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A B S T R A C T

Environmental contours are tools frequently used in the early design of marine structures. They provide a
description of critical design conditions and serve as a means for simplifying expensive long-term response
calculations. Here, we consider convex contours based on the assumption of convex failure sets. We provide a
rigorous foundation for the existence of such contours when the underlying environmental factors are modelled
by a general, possibly non-stationary, process. This constitutes a generalisation of existing theory and is done
to properly account for empirically observed increases in extreme sea-states.

Two definitions are proposed, based respectively on averages or quantiles of exceedence times, along with
minimal conditions on the environmental processes to guarantee existence. In order to illustrate these methods
we give two examples, including an empirical study containing a method for constructing contours based on
the presented theory.
1. Introduction

Environmental contours are tools frequently used in the early design
of marine structures. They provide a description of critical environ-
mental conditions that may serve as a basis for structural design.
Furthermore, they may be utilised to reduce the number of compu-
tationally expensive response calculations needed for the analysis of
reliability. As a result, environmental contours are applied to analyse
a wide variety of marine structures (Baarholm et al., 2010; Fontaine
et al., 2013; Giske et al., 2018; Vanem and Bitner-Gregersen, 2012),
and several methods for the construction of contours are mentioned in
the recommended practices - environmental conditions and environmental
loads document by Det Norske Veritas (Veritas, 2019).

A large variety of methods for constructing environmental contours
exist, for a summary and comparison of different techniques we refer
to Haselsteiner et al. (2021) and Ross et al. (2020). A common thread
through many of these methods is the modelling of environmental
conditions, 𝑉 , as a piecewise constant process with independent and
identically distributed values in each interval. The length of this in-
terval, 𝛥𝑡, varies depending on the application, but 𝛥𝑡 = 3 hours is
a common choice. The values of 𝑉 usually represent some summary
statistics of the wave elevation, or other relevant environmental factors,
over the period. 𝑉 then represents the long-term variations of the
environmental conditions. The short-term variations, i.e. the variation
of instantaneous conditions within the period, is usually ignored in the
construction of these contours.

E-mail address: aasmunhs@math.uio.no.

These contours are also constructed to satisfy certain exceedence
probabilities. These properties can usually be formulated by requiring
that the probability of 𝑉 hitting a failure set  , not intersecting with
the contour 𝜕, has at most a given probability 𝑝𝑒 of occurring in
each interval. Due to the independence between different intervals,
this assumption also implies restrictions on the time to failure 𝜏 =
inf{𝑡 ∶ 𝑉 (𝑡) ∈ }. Specifically, we have that the return period E[𝜏 ] is
bounded from below by 𝛥𝑡∕𝑝𝑒. Note that these exceedence properties
are effectively defined under the assumption that failure depends only
on 𝑉 , thereby ignoring the short-term variation of the response.

Arguably, the most popular construction of environmental contours
is the inverse first order reliability method (IFORM) developed in Win-
terstein et al. (1993), Haver and Winterstein (2008). This method first
establishes a joint cumulative distribution function of the sea-states. All
failure sets are implicitly assumed to be convex under the Rosenblatt
transformation (Rosenblatt, 1952) corresponding to this joint cumu-
lative distribution function. The contour can then be constructed as
a sphere in the transformed space. Consequently, the contour in the
original space can be constructed by applying the inverse Rosenblatt
transformation to this sphere.

As an alternative, in Huseby et al. (2013, 2015), the authors de-
velop a definition of convex environmental contours by assuming the
failure set to be convex in the original space. This approach has
several advantages, such as the easy inclusion of omission factors and
a more amenable interpretation of the convexity assumption compared
to IFORM. Several improvements and possible modifications to this
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method have been made in the literature. In Dahl and Huseby (2018)
the concept of buffered contours is introduced and Huseby et al. (2021)
considers omission factors and convexity. Several different ways of con-
structing these contours are also discussed in e.g. Hafver et al. (2022),
Huseby et al. (2021), Vanem (2019), Mackay and de Hauteclocque
(2023).

Once a contour with the desired exceedence properties has been
constructed, it can be applied to reliability analysis in several ways.
Usually, response simulations are carried out for conditions along
the contour over a period of length 𝛥𝑡. The point along the contour
providing the highest extreme short-term response is then chosen as
the design point. Often, the design point is chosen to correspond with
the highest median of the extreme response distribution. In e.g. Giske
et al. (2018), Sagrilo et al. (2011), an importance sampling procedure,
centred around the design point, is discussed in the context of ex-
treme long-term response computation. Additionally, in e.g. Giske et al.
(2018), Haver and Winterstein (2008), the authors consider quantiles
of the extreme response distribution at the design point as estimates
of the characteristic response. These methods allow the estimation of
response with only a limited number of computationally expensive
response calculations.

However, these methods still rely on a stationary model. This causes
issues when taken together with the evidence of increasingly extreme
sea-states, as detailed in Kushnir et al. (1997), Vanem and Bitner-
Gregersen (2012), Vanem et al. (2012), which would imply a significant
non-stationarity in significant wave heights.

Several articles, such as Vanem and Bitner-Gregersen (2012) and
Huseby et al. (2013), adjust the probability density function of the
sea-states to correct for this increase. However, the models are still
stationary, which keeps them from fully representing the changing
behaviour of the environmental processes involved. A closer view on
the differences between such strategies and the methods to be presented
in this paper will be given in Section 7.

It is also worth mentioning the works of e.g. Huseby (2023), Leira
(2008), Mackay and de Hauteclocque (2023), Mackay et al. (2021),
Vanem (2023) which consider stationary processes with a varying
degree of autodependence. These articles allow for more general be-
haviours of the underlying environmental processes, but do not address
the issue of long-term trends.

The goal of this article is to present a mathematically rigorous
framework for environmental contours with a broad class of possi-
ble models for the underlying environmental factors, including non-
stationary ones. While discrete models are the primary focus in terms
of applications, we will also include the possibility of continuous-time
models. In this regard, we will give minimal conditions for relevant
functions to be well defined in addition to existence of the contours
themselves.

Results presented in this article will be a generalisation of the theory
discussed in Huseby et al. (2021, 2013, 2015), which are based on
the assumption of failure sets being convex in the original parameter
space. As such, we will, in Section 2, give a brief overview of the
main results and definitions from these papers, for so to generalise the
setting in Section 3. We will here propose two different ways of defining
convex environmental contours based on either averages or quantiles
of exceedence times. A brief discussion on how these definitions are
connected to response analysis is given in Section 4. This is followed,
in Section 5, by a mathematically rigorous treatment of which minimal
conditions are required of the model for 𝑉 , in order to ensure the
existence of contours. In Sections 6 and 7 we present two examples
of applications of the theory, which highlight some of the differences
between classical approaches and the more flexible methods allowed
by the theory presented in this article. As a part of the final example
2

we also present a method for computing these contours in practice. 𝐵
2. Convex contours

A convex environmental contour is the boundary of a compact convex
et  ⊂ R𝑑 , denoted 𝜕, defined with respect to a 𝑑-dimensional
nvironmental process 𝑉 . For example, this process is often taken to
e the pair 𝑉 = (𝑇𝑧,𝐻𝑠) for 𝑑 = 2 where 𝑇𝑧 is the zero-upcrossing wave
eriod and 𝐻𝑠 the significant wave height of a particular location of
nterest.

We will in this section follow the construction described in e.g.
useby et al. (2015) and Huseby et al. (2021). We assume that 𝑉 is

tationary and that its stationary distribution is absolutely continuous
istribution with respect to the Lebesgue measure on R𝑑 . Furthermore,
he process is assumed be path-wise constant over periods of a set
ength of 𝛥𝑡, i.e. 𝑉 (𝑡) has the same value for any time 𝑡 ∈ [𝑛𝛥𝑡, (𝑛+1)𝛥𝑡),
or any given 𝑛 ∈ N. Most importantly, we make the assumption
hat values of 𝑉 are independently distributed between these different
eriods. One could equivalently describe 𝑉 as a sequence by denoting
he value of 𝑉 over the interval [𝑛𝛥𝑡, (𝑛 + 1)𝛥𝑡) by 𝑊𝑛. Specifically,
e may consider 𝑉 (𝑡) = 𝑊

⌊𝑡∕𝛥𝑡⌋ where ⌊⋅⌋ denotes the floor function.
ere {𝑊𝑛}∞𝑛=0 is defined as a sequence of independent and identically
istributed (i.i.d.) random variables with joint cumulative distribution
unction equal to that of 𝑉 . As such we will refer to this type of model
s an i.i.d. model throughout this article.

For every possible structural design we consider a limit-state func-
ion 𝑔, also referred to as the performance function. This is assumed
o depend only on 𝑉 , thereby ignoring the variance of the structural
esponse conditional on 𝑉 . The function 𝑔 is defined such that the
egion  , where 𝑔(𝑉 ) ≤ 0, represents conditions the structure cannot
afely handle. We therefore refer to  as the failure set. Environmental
ontours then aim to apply to any design satisfying  ∩  ⊂ 𝜕. As
uch we consider an unknown performance function, and therefore an
nknown failure set  . In order to handle such an unknown  we
urther assume that  belongs to (), the class of all convex sets such
hat  ∩ ⊆ 𝜕. Based on this we may define the exceedence probability
y

𝑒(, ) = sup
∈()

P(𝑉 ∈  ). (2.1)

nd impose the constraint of

𝑒(, ) ≤ 𝑝𝑒, (2.2)

here 𝑝𝑒 is some given target exceedence probability.
When dealing with convexity we will need the concept of hyper-

lanes. We will denote by ⟨⋅, ⋅⟩ the canonical inner product on R𝑑 and
y ‖ ⋅ ‖ the euclidean norm, with this we also define the unit sphere
n R𝑑 by 𝑆𝑑−1 = {𝑣 ∈ R𝑑 ∶ ‖𝑣‖ = 1}. The hyperplane indexed by the
hreshold 𝑐 ∈ R and the unit vector 𝑢 ∈ 𝑆𝑑−1 is then defined as

(𝑢, 𝑐) = {𝑣 ∈ R𝑑 ∶ ⟨𝑢, 𝑣⟩ = 𝑐}. (2.3)

We further define the half-spaces
−(𝑢, 𝑐) = {𝑣 ∈ R𝑑 ∶ ⟨𝑢, 𝑣⟩ ≤ 𝑐},
+(𝑢, 𝑐) = {𝑣 ∈ R𝑑 ∶ ⟨𝑢, 𝑣⟩ ≥ 𝑐},

(2.4)

hich allow us to present an important well-known result about sepa-
ating hyperplanes. For a proof of this result, as well as (2.6), we refer
o Rockafellar (1997).

roposition 2.1. For any two convex sets  and  in R𝑑 such that
∩  ⊆ 𝜕 there exists some 𝑢 ∈ 𝑆𝑑−1, 𝑐 ∈ R such that  ⊆ 𝛱−(𝑢, 𝑐) and
⊆ 𝛱+(𝑢, 𝑐).

This result implies that we can separate a convex set  and any
∈ (). In particular, we can reconstruct any compact and convex 

s the intersection of all these half-spaces. If we define
(, 𝑢) = sup{⟨𝑢, 𝑣⟩ ∶ 𝑣 ∈ }, (2.5)
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we get that  can be represented as

 =
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐵(, 𝑢)). (2.6)

It is further shown in Huseby et al. (2015), for 𝑑 = 2, that these
hyperplanes also serve as maximal elements of () for computing the
exceedence probability. Specifically, we have

𝑃𝑒(, ) = sup
𝑢∈𝑆𝑑−1

P(𝑉 ∈ 𝛱+(𝑢, 𝐵(, 𝑢))). (2.7)

Based on (2.7), if we have an environmental contour 𝜕 such that  is
convex and compact, we will call 𝜕 a valid contour in the exceedence
probability sense if 𝑃𝑒(, ) ≤ 𝑝𝑒, and a proper contour in the exceedence
probability sense if, for all 𝑢 ∈ 𝑆𝑑−1, P(𝑉 ∈ 𝛱+(𝑢, 𝐵(, 𝑢))) = 𝑝𝑒. The goal
is then to construct the smallest convex and compact set with a valid
or, ideally, proper contour.

