
1 384 | 26| 315 67.3
2 25.0 | 2.4| 20.9 435
3 243 | 17| 144 37.0

As seen from the table, the probabilistic preditsitbased on this model seems to have good
properties at each of the three stations, sincadlhability values are all fairly small, and
resolution values fairly large, as compared todiveatological uncertainty part.

In Figure 4.2i, a picture of the uncertainty of tteculatedCRPS, and its different parts, at
each of the three stations, is shown in the forrha plots, based oB =1000 bootstrapped
values, using the same circular block bootstrap) (@Bthod of Politis and White (2004) as
described above.
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Figure 4.2i. Box plots oB =1000 bootstrapped values @RPSwith corresponding reliability, resolution and
uncertainty decomposition parts, for model B ati&ts 1, 2 and 3, using data for the whole peridd2D02-
15.4.2002, except at Station 2 where the periéd2£2002-15.4.2002. Unit: pgin

In Figure 4.2] we again show for Station 2, how lileeirly CRPS values depends on observed
and predicted concentrations and on observed valtiegind speed, wind direction and
temperature difference between 10 and 2 m, ancesponding Pasquill-Gifford stability
classes A-F (1-6).
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Figure 4.2j. Scatter plot of hourly values of CRBS concentrations and meteorology for model Btatiéh 2,
using data for the period 5.2.2002-15.4.2002. Upesier VVs. observed concentrationsg(m®); Lower left: Vs.
mean predicted concentrationsy(n®); Upper middle: Vs. wind speed (s Upper right: Vs. wind direction
(°); Lower middle: Vs. vertical temperature diffape between 10 and 2 m (°C); Lower right: Vs. cgpanding
Pasquill-Gifford stability classes A-F (1-6).

69



Again, as seen from the figure, CRPS values tenddease with the concentration level,
with the highest values, i.e., poorest probabdigtiedictions, during low wind speed and
strongly stable conditions. This should perhapsawrhe as a surprise, since these are the
situations which are well-known to be the mostidifit to simulate for any air pollution
model. We also note again that there is a largeeasp in the CRPS values when
concentrations are higher.

Results at Stations 1 and 3 show a similar pidfoioé shown here).

4.3 Model C: Bayesian non-hierarchical posterioegictive model

We use model C, as described in Section 2.3.4, dkenprobabilistic predictions of net

observed concentrations of nitrogen oxides (Nfor the same periods as for the previous
models (models A and B), i.e., at Stations 1 aridr3he whole period 1.1.2002-15.4.2002
(2520 hours), and at Station 2 for the period $@2215.4.2002 (1680 hours). Again, we use
N =100 samples (ensemble members) in the calculationd, campare the ensemble of

predicted values with corresponding observationsagh hour. At Nordbysletta we use air
quality observational error standard deviatmyr 0.05(Tarnkvist, 2006).

Posterior distributions, in the form of histograarsl box plots of the paramet@s ¢ and

r=0, based on the last0* from a total of2[1¢ iterations from the Adaptive Random-
Walk Metropolis-within-Gibbs (AdapRWMwG) algorithnfior model C as described in
Appendix B, are shown in Figure 4.3a.
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Figure 4.3a. Posterior distribution histogram aod plot of parameterg3, (left), @ (middle) andr = o2

(right) for model C, based on net observed conatintis of NQat Station 2 from the period 1.1.2002-4.2.2002
(532 non-missing values (of 840)).
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For these calculations, the firgt=840 hours of observations from Station gh£2) at
Nordbysletta were used. Different initial values parameters, state variables and adaptive
standard deviations were tested, but in the ruresponding to the results shown in Figure

4.3a, the following initial values were us@f’ =0, ¢ =0.5, r© =1, x =0, andd, =0.1,
for t=1,..T.

Table 4.3a shows mean values of the parametersstaitidlard errors in parentheses.

Table 4.3a. Mean estimated parameters for modetiCstandard errors in parentheses.

A ; f 5
-0.059 (0.052) 0.590 (0.037) 3.340 (0.204) 0.548 (0.017

Figure 4.3b shows assessments of probabilisticefticalibration, in the form of PIT
(Probability Integral Transform) histograms, asatlié®d in Section 3.1.

PIT Histogram at Station 1 PIT Histogram at Station 2 PIT Histogram at Station 3
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Figure 4.3b. PIT-histogram for model C at Statiafhett), 2 (middle) and 3 (right) based on datatfer whole
period 1.1.2002-15.4.2002, except at Station 2 e/tieg period is 5.2.2002-15.4.2002.

Again we note that the histograms have a non-umifshape. At Station 1, the predictive
values are generally too low and too widely spreaadcompared with the observations,
resulting in a partly triangular and partly invetdeshaped histogram. This is also the case at
Station 2 and 3, but to a lesser degree.

Figure 4.3c shows bootstrapped PIT-histogram sltaedficients, as described in Section
3.1.
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PIT Histogram Shape Coeff. at Station 1 PIT Histogram Shape Coeff. at Station 2 PIT Histogram Shape Coeff. at Station 3
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Figure 4.3c. Bootstrapped PIT-histogram shape miexfits for model C at Station 1 (left), 2 (middé)d 3
(right) based on data for the whole period 1.1.20821.2002, except at Station 2 where the peri@dd2002-
15.4.2002. The red dots correspond to the origimath-bootstrapped) PIT-histograms.

