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Abstract

Nested case-control studies (NCC) reduce the cost of large cohort studies,
but are statistically less efficient since all information is only available for
cases and controls. In particular in a competing risk situation the traditional
partial likelihood estimator for NCC can not handle controls sampled for
cases of one disease as controls for another disease. This may be especially
problematic if one outcome is common, but the other is rare. There has,
however, been developed methods based on inverse probability weighting
(IPW) that allow for reusing controls (and cases). Also maximum likelihood
methods for NCC have been developed.

Furthermore, in addition to the information collected on cases and con-
trols, some information is usually known for the entire cohort, like gender,
age, etc. This information can be utilized to obtain more accurate estimates
both for the IPW and MLE approaches.

This is a comparison of such methods. It is carried out both on simulated
data and on data from the Norwegian Medical Birth Registry with death
of cancer being the rare endpoint and death of all other causes being the
common. In simulations with only one covariate IPW and MLE methods
performed similarly. With two covariates where one covariate was known
for the entire cohort methods that utilized this information gave efficiency
improvements in particular for the fully observed covariate. If the two co-
variates were dependent we also found improvement for the covariate only
known for cases and controls. Analysis on the Norwegian Medical Birth
Registry data showed similar results than the simulation, but due to the
high number of controls, at least for cancer endpoint, the improvements are
not that pronounced.



iv



Acknowledgements

For one and a half year now, I have been working on this thesis and it
has been an incredible instructive period. During this process, there have
been several people that have been of great help that I would like to thank.
First and foremost I would like to thank my supervisor Professor Sven Ove
Samuelsen for giving me an interesting theme for my thesis. He has shown
a sincere interest, patiently answered my questions and given me useful
feedback. I would also like to thank Professor Norman E. Breslow for taking
his time to meet with me on his stay her in Oslo, and Professor Thomas H.
Scheike for providing me with his R-code and answering my e-mails about
it.

In addition I want to thank my fellow students at B802 for support and
encouragement, it wouldn’t have been the same without you. And at last
my family and friends, who have supported me through the Master program.
I have indeed learned a lot and I will bring it all with me into my life and
career in the future.

Oslo, May 2010
Nathalie C. Støer



vi



Contents

1 Introduction 1

2 Survival analysis 5
2.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Survival function and hazard rate . . . . . . . . . . . . 5
2.1.2 Likelihood for survival data . . . . . . . . . . . . . . . 6

2.2 Proportional hazards models . . . . . . . . . . . . . . . . . . 7
2.2.1 Parametric survival models . . . . . . . . . . . . . . . 9

2.3 Competing risks . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3.1 Estimation . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Nested case-control design . . . . . . . . . . . . . . . . . . . . 13
2.4.1 Estimation in a NCC-design . . . . . . . . . . . . . . . 13

2.5 Case-cohort design . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5.1 Estimation in a CC-design . . . . . . . . . . . . . . . . 14

2.6 Weighted partial likelihoods for NCC design . . . . . . . . . . 15
2.6.1 Multiple outcomes and NCC . . . . . . . . . . . . . . 16

2.7 A full likelihood for NCC data . . . . . . . . . . . . . . . . . 17
2.7.1 Notation . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.7.2 The likelihood . . . . . . . . . . . . . . . . . . . . . . 18
2.7.3 Approximations to the likelihood . . . . . . . . . . . . 20

2.8 Two phase design and calibration . . . . . . . . . . . . . . . . 21
2.8.1 Two phase stratified sampling . . . . . . . . . . . . . . 21
2.8.2 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 23
2.8.3 The five step procedure and calibration with compet-

ing risk and NCC sampling . . . . . . . . . . . . . . . 24
2.9 Scheike’s likelihood . . . . . . . . . . . . . . . . . . . . . . . . 25

3 Simulations 27
3.1 Censoring schemes . . . . . . . . . . . . . . . . . . . . . . . . 27
3.2 Simulation with one binary covariate . . . . . . . . . . . . . . 28

3.2.1 Random cencoring . . . . . . . . . . . . . . . . . . . . 29
3.2.2 Fixed censoring . . . . . . . . . . . . . . . . . . . . . . 32

3.3 Simulation with two covariates . . . . . . . . . . . . . . . . . 34



viii CONTENTS

3.3.1 Two independent covariates . . . . . . . . . . . . . . . 35
3.3.2 Two dependent covariates . . . . . . . . . . . . . . . . 37

3.4 Including more information in the estimation of inclusion
probabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.5 Comparison between the accelerated failure
time model and Saarela’s likelihood . . . . . . . . . . . . . . . 41

3.6 Comparison between Scheike and Juuls MLE
and the weighted partial likelihoods . . . . . . . . . . . . . . 42

3.7 Simulation problems . . . . . . . . . . . . . . . . . . . . . . . 44

4 Application to data 47
4.1 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.2.1 Weighted partial likelihoods . . . . . . . . . . . . . . . 49
4.2.2 Full likelihood . . . . . . . . . . . . . . . . . . . . . . 49
4.2.3 Calibration . . . . . . . . . . . . . . . . . . . . . . . . 52

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
4.3.1 Two partially unknown binary covariates . . . . . . . 53
4.3.2 One partially unknown and one fully known covariate 55
4.3.3 Monte Carlo approach . . . . . . . . . . . . . . . . . . 59
4.3.4 Summing up . . . . . . . . . . . . . . . . . . . . . . . 60

5 Discussion 63
5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
5.3 Further research . . . . . . . . . . . . . . . . . . . . . . . . . 65

A More simulation results 67

B Theoretical derivations 73
B.1 The full likelihood - how it looks like . . . . . . . . . . . . . . 73
B.2 Two phase variance . . . . . . . . . . . . . . . . . . . . . . . . 75
B.3 Monte Carlo integration and importance sampling . . . . . . 77

C Code 79



List of Figures

2.1 Model for K=2 competing causes of death . . . . . . . . . . . 11
2.2 Inclusion probabilities . . . . . . . . . . . . . . . . . . . . . . 17

4.1 Baseline hazard for cancer deaths and deaths from all other
causes, top: follow-up until death or censoring, bottom: follow-
up until 10 years old. . . . . . . . . . . . . . . . . . . . . . . . 48



x LIST OF FIGURES



List of Tables

3.1 Simulation, one covariate . . . . . . . . . . . . . . . . . . . . 30
3.2 One covariate, fixed censoring . . . . . . . . . . . . . . . . . . 33
3.3 Simulation, two independent covariates . . . . . . . . . . . . . 36
3.4 Simulation, two dependent covariates . . . . . . . . . . . . . . 38
3.5 Efficiency, two independent covariates . . . . . . . . . . . . . 40
3.6 Efficiency, two dependent covariates . . . . . . . . . . . . . . 41
3.7 Efficiency compared to Cox-regression on full cohort . . . . . 42
3.8 Simulation Scheike and Juul . . . . . . . . . . . . . . . . . . . 43
3.9 A subset of Table 1 in [23] . . . . . . . . . . . . . . . . . . . . 44

4.1 Comparison cancer endpoint, two unknown binary covariates 53
4.2 Comparison other deaths, two unknown binary covariates . . 54
4.3 Comparison cancer endpoint, one partially unknown binary

covariate and one fully known numerical covariate . . . . . . 56
4.4 Comparison other deaths, one partially unknown binary co-

variate and one fully known numerical covariate . . . . . . . . 57
4.5 One partially observed numerical covariate . . . . . . . . . . . 60

A.1 One covariate, random censoring, simulation I . . . . . . . . . 68
A.2 One covariate, random censoring, simulation II . . . . . . . . 69
A.3 Simulation, two independent covariates . . . . . . . . . . . . . 70
A.4 Simulation, two dependent covariates . . . . . . . . . . . . . . 71



xii LIST OF TABLES



Chapter 1

Introduction

In survival analysis a group of people, the cohort, is followed from start
of study to experience of event or to end of study. During this time one
observe the deaths in the cohort and collect information, covariates, from the
individuals. For individuals who do not experience the event or disappear
from the cohort from other reasons i.e. death from other causes, moving etc.
we don’t know the actual survival time, only that they lived longer than the
observed time. These times are called censored survival times. Because of,
that in practice, censoring is always at play, we need special methods for
dealing with survival data. The most famous model is Cox-regression model
[9]. This model assumes that the hazard rate for an individual takes the
form

α(t|xi;β) = α0(t) exp(β1xi1 + · · ·+ βpxip),

where (xi1, . . . , xip) is the covariate vector of individual i, (β1, . . . , βp) is the
regression coefficients and α0 the baseline hazard. The expression
exp(β1xi1 + · · ·+ βpxip) is a relative risk describing the connection between
the covariates and the hazard rate.

Estimation in Cox-regression models is usually based on a partial likeli-
hood, see (2.9) below, which require the knowledge of all covariates for all
members of the cohort. This is because at each event time the covariates
of the individual who experience the event is compared to the covariates
of all the individuals who have not yet experienced it. To collect covariate
information from all individuals in a cohort can both be time consuming
and very expensive. Especially in epidemiologic studies of rare diseases this
can be a problem because one need to follow up a large group of people in
order to get enough deaths to obtain precise estimates. As an alternative
one can instead use methods which is based on collecting information from
the people who experienced the event and a subgroup of people who did
not experience it. Two such designs are nested case-control (NCC) [27] and
case-cohort(CC) [16], which are the two most common cost-efficient sam-
pling schemes. In a NCC design one samples a small number of controls
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without replacement from the cohort at each event time. These controls are
individuals who was still at risk when the event happened. In a CC design
one samples a subcohort from the full cohort at the outset of the study, and
those individuals are being used as controls at all event times.

Since most of the statistical information will be contained in the cases,
when events are rare this type of studies can still give reliable results. But
of course, with fewer observations the variance will increase and we would
like to squeeze as much information as possible out of the controls.

The traditional NCC estimator only use the case and it’s sampled con-
trols at the event time, a more efficient way is to use the the cases and the
controls whenever they are at risk. This is possible by using a weighted
partial likelihood (WPL) in which the original time-matched controls sets
together with all cases are pooled together, are used in the estimation. Us-
ing unit weights on both cases and controls will result in biased estimates
since the cases always are included in the risk sets while the controls are
included with a probability (much) smaller than one. The probability for a
member of the cohort being included in a risk set increases with time since
the number of chances of being sampled increases with time. It is therefore
sensible to give the cases unit weights and weigh the remaining controls by
the inverse of their probability of being sampled, this method is applicable
both in NCC- and CC-designs. There are a number of ways to estimate the
inclusion probabilities, Samuelsen [20] has proposed one estimator, Breslow
et al. [4, 5] have suggested another method, mainly for the CC-design, that
aims at minimizing the extra variance we get from the sampling. Other
possibilities are for instance logistic regression or a logistic generalized ad-
ditive model (GAM), where the difference between them is that GAM allow
the covariates to be included as arbitrary smooth functions in stead of only
linearly as is the case with logistic regression.

One situation where there is potentially much to gain by being able to use
controls (and cases) over again is in a competing risk situation. Assume that
we have a cohort with two competing risks where controls have been sam-
pled for both endpoints. This means that covariate information have been
obtained for cases of both types and their sampled controls. If the same
covariates are of interest, the same covariates have been obtained for both
endpoints, then it seems appealing to be able to use both cases and controls
for one endpoint as additional controls when analyzing another endpoint.
This is of course especially useful if one endpoint is common, but another
is rare, then the number of controls for the rare endpoint can increase dras-
tically, which results in (much) lower variability. Above a weighted partial
likelihood could be used when the risk sets together with all the controls are
pooled together, this method is also applicable in a competing risk setting
where cases and controls from both endpoints now are pooled togehter.

Saarela et al. [19] describe another way of reusing controls. They propose
a full likelihood for both the cases and the controls, by parameterizing un-
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known quantities, like the baseline, the likelihood can be directly optimized
with any numerical optimizer. Scheike and Juul [23] have also proposed a
full likelihood, but they approach the maximization in a different way, by
using the EM-algorithm. Both of these likelihoods can also handle multiple
outcomes.

In this thesis we are going to investigate the efficiency improvements by
using all controls and the cases of one outcome, when analysing another out-
come. We will try to find criterion for when the full likelihood estimator of
Saarela et al. is better than the weighted partial likelihood with inverse prob-
ability weighting. Further we will try to find out if the approach proposed
by Breslow et al. can be useful also in an NCC situation with competing
risks. We will evaluate the properties of the variance estimators both by
simulation studies and studies of concrete data.

The thesis is outlined as follows:

• In chapter 2 we repeat the basics of survival analysis, look at the
competing risk setup and review the NCC-design, CC-design and the
weighted partial likelihood. We also go through the likelihood of
Saarela et al. and Scheike’s likelihood. At last we also go through
the calibration method of Breslow et al. and try to generalize it to
NCC with multiple endpoints.

• Chapter 3 is about simulations. We first discuss different censoring
schemes, then we present and comment on the simulation experiments.
The chapter is ended with a brief discussion of the problems that have
arisen in connection with the simulations.

• In chapter 4 we try out the different methods on a real data example.
First we present the data, then we explain what we have done and how
we have done it and at last we present and comment on the results.

• The last chapter is summing up what we have done and what we have
found out. We make a conclusion about when it is worth using more
complicated models. We also comment on what else that could have
been done, but due to the time limit, haven’t been done.
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Chapter 2

Survival analysis

2.1 Basic concepts

In survival analysis one usually observe the time T to a specific event of
a group of people called the cohort. Unlike most other study designs, the
observations in a survival analysis are observed over time, we have to wait
for the event to actually happen. Because of that, usually T can not be
observed for all members of the cohort. Either the study is ended before
all individuals have experienced the event or some individuals disappear
from the study because of death from other causes, moving etc. This means
that we have a mixture of complete and incomplete observations. These
incomplete observations are called censored survival times and are denoted
C, while the actual survival times are denoted T . Even though one usually
can’t observe T for all members of the cohort, what we can observe is
T̃ = min(C, T ) together with an indicator E, indicating whether the time is
an actual survival time or a censored survival time.

Sometimes the individuals may not be observed from start of study, only
some time after. The individuals who experience the event before this time
is then not included in the study and what we observe are (V, T̃ , E), which
is entry time, exit time and an indicator that indicates whether or not the
exit time is censored.

2.1.1 Survival function and hazard rate

There are two basic concepts that all survival analysis rely on, this is the
survival function and the hazard rate. The survival function is defined as

S(t) = P (T > t), (2.1)

where T is the survival time. This is the probability that the event has not
yet happened at time t. Note that

S(t) = 1− F (t)
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where F (t) = P (T ≤ t) is the cumulative distribution function of T
The hazard rate is defined as

α(t) = lim
∆t→0

1
∆t

P (t ≤ T < t+ ∆t|T ≥ t). (2.2)

α(t)∆t can be thought of as the ”probability” of experiencing the event in
the next small time interval [t, t + ∆t), given that the event has not yet
happened. The interpretation of the hazard rate is the instantaneous risk
of experiencing the event.

There are some basic mathematical connections between the survival
function and the cumulative hazard rate. Define

A(t) =
∫ t

0
α(s)ds (2.3)

to be the cumulative hazard rate. Then it follows from (2.2) and (2.3) that

α(t) = A′(t) = lim
∆t→0

1
∆t

S(t)− S(t+ ∆t)
S(t)

= −S
′(t)
S(t)

. (2.4)

Another basic relation between the survival function and the hazard rate is

S(t) = exp
{
−
∫ t

0
α(s)ds

}
= exp(−A(t)) (2.5)

This can be seen by integrating on both sides of (2.4) and using the fact
that S(0) = 1, we get

− log(S(t)) =
∫ t

0
α(s)ds

and the result follows from this. From (2.4) we also get the relation

α(t) =
f(t)
S(t)

(2.6)

since S(t) = 1 − F (t), and if we differentiate on both sides we get that
S′(t) = −f(t) and the relation follows from this.

2.1.2 Likelihood for survival data

From (2.6) we know that the distribution of the survival times is

f(t|x;ψ, β) = α(t|x;ψ, β)S(t|x;ψ, β)

here x is covariates, ψ are parameters describing the baseline while β are re-
gression parameters. If we knew the actual survival time of every individual
the likelihood would simply be

n∏
i=1

α(ti|xi;ψ, β)S(ti|xi;ψ, β),
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but we don’t. We only know T̃i = min(Ti, Ci) together with an indicator
Ei indicating whether T̃i it’s a survival time or a censored survival time. If
ti is a censored survival time we don’t know the hazard rate only that the
individual lived longer than ti. This means that the only thing we know is
the survival function up to ti. Thereby the full likelihood for survival data
looks like

L(ψ, β) =
n∏
i=1

[α(ti|xi;ψ, β)]1Ei=1S(ti|xi;ψ, β), (2.7)

where 1Ei=1 is an indicator function indicating whether or not Ei = 1. This
is a bit cumbersome notation since Ei itself is an indicator, but when we
move on to multiple outcomes it is needed because then Ei can take more
values than 0 and 1. Therefor in order to be consistent with the notation
we use it here as well.

2.2 Proportional hazards models

Usually, the main purpose of a survival analysis is to determine which co-
variates are important for the survival time, and how they influence it, this
calls for regression models. The most common models are the relative risk
regression models

α(t|xi;β) = α0(t)r(β, xi)

here r(·) is a relative risk function connecting the covariates to the hazard
rate. The most famous of these models is Cox’s proportional hazard model
which is given by

α(t|xi;β) = α0(t) exp(β1xi1 + · · ·+ βpxip), (2.8)

Here (β1, . . . , βp) are the regression parameters, (xi1, . . . , xip) is the covariate
vector belonging to individual i and α0 is the baseline hazard, the hazard
when all covariates are equal to zero. Even though Cox’s proportional hazard
model is the most famous, there are other possibilities for r(·), for instance
the linear relative risk function r(β, xi) = β1xi1 + · · · + βpxip or the excess
relative risk model r(β, xi) =

∏p
j=1{1 + βjxij}.

Cox’s proportional hazard model is a semi-parametric model because the
risk function exp(β1xi1 + · · · + βpxip) is a parametric expression, while the
baseline hazard is unspecified, and can basically take any form. Because of
that, Cox [7] suggested using the product over the conditionally probabilities
of given that it did happen an event at ti, it happen with individual i,

L(β1, . . . βp) =
∏
Ei=1

exp(β1xi1 + . . .+ βpxip)∑
j∈Ri

exp(β1xj1 + . . .+ βpxjp)
, (2.9)
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to estimate the regression parameters. Here, Ri is the risk set at ti, the col-
lection of all individuals still at risk at time ti. Ei is an indicator, indicating
whether ti is an event time or only a censored survival time, therefor the
product is over all event times.

A bit more formal argument for (2.9) is as follows; if α0 was known we,
know from (2.7) that the likelihood would look like

L′ =
∏
i

{α0(ti) exp(βxi)}1Ei=1 exp
{
−
∫ ti

0
α0(s) exp(βxi)ds

}

=
∏
i

α0(ti)1Ei=1
∑
j∈Ri

{exp(βxj)} exp
{
−
∫ ti

0
α0(s) exp(βxi)ds

}×
∏
i

exp(βxi)1Ei=1∑
j∈Ri

exp(βxj)

=
∏
i

α0(ti)1Ei=1
∑
j∈Ri

{exp(βxj)} exp
{
−
∫ ti

0
α0(s) exp(βxi)ds

}×
∏
Ei=1

exp(βxi)∑
j∈Ri

exp(βxj)

(2.10)

The further reasoning is that the expression in brackets doesn’t provide
much information about β when α0 is unknown and Cox [8] suggested that
if a full likelihood can be written as

m∏
i=1

fXi|X(i−1)S(i−1)(Xi|X(i−1)S(i−1); θ)
m∏
i=1

fSi|X(i)S(i−1)(Si|X(i)S(i−1); θ)

then the second product is a partial likelihood. Here theX(j) = (X1, . . . , Xj),
S(j) = (S1, . . . , Sj) and fXi|X(i−1)S(i−1)(Xi|X(i−1)S(i−1); θ) is the conditional
distribution of Xi given X(i−1) and S(i−1) and similar for fSi|X(i)S(i−1) . Gen-
erally Xi and Si are random variables, or even random vectors. If we let
Xi specify the censoring in [ti−1, ti) plus the information that the event
happened for the first time at ti and let Si specify the particular indi-
vidual that experience the event at ti, then the likelihood of the sequence
(X1, S1, X2, S2, . . . , Xm, Sm) is exactly (2.10) and the second product is the
partial likelihood.

The partial likelihood is not a full likelihood because we completely dis-
regard the baseline, but never the less it shares the same properties as a full
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likelihood. This means that

E[U(θ)] = 0
and

Var(U(θ)) = E(I(θ))

here U(θ) = ∂l(θ)
∂θ is the score statistic and I(θ) = −∂U(θ)

∂θ is the observed
information matrix.

The Cox standard proportional hazard model rests on two assumptions;
log-linear effects of numerical covariates log(α(t|x;β)) = α0(t) + xβ and
proportional hazards. The assumption of log-linear effects imply that one
unit increase in a numeric covariate should have the same effect on log scale
independent of the value of that covariate and of all other covariates. The
proportional hazards assumption means that the hazard ratio is independent
of time and if x1 and x2 are equal except for the i-th component the hazard
ratio is exp(β).

The Cox-likelihood is based on knowing all covariates for the entire co-
hort. To collect covariate information for all individuals in a cohort can
both be time consuming and very expensive. Especially in epidemiologic
studies of rare diseases this can be a problem because one need to follow
up a large group of people in order to get enough death’s to obtain precise
estimates. As an alternative one can instead use methods which is based
on collecting information from the individuals who experienced the event
and a subgroup of individuals who did not experience it. Two such designs
are nested case-control (NCC) and case-cohort(CC) which are two major
cost-efficient sampling schemes.

2.2.1 Parametric survival models

The Cox proportional hazards model α(t|xi;β, ψ) = α0(t|ψ) exp(βxi) is a
semi-parametric regression model, because of the unspecified baseline haz-
ard. But it is of course possible to have a parametric specification of baseline
as well, then the model would be fully parametric and the likelihood could
be optimized directly. From (2.7) we know that the likelihood would be

L(ψ, β) =
∏
i

{α0(ti|ψ) exp(βxi)}1Ei=1 exp
{
−
∫ ti

0
α0(s|ψ) exp(βxi)ds

}
(2.11)

where ψ is the parameters describing the baseline hazard and β is the re-
gression paramters.

There are different ways of specifying the baseline, but since there is
a close connection between the distribution of the survival times and the
hazard rate we can get some reasonable expressions for baseline when the
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survival times follows the most common distributions, which is the exponen-
tial and Weibull. We know that the hazard of a proportional hazard model
looks like α(t|xi;β, ψ) = α0(t|ψ) exp(βxi), so by assuming some structure
on α0(t|ψ) one can get hold of the distribution of T . A baseline on the form
λνtν−1 result in a Weibull distribution for the survival times. A special
case is when ν = 1, which result in a constant baseline and an exponential
distribution for the survival times.