If we then define

𝐶𝑒(𝑢) = inf{𝐶 ∶ P(⟨𝑢, 𝑉 ⟩ > 𝐶) = 𝑝𝑒}, (2.8)

and if 𝐵(, 𝑢) ≥ 𝐶𝑒(𝑢) for all 𝑢 ∈ 𝑆𝑑−1 we get 𝑃𝑒(, ) ≤ 𝑝𝑒, making
𝜕 a valid contour. In particular if there exists any convex  such that
𝐵(, ⋅) = 𝐶𝑒(⋅) then 𝜕 is the unique proper contour. Lastly, if this is
the case, then

 =
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐶𝑒(𝑢)), (2.9)

gives an explicit construction of this optimal proper contour.
In the following sections we will need the concept of the first hitting

time of a set  ⊆ R𝑑 , defined by

𝜏 = inf{𝑡 ∶ 𝑉 (𝑡) ∈ } (2.10)

For our i.i.d. model we can easily associate our target exceedence
probability with a target return period. We can note that by our as-
sumption of independence between the 𝑊𝑛’s that the exceedence time,
𝜏 , is geometrically distributed. Furthermore, for any valid 𝜕 and
 ∈ (), the mean of 𝜏 is at least 𝛥𝑡∕𝑝𝑒. This implies that when we are
ensuring that 𝑃𝑒(, ) ≤ 𝑝𝑒 we are equivalently ensuring that E[𝜏 ] ≥ 𝑡𝑟
for some target return period 𝑡𝑟 = 𝛥𝑡∕𝑝𝑒. Similar arguments would allow
us to compare 𝑃𝑒(, ) with quantiles of the distribution of 𝜏 . Both the
mean and quantiles of 𝜏 are more amenable to generalisation than
exceedence probabilities and will be used in the upcoming sections.

3. Environmental contours for general processes

We now aim to extend the concepts introduced in the previous sec-
tion to a more general context. We no longer assume 𝑉 to be stationary
and instead consider it to be a progressively measurable process taking
values in R𝑑 . We also need the process to satisfy certain regularity
conditions in order to ensure that (5.3), which will be introduced later,
is measurable. For this purpose one may assume, for instance, càdlàg
paths. Usually, discrete models are used in order to facilitate response
analysis. Fortunately, a discrete model for 𝑉 is sufficient to ensure the
measurability of (5.3).

We will also still consider an unknown failure set  ∈ () where
() is the collection of all convex sets  such that ∩ ⊆ 𝜕. This will
similarly allow the use of half-spaces to control the exceedence time.

Since we no longer assume 𝑉 to be stationary, we will introduce
two ways of replacing (2.1). A common substitute for the exceedence
probability, used explicitly in works such as Huseby (2023), Leira
(2008), Mackay and de Hauteclocque (2023), Mackay et al. (2021),
Vanem (2023), is to use the average failure time, commonly referred
to as the return period. As such, we start by defining the return period of

by

𝑟() = inf
∈()

E[𝜏 ]. (3.1)
3

p

Remark 3.1. Since 𝑉 is now possibly non-stationary the concept of a
long-term average return period is no longer meaningful. However, for
the sake of consistency, we shall still refer to these average exceedence
times as return periods.

In some cases there may be yearly trends present which, if persisting
indefinitely, may cause the process to drift over time. Such trends could
induce a situation where 𝑉 has a probability strictly between 0 and 1 of
ever hitting certain sets. This contrasts with the stationary ergodic case
where every set of positive measure (w.r.t. the law of 𝑉 ) is eventually
hit. While the exceedence time might have a positive probability of not
occurring, thereby making the return period infinite, there could still
be a high chance of it occurring in finite time. In order to account for
such behaviour we want a more flexible version of (3.1). As such we
define the survival probability of  by

𝑄𝑠() = inf
∈()

P(𝜏 > 𝑡𝑠), (3.2)

or a given survival time 𝑡𝑠 > 0.
Like with (2.2), we will construct our contour based on these

wo definitions. In our case we will consider two separate possible
estrictions, the first one is based on return periods with

𝑟() ≥ 𝑡𝑟 (3.3)

or some target return period 𝑡𝑟 > 0. If this holds then for any  ∈ ()
it will take on average at least a time of 𝑡𝑟 to enter  . Note that
under the constrains of an i.i.d model, (3.3) is equivalent to (2.2) for
𝑡𝑟 = 𝛥𝑡∕𝑝𝑒.

The alternative restriction corresponding to the survival probability
is defined as

𝑄𝑠() ≥ 𝑞𝑠 (3.4)

or a given minimal survival probability 1 > 𝑞𝑠 > 0. If this condition
olds, then for any  ∈ (), it is guaranteed that with a probability
f at least 𝑞𝑠, the process 𝑉 will take at least 𝑡𝑠 amount of time before
itting  . Note that under the constraints of an i.i.d model, 𝜏 has a
eometric distribution which means (3.4) is equivalent to (2.2) if e.g.
𝑠 = 𝛥𝑡∕𝑝𝑒 and 𝑞𝑠 = (1 − 𝑝𝑒)1∕𝑝𝑒 . In particular, for low exceedence
robabilities, we have that 𝑞𝑠 ≈ 1∕𝑒 ≈ 37%.

emark 3.2. While contours are usually formulated using return
eriods, there are several benefits to considering contours based on
3.4). As mentioned, long-term trends can lead to heavy tails of 𝜏
hich can inflate E[𝜏 ], or even make it infinite. There are also two

echnical benefits in that only the path of 𝑉 up to time 𝑡𝑠 needs to
e considered. If these paths need to be simulated, as in Section 7
r Vanem (2023), then simulating the average exceedence time could
equire paths of arbitrary length, introducing certain numerical chal-
enges. Lastly, given the difficulty in forecasting distant future trends,
voiding the specification of these trends for timepoints beyond 𝑡𝑠 is
dvantageous.

With these possible constraints established we now have two new
ays of defining our environmental contours, either by (3.3) or (3.4).
s noted, both of these serve as generalisations of the restriction of

2.2).
These constraints can be simplified by noting that {𝛱+(𝑢,

(, 𝑢))}𝑢∈𝑆𝑑−1 forms the maximal elements of (). In particular, for
ny  ∈ (), this will allow us to bound 𝜏 ≥ 𝜏𝛱+(𝑢,𝐵(,𝑢)) for some
∈ 𝑆𝑑−1. Here, we may recall that

𝛱+(𝑢,𝐵(,𝑢)) = inf{𝑡 ∶ 𝑉 (𝑡) ∈ 𝛱+(𝑢, 𝐵(, 𝑢))} = inf{𝑡 ∶ ⟨𝑢, 𝑉 (𝑡)⟩ ≥ 𝐵(, 𝑢)}.

Analogously to the previous section we will refer to a contour 𝜕
uch that  is convex and compact as valid in the return period sense
f 𝑇𝑟() ≥ 𝑡𝑟 and valid in the quantile sense if 𝑄𝑠() ≥ 𝑞𝑠. Likewise, we
all 𝜕 proper in the return period sense if E[𝜏𝛱+(𝑢,𝐵(,𝑢))] = 𝑡𝑟 for all
∈ 𝑆𝑑−1 and proper in the quantile sense if P(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠) = 𝑞𝑠 for

ll 𝑢 ∈ 𝑆𝑑−1. In order to justify the definitions of proper contours we

roceed analogously to Huseby et al. (2015) by the following result.
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Proposition 3.3. Let  ⊂ R𝑑 be a compact and convex set, we then have

𝑠() = inf
𝑢∈𝑆𝑑−1

P(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠),

𝑇𝑟() = inf
𝑢∈𝑆𝑑−1

E[𝜏𝛱+(𝑢,𝐵(,𝑢))].

Proof . We first note that by Proposition 2.1 we have for any  ∈ ()
that  ⊆ 𝛱+(𝑢, 𝑐) and  ⊆ 𝛱−(𝑢, 𝑐) for some 𝑢 ∈ 𝑆𝑑−1, 𝑐 ∈ R.
This yields 𝐵(, 𝑢) ≤ 𝑐, which implies 𝛱+(𝑢, 𝑐) ⊆ 𝛱+(𝑢, 𝐵(, 𝑢)). Since
 ⊆ 𝛱+(𝑢, 𝐵(, 𝑢)) we then have 𝜏 ≥ 𝜏𝛱+(𝑢,𝐵(,𝑢)) which further implies
that

P(𝜏 > 𝑡𝑟) ≥ P(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑟),

E[𝜏 ] ≥ E[𝜏𝛱+(𝑢,𝐵(,𝑢))].

This inequality yields

inf
∈()

P(𝜏 ≥ 𝑡𝑠) ≥ inf
𝑢∈𝑆𝑑−1

P(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑟),

inf
∈()

E[𝜏 ] ≥ inf
𝑢∈𝑆𝑑−1

E[𝜏𝛱+(𝑢,𝐵(,𝑢))].

The result then follows by noting that 𝛱+(𝑢, 𝐵(, 𝑢)) ∈ () for any
𝑢 ∈ 𝑆𝑑−1. □

Remark 3.4. Proposition 3.3 treats the tangent half-spaces, 𝛱+(⋅,
𝐵(, ⋅)), as maximal elements of (). However, it is also possible to
interpret the tangent half-spaces as FORM approximations of failure
sets for possible designs. This would replace our assumption of convex
failure sets by the linear FORM approximation.

With Proposition 3.3, we can introduce our analogues of 𝐶𝑒 from
(2.8) by

𝐶𝑄(𝑢) = inf{𝑏 ∈ R ∶ P
(

𝜏𝛱+(𝑢,𝑏) > 𝑡𝑠
)

= 𝑞𝑠}, (3.5)

𝐶𝑇 (𝑢) = inf{𝑏 ∈ R ∶ E
[

𝜏𝛱+(𝑢,𝑏)
]

= 𝑡𝑟}. (3.6)

These functions allow us to define our contours by

𝑄𝑠() ≥ 𝑝𝑠 ⇔ 𝐵(, 𝑢) ≥ 𝐶𝑄(𝑢) for all 𝑢 ∈ 𝑆𝑑−1,

𝑇𝑟() ≥ 𝑡𝑟 ⇔ 𝐵(, 𝑢) ≥ 𝐶𝑇 (𝑢) for all 𝑢 ∈ 𝑆𝑑−1,

which will be proved in Proposition 5.5. However, before we move to
the theoretical considerations of this article we will discuss the more
practical connection to response analysis.

4. Connection with response

4.1. Interpretation of environmental processes in continuous time

The theory presented makes no restrictions on whether 𝑉 is mod-
elled as discrete or not, which causes some minor complications in
applying these contours to response analysis.

In this regard it is worth mentioning that the use of continuous-time
processes for the definition of contours has been previously considered
in e.g. Leira (2008). Here, a continuous process is made comparable
to an i.i.d. process by equating the outcrossing rate over a period of
length 𝑇 for specific thresholds. This was achieved through the use
of equivalent characteristic time scales. This procedure ensured that the
continuous and i.i.d. process produced the same contour for a given
return period, but whenever the target return period was changed the
resulting contours differed significantly.

For offshore engineering it is common to split the description of
ocean waves into its long-term and short-term variability. The long-
term variability often considers summary statistics such as significant
wave height and zero-upcrossing period, these describe conditions over
a certain time period 𝛥𝑡. For example, the significant wave height
over this period would be the average height of the largest third of
waves within this period. The short-term variation usually describes the
4

variation of individual waves within those periods. s
Generally, the environmental conditions along a contour represents
the long-term conditions, i.e. summary statistics over a period of length
𝛥𝑡. Response analysis is the carried out by simulating the short-term
variations over a period of that length, under the assumption of con-
stant long-term conditions, see e.g. Baarholm et al. (2010), Giske et al.
(2018), Sagrilo et al. (2011). In order to facilitate this type of response
analysis it is important that we can interpret 𝑉 as suitable summary
statistics of the sea-state over some period. There are several ways of
ensuring this, most easily and commonly done by modelling 𝑉 as a
discrete process.