The results are again based Br1000 bootstrapped PIT-histograms using the circulacllo
bootstrap (CB) method of Politis and White (2004ith 24 blocks of contiguous data, each
of length 105, for each bootstrapped replica ofahginal time series.

As we can see in Figure 4.3c, the bootstrappedesatonfirm the above findings, regarding
bias and spread of the predictive distributions.

As for central interval coverage, calculations shibat observations here falls into the central
90% prediction interval with frequencies 96.0%,6895.and 90.8% at Stations 1, 2 and 3
respectively. Thus, as for this measure, the ptiedianodel seems to give somewhat too
high percentages at all three stations.

Empirical CDFs of the PIT-values using the originah-bootstrapped data (Figure 4.3b) are
shown in Figure 4.3d.

Empirical CDF of PIT values at Station 1 Empirical CDF of PIT values at Station 2 Empirical CDF of PIT values at Station 3

1 P ] e 1 P

Probabilty Integral Transform

Probabilty Integral Transform

Probability Probability Probability

Figure 4.3d. Empirical CDFs of PIT-values for mo@eht Station 1 (left), 2 (middle) and 3 (rightskd on data
for the same periods as in Figure 4.3b. The dalkhedhdicates a 45° line of equal probabilities.

From this figure, we clearly see that the modetimtéons are again too low as compared to
the observations at all cumulative probability leve, except for p>0.8 (approximately),

where model predictions are slightly too high. Tihes also reflected in the marginal
calibration evaluation using observed and predietagirical CDFs as shown in Figure 4.3e.
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Observed and Predicted Empirical CDFs at Station 1 Observed and Predicted Empirical CDFs at Station 2 Observed and Predicted Empirical CDFs at Station 3

Probability
Probability
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Figure 4.3e. Marginal empirical CDFs of observadli¢sline) and predicted (dashed line) concentratialues
for model C at Station 1 (left), 2 (middle) andrigiit) based on data for the same periods as ir€ig.3b.

As seen from the figure, the observed empirical G®fower than the predicted up to a
certain concentration level, and then becomes hitfta predicted for higher levels. Again
the curves fit better as we move away from the road from Station 1 to 3.

Sharpness diagrams (box plots) and associatedbdatd on standard deviations a@@bb
central intervals for the predictive distributioat each of the three stations are shown in
Figure 4.3f and Table 4.3b.
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Figure 4.3f. Box plot of standard deviations an&9€entral intervals for model B predictive distiiloms at
Station 1 (left), 2 (middle) and 3 (right) baseddata for the whole period 1.1.2002-15.4.2002.

Table 4.3b. Data from the box plots shown in Figu.

Standard deviation 90% central interval

Station 1 | Station 2 | Station 3 | Station 1 | Station 2 | Station 3
Min. <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
1°' Qu. 9.6 6.5 2.9 27.0 18.2 8.0
Median| 44.1 335 19.4 122.3 93.0 54.2
Mean 78.8 64.5 46.8 218.8 177.% 130.
37 Qu. 109.8 86.5 56.7 303.3 240.9 1509.
Max. 886.3 746.8 833.4 2493.( 1848.0 23285.
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As seen from the figure and table, both standandatens and 90% central intervals
decrease with distance from the road (from Statiom 3), which is a natural consequence of
the fact that the concentration level generallyreases with distance from the road.

An extract of the time series of observed and ptedihourly concentrations at Stations 1, 2
and 3 are shown in Figures 4.3g, 4.3h and 4.3ectsely.

Observed vs. Predicted conc. of NOx at Station 1

1500 2000 2500
I I

Concentration NOx (ug/m3)
1000
L

71 8.1 9.1 10.1 111 12.1 13.1 14.1

Days and hours

Figure 4.3g. Time series of observed and predicteotly average concentrations for model C at Statidor
the period Monday 7.1.2002 1h — Sunday 13.1.2062 S4me colours used as in Figure 4.1h. Yigim®.

Observed vs. Predicted conc. of NOx at Station 2

Concentration NOx (ug/m3)

Days and hours

Figure 4.3h. Time series of observed and predictedly average concentrations for model C at Staidor
the period Monday 4.2.2002 1h — Sunday 10.2.2062 S4me colours used as in Figure 4.1h. Yigim®.
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Observed vs. Predicted conc. of NOx at Station 3

Concentration NOx (ug/m3)
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Figure 4.3i. Time series of observed and predibtaatly average concentrations for model C at Stadidor
the period Monday 4.3.2002 1h — Sunday 10.3.2002 S4me colours used as in Figure 4.1h. Yigim®.

As seen from these figures, there is generally adgagreement between observed and
predicted (deterministic, mean and median) valdesording to the model, the mean and
median values are seldom far off from the corredpandeterministic value. We also note

that the 90% central prediction intervals vary withe situation, being smallest when

concentrations are close to 0 and larger when cdrat®ns are higher.

Calculated average CRPS valu€Rps), with corresponding reliabilityReli) (calibration),

resolution Resc) (sharpness), and climatological uncertainRPS; ) decomposition parts,
as described in Section 3.2, for each of the thta#ons, are shown in Table 4.3c.

Table 4.3c. Average CRPS value, with corresponditigbility, resolution and uncertainty parts, foodel C at
Stations 1, 2 and 3, using data for the whole petid.2002-15.4.2002, except at Station 2 whereéhmd is
5.2.2002-15.4.2002. Unit: pgim

Station | CRPS | Reli | Resc | CRPS;
1 383 | 29| 319 673
2 25.1 | 27| 21.1 435
3 23.7 | 09| 14.2 37.0

As seen from the table, the probabilistic preditsidased on this model seems to have good
properties at each of the three stations, sinceréhability values are all fairly small and
resolution values fairly large, as compared todiveatological uncertainty part.