Constant baseline, exponential survival times

If one assumes a constant baseline λ, then the hazard can be written as

α(t|xi;β, λ) = λ exp(βxi)

and the cumulative hazard as

A(t|xi;β, λ) =
∫ t

0
λ exp(βxi)ds = λ exp(βxi)t

the survival function is then

S(t|xi;β, λ) = exp(−A(t|xi;β, λ)) = exp(−λ exp(βxi)t).

And then since we know that f(t|xi;β, λ) = α(t|xi;β, λ)S(t|xi;β, λ)

f(t|xi;β, λ) = λ exp(βxi) exp(−λ exp(βxi)t)

As we see, this is an exponential distribution with parameter λ exp(βxi)

Weibull proportional hazard model

The exponential distribution assumes that the baseline hazard is constant
over time, this is often not the case in practice. Then, for instance a Weibull
distribution can be used. The hazard and cumulative hazard is given by

α(t|xi;β, ψ) = λννtν−1 exp(βxi)
A(t|xi;β, ψ) = (λt)ν exp(βxi),

then the survival function and density can be written as

S(t|xi;β, ψ) = exp(−(λt)ν exp(βxi))

f(t|xi;β, ψ) = λν exp(βxi)νtν−1 exp(−(λt)ν exp(βxi)).

where ψ = (λ, ν). This is Weibull(λ exp(βxi), ν) distributed. The scale
parameter λ exp(βxi) vary with coefficients and covariates, while the shape
parameter ν is fixed. For ν = 1 we get back to the exponential distribution,
while for ν = 2 we get a linear increasing baseline 2λt. Generally, ν > 1
results in an increasing baseline, while ν < 1 gives us a decreasing baseline.
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Piecewise constant baseline

Another possibility for baseline hazard is piecewise constant

M∑
m=1

ψmIm(t)

where Im(t) is the indicator function for them-th interval and ψ = (ψ1, . . . , ψM )
where ψm is the constant basline value for the m-th interval. This result in
a hazard on the form

α(t|xi;β, ψ) =
M∑
m=1

ψmIm(t) exp{βxi}. (2.12)

The piecewise constant baseline doesn’t result in a nice distribution for the
survival times, but it is nice anyhow because the likelihood with this baseline
is proportional to a Poisson likelihood. Therefor the parameter estimates
are easily obtained with software for Poisson regression, for instance the glm
package in R [17].

2.3 Competing risks

Figure 2.1: Model for K=2 competing causes of death

If there are more than one event that can occur, for instance death from
different kind of cancer types and we are interested in the cause-specific mor-
tality, then we have a competing risk situation, we have two or more causes
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of death that are ”competing”. Each individual can be in 1 + K different
states, where K is the number of causes of death. The first state corre-
spond to being alive while the K last states correspond to have died by the
k-th cause. The competing risks can then be modeled by a Markov Chain,
with one transient state corresponding to being alive and K absorbing states
corresponding to death from one of the K causes.

The concept of hazard rate may also be generalized to competing risks,
where αk denotes the instantaneous risk of dying from cause k.

2.3.1 Estimation

The Cox-likelihood for competing risks can be outlined similar to the usual
Cox-likelihood, if αk was known for all inidividuals the likelihood would be

L(β′1, . . . , β
′
K) =

∏
i

[
K∏
k=1

{α0k(ti) exp(β′kxi)}1Ei=k

exp

{
−

K∑
k=1

∫ ti

0
α0k(s) exp(β′kxi)ds

}]
where β′k is the regression parameters corresponding to the k-th endpoint.
1Ei=k is again an indicator function that is one if Ei = k and 0 otherwise.
By going through the same argument as we did for the usual Cox-likelihood
the partial likelihood can be written as

K∏
k=1

∏
Ei=k

exp(β′kxi)∑
j∈Ri

exp(β′kxj)
=

K∏
k=1

Lk(β′k)

where each Lk is itself a Cox-likelihood, the notation
∏
Ei=k

means the
product over all i where Ei = k, this means the product over all individuals
that experienced endpoint k . We see that when we estimate β′k all products
except the k-th are constants, therefor the information matrix will be a block
diagonal matrix and one Cox-regression per endpoint can be done.

With a parametric proportional hazard model on the other hand, the
likelihood would look like

L(ψ′1, . . . , ψ
′
K , β

′
1, . . . , β

′
K) =

∏
i

[
K∏
k=1

{α0k(ti|ψ′k) exp(β′kxi)}1Ei=k

exp

{
−

K∑
k=1

∫ ti

0
α0k(s|ψ′k) exp(β′kxi)ds

}]
where ψ′k is a vector of parameters describing baseline. Since it is reasonable
to assume that there may be a different baseline connected to each event
type, we have (ψ′1 . . . ψ

′
K). We also see that if K = 1 then the likelihood

reduces to (2.11), this likelihood is in fact a direct generalization of (2.11).
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2.4 Nested case-control design

As mentioned above, nested case-control together with case-cohort sampling
are the two most common cost-efficient sampling schemes. In a NCC design
one samples m−1 controls without replacement from the n(t)−1 non-failing
individuals from the risk set R(t), at each event time t, and compare the
failing individual with these controls. Usually one sample between 1 and 10
controls per case.

The sampling at each event time is done independently, which means
that a member of the cohort can serve as a control for more than one case,
and a control can later end up as a case.

Both the NCC design and the CC design has later been modified to allow
for stratified sampling [3, 14]. This can be useful if there exists a surrogate
measure for the covariate of main interest for all members of the cohort.
This measure is then used to classify the individuals into sampling strata.

2.4.1 Estimation in a NCC-design

The m− 1 controls together with the failing individuals i is denoted R̃i and
is the sampled risk set at time ti. In order to estimate β one maximize a
partial likelihood similar to the Cox-likelihood [27]

L(β1, . . . , βp) =
∏
Ei=1

exp(β1xi1 + . . .+ βpxip)∑
j∈R̃i

exp(β1xj1 + . . .+ βpxjp)
, (2.13)

the only difference is that the summation in the denominator is only over
the sampled risk set R̃i and not over the entire risk set, actually the Cox-
likelihood is a special case of this likelihood where the entire cohort is sam-
pled with probability 1.

(2.13) can be seen as a likelihood for a stratified Cox-regression, by
treating the label for the sampled risk sets as a stratification variable. This
means that standard software in for instance R can be used for estimation.
Inference can be based on usual large sample theory for likelihoods, which
means that the estimators is approximately normally distributed and their
variance can be found in the same way as for usual maximum likelihood
estimators, namely as the inverse of the information matrix.

2.5 Case-cohort design

Case-cohort design is another important sampling design. In a CC design
one samples a subcohort of size m− 1 from the full cohort at the outset of
the study. In contrast to the NCC design, the sampled subcohort is used as
a comparison at all event times.
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2.5.1 Estimation in a CC-design

There have been proposed different methods for estimating the regression
coefficients. Prentice [16] suggested

L(β1, . . . βp) =
∏
Ei=1

exp(β1xi1 + . . .+ βpxip)∑
j∈Si

exp(β1xj1 + . . .+ βpxjp)
, (2.14)

where Si is the sampled subcohort together with the case at ti. This likeli-
hood is very similar to both the likelihood for a full cohort analysis and the
NCC likelihood. But there is one important difference, the subcohort is used
over and over again therefore this is not a partial likelihood. But anyhow,
it can be showed that the estimator is approximately normally distributed.
Since the likelihood isn’t a partial likelihood the estimation of standard er-
rors become more complicated. There has however been proposed different
methods for estimating Var(β̂). Self and Prentice [24] proposed an asymp-
totically consistent estimator, another is Barlow’s robust variance estimator
[2]. By 1. order Taylor expansion

Var(β̂) = I−1(β̂)Var(U(β̂))I−1(β̂)

where I−1(β̂) is the inverse of the information matrix. Let Ui(t) be the
overall score of individual i at time t, Barlow suggested using V̂ (β̂) =
1/n

∑
i Ûi(t)Ûi(t)

T as a variance estimate of the overall score and this result
in the sandwich estimator

Var(β̂) = I(β̂)−1V̂ (β̂)I(β̂)−1 =
1
n

∑
i

∆iβ̂(∆iβ̂)T

where ∆iβ̂ = β̂ − β̂(i) = I−1(β̂)Ûi(t)1, is the change in β̂ when the i-th
observation is deleted.

In the previous likelihood the cases was only used at the time they failed,
but by using a weighted partial likelihood [12]

L(β1, . . . , βp) =
∏
Ei=1

exp(β1xi1 + . . .+ βpxip)∑
j∈S̃i

exp(β1xj1 + . . .+ βpxjp)wj
(2.15)

they can be included whenever they are at risk. Here S̃i is the subcohort
together with all the cases still at risk at ti. The weights wj are 1 for
all cases and 1/pj , where pj is inclusion probability for the controls. For
different methods of estimating the inclusion probability see next section.

The variance estimate can also under (2.15) be corrected by using robust
variances.

1β̂ − β̂(i) = I−1(β̂)Ûi(t) by a 1.order Taylor
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2.6 Weighted partial likelihoods for NCC design

The traditional NCC design is based on comparing cases with their sampled
controls. This is not the most efficient way of using the information in
the controls since they are only used once. Another way of doing it is by
using a weighted partial likelihood on the form of (2.15) [20]. But for NCC
design, S̃ isn’t sampled at the outset of the study, but rather the collection
of all sampled risk sets at every event time. From now on this collection
of sampled risk sets will also be called subcohort even though it is not a
random sample from the cohort.

Using unit weights for both cases and controls will result in biased es-
timates because the cases are included in the subcohort with probability 1,
whereas the controls are sampled from the full cohort and is included in the
subcohort with a probability (much) smaller than one. One usually chooses
unit weights for the cases and the inverse of the probability of being sampled
for the controls. Samuelsen’s proposal for the pj ’s is

pj =

{
1 cases

1−
∏
ti<tj

{
1− m−1

n(ti)−1

}
controls

this follows because the probability of being sampled at time ti is m−1
n(ti)−1 ,

we also see that this is 1 - a ”Kaplan-Meier like” estimator.
The estimation is straight forward by maximizing the weighted partial

likelihood, but since the controls enter the likelihood at all event times when-
ever they are at risk, the estimation of the variance is not so straightforward.
One possibility is using the robust variance estimator [2] based on influence
terms described above. Samuelsen et al. [22] showed that this estimator can
be somewhat too conservative and have proposed another possibility [20]
which is less conservative.

There are other possibilities for estimating the inclusion probability than
the one proposed by Samuelsen. One possibility is by using logistic GAM.
Let Vi be the indicator that individual i is sampled to the risk set. Then we
may model

E(Vi|T̃i) =
exp(α+ f(T̃i))

1 + exp(α+ f(T̃i))

which means that we regress an indicator of being included in the subcohort,
Vi on the censored survival times and use the fitted values from the regression
as inclusion probabilities. Here T̃ is either the actual survival time or the
censored survival time and f(T̃ ) is some smooth function of T̃ .

It is also possible to use ordinary logistic regression, where for instance
f(T̃ ) = ηT̃ , which will be a special case of logistic GAM.

A fourth possibility is a method, called local averaging, first proposed
by Chen [6] for generalized case-cohort designs, which is a class of sampling
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designs that includes NCC and CC. This method involves choosing a par-
tition for the time axis and calculate weights for censored individuals with
exit times in each interval. Let 0 = t0 < t1 < . . . < tk = t be the partition,
where t is the upper time limit for the study, and let S̃ denote the collection
of all sampled controls, then

wtj−1,tj =
∑n

i=1 I(tj−1 < T̃i ≤ tj , Ei = 0)∑n
i=1 I(tj−1 < T̃i ≤ tj , Ei = 0, i ∈ S̃)

,

where i ∈ S̃ means that individual i has been selected as a control and
Ei = 0 means that subject i isn’t a case. Then the numerator counts the
number of people censored in (tj−1, tj ] and the denominator counts how
many of them who where sampled as controls. Individual i is then assigned
weight wtj−1,tj if censored in (tj−1, tj ] and 1 if the individual is a case. This
method can also handle sampling of cases by making separate partitions
of the time axis for cases and controls. The number of intervals one should
choose is somewhat arbitrary, there are problems connected to both choosing
too many, and too few. If the time intervals are too narrow, the number
of people censored in each interval will be small, and then it might happen
that nobody censored in this interval is chosen as a control, which results in
a non-defined weight. On the other hand if the intervals are too wide, the
estimated weights wouldn’t follow the ”true” weights in a good way. I have
chosen to use ten intervals in the simulation experiment in chapter 3, and
from Figure 2.2, which shows an example of how the inclusion probabilities
could look like with a cohort of size 1000 and about 10% cases, this seems
like a pretty reasonable choice.

2.6.1 Multiple outcomes and NCC

The competing risk (multiple outcomes) setup can be very useful in connec-
tion with NCC because sometimes you can find yourself in a situation where
one analysis has been done with one outcome in mind and then maybe later
one wants to investigate a different outcome in the same cohort. If it is
natural to use the same covariates, then it seems appealing to be able to
use the information already gathered for the cases and the controls in the
first analysis, in the second analysis. This is something that is not possible
with the traditional way of analyzing NCC data since one only compare the
cases with the sampled controls for that particular case. But if one chooses
to use a weighted partial likelihood this can be made possible. One still uses
a likelihood on the form (2.15), but now the risk set S̃ ′ includes the cases
and the sampled controls for the second outcome, together with the cases
and the controls for the first outcome. This means that the hole control
set at ti consists of the controls for both endpoints together with the cases
of the first endpoint who are still at risk at ti. The weights that goes into
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Figure 2.2: Inclusion probabilities

the likelihood are 1 for cases from both outcomes and the inverse of the
probability of being sampled for all the controls. The sampling probability
can be estimated with the same methods as above.

If both outcomes are fairly common or if we have a large m there is not
so much to gain by utilizing the information in the first analysis when doing
the second analysis. But if the second outcome is rather rare, or we have
a small m, the number of individuals in S̃ ′i at ti will increase drastically
when using the cases and the controls from the first analysis. For example
let’s say we have a cohort of size 1000, where about 10% dies from the first
disease and only 3% dies from the second disease, and we only sample one
control per case. Then for the second disease we have 30 controls together
with 30 cases at start of study, but if we also utilize the information in the
first analysis, we still have 30 cases, but now we have 30 + 200 controls to
compare with, which on average gives us almost 8 controls per case.

2.7 A full likelihood for NCC data

As noted earlier, one would like to utilize the information in the subco-
hort better than what can be done with the traditional NCC analysis, and
one would also like to use information gathered in one analysis, in another
analysis done in the same cohort. But not just that, often there are some
covariates that are obtained for the entire cohort, this can be easy obtain-
able information like for instance age, gender etc. Saarela et al. [19] have
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proposed a full likelihood for partially observed covariate data which is appli-
cable when there are K different outcomes and it also utilize the information
known outside the subcohort.

2.7.1 Notation

We will first introduce some useful notation. Let C = {1, . . . , n} denote the
cohort consisting of n subjects who are followed up for for the incidence of
K different diseases. We account for the possibility that some covariates are
collected for all individuals in the cohort i ∈ C, this can be easy collectable
information such as age, gender etc. those covariates are denoted xi. We
assume a competing risk situation, therefor all individuals enters the cohort
healthy and is followed up until the first event of interest or right censoring
because of death of other causes, loss of follow-up or end of study. Let T̃i be
the observed time for individual i, this time is either the actual survival time
or the censored survival time depending on whether or not the individual
experienced the event. Further, let Ei be an indicator, indicating which
event individual i experienced. Ei will take values in 0, . . . ,K, where 0
is referring to censoring at T̃i. An individual is a case of type k if the
individual experience the event k first and a group of such people is denoted
Ek = {i ∈ C : Ei = k}.

Because of the study design, some or all covariates are only collected for
the cases and their sampled controls, those covariates are denoted Zi. Let
Oi be an indicator that Zi is collected for individual i, meaning that Oi = 1
if individual i is a member of the subcohort or a case, and Oi = 0 if not.
Further, let O = {i ∈ C : Oi = 1} represent the set of all cases and controls.
As mentioned before, in a typical NCC study the the covariates are collected
from the cases of one particular endpoint Ek, and a group of time-matched
controls Sk. For each time T̃i, when an event of type k happens, a control
set Sk,i is sampled without replacement from Ri\{i}, where Ri is the risk
set at time T̃i.

2.7.2 The likelihood

Saarela et al. have proposed a full likelihood for survival data with a nested
case-control design. First let θ = (θ1, . . . , θK), where θk = (ψk, βk) is a
vector of parameters characterizing the hazard function αk(ti|Zi, xi; θk) for
individual i specific to event type k, k = 1, . . . ,K. ψk include the parameters
connected to baseline hazard, while βk is the regression coefficients. Since
Z is not fully observed we model it through a parametric distribution with
µ being the parameters characterizing it. Therefor Z is considered to be
stochastic and this is indicated by the capital Z, while x is considered to
be known and is denoted with little x. Z̃ is the partially observed covariate
vector, which means that Z̃ is of same dimension as Z and Z̃ = Z for i ∈ O
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and is unobserved for i ∈ C\O. The full likelihood is

L(θ, µ) = p(T̃ , E,O, Z̃|x, θ, µ)

where p(T̃ , E,O, Z̃|x, θ, µ) is the joint distribution of (T̃ , E,O, Z̃) given
(x, θ, µ). By two assumptions:

1. Random vectors (T̃i, Ei, Zi, Xi), i ∈ C are independent

2. The conditional distribution of O, p(O|T̃ , E, Z, x; θ, µ) only depend on
data observed for all i ∈ C, which means that O is independent of Z

the likelihood can be written as a product, and when Z is discrete it looks
like

L(θ, µ) ∝
∏
i∈O

p(T̃i, Ei|Zi, xi; θ)p(Zi|xi;µ)

×
∏
i∈C\O

∑
zi

p(T̃i, Ei|zi, xi; θ)p(Zi = zi|xi;µ). (2.16)

We see that the likelihood is made up of two parts, this is due to the fact
that we don’t have the same information about all individuals. For cases
and controls, Z is known, but for individuals outside the subcohort Z is
unknown. Therefor we model it by p(Zi|xi;µ) and then ”integrate” it out.
The proportionality sign is due to disregarding the sampling distribution.

The likelihood expression for (T̃i, Ei) can be defined in terms of the
outcome specific hazard

p(T̃i, Ei|Zi, xi; θ)

∝
K∏
k=1

[αk(T̃i|Zi, xi; θk)]1{Ei=k} exp

{
−
∫ T̃i

0

K∑
k=1

αk(t|Zi, xi; θk)dt

}
.

(2.17)

In the likelihood expression (2.16) we implicitly assume only one missing
covariate and that this covariate is discrete. Define Zij to be the j-th possible
missing covariate for the i-th individual, where j = 1, . . . , p, then assume
that Zi,1, . . . , Zi,q are continuous and Zi,q+1, . . . , Zi,p are discrete, a more
general expression for the full likelihood can then be written as

L(θ, µ) ∝
∏
i∈O

p(T̃i, Ei|Zi,1:p, xi; θ)p(Zi,1:p|xi;µ)

×
∏
i∈C\O

∫
zi,1:q

∑
zi,(q+1):p

[
p(T̃i, Ei|zi,1:p, xi; θ)p(Zi,1:p = zi,1:p|xi;µ)dzi,1:q

]
(2.18)
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If we want to directely optimize this likelihood we need a parametric
specification of baseline. Apart from this we also need to specify the dis-
tribution of the partly observed covariates. In (2.16) we have one possible
missing covariate implicitly assumed to be discrete, but (2.18) shows that
this, at least in theory, will work for more than one missing covariate and
that these can be both discrete and continuous.

The drawbacks of this method is first of all extra modeling assumptions,
both a parametric baseline, but also realistic distributions of the partially
observed covariates needs to be decided upon. The extra modeling assump-
tions result in more parameters which means more uncertainty and it also
increase the risk of model miss specification. Another drawback is compu-
tational time, at least if you need to do Monte Carlo approximation then
it takes quite a long time to optimize the likelihood even with very good
starting values.

2.7.3 Approximations to the likelihood

As we can see from (2.18) the likelihood can be hard to evaluate, and then
especially the integral. A way around this could be to use a Monte Carlo
approximation to the integral, this is briefly mentioned in the appendix
of [19]. If Monte Carlo integration is applied to the integral in (2.18) the
likelihood would look like

L(θ, µ) ∝
∏
i∈O

p(T̃i, Ei|Zi,1:p, xi; θ)p(Zi,1:p|xi;µ)

×
∏
i∈C\O

1
M

M∑
m=1

p(T̃i, Ei|zi,1:p,m, xi; θ)

where the zi,1:p,m are drawn from p(Zi,1:p|xi;µ). Monte Carlo estimates is
unbiased and consistent (as long as p(T̃i, Ei|zi,1:p,m, xi; θ) has finite variance).

When the covariates are independent we can assume a (simple) one-
dimensional distribution for each covariate, and the sampling step would be
easy. When we no longer can assume independence, the sampling step may
be complicated because the distribution p(Zi,1:p|xi;µ) may be non-standard.
This can of course be the case with independent covariates as well, but I
think it’s easier to find reasonable distributions for each covariate alone, that
are for instance implemented in R. If we find ourself in a situation where
it’s too hard or even impossible to sample from p(Zi,1:p|xi;µ) one solution
is to use importance sampling [18]∫

zi,1:p

p(T̃i, Ei|zi,1:p, xi; θ)p(zi,1:p|xi;µ)dzi,1:p

≈ 1
M

M∑
m=1

p(T̃i, Ei|zi,1:p,m, xi; θ)p(zi,1:p,m|xi;µ)
g(zi,1:p,m)
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Then zi,1:p is sampled from g(Zi,1:p) which we can decide ourself, it should
be as similar as possible to p(Zi,1:p|xi;µ), but we can for instance sample
each covariate independent of the others from their marginal distribution,
given that the marginal distributions is easy to sample from.

Another problem with the Monte Carlo approximation is that each new
value of µ in the optimization routine would require a new sequence of zi,1:p’s
since p(Zi,1:p|xi;µ) depend on µ, this results in a jagged likelihood function
that is hard to optimize. A smart trick is then to use importance sampling
and choose g(Zi,1:p) to be g(Zi,1:p|xi;µ0), where µ0 is given. Then the same
sequence of simulated values can be used in every step of the optimization
and the likelihood function will also be smooth and therefore much easier
to optimize.

Another alternative is of course Markov Chain Monte Carlo [18], where
the idea is to generate z(1)

1:p , z
(2)
1:p , . . . in such a way that the sequence converge

in distribution to p(Zi,1:p|xi;µ).