If one wanted to model 𝑉 as a continuous-time process it is possible
to consider 𝑉 (𝑡) to represent some collection of summary statistics over
[𝑡, 𝑡 + 𝛥𝑡]. This can be achieved by e.g. choosing a continuous-time
model equating the joint cumulative distribution function of 𝑉 (𝑡) to
the estimated joint cumulative distribution function of the relevant
statistics over the given period. In so doing one must also ensure that
the autodependence structure of 𝑉 is sufficiently accurate. An simple
example of this approach is given in Section 6.

4.2. Applications to response analysis

Environmental contours are often applied in the early concept eval-
uation phase, where the contours help identify possible critical design
conditions. In terms of applications to response analysis we mainly
have deterministic response, characteristic response estimates by way
of design points, and importance sampling centred around these design
points. We will here discuss the two former, as the extension of the
latter to a nonstationary setting is still quite speculative.

4.2.1. Deterministic response
The most straightforward applications of contours is in the case of

deterministic response. While usually unrealistic in practise, this case
highlights the intuitive basis for the use of environmental contours.

Assume we have a deterministic response function 𝑦 and a target
eturn period 𝑡𝑟 for the design of our structure. For any design we
ill then have a response capacity, 𝑦cap inducing a limit-state function,
(𝑣) = 𝑦cap − 𝑦(𝑣), and an associated failure set  = {𝑣 ∈ R𝑑 ∶ 𝑔(𝑣) < 0}.
he goal is then to find a minimal response capacity, 𝑦cap, such that
he mean time to failure, E[𝜏 ], is at least 𝑇 years. This can easily be
one by considering any valid contour in the return period sense, as
efined in Section 3 for a 𝑇 -year return period. We can then apply an
nalogue to the inverse FORM method described in Winterstein et al.
1993), which chooses

cap = max
𝑏∈𝜕

𝑦(𝑏).

ssuming that argmax𝑏∈ 𝑦(𝑏) ∈ 𝜕 and that the resulting  is convex,
e then have by the definition of the contour that E[𝜏 ] ≥ 𝑇 years.
ince, in the simple deterministic case, the failure of the structure
ccurs at time 𝜏 , we know that the average failure time of the structure
hares the same bound.

.2.2. Quantiles of design point
The most common application of environmental contours in the case

f stochastic response, mentioned in e.g. Giske et al. (2018), Haver and
interstein (2008), is the following. First compute an environmental

ontour with a 𝑇 -year return period. For environmental conditions
long the contour, compute some distributional characteristic of the
hort-term maximal response. Designate the worst of these conditions
s the design point, the conditions providing a extreme response distri-
ution with the highest median is often chosen. The response level with
𝑇 -year return period is then estimated by a quantile of the extreme

esponse distribution at the design point, quantiles ranging from 85% to
5% is recommended in NORSOK (2017). This procedure, as described,
an also be applied to a non-stationary setting.

Note that by Section 4.2.1, the design point estimate would corre-

pond to an exact bound in the deterministic case. The idea is then to
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choose a suitably high quantile to correct for the stochastic nature of
the response. The underlying assumption then becomes that a repre-
sentative response value with a return period of 𝑇 years should occur
along a contour with the same return period (paraphrasing Leira, 2008;
Ross et al., 2020). By applying an analogous assumption to our non-
stationary contours then this can shed some light on the choice between
contours based on survival times or return periods. If one is interested
in finding a response level with a specified average exeedance time,
then a contour based on that same average exceedence time should
be used. Similarly, if quantiles of this exceedence time is of primary
interest, then contours based on survival times should be considered.

It is important to note that the use of quantiles of the design point
for the calculation of characteristic response levels are rough approxi-
mations. It is usually recommended to verify the choice of quantile by
a full long-term response analysis if possible. Despite this, the method
is highly efficient and requires significantly fewer response simulations
to be carried out than a full long-term analysis would require.

In the case where 𝑉 is modelled in continuous time it is still
possible to identify a design point along the contour. Assuming that
𝑉 represents the long-term conditions over a period of length 𝛥𝑡,
then extreme response distributions can be established for conditions
along the contour. However, since a full long-term response analysis in
continuous time is generally unfeasible, there may be no practical way
to verify the choice of quantile. As such, this issue is a strong reason to
focus on discrete models whenever a full long-term response analysis
is needed.

5. Existence of contours

The design conditions along the contour are chosen due to their
statistical properties, as such it is important to be able to clearly
interpret and mathematically verify them. In Section 3, we allow for a
very general class of models for 𝑉 , however, not every model permits
the existence of well-defined contours. Therefore, in this section we
will provide rigorous mathematical justification for the existence of
these contours. Firstly, we give minimal conditions for 𝐶𝑄 and 𝐶𝑇 to
be well defined. We will then show that the analogous representation
of Eq. (2.9), based on constructing contours by 𝐵(, 𝑢) = 𝐶𝑒(𝑢), still
provides a unique proper contour in our generalised setting. Finally, in
the case where no proper contours exist, we prove existence of valid
contours.

In order to ensure our functions are well defined we will need the
following definitions and results. For all 𝑢 ∈ 𝑆𝑑−1, 𝑏 ∈ R and 𝑡 ∈ R with
𝑡 ≥ 0, we denote the cumulative distribution function of 𝜏𝛱+(𝑢,𝑏) by

𝐹 𝑢
𝑏 (𝑡) = P

(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

, (5.1)

and the average of 𝜏𝛱+(𝑢,𝑏) by

𝑢(𝑏) = E
[

𝜏𝛱+(𝑢,𝑏)
]

. (5.2)

Finally we define

𝜙𝑢(𝑡) = sup
𝑠∈[0,𝑡]

⟨𝑢, 𝑉 (𝑠)⟩. (5.3)

Throughout this article we will usually assume that for any 𝑡 > 0,
𝑏 ∈ R ∪ {±∞} we have

P
(

𝜙𝑢(𝑡) = 𝑏
)

= 0. (5.4)

This assumption will serve as a minimal condition for our contours and
other concepts to be definable. For most models, (5.4) will follow as a
consequence of 𝜙𝑢(𝑡) admitting a probability density function for every
𝑢 ∈ 𝑆𝑑−1 and 𝑡 > 0. For a discrete model of 𝑉 , it is sufficient that 𝑉 (𝑡)
admits a joint probability density function for all 𝑡.

To see the connection between these definitions we have the follow-
ing result.
5

𝑏

Lemma 5.1. Let 𝑢 ∈ 𝑆𝑑−1 and 𝑡 > 0, we then have

𝑢(𝑏) = ∫

∞

0

(

1 − 𝐹 𝑢
𝑏 (𝑡)

)

𝑑𝑡.

Furthermore, if (5.4) holds, then

𝐹 𝑢
𝑏 (𝑡) = P

(

𝜙𝑢(𝑡) ≥ 𝑏
)

.

Proof. The first equality is the standard tail probability expectation
formula, as such we omit the proof.

As for the second equality, if 𝜏𝛱+(𝑢,𝑏) ≤ 𝑡 then there is some point
𝑠 ≤ 𝑡 such that 𝑉 (𝑠) ∈ 𝛱+(𝑢, 𝑏), or equivalently ⟨𝑢, 𝑉 (𝑠)⟩ ≥ 𝑏, which
mplies 𝜙𝑢(𝑡) ≥ 𝑏. Similarly, if 𝜏𝛱+(𝑢,𝑏) > 𝑡 then no such point exists
nd consequently 𝜙𝑢(𝑡) ≤ 𝑏, this conversely states that 𝜙𝑢(𝑡) > 𝑏 implies
𝛱+(𝑢,𝑏) ≤ 𝑡.

Applying these implications and (5.4) we get
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

≤ P
(

𝜙𝑢(𝑡) ≥ 𝑏
)

= P
(

𝜙𝑢(𝑡) > 𝑏
)

≤ P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

,

hich proves the second equality. □

With this lemma we can prove the following results which guarantee
hat (3.5) and (3.6), i.e. 𝐶𝑄 and 𝐶𝑇 , are well defined.

heorem 5.2. Under the assumption of (5.4) we have for any 𝑡 > 0,
∈ 𝑆𝑑−1 that 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡) is monotone non-increasing and continuous with
im𝑏→∞ 𝐹 𝑢

𝑏 (𝑡) = 0 and lim𝑏→−∞ 𝐹 𝑢
𝑏 (𝑡) = 1.

roof. We will start by showing that 𝐹 is monotone non-increasing in
. If 𝑏 ≤ 𝑏′ then 𝛱+(𝑢, 𝑏′) ⊆ 𝛱+(𝑢, 𝑏) which implies 𝜏𝛱+(𝑢,𝑏) ≤ 𝜏𝛱+(𝑢,𝑏′),
inally yielding that 𝐹 𝑢

𝑏′ (𝑡) ≤ 𝐹 𝑢
𝑏 (𝑡).

For the continuity we start by showing left-continuity of 𝑏 ↦ 𝐹 𝑢
𝑏 (𝑡).

henever 𝑏𝑛 → 𝑏, 𝑏𝑛 < 𝑏𝑛+1 we have by set-continuity of measures and
emma 5.1 that

lim
→∞

𝐹 𝑢
𝑏𝑛
(𝑡) − 𝐹 𝑢

𝑏 (𝑡) = lim
𝑛→∞

P
(

𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡
)

− P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

=P

(

⋂

𝑛
{𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡}

)

− P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

=P
(

𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡 for all 𝑛
)

− P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

=P
(

𝜙𝑢(𝑡) ≥ 𝑏𝑛 for all 𝑛
)

− P
(

𝜙𝑢(𝑡) ≥ 𝑏
)

.

We see that 𝜙𝑢(𝑡) ≥ 𝑏𝑛 for all 𝑛, is equivalent to 𝜙𝑢(𝑡) ≥ 𝑏. This
mplies that the limit equals P

(

𝜙𝑢(𝑡) ≥ 𝑏
)

− P
(

𝜙𝑢(𝑡) ≥ 𝑏
)

= 0, thus
roving the left-continuity of 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡).
As for right-continuity we consider 𝑏𝑛 → 𝑏, 𝑏𝑛 > 𝑏𝑛+1 and get

𝑢
𝑏 (𝑡) − lim

𝑛→∞
𝐹 𝑢
𝑏𝑛
(𝑡) = P

(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

− lim
𝑛→∞

P
(

𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡
)

= P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

− P

(

⋃

𝑛
{𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡}

)

= P
(

𝜙𝑢(𝑡) ≥ 𝑏
)

− P

(

⋃

𝑛
{𝜙𝑢(𝑡) ≥ 𝑏𝑛}

)

= P
(

𝜙𝑢(𝑡) ≥ 𝑏
)

− 1 + P

(

⋂

𝑛
{𝜙𝑢(𝑡) < 𝑏𝑛}

)

= P
(

𝜙𝑢(𝑡) > 𝑏
)

+ P
(

𝜙𝑢(𝑡) < 𝑏𝑛 for all 𝑛
)

− 1.

Similarly to before we note that 𝜙𝑢(𝑡) < 𝑏𝑛 for all 𝑛 is equivalent to
𝑢(𝑡) ≤ 𝑏. As a consequence the limit equals P

(

𝜙𝑢(𝑡) ∈ R
)

− 1 = 0,
hich implies that 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡) is right-continuous and therefore fully
ontinuous.