In Figure 4.3j, a picture of the uncertainty of ttadculatedCRPS, and its different parts, at
each of the three stations, is shown in the forrha{ plots, based oB =1000 bootstrapped
values, using the same circular block bootstrap)(@Bthod of Politis and White (2004) as
described above.
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Figure 4.3j. Box plots oB =1000 bootstrapped values @RPSwith corresponding reliability, resolution and
uncertainty decomposition parts, for model C ati&@ta 1, 2 and 3, using data for the whole peridd2D02-
15.4.2002, except at Station 2 where the periéd2£2002-15.4.2002. Unit: pgin

In Figure 4.3k we again show for Station 2, how tmurly CRPS values depends on
observed and predicted concentrations and on aigealues of wind speed, wind direction
and temperature difference between 10 and 2 m¢amdsponding Pasquill-Gifford stability

classes A-F (1-6).

CRPS vs. Net Observed Conc. of NOx at Station 2 CRPS at Station 2 vs. Wind Speed at 10 m CRPS at Station 2 vs. Wind Direction at 10 m
3 3 °
84 84 84
g g &
g 8 8
8 8 &
@ @ @
£ o £ o £ o
5 3 5 84 5 3
| ] R
g g ® g : ’
3 3 3 °
& 89 & g9 & &9 cqo ®
8300 o %
24 24 2P, %0 o
%é?i
o o B0
o el oelonpor oo -] 2% 9N
T T T T T T T T T T T T T T T T
0 100 200 300 400 500 600 0 2 a 6 8 10 0 50 100 150 200 250 300 350
Net observed conc. of NOX at station 2 (ug/m3) Wind speed at 10 m (m's) Wind direction at 10 m (deg)
CRPS vs. Predicted Conc. of NOx at Station 2 CRPS at Station 2 vs. Temp. Diff. 10-2m CRPS at Station 2 vs. P-G Stability Class
3 3 2
24 24 24
& & &
3 3 3
g4 84 84
8 8 &
@ s @ o
£ o £ o £ g
5 3 5 84 5 B
g = B 2 = 3
@ @ @ H o °
0 g g :
g g g 8- & 24 g 2 8 s
8 81 818 ! i I I
] ] SLE
T
1

0 200 400 600 800 -1 0 1 2 3 4

Predicted conc. of NOx at station 2 (ug/m3) Temperature difference betw een 10 and 2 m (deg C) Pasquil-Gifford stabiity class A=1,...F=6

Figure 4.3k. Scatter plot of hourly values of CRRSconcentrations and meteorology for model Ctatich 2,

using data for the period 5.2.2002-15.4.2002. Upesier VVs. observed concentrationsy(m®); Lower left: Vs.

mean predicted concentrationsy(n®); Upper middle: Vs. wind speed (s Upper right: Vs. wind direction
(°); Lower middle: Vs. vertical temperature diffape between 10 and 2 m (°C); Lower right: Vs. cgpanding

Pasquill-Gifford stability classes A-F (1-6).
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Again, as seen from the figure, CRPS values tenddease with the concentration level,
with highest values, i.e., poor probabilistic patigins, during low wind speed and strongly
stable conditions. This should perhaps not coma ssrprise, since these are the situations
which are well-known to be the most difficult totgeght for (almost) any air pollution
model. We also note again that there is a largeeasp in the CRPS values when
concentrations are higher.

Results at Stations 1 and 3 show a similar pidfoioé shown here).

4.4 Model D: Bayesian hierarchical prior predictimeodel

We use model D, as described in Section 2.4.2, a@enprobabilistic predictions of net

observed concentrations of nitrogen oxides (Nfor the same periods as for the previous
models (models A-C), i.e., at Stations 1 and 3tierwhole period 1.1.2002-15.4.2002 (2520
hours), and at Station 2 for the period 5.2.200Z2.PH02 (1680 hours). Again, we use
N =100 samples (ensemble members) in the calculationd, campare the ensemble of

predicted values with corresponding observatioreaah hour.

Figure 4.4a shows assessments of probabilisticejticalibration, in the form of PIT
(Probability Integral Transform) histograms, asatlié®d in Section 3.1.

PIT Histogram at Station 1 PIT Histogram at Station 2 PIT Histogram at Station 3
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Probability Integral Transform Probability Integral Transform Probability Integral Transform

Figure 4.4a. PIT-histogram for model D at Statiaftett), 2 (middle) and 3 (right) based on datatfee whole
period 1.1.2002-15.4.2002, except at Station 2 e/tieg period is 5.2.2002-15.4.2002.

Again we see that the histograms have a non-unifeinape. At Station 1, the predictive
values are generally too low and too widely spreadcompared with the observations,
resulting in a partly triangular and partly invetdeshaped histogram. This is also the case at
Station 2 and 3, but to a lesser degree.

Figure 4.4b shows bootstrapped PIT-histogram sliaedficients, as described in Section
3.1.
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PIT Histogram Shape Coeff. at Station 1 PIT Histogram Shape Coeff. at Station 2 PIT Histogram Shape Coeff. at Station 3
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Figure 4.4b. Bootstrapped PIT-histogram shape wiefits for model D at Station 1 (left), 2 (midde)d 3
(right) based on data for the whole period 1.1.20821.2002, except at Station 2 where the peri@dd2002-
15.4.2002.