2.8 Two phase design and calibration

2.8.1 Two phase stratified sampling

Assume that we have N subjects in the cohort, this is called the phase one
sample and can be treated as a random sample from an infinite population.
The cohort is stratified into M different strata on the basis of information
available for everyone, with Nm subjects in stratum m. The cases could
make up an additional stratum, and in a competing risk setting K different
types of cases would constitute K additional strata. Then nm subjects
are sampled at random without replacement from the m-th stratum, the
phase two subjects and the total number of sampled subjects are then n =
n1 + . . .+ nM+K . Each subject has an associated sampling weight Nm/nm,
the contribution from a sampled subject is then up-weighted so that the
total contribution from a stratum is representative of the total contribution
assuming all cohort members from that stratum had been analyzed.

Both CC- and NCC-designs can be considered as two-phase sampling de-
signs, at phase 1 we sample N individuals from an infinite population, those
individuals constitute the cohort. At this phase we gather easy collectable
information from all N individuals. At phase 2 we use random sampling on
the cohort to obtain the subcohort, however the sampling plan in an NCC
is somewhat more complicated than stratified sampling since sampled indi-
viduals also are matched on time. Then additional information is collected
from cases and sampled controls.

The variance of parameter estimates in a two phase sampling design
can be divided into two parts, see B.2, corresponding to each phase of the
sampling. The first part is the cohort variance, the variance we would get if
all data from the entire cohort was known and this represent the phase one
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variance. The second part is the variability coming from the fact that some
covariates are only observed at phase two, this is the sampling variance.

Breslow et al. [4, 5] wants to minimize the phase two variance in a case-
cohort study. This variance is also the normalized design based variance of
the standard Horvitz-Thompson estimator for an unknown finite population
total, namely the total of the efficient influence function (IF) contribution
for all N phase one subjects. For the phase two subjects the IF contribution
may be approximated from the observed xi by delta-betas [26] page 155.

The Horwitz-Thompson estimator is a general estimator for a population
total. If τ =

∑n
i=1 yi is a population total and let πi be the probability that

yi is included in the sample (subcohort), then the estimator is

τ̂ =
s∑
i=1

yi
πi

=
N∑
i=1

Oi
πi
yi

where s is size of the sample and Oi indicating whether or not individual yi
is included in the sample. If we apply this to our case-cohort situation, we
would base estimation on

N∑
i=1

Oi
πi
l̇(β) l̇(β) =

∂ logL(β)
∂β

, score for β

this weighing method is related to the WPL-method described earlier.
When additional information exists for phase one subjects, the Horvitz-

Thompson estimator is inefficient. In this case, when auxiliary variables
correlated with the efficient influence function exists for all individuals in
the subcohort. To approximate the optimum choice of auxiliary variables
Breslow et al. suggests the five step ”plug-in” method of Kulich and Lin
[15].

The five step procedure

1. Use a weighted regression to predict the partially missing covariates
from information known for the entire cohort. According to [5] there
has to be done one regression per missing covariate, but alternatively
one multivariate regression could be done.

2. Impute the predicted values for the missing covariate for all cohort
members, variables already known for everyone are used as they are.

3. Fit a Cox-model to the entire cohort by using the imputed values for
the partially missing covariates and the known values for the other
variables. Determine the imputed delta-beta contribution ∆iβ̂

2 for
each cohort member.

2a 1.order approximation is return by R
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4. Use the imputed delta-betas as auxiliary variables in calibration or
estimation of the weights, (see below).

5. Finally estimate β by a weighted Cox-regression of the phase two data.

Where ∆iβ̂ = β̂−β̂(i) and β̂(i) is the estimate of β obtained without including
observation i in the estimation.

2.8.2 Calibration

Calibrated weights wi = gidi, are weights that are as close as possible to
the population based weights, but at the same time respecting a set of
constraints. Let πi = Pr(i ∈ O) where O is the collection of all cases and
sampled controls, while C again denote the cohort. Let xi = (xi,1, . . . , xi,p)
be the imputed delta-betas for observation i, and further let xtot =

∑
C xi,

which is assumed to be known. We want the calibrated weights wi to be as
close as possible to di = 1/πi while respecting the calibration equation

x̂tot =
∑
O
wixi = xtot

which means that we want the population total of the auxiliary variables
to be estimated exact. The term ”as close as” requires a measure of dis-
tance Gi(w, d) and these distance measures should share some basic features.
For element i for fixed d > 0, Gi(w, d) is nonnegative, differential with re-
spect to w, strictly convex and defined on an interval containing d such
that Gi(d, d) = 0. There are different suggestions concerning these distant
measures, one is something reminiscent of Pearson chi-square statistic

Gi(w, d) = (wi − di)2/2di (2.19)

If we let λ be a vector of Lagrange multipliers, then the problem is to
minimize

f =
∑
O

(gidi − di)2

2di
+
∑
O
λgidixi − λxtot,

for which the result is

gi = 1− λ̂Txi

λ̂ =

(∑
O
dixix

T
i

)−1(∑
O
dixi − xtot

)
.

This results in the generalized regression estimator (GREG) [25], but gi
can be negative, which will result in negative weights. Poisson deviance is
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another distant measure suggestion which guarantees that the weights are
always positive.

G′i(w, d) = wi log(wi/di)− wi + di

now the minimization problem is

f =
∑
O

[gidi log(gi)− gidi + di] +
∑
O
λgidixi − λxtot

which result in

gi = exp(−λTxi)∑
O

exp(λTxi)dixi = xtot

where the last equation can’t be solved explicitly for λ. This is known as the
(generalized) raking estimator [10], as we can see gi can’t be negative, and
therefor the calibrated weights with Poisson deviance as distance measure
will always be positive. Even though different distance measures results
in different weights and thereby different estimators, Deville and Särndal
[11] have shown that all estimators are asymptotical equal to the GREG
estimator, actually by a 2. order Taylor expansion at w = d, Pearsons chi-
squared statistic is equal to Poisson deviance, G′(w, d) ≈ G(w, d)

G′(w, d) ≈ G′(d, d) +
∂G′(d, d)
∂w

(w − d) +
∂2G′(d, d)
∂w2

(w − d)2

2!

= 0 + 0 +
(w − d)2

2d
= G(w, d)

For more distance measures and discussion of their properties see [10, 11].

2.8.3 The five step procedure and calibration with compet-
ing risk and NCC sampling

A thread through this thesis has been NCC sampling and multiple outcomes,
to my knowledge the calibration method hasn’t been generalized to this
setting and this is an attempt at doing so.

The five step procedure with multiple outcomes

1. Use a weighted regression to predict the partially missing covariates
from information known for the entire cohort, either one regression
per endpoint or one multivariate regression

2. Impute the predicted values for the missing covariates for all cohort
members, variables already known for everyone are used as they are.
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3. Fit one Cox-model per endpoint to the entire cohort by using the im-
puted values for the partially missing covariates and the known values
for the other variables. Determine the imputed delta-beta contribution
for each cohort member for each endpoint.

4. Use the imputed delta-betas as auxiliary variables in calibration or
estimation of the weights, there will be one vector of weights per end-
point.

5. Finally estimate β belonging to each endpoint by a weighted Cox-
regression of the phase two data.

With CC-sampling the weights used in the the weighted regression in 1. was
the number of individuals in each stratum divided by the number of sampled
individuals in each stratum. When we now have a NCC-design, the natural
choice of weights is the inverse of the sampling probability, estimated with
one of the techniques described in section 2.6.

Calibration

Again let πi = Pr(i ∈ O), and xi,k = (xi,1,k, . . . , xi,p,k) be the delta-beta
vector for individual i corresponding to the k-th endpoint. We then have
xtot,k =

∑
i∈C xi,k and a n×K matrix of population based weights and also

a matrix of calibrated weights. We get a set of calibration equations

x̂tot,k =
∑
i∈O

wixi,k = xtot,k

and we suggest that the i-th column of the weight matrix can be calibrated
by using the i-th calibration equation.

2.9 Scheike’s likelihood

Scheike and Juul [23] have also proposed a maximum likelihood estimator
for NCC data. Their likelihood is deep down the same as Saarela’s, but
the reasoning is somewhat different. Scheike recognize that the likelihood
contribution can be divided into three parts; contributions from cases, from
controls and contributions from individuals outside the subcohort, but when
put together result in the same likelihood as Saarela’s.

Saarela et al. model the baseline hazard and the distribution of the par-
tially observed covariates and is therefore able to directly optimize the likeli-
hood, but Scheike choose a different way. First instead of using a parametric
specification of the distribution of Z, they choose to use a non-parametric
specification through strata defined by some or all covariates known for the
entire cohort. Secondly they choose to keep the baseline unspecified, as in
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a usual Cox-likelihood. Because of this the likelihood can’t be directly op-
timized and instead the EM-algorithm [18] is used and the standard errors
are obtained by EM-aided differentiation.

This likelihood, as Saarela’s likelihood, rest on the assumption that the
censoring only may depend on X, but also that the survival times and cen-
soring times are independent.

Scheike points out that the likelihood is equal for both NCC and CC,
then the same program can be used in both settings and the efficiency is the
same if data are of equivalent size. But I think the same holds for Saarela’s
likelihood, Kulathinal and Arjas [13] have proposed a likelihood for case-
cohort data, they take a Bayesian standing and use data augmentation, but
the likelihood part is still the same as Saarela’s for NCC data.



Chapter 3

Simulations

To get a feeling with the properties of estimators simulation can be a useful
tool. You can compare efficiency between estimators and maybe just as
important, see if the estimators adds bias.

In order to simulate survival data, and nested case-control data in par-
ticular, one first has to decide upon what kind of baseline one wants to use,
and thereby what kind of distribution the survival times are coming from.
Secondly one also need to determine the censoring scheme.

In practice, one both draws a censoring time C and a survival time T
for every individual in the cohort. If the censoring time is smaller than the
survival time, then that individual is censored at C, else that individual dies
at T . For competing risks with two endpoints, two survival times T1 and
T2 are drawn for every individual and if T1 = min(T1, T2, C), the individual
experience event 1 and corresponding for event 2 and censoring. The number
of individuals who dies can then be regulated by changing the parameters
in the survival distribution or the censoring distribution.

3.1 Censoring schemes

There are different strategies concerning how the censoring should be carried
out, censoring at a given time, random censoring or something in between
the two of them. All of them mimicking different, more or less, real situa-
tions.

Censoring at a fixed time

This censoring scheme will mimic a study where all individuals enter the
study at the same time. There are no loss of followup and at a fixed time,
all individuals still under risk will be censored.
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Random censoring

This censoring scheme, is in a way, the opposite of censoring at a given time.
The censoring times are random, they are for instance drawn from a uniform
or an exponential distribution. It mimics a study where not all individuals
enter the study at the same time and there may also be loss of follow-up. In
a way, this is a more relevant censoring scheme since, in practice there will
almost always be loss of follow-up to some extent.

”Random-fixed” censoring

This scheme is something in between the two schemes above. The censor-
ing time for some of the individuals are for instance drawn from a uniform
distribution, and the rest are censored at the maximum value of the distri-
bution. This mimics a study, where all individuals enter the study at the
same time, but there are loss of follow-up to some extent, how much depend
on how the censoring distribution is defined.

3.2 Simulation with one binary covariate

The simulation is done on a cohort of size 1000 and are run 1000 times. We
have two different events, a relative common one, Ei = 1, that about 10% of
the individuals experience and more rare event, Ei = 2, that only about 3%
of the cohort experience. We sample one control per case, which means that
the subcohorts for the two single endpoint models consist of approximately
200 and 60 individuals respectively, at start of study, while the subcohort
for the multiple endpoint model consists of approximately 260 individuals
at start of study.

All in all we do seven analysis’ on these data, first a normal Cox-
regression and a traditional NCC-analysis. Then four analysis based on the
weighted partial likelihood (2.15), with the four different weighting schemes
described in section 2.6. Finally we also do the analysis based on the full
likelihood explained in chapter 2.7.2, where a Weibull baseline is chosen.
The real distribution for the survival times is the exponential, but since the
exponential distribution is a special case of Weibull(λ, ν) when ν = 1, this
should not be a problem. The analysis based on the weighted likelihoods
and the full likelihood is done both with a multiple endpoint model and with
two separate single endpoint models.

In order to structure the discussion about the simulation result I have
made a list of discussion points:
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1. Bias, bias
empirical standard deviation >

1
3 is considered to be a serious bias

2. Empirical standard deviation compared to model based (robust) stan-
dard deviation

3. The performance of the WPL-models

4. Full likelihood compared to WPL

5. Traditional NCC compared to the alternatives

6. Efficiency improvements with multiple outcome models compared to
single outcome models

3.2.1 Random cencoring

The simulation model is

Z ∼ Bin(1, 0.5)
T1 ∼ Exp(λ1 exp(Zβ1))
T2 ∼ Exp(λ2 exp(Zβ2))
C ∼ U [0, 0.13]

T̃ = min(T1, T2, C)

given (Z, T1, T2) and C are independent. β1 and β2 are regression coefficients
connected to endpoint 1 and 2. An individual is a case of type 1, Ei = 1, if
T1 is smaller than T2 and the C, and similar with cases of type 2, Ei = 2,
and censored individuals, Ei = 0. By altering λ, the expectation of the
event times changes and thereby the number of cases in the cohort can be
decided.

Results

Table 3.1 shows the results of this experiment for β1 = β2 = 0 and β1 =
β2 = 1, the result of the entire simulation experiment can be found in Table
A.1 and A.2 in the appendix.

1. For the common endpoint β is estimated without any noticeable bias.
The same is true for the rare endpoint when β = 0, when β = 1 there
is a small bias, but compared to the standard deviation this is not
important. We see that the full Cox-regression suffer from this as well
and it’s probably due to small sample sizes.

2. Both the empirical variance and the estimated model based variance,
the robust model based variance for the WPL-models, is reported.
The robust variance can in some cases be too conservative, but for
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the common endpoint the variances seems to be in good agreement.
For the rare endpoint, the differences are a bit bigger, but the model
based variance isn’t consistently bigger than the empirical variance,
and the differences isn’t that big for any of the models in any of the
simulations. Therefore, I think that the robust variance estimator does
the job, at least in this situation.

3. All WPL-models are very alike both regarding bias and efficiency. But
if we look at the small differences, Samuelsen’s weights take a narrow
victory. Chen’s weights is the least efficient method while GAM and
logistic perform equally.

4. Saarela et al. reported a marginal efficiency gain by using their like-
lihood compared to WPL, we see that the differences in variance be-
tween the WPL-models and the full likelihood in our simulation are
almost non-existing and compared to the extra complexity both re-
garding modeling and implementation it is not worth it.

5. There is quite a lot to gain by doing something else than the traditional
analysis The most pronounced difference is for β = 0 with the rare
endpoint where the efficiency with the full likelihood is twice as big as
with the traditional NCC analysis.

6. Table A.1 and A.2 shows the complete result from the simulation ex-
periment, the numbers in brackets are the result when two single end-
point models is used instead of one multiple endpoint model. We
see that there are efficiency improvements with the multiple endpoint
model compared to single endpoint models and obviously the improve-
ments are biggest for the rare endpoint since the increase in number
of controls per case is much larger there. Saarela et al. noticed only a
small variance reduction by using the multiple endpoint model com-
pared to the single endpoint model. We see, especially for the rare
endpoint, that there is a considerably efficiency gain by using the mul-
tiple endpoint model. I think part of the reason for Saarela et al.’s
small efficiency gain is that they have 5% cases of the endpoint their
looking at and 9% cases of the other endpoint, out of a cohort of size
3815. This means that they actually have a quite big subcohort with-
out the extra cases and controls from the other endpoint and therefore
the efficiency gain is more moderate than what we get in this simula-
tion study.

Chen [6] states that his local averaging method is superior to the typical
inclusion probability methods, this doesn’t seem to be the case in this sim-
ulation study. We actually see that it’s mainly the least efficient model.
It might have something to do with the size of the subcohort, his full co-
hort consists of 1000 individuals and it seems like there are about 10%
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cases, which is what we have for the common endpoint, but he sample three
controls per case, whereas we only sample one, which might explain the dif-
ferences. But if this is the reason, then it seems like in order for the local
averaging method to be more efficient that the inclusion probability of for
instance Samuelsen it needs to have more than one control per case. An-
other possible explanation for why the local averaging method isn’t as good
as the other weights might be that we haven’t chosen the ”right” number
of partitions of the time axis. This should of course be tested, but since the
focus here is on the full likelihood, and how it does compared to the other
methods, we haven’t tried to partition the time axis differently.

3.2.2 Fixed censoring

The simulation model is:

Z ∼ Bin(1, 0.5)
T1 ∼ Exp(λ1 exp(Zβ1))
T2 ∼ Exp(λ2 exp(Zβ2))
C = 0.13

T̃ = min(T1, T2, C)

Results

Table 3.2 shows the results for β1 = β2 = 0 and β1 = β2 = 1 when we apply
fixed censoring instead of random censoring.

1. When β = 0 the estimates are very accurate both for the common and
the rare endpoint. When β = 1 the estimates are a bit more skewed at
least for the rare endpoint, but compared to standard deviation this
isn’t important.

2. The empirical standard deviations and the model based (robust) stan-
dard deviations are mostly in good agreement also here, but the model
based standard deviations are actually a bit smaller than the empirical
standard deviations.

3. Due to the fixed sampling regardless of which weighing method used
the weights are the same for all individuals. Logistic regression, GAM
and Chen result in the same weights, while Samuelsen’s is a bit dif-
ferent, therefore only weights from logistic regression and Samuelsen’s
weights are used. Since the weights are almost equal we would expect
the results to be almost identical as well, and they are, both the esti-
mates and the empirical and robust model based standard deviations
are almost identical for both endpoints and both β-values.
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4. The full likelihood is not more efficient than the WPL-models. The
efficiency of the full likelihood when using multiple outcomes is the
same as the WPL-models, but it has somewhat lower efficiency if we
are using two single endpoint models. Which means that if we had
been in a situation with only one outcome, then the full likelihood
would actually have been less efficient than WPL.

5. The estimates from the traditional NCC is somewhat more skewed
than the estimates from the rest of the methods, but compared to
the standard deviation this isn’t important. The efficiency with the
traditional NCC compared to doing something else is about the same
as what we had with random censoring.

6. The efficiency gain with a multiple endpoint model compared to two
single endpoint models is perhaps a bit lower with fixed censoring than
with random censoring for β = 0. For β = 1 on the other hand it looks
like it’s slightly higher, we saw that with random censoring there was
nothing to gain for the common endpoint, here we see a small efficiency
gain for both endpoints.

3.3 Simulation with two covariates

The experiment done above has a really easy setting with only one covariate.
A usual setting for NCC-designs is that there are some information avail-
able for every individual in the cohort and some information only available
for the cases and controls. Even though the WPL-methods fails to utilize
information known for everybody in the cohort it is possible to indirectly
include the extra information by using it in the estimation of the weights.
The full likelihood on the other hand can easily handle both partially and
fully observed covariates. If it can estimate the fully observed covariates or
even the partially observed covariate as good, or almost as good as the the
method based on the entire cohort this would be a big plus.

Again the simulation is done on a cohort of size 1000 and are run 1000
times. There are one common Ei = 1 and one rare Ei = 2 endpoint and one
control per case is sampled.

When we now have two covariates we can test the calibrated weights
as well. The calibration function used is unbounded raking, which means
that Poisson deviance is used as distant measure. We stratify according to
status, which means that we have two strata with cases and a third strata
with all the controls. We have chosen weights estimated with GAM to be
the weights that goes into the logistic regression that is used to estimate the
partially observed covariate.
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The discussion points are:

1. Bias, bias
empirical standard deviation >

1
3 is considered to be a serious bias

2. Empirical standard deviation compared to model based (robust) stan-
dard deviation

3. The performance of the WPL-models

4. Full likelihood compared to WPL

5. Traditional NCC compared to the alternatives

6. Calibrated weights

3.3.1 Two independent covariates

The simulation model used her is:

X ∼ U [0, 1]
Z ∼ Bin(1, 0.5)
T1 ∼ Exp(λ1 exp(XβX1 + ZβZ1))
T2 ∼ Exp(λ2 exp(XβX2 + ZβZ2))
C ∼ U [0, 0.13]

T̃ = min(T1, T2, C)

Given (Z,X, T1, T2) and C are independent, Z is only known for cases and
controls while X is known for the entire cohort. Part of the simulation result
can be found in Table 3.3 and the full result can be found in the appendix,
Table A.3.

Results

1. Most of the estimates, especially when β = 1 have some bias, the
biggest being traditional NCC where β̂X2 = 1.108, but because of the
big standard deviation not even that bias is actually important.

2. It is only small differences between the empirical standard deviations
and the (robust) model based standard deviations, but anyhow these
differences is mainly opposite of what one would expect. At least with
WPL models we would expect that the robust standard deviation to
be bigger than the empirical, but it is mainly the other way around.

3. Table A.3 include the result from all four WPL models and can be
found in the appendix. We see that the differences between the
weighted partial likelihoods is still almost non-existing, but perhaps
again with a slightly advantage for Samuelsen’s weights for both co-
variates.
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4. The full likelihood is superior in estimating the fully observed covari-
ate in this simulation. It is, as efficient as Cox-regression on the full
likelihood, which in a way is quite natural since it’s a ML-method
and it uses information for every member of the cohort in the estima-
tion. But when estimating the coefficient connected to the partially
observed covariate, the variance difference between the WPL-method
and the full likelihood isn’t that big. Saarela et al. proclaim however
that efficiency gains also can be achieved for the partially observed
covariate when it’s correlated with a fully observed covariate. In the
next section we see that this is the case.

5. Again there is most to gain by doing something else than the tradi-
tional NCC with the rare endpoint and then of course especially when
estimating X with the full likelihood. Apart from with the full likeli-
hood there isn’t any difference between the efficiency in estimating X
and Z with the other models compared to the traditional NCC. This
is quite natural since non of the other models actually use the extra
information in knowing X for the entire cohort.

6. The calibrated weights doesn’t improve the efficiency when estimating
the partial observed covariate, but for the fully observed covariat there
are some improvements compared to the other weights. For instance,
the efficiency increase from about 0.6 to 0.868 for βX1 = 0 with 10%
cases.

3.3.2 Two dependent covariates

Saarela proclaim that efficiency improvements also can be obtained for the
partially observed covariate if it is correlated with the fully observed covari-
ate and it is also natural to believe that further efficiency improvements can
be obtained with the calibrated weights when X and Z are correlated. The
simulation model used in this case is:

X ∼ U [0, 1]
Z|X ∼ Bin(1, X)
T1 ∼ Exp(λ1 exp(XβX1 + ZβZ1))
T2 ∼ Exp(λ2 exp(XβX2 + ZβZ2))
C ∼ U [0, 0.13]

T̃ = min(T1, T2, C)

Again given that (Z,X, T1, T2) and C are independent, Z is still only known
for cases and controls while X is known for the entire cohort and from the
simulations we have that Cor(X,Z) = 0.577. Part of the result can be found
in Table 3.4, the complete result can be found in the appendix, Table A.4.
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Except from point 5 and 6, the result from this simulation is comparable
with the previous simualtion.