Considering lim𝑏→∞ 𝐹 𝑢
𝑏 (𝑡) we may, for any sequence 𝑏𝑛 → ∞, 𝑏𝑛 <
𝑛+1, compute
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lim
𝑛→∞

𝐹 𝑢
𝑏𝑛
(𝑡) = lim

𝑛→∞
P(𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡)

= lim
𝑛→∞

P(𝜙𝑢(𝑡) ≥ 𝑏𝑛)

= P(𝜙𝑢(𝑡) ≥ 𝑏𝑛 for all 𝑛)
= P(𝜙𝑢(𝑡) = ∞)

= 0.

And lastly, for lim𝑏→−∞ 𝐹 𝑢
𝑏 (𝑡) we get, for any sequence 𝑏𝑛 → −∞, 𝑏𝑛 >

𝑏𝑛+1, that

lim
𝑛→∞

𝐹 𝑢
𝑏𝑛
(𝑡) = lim

𝑛→∞
P
(

𝜏𝛱+(𝑢,𝑏𝑛) ≤ 𝑡
)

= 1 − lim
𝑛→∞

P
(

𝜏𝛱+(𝑢,𝑏𝑛) > 𝑡
)

= 1 − lim
𝑛→∞

P
(

𝜙𝑢(𝑡) ≤ 𝑏𝑛
)

= 1 − P
(

𝜙𝑢(𝑡) ≤ 𝑏𝑛 for all 𝑛
)

= 1 − P
(

𝜙𝑢(𝑡) = −∞
)

= 1,

hich completes the proof. □

emark 5.3. Continuity of 𝑏 ↦ 𝐹 𝑢
𝑏 (𝑡) and lim𝑏→∞ 𝐹 𝑢

𝑏 (𝑡) = 0 for all
∈ 𝑆𝑑−1 is equivalent to the assumption of (5.4), making it a necessary
nd sufficient condition for Theorem 5.2.

This theorem implies that 𝑏 ↦ 1−𝐹 𝑢
𝑏 (𝑡𝑠) = P(𝜏𝛱+(𝑢,𝑏) > 𝑡𝑠) spans (0, 1)

hich implies that 𝐶𝑄 is well defined for any 𝑞𝑠 ∈ (0, 1). To ensure that
𝑇 is also well defined, we have the following result.

roposition 5.4. Assume that (5.4) holds and that for any 𝑢 ∈ 𝑆𝑑−1

here is some 𝑏∗𝑢 ∈ R ∪ {∞} such that 𝑢(𝑏) < ∞ for all 𝑏 ∈ (−∞, 𝑏∗𝑢)
ith 𝑢(𝑏) = ∞ for all 𝑏 ≥ 𝑏∗𝑢 . We then have that 𝑢(⋅) is continuous
nd monotone non-decreasing on (−∞, 𝑏∗𝑢) with lim𝑏→−∞ 𝑢(𝑏) = 0 and
im𝑏→𝑏∗𝑢 𝑢(𝑏) = ∞.

roof. We start with monotonicity. If 𝑏 ≤ 𝑏′ then 𝛱+(𝑢, 𝑏′) ⊆ 𝛱+(𝑢, 𝑏)
hich means 𝜏𝛱+(𝑢,𝑏) ≤ 𝜏𝛱+(𝑢,𝑏′), implying 𝑢(𝑏) ≤ 𝑢(𝑏′).

As for continuity, if 𝑏𝑛 → 𝑏 ∈ (−∞, 𝑏∗𝑢) there exists some 𝜖 > 0 and
ome 𝑁 ∈ N such that 𝑏𝑛 < 𝑏 + 𝜖 for all 𝑛 > 𝑁 with 𝑏 + 𝜖 ∈ (−∞, 𝑏∗𝑢).
his means that 1 − 𝐹 𝑢

𝑏𝑛
(𝑡) ≤ 1 − 𝐹 𝑢

𝑏+𝜖(𝑡) for all 𝑛 > 𝑁 and 𝑢(𝑏 + 𝜖) =
∞
0 (1 − 𝐹 𝑢

𝑏+𝜖(𝑡))𝑑𝑡 < ∞. We then get by continuity of 𝑏 ↦ 𝐹 𝑢
𝑏 (𝑡) and the

ominated convergence theorem that

lim
→∞

𝑢(𝑏𝑛) = lim
𝑛→∞∫

∞

0

(

1 − 𝐹 𝑢
𝑏𝑛
(𝑡)
)

𝑑𝑡

=∫

∞

0

(

1 − lim
𝑛→∞

𝐹 𝑢
𝑏𝑛
(𝑡)
)

𝑑𝑡

=∫

∞

0
(1 − 𝐹 𝑢

𝑏 (𝑡))𝑑𝑡

=𝑢(𝑏).

Similarly, for 𝑏𝑛 → −∞, we have some 𝑁 and 𝑏′ ∈ (−∞, 𝑏∗𝑢) such
hat 𝑏𝑛 < 𝑏′ for all 𝑛 > 𝑁 . Since 1 − 𝐹 𝑢

𝑏𝑛
(𝑡) ≤ 1 − 𝐹 𝑢

𝑏′ (𝑡) for 𝑛 > 𝑁 we get
y the dominated convergence theorem, along with lim𝑏→−∞ 𝐹 𝑢

𝑏 (𝑡) = 1,
hat

lim
→−∞

𝑢(𝑏) = lim
𝑏→−∞∫

∞

0
(1 − 𝐹 𝑢

𝑏 )(𝑡)𝑑𝑡

=∫

∞

0

(

1 − lim
𝑏→−∞

𝐹 𝑢
𝑏 (𝑡)

)

𝑑𝑡

=∫

∞

0
0 𝑑𝑡

=0.

Lastly, for 𝑏𝑛 → 𝑏∗𝑢 < ∞, we start with right limits and assume
𝑛 ≥ 𝑏𝑛+1 for all 𝑛 with 𝑏𝑛 → 𝑏∗𝑢 < ∞. Since 𝑏𝑛 ≥ 𝑏∗𝑢 we have 𝑢(𝑏𝑛) = ∞
6

or all 𝑛 which yields 𝑢(𝑏𝑛) → ∞ = 𝑢(𝑏). l
We then consider the left limit case, i.e. 𝑏𝑛 ≤ 𝑏𝑛+1 for all 𝑛, 𝑏𝑛 → 𝑏∗𝑢 .
e then have that {1 − 𝐹 𝑢

𝑏𝑛
}∞𝑛=1 is a monotone increasing sequence of

on-negative functions, as such we get by the monotone convergence
heorem that

lim
→𝑏∗𝑢

𝑢(𝑏) = lim
𝑏→𝑏∗𝑢 ∫

∞

0

(

1 − 𝐹 𝑢
𝑏 (𝑡)

)

𝑑𝑡

=∫

∞

0

(

1 − lim
𝑏→𝑏∗𝑢

𝐹 𝑢
𝑏 (𝑡)

)

𝑑𝑡

=∫

∞

0
(1 − 𝐹 𝑢

𝑏∗𝑢
(𝑡))𝑑𝑡

= 𝑢
(

𝑏∗𝑢
)

=∞.

he same computations would hold if 𝑏∗𝑢 = ∞ by considering 𝐹 𝑢
∞ = 0,

hich completes the proof. □

With this result we see that, under the given assumptions, 𝑢(⋅) spans
he whole of (0,∞) so 𝐶𝑇 is well defined for any 𝑡𝑟 ∈ (0,∞).

With this, both our analogues of 𝐶𝑒 from (2.8) are well defined. Sim-
larly to Huseby et al. (2015), we can use these functions to guarantee
ertain properties of our contours.

roposition 5.5. Assume that (5.4) holds and fix some 𝑡𝑠 ∈ (0,∞), 𝑞𝑠 ∈
0, 1). We then have that 𝑄𝑠() ≥ 𝑝𝑠 is equivalent to

(, 𝑢) ≥ 𝐶𝑄(𝑢) for all 𝑢 ∈ 𝑆𝑑−1.

urthermore, if the conditions of Proposition 5.4 hold, then, for any 𝑡𝑟 ∈
0,∞), 𝑇𝑟() ≥ 𝑡𝑟 is equivalent to

(, 𝑢) ≥ 𝐶𝑇 (𝑢) for all 𝑢 ∈ 𝑆𝑑−1.

roof. We first note that Theorem 5.2 implies that 𝐶𝑄 is well defined.
urthermore 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡) is continuous, which implies
(

𝜏𝛱+(𝑢,𝐶𝑄(𝑢)) > 𝑡𝑠
)

= 𝑞𝑠,

or any 𝑢 ∈ 𝑆𝑑−1. We then assume that 𝐵(, 𝑢) ≥ 𝐶𝑄(𝑢) for all 𝑢 ∈ 𝑆𝑑−1.
e then get

𝑠() = inf
𝑢∈𝑆𝑑−1

{

P
(

𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠
)}

≥ inf
𝑢∈𝑆𝑑−1

{

P
(

𝜏𝛱+(𝑢,𝐶𝑄(𝑢)) > 𝑡𝑠
)}

= 𝑞𝑠.

Conversely, if 𝐵(, 𝑢′) < 𝐶𝑄(𝑢′) for some 𝑢′ ∈ 𝑆𝑑−1 then by the
efinition of 𝐶𝑄 we must have P

(

𝜏𝛱+(𝑢′ ,𝐵(𝑢′)) > 𝑡𝑠
)

< 𝑝𝑠. This implies

𝑠() = inf
𝑢∈𝑆𝑑−1

{

P
(

𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠
)}

≤ P
(

𝜏𝛱+(𝑢′ ,𝐵(,𝑢′)) > 𝑡𝑠
)

< 𝑞𝑠.

nearly identical argument proves the statement about 𝑇𝑟 by noting
hat Proposition 5.4 implies that 𝑏 ↦ 𝑢(𝑏) is continuous. This completes
he proof. □

Recall that we can write

=
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐵(, 𝑢)), (5.5)

o if there exists some  with 𝐵(, 𝑢) = 𝐶(𝑢) for all 𝑢 ∈ 𝑆𝑑−1, then we
an immediately construct  by

=
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐶(𝑢)), (5.6)

or e.g. 𝐶 = 𝐶𝑒, 𝐶𝑇 or 𝐶𝑄. In Huseby et al. (2015) it is shown for an i.i.d.
odel of 𝑉 that, under some conditions, 𝐵(, 𝑢) = 𝐶𝑒(𝑢) is equivalent

o 𝜕 being proper in the exceedence probability sense. This implies
hat all proper contours are constructable in the same fashion as (5.6).
n analogous result also holds in our setting for 𝐶𝑄 or 𝐶𝑇 under some
ight assumptions.
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Proposition 5.6. For any 𝑢 ∈ 𝑆𝑑−1, 𝑡 ∈ (0,∞), define the set 𝑢(𝑡) =
𝑏 ∶ 𝐹 𝑢

𝑏 (𝑡) ∈ (0, 1)} and assume that 𝜙𝑢(𝑡) admits a probability density
unction, denoted by 𝑓𝜙, satisfying 𝑓𝜙(𝑏) > 0 for almost all 𝑏 ∈ 𝑢(𝑡). Note
hat this last requirement is equivalent to the essential support of 𝑓𝜙 being
connected interval.
We have that 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡) is monotone decreasing on 𝑢(𝑡). Further-
ore, if there exists some proper contour 𝜕 in the quantile sense, i.e.
(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠) = 𝑞𝑠 for all 𝑢 ∈ 𝑆𝑑−1, then 𝐵(, ⋅) = 𝐶𝑄 and therefore

=
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐶𝑄(𝑢)).

roof. Since 𝜙𝑢(𝑡) admits a probability density function we have that
(

𝜙𝑢(𝑡) = 𝑏
)

= 0 for all 𝑏 ∈ R which implies by Theorem 5.2 that
↦ 𝐹 𝑢

𝑏 (𝑡) is continuous and monotone non-increasing, in particular we
ote that 𝑢(𝑡) is open for all 𝑢 ∈ 𝑆𝑑−1, 𝑡 ∈ (0,∞).