The results are again based Br 1000 bootstrapped PIT-histograms using the circulaclblo
bootstrap (CB) method of Politis and White (2004ith 24 blocks of contiguous data, each
of length 105, for each bootstrapped replica ofahginal time series.

As we can see in Figure 4.4b, the bootstrappecdesatonfirm the above findings, regarding
bias and spread of the predictive distributions.

As for central interval coverage, calculations shibat observations here falls into the central
90% prediction interval with frequencies 94.2%,194.and 90.6% at Stations 1, 2 and 3
respectively. Thus, as for this measure, the ptiedicnodel seems to give somewhat too
high percentages at all three stations.

Empirical CDFs of the PIT-values using the originah-bootstrapped data (Figure 4.3b) are
shown in Figure 4.4c.

Empirical CDF of PIT values at Station 1 Empirical CDF of PIT values at Station 2 Empirical CDF of PIT values at Station 3
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Figure 4.4c. Empirical CDFs of PIT-values for moBeat Station 1 (left), 2 (middle) and 3 (right)sea on data
for the same periods as in Figure 4.4a. The da#edhdicates a 45° line of equal probabilities.

From this figure, we clearly see that the modeljmtéons are again too low as compared to
the observations at all cumulative probability leve, except for p>0.9 (approximately),

where model predictions are slightly too high. Tihes also reflected in the marginal
calibration evaluation using observed and predietagirical CDFs as shown in Figure 4.4d.

78



Probabilty

Observed and Predicted Empirical CDFs at Station 1

Observed and Predicted Empirical CDFs at Station 2

Probabilty

Concentration NOX (ug/m3)

300 400

Concentration NOX (ug/m3)

Probabilty

Observed and Predicted Empirical CDFs at Station 3

0 100 200 300 400 500 600

Concentration NOx (ug/m3)

Figure 4.4d. Marginal empirical CDFs of observadli(sline) and predicted (dashed line) concentratialues
for model D at Station 1 (left), 2 (middle) andrRjkit) based on data for the same periods as inr€ig.4a.

As seen from the figure, the observed empirical GBRower than the predicted up to a
certain concentration level, and then becomes hitjtfa predicted for higher levels. Again

the curves fit better as we move away from the road from Station 1 to 3.

Sharpness diagrams (box plots) and associatedbdatad on standard deviations ag@bo
central intervals for the predictive distributioat each of the three stations are shown in

Figure 4.4e and Table 4.4a.
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Figure 4.4e. Box plot of standard deviations anth@@ntral intervals for model D predictive distiiioms at

Station 1 (left), 2 (middle) and 3 (right) baseddata for the whole period 1.1.2002-15.4.2002.

Table 4.4a. Data from the box plots shown in Figude.

Standard deviation 90% central interval

Station 1 | Station 2 | Station 3 | Station 1 | Station 2 | Station 3
Min. <0.1 <0.1 <0.1 <0.1 <0.1 <0.1
1¥ Qu. 16.8 13.4 7.7 42.0 33.1 18.1
Median| 46.4 36.0 22.7 122.1 96.3 59.3
Mean 72.6 60.7 44.6 196.2 163.4 118.9
3%Qu. | 100.9 82.6 58.8 276.5 229.7 157.0
Max. 605.7 541.6 435.5 1365.0 1672)0 1204.0
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As seen from the figure and table, both standandatens and 90% central intervals
decrease with distance from the road (from Statiom 3), which is a natural consequence of
the fact that the concentration level generallyreases with distance from the road.

An extract of the time series of observed and ptedihourly concentrations at Stations 1, 2
and 3 are shown in Figures 4.4f, 4.4g and 4.4hexdsely.

Observed vs. Predicted conc. of NOx at Station 1

Concentration NOx (ug/m3)

71 8.1 9.1 10.1 111 12.1 13.1 14.1

Days and hours

Figure 4.4f. Time series of observed and predibtagly average concentrations for model D at Statidor
the period Monday 7.1.2002 1h — Sunday 13.1.2062 S4me colours used as in Figure 4.1h. Yigim®.

Observed vs. Predicted conc. of NOx at Station 2

Concentration NOx (ug/m3)
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Figure 4.4g. Time series of observed and predictealy average concentrations for model D at StaZidor
the period Monday 4.2.2002 1h — Sunday 10.2.2002 S4me colours used as in Figure 4.1h. Yigitri®.
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Observed vs. Predicted conc. of NOx at Station 3
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Figure 4.4h. Time series of observed and predictenly average concentrations for model D at StaBidor
the period Monday 4.3.2002 1h — Sunday 10.3.2002 S4me colours used as in Figure 4.1h. Yigim®.

As seen from these figures, there is generally adgagreement between observed and
predicted (deterministic, mean and median) valdesording to the model, the mean and
median values are seldom far off from the corredpandeterministic value. We also note

that the 90% central prediction intervals vary withe situation, being smallest when

concentrations are close to 0 and larger when cdrat®ns are higher.

Calculated average CRPS valu€Rps), with corresponding reliabilityReli) (calibration),

resolution Resc) (sharpness), and climatological uncertainRPS; ) decomposition parts,
as described in Section 3.2, for each of the thtagons, are shown in Table 4.4b.