We would expect that the calibration method is able to reduce the vari-
ance even further when X and Z is correlated since the auxiliary variables
is based on a logistic regression on Z with X as explanatory variable, but
this is not the case. The efficiency compared to the other models are about
the same as in the previous simulation.

The full likelihood on the other hand is able to estimate both covariates
with very high efficiency, and in this simualtion we see that it’s actually
manage to estimate both βX2 = 1 and βZ2 = 1 with higher efficiency than
Cox-regression on the full cohort. This means that it is actually more ef-
ficient to use Saarela’s likelihood on NCC-data than Cox-regression on the
full data when estimating the partially observed covariate. It almost seems
like a contradiction that you are able to decrease the variance with less data,
but I presume that this is not what usually would happen and the reason
for it is that the full likelihood take advantage of the dependencies between
the fully observed and the partially observed covariate.

And finally, is there anything to gain by using the (much) more compli-
cated ML-method? The answer to that is yes with one reservation; we need
to have some covariates known for the entire cohort. We have see that the
ML-model are able to estimate the parameters related to covariates known
for the entire cohort almost as accurate as the Cox-regression on the full
cohort. And when the fully observed covariate is correlated with the partly
observed covariate it also manages to estimate that one almost as accurate
as the full Cox-regression. This is a big plus for the full likelihood. But when
there is no extra information available in the cohort, the full likelihood is
only marginally better, thereof the reservation. In order to want to use the
(much) more complicated ML-method it should be superior compared to
the WPL-methods because it requires more modeling assumptions, and also
because it requires evaluations of possibly many potentially complicated in-
tegrals and sums. Therefore a standard analysis using the WPL-model can
turn it to a relatively time consuming analysis both regarding computer time
and ”thinking” time using the ML-method. The preliminary conclusion is
then that when there is information available for the entire cohort and the
parameters connected to this information is important, or the information
known for the entire cohort is correlated with the partly observed covariate
then the full likelihood should be used if possible.

3.4 Including more information in the estimation
of inclusion probabilities

As mentioned earlier, WPL-methods doesn’t itself incorporate the additional
information when one or more covariates x, are known for the entire cohort.
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One way of using this extra information is through the estimation of weights,
where we can let the inclusion probabilities depend on both the survival time
and x. With logistic GAM this is straight foreward. We model

E(Vi|T̃i) =
exp(α+ f(T̃ ) + f(x))

1 + exp(α+ f(T̃ ) + f(x))

Here we have smoothed on x, this is not necessary, but simulation (not
displayed) showed that it didn’t seem to matter if we used f(x) or ηx,
where η is a regression coefficient.

Samuelsen’s weights can make use of the information by dividing x into
intervals and estimate different sampling probabilities on the basis of which
interval the observation falls into. For instance we can divide x into two
parts and calculate the sampling probabilities as follows

pj =


1 cases

1−
∏
ti<tj

{
1− m−1

n1(ti)−1

}
controls with xj < 0.5

1−
∏
ti<tj

{
1− m−1

n2(ti)−1

}
controls with xj ≥ 0.5

We assume her that x is one-dimensional and uniform over [0,1], n1(ti) is
the number of individuals under risk at ti with x < 0.5, similarly n2(ti) is
number individuals under risk with x ≥ 0.5.

Table 3.5 og 3.6 shows the efficiency of Samuelsen’s and GAM-weights
when using x in the estimation compared to not doing so. The estimates and
variances are not shown, but the estimates when using x in the estimation
are almost unbiased. Samuelsen’s weights shows no consistent improvements
when x is included in the estimation, actually the variance is mainly larger.
It’s a different story with GAM-weights, when estimating the partially ob-
served covariate, there is no efficiency gain, but when estimating the fully
observed covariate, the efficiency increase quite a lot. The biggest gain is
with two independent covariates with β = 0 where the efficiency increases
from 0.570 to 0.920 when x is used in the estimation.

Table 3.5: Efficiency, two independent covariates
Cause 1: 10% cases Cause 2: 3% cases

Without x With x Without x With x
β1, β2 Weights z x z x z x z x
0.00 Samuelsen 0.579 0.578 0.584 0.560 0.860 0.803 0.796 0.820

GAM 0.567 0.570 0.616 0.920 0.852 0.800 0.803 0.945

1.00 Samuelsen 0.616 0.541 0.610 0.503 0.849 0.827 0.840 0.779
GAM 0.607 0.538 0.637 0.782 0.846 0.822 0.840 0.898

x is observed for all individuals, z is only observed for cases and controls
Without x - weights estimated without including x, With x - x included in the estimation
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Table 3.6: Efficiency, two dependent covariates
Cause 1: 10% cases Cause 2: 3% cases

Without x With x Without x With x
β1, β2 Weights z x z x z x z x
0.00 Samuelsen 0.579 0.596 0.559 0.561 0.766 0.793 0.815 0.780

GAM 0.575 0.588 0.576 0.744 0.766 0.786 0.827 0.845

1.00 Samuelsen 0.647 0.568 0.574 0.487 0.855 0.775 0.889 0.716
GAM 0.644 0.560 0.593 0.649 0.855 0.765 0.899 0.857

x is observed for all individuals, z is only observed for cases and controls
Without x - weights estimated without including x, With x - x included in the estimation

3.5 Comparison between the accelerated failure
time model and Saarela’s likelihood

We have seen through the simulations that the full likelihood is much more
efficient than the weighted partial likelihoods, at least when we have one
covariate known for the entire cohort, and if even the covariates are corre-
lated, then it is as efficient as Cox-regression on the entire cohort. It could
be interesting to find out how much of the efficiency gain that is due to the
parametric specification of the baseline. One way of doing this is through
an accelerated failure time (AFT) model

log(T ) = −ZTβ + ε

where ε follows some unspecified distribution. When T ∼ Weibull(ν, λ),
then the distribution of exp(ε) is νλν(t exp(ZTβ))ν−1, which results in a
hazard on the form

α(t) = νλν(t exp(ZTβ))ν−1 exp(ZTβ)

= νλνtν−1 exp(νZTβ)

= νλνtν−1 exp(ZTΓ)

= α0(t) exp(ZTΓ)

where Γ = νβ and α0(t) = νλνtν−1. This is a proportional hazard model,
the reason for why we use the AFT-model is that this is implemented in R,
generally parametric proportional hazard models isn’t. We can then fit the
AFT model, and compare the variance from this model with the variance
from the weighted partial likelihood models.

Table 3.7 shows the efficiency of the accelerated failure time model
compared to the full likelihood and weighted partial likelihood with GAM
weights. The simulation models are the same as in 3.3.1 and 3.3.2.

The point with this comparison is that both the full likelihood and the
AFT model specify baseline hazard, and if much of the efficiency gain of
the full likelihood is due to this, then the AFT model should have similar
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efficiency that the full likelihood. But if the efficiency gain is mostly due
to the fact that all information known is used, then the efficiency of the
AFT model should be similar to the weighted partial likelihood. And we
see that it is the latter that actually is the case. This means that since the
full likelihood is able to use all information available, it is able to decrease
the variance.

Table 3.7: Efficiency compared to Cox-regression on full cohort
Independent covariates Dependent covariates

10% cases 3% cases 10% cases 3% cases
β1, β2 Weights z x z x z x z x
0.00 AFT 0.575 0.561 0.825 0.852 0.624 0.600 0.836 0.837

Full lik. 0.585 1.000 0.888 1.003 0.932 0.989 1.003 0.951
GAM 0.575 0.557 0.825 0.836 0.614 0.590 0.824 0.830

1.00 AFT 0.597 0.577 0.903 0.818 0.630 0.537 0.937 0.808
Full lik. 0.675 1.000 0.999 1.009 1.003 1.028 1.015 1.021
GAM 0.592 0.574 0.884 0.810 0.619 0.532 0.934 0.787

x is observed for all individuals, z is only observed for cases and controls

3.6 Comparison between Scheike and Juuls MLE
and the weighted partial likelihoods

Scheike and Juul [23] describes a maximum likelihood estimator in a Cox’s
regression model and it could be interesting to compare their likelihood
to the weighted partial likelihoods. We have done this by doing the same
simulation experiment as they have done only with the WPL-methods, and
we have also run Scheike’s code for the maximum likelihood estimator.

The simulation model is:

Z1 ∼ N(0, 1)
Z2 ∼ N(0, 1)
T ∼ Exp(λ exp(Z1β1 + Z2β2))
C = 15

T̃ = min(T,C)

The simulation is done with β1 = (0, 0.5, 1), β2 = (0,−0.5,−1) and
baseline = (0.004, 0.008, 0.016) and the results can be found in Table 3.8.
Since the four weighing methods gives very similar results1, we only include
one of them. Scheike and Juul’s simulation result is found in [23], but for
easier comparison, part of their result is given in Table 3.9.

1With baseline = 0.016 and β = −1 weights from GAM and logistic regression is a bit
more skewed than the result from using Samuelsens weights
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Table 3.8: Simulation Scheike and Juul
Covariate 1 Covariate 2

Av. Model/ Mean Mean Emp. Mean Mean Emp.
α0(t) cases weights est. est. sd sd est. est. sd sd
0.004 233 Cohort 0.00 0.07 0.07 0.00 0.07 0.07

Trad. NCC 0.00 0.08 0.08 (1.27) 0.00 0.08 0.08 (1.20)
Samuelsen 0.00 0.08 0.08 (1.24) 0.00 0.08 0.08 (1.18)

234 Scheike 0.00 0.08 0.08 (1.22) 0.00 0.08 0.08 (1.20)

0.008 452 Cohort 0.00 0.05 0.04 0.00 0.05 0.05
Trad. NCC 0.00 0.06 0.05 (1.23) 0.00 0.06 0.06 (1.26)
Samuelsen 0.00 0.06 0.05 (1.21) 0.00 0.06 0.06 (1.21)

453 Scheike 0.00 0.05 0.05 (1.15) 0.00 0.06 0.05 (1.13)

0.016 852 Cohort 0.00 0.03 0.03 0.00 0.04 0.03
Trad. NCC 0.00 0.04 0.04 (1.24) 0.00 0.04 0.04 (1.26)
Samuelsen 0.00 0.04 0.04 (1.18) 0.00 0.04 0.04 (1.18)

854 Scheike 0.00 0.04 0.04 (1.14) 0.00 0.04 0.04 (1.09)

0.004 283 Cohort 0.50 0.06 0.06 -0.50 0.06 0.06
Trad. NCC 0.50 0.08 0.08 (1.42) -0.51 0.09 0.09 (1.37)
Samuelsen 0.50 0.08 0.08 (1.37) -0.51 0.08 0.08 (1.33)

292 Scheike 0.48 0.07 0.07 (1.30) -0.49 0.07 0.08 (1.25)

0.008 553 Cohort 0.50 0.04 0.04 -0.50 0.04 0.04
Trad. NCC 0.50 0.06 0.06 (1.36) -0.50 0.06 0.06 (1.36)
Samuelsen 0.50 0.06 0.06 (1.27) -0.50 0.06 0.06 (1.27)

551 Scheike 0.47 0.05 0.05 (1.23) -0.47 0.05 0.05 (1.21)

0.016 965 Cohort 0.50 0.03 0.03 -0.50 0.03 0.03
Trad. NCC 0.50 0.05 0.05 (1.39) -0.50 0.04 0.04 (1.34)
Samuelsen 0.50 0.04 0.04 (1.24) -0.50 0.04 0.04 (1.19)

991 Scheike 0.46 0.04 0.04 (1.15) -0.46 0.04 0.04 (1.15)

0.004 459 Cohort 1.00 0.05 0.05 -1.01 0.05 0.05
Trad. NCC 1.01 0.09 0.09 (1.86) -1.01 0.09 0.09 (1.84)
Samuelsen 1.01 0.07 0.07 (1.40) -1.01 0.07 0.07 (1.43)

491 Scheike 0.94 0.06 0.07 (1.32) -0.94 0.06 0.07 (1.27)

0.008 782 Cohort 1.00 0.04 0.04 -1.00 0.04 0.04
Trad. NCC 1.00 0.07 0.07 (1.77) -1.00 0.07 0.07 (1.70)
Samuelsen 1.00 0.05 0.05 (1.26) -1.00 0.05 0.05 (1.23)

800 Scheike 0.94 0.05 0.05 (1.29) -0.93 0.05 0.05 (1.28)

0.016 1198 Cohort 1.00 0.03 0.03 -1.00 0.03 0.03
Trad. NCC 1.00 0.06 0.06 (1.67) -1.00 0.05 0.06 (1.72)
Samuelsen 1.01 0.04 0.04 (1.15) -1.00 0.04 0.04 (1.16)

1248 Scheike 0.95 0.04 0.04 (1.28) -0.94 0.04 0.04 (1.21)

Number in brackets are
√

efficiency, standard deviation divided by cohort standard deviation
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Table 3.9: A subset of Table 1 in [23]
Covariate 1 Covariate 2

Av. Mean Mean Emp. Mean Mean Emp.

α0(t) cases est. est. sd sd
√

Eff. est. est. sd sd
√

Eff.
0.004 234 0.00 0.08 0.08 1.21 0.00 0.08 0.07 1.23
0.008 452 0.00 0.06 0.06 1.16 0.00 0.06 0.06 1.24
0.016 852 0.00 0.05 0.04 1.30 0.00 0.04 0.04 1.26
0.004 288 0.52 0.08 0.08 1.52 -0.52 0.07 0.08 1.44
0.008 550 0.54 0.06 0.06 1.31 -0.54 0.06 0.06 1.35
0.016 986 0.55 0.04 0.04 1.21 -0.55 0.04 0.04 1.28
0.004 196 1.05 0.10 0.10 1.25 -1.05 0.09 0.10 1.25
0.008 475 1.04 0.06 0.06 1.26 -1.05 0.07 0.06 1.32
0.016 1232 1.03 0.04 0.04 1.21 -1.03 0.03 0.04 1.12

We see that the estimates of β 6= 0 is a bit skewed when estimated with
Scheike’s method. Table 3.9 shows that when the true value of β is (-0.5,0.5),
the absolute value of the estimate is too high and the same goes when the
true value of β is (-1,1). The strange thing is that when we use Scheike’s
code, the bias goes the other way.

The empirical variance and the EM-based variance is in good agreement
here and the standard deviation of Scheike’s likelihood and the weighted
likelihoods is mainly equal to the second decimal place, but with a slight
advantage of Scheike’s likelihood in some cases. But when we look at the
square root of the efficiency we see that Scheike’s likelihood has somewhat
smaller standard deviation at least for β = 0 and β = (−0.5, 0.5).

Another thing is that there is something strange with Scheike and Juul’s
simulation when β = 1 and baseline equals 0.004 and 0.008. The number
of cases we get in our simulation experiment and the number of cases they
reported is not comparable. While we get (491, 800) they report (196, 475).
196 is less cases that they, and we, got when β = 0. It’s obvious that when β
increase the number of cases will increase. But apart from that the numbers
are comparable, therefore it’s probably just a typing error or perhaps they
have used a slightly different simulation setup than described.

3.7 Simulation problems

Traditional nested case-control

I have encountered some different simulation problems, the first problem is
only a problem for the traditional nested case-control analysis, where the
optimization of the likelihood doesn’t converge. In some of the simulations
we have only one binary covariate, and there is only one control per case. If
there are zero strata where the case and the control have opposite covariate
values, then the likelihood will be flat (equal one half), and a maximum
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doesn’t exist. If the likelihood contribution from one individual is

Li =
exp(βxi)

exp(βxi) + exp(βxi′)

where xi′ is the covariate for the control. Then

Li =

{
1
2 if xi = xi′ = 0
exp(β)

2 exp(β) = 1
2 if xi = xi′ = 1

Empty risk set

The other problem is a problem that also can happen in a real data set,
namely a problem concerning an empty risk set. For each event time, one
sample m controls from the risk set at that time, but if the risk set is empty,
all individuals are either censored or dead, then there are nobody to sample.
This will mainly happen if the censoring distribution has a ”heavy tail”,
since it is then possible that the longest survival time is bigger than the
longest censoring time.

Our ”solution” to this and the previous problem, is to exclude those
simulations where it happened. This may seem non-optimal and the easies
way out, but as long as the problems are as rare as they are, it wouldn’t be
a lot to gain to try to use more sophisticated methods in order to fix the
problems.

Failing calibration

The calibration may sometimes fail to match the population totals. One way
of dealing with this is to force convergence and then exclude the simulations
where it happened.

AFT-model

The survReg routine in R that is used to fit the AFT-model fail from time
to time, we have therefor used weighted poisson regression, where GAM-
weights are used, instead. It is possible to use Poisson regression since when
the survival times are exponential distributed then the AFT-likelihood is on
the same form as a Poisson-likelihood.
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Chapter 4

Application to data

So far in this thesis we have only tried out the different methods on simulated
data with only one or at most two covariates. This is a natural start when we
want to compare methods, because the data are easy to handle and since the
”true” parameter values are determined on before hand, it’s easy to check
whether the results are likely or not. On the other hand these simulated
settings are too simple to be of any real interest. Therefore we have also
tried out the different methods on a real data set.

4.1 Data

The data set [21] consists of all children born in Norway between 1967 and
1989 who survived their first year and had a gestational age ≥ 16 weeks.
The cohort consisted of 1,270,016 subjects and the children were followed
to death or to the end of 1991. This can be considered as a situation with
censoring at a fixed time, in the sense of not being any randomness in the
censoring, since there is no loss of follow-up except for a few subjects who
moved abroad. For reasons explained later we only used follow-up time
≤ 10 years. We also excluded subjects with missing covariates or covariates
that were obviously wrongly coded, there were 83,361 such subjects and the
number of individuals left in the cohort was then 1,186,655. Because of time
considerations, we had to reduce the cohort further, therefore we only used
first born boys, and ended up with a cohort of size 254,572.

The original use of these data was analysis on the entire cohort where
they looked at how gestational age and other covariates influenced childhood
mortality. The analysis was cause specific, but we are going to limit ourselves
to two causes; death of cancer and death of all other causes. Since the topic
of this thesis has been nested case-control studies with multiple outcomes,
we are going to do synthetic case-control studies where we take the cohort
to be the 254,572 subjects.

Childhood mortality is luckily small in Norway, out of 254,572 subjects
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868 died, 125 of the children died of cancer and 743 of the children died of
other causes. If we choose m = 1 control per case, then the subcohort be-
longing to endpoint 2 would consist of 1,486 subjects at start of study while
the subcohort belonging to endpoint 1 would only consist of 250 subjects.
But when we also use cases and controls from endpoint 2 in the analysis of
endpoint 1 the subcohort increases to 1,736 which result in about 13 controls
per case on average.

Figure 4.1 displays the baseline hazards for endpoint 1 and 2, both with
follow-up time until 10 years (bottom) and follow-up until death or censoring
(top). We see from this that with follow-up until death or censoring, a
Weibull baseline wouldn’t fit very good especially for endpoint 2. If we on
the other hand only use follow-up time until the age of 10, then we see
that it looks much more reasonable to use a Weibull baseline. With cancer
endpoint it looks like the baseline hazard is almost constant for a long time
and then it starts to decrease a bit, while for endpoint 2 baseline hazard is
decreasing all the time.
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Figure 4.1: Baseline hazard for cancer deaths and deaths from all other
causes, top: follow-up until death or censoring, bottom: follow-up until 10
years old.
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4.2 Methods

The methods we have tried out on simulated data are weighted partial like-
lihoods, with four different weights; Samuelsen’s, estimated with logistic
GAM, estimated with logistic regression and local averaging. Since logistic
regression is a special case of logistic GAM and the local averaging method
consistently had higher variance than the other methods, only GAM and
Samuelsen’s weights are used. Further we have also tried out the full likeli-
hood of Saarela et al. and the calibration method of Breslow.

The covariates included are:
x1 = gestational age in days
x2 = birth weight in kilos

4.2.1 Weighted partial likelihoods

I have chosen to only try out Samuelsen’s Kaplan-Meier type of weights

pj =

{
1 cases

1−
∏
ti<tj

{
1− m−1

n(ti)−1

}
controls

and the weights estimated with logistic GAM,

E(Vi|T̃i) =
exp(α+ f(T̃i))

1 + exp(α+ f(T̃i))

The estimation is then exactly as it was with the simulated data in chapter
3.

4.2.2 Full likelihood

Two partially unknown binary covariates

The first analysis is based on both gestational age x1 and birth weight x2

being unknown for individuals outside the subcohort and both of them are
used as binary covariates.

Z1 =

{
0 if x1 ≤ 37 weeks
1 else

Z2 =

{
0 if x2 ≤ 3 kg
1 else

The joint distribution of Z1 and Z2 is then

p(Z1, Z2|µ) = µZ1Z2
1 µ

(1−Z1)Z2

2 µ
Z1(1−Z2)
3 (1− µ1 − µ2 − µ3)(1−Z1)(1−Z2)
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where

µ1 = P (Z1 = 1, Z2 = 1)
µ2 = P (Z1 = 0, Z2 = 1)
µ3 = P (Z1 = 1, Z2 = 0),

is the probability of the different combinations of Z1 and Z2.

One binary partially known covariate and one fully observed nu-
merical covariate

The second thing I have tried out is gestational age, the known x, being
numerical and known for the entire cohort, while birth weight, Z is binary
and only partially known. Then the distribution of Z given x is p(Zi|xi;µ) =
µZi(1 − µ)1−Zi , but it needs some special attention since it is natural to
believe that birth weight depend on gestational age. The natural way of
model this is through a logistic regression where we have chosen a probit-
link

g(µ) = Φ−1(µ) = ξ0 + ξ1x

where Φ is the cumulative standard Normal probability function. A probit-
model is a natural choice since the underlying birth weight is approximately
normally distributed.