We first aim to prove that 𝑏 ↦ 𝐹 𝑢
𝑏 (𝑡) is monotone decreasing on

𝑢(𝑡). To see this we consider 𝑏 ∈ 𝑢(𝑡) and 𝑏′ ∈ R such that 𝑏 < 𝑏′.
ince 𝑢(𝑡) is open we can find an 𝜖 > 0 such that (𝑏, 𝑏+ 𝜖) ⊆ 𝑢(𝑡) and
+ 𝜖 < 𝑏′. Additionally, we have

(

𝜙𝑢(𝑡) ∈ (𝑏, 𝑏 + 𝜖)
)

= ∫

𝑏+𝜖

𝑏
𝑓𝜙(𝑥)𝑑𝑥 > 0.

ombining this with Lemma 5.1 then yields
𝑢
𝑏 (𝑡) − 𝐹 𝑢

𝑏′ (𝑡) = P
(

𝜏𝛱+(𝑢,𝑏) ≤ 𝑡
)

− P
(

𝜏𝛱+(𝑢,𝑏′) ≤ 𝑡
)

= P
(

𝜙𝑢(𝑡) > 𝑏
)

− P
(

𝜙𝑢(𝑡) ≥ 𝑏′
)

= P
(

𝜙𝑢(𝑡) ∈ (𝑏, 𝑏′)
)

≥ P
(

𝜙𝑢(𝑡) ∈ (𝑏, 𝑏 + 𝜖)
)

> 0,

which implies 𝐹 𝑢
𝑏 (𝑡) > 𝐹 𝑢

𝑏′ (𝑡).
Consider then some proper contour 𝜕, and assume, for contra-

diction, that we have 𝐵(, 𝑢) > 𝐶𝑄(𝑢) for some 𝑢 ∈ 𝑆𝑑−1. Since, by
definition, 𝐶𝑄(𝑢) ∈ 𝑢(𝑡𝑠) we must also have 𝐹 𝑢

𝐶(𝑢)(𝑡𝑠) > 𝐹 𝑢
𝐵(,𝑢)(𝑡𝑠) which

yields

P(𝜏𝛱+(𝑢,𝐵(,𝑢)) > 𝑡𝑠) = 1 − 𝐹 𝑢
𝐵(,𝑢)(𝑡𝑠)

> 1 − 𝐹 𝑢
𝐶𝑄(𝑢)(𝑡𝑠)

= P(𝜏𝛱+(𝑢,𝐶𝑄(𝑢)) > 𝑡𝑠)

= 𝑞𝑠.

This contradicts the fact that 𝜕 is a proper contour and we must
therefore have 𝐵(, 𝑢) = 𝐶𝑄(𝑢) for all 𝑢 ∈ 𝑆𝑑−1. □

We can also extend this result to proper contours in the return
period sense.

Proposition 5.7. let the conditions of Propositions 5.4 and 5.6 hold, and
fix some 𝑡𝑟 ∈ (0,∞). Also assume that 𝜏𝛱+(𝑢,𝐶(𝑢)) is non-deterministic in the
sense that it satisfies P(𝜏𝛱+(𝑢,𝐶(𝑢)) = 𝑡𝑟) < 1.

Under these conditions, if there exists some proper contour 𝜕 in the
return period sense, i.e. E

[

𝜏𝛱+(𝑢,𝐵(,𝑢))
]

= 𝑡𝑟 for all 𝑢 ∈ 𝑆𝑑−1, then
𝐵(, ⋅) = 𝐶𝑇 and

 =
⋂

𝑢∈𝑆𝑑−1

𝛱−(𝑢, 𝐶𝑇 (𝑢)).

Proof. Consider the proper contour 𝜕 and assume for contradiction
that 𝐵(, 𝑢) > 𝐶𝑇 (𝑢) for some 𝑢 ∈ 𝑆𝑑−1. We then have that since
𝑢(𝐵(, 𝑢)) = 𝑢(𝐶𝑇 (𝑢)) then

0 = 𝑢
(

𝐶(𝑢)
)

− 𝑢
(

𝐵(, 𝑢)
)

= ∫

∞

0

(

1 − 𝐹 𝑢
𝐶𝑇 (𝑢)

(𝑡)
)

𝑑𝑡 − ∫

∞

0

(

1 − 𝐹 𝑢
𝐵(,𝑢)(𝑡)

)

𝑑𝑡

= ∫

∞

0

(

𝐹 𝑢
𝐵(,𝑢)(𝑡) − 𝐹 𝑢

𝐶𝑇 (𝑢)
(𝑡)
)

𝑑𝑡.
7

Since 𝐹 𝑢
𝐵(,𝑢)(𝑡) − 𝐹 𝑢

𝐶𝑇 (𝑢)
(𝑡) ≥ 0 this equality implies 𝐹 𝑢

𝐵(,𝑢)(𝑡) = 𝐹 𝑢
𝐶𝑇 (𝑢)

(𝑡)
for almost all 𝑡 ∈ [0,∞). However, by Proposition 5.6, 𝑏 ↦ 𝐹 𝑢

𝑏 (𝑡) is
monotone decreasing on 𝑢(𝑡). We must therefore have 𝐶𝑇 (𝑢) ∉ 𝑢(𝑡),
implying 𝐹 𝑢

𝐶𝑇 (𝑢)
(𝑡) ∈ {0, 1}, for almost all 𝑡 ∈ [0,∞). Furthermore, since

𝑡 ↦ 𝐹 𝑢
𝑏 (𝑡) is monotone non-decreasing 𝐹 𝑢

𝐶𝑇 (𝑢)
(𝑡) either equals 1(𝑡 < 𝑠) or

1(𝑡 ≤ 𝑠) for some 𝑠 ∈ [0,∞), where 1 denotes the indicator function. In
fact, since ∫ ∞

0

(

1 − 𝐹 𝑢
𝐶𝑇 (𝑢)

(𝑡)
)

𝑑𝑡 = 𝑡𝑟 we get 𝐹 𝑢
𝐶𝑇 (𝑢)

(𝑡) = 1(𝑡 < 𝑡𝑟) or 1(𝑡 ≤
𝑡𝑟). From this we see that P(𝜏𝛱+(𝑢,𝐶(𝑢)) = 𝑡𝑟) = 1 which contradicts
our assumption that 𝜏𝛱+(𝑢,𝐶(𝑢)) is non-deterministic, thereby implying
𝐵(, 𝑢) = 𝐶𝑇 (𝑢) for all 𝑢 ∈ 𝑆𝑑−1. □

These results shows us that any proper contour, in either the return
period or the quantile sense, is uniquely defined by (5.6) with 𝐶 = 𝐶𝑄
or 𝐶𝑇 respectively.

In the case where no proper contour exists we will need alternative
methods for constructing a valid contour. One example of a possible
construction is the following. Here 𝑥 ∈ R𝑑 is some suitable centre point,
ideally such that 𝐶(𝑢) − ⟨𝑢, 𝑥⟩ > 0 for all 𝑢 ∈ 𝑆𝑑−1, around which the
contour is drawn.

 = cl
(

conv
({

𝑥 + 𝑢 (𝐶(𝑢) − ⟨𝑢, 𝑥⟩)+ ∶ 𝑢 ∈ 𝑆𝑑−1})) , (5.7)

where (⋅)+ equals max(⋅, 0), conv(⋅) denotes the convex hull and cl(⋅) is
the closure.

Proposition 5.8. Assume that (5.4) holds and that 𝐶𝑄(𝑢) is bounded
from above. Let  be constructed as in (5.7) with 𝐶 = 𝐶𝑄, we then have
that 𝜕 is a valid contour in the quantile sense.

Similarly, if we further assume that the conditions of Proposition 5.4
hold, and that 𝐶𝑇 is bounded above for some 𝑡𝑟 ∈ (0,∞). If ̂ is
constructed as in (5.7) with 𝐶 = 𝐶𝑇 , we then have that 𝜕̂ is a valid
contour in the return period sense.

Proof. Since, by definition, 𝑥 + 𝑢
(

𝐶𝑄(𝑢) − ⟨𝑢, 𝑥⟩
)+ ∈  we have

𝐵(, 𝑢) = sup{⟨𝑢, 𝑣⟩ ∶ 𝑣 ∈ } ≥
⟨

𝑢, 𝑥 + 𝑢
(

𝐶𝑄(𝑢) − ⟨𝑢, 𝑥⟩
)⟩

= 𝐶𝑄(𝑢),

for any 𝑢 ∈ 𝑆𝑑−1. Lastly,  is closed and convex by definition, and since
𝐶𝑄 is bounded from above we have that

(

𝐶𝑄(𝑢) − ⟨𝑢, 𝑥⟩
)+ is bounded.

As a consequence,  is compact, making 𝜕 valid in the quantile sense
by Proposition 5.5. A nearly identical argument shows that 𝜕̂ is valid
in the return period sense. □

To ensure that this construction is always feasible we have the
following result, which ensures that 𝐶𝑄 and 𝐶𝑇 are indeed bounded,
thereby guaranteeing the existence of valid contours.

Lemma 5.9. Fix some 𝑡𝑟, 𝑡𝑠 ∈ (0,∞), 𝑞𝑠 ∈ (0, 1) such that 𝐶𝑇 is well
defined and assume that (5.4) holds. We then have that 𝐶𝑄 and 𝐶𝑇 are
bounded from above on 𝑆𝑑−1.

Proof. Firstly, by Theorem 5.2, we have that 𝐶𝑄 is defined and finite
for any 𝑢 ∈ 𝑆𝑑−1. Furthermore, if we define 𝜑(𝑡) = sup𝑠∈[0,𝑡] ‖𝑉 (𝑠)‖ we
may note that (5.4) implies P(𝜑(𝑡) = ∞) = 0 for any 𝑡 ∈ (0,∞).

As a consequence we may pick some 𝑏 ∈ R such that P(𝜑(𝑡𝑠) < 𝑏) >
𝑞𝑠 and compute

P(𝜏𝛱+(𝑢,𝑏) > 𝑡𝑠) ≥ P(𝜑(𝑡𝑠) < 𝑏) > 𝑞𝑠.

Due to this, we see that 𝐶𝑄(𝑢) ≤ 𝑏 for all 𝑢 ∈ 𝑆𝑑−1.
Similarly, we may pick 𝑏′ ∈ R such that P(𝜑(2𝑡𝑟) < 𝑏′) > 0.5. If we

then define 𝐾 = {𝑣 ∈ R𝑑 ∶ ‖𝑣‖ ≥ 𝑏′} we get

E
[

𝜏𝛱+(𝑢,𝑏′)
]

≥ E
[

𝜏𝐾
]

≥ 2𝑡𝑟P(𝜏𝐾 > 2𝑡𝑟) ≥ 2𝑡𝑟P(𝜑(2𝑡𝑟) < 𝑏′) > 𝑡𝑟.

This implies 𝐶𝑇 (𝑢) ≤ 𝑏′ for all 𝑢 ∈ 𝑆𝑑−1. □

With this result we can guarantee the existence of valid contours.
However, other construction methods also exist. In Huseby et al.
(2021), the authors consider a scenario where 𝐶 could produce a
𝑒
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proper contour, but due to estimation errors, the approximated 𝐶𝑒 fails
o do so. To address this issue, they propose constructing an inflated
ontour using (5.6) based on 𝐶𝑒 + 𝑐 for some appropriate 𝑐 ∈ R. In
more general case where 𝐶𝑒 does not admit a proper contour, as

resented in Hafver et al. (2022), an invalid contour is constructed
sing (5.6), followed by an extension procedure that guarantees a
alid construction in the limit. For both cases it is assumed that 𝐶𝑒
s bounded, and hence Lemma 5.9 ensures that these methods can still
e applied in our setting. We also mention Sande and Wind (2023),
here a numerical algorithm for computing a minimal valid contour

n the sense of mean width is developed and analysed.
With the existence and construction of contours settled we can

ove on to some examples. The goal of these are to show the ways
he presented methods differ from the existing framework presented
n e.g. Huseby et al. (2013). The first main difference is the ability
o consider a continuous-time framework which may more accurately
apture the dynamics of 𝑉 in between the discrete points. Secondly we
an also allow non-stationary behaviour which allows the inclusion of
ffects like climate change as a part of the model for 𝑉 .