Table 4.4b. Average CRPS value, with correspondatigbility, resolution and uncertainty parts, foodel D
at Stations 1, 2 and 3, using data for the whoteodel.1.2002-15.4.2002, except at Station 2 wileeeperiod
is 5.2.2002-15.4.2002. Unit: pgn

Station | CRPS | Reli | Resc | CRPS;
1 355 | 6.5| 384 67.3
2 239 | 3.2| 228 435
3 20.2 | 0.8| 17.6 37.0

As seen from Table 4.4b, the probabilistic predit$i based on this model seems to have
good properties at each of the three stationsedine reliability values are all fairly small
and resolution values fairly large, as compareithéoclimatological uncertainty part.

In Figure 4.4i, a picture of the uncertainty of ttadculatedCRPS, and its different parts, at
each of the three stations, is shown in the forrha{ plots, based oB =1000 bootstrapped
values, using the same circular block bootstrap)(@Bthod of Politis and White (2004) as
described above.
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CRPS Reliability
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Figure 4.4i. Box plots oB =1000 bootstrapped values @RPSwith corresponding reliability, resolution and
uncertainty decomposition parts, for model D atiGts 1, 2 and 3, using data for the whole peridd2D02-
15.4.2002, except at Station 2 where the periéd?£2002-15.4.2002. Unit: pgin

In Figure 4.4j we again show for Station 2, how lilbeirly CRPS values depends on observed
and predicted concentrations and on observed (dsieamean) values of wind speed, wind
direction and temperature difference between 10 Zand, and Pasquill-Gifford stability
classes A-F (1-6)The latter is here given as a continuous variatdefl to 6 based on the
calculated mean of the various integer values & dhsemble. This is different from the
previous models (A-C) were all ensemble membersthadsame meteorology (wind speed
and direction), and the same (integer) stabiliagslvalue.
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CRPS vs. Net Observed Conc. of NOx at Station 2 CRPS at Station 2 vs. Wind Speed at 10 m CRPS at Station 2 vs. Wind Direction at 10 m
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Figure 4.4j. Scatter plot of hourly values of CRRS concentrations and meteorology for model Dtatiéh 2,
using data for the period 5.2.2002-15.4.2002. Upgier VVs. observed concentrationsyfm®); Lower left: Vs.
mean predicted concentrationg)(>); Upper middle: Vs. mean wind speed (hUpper right: Vs. mean wind
direction (°); Lower middle: Vs. vertical temperegudifference between 10 and 2 m (°C); Lower righs:
mean Pasquill-Gifford stability classes A-F (1-6)iftinuous variable here based on ensemble average)

Again, as seen from the figure, CRPS values tenddease with the concentration level,
with highest values, i.e., poor probabilistic patigins, during low wind speed and strongly
stable conditions. This should perhaps not coma ssrprise, since these are the situations
which are well-known to be the most difficult totggght for (almost) any air pollution
model. We also note again that there is a largeeasp in the CRPS values when
concentrations are higher.

Results at Stations 1 and 3 shows a similar pidluweshown here).

83



84



5. DISCUSSION AND CONCLUSIONS

5.1 Discussion

Four probabilistic models for prediction of N@oncentrations with uncertainty from road
traffic are presented. All models use the deterstimWORM model for defining the mean
spatial and temporal characteristics of conceminatirom the given roads or road-segments.
In connection to this, four stochastic models wedeseloped and tested using data from
Nordbysletta in 2002. The following table summasiz®mme of the main characteristics of
these models.

Table 5.1a. Main characteristics of proposed statahanodels.

Treating WORM | Transform .
Model Type as a black box? of conc. Handling of parameters
A Classical Yes Box-Cox | MLE based on local NO
observations
B Bayesian Yes Logarithmic Prior bgse_d on mterrllatlonal
monitoring campaigns
C Bayesian Yes Logarithmic Posterior based on local NC
observations
D Bayesian NO Logarithmi¢ Prior based on NILU expert
elicitation

We will first shortly discuss results of the probeitic model evaluations performed for these
models as given in Chapter 4, before we give somie nonclusions in the next section.

All models generate somewhat too low predicted eaotrations as compared with
observations, especially at Stations 1 and 2, tieguh triangle shaped PIT-histograms. The
main reason for this is that the WORM model predsmewhat too low concentrations as
compared with observations at Nordbysletta. Thehststic models have thus, not managed
to fully correct for this bias in the dispersion ded

Models A and B (and partly also C) produces soméwdmwide predictions compared with
observations, resulting in inverse-U shaped PlTegimms. This is especially the case for
model A at Station 3, and for model B at Station 1.

As for the 90% predicted central interval coverademodels give higher values than 90% at
all stations, except for model A at Station 1 wa®.2%, the worst case being model B at
Station 1 with a coverage value of 97.1%.

Observed and predicted marginal CDFs fits besttaid® 3 and worst at Station 1 for all
models. Otherwise, it is difficult to rank the mé¢gleegarding this.

Comparing sharpness using mean and maximum valussandard deviations and 90%
central prediction intervals, we find that modelsAclearly best, followed by model D, and
with models C and B being worse than these twos Thalso evident when we look at time
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series plot of observed and model calculated valrbsre model A exhibits a much tighter

and less variable 90% central prediction intertiantthe other models, which shows a large
variability in the length of this interval dependion the concentration level, mainly due to
the use of the logarithmic transformation of coricaions as used by these models.