One numerically covariate

If we now use birth weight in the original coding in kilo, the full likelihood
looks like

L(β, µ) ∝
∏
i∈O

p(Ti, Ei|Zi, xi;β)p(Zi|xi;µ)

×
∏
i∈C\O

∫
zi

p(Ti, Ei|zi, xi;β)p(Zi = zi|xi;µ)dzi

and if we model Z as

Z = τ0 + τ1x+ ε, ε ∼ N(0, σ2)
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which means that Z ∼ N(τ0 + τ1x, σ
2) then the last part of the likelihood

above

∏
i∈C\O

[∫
zi

(
K∏
k=1

{λνk
k νkt

νk−1 exp(γkxi + ηkzi)}

× exp

{
K∑
k=1

−(λkt)νk exp(γkxi + ηkzi)

}

× 1√
2πσ

exp
{
− 1

2σ2
(zi − τ0 − τ1x)2

})
dzi

]
(4.1)

includes a quite complicated integral. It might be that it’s possible to solve
it analytically, but in order to try out the Monte Carlo approach I haven’t
tried that. By using Monte Carlo integration on (4.1) it becomes

∏
i∈C\O

 1
M

∑
zi,m

(
K∏
k=1

{λνk
k νkt

νk−1 exp(γkxi + ηkzi,m)}

× exp

{
K∑
k=1

−(λkt)νk exp(γkxi + ηkzi,m)

})]
(4.2)

Where zi,m ∼ N(τ0 + τ1xi, σ
2) and m = 1 . . .M , we have chosen M = 100.

Since µ = (τ0, τ1, σ) in p(Zi = zi|xi;µ) are parameters that needs to
be estimated as well, we run into a problem. One solution is importance
sampling; instead of drawing zi,m from N(τ0 + τ1xi, σ

2) we draw it from
N(τ ′0 + τ ′1xi, σ

′2) where τ ′0, τ
′
1 and σ′ are decided on beforehand. And we

correct for drawing from the wrong distribution by multiplying (4.2) by the
importance weights

p(Zi = zi|xi; τ0, τ1, σ)
p(Zi = zi|xi; τ ′0, τ ′1, σ′)

When we look at the importance weights it’s obvious that τ ′0, τ
′
1 and σ′

should be as close as possible to τ0, τ1 and σ. In order to get that we did
a linear regression on the full data and put τ ′0 = τ̂0,MLE, τ

′
1 = τ̂1,MLE and

σ′ = σ̂MLE. (In a real situation the full data wouldn’t be known, then it’s
possible to do the regression only on the NCC-data.)

Problems

The likelihood is hard to optimize, the optimization algorithm requires good
starting values and you have to be careful with parameters that can’t be
negative. I found out that in order to make the program more robust it is
smart to take the logarithm of the starting values for those parameters and
then exponentiate them again in the likelihood program. The coefficients
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from the Cox-regression is a good choice of starting values, but the trans-
formed coefficients from the accelerated failure time model might be even
better since the estimates from the full likelihood on the full cohort and the
AFT-estimates should be equal.

Even with a very strict convergence criterion the estimates doesn’t turn
out exactly the same with different starting values, which is a bit worry-
ing. With a strict convergence criterion the variances are very similar with
different starting values, which is reassuring. The empirical variances on
the other hand gets smaller as the strictness of the convergence criterion in-
crease. This is in a way natural, but the empirical variance also differ with
starting values, it’s much smaller when AFT-starting values are chosen. This
lead me to the thought that the empirical variance from the full likelihood
is not comparable to the empirical variance of the WPL models. With fully
observed covariates the empirical variance should be close to 0 because we
use the full data every time. With partially observed covariates it is some-
what different, with WPL we sample different controls each time, and there
will naturally be variation in the estimates. With the full likelihood we also
sample controls, but we model the covariates that are not observed. If the
distribution we have chosen describe the non-observed covariates in a good
way, I think the variation due to the sampling then should be minimal.

4.2.3 Calibration

The calibration requires some information to be fully known, since we have
to predict the partially observed covariate on the background on informa-
tion known for everybody, it is only done in the setting where birth weight
is known for everybody, while gestational age is only known for sampled in-
dividuals. Then the calibration is done as described in section 2.8.3 and the
calibration function used is unbounded raking. As you will see from Table
4.3 and 4.4, this doesn’t work very good.

4.3 Results

In order to structure the discussions a bit, I will also here use a list of
discussion points:

1. Saarela’s likelihood on cohort data compared to Cox regression on
cohort data

2. Estimates, bias, bias

(SE2
0+S2)

1
2
> 1

3 is considered to be serious

3. Comparison of standard errors, efficiency

4. Standard error compared to (SE2
0 + S2)

1
2
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Here SE0 is the standard error from Cox-regression on the full cohort and
S is the empirical variance. From now on we are going to call (SE2

0 + S2)
1
2

simulation based standard deviation. The reason for why this quantity is
interesting is that the variance of the estimates from the weighted partial
likelihoods can be divided into two parts (see B.2), one reflecting the variance
we would have if all covariates for the hole cohort was known, and the other
part reflecting the sampling variability. It is natural to assume that the
same apply to the full likelihood and the traditional NCC likelihood. But
with the full likelihood it is natural to use SE′0 which is standard error from
Saarela’s likelihood on the entire cohort. The estimated variance should
then be approximately equal to the simulation based standard deviation if
the estimators are right, which means that the empirical variances show how
much extra variance that is added due to the sampling.

4.3.1 Two partially unknown binary covariates

Table 4.1: Comparison cancer endpoint, two unknown binary covariates
Method Model/weights β̂1 β̂2

Estimate Cohort Cox 0.6812 0.3078
Cohort MLE Weibull 0.6772 0.3213
Trad. NCC Strat. Cox 0.6280 0.2698

WPL Samuelsen 0.6809 0.2923
WPL GAM 0.6820 0.2918
MLE Weibull 0.6976 0.3032

Standard Cohort Cox 0.6067 0.3042
error Cohort MLE Weibull 0.6061 0.3041

Trad. NCC Strat. Cox 0.7787 0.4195
WPL Samuelsen 0.6276 0.3212
WPL GAM 0.6277 0.3213
MLE Weibull 0.6218 0.3181

Empirical Trad.NCC Strat.Cox 0.4986 0.2656
standard WPL Samuelsen 0.1576 0.1005
deviation WPL GAM 0.1565 0.1011

MLE Weibull 0.1488 0.0977

Efficiency Trad.NCC Strat.Cox 0.6071 0.5257
WPL Samuelsen 0.9345 0.8969
WPL GAM 0.9343 0.8966
MLE Weibull 0.9519 0.9145

(SE2
0 + S2)

1
2 Trad.NCC Strat.Cox 0.7853 0.4038

WPL Samuelsen 0.6269 0.3204
WPL GAM 0.6266 0.3205

(SE2
0′ + S2)

1
2 MLE Weibull 0.6241 0.3194

β1 - gestational age, β2 - birth weight, MLE - Maximum likelihood
WPL - weighted partial likelihood, Cohort MLE - Saarela’s likelihood on cohortdata
SE0 - standard error from Cox on cohort, S - empirical standard deviation
SE0′ - standard error from MLE on cohort
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Here both gestational age and birth weight are used as binary covariates,
which means that Z1 = 1 if gestational age is above 37 weeks and Z2 = 1 if
birth weight is above 3 kg. Table 4.1 and 4.2 shows the result of sampling
controls and doing the analysis 200 times.

1. There are some differences between the Cox-regression on the full co-
hort and Saarela’s likelihood on the full cohort. This is of course nat-
ural since they are based on a bit different assumptions, but it makes
it difficult to talk about bias in the estimates from the full likelihood,
because it is not quite obvious what it should be compared to. But
even though the estimates aren’t exactly the same they are very alike,
and the differences wouldn’t make any differences in practice. Also
the standard deviations of the two models are almost the same, with
other deaths endpoint they actually are the same to at least the third
decimal place.

Table 4.2: Comparison other deaths, two unknown binary covariates
Method Model/weights β̂1 β̂2

Estimate Cohort Cox -0.1999 -0.3973
Cohort MLE Weibull -0.2042 -0.3866
Trad. NCC Strat. Cox -0.2275 -0.4117

WPL Samuelsen -0.1970 -0.4128
WPL GAM -0.1964 -0.4134
MLE Weibull -0.2234 -0.4111

Standard Cohort Cox 0.1459 0.0970
error Cohort MLE Weibull 0.1459 0.0970

Trad. NCC Strat. Cox 0.2265 0.1460
WPL Samuelsen 0.2235 0.1440
WPL GAM 0.2237 0.1441
MLE Weibull 0.2150 0.1388

Empirical Trad.NCC Strat.Cox 0.1666 0.1125
standard WPL Samuelsen 0.1552 0.1017
deviation WPL GAM 0.1538 0.1022

MLE Weibull 0.1501 0.0975

Efficiency Trad.NCC Strat.Cox 0.4151 0.4414
WPL Samuelsen 0.4265 0.4541
WPL GAM 0.4256 0.4532
MLE Weibull 0.4609 0.4885

(SE2
0 + S2)

1
2 Trad.NCC Strat.Cox 0.2215 0.1485

WPL Samuelsen 0.2130 0.1406
WPL GAM 0.2120 0.1410

(SE2
0′ + S2)

1
2 MLE Weibull 0.2093 0.1375

β1 - gestational age, β2 - birth weight, MLE - Maximum likelihood
WPL - weighted partial likelihood, Cohort MLE - Saarela’s likelihood on cohortdata
SE0 - standard error from Cox on cohort, S - empirical standard deviation
SE0′ - standard error from MLE on cohort

2. If we first look at cancer endpoint, all estimates are very alike, except
the estimates from the traditional NCC which are a bit smaller than
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the rest. But this bias isn’t really important compared to the standard
error.

If we then look at other deaths endpoint, β1 from the full likelihood
and the traditional NCC is very similar, while the WPL-estimates are
a bit smaller than the rest. With β2 there is a difference between the
estimates from the full cohort and the NCC estimates. But again these
differences are not important compared to the standard deviations.

3. The standard errors are as expected, with cancer endpoint there are
very little to gain by using the full likelihood because both covariates
are only partially observed. But by using WPL instead of traditional
NCC the efficiency increase with over 50% and 70% for β1 and β2

respectively, this is due to the high number of controls. With other
deaths endpoint on the other hand, there are very little to gain by
choosing WPL instead of the traditional NCC and the full likelihood
only improve the efficiency a little bit.

4. The last rows in Table 4.1 and 4.2 shows the simulation based stan-
dard deviation. First of all, the empirical variances are only based
on 200 estimates, which probably is a bit too few. Anyway it looks
quite reasonable, perhaps we see a tendency that WPL overestimate
the variance a bit, at least with other deaths endpoint. But this is
only minor differences, the overall impression is that the variances is
estimated very accurate.

4.3.2 One partially unknown and one fully known covariate

Table 4.3 and 4.41 shows the result from the analysis when we again are
using gestational age and birth weight as covariates. Gestational age is used
in days and is assumed to be known for everybody, while birth weight only is
known for cases and controls and is therefore used as a binary covariate. The
estimates are the average of 200 analysis where new controls are sampled
each time. β1 is the estimate of gestational age, while β2 correspond to the
birth weight indicator.

1. It is reassuring to see that the estimates from the full likelihood and
the Cox-regression on the entire cohort are very similar also in this
case. The same can be said about the standard deviation, but it is
slightly smaller with the full likelihood, than with Cox-regression.

2. First of all, we see that the estimates obtained with calibrated weights,
at least for the partially observed covariate is quite different from the

1The efficiency of the calibration method isn’t calculated. It doesn’t really make sence
to look at it because of the biased estimates and because the estimates of the standard
deviations are too small.
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Table 4.3: Comparison cancer endpoint, one partially unknown binary co-
variate and one fully known numerical covariate

Method Model/weights β̂1 β̂2

Estimate Cohort Cox -0.0033 0.4813
Cohort MLE Weibull -0.0035 0.4960
Trad. NCC Strat. Cox -0.0036 0.4342

WPL Samuelsen -0.0033 0.4652
WPL GAM -0.0032 0.4645
WPL Calibration -0.0030 0.5905
MLE Weibull -0.0035 0.4969

Standard Cohort Cox 0.0070 0.3141
deviation Cohort MLE Weibull 0.0067 0.3136

Trad. NCC Strat. Cox 0.0106 0.4256
WPL Samuelsen 0.0073 0.3343
WPL GAM 0.0073 0.3343
WPL Calibration 0.0031 0.3123
MLE Weibull 0.0069 0.3304

Empirical Trad.NCC Strat.Cox 0.0078 0.2590
standard WPL Samuelsen 0.0027 0.1111
deviation WPL GAM 0.0027 0.1116

WPL Calibration 0.0019 0.0740
MLE Weibull 8.0 · 10−5 0.0055

Efficiency Trad.NCC Strat.Cox 0.4417 0.5445
WPL Samuelsen 0.9346 0.8827
WPL GAM 0.9340 0.8823
WPL Calibration —– —–
MLE Weibull 1.0302 0.9037

(SE2
0 + S2)

1
2 Trad.NCC Strat.Cox 0.0105 0.4071

WPL Samuelsen 0.0075 0.3331
WPL GAM 0.0075 0.3333
WPL Calibration 0.0073 0.3227

(SE2
0′ + S2)

1
2 MLE Weibull 0.0067 0.3137

β1 - gestational age, β2 - birth weight, MLE - Maximum likelihood
WPL - weighted partial likelihood, Cohort MLE - Saarela’s likelihood on cohortdata
SE0 - standard error from Cox on cohort, S - empirical standard deviation
SE0′ - standard error from MLE on cohort

rest of the estimates. Bias divided by standard deviation is 0.338
and 1.127 for cancer and other deaths endpoint respectively. This
means that the estimate for the partially observed covariate for cancer
endpoint is borderline biased, while for other deaths endpoint it is
seriously biased.

If we then look at the other parameter estimates we see that both
birth weight and gestational age has opposite effects on death from
cancer and death of other causes. We also see that WPL adds some
bias to β2 for both endpoints, while Saarela’s likelihood is in better
agreement with the cohort analysis. On the other hand, β1 is estimated
very accurate with the WPL-models while Saarela’s likelihood result
in a bit different estimates, especially for other deaths endpoint. If this
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difference was only due to the parametric specification of baseline, then
the estimates should be similar to the estimate from the full likelihood
on the full data, but this is not the case for other deaths endpoint.

The last thing to notice is that while Table 4.3 and 4.4 showed that
gestational age and birth weight had opposite effects of each other
and opposite effect on cancer deaths and death of other causes, both
coefficients were positive for cancer deaths and negative for death of
other causes when both gestational age and birth weight was used as
binary covariates. This has probably to do with the fact that gesta-
tional age is not significant, and there are probably some interactions
between gestational age and birth weight that are not included, that
can influence the estimates.

Table 4.4: Comparison other deaths, one partially unknown binary covariate
and one fully known numerical covariate

Method Model/weights β̂1 β̂2

Estimate Cohort Cox 2.9 · 10−4 -0.4513
Cohort MLE Weibull 3.6 · 10−5 -0.4380
Trad. NCC Strat. Cox 1.9 · 10−4 -0.4682

WPL Samuelsen 2.7 · 10−4 -0.4698
WPL GAM 2.7 · 10−4 -0.4703
WPL Calibration -1.1 · 10−4 -0.3186
MLE Weibull 3.2 · 10−8 -0.4406

Standard Cohort Cox 0.0027 0.0977
error Cohort MLE Weibull 0.0026 0.0976

Trad. NCC Strat. Cox 0.0038 0.1489
WPL Samuelsen 0.0041 0.1440
WPL GAM 0.0041 0.1442
WPL Calibration 0.0019 0.0937
MLE Weibull 0.0028 0.1402

Empirical Trad.NCC Strat.Cox 0.0026 0.1257
standard WPL Samuelsen 0.0026 0.1106
deviation WPL GAM 0.0027 0.1112

WPL Calibration 0.0016 0.0657
MLE Weibull 7.5 · 10−5 0.0140

Efficiency Trad.NCC Strat.Cox 0.5087 0.4304
WPL Samuelsen 0.4397 0.4601
WPL GAM 0.4388 0.4591
WPL Calibration —– —–
MLE Weibull 0.9283 0.4859

(SE2
0 + S2)

1
2 Trad.NCC Strat.Cox 0.0037 0.1592

WPL Samuelsen 0.0038 0.1476
WPL GAM 0.0038 0.1485
WPL Calibration 0.0031 0.1177

(SE2
0′ + S2)

1
2 MLE Weibull 0.0027 0.0987

β1 - gestational age, β2 - birth weight, MLE - Maximum likelihood
WPL - weighted partial likelihood, Cohort MLE - Saarela’s likelihood on cohortdata
SE0 - standard error from Cox on cohort, S - empirical standard deviation
SE0′ - standard error from MLE on cohort
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3. The first thing to notice about the standard deviations is that the
variance of β1 with cancer endpoint is lower with Saarela’s likelihood
than it is with Cox-regression on the hole cohort. This can seem a bit
strange at first since the cohort analysis use the hole data set while
MLE is done in nested case-control setting, but there are two things to
remember. Firstly gestational age is known for the entire cohort, and
Saarela’s likelihood utilize this, secondly it might be that there are
some information in the baseline. Cox-regression disregard the base-
line, while with Saarela’s likelihood we model it, but the differences
are very small.

The second thing to notice is that the standard deviation from the
calibration method of the fully observed covariate is very small. Ac-
tually it is much smaller than Cox regression on the full cohort, this
shouldn’t happen and it has to be something wrong with the variance
estimation.

Further we see that the variances from the other WPL models with
cancer endpoint are only marginally bigger than the variances from
the full cohort, this is probably due to the big number of controls,
roughly about 13 per case. For β2 the efficiency is a bit lower, but the
differences between WPL and full likelihood is still very small. With
other deaths on the other hand, the traditional nested case-control
analysis is slightly more efficient than WPL when estimating β1, but
the traditional NCC estimate is also a bit smaller than estimates from
WPL, which is probably the reason for that. The full likelihood is
almost as efficient as the Cox-regression on the cohort. With β2 it
is a different story, all methods have low efficiency, but with a slight
advantage for Saarela’s likelihood.

4. Again empirical standard deviation should reflect the extra variance
added to the cohort variance and the simulation based standard devi-
ation should be about the same as the (robust) model based standard
deviation. We see that this is not the case with the calibrated weights,
the model based standard deviation is much smaller. We also see that
if we can trust the simulation based standard deviation as an esti-
mate of the standard deviation then the calibration method actually
increase the efficiency a bit compared to the other WPL models, at
least with other deaths endpoint, but this isn’t really that interesting
since the estimates are as biased as they are. Apart from with the
calibration model it seems that the numbers are in quite good agree-
ment, perhaps except for β2 from the full likelihood with other deaths
endpoint, where there is a difference.

From the discussion above we see that the calibration method isn’t really
working that well. The estimates are skewed, especially those connected to
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the partially observed covariate and the standard deviations are too small.
We can see this both from the fact that they are smaller than the standard
deviation from Cox-regression on the full cohort, but also from the fact
that the simulation based standard deviations are (much) bigger than the
estimated standard deviations. We also tried to use T̃ in addition to the
fully observed covariate as explanatory variable in the regression used to
predict the partially observed covariate (results now shown), but this didn’t
help anything either.

One possible reason for why the calibration approach doesn’t work that
well is that it’s designed for a case-cohort setting and it is not directly trans-
ferable to a nested case-control setting with multiple outcomes. Another
thing is that the in the survey package, that is used to do this calibration,
there are a lot of options and choices, it might be that we are not using
the methods quite right in the sense of now being in a NCC-situation with
multiple outcomes.

4.3.3 Monte Carlo approach

In order to try out the Monte Carlo approximation to the likelihood we now
have one numerical partially observed covariate, birth weight in kilo. We
have only one covariate in order to try it out in a very simple situation. This
means that Z no longer is modeled through a linear regression, but rather
as N(τ, σ2). The numbers are based on sampling controls 50 times, this is
too few, but it takes about 2 and a half hour to optimize the full likelihood
once, and it took about a week to run the hole program. The result can
be found in Table 4.5, where β1 is the estimate of birth weight with cancer
endpoint while β2 is the estimate corresponding to other deaths endpoint.

We see that the estimates are in quite good agreement, perhaps β2 from
Saarela’s likelihood is a bit different from the other estimates, but compared
to the standard deviation this is not important. We further see that the
standard deviation of β1 with Saarela’s likelihood is actually smaller than
the same likelihood on the full cohort, this is probably due to the fact that
the standard deviation doesn’t take into account the extra uncertainty in
the Monte Carlo approximation. If we look at (SE2

0′ + S2)
1
2 , we see that

it is somewhat bigger than the cohort variance, but I have a feeling that
the standard deviation is even bigger. This is because so far we have seen
that the full likelihood is only marginally better than WPL models when we
only have partially observed covariates and therefore it is unlikely that the
variance is so close to the variance from Cox regression on the full cohort
now.
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Table 4.5: One partially observed numerical covariate
Method Model/weights β̂1 β̂2

Estimate Cohort Cox 0.2052 -0.4294
Cohort MLE Weibull 0.2192 -0.4224
Trad. NCC Strat. Cox 0.2215 -0.4061

WPL Samuelsen 0.2148 -0.4282
WPL GAM 0.2142 -0.4283
MLE Weibull 0.1928 -0.4572

Standard Cohort Cox 0.1712 0.0643
error Cohort MLE Weibull 0.1718 0.0646

Trad. NCC Strat. Cox 0.2534 0.0956
WPL Samuelsen 0.1763 0.0977
WPL GAM 0.1763 0.0978
MLE Weibull 0.1668 0.0684

Empirical Trad.NCC Strat.Cox 0.1920 0.0697
standard WPL Samuelsen 0.0657 0.0684
deviation WPL GAM 0.0642 0.0673

MLE Weibull 4.1 · 10−4 3.5 · 10−4

Efficiency Trad.NCC Strat.Cox 0.4563 0.4527
WPL Samuelsen 0.9432 0.4330
WPL GAM 0.9435 0.4321
MLE Weibull 1.0533 0.8847

(SE2
0 + S2)

1
2 Trad.NCC Strat.Cox 0.2572 0.0948

WPL Samuelsen 0.1834 0.0939
WPL GAM 0.1828 0.0931

(SE2
0′ + S2)

1
2 MLE Weibull 0.1719 0.0646

β1 - cancer endpoint, β2 - other deaths endpoint
MLE - Maximum likelihood, WPL - weighted partial likelihood
Cohort MLE - Saarela’s likelihood on cohort data
SE0 - standard error from Cox on cohort, S - empirical standard deviation
SE0′ - standard error from MLE on cohort, number in brackets - (SE0/S)2

4.3.4 Summing up

We have seen much of the same things we saw in the simulations; there are
very little to gain by using Saarela’s likelihood in stead of WPL when both
covariates are only partially known. When we went a bit further and let one
covariate being known for the entire cohort, we got efficiency improvements
with Saarela’s likelihood for the fully observed covariate, but not for the
partially observed covariate. We also tried out the Monte Carlo approach,
this worked quite reasonable, both regarding the estimates and the size of
the standard error, but the standard errors are probably somewhat bigger
than reported, since the extra variance from the Monte Carlo approximation
is not taken into account.

We also saw that with cancer endpoint the estimates from both WPL
and the full likelihood is close to being efficient, this of course due to the
high number of controls.