. Theoretical example

We will in this section aim to define a proper contour in the return
eriod sense with a target return period of 𝑡𝑟, under the assumption that
follows the continuous dynamics described below. Once this is done

e will compare our exact method with an i.i.d. method to highlight
he differences. In analysing these models we also discuss when i.i.d.
ethods produce conservative estimates.

It is also worth mentioning that a similar case was studied in Leira
2008). Here, several types of contours were compared for both con-
inuous and discrete models of the underlying environmental factors.
t was also observed that a continuous model for 𝑉 may result in
arger contours. Additionally, in Huseby (2023), Mackay et al. (2021),
anem (2023) the authors compare discrete models taking serial cor-
elation into account with i.i.d. models. In these articles they con-
lude that including autodependence will lead to smaller contours, and
ence argued that ignoring correlation will lead to overly conservative
stimates.

A particular result for Gaussian processes expresses this effect in
n exact form (Slepian’s Lemma). Consider two stationary Gaussian
rocesses 𝑍1, 𝑍2 with the same mean and standard deviation, but
ifferent autocorrelation functions. If the autocorrelation function of
1 is smaller or equal to the autocorrelation of 𝑍2, then sup{𝑍1(𝑠), 𝑠 ≤
} ≥ sup{𝑍2(𝑠), 𝑠 ≤ 𝑡}, for all 𝑡. Consequently, 𝑍1 will exhibit lower
eturn periods than 𝑍2.

The extreme values of environmental load processes are usually
lustered, which contributes to an overall positive autocorrelation
tructure. This may be compared to an i.i.d. model, which has 0 au-
ocorrelation. Consequently the i.i.d. model would have smaller return
eriods than for the clustered model in a Gaussian setting. This result
oes not necessarily translate to general, non-Gaussian, processes, but
till serves as a solid heuristic when backed up by empirical results
rom e.g. Huseby (2023), Mackay et al. (2021), Vanem (2023). The
.i.d. method will therefore serve as a conservative representation of
ll possible discrete models. We can therefore compare its resulting
ontours to that of a continuous model to examine the consequences
f a continuous-time model for 𝑉 .

We here consider the case where 𝑉 (𝑡) ∈ R1 is defined by

(𝑡) =
√

2𝜃 ∫

𝑡

−∞
𝑒−𝜃(𝑡−𝑠)𝑑𝑊 (𝑠),

where 𝑊 is standard Brownian motion and 𝜃 ∈ R, 𝜃 > 0. This
makes 𝑉 a standardised Ornstein–Uhlenbeck process which serves as a
continuous interpolation of an AR(1) discrete-time process. Note that 𝑉
is standardised to ensure a mean of 0 and variance 1, which implies 𝑉 (𝑡)
standard normally distributed for any 𝑡. This allows us to interpret the
8

continuous-time process in the sense of Section 4. We assume that the
long-term conditions over the periods [𝑛𝛥𝑡, (𝑛+1)𝛥𝑡], 𝑛 ∈ N, are standard
normally distributed and follow an AR(1) process. Consequently, 𝑉 (𝑡)
is an interpolation of these conditions and can be interpreted as the
average conditions over [𝑡, 𝑡 + 𝛥𝑡].

Since −𝑉 satisfies −𝑉 (𝑡) =
√

2𝜃 ∫ 𝑡
−∞ 𝑒−𝜃(𝑡−𝑠)𝑑(−𝑊 )(𝑠), we see that

−𝑉 is also an Ornstein–Uhlenbeck process with the same parameters
nd thus equal in law to 𝑉 . As such we know that 𝐶𝑇 is constant
n 𝑆0 = {−1, 1}. In fact, if we considered a 𝑑-dimensional Ornstein–
hlenbeck process, 𝐶𝑇 would still be constant and 𝜕 would equal
(𝑑 − 1)-sphere with a radius given by the same value of 𝐶𝑇 as our

1-dimensional case.
In computing 𝐶𝑇 we again consider 𝑢(𝑏) = E

[

𝜏𝛱+(𝑢,𝑏)
]

. Under the
ssumption that 𝑉 (0) = 0 we have an explicit representation of 𝑢(⋅),
ndependent of 𝑢, given in e.g. Ricciardi and Sato (1988) as

𝑢(𝑏) =
1
2𝜃

∞
∑

𝑖=1

(
√

2𝑏)𝑖

𝑖!
𝛤
( 𝑖
2

)

,

where 𝛤 is the gamma function. One can also show the more conve-
nient alternative representation of

𝑢(𝑏) =
√

𝜋

𝜃
√

2 ∫

𝑏

0

(

1 + erf
(

𝑡
√

2

))

𝑒𝑡
2∕2𝑑𝑡,

where erf denotes the error function. By inverting 𝑢(⋅) we can easily
compute 𝐶𝑇 numerically. The resulting contour would then, due to 𝐶𝑇
being constant, be the two points given by 𝜕 = {± −1

𝑢 (𝑡𝑟)}.
This gives us an explicit representation of the optimal contour.

However, as an alternative we could consider am i.i.d model for 𝑉 . We
define 𝑊 = {𝑊 𝑛}∞𝑛=0 as an independent sequence of standard normally
distributed random variables. Further define 𝑉 by 𝑉 (𝑡) = 𝑊

⌊𝑡∕𝛥𝑡⌋, for
ome 𝛥𝑡 > 0 and note that 𝑉 (𝑡) and 𝑉 (𝑡) are equal in law for any 𝑡 ∈ R.
s such we may consider 𝑉 as an alternative i.i.d. model of 𝑉 .

If we were to apply the i.i.d. method presented in e.g. Huseby
t al. (2013) we could compute 𝐶𝑇 based on 𝑉 . We know that this

is equivalent to considering 𝐶𝑒 with an exceedence probability of 𝑝𝑒 =
𝑡∕𝑡𝑟, which means that for all 𝑢 ∈ 𝑆0 we would have

𝐶𝑒(𝑢) = 𝛷−1
(

1 − 𝛥𝑡
𝑡𝑟

)

,

where 𝛷 is the cumulative distribution function of a standard normal
andom variable.

With these two models we can compare how the resulting contours
iffer. Since both models provide perfectly circular contours (insofar as
0 can be referred to as circular) we can instead compare the radii. To
ompute exact numbers we want a reasonably realistic value for 𝜃. This

will be chosen based on a time series, {𝐻𝑠(𝑛)}𝑛∈N, of significant wave
heights. The details of this dataset will be given in Section 7.

In order to choose our parameters we first pick 𝛥𝑡 = 3 hours and
ompute the 24 hour autocorrelation (𝐴𝐶24 ≈ 68%) of the standardised

data (𝐻𝑠 − 𝜇𝐻 )∕𝜎𝐻 . Here 𝜇𝐻 and 𝜎𝐻 are the empirical mean and
tandard deviation, respectively, of the time series {𝐻𝑠(𝑛)}𝑛∈N. By not-
ng that the 24-hour autocorrelation of an Ornstein–Uhlenbeck process
atisfies 𝜃 = −𝑙𝑜𝑔(𝐴𝐶24)∕24 we can estimate 𝜃 ≈ 0.16 hours−1.

The resulting radius curve based on the continuous-time model of
, labelled OU Method, and the curve based on 𝑉 , labelled IID Method,

are plotted in Fig. 1.

Remark 6.1. The differences are quite small, but there is still a no-
ticeable distinction between the two methods. In fact, their similarities
are heavily dependent on the value of 𝜃, a higher value would push the
radius of the O.U. method more noticeably above or below the one of
the i.i.d. method. For example, by accounting for trends and seasonality
in 𝐻𝑠 one may get 𝜃 ≈ 0.025. This would yield e.g. a 200-year contour
radius of 4.75, which is a 2.3% increase over the i.i.d. method. If we
instead considered an estimate of 𝜃 based on e.g. the 7-hour empirical

autocorrelation, then 𝜃 ≈ 0.01 is obtained. This estimate would yield a
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Fig. 1. Comparison of contour radii for different methods.
200-year contour radius of 4.54, a 2.3% decrease compared to the i.i.d.
method.

As we see the i.i.d. method produces larger and more conservative
contours for low values of 𝑡𝑠, but crosses below for sufficiently large
return periods. One can even find an approximation of when the two
lines cross by noting that this point occurs when the radius, 𝑅, of the
contour satisfies

𝛥𝑡
1 −𝛷(𝑅)

= 𝑢(𝑅). (6.1)

It can further be shown, by taking specific asymptotic expansions, that
for high values of 𝑅 we have the following approximations

𝛥𝑡
1 −𝛷(𝑅)

≈ 𝛥𝑡
√

2𝜋𝑅𝑒𝑅
2∕2, 𝑢(𝑅) ≈

√

2𝜋𝑒𝑅2∕2

𝜃𝑅
.

Applying these to both sides of (6.1) then yields

𝛥𝑡
√

2𝜋𝑅𝑒𝑅
2∕2 ≈

√

2𝜋𝑒𝑅2∕2

𝜃𝑅
,

as long as the point where the lines cross occur for sufficiently high
values of 𝑅. Simplifying this expression we get the approximate identity
𝜃𝛥𝑡𝑅2 = 1, which means we can compute the return period for which
this point occurs, here denoted 𝑡∗𝑟 , by

𝑡∗𝑟 ≈
√

2𝜋𝛥𝑡
𝜃

𝑒
1

2𝜃𝛥𝑡 . (6.2)

For our specific parameters, this approximation yields 𝑡∗𝑟 ≈ 130 years.
By analysing (6.2) we can supplement the more heuristic reasons

why these different models yield different contours.
Using 𝑉 ignores the autocorrelation, allowing the process to vary

more wildly, usually producing larger contours. This effect is magnified
when 𝛥𝑡 is low which corresponds to the limit lim𝛥𝑡→0 𝑡∗𝑟 = ∞. This effect
justifies why the i.i.d. approach is usually considered as a conservative
estimate, as argued in e.g. Huseby (2023), Mackay et al. (2021), Vanem
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(2023). In these articles the authors remark that including serial corre-
lation would lead to less conservative contours, and thus less extreme
design conditions. This holds in the setting of discrete models for 𝑉 .
However, as we see from this example, there are situations where the
consideration of continuous-time models can lead to more conservative
contours despite the inclusion of serial correlation.

As this example shows, there are situations where the i.i.d. method
can overestimate the return period compared to a continuous-time
model. Since the presumed true model of 𝑉 is non-discrete, it has
the possibility of exceeding boundaries at times between the discrete
points. Since 𝑉 (𝑡) was calibrated to equal 𝑉 (𝑡) in distribution, and
therefore represents the long-term conditions over [𝑡, 𝑡 + 𝛥𝑡], we con-
sider the following scenario. Some off-shore structure is exposed to
environmental loads, for simplicity we focus only on the significant
wave height. The significant wave heights over the periods [0, 𝛥𝑡]
and [𝛥𝑡, 2𝛥𝑡], each induces their own short-term probability of failure.
However, due to the variability of 𝑉 , the significant wave height could
potentially be higher over the middle period of [𝛥𝑡∕2, 3𝛥𝑡∕2], than over
any of the two other periods individually. This permits a potentially
much higher failure probability over the middle period that would be
ignored by only considering [0, 𝛥𝑡] and [𝛥𝑡, 2𝛥𝑡]. As a consequence, the
time until failure could be underestimated by not considering the short-
term variability of the long-term conditions described by 𝑉 . This effect
is reflected by 𝜕𝑡∗𝑟∕𝜕𝜃 < 0, which implies that increasing 𝜃 shrinks the
domain where the method based on 𝑉 is conservative. Indeed, a high 𝜃
increases the short-term volatility of 𝑉 , thus improving the chances of
the process exceeding a fixed boundary at times in-between the points
of {𝑛𝛥𝑡, 𝑛 ∈ N}.