CalculatedCRPS values with reliability Reli) and resolution Resc) decomposition parts
are almost the same for all models, except for mbdat Station 1, and models A and D at

Station 3, where values @RPSare slightly lower, and values ®esc are slightly higher
than for the other models. The calculated values laowever, somewhat uncertain for all
four models as shown by the bootstrapped box plots.

As for the scatter plot of hourly values of CRPS wbserved and model calculated
concentrations and meteorology, all models showralas pattern, with highest values of
CRPS during low wind speed and strongly stableasidns where the concentrations are at
the highest. As stated before, this should not cama surprise, since these are the situations
which are well-known to be difficult to simulaterfany air pollution model.

5.2 Conclusions

Based on the results in Chapter 4 and the abocesti®on, we conclude that model A seems
to perform best at Nordbysletta, with model D agrang number two, the latter performing
somewhat better than models C and B, regardingpebas and level of resolution.

Further work are needed, however, to ensure thanpeters of such models are defined
properly so that the probabilistic models will betimally sharp and calibrated when

compared with local (roadside) observations. Fagiven city or urban area, this might

involve the need for modelling uncertainties ussegarate emission and local meteorological
models.

Defining Bayesian prior distributions of parametéss probabilistic models, especially for
hierarchical models such as D, was found to be rdifieult and time-consuming than we
had anticipated. It will, therefore, be of interakto to look into some alternative methods for
estimating parameters of such models, e.g., asesta)in Gneiting et al. (2007b).

We hope to be able to pursue this work further, amd to work towards including a
probabilistic version of the WORM model in futurergions of NILUs model system.
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APPENDIX A. WORM AND WMPP MODEL EQUATIONS

A.1 Calculating concentrations in receptor points

The WORM model (Walker, 2008) calculates hourlyrage concentrations of various inert
chemical species, including nitrogen oxides (NGn one or more receptor points up to a
certain distance (typically 200-300 m) from an opead (or highway), by integrating a
Gaussian plume function along each lane of the ,raattling up the concentration
contribution from each lane.

The hourly average concentratiaz) (ngm?) at a given receptor location=(x,.y;.z ),
based on emission of pollutants from a given l&@then calculated &5

C = T 9 exp( yr2§S) Hex{ (- Bu). Teﬁ)z} exf (z* H)” ZHeﬂ)zJ} ds(A.la)
20 2T 0, (1), (1) 20°,t) 207¢) 2¢)

where S is the length of the lane (mQ) is the emission intensity of the lane (&), U IS

the plume effective wind speed (MsH,, is the plume effective height above ground (m),
and whereo, and o, are total dispersion parameters (m) for the plugieen here as

functions of atmospheric transport timet(s) (s) from emission points on the lane to the
given receptor point . This is illustrated in Figure A.la.

Lane
s—

Receptor
point

Wind-directed
coordinate system

Figure A.1la. Geometry of road lane and receptantpniwind-directed coordinate system.

> Note that the variabless and t have a different interpretation here than in Ceeft5. Here they denote
local emission poinsS on a lane and atmosperic transport ti‘met(s) from this point to the receptor point.

87



At each hour, a local wind-directed coordinate eysts introduced with origin at one end of
the lane, and with the x-axis pointing in the dowmdwdirection, and y-axis 90° on this in the
crosswind direction.

Downwind and crosswind distance functioggs) and y, (s) from pointss on the lane to
the given receptor point are then uniquely defined by the geometry of #reeland the
position of the receptor point. The transport tifmection t =t(s) as used by, andg, in

(A.la) is then defined by dividing the downwind tdisce function by the plume effective
wind speed:

Note that in (A.1la) the vertical coordinate of the receptor point will be independent of the
various local wind-directed coordinate systems, @nsl.

The integration in (A.la) is performed using an @@ (nested) Gaussian quadrature
formula (Patterson’s QUAD) (Kythe and Schaferkqtt2®05), which is fast and highly
accurate, also for wind directions more parallehi® road.

A.2 Total dispersion parameters
The (total) horizontal and vertical dispersion pagters in (A.1a) are calculated as follows:

aj (t)= aj’ (D) + Ji er(t)

(A.2a)
T3 (1) = 0} a8 + 07 1)

where g, ,.(t) (M) and g, ,.(t) (M) defines the growth of the plumes due to antbien

atmospheric turbulent conditions divided into megbal and turbulent parts, and where
0,er(t) (M) and g, (t) (M) describes the growth of the plumes due tditrafroduced

turbulence (TPT). In (A.2a)g, ,.(t) also includes the effect of plume meandering. \&\& n
describe each of these parts in more detalil.

A.3 Dispersion due to ambient atmospheric condétion

We divide the description of this into horizontaldavertical parts. The formulations here are
mainly taken from Olesen et al. (2007).

Horizontal dispersion
Horizontal dispersion is calculated using the failog formula:
0-5 Atm(t) = a-fl Meck(t) + Jzy Con(t) + Jz,y Mean(nt) (Aga)
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where g, ,,..(t) is the growth of the plume due to mechanicallguiced turbulence, which is
caused by movement of the air over terrain andouarobstaclesy, .. (t) is the growth of

the plume due to convective driven turbulence, Whie caused by sunlight heating the
ground during the daytime; and, ....(t) is the growth of the plume due to horizontal

meandering, which is additional horizontal movemaair typically noticeable during low
wind speed conditions, i.e., when, <2-3 ms™.