Another thing we noticed was that the calibration doesn’t really work,
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the estimates of the partially observed covariate are biased and the variance
estimates are too small.
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Chapter 5

Discussion

5.1 Summary

The topic of this thesis has been estimators in a nested case-control design
with multiple outcomes, and in particular ways of obtaining more accurate
estimates in one analysis when cases and controls from another analysis can
be used as additional controls. We have both tried out maximum likelihood
approaches and a weighted partial likelihood approach, with different sug-
gestions concerning the estimation of the weights. This has been done both
through simulations and on real data.

The simulation showed that the choice of weights in the weighted partial
likelihood is really not important, all weights except the calibrated showed
very similar behaviour. Because of that only GAM and Samuelsen’s weights
was tried out on real data and the differences was only marginally also there.
The other type of weights was the calibrated ones, the approach is really
aimed at case-cohort studies with single outcomes. The setting in this thesis
is therefore a bit outside the framework of Breslow et al. and we are still not
certain whether this untraditional use of theory really work or how to use it
to make it work the best.

The simulation also showed that the full likelihood managed to estimate
fully known covariates as efficient or almost as efficient as Cox-regression
on the full cohort. And if partially known covariates was correlated with
fully known covariates it also managed to estimate those as efficient as the
cohort analysis. The analysis on birth registry data showed much of the
same tendency, but the differences between WPL and full likelihood was less
pronounced due to the high number of controls. Since the full likelihood
needs a specification of baseline, we also tried to find out how much of
the efficiency gain that was due to that. By fitting an accelerated failure
time model, that also specify baseline, to the data, we could compare the
full likelihood with AFT and WPL. This showed that the biggest efficiency
improvements stems from the fact that we are using data in a more efficient
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way. Since the efficiency gain of the full likelihood was mostly due to more
efficient use of data, we also tried to use a fully known covariate in estimation
of GAM-weights and Samuelsen’s weights. Efficiency improvements was
obtained with GAM-weights, but with Samuelsen’s weights the standard
error slightly increased when a fully observed covariate was included in the
estimation.

Scheike’s maximum likelihood approach was also tried out on simulated
data. The result was that Scheike’s likelihood was somewhat more efficient,
but at the same time the estimates was a bit more skewed than WPL. We
also wanted to try it out on birth registry data, but the program crashed
and we haven’t been able to figure out why.

5.2 Conclusion

The salient goal of this thesis has been to find out if and when the full
likelihood of Saarela et al. is better than the partial likelihood with inverse
probability weighing. The conclusion reached is that first of all, the more
controls there is the less it is to gain by using more sophisticated methods,
which is quite natural. Second of all, if there are covariates known for the
entire cohort the full likelihood are able to estimate those almost as efficient
as Cox on full cohort. Thirdly, if partly observed covariates are correlated
with fully observed covariates, the full likelihood are also able to estimate
those about as accurate as the Cox-regression on the full cohort. The only
situation where there is nothing to gain by using Saarela’s likelihood is when
no covariates are known for the entire cohort. We have also found out that
most of the variance reduction is due to more efficient use of data and not
because of the parametric specification of baseline. There are however some
drawbacks; I have experienced that the likelihood is hard to optimize and it
rests on more modeling assumptions and therefore the number of parameters
that needs to be estimated will increase. The extra variance connected to
this is not taken into account, this is not unique for the full likelihood, but
with more modeling assumptions I imagine that the ”forgotten” variance
will be higher.

The WPL models, at least with GAM-weights are also able to increase
efficiency when fully observed covariates are included in the estimation of
weights. This only apply for the fully observed covariates and dependent
covariates doesn’t improve the efficiency for the partly observed covariates.

When it comes to the calibration method we haven’t really reached a
conclusion. It works fine in the simulation experiment, but when we tried
it out on the birth registry data something strange happened, the estimates
was really skewed and the variance estimates was really too small. Therefore
it needs more testing before we are able to say anything.
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5.3 Further research

There are a number of things we would have liked to try out, but because
of time limitation we haven’t been able to. First, how critical are the extra
assumptions in Saarela’s likelihood? It would be interesting to find out
how the estimates would behave if the distribution of the partially observed
covariates was wrong and/or a wrong specification of baseline was assumed.
It would also be nice to know how much extra variance is added to the usual
variance when a Monte Carlo approximation is used in the likelihood.

Chen have stated that his local averaging method is superior compared
to the usual inclusion probabilities. In our simulations we saw that Chen’s
method was mainly the least efficient of the WPL methods and the most
obvious reason for that is that we have chosen the wrong number of partitions
of the time axis. It could then be interesting to find out how much efficiency
improvements Chen’s weights could give by altering the partition and trying
to find the optimal intervals.

Another thing we tried out was Breslow’s calibration method, with sim-
ulated data it seems like it works fine, but with the birth registry data the
standard deviation is really too small and the estimates are biased. There-
fore more research is needed in order to generalize the theory. Another thing
that perhaps could be useful is to base the regression used to predict the
partially observed covariate on T̃ , then the calibration wouldn’t depend on
some information being known for the entire cohort.

The last thing that could have been done is more testing with birth
registry data; we could have included more covariates, both fully and par-
tially observed and we could have included fully observed covariates in the
estimation of the weights.
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Appendix A

More simulation results

In chapter 3 we have only included simulation results when β = 0 and
β = 1 and just the results from the multiple endpoint models and not the
single endpoint models. In the simulations with two covariates we have only
included the results with Samuelsens weights from the weighted likelihood
models. Here are the results with one covariate when β = 0.3 and β = 0.6
and also the results when only the original controls are used. The last
tables are the results with two covariates with all the four different weighting
schemes included.
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Appendix B

Theoretical derivations

B.1 The full likelihood - how it looks like

The general expression for the full likelihood is

L(θ, µ) ∝
∏
i∈O

p(Ti, Ei|Zi,1:p, Xi; θ)p(Zi,1:p|Xi;µ)

×
∏
i∈C\O

∫
zi,1:q

∑
zi,(q+1):p

[p(Ti, Ei|zi,1:p, Xi; θ)p(Zi,1:p = zi,1:p|Xi;µ)dzi,1:q]

(B.1)

and the likelihood expression for (Ti, Ei) can be defined by the outcome
specific hazard

p(Ti, Ei|Zi, Xi; θ)

∝
K∏
k=1

[αk(Ti|Zi, Xi; θk)]1{Ei=k} exp

{
−
∫ Ti

0

K∑
k=1

αk(t|Zi, Xi; θk)dt

}
.

Put together this is

L(θ, µ) ∝
∏
i∈O

[
K∏
k=1

[αk(Ti|Zi,1:p, Xi; θk)]1{Ei=k}

exp

{
−
∫ Ti

0

K∑
k=1

αk(t|Zi,1:p, Xi; θk)dt

}
p(Zi,1:p|Xi;µ)

]

×
∏
i∈C\O

∫
zi,1:q

∑
zi,(q+1):p

[
K∏
k=1

[αk(Ti|Zi,1:p, Xi; θk)]1{Ei=k}

exp

{
−
∫ Ti

0

K∑
k=1

αk(t|Zi,1:p, Xi; θk)dt

}
p(Zi,1:p = zi,1:p|Xi;µ)dzi,1:q

]
(B.2)
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We assume that the survival times are Weibull distributed, which means
that the cause-specific hazard function is

αk(t|Zi, Xi; θk) = λνk
k νkt

νk−1 exp(γkZi + ηkXi)

we also need

A(t|Zi, Xi; θk) =
(λktk)νk

νk
exp(γkZi + ηkXi).

And at last we need to assume a probability distribution for the partially
observed covariate, her we assume that Z ∼ Bernoulli(µ), which means that

p(Zi|µ) = µZi(1− µ)1−Zi

One covariate

If Z ∼ Bin(1, µ), then the likelihood is

L(θ, µ) ∝
∏
i∈O

[
K∏
k=1

[
λνk
k νkt

νk−1 exp(γkZi)
]I(Ei=k)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi)

}
µZi(1− µ)1−Zi

]

×
∏
i∈C\O

[∑
zi

(
K∏
k=1

λνk
k νkt

νk−1 exp(γkzi)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi)

}
µzi(1− µ)1−zi

)]

Two independent covariates

The likelihood with two covariates, one known for the entire cohort and one
only known for the cases and the controls that is the same as above.

L(θ, µ) ∝
∏
i∈O

[
K∏
k=1

[
λνk
k νkt

νk−1 exp(γkZi + ηkXi)
]I(Ei=k)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi + ηkXi)

}
µZi(1− µ)1−Zi

]

×
∏
i∈C\O

[∑
zi

(
K∏
k=1

λνk
k νkt

νk−1 exp(γkzi + ηkXi)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi + ηkXi)

}
µzi(1− µ)1−zi

)]



B.2 Two phase variance 75

Two dependent covariates

Here the distribution of Z is dependent of X. p(Zi|Xi) = XZi
i (1−Xi)1−Zi ,

where X ∼ runif[0, 1] and known for the entire cohort, then the likelihood
expression is

L(θ, µ) ∝
∏
i∈O

[
K∏
k=1

[
λνk
k νkt

νk−1 exp(γkZi + ηkXi)
]I(Ei=k)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi + ηkXi)

}
XZi
i (1−Xi)1−Zi

]

×
∏
i∈C\O

[∑
zi

(
K∏
k=1

λνk
k νkt

νk−1 exp(γkzi + ηkXi)

× exp

{
K∑
k=1

−(λkt)νk exp(γkZi + ηkXi)

}
Xzi
i (1−Xi)1−zi

)]

B.2 Two phase variance

The variability of a two-phase design can be divided into two parts belonging
to each phase of the sampling design. This can be seen by looking at the
phase-two score function. First, the score for the phase one sampling is

U =
∑
Ei=1

{
Xi −

∑
j∈Ri

Xj exp(Xjβ)∑
j∈Ri

exp(Xjβ)

}

=
∑
Ei=1

{
Xi −

S(1)

S(0)

}

where

S(0) =
∑
j∈Ri

exp(Xjβ)

S(1) =
∑
j∈Ri

Xj exp(Xjβ)

Analogous to this the score function for phase-two data is

Ũ =
∑
Ei=1

{
Xi −

S̃(1)

S̃(0)

}
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where

S̃(0) =
∑
j∈Ri

Oj
πj

exp(Xjβ)

S̃(1) =
∑
j∈Ri

Oj
πj
Xj exp(Xjβ)

If we now write Ũ as

Ũ = U + (Ũ − U)

= U +
∑
Ei=1

(
Xi −

S̃(1)

S̃(0)

)
−
∑
Ei=1

(
Xi −

S(1)

S(0)

)

= U +
∑
Ei=1

(
S(1)

S(0)
− S̃(1)

S̃(0)

)

= U +
∑
Ei=1

(
S(1)

S(0)
− S̃(1)

S̃(0)
− S̃(1)

S(0)
+
S̃(1)

S(0)

)

= U +
∑
Ei=1

(
S(1)

S(0)
− S̃(1)S(0)

S̃(0)S(0)
− S̃(1)

S(0)
+
S̃(1)S̃(0)

S(0)S̃(0)

)

= U +
∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)(
Xj −

S̃(1)

S̃(0)

)
exp(Xjβ)
S(0)︸ ︷︷ ︸

Ṽj

= U +
∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Ṽj

= U +
∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj + op(1) (B.3)

where

Vj =
∑
Ei=1

∑
j∈Ri

(
Xj −

s(1)

s(0)

)
exp(Xjβ)
S(0)

and we assume that 1
nS

(0) → s(0) and 1
nS

(1) → s(1) where n is the cohort
size and s(0) and s(1) is non-random. We want to find the variance of the
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two main terms in (B.3)

Cov(U,
∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj)

= E

U ∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj

− E[U ]︸ ︷︷ ︸
0

E

∑
Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj


= E

E
U ∑

Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj

∣∣∣∣F


= E

U ∑
Ei=1

∑
j∈Ri

E

[(
1− Oj

πj

)
Vj

∣∣∣∣F]︸ ︷︷ ︸
0

 = 0

where F is the cohort history. This means that U and
∑

Ei=1

∑
j∈Ri

(
1− Oj

πj

)
Vj

are asymptotical uncorrelated and the variance is the sum of two components

Var(Ũ) = Σ + Γ.

Here Σ correspond to the phase one variance, and is also the usual score
variance when data for the complete cohort is known and Γ correspond to
the phase two sampling, and is the additional variance one get when all
covariates are known only for a sample of the cohort. This also means that
variance of the estimates can be divided into two parts. By 1.order Taylor
expansion β̃ ≈ Σ−1Ũ + β and

Var(β̃) ≈ Σ−1(Σ + Γ)Σ−1

= Σ−1 + Σ−1ΓΣ−1

B.3 Monte Carlo integration and importance sam-
pling

Monte Carlo integration

Assume we have

I =
∫
x
h(x)f(x)dx

where f(x) is a density then

I = Ef [h(x)]
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The Monte Carlo estimate is

I ≈ h̄M =
1
M

M∑
m=1

h(xm)

where xm ∼ f(x). By strong law of large numbers

h̄M→Ef [h(x)]

almost surely when M →∞.

Importance sampling

I =
∫
x
h(x)f(x)dx =

∫
x

h(x)f(x)
g(x)

g(x)dx

where g(x) is a density that should be similar to f(x). Then

I = Eg

[
h(x)f(x)
g(x)

]
= Eg[h(x)w(x)] ≈ 1

M

M∑
m=1

h(xm)w(xm)

where xm ∼ g(x). w(x) can thought of as a way of correcting for the fact
that xm is drawn from the wrong distribution.



Appendix C

Code

In order to minimize pages with code, I have removed ”unnecessary” things
like saving the results and generating tables. Also I have a lot of similar
code and only one of each have been included.

Simulation two correlated covariates

This is code from the simulation part, in particular the simulation with two
correlated covariates.

1 ###############################################################
2 ## ##
3 ##Simulat ion with two c o r r e l a t e d c o v a r i a t e s ##
4 ##x2 ˜ U[ 0 , 1 ] ##
5 ##x1 ˜ Bin (n , 1 , x2 ) ##
6 ##Two endpoints : One common(10%) , one rare (3%) ##
7 ##Analys i s both done on two s i n g l e endpoint models and on ##
8 ##one m u l t i p l e endpoint model ##
9 ##Exponent ia l s u r v i v a l t imes ##

10 ##Random censor ing : ##
11 ##C ˜ U[ 0 , 0 . 1 3 ] ##
12 ##Cohort s i z e : 1000 ##
13 ##Simual t ions done : 1000 ##
14 ## ##
15 ##Analys i s : ##
16 ##WPL: Weights : Samuelsen ’ s , l o g i s t i c , GAM, Chen , c a l i b r a t e d ##
17 ##Saare las l i k e l i h o o d ##
18 ## ##
19 ###############################################################
20

21 l ibrary ( s u r v i v a l )
22 l ibrary (gam)
23 l ibrary ( survey )
24

25 ##cohort s i z e
26 n = 1000
27 ##number o f s i m u l a t i o n s
28 ant = 1000
29 ##number o f c o n t r o l s
30 m = 1
31 ##s u r v i v a l time
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32 T = 1 : n
33 ##censor ing time
34 C = 1 : n
35

36 NCC i n f = 0
37 ant . tom . r i s ikomengde = 0
38 no case s1 = 0
39 no case s2 = 0
40

41 ##Drawing c o v a r i a t e s
42 x2 = runif (n , 0 , 1 )
43 x1 = rbinom(n , 1 , x2 )
44

45 for ( j in 1 : ant ) {
46 print ( j )
47 ind . nr = 1 : n
48 tom ris ikomengde = 0
49

50 status = array (0 ,dim=n)
51 ##Drawing event t imes from the e x p o n e n t i a l d i s t r i b u t i o n
52 ##and censor ing t imes from the uniform d i s t r i b u t i o n .
53 b1 = 0.515
54 b2 = 0.155
55 bb = 1
56 T1 = rexp (n , b1∗exp(bb∗ ( x1+x2 ) ) )
57 T2 = rexp (n , b2∗exp(bb∗ ( x1+x2 ) ) )
58

59 ##uniform censor ing
60 C = runif (n , 0 , 0 . 1 3 )
61

62 t e s t 1 = (T1 == pmin(T1 , T2 ,C) )
63 t e s t 2 = (T2 == pmin(T1 , T2 ,C) )
64 status [ which( t e s t 1==TRUE) ] = 1
65 status [ which( t e s t 2==TRUE) ] = 2
66 T = pmin(C, T1 , T2)
67 no case s1 [ j ] = sum( status==1)
68 no case s2 [ j ] = sum( status==2)
69

70 ##Cohort
71 cox cohort1 = coxph ( Surv (T, status==1)˜x1+x2 )
72 cox cohort2 = coxph ( Surv (T, status==2)˜x1+x2 )
73

74

75 ######################## NCC sampling ##########################
76 s e t t = 1 : n
77 ## f o r cases k which endpoint i t exper ience , f o r c o n t r o l s i t i s
78 ##which endpoint i t i s sampled f o r
79 k = ( 1 : n)∗0
80 cohortdata = data . frame ( ind . nr , x1 , x2 ,T, status , s e t t , k )
81 ca s e s1 = cohortdata [ ( cohortdata$status==1) , ]
82 ca s e s2 = cohortdata [ ( cohortdata$status==2) , ]
83 ca s e s = rbind ( cases1 , ca s e s2 )
84 NCCdata = data . frame ( )
85

86 ##The same number o f s e t s t h a t peop le who d i e s
87 s e t t = 1 : length ( cohortdata$status [ which( cohortdata$status != 0) ] )
88

89 d i s01 = 0
90 d i s10 = 0
91 for ( i in 1 : length ( s e t t ) ) {
92

93 ##Checks t h a t t h e r e are m i n d i v i d u a l s s t i l l a t r i s k
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94 under r i s i k o = dim( cohortdata [ which( cohortdata$T > ca s e s$T[ i ] ) , ] ) [ 1 ]
95

96 mm = min(m, under r i s i k o )
97 i f ( under r i s i k o > 0) {
98 R = sample ( cohortdata$ ind . nr [ cohortdata$T > ca s e s$T[ i ]
99 & cohortdata$ ind . nr != ca s e s$ ind . nr [ i ] ] , mm, replace=F)

100

101 ##S e t t i n g r i s k s e t and which endpoint the c o n t r o l i s sampled f o r
102 cohortdata [R[ 1 ] , 6 ] = i
103 cohortdata [R[ 1 ] , 7 ] = cohortdata$status [ c a s e s [ i , 1 ] ]
104

105 ##S e t t i n g r i s k s e t and endpoint f o r the case
106 cohortdata [ c a s e s [ i , 1 ] , 6 ] = i
107 cohortdata [ c a s e s [ i , 1 ] , 7 ] = cohortdata$status [ c a s e s [ i , 1 ] ]
108

109 NCCdata = rbind (NCCdata , cohortdata [ c a s e s [ i , 1 ] , ] ,
110 cohortdata [R[ 1 ] , ] )
111 ##Putt ing s t a t u s = 0 on c o n t r o l s in case a l a t e r case has been
112 ##sampled
113 NCCdata$status [ length (NCCdata$ ind . nr ) ] = 0
114 }
115 else {
116 ##S e t t i n g r i s k s e t and k f o r the case
117 cohortdata [ c a s e s [ i , 1 ] , 6 ] = i
118 cohortdata [ c a s e s [ i , 1 ] , 7 ] = cohortdata$status [ c a s e s [ i , 1 ] ]
119 NCCdata = rbind (NCCdata , cohortdata [ c a s e s [ i , 1 ] , ] )
120 ant . tom . r i s ikomengde = ant . tom . r i s ikomengde + 1
121 tom ris ikomengde = 1
122 }
123

124 ##check f o r d i scordant p a i r s
125 i f ( cohortdata$x1 [ ca s e s [ i , 1 ] ] == 0 && cohortdata$x1 [R[ 1 ] ] == 1 &&
126 cohortdata$status [ c a s e s [ i ,1 ] ]==2) {
127 d i s01 = di s01 + 1
128 }
129 i f ( cohortdata$x1 [ ca s e s [ i , 1 ] ] == 1 && cohortdata$x1 [R[ 1 ] ] == 0 &&
130 cohortdata$status [ c a s e s [ i ,1 ] ]==2) {
131 d i s10 = di s10 + 1
132 }
133 }
134 i f ( tom ris ikomengde == 0) {
135 cox NCC1 = coxph ( Surv (T, status==1)˜x1+x2+s t r a t a ( s e t t ) ,
136 subset=c (NCCdata$k==1) ,data=NCCdata)
137

138 ##check f o r d i scordant p a i r s
139 i f ( d i s01 == 0 | | d i s10 == 0) {
140 NCC i n f = NCC i n f + 1
141 }
142 else {
143 cox NCC2 = coxph ( Surv (T, status==2)˜x1+x2+s t r a t a ( s e t t ) ,
144 subset=c (NCCdata$k==2) ,data=NCCdata)
145 }
146 }
147

148 ################### p a r t i a l l i k e l i h o o d with IPW ################
149 cohortdata = cohortdata [ order ( cohortdata$T) , ]
150 cohortdata$brukt [ 1 : n ] = 0
151 cohortdata$brukt [ which( cohortdata$ ind . nr %in% NCCdata$ ind . nr ) ] = 1
152

153

154 ##SO
155 for ( k in 1 : n) {
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156 f a i l u r e t i m e s = cohortdata$T[ which( cohortdata$status != 0) ]
157 pk = 1
158 }
159

160 ##Finds the number i n d i v i d u a l s under r i s k
161 n f a i l = 1 : length ( f a i l u r e t i m e s )
162 for ( k in 1 : length ( f a i l u r e t i m e s ) ) {
163 n f a i l [ k ] = length ( cohortdata$T[ which( cohortdata$T >=
164 f a i l u r e t i m e s [ k ] ) ] )
165 }
166

167 psample = rep (0 , n )
168 qsample = (1−m/ ( n f a i l [1 ]−1) )
169 for ( k in ( 1 :sum( status != 0) ) ) i f ( n f a i l [ k ] > m) {
170 i f ( k > 1) {
171 qsample [ k ] = qsample [ k−1]∗(1−m/ ( n f a i l [ k ]−1) )
172 }
173 l l i m = n−n f a i l [ k]+1
174 psample [ l l i m : n ] = 1−qsample [ k ]
175 }
176 pso = psample
177

178 ##Cox−r e g r e s s i o n with SO−weigh t s
179 data=data . frame ( )
180 data=cbind ( ind . nr=rev (data$ ind . nr ) , x1=rev (data$x1 ) , x2=rev (data$x2 ) ,
181 T=rev (data$T) , status=rev (data$status ) , s e t t=rev (data$ s e t t ) ,
182 brukt=rev (data$brukt ) ,w=rev (data$w) )
183 data=as . data . frame (data )
184