For the purposes of response analysis we usually want to use a
discrete model for 𝑉 . This example, however, shows that this can
overestimate the return period of sufficiently extreme conditions. Con-
sequently, those models may underestimate the response resulting from
such conditions. Bear in mind that the i.i.d. method can be viewed as
a conservative representative for all possible discrete methods. Thus,
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Fig. 2. Non-parametric functions for 𝐻𝑠, with 95% confidence intervals.
if the continuous-time modelling of 𝑉 produces meaningfully larger
contours than even the conservative i.i.d. estimate, then this serves as
an indication that a lower 𝛥𝑡 should be considered.

7. Empirical example

7.1. Data and outline of method

The data considered for this example will consist of ERA5 reanalysis
data (Hersbach et al., 2018). We will use hourly data for significant
wave height and zero-upcrossing wave periods from 65◦ N, 0◦ W over
the period 1959-2021. While the calibration will use the full resolution
of one hour, we will use a three-hour time step for the purposes of
simulation and computation.

Our primary goal is here to compute an empirical environmental
contour in the quantile sense for a survival time of 𝑡𝑠 = 50 years and a
survival probability of 𝑞𝑠 = 𝑒−1 ≈ 37%. In doing so we will also present
a specific algorithm for generating such contours which is carried out
in four steps:

• The cumulative distribution function of 𝑉 (𝑡) is estimated for all
relevant values of 𝑡.

• Paths of 𝑉 are simulated by using sequences of independent (but
not identically distributed) random variables.

• These paths are used to compute samples of 𝜙𝑢(𝑡𝑠) which allows
the computation of 𝐶𝑄 by Lemma 5.1.

• The contour can then be constructed. If a proper contour exists,
then it is defined by (5.6), but if no such contour exists, we may
employ the methods of Sande and Wind (2023) to produce a
minimal valid contour in the sense of mean width.

Note that a survival probability of 𝑒−1 is chosen to correspond with
a 50-year return period if 𝜏 had an exponential density. Due to the
presence of a trend we do not have this distribution, but it will still
serve as an easy, although rough, point of comparison.

Remark 7.1. This procedure is very similar to the method proposed
in Vanem (2023), which consider a discrete, but serially correlated
model for 𝑉 . The author also considers contours in the return period
sense in the same manner as defined in Section 3. Firstly, both the
marginal cumulative distribution functions and autocorrelation func-
tion of 𝑉 are estimated. It is then assumed that 𝑉 (𝑡) = 𝑔(𝑍(𝑡)), where
𝑔 is the Rosenblatt transform, implying that 𝑍 has standard Gaussian
marginals. The author then finds a unique autocorrelation structure for
𝑍 that implies the empirical autocorrelation of 𝑉 . Paths of 𝑉 can then
be simulated by simulating 𝑍, which is used to estimate 𝐶 .
10

𝑄

In our simulation method we consider a non-stationary 𝑉 , but
ignore its autocorrelation. It is entirely possible to include serial cor-
relation by extending the method in Vanem (2023) to a non-stationary
setting. One could for example consider 𝑉 (𝑡) = 𝑔(𝑡, 𝑍(𝑡)), where 𝑔(𝑡, ⋅) is
the Rosenblatt transform corresponding to the cumulative distribution
function of 𝑉 (𝑡).

It is worth mentioning that these methods could be further im-
proved by incorporating exogenous events (such as e.g. El Niño South-
ern Oscillation (ENSO) or the North Atlantic Oscillation (NAO) ef-
fect). This could potentially capture the clustering of extreme events
in a more realistic way than the fundamentally Gaussian methods
mentioned above.

7.2. Calibration of distributions

We here have 𝑑 = 2 with 𝑉 (𝑡) = (𝑇𝑧(𝑡),𝐻𝑠(𝑡)) where 𝑇𝑧 and 𝐻𝑠
denotes the zero-upcrossing wave period and significant wave height
respectively. Following e.g. Huseby et al. (2021, 2013), Vanem and
Bitner-Gregersen (2012), we model 𝐻𝑠 using a 3-parameter Weibull
distribution, and 𝑇𝑧 with a conditional log-normal distribution. How-
ever, due to the presence of long-term trends discussed in e.g. Kushnir
et al. (1997), Vanem and Bitner-Gregersen (2012), Vanem et al. (2012),
we will model 𝑉 as non-stationary to take both this trend, as well as
seasonality, into account.

We assume that 𝐻𝑠(𝑡) ∼ 𝑊 (𝜆(𝑡), 𝑘(𝑡), 𝜃), i.e. a 3-parameter Weibull
distribution with scale 𝜆(𝑡), shape 𝑘(𝑡), and location 𝜃. Here 𝜆 is taken
to be on the form 𝜆(𝑡) = (𝑐1 + 𝑐2𝑡)𝑙(𝑡), furthermore, 𝑙 and 𝑘 are assumed
periodic with a period of one year. The calibrated values for these
parameters and functions are given in Table 1 and Fig. 2.

As for the zero-upcrossing wave period, we assume that
(

log(𝑇𝑧(𝑡))|𝐻𝑠(𝑡) = ℎ
)

∼  (𝜇(𝑡, ℎ), 𝜎2(𝑡, ℎ)), i.e. a conditional normal
distribution with mean 𝜇(𝑡, ℎ) and variance 𝜎2(𝑡, ℎ). Here 𝜇 and 𝜎 are
assumed to be on the form 𝜇(𝑡, ℎ) = 𝑚(𝑡) + 𝑓𝜇(ℎ) and 𝜎(𝑡, ℎ) = 𝑠(𝑡)𝑓𝜎 (ℎ)
where 𝑚 and 𝑠 are periodic with a period of one year. The calibrated
values for these functions are given in Fig. 3.

Remark 7.2. Several simplifications could potentially be considered
here. For example, one may ignore seasonality and use the popular
parametric estimates 𝑓𝜇(ℎ) = 𝑎1 + 𝑎2ℎ𝑎3 and 𝑓𝜎 (ℎ) = 𝑏1 + 𝑏2𝑒𝑏3ℎ for
some constants 𝑎𝑖, 𝑏𝑖, 𝑖 = 1, 2, 3. This would allow for a simpler and
fully parametric model for the cumulative distribution function of 𝑉 (𝑡).

In order to perform our calibration procedure we will first remark
that if 𝐻𝑠(𝑡) ∼ 𝑊 (𝜆(𝑡), 𝑘(𝑡), 𝜃), we then have for any 𝜆′(𝑡), 𝑘′(𝑡) ∈ R that
(𝐻𝑠(𝑡) − 𝜃)

′ ∼ 𝑊
(

𝜆(𝑡)
′ , 𝑘(𝑡), 0

)

, (𝐻𝑠(𝑡) − 𝜃)𝑘′(𝑡) ∼ 𝑊
(

𝜆(𝑡)𝑘′(𝑡),
𝑘(𝑡)
′ , 0

)

.

𝜆 (𝑡) 𝜆 (𝑡) 𝑘 (𝑡)
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Fig. 3. Non-parametric functions for 𝑇𝑧, with 95% confidence intervals.
Table 1
Parameters for 𝐻𝑠.

𝜃 𝑐1 𝑐2
Estimate 0.37 m 2.5 m 4.0e−3 m/y
Standard Error 4.1e−2 m 3.5e−2 m 9.6e−4 m/y

To estimate (𝜆(𝑡), 𝑘(𝑡), 𝜃) for 𝐻𝑠 we then do the following.

• 𝜃 is estimated by the minimal measured value (rounded down to
2 significant digits to avoid numerical issues).

• The linear trend parameters, (𝑐1, 𝑐2), are estimated by linear re-
gression on 𝐻𝑠(𝑡) − 𝜃.

• 𝑘(𝑡) is estimated by inverting the equality

𝛤 (1 + 1∕𝑘(𝑡))2

𝛤 (1 + 2∕𝑘(𝑡))
=

E[𝐻𝑠(𝑡) − 𝜃]2

E[(𝐻𝑠(𝑡) − 𝜃)2]
,

where the expectations are computed by smoothing spline re-
gression on 𝐻𝑠(𝑡) − 𝜃. We then normalise 𝑘 by defining 𝑘′(𝑡) =
𝑘(𝑡)∕ ∫ 1

0 𝑘(𝑡)𝑑𝑡 so the average value of 𝑘′ equals 1. This is done to
avoid numerical issues from taking high powers.

• For calibration of 𝑙 we note that

E

[

(𝐻𝑠(𝑡) − 𝜃(𝑡))𝑘′(𝑡)

(𝑐1 + 𝑐2𝑡)𝑘
′(𝑡)

]

= 𝑙(𝑡)𝑘
′(𝑡)𝛤

(

1 +
𝑘(𝑡)
𝑘′(𝑡)

)

.

We can then fit 𝑙(𝑡)𝑘′(𝑡) by a smoothing spline regression of

(𝐻𝑠(𝑡) − 𝜃(𝑡))𝑘′(𝑡)

(𝑐1 + 𝑐2𝑡)𝑘
′(𝑡)𝛤 (1 + 𝑘′(𝑡)

𝑘(𝑡) )
.

11
The resulting parameters are given in Table 1 and Fig. 2. Note that
the parameters in Table 1 are given in meters (m) and meters per
year (m/y), the functions in Fig. 2 are dimensionless. Furthermore, we
consider 𝑡 = 0 to occur at the end of the dataset, i.e. the beginning of
2022.

As for 𝑇𝑧 we do the following:

• We first estimate 𝜇(𝑡, ℎ) by E
[

log(𝑇𝑧(𝑡))|𝐻𝑠(𝑡)
]

= 𝜇(𝑡,𝐻𝑠(𝑡)) =
𝑚(𝑡) + 𝑓𝜇(𝐻𝑠(𝑡)). With this we can fit smoothing splines for 𝑚 and
𝑓𝜇 by generalised additive model calibration.

• Similarly, 𝜎(𝑡, ℎ) = 𝑠(𝑡)𝑓𝜎(ℎ) can be computed by

E
[

log
(

log(𝑇𝑧(𝑡)) − 𝜇(𝑡,𝐻𝑠(𝑡))
)2
]

= 𝐿+ log
(

𝑠2(𝑡)
)

+ log
(

𝑓 2
𝜎 (𝐻𝑠(𝑡))

)

,

where 𝐿 is the log-moment of a chi-squared random variable with
1 degree of freedom. This allows us to fit smoothing splines for
log(𝑓 2

𝜎 (ℎ)) and log(𝑠2(𝑡)) by a weighted generalised additive model
calibration. Finally, to counteract issues arising from log-scale
calibration, 𝑠 is scaled to ensure that

(

log(𝑇𝑧(𝑡)) − 𝜇(𝑡,𝐻𝑠(𝑡))
)

∕
𝜎(𝑡,𝐻𝑠(𝑡)) has a variance of 1.

The resulting functions are given in Fig. 3.

7.3. Simulation

With the 𝑑-dimensional marginal cumulative distribution functions
of 𝑉 determined, we can move on to the computation of 𝐶𝑄. Similarly
to the previous example we define {𝑊𝑛}∞𝑛=0 as a sequence of indepen-
dent random variables such that 𝑊𝑛 = 𝑉 (𝑛𝛥𝑡) in distribution for 𝛥𝑡 = 3
hours. This again lets us model 𝑉 by 𝑉 (𝑡) = 𝑊

⌊𝑡∕𝛥𝑡⌋.
With this model we can easily simulate paths of 𝑉 over the next
50 years. Based on these simulations we obtain samples of 𝜙𝑢(𝑡𝑠) for
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Fig. 4. Environmental contours for case 1 (blue), case 2 (black), and case 3 (red).
180 uniformly spaced unit vectors in 𝑆1. By considering the lower 𝑞𝑠
quantile of 𝜙𝑢(𝑡𝑠) for a fixed 𝑢 ∈ 𝑆1 we obtain 𝐶𝑄(𝑢) by Lemma 5.1,
which yields 𝑞𝑠 = P(𝜏𝛱+(𝑢,𝐶𝑄(𝑢)) > 𝑡𝑠) = P(𝜙𝑢(𝑡𝑠) ≤ 𝐶𝑄(𝑢)).