Horizontal dispersion due to mechanical turbulesaalculated as

7, eer(®) =avm[{/(1— 0.8:—'3“} / [ 1+t;*J (A.3b)

where g, is horizontal turbulent mechanical diffusivity (Ms H,. IS the mixing height (m),
u. is the friction velocity (m$), and z, is a height (m) calculated as

Z, =Min(Hy, +2.150, 7, ); %, = min(ma(l ,0.mH,, )H,, (A.3¢)
where L is the Obukhov length (m). In (A.3b}, =1.6u. where v, is the friction velocity
(ms?).

Horizontal dispersion due to convective turbuleiscealculated as

_{0.5\/\“/ I+ 0.t H, if L7 < ( (A.3d)

0’ =
y,Conv .
0 otherwise

wherew. denotes the convective velocity scale {jns

Horizontal dispersion due to meandering is caledats

g,

y,Meand =0

K (A.3e)

ymin

whereog, . =0.2ms™.

Vertical dispersion

Vertical dispersion (combined mechanical and cotivekis calculated as follows

JO7(ut) expe 0.2 { £ 08, H,,) [ 2ut?) > s
H

O-Z, Atm(t) =
mix) otherwise

JO.7(ut)’ expt 0.2 { £ 0.8,

wherea is defined as

a=min(Lut/Hy) (A.390)
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There is no extra vertical dispersion due to meandgd€only horizontally).

A.4 Dispersion due to traffic produced turbulence

For roadway models, it is important to include éigpon due to traffic produced turbulence
(TPT) generated by the moving vehicles, especiallysituations with low wind speeds
(Berkowicz et al., 2007). The formulation in the \R® model is based on the same scheme
as used in the OML Highway model (Berkowicz et 2007). In this formulatioro, ., =0,

while g, .., is calculated as
O, o) = Op + U T {1 - exp(t 1) (A.4a)

where o, is the initial value ofo, . close to the roadwayy,., = VE, where E is the
turbulent kinetic energy (TKE) calculated from theoving vehicles;t is the effective
transport time from the road to the receptor p6intx/ U, ); 7 is a time constant as defined

below, and whereE is calculated as
E=alNDAD + NOADV,)/ W (A.4b)

with N, the number of vehicles per secorw];the vehicles average speed; the average

frontal areas of light- X = L) and heavy-duty X = H) vehicles respectivelyy an empirical
(dimensionless) constant; amdthe total width of the roadway (m). In the currgatsion of
the model the above empirical quantities have lseeto A =4m? A, =16m? @ =0.04 and

o,, =1m. Furthermore, the time constanin (A.4a) is defined as
r = 300kexp(y. /0.273)+ (A.4c)

whereu, is the friction velocity (mé$). From (A.4c) it follows that = 3s for largeu. , while
r=33s for u, close to zero, thus (A.4c) expresses that TKEighsss faster (slower) in
stronger (weaker) wind conditions.

A.5 Calculation of various meteorological paramstesing WMPP

As part of the WORM model, a new meteorological -precessor (WMPP) has been
developed to calculate various meteorological patams needed by the model. In the current
version, the profile method is applied, using hpwtbservations of wind speed at one height
(usually 10 m), and temperature difference betww®en heights (usually 10 and 2 m), in
order to calculate other derived meteorologicabpsaaters. Given these data, and an estimate
of the momentum surface roughness,, WMPP calculates friction velocity u(),

temperature scaled() and inverse Obukhov length scale') according to Monin-Obukhov
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similarity theory. These latter quantities are aldted by solving the following three
nonlinear equations:

= KB g KO . a_k0E8 (A.5a)

- 22 ! Y] ! 1' US
[ #u(z L) dz [#u(z 1) dz f
21 %1

ef

where k is Von Karman's constant (0.41y; is the acceleration of gravity (9.81 MsAu is

the wind speed difference between heightsand z,, wherez, here is 10 m, and, = z,,
where the wind speed is zero, so that=u, -0=u,,; A8 is the difference in potential
temperature between heights and z,, which are here 10 m and 2 m respectively, so that

A6=T,, —-T,,+0.01; and whereT, is a reference temperature, here taken to be trage

of T,, andT,

Oom *

In (A.5a), the similarity functiong,, and ¢, are defined as follows (H6gstrom, 1996):

1
(1+ am(zl_‘l)) 4 if L*<0 (unstable atm.
(2, L) =11+ B, ( 2L) if C'> 0 (stable atm.) (A.5b)
1 it™'= 0 (owal atm.)

and

Pr0(1+ah(zl_‘1))_; if L*< 0 (unstable atm.
$,(z, L) =1Pg(1+5,(2Y))  if L*> O (stable atm.) (A.5¢)

Pr, it = Onéutral atm.)

where Py = 0.9¢ is the Prandtl number for neutral conditions, arere the coefficients are
defined asa,, =-19.0, @, =-11.6, B,=5.3and 3, =8.2.

This set of similarity functions is then used tdcaéate vertical profiles of temperature and
wind speed. The temperature at a heiglfin) above ground is thus calculated as

62 v=z
T, =T —C—(‘:l(z— ;ef)+7 .[ ¢h( v Ll) ah (A.5d)

Zef
V=Zet

where z, =10m. Similarly the wind speed at a heigh{m) above ground is calculated as

u,=u, +U—K* VIZ ¢m(v, L‘l) dv. (A.5e)

z
V= Ziet
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The convective velocity scale. (ms?) is calculated as

-1\3

-H_Le
V\L=u( L j if " <0 (unstable atm (A.51)

K

and is only applied for unstable atmospheric cooist

Finally, the mixing heightH_ . (m) is calculated as

mix

0.3u./f,, it < Oifstable and neutral atn

Hini = A5
™ L (1+2.28.1%/1,) if U*> 0 (stable atm.) (A-50)
8L 1 cor

where f_, is the Coriolis parameter. This latter paramesecalculated asf,, =2Q 5iné ,
where Q is the angular speed of rotation of the Earth,@e.27/T_,, with T, the sidereal
period of rotation, i.e.T,, = 23[60060+ 56166- 4. (s), and wheré& is the site latitude (60°).