185 w = array (0 ,dim=n)
186 w[ which( cohortdata$k != 0 & cohortdata$status == 0) ] =
187 pso [ which( cohortdata$k != 0 & cohortdata$status == 0) ]
188 w[ which( cohortdata$status != 0) ] = 1
189

190 ##Making the data t h a t only i n c l u d e s cases and c o n t r o l s
191 data=rbind (cbind ( cohortdata [ which(w != 0) , ] ,w = w[ which(w != 0) ] ) )
192 data=cbind ( ind . nr=rev (data$ ind . nr ) , x1=rev (data$x1 ) , x2=rev (data$x2 ) ,
193 T=rev (data$T) , status=rev (data$status ) , s e t t=rev (data$ s e t t ) ,
194 k=rev (data$k ) , brukt=rev (data$brukt ) ,w=rev (data$w) )
195 data=as . data . frame (data )
196

197 cox SO1 = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/w, data=data ,
198 robust=TRUE)
199 cox SO2 = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/w, data=data ,
200 robust=TRUE)
201 cox SO1 f c = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/w, data=data ,
202 subset=c (data$k==1) , robust=TRUE)
203 cox SO2 f c = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/w, data=data ,
204 subset=c (data$k==2) , robust=TRUE)
205

206 ##GAM
207 pgam = gam( brukt˜s (T) , family=binomial , data=cohortdata ,
208 subset=cohortdata$status==0)
209 pgam = pgam$f itted
210

211 data=data . frame ( )
212 w = array (0 ,dim=n)
213 w[ which( cohortdata$status==0) ] = pgam
214 w[ which( cohortdata$status != 0) ] = 1
215 w[ which( cohortdata$brukt == 0) ] = 0
216 wgam = w
217
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218 ##Making the data t h a t only i n c l u d e s cases and c o n t r o l s
219 data=rbind (cbind ( cohortdata [ which(w != 0) , ] ,w = w[ which(w != 0) ] ) )
220 data=cbind ( ind . nr=rev (data$ ind . nr ) , x1=rev (data$x1 ) , x2=rev (data$x2 ) ,
221 T=rev (data$T) , status=rev (data$status ) , s e t t=rev (data$ s e t t ) ,
222 k=rev (data$k ) , brukt=rev (data$brukt ) ,w=rev (data$w) )
223 data=as . data . frame (data )
224

225 cox gam1 = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w, data=data ,
226 robust=TRUE)
227 cox gam2 = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w, data=data ,
228 robust=TRUE)
229 cox gam1 f c = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w,
230 data=data , subset=c (data$k==1) , robust=TRUE)
231 cox gam2 f c = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w,
232 data=data , subset=c (data$k==2) , robust=TRUE)
233

234 ##l o g i s t i c
235 pglm = glm( brukt˜log (T) ,data=cohortdata , family=binomial ,
236 subset=cohortdata$status==0)
237 pglm = pglm$ f i t
238

239 data=data . frame ( )
240 w = array (0 ,dim=n)
241 w[ which( cohortdata$status==0) ] = pglm
242 w[ which( cohortdata$status != 0) ] = 1
243 w[ which( cohortdata$brukt == 0) ] = 0
244

245 data = rbind (cbind ( cohortdata [ cohortdata$brukt ==1 ,] ,
246 w = w[ cohortdata$brukt ==1]) )
247 data=cbind ( ind . nr=rev (data$ ind . nr ) , x1=rev (data$x1 ) , x2=rev (data$x2 ) ,
248 T=rev (data$T) , status=rev (data$status ) , s e t t=rev (data$ s e t t ) ,
249 k=rev (data$k ) , brukt=rev (data$brukt ) ,w=rev (data$w) )
250 data=as . data . frame (data )
251

252 cox glm1 = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w, data=data ,
253 robust=TRUE)
254 cox glm2 = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w, data=data ,
255 robust=TRUE)
256 cox glm1 f c = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w,
257 subset=c (data$k==1) ,data=data , robust=TRUE)
258 cox glm2 f c = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w,
259 subset=c (data$k==2) ,data=data , robust=TRUE)
260

261 ##Chen
262 pchen = 1:10
263 partT = seq (0 ,max( cohortdata$T) , length=11)
264 for ( i in 1 : ( length ( partT )−1) ) {
265 ne = sum( cohortdata$status == 0 & cohortdata$T >= partT [ i ] &
266 cohortdata$T <= partT [ i +1])
267 te = sum( cohortdata$status == 0 & cohortdata$brukt != 0 &
268 cohortdata$T >= partT [ i ] & cohortdata$T <= partT [ i +1])
269 pchen [ i ] = te/ne
270 }
271

272 data=data . frame ( )
273 ##c o n t r o l s
274 for ( i in 1 : 10 ) {
275 t e s t = cohortdata$ ind . nr [ ( cohortdata$T > partT [ i ]
276 & cohortdata$T <= partT [ i +1] & cohortdata$brukt ==1
277 & cohortdata$status == 0) ]
278 i f (sum( t e s t ) != 0) {
279 for ( k in 1 : length ( t e s t ) ) {
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280 w = pchen [ i ]
281 data = rbind (data , cbind ( cohortdata [ which( t e s t [ k]==
282 cohortdata$ ind . nr ) , ] ,w) )
283 }
284 }
285 }
286 #cases
287 for ( i in 1 :dim( cohortdata ) [ 1 ] ) {
288 i f ( cohortdata$status [ i ] != 0) {
289 w=1
290 data=rbind (data , cbind ( cohortdata [ i , ] ,w) )
291 }
292 }
293 cox chen1 = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w,
294 data=data , robust=TRUE)
295 cox chen2 = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w,
296 data=data , robust=TRUE)
297 cox chen1 f c = coxph ( Surv (T, status==1)˜x1+x2 , weights=1/data$w,
298 subset=c (data$k==1) ,data=data , robust=TRUE)
299 cox chen2 f c = coxph ( Surv (T, status==2)˜x1+x2 , weights=1/data$w,
300 subset=c (data$k==2) ,data=data , robust=TRUE)
301

302

303 ###################### f u l l l i k e l i h o o d #########################
304 kk = cohortdata$ ind . nr %in% NCCdata$ ind . nr
305

306 ##Z have va lue f o r a l l i n d i v i d u a l s , but are a c t u a l l y only known f o r
307 ##cases and c o n t r o l s
308 Z = cohortdata$x1
309 X = cohortdata$x2
310 t = cohortdata$T
311 status = cohortdata$status
312 k = as . numeric ( kk )
313

314 l i k = function ( para ) {
315 g1 = para [ 1 ]
316 g2 = para [ 2 ]
317 e1 = para [ 3 ]
318 e2 = para [ 4 ]
319 a1 = para [ 5 ]
320 a2 = para [ 6 ]
321 b1 = para [ 7 ]
322 b2 = para [ 8 ]
323 z=c ( 0 , 1 )
324 lO=1
325 l IO = 1
326 lO = log ( ( ( ( a1ˆb1 )∗b1∗ ( t ˆ( b1−1) )∗exp( g1∗Z+e1∗X) ) ˆ( I ( status == 1) )∗
327 ( ( a2ˆb2 )∗b2∗ ( t ˆ( b2−1) )∗exp( g2∗Z+e2∗X) ) ˆ( I ( status == 2) )∗
328 exp(−(a1∗t ) ˆb1∗exp( g1∗Z+e1∗X)−(a2∗t ) ˆb2∗exp( g2∗Z+e2∗X) )∗
329 XˆZ∗(1−X) ˆ(1−Z) ) ˆ( I ( kk != 0) ) )
330

331 l IO = log ( ( ( ( ( a1ˆb1 )∗b1∗ ( t ˆ( b1−1) )∗exp( e1∗X) ) ˆ( I ( status == 1) )∗
332 ( ( a2ˆb2 )∗b2∗ ( t ˆ( b2−1) )∗exp( e2∗X) ) ˆ( I ( status == 2) )∗
333 exp(−(a1∗t ) ˆb1∗exp( e1∗X)−(a2∗t ) ˆb2∗exp( e2∗X) )∗(1−X) )+
334 ( ( ( a1ˆb1 )∗b1∗ ( t ˆ( b1−1) )∗exp( g1+e1∗X) ) ˆ( I ( status == 1) )∗
335 ( ( a2ˆb2 )∗b2∗ ( t ˆ( b2−1) )∗exp( g2+e2∗X) ) ˆ( I ( status == 2) )∗
336 exp(−(a1∗t ) ˆb1∗exp( g1+e1∗X)−(a2∗t ) ˆb2∗exp( g2+e2∗X) )∗X) ) ˆ
337 ( I ( kk == 0) ) )
338

339 lO = sum( lO )
340 l IO = sum( lIO )
341 l=lO+lIO
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342 }
343

344 l i k 1 f c = function ( para ) {
345 g = para [ 1 ]
346 e = para [ 2 ]
347 a = para [ 3 ]
348 b = para [ 4 ]
349

350 lO = log ( ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( g∗Z+e∗X) ) ˆ( I ( status == 1) )∗
351 exp(−(a∗t ) ˆb∗exp( g∗Z+e∗X) )∗XˆZ∗(1−X) ˆ(1−Z) ) ˆ
352 ( I ( cohortdata$k == 1 & kk != 0) ) )
353

354 l IO = log ( ( ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( e∗X) ) ˆ( I ( status == 1) )∗
355 exp(−(a∗t ) ˆb∗exp( e∗X) )∗(1−X) )+
356 ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( g+e∗X) ) ˆ( I ( status == 1) )∗
357 exp(−(a∗t ) ˆb∗exp( g+e∗X) )∗X) ) ˆ( I ( kk == 0) ) )
358 lO = sum( lO )
359 l IO = sum( lIO )
360 l=lO+lIO
361 }
362

363 l i k 2 f c = function ( para ) {
364 g = para [ 1 ]
365 e = para [ 2 ]
366 a = para [ 3 ]
367 b = para [ 4 ]
368

369 lO = log ( ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( g∗Z+e∗X) ) ˆ( I ( status == 2) )∗
370 exp(−(a∗t ) ˆb∗exp( g∗Z+e∗X) )∗XˆZ∗(1−X) ˆ(1−Z) ) ˆ
371 ( I ( cohortdata$k == 2 & kk != 0) ) )
372

373 l IO = log ( ( ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( e∗X) ) ˆ( I ( status == 2) )∗
374 exp(−(a∗t ) ˆb∗exp( e∗X) )∗(1−X) )+
375 ( ( ( aˆb)∗b∗ ( t ˆ(b−1) )∗exp( g+e∗X) ) ˆ( I ( status == 2) )∗
376 exp(−(a∗t ) ˆb∗exp( g+e∗X) )∗X) ) ˆ( I ( kk == 0) ) )
377 lO = sum( lO )
378 l IO = sum( lIO )
379 l=lO+lIO
380 }
381

382 minus l ik = function ( para ) {
383 − l i k ( para )
384 }
385

386 minus l ik1 f c = function ( para ) {
387 − l i k 1 f c ( para )
388 }
389

390 minus l ik2 f c = function ( para ) {
391 − l i k 2 f c ( para )
392 }
393

394 opt = optim(c (bb , bb , bb , bb , b1 , b2 , 1 , 1 ) , minusl ik , he s s i an=T,
395 method = ”BFGS” )
396 opt1 f c = optim(c (bb , bb , b1 , 1 ) , minus l ik1 fc , h e s s i an=T,
397 method = ”BFGS” )
398 opt2 f c = optim(c (bb , bb , b2 , 1 ) , minus l ik2 fc , h e s s i an=T,
399 method = ”BFGS” )
400

401 i = solve ( opt$he s s i an )
402 i 1 f c = solve ( opt1 f c$he s s i an )
403 i 2 f c = solve ( opt2 f c$he s s i an )
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404

405

406 ########################### Breslow ############################
407 ##S t r a t i f y according to s t a t u s
408 s t r a t = ( 1 : n)∗0
409 s t r a t [ cohortdata$status==0] = 1
410 s t r a t [ cohortdata$status==1] = 2
411 s t r a t [ cohortdata$status==2] = 3
412 cohortdata$ s t r a t = s t r a t
413

414 in . sample = cohortdata$k !=0
415 cohortdata$ww = wgam
416

417 d s i n g l e = svydes ign ( id=˜ ind . nr , weights=˜ww, data=
418 subset ( cohortdata , in . sample ) )
419 dtwophs = twophase ( id=l i s t (˜ ind . nr , ˜ ind . nr ) , subset=˜ in . sample ,
420 data=cohortdata , s t r a t a=l i s t (˜ s t r a t , ˜ s t r a t ) )
421

422 ##P r e d i c t i n g the p a r t i a l l y known c o v a r i a t e
423 pred2 = svyglm ( x1˜x2 , weights=ww, des ign=dtwophs , family=quas ib inomia l ,
424 control=glm . control ( maxit=100) )
425 cohortdata$imp . x1 = predict ( pred2 , type=” response ” , newdata=
426 cohortdata , se=F)
427

428 ##Cox−r e g r e s s i o n with p r e d i c t e d v a l u e s
429 cox . imp1 = coxph ( Surv (T, status==1)˜imp . x1+x2 , data=cohortdata )
430 cox . imp2 = coxph ( Surv (T, status==2)˜imp . x1+x2 , data=cohortdata )
431

432 ##Obtaining d f b e t a s
433 imp . dfb1 = resid ( cox . imp1 , type=” dfbeta ” )+1
434 imp . dfb2 = resid ( cox . imp2 , type=” dfbeta ” )+1
435 colnames ( imp . dfb1 ) = paste ( ”imp . dfb1 ” , 1 : ncol ( imp . dfb1 ) , sep=”” )
436 colnames ( imp . dfb2 ) = paste ( ”imp . dfb2 ” , 1 : ncol ( imp . dfb1 ) , sep=”” )
437 cohortdata . imp = cbind ( cohortdata , imp . dfb1 , imp . dfb2 )
438 dtwophs . imp = twophase ( id=l i s t (˜ ind . nr , ˜ ind . nr ) , subset=˜ in . sample ,
439 data=cohortdata . imp , s t r a t a=l i s t (˜ s t r a t , ˜ s t r a t ) )
440

441 ##C a l i b r a t i o n
442 d c a l i b r 1 = c a l i b r a t e ( dtwophs . imp , phase =2, formula=
443 make . formula (colnames ( imp . dfb1 ) ) , c a l f un=” rak ing ” , eps =0.00001 ,
444 maxit =100 , f o r c e=TRUE)
445 d c a l i b r 2 = c a l i b r a t e ( dtwophs . imp , phase =2, formula=
446 make . formula (colnames ( imp . dfb2 ) ) , c a l f un=” rak ing ” , eps =0.00001 ,
447 maxit =100 , f o r c e=TRUE)
448

449 ##Cox−r e g r e s s i o n with c a l i b r a t e d we igh t s
450 c a l i b r 1 1 = svycoxph ( Surv (T, status==1)˜x1+x2 , des ign=d c a l i b r 1 )
451 c a l i b r 2 1 = svycoxph ( Surv (T, status==2)˜x1+x2 , des ign=d c a l i b r 2 )
452 }
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Birth registry data, one fully known numerical co-
variate and one partially known binary covariate

This code is from the data analysis part, the evaluation of the full likelihood
is done in C, see below.

1 ###############################################################
2 ## ##
3 ##Birth r e g i s t r y data : ##
4 ##x1 − g e s t a t i o n a l age in days , known f o r e n t i r e cohort ##
5 ##x2 ˜ b i r t h weight (0 i f bw < 3 kg , 1 i f bw > 3 kg ) ##
6 ##Two endpoints : Cancer and other deaths ##
7 ## ##
8 ##Simual t ions done : 200 ##
9 ## ##

10 ##Analys i s : ##
11 ##WPL: Weights : Samuelsen ’ s , GAM, c a l i b r a t e d ##
12 ##MLE: Saare las l i k e l i h o o d e v a l u a t e d in C ##
13 ## Scheike ( doesn ’ t work ) ##
14 ## ##
15 ###############################################################
16

17

18 l ibrary ( s u r v i v a l )
19 l ibrary ( survey )
20 l ibrary (gam)
21 l ibrary (nccMLE)
22

23 ant = 200
24

25 dyn . load ( ” l o g l i k mfr p rob i t g e s t . so ” )
26 l = 0
27 l o g l i k . p rob i t . g e s t = function ( status , t , z5 , z6 , opt i , k , l , n ) {
28 .C( ” l o g l i k mfr p rob i t g e s t ” , as . integer ( status ) , as . double ( t ) ,
29 as . integer ( z5 ) , as . integer ( z6 ) , as . double ( op t i ) , as . integer ( k ) ,
30 as . double ( l ) , as . integer (n) )
31 }
32

33 mfrdata = read . table ( ”MFRDOD. dat” , header=T)
34 mfrdata = mfrdata [ mfrdata$par i ==0,]
35 mfrdata = mfrdata [ mfrdata$par i !=9 9 , ]
36 mfrdata = mfrdata [ mfrdata$gest >100 ,]
37 mfrdata = mfrdata [ mfrdata$gest <315 ,]
38 mfrdata = mfrdata [ mfrdata$vekt >450 ,]
39 mfrdata = mfrdata [ mfrdata$ l e v e t i d >364 ,]
40 mfrdata = mfrdata [ mfrdata$gender ==1,]
41

42

43 vekt . ind = as . numeric ( I ( mfrdata$vekt >= 3000) )
44 mfrdata$vekt . ind = vekt . ind
45 ord . mfr = mfrdata [ order ( mfrdata$ l e v e t i d ) , ]
46

47 n = dim( ord . mfr ) [ 1 ]
48 ord . mfr$ s e t t = rep (0 , n )
49 ord . mfr$k = rep (0 , n )
50 ord . mfr$ ind . nr = 1 : n
51 m = 1
52

53 ca s e s = ord . mfr [ which( ord . mfr$DOD==1 & ord . mfr$ l e v e t i d <3650) , ]
54 k r e f t = ca s e s$Kreft
55 ca s e s . k r e f t = ca s e s [ k r e f t ==1,]
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56 ca s e s . andre = ca s e s [ k r e f t ==0,]
57 n . k r e f t = dim( ca s e s . k r e f t ) [ 1 ]
58 n . andre = dim( ca s e s . andre ) [ 1 ]
59 n . ca s e s = n . k r e f t+n . andre
60

61 ind . nr . c a s e s = ca s e s$ ind . nr
62 ind . nr . k r e f t = ca s e s$ ind . nr [ k r e f t ==1]
63 ind . nr . andre = ca s e s$ ind . nr [ k r e f t ==0]
64

65 ord . mfr$status = rep (0 , n )
66 ord . mfr$status [ which( ord . mfr$Kreft==1 & ord . mfr$ l e v e t i d < 3650) ] = 1
67 ord . mfr$status [ which( ord . mfr$DOD == 1 &
68 ord . mfr$Kreft==0 & ord . mfr$ l e v e t i d < 3650) ] = 2
69

70 c o x f i t 1=coxph ( Surv ( l e v e t i d , status==1)˜ge s t+vekt . ind , data=ord . mfr )
71 c o x f i t 2=coxph ( Surv ( l e v e t i d , status==2)˜ge s t+vekt . ind , data=ord . mfr )
72

73 sur1=survreg ( Surv ( ( l e v e t i d −364) , status==1)˜ge s t+vekt . ind ,
74 control=l i s t ( maxiter =50) ,data=ord . mfr )
75 sur2=survreg ( Surv ( ( l e v e t i d −364) , status==2)˜ge s t+vekt . ind ,
76 control=l i s t ( maxiter =50) ,data=ord . mfr )
77

78 ##Have the same number o f r i s k s e t s t h a t the number o f i n d i v i d u a l s
79 ##t h a t d i e s
80 s e t t = 1 : n . c a s e s
81 for ( j in 1 : ant ) {
82 print (date ( ) )
83 print ( j )
84 NCCdata = data . frame ( )
85

86 ##Samples c o n t r o l s f o r cancer endpoint f i r s t
87 for ( i in 1 : n . k r e f t ) {
88 R = sample ( ( ord . mfr$ ind . nr [ ind . nr . k r e f t [ i ] ]+1) : n ,m, replace=F)
89 NCCdata = rbind (NCCdata , ord . mfr [ c a s e s . k r e f t $ ind . nr [ i ] , ] ,
90 ord . mfr [R[ 1 :m] , ] )
91 }
92

93 ##Then sampling o f c o n t r o l s f o r o ther endpoint
94 for ( i in 1 : n . andre ) {
95 R = sample ( ( ord . mfr$ ind . nr [ ind . nr . andre [ i ] ]+1) : n ,m, replace=F)
96 NCCdata = rbind (NCCdata , ord . mfr [ c a s e s . andre$ ind . nr [ i ] , ] ,
97 ord . mfr [R[ 1 :m] , ] )
98 }
99

100 a k r e f t = rep ( (m+1) ,n . k r e f t )
101 aandre = rep ( (m+1) ,n . andre )
102 s e t t k r e f t = rep ( 1 : n . k r e f t , a k r e f t )
103 s e t tandre = rep ( 1 : n . andre , aandre )
104 s e t t = c ( s e t t k r e f t , s e t tandre )
105 NCCdata$ s e t t = s e t t
106

107 k k r e f t = rep ( 1 , ( n . k r e f t )∗ (m+1) )
108 kandre = rep ( 2 , ( n . andre )∗ (m+1) )
109 k = c ( kkre f t , kandre )
110 NCCdata$k=k
111 ord . mfr$k=rep (0 , n )
112 ord . mfr$k [ NCCdata$ ind . nr ] = NCCdata$k
113 ord . mfr$ s e t t [ NCCdata$ ind . nr ] = NCCdata$ s e t t
114

115 cox .NCC1 = coxph ( Surv ( l e v e t i d , status==1)˜ge s t+vekt . ind+s t r a t a ( s e t t ) ,
116 subset=c (NCCdata$k==1) ,data=NCCdata)
117 cox .NCC2 = coxph ( Surv ( l e v e t i d , status==2)˜ge s t+vekt . ind+s t r a t a ( s e t t ) ,
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118 subset=c (NCCdata$k==2) ,data=NCCdata)
119

120

121 ############################ IPW #############################
122 ##SO−v e k t e r
123 f a i l u r e t i m e s = ca s e s$ l e v e t i d
124

125 ##Finds the number i n d i v i d u a l s at r i s k
126 n f a i l = 1 : length ( f a i l u r e t i m e s )
127 for ( k in 1 : length ( f a i l u r e t i m e s ) ) {
128 n f a i l [ k ] = length ( ord . mfr$ l e v e t i d [ which( ord . mfr$ l e v e t i d >=
129 f a i l u r e t i m e s [ k ] ) ] )
130 }
131