Remark 7.3. We may also note that 𝑊𝑛 has a probability density
function for all 𝑛 ∈ N. This implies that, for any 𝑢 ∈ 𝑆1, 𝑡𝑠 > 0, 𝜙𝑢(𝑡𝑠) has
a probability density function as well. Consequently, by Theorem 5.2,
𝐶𝑄 is well defined, and by Proposition 5.8 and Lemma 5.9 we can
guarantee existence of valid contours. Furthermore, as the probability
density function of 𝑊𝑛 has support equal to R × [𝜃,∞), we know
that 𝜙𝑢(𝑡𝑠) has a probability density function with connected support.
Consequently, if a proper contour exists, Proposition 5.6 implies it is
defined by (5.6).

In existing literature, such as Huseby et al. (2013) and Vanem
and Bitner-Gregersen (2012), the inclusion of climatic trends is ac-
complished by considering a stationary distribution with parameters
modified to reflect the observed trend. In order to study the effects of
replacing the trend by adjusting parameters of a stationary model, we
will examine three cases. This will be done by fixing the trend at either
the beginning or end of our 50-year period.

• Case 1: 𝜆(𝑡) = (𝑐1 + 𝑐250)𝑙(𝑡), which represents sea-states based on
the trend 50 years after 2022.

• Case 2: 𝜆(𝑡) = (𝑐1 + 𝑐2𝑡)𝑙(𝑡), which represents the estimated true
sea-states.

• Case 3: 𝜆(𝑡) = 𝑐1𝑙(𝑡), which represents sea-states based on the trend
at the beginning of 2022.

Note that we here still include the seasonal effects. This is done to
avoid using several calibration methods, which could create artificial
differences between the cases unrelated to the trend. However, despite
seasonality, we would still expect case 1 and 3 to properly represent
stationary alternatives to our method.

As we see from Fig. 4, there is a notable difference in 𝐶𝑄(𝑢), though
largely for 𝑢 ≈ (0, 1). Note that since ⟨(0, 1), 𝑉 (𝑡)⟩ = 𝐻𝑠(𝑡) these values
depend mostly on the behaviour of the significant wave height. This
demonstrates that including trends is important to avoid underestima-
tion of risk, such as in case 3. However, by including the trend as a
non-constant effect, as in case 2, we can still safely reduce the resulting
contour relative to case 1, where the highest trend value is applied to
the entire period. Specifically, using the conservative estimate of case
1 still overestimates the risk significantly, with a maximal difference in
𝐶𝑄 of 0.41. Since the modelling of 𝑉 by an i.i.d. process is inherently on
the safe side, we may be overly cautious by choosing a method which
makes further conservative approximations.
12
8. Summary and conclusions

This paper has rigorously defined and established minimal condi-
tions for existence of environmental contours based on general stochas-
tic processes. These definitions have several advantages over conven-
tional constructions. Chiefly, the ability to properly include climate
trends, but also the capability of including seasonality and autodepen-
dence.

The theory can also be further generalised to include several exten-
sions. For example, we have discussed the possibility of including serial
correlation in the simulation algorithm of Section 7, by modifying the
methods of Vanem (2023). The addition of omission factors can be done
in similar way as described in Huseby et al. (2021). Lastly, buffering,
as introduced in Dahl and Huseby (2018), can be readily extended to
our setting, but may require restricting the model choice of 𝑉 , to those
based on sequences of independent random variables.

Furthermore, the presented methods have also been compared to
conventional techniques, and significant differences in the resulting
contours have been demonstrated. In particular, we have discussed
how contours can be used to examine the impact of discretisation
and autocorrelation. Additionally, we have also illustrated how these
methods can avoid the underestimation of risk coming from trends,
without the use of excessively conservative strategies. Finally, as part of
these examples, we have also presented a strategy for computing these
contours based on Monte-Carlo simulation. As such, the approaches
considered are presented as an alternative method for the construction
of environmental contours.

CRediT authorship contribution statement

Åsmund Hausken Sande: Conceptualization, Data curation, For-
mal analysis, Investigation, Methodology, Resources, Software, Val-
idation, Visualization, Writing – original draft, Writing – review &
editing.

Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Data availability
Data will be made available on request.



Ocean Engineering 292 (2024) 116615Å.H. Sande
Acknowledgements

The author acknowledges financial support by the Research Council
of Norway under the SCROLLER project, project number 299897. The
author also wants to thank the anonymous referees for providing useful
comments and suggestions, which provided significant improvements
to the manuscript.

References

Baarholm, G.S., Haver, S., Økland, O.D., 2010. Combining contours of significant wave
height and peak period with platform response distributions for predicting design
response. Mar. Struct. 23 (2), 147–163.

Dahl, K.R., Huseby, A.B., 2018. Buffered environmental contours. In: Safety and
Reliability–Safe Societies in a Changing World. CRC Press, pp. 2285–2292.

Fontaine, E., Orsero, P., Ledoux, A., Nerzic, R., Prevosto, M., Quiniou, V., 2013.
Reliability analysis and response based design of a moored FPSO in west africa.
Struct. Saf. 41, 82–96.

Giske, F.-I.G., Kvåle, K.A., Leira, B.J., Øiseth, O., 2018. Long-term extreme response
analysis of a long-span pontoon bridge. Mar. Struct. 58, 154–171.

Hafver, A., Agrell, C., Vanem, E., 2022. Environmental contours as voronoi cells.
Extremes 25 (3), 451–486.

Haselsteiner, A.F., Coe, R.G., Manuel, L., Chai, W., Leira, B., Clarindo, G., Soares, C.G.,
Hannesdóttir, Á., Dimitrov, N., Sander, A., et al., 2021. A benchmarking exercise
for environmental contours. Ocean Eng. 236, 109504.

Haver, S., Winterstein, S.R., 2008. Environmental contour lines: A method for estimat-
ing long term extremes by a short term analysis. In: SNAME Maritime Convention.
SNAME, D011S002R005.

Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J.,
Nicolas, J., Peubey, C., Radu, R., Rozum, I., Schepers, D., Simmons, A., Soci, C.,
Dee, D., Thépaut, J.-N., 2018. ERA5 hourly data on single levels from 1959 to
present. http://dx.doi.org/10.24381/cds.adbb2d47.

Huseby, A.B., 2023. Environmental contours and time dependence. In: Proceedings of
the 33nd European Safety and Reliability Conference. ESREL 2023, pp. 1290–1297.

Huseby, A.B., Vanem, E., Agrell, C., Hafver, A., 2021. Convex environmental contours.
Ocean Eng. 235, 109366.

Huseby, A.B., Vanem, E., Natvig, B., 2013. A new approach to environmental contours
for ocean engineering applications based on direct Monte Carlo simulations. Ocean
Eng. 60, 124–135.
13
Huseby, A.B., Vanem, E., Natvig, B., 2015. Alternative environmental contours for
structural reliability analysis. Struct. Saf. 54, 32–45.

Kushnir, Y., Cardone, V., Greenwood, J., Cane, M., 1997. The recent increase in north
atlantic wave heights. J. Clim. 10 (8), 2107–2113.

Leira, B.J., 2008. A comparison of stochastic process models for definition of design
contours. Struct. Saf. 30 (6), 493–505.

Mackay, E., de Hauteclocque, G., 2023. Model-free environmental contours in higher
dimensions. Ocean Eng. 273, 113959.

Mackay, E., de Hauteclocque, G., Vanem, E., Jonathan, P., 2021. The effect of serial
correlation in environmental conditions on estimates of extreme events. Ocean Eng.
242, 110092.

NORSOK, 2017. NORSOK Standard N-003:2017: Actions and action effects. NORSOK,
Norway.

Ricciardi, L.M., Sato, S., 1988. First-passage-time density and moments of the
ornstein-uhlenbeck process. J. Appl. Probab. 25 (1), 43–57.

Rockafellar, R.T., 1997. Convex Analysis, Vol. 11. Princeton University Press.
Rosenblatt, M., 1952. Remarks on a multivariate transformation. Ann. Math. Stat. 23

(3), 470–472.
Ross, E., Astrup, O.C., Bitner-Gregersen, E., Bunn, N., Feld, G., Gouldby, B., Huseby, A.,

Liu, Y., Randell, D., Vanem, E., et al., 2020. On environmental contours for marine
and coastal design. Ocean Eng. 195, 106194.

Sagrilo, L., Naess, A., Doria, A., 2011. On the long-term response of marine structures.
Appl. Ocean Res. 33 (3), 208–214.

Sande, Å.H., Wind, J.S., 2023. Minimal convex environmental contours. arXiv preprint
arXiv:2308.01753.

Vanem, E., 2019. 3-dimensional environmental contours based on a direct sampling
method for structural reliability analysis of ships and offshore structures. Ships
Offshore Struct. 14 (1), 74–85.

Vanem, E., 2023. Analysing multivariate extreme conditions using environmental
contours and accounting for serial dependence. Renew. Energy 202, 470–482.

Vanem, E., Bitner-Gregersen, E.M., 2012. Stochastic modelling of long-term trends in
the wave climate and its potential impact on ship structural loads. Appl. Ocean
Res. 37, 235–248.

Vanem, E., Huseby, A.B., Natvig, B., 2012. A Bayesian hierarchical spatio-temporal
model for significant wave height in the north atlantic. Stoch. Environ. Res. Risk
Assess. 26, 609–632.

Veritas, D.N., 2019. Recommended Practice DNV-RP-C205 on environmental conditions
and environmental loads. Det Norske Veritas Oslo, Norway, (Amended: Sep, 2021).

Winterstein, S.R., Ude, T.C., Cornell, C.A., Bjerager, P., Haver, S., 1993. Environ-
mental parameters for extreme response: Inverse FORM with omission factors. In:
Proceedings of the ICOSSAR-93, Innsbruck, Austria. pp. 551–557.

http://refhub.elsevier.com/S0029-8018(23)02999-2/sb1
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb1
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb1
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb1
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb1
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb2
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb2
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb2
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb3
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb3
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb3
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb3
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb3
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb4
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb4
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb4
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb5
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb5
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb5
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb6
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb6
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb6
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb6
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb6
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb7
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb7
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb7
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb7
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb7
http://dx.doi.org/10.24381/cds.adbb2d47
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb9
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb9
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb9
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb10
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb10
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb10
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb11
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb11
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb11
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb11
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb11
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb12
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb12
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb12
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb13
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb13
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb13
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb14
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb14
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb14
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb15
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb15
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb15
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb16
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb16
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb16
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb16
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb16
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb17
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb17
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb17
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb18
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb18
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb18
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb19
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb20
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb20
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb20
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb21
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb21
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb21
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb21
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb21
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb22
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb22
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb22
http://arxiv.org/abs/2308.01753
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb24
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb24
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb24
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb24
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb24
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb25
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb25
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb25
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb26
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb26
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb26
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb26
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb26
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb27
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb27
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb27
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb27
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb27
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb28
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb28
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb28
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb29
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb29
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb29
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb29
http://refhub.elsevier.com/S0029-8018(23)02999-2/sb29

	Convex environmental contours for non-stationary processes
	Introduction
	Convex Contours
	Environmental Contours for General Processes
	Connection with Response
	Interpretation of Environmental Processes in Continuous Time
	Applications to Response Analysis
	Deterministic Response
	Quantiles of Design Point


	Existence of Contours
	Theoretical Example
	Empirical Example
	Data and Outline of Method
	Calibration of Distributions
	Simulation

	Summary and Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	References


