
How not to IETF: Lessons Learned From Failed
Standardization Attempts

Michael Welzl
University of Oslo

michawe@ifi.uio.no

Jörg Ott
TU Munich

ott@in.tum.de

Colin Perkins
University of Glasgow

csp@csperkins.org

Safiqul Islam
Oslo Metropolitan University

safiqul.islam@oslomet.no

Dirk Kutscher
HKUST(GZ)
dku@ust.hk

Abstract—Protocol standards work is an interesting mixture of
technical, political, financial, and human factors. Standardization
processes require stamina as they may be lengthy, and they
demand frustration resistance as they may hold surprises at all
stages. While this certainly bears some similarity to academic
endeavors, the need to build broader consensus and the potential