For more details of these, and other recommendeenses, see the final reports from the

COST 710 project (Fisher et al., 1998) and HOgst{t996).

Minimum values can be defined for some of the nrelegical parameters in the WORM
model such as the effective wind speed, Obukhogtlermixing height and horizontal and
vertical diffusivities. Table A.5a gives an ovemwieof the minimum values set for these

parameters as has been used in the present caloalat Nordbysletta.

Table A.5a. Minimum values for some of the metengalal parameters used by WORM.

Parameter | Minimum value
U, No lower limit, i.e., 0 m3
L 10 m
H.. 10 m
o, 0.2 ms'
o, No lower limit, i.e., 0 ms
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APPENDIX B. ADAPTIVE RANDOM-WALK METROPOLIS-WITHIN-GIBBS FOR
MODEL C

B.1 Conditional distributions

Using the original nomenclature from Section 2.3Model C equations for a given
observation poins = 5, can be written

loge (s, ) =4 +10g f,( 50 9 +£( 500} (B.1a)
where
e(swt) = (s t-D+n(s.): (s}~ Noo) (B.1b)
and where the observation equation is
logy(s,. ) =logq( s, §+7,( 5. }: 7,( s}~ NO0o?). (B.1c)
By insertinge(s,,t) from (B.1a) into (B.1b) we obtain
logc(s, )= log f,(s,. -5, =¢(logd s, £ I-log {( 5.+ 1-5)+7( s.1
If we define state variableg as
x =logc(s,, )~ log £(s,

and replacey(s,. 1), 7(s.t), 7,(s.t) and f.(s,t) with y,, n,, n,, and f,, respectively,
equations (B.1a-c) can alternatively be written
% =By =@(% 1= Bo)*+m: 1~ N(0.0?) (B.1d)
logy, =x +log f +72,,; 7, ~ N(057). (B.le)

Using these equations with initial state=/,, and priors for the parametey$, ¢ and

r=0 as defined in Section 2.3.4, it can be shown @hatwn here) that the conditional
posterior distributions of these parameters cagilen analytically as follows$:

g(&—w_l) 1
T(1-¢) ’Tr(l—qo)z

p(/go | %75 Yar 140,7') =N

and

® T here is the same &8 in Section 2.3.4.
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T

Z(X(_:Bo)()ﬂ—l_ﬁo) 1
p((ﬂl X1 Wt -:80!7-): N| = T

Y(x-8)Y  S(x-5)

t=1 t=1

and

p(TI X1 Yot -ﬂom) = Gamm{ a+% TE%+%2( x=5 _(0( Kl_u))zj J

with parametersa =14.98 (shape) and =0.14 (scale) from the prior Gamma-distribution for
7 as given in Section 2.3.4. In these expressiors,have used the short-hand notation

Xer = (%o %) @Nd Yir = (Yaroo ) -

Furthermore, it can be shown (not shown here) ttiatconditional posterior distribution of
state variablex can be written

P(X | %uets Xoar + Yor B0 @) O
exf(_ 0'6& _/Bo _¢()§—1 —,30))2 - 0'(5)&1_130_40( X _'BO))Z) Dd Y h()

where the observational likelihoog( y, | x) is obtained directly from (B.1e), i.e.,

2
1| logy, — % —log f
O [——
p(¥1%) exu[ 2( s

with o, being the observational error standard deviation.

B.2 Adaptive random-walk Metropolis-within-Gibbs

Based on the development in the previous sectiuh tlee general theory of Gibbs sampling
as described in Section 3.3., an adaptive randotl-wdetropolis-within-Gibbs
(AdapRWMwG) algorithm for model C can be defineda@bws:
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MODEL C: AdapRWMwG ALGORITHM
For k=1,...,Ndo
1. Draw A ~ (B ™, Y 7 747).

2. Draw ¢ ~ p(p] X4, y, B 1Y),

3. Draw ™ ~ (r|x§k Yy .88, k)) and calculater®” =1/7® |
Fort=1,...,T do

4. Draw X ~ N[, ) and accept the new proposal with

p(X 142, D W B @9 1%) J
()ék 1)|){‘t—l’ kl"lj:)’ YLT 'l[;(k) 9 T(k))

If acceptedx™ =X , otherwisex® = x*.

probability p® =min

5. If mod(k 50 = C calculate average acceptance probability

z p" , and update the proposal distribution standar

| =k-49
deV|at|ons as follows:

If b, <0.44setd, =d, /exp(J)
If b, >0.44setd, = d, [exp(J)
If p,=0.44 d, is unchanged
whered=9(n,) = min[0.0l 1

=

J andn, =k/50.

According to the theory of Section 3.3, if the nenlof iterationsN is large enough,
parameter valuegg,¢¥.7) from say the last half of the iterations can bleetaas

samples from the corresponding unconditional matgosterior distributions, i.e.,
(89,6.1°) ~ p(By. 0.7 1Yir )

for k=N/2+1,...,N.
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