132 psample = rep (0 , n )
133 qsample = (1−m/ ( n f a i l [1 ]−1) )
134 for ( k in 1 : n . c a s e s ) i f ( n f a i l [ k ] > m) {
135 i f ( k > 1) {
136 qsample [ k ] = qsample [ k−1]∗(1−m/ ( n f a i l [ k ]−1) )
137 }
138 l l i m = n−n f a i l [ k]+1
139 psample [ l l i m : n ] = 1−qsample [ k ]
140 }
141 pso = psample
142

143 ##Cox−r e g r e s s i o n with SO−weigh t s
144 data=data . frame ( )
145 w = array (0 ,dim=n)
146 w[ which( ord . mfr$k != 0 & ord . mfr$status == 0) ] =
147 pso [ which( ord . mfr$k != 0 & ord . mfr$status == 0) ]
148 w[ which( ord . mfr$status != 0) ] = 1
149

150 ##Making the data t h a t i n c l u d e s cases and c o n t r o l s
151 data=rbind (cbind ( ord . mfr [ which(w != 0) , ] ,w = w[ which(w != 0) ] ) )
152 data=cbind ( ind . nr=rev (data$ ind . nr ) , vekt . ind=rev (data$vekt . ind ) ,
153 ge s t=rev (data$ge s t ) , l e v e t i d=rev (data$ l e v e t i d ) , status=
154 rev (data$status ) , s e t t=rev (data$ s e t t ) ,w=rev (data$w) )
155 data = data . frame (data )
156

157 cox . SO1 = coxph ( Surv ( l e v e t i d , status==1)˜ge s t+data$vekt . ind ,
158 weights=1/w, data=data , robust=TRUE)
159 cox . SO2 = coxph ( Surv ( l e v e t i d , status==2)˜ge s t+data$vekt . ind ,
160 weights=1/w, data=data , robust=TRUE)
161

162 beta . SO1 [ j , ] = cox . SO1$coef
163 beta . SO2 [ j , ] = cox . SO2$coef
164 se . robust . SO1 [ j , ] = sqrt ( diag ( cox . SO1$var ) )
165 se . robust . SO2 [ j , ] = sqrt ( diag ( cox . SO2$var ) )
166

167 ##GAM
168 ord . mfr$brukt [ 1 : n ] = 0
169 ord . mfr$brukt [ which( ord . mfr$ ind . nr %in% NCCdata$ ind . nr ) ] = 1
170 pgam = gam( brukt˜s ( l e v e t i d ) , family=binomial , data=ord . mfr ,
171 subset=ord . mfr$status==0)
172

173 pgam = pgam$f itted
174

175 data=data . frame ( )
176 w = array (0 ,dim=n)
177 w[ which( ord . mfr$status==0) ] = pgam
178 w[ which( ord . mfr$status != 0) ] = 1
179 w[ which( ord . mfr$brukt == 0) ] = 0
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180

181

182 ##Making the data t h a t only i n c l u d e s cases and c o n t r o l s
183 data=rbind (cbind ( ord . mfr [ which(w != 0) , ] ,w = w[ which(w != 0) ] ) )
184 data=cbind ( ind . nr=rev (data$ ind . nr ) , vekt . ind=rev (data$vekt . ind ) ,
185 ge s t=rev (data$ge s t ) , l e v e t i d=rev (data$ l e v e t i d ) , status=
186 rev (data$status ) , s e t t=rev (data$ s e t t ) ,w=rev (data$w) )
187 data = data . frame (data )
188

189 cox . gam1 = coxph ( Surv ( l e v e t i d , status==1)˜ge s t+data$vekt . ind ,
190 weights=1/w, data=data , robust=TRUE)
191 cox . gam2 = coxph ( Surv ( l e v e t i d , status==2)˜ge s t+data$vekt . ind ,
192 weights=1/w, data=data , robust=TRUE)
193

194

195 ######################## C a l i b r a t i o n #########################
196 ##Breslow
197 s t r a t = ( 1 : n)∗0
198 s t r a t [ ord . mfr$status==0] = 1
199 s t r a t [ ord . mfr$status==1] = 2
200 s t r a t [ ord . mfr$status==2] = 3
201 ord . mfr$ s t r a t = s t r a t
202 in . sample = ord . mfr$k !=0
203

204 ##using gam−weigh t s
205 ord . mfr$ww = w
206 d s i n g l e = svydes ign ( id=˜ ind . nr , weights=˜ww, data=subset
207 ( ord . mfr , in . sample ) )
208 dtwophs = twophase ( id=l i s t (˜ ind . nr , ˜ ind . nr ) , subset=˜ in . sample ,
209 data=ord . mfr , s t r a t a=l i s t (˜ s t r a t , ˜ s t r a t ) )
210

211 pred2 = svyglm ( vekt . ind˜gest , weights=ww, des ign=dtwophs , family=
212 quas ib inomia l , control=glm . control ( maxit=100) )
213 ord . mfr$imp . ind . vekt = predict ( pred2 , type=” response ” , newdata=ord . mfr ,
214 se=F)
215

216 cox . imp1 = coxph ( Surv ( l e v e t i d , status==1)˜imp . ind . vekt+gest ,
217 data=ord . mfr )
218 cox . imp2 = coxph ( Surv ( l e v e t i d , status==2)˜imp . ind . vekt+gest ,
219 data=ord . mfr )
220 imp . dfb1 = resid ( cox . imp1 , type=” dfbeta ” )+1
221 imp . dfb2 = resid ( cox . imp2 , type=” dfbeta ” )+1
222 colnames ( imp . dfb1 ) = paste ( ”imp . dfb1 ” , 1 : ncol ( imp . dfb1 ) , sep=”” )
223 colnames ( imp . dfb2 ) = paste ( ”imp . dfb2 ” , 1 : ncol ( imp . dfb1 ) , sep=”” )
224

225 ord . mfr . imp = cbind ( ord . mfr , imp . dfb1 , imp . dfb2 )
226 dtwophs . imp = twophase ( id=l i s t (˜ ind . nr , ˜ ind . nr ) , subset=˜ in . sample ,
227 data=ord . mfr . imp , s t r a t a=l i s t (˜ s t r a t , ˜ s t r a t ) )
228

229 d c a l i b r 1 = c a l i b r a t e ( dtwophs . imp , phase =2, formula=make . formula
230 (colnames ( imp . dfb1 ) ) , c a l f un=” rak ing ” , eps =0.00001 , maxit=100)
231 d c a l i b r 2 = c a l i b r a t e ( dtwophs . imp , phase =2, formula=make . formula
232 (colnames ( imp . dfb2 ) ) , c a l f un=” rak ing ” , eps =0.00001 , maxit=100)
233

234 c a l i b r 1 1 = svycoxph ( Surv ( l e v e t i d , status==1)˜vekt . ind+gest ,
235 des ign=d c a l i b r 1 )
236 c a l i b r 2 1 = svycoxph ( Surv ( l e v e t i d , status==2)˜vekt . ind+gest ,
237 des ign=d c a l i b r 2 )
238

239

240

241
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242 ############################ MLE #############################
243 ##Scheike
244 #u te n f or = ord . mfr$ l e v e t i d [ ord . mfr$k==0]
245 #nno = l e n g t h ( u t e n f o r )
246

247 #s t a t u s 2 = I ( ord . mfr$ s t a t u s ==1)
248 #em1 = em. ncc ( cbind ( ord . mfr$ v e k t . ind [ ord . mfr$k !=0 ] ,
249 # ord . mfr$ g e s t [ ord . mfr$k !=0 ] ) , ord . mfr$ l e v e t i d [ ord . mfr$k !=0 ] ,
250 # sta tus2 , utenfor , nno , emvar=1, Nit = 100)
251 #s t a t u s 2 = I ( ord . mfr$ s t a t u s ==2)
252 #em2 = em. ncc ( cbind ( ord . mfr$ v e k t . ind [ ord . mfr$k !=0 ] ,
253 # ord . mfr$ g e s t [ ord . mfr$k !=0 ] ) , ord . mfr$ l e v e t i d [ ord . mfr$k !=0 ] ,
254 # sta tus2 , utenfor , nno , emvar=1, Nit = 100)
255

256

257 ##Saare la
258 status = ord . mfr$status
259 t = ord . mfr$ l e v e t i d −364
260 z5 = ord . mfr$ge s t
261 z6 = ord . mfr$vekt . ind
262 k = ord . mfr$k
263 convergence=0∗ ( 1 : ant )
264

265 wrapper = function ( para ) {
266 l=l o g l i k . p rob i t . g e s t ( status , t , z5 , z6 , para , k , 0 , n )
267 l l=as . double ( l [ 7 ] )
268 l l = − l l
269 }
270

271 s . a1 = exp(− sur1$coef [ 1 ] )
272 s . b1 = 1/ sur1$scale
273 s . a2 = exp(− sur2$coef [ 1 ] )
274 s . b2 = 1/ sur2$scale
275

276 prob i t = glm( vekt . ind˜gest , family=binomial ( l ink=” prob i t ” ) ,
277 data=ord . mfr )
278

279 s c a l e 1 = summary( sur1 )$scale
280 s c a l e 2 = summary( sur2 )$scale
281

282 start . par = c ( sur1$coef [ 2 ] /−s ca l e1 , sur2$coef [ 2 ] /−s ca l e2 ,
283 sur1$coef [ 3 ] /−s ca l e1 , sur2$coef [ 3 ] /−s ca l e2 , log ( s . a1 ) ,
284 log ( s . a2 ) , log ( s . b1 ) , log ( s . b2 ) , p rob i t$coef [ 1 ] ,
285 prob i t$coef [ 2 ] )
286

287 opt = optim( start . par , wrapper , he s s i an=T, method = ”BFGS” , control=
288 l i s t ( r e l t o l =10ˆ(−15) ) )
289 convergence [ j ] = opt$conv
290 }
291

292 k = rep (1 , n )
293 opt . f u l l = optim( start . par , wrapper , he s s i an=T, method=”BFGS” ,
294 control=l i s t ( r e l t o l =10ˆ(−15) ) )
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C-code for likelihood function

This is the likelihood function for the full likelihood called from the R-code
above.

1 #include <R. h>
2 #include <Rmath . h>
3 /∗ equa l s func . ∗/
4 int I ( int f , int a ) {
5 i f ( f == a )
6 return 1 ;
7 else
8 return 0 ;
9 }

10 /∗unequals func . ∗/
11 int i I ( int f , int a ) {
12 i f ( f != a )
13 return 1 ;
14 else
15 return 0 ;
16 }
17

18 double A1(double a , double b , double t ) {
19 return pow( a∗t , b ) ;
20 }
21

22 /∗Weibull b a s e l i n e ∗/
23 double b a s e l i n e 1 (double a , double b , double t ) {
24 return pow(a , b)∗b∗pow( t , b−1) ;
25 }
26

27 double r r ( int Z5 , int Z6 , double g5 , double g6 ) {
28 return exp ( g5∗Z5+g6∗Z6) ;
29 }
30

31 double prob i t ( int Z5 , double beta0 , double beta1 ) {
32 double mu = 0 ;
33 double sigma = 1 ;
34

35 int g ive l og = 0 ;
36 int lower t a i l = 1 ;
37 return (pnorm( beta0+Z5∗beta1 ,mu, sigma , lower t a i l , g ive l og ) ) ;
38 }
39

40

41 /∗ l i k e l i h o o d ∗/
42 double l i k mfr p rob i t g e s t ( int ∗ s tatus , double ∗t , int ∗Z5 , int ∗Z6 ,
43 double ∗para , int ∗kk , int ∗nn) {
44 double g15 = para [ 0 ] ;
45 double g25 = para [ 1 ] ;
46 double g16 = para [ 2 ] ;
47 double g26 = para [ 3 ] ;
48 double a1 = exp ( para [ 4 ] ) ;
49 double a2 = exp ( para [ 5 ] ) ;
50 double b1 = exp ( para [ 6 ] ) ;
51 double b2 = exp ( para [ 7 ] ) ;
52 double beta0 = para [ 8 ] ;
53 double beta1 = para [ 9 ] ;
54 int n = nn [ 0 ] ;
55 double lO [ n ] ;
56 double l IO [ n ] ;
57 double L = 0 ;
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58

59

60 for ( int i = 0 ; i <n ; i++) {
61 /∗Contr ibut ion from cas e s or c o n t r o l s ∗/
62 lO [ i ] = log (pow(pow( b a s e l i n e 1 ( a1 , b1 , t [ i ] ) ∗ r r (Z5 [ i ] , Z6 [ i ] , g15 , g16 ) ,
63 I ( s t a t u s [ i ] , 1 ) )∗
64 pow( b a s e l i n e 1 ( a2 , b2 , t [ i ] ) ∗ r r (Z5 [ i ] , Z6 [ i ] , g25 , g26 ) ,
65 I ( s t a t u s [ i ] , 2 ) )∗exp(−A1( a1 , b1 , t [ i ] ) ∗
66 r r (Z5 [ i ] , Z6 [ i ] , g15 , g16 )−A1( a2 , b2 , t [ i ] ) ∗
67 r r (Z5 [ i ] , Z6 [ i ] , g25 , g26 ) )∗
68 pow( prob i t (Z5 [ i ] , beta0 , beta1 ) ,Z6 [ i ] ) ∗
69 pow(1−prob i t (Z5 [ i ] , beta0 , beta1 ) ,1−Z6 [ i ] ) , i I ( kk [ i ] , 0 ) ) ) ;
70

71 /∗Contr ibut ion from i n d i v i d u a l s ou t s id e the subcohort∗/
72 l IO [ i ] = log (pow ( ( exp(−A1( a1 , b1 , t [ i ] ) ∗ r r (Z5 [ i ] , 0 , g15 , g16 )−
73 A1( a2 , b2 , t [ i ] ) ∗ r r (Z5 [ i ] , 0 , g25 , g26 ) )∗
74 (1−prob i t (Z5 [ i ] , beta0 , beta1 ) ) )+
75 ( exp(−A1( a1 , b1 , t [ i ] ) ∗ r r (Z5 [ i ] , 1 , g15 , g16 )−
76 A1( a2 , b2 , t [ i ] ) ∗ r r (Z5 [ i ] , 1 , g25 , g26 ) )∗
77 prob i t (Z5 [ i ] , beta0 , beta1 ) ) , I ( kk [ i ] , 0 ) ) ) ;
78 L = L+lO [ i ]+ lIO [ i ] ;
79 }
80 return L ;
81 }
82

83 /∗ s t a t u s − ind . s t a t u s
84 t − s u r v i v a l time
85 Z5 − g e s t a t i o n a l age in days
86 Z6 − weight at time o f b i r t 0 i f weight < 3kg , 1 i f weight >= 3kg
87 para − l i k e l i h o o d parameters
88 k − i n d i c a t o r i n d i c a t i n g whether or not Z1 i s observed
89 l l − l i k e l i h o o d value , should be 0 when the func t i on i s c a l l e d
90 ∗/
91 void l o g l i k mfr p rob i t g e s t ( int ∗ s tatus , double ∗t , int ∗Z5 , int ∗Z6 ,
92 double ∗para , int ∗k , double ∗ l l , int ∗n) {
93 l l [ 0 ] = l i k mfr p rob i t g e s t ( s tatus , t , Z5 , Z6 , para , k , n) ;
94 }

C-code for likelihood function with Monte Carlo
approximation

1 #include <R. h>
2 #include <Rmath . h>
3 /∗ equa l s func . ∗/
4 int I ( int f , int a ) {
5 i f ( f == a )
6 return 1 ;
7 else
8 return 0 ;
9 }

10 /∗unequals func . ∗/
11 int i I ( int f , int a ) {
12 i f ( f != a )
13 return 1 ;
14 else
15 return 0 ;
16 }
17
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18 double cor (double Z , double mu, double sigma , double mu0,
19 double sigma0 ) {
20 return (dnorm(Z ,mu, sigma , 0 ) /dnorm(Z , mu0 , sigma0 , 0 ) ) ;
21 }
22 /∗ l i k e l i h o o d with one p a r t i a l l y observed c o v a r i a t ∗/
23 double l i k mfr crude MC( int ∗ s tatus , double ∗t , double ∗Z ,
24 double ∗zsamp , double ∗para , int ∗kk , int ∗nn , double ∗mu00 ,
25 double ∗sigma00 ) {
26 double g1 = para [ 0 ] ;
27 double g2 = para [ 1 ] ;
28 double a1 = exp ( para [ 2 ] ) ;
29 double a2 = exp ( para [ 3 ] ) ;
30 double b1 = exp ( para [ 4 ] ) ;
31 double b2 = exp ( para [ 5 ] ) ;
32 double mu = para [ 6 ] ;
33 double sigma = exp ( para [ 7 ] ) ;
34 double mu0 = mu00 [ 0 ] ;
35 double sigma0 = sigma00 [ 0 ] ;
36 int n = nn [ 0 ] ;
37 double lO [ n ] ;
38 double l IO [ n ] ;
39 double L = 0 ;
40 int t e l l e r = 0 ;
41 double l i o = 0 ;
42 for ( int i = 0 ; i <n ; i++) {
43 i f ( kk [ i ] != 0) {
44 /∗Contr ibut ion from cas e s or c o n t r o l s ∗/
45 lO [ i ] = log (pow ( ( ( pow( a1 , b1 ) )∗b1∗ (pow( t [ i ] , ( b1−1) ) )∗
46 exp ( g1∗Z [ i ] ) ) , ( I ( s t a t u s [ i ] , 1 ) ) )∗pow ( ( ( pow( a2 , b2 ) )∗b2∗
47 (pow( t [ i ] , ( b2−1) ) )∗exp ( g2∗Z [ i ] ) ) , ( I ( s t a t u s [ i ] , 2 ) ) )∗
48 exp(−pow ( ( a1∗ t [ i ] ) , b1 )∗exp ( g1∗Z [ i ] )−pow ( ( a2∗ t [ i ] ) , b2 )∗
49 exp ( g2∗Z [ i ] ) )∗dnorm(Z [ i ] ,mu, sigma , 0 ) ) ;
50 L = L + lO [ i ] ;
51 }
52 else {
53 /∗Contr ibut ion from i n d i v i d u a l s ou t s id e the subcohort∗/
54 for ( int j = 0 ; j < 100 ; j++) {
55 l i o = l i o + log ( ( exp(−pow ( ( a1∗ t [ i ] ) , b1 )∗exp ( zsamp [ t e l l e r ] ∗g1 )−
56 pow ( ( a2∗ t [ i ] ) , b2 )∗exp ( zsamp [ t e l l e r ] ∗g2 ) ) )∗
57 cor ( zsamp [ t e l l e r ] ,mu, sigma , mu0 , sigma0 ) ) ;
58 t e l l e r = t e l l e r + 1 ;
59 }
60 l IO [ i ] = l i o /100 ;
61 l i o = 0 ;
62 L = L+lIO [ i ] ;
63 }
64 }
65 return L ;
66 }
67 /∗ s t a t u s − ind . s t a t u s
68 t − s u r v i v a l time
69 Z6 − weight at time o f b i r t
70 para − l i k e l i h o o d parameters
71 k − i n d i c a t o r i n d i c a t i n g whether or not Z1 i s observed
72 l l − l i k e l i h o o d value , should be 0 when the func t i on i s c a l l e d
73 ∗/
74 void l o g l i k mfr crude MC( int ∗ s tatus , double ∗t , double ∗Z6 ,
75 double ∗zsamp , double ∗para , int ∗k ,
76 double ∗ l l , int ∗n , double ∗mu,
77 double ∗sigma ) {
78 l l [ 0 ] = l i k mfr crude MC( status , t , Z6 , zsamp , para , k , n ,mu, sigma ) ;
79 }



Bibliography

[1] O. O. Aalen, Ø. Borgan, and H. K. Gjessing. Survival and Event History
Analysis. Statistics for Biology and Health. Springer, first edition, 2008.

[2] W. E. Barlow. Robust variance estimation for the case-cohort design.
Biometrics, 50(4):1064–1072, Dec 1994.

[3] Ø. Borgan, B. Langholz, S. O. Samuelsen, L. Goldstein, and J. Pogoda.
Exposure stratified case-cohort designs. Lifetime Data Analysis, 6:39–
58, Mar 2000.

[4] N. E. Breslow, T. Lumley, C. M. Ballantyne, L. E. Chambless, and
M. Kulich. Improved horvitz-thompson estimation of model parameters
for two-phase stratified samples: Applications in epidemiology. Stat.
Biosci, 1(1):32–49, May 2009.

[5] N. E. Breslow, T. Lumley, C. M. Ballantyne, L. E. Chambless, and
M. Kulich. Using the whole cohort in the analysis of case-cohort data.
American Journal of Epidemiology, 169(11):1398–1405, Feb 2009.

[6] K. N. Chen. Generalized case-cohort sampling. J. Roy. Staist. Soc. Ser.
B, 63(4):791–809, 2001.

[7] D. R. Cox. Regression models and life tables. J. R. Statist. Soc B,
34(2):187–220, 1972.

[8] D. R. Cox. Partial likelihood. Biometrika, 62(2):269–276, 1975.

[9] D.R. Cox and D. Oakes. Analysis of Survival Data. Monographs on
Statistics and Applied Probability. Chapman and Hall, first edition,
1984.

[10] J. C. Deville, C. E. Sarndal, and O. Sautory. Generalized raking pro-
cedures in survey sampling. Journal of the American Statistical Asso-
ciation, 88(423):1013–1020, 1993.

[11] J. C Deville and C. E. Särndal. Calibration estimators in survey sam-
pling. Journal of the american statistical association, 87(418):376–382,
Jun 1992.



96 BIBLIOGRAPHY

[12] J. D. Kalbfleisch and J.F. Lawless. Likelihood analysis of multi-state
models for disease incidence and mortality. Statistics in Medicine, 7(1-
2):149–160, Jan-Feb 1988.

[13] S. Kulathinal and E. Arjas. Bayesian inference from case-cohort data
with multiple end-points. Scandinavian Journal of Statistics, 33(1):25–
33, Jan 2006.

[14] B. Langholz and Ø. Borgan. Counter-matching: A stratified nested
case-control sampling method. Biometrika, 82(1):69–79, Mar 1995.

[15] D. Y. Lin M. Kulich. Improving the efficiency of relative-risk estimation
in case-cohort studies. Journal of the american statistical association,
99(467):832–844, Sep 2004.

[16] R. L. Prentice. A case-cohort design for epidemiologic cohort studies
and disease prevention trials. Biometrika, 42(1):1–11, Apr 1986.

[17] R Development Core Team. R: A Language and Environment for Sta-
tistical Computing. R Foundation for Statistical Computing, Vienna,
Austria, 2007. ISBN 3-900051-07-0.

[18] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer
Texts in Statistics. Springer, second edition, 2004.

[19] O. Saarela, A. Kulathinal, E. Arjas, and E. Läärä. Nested case-control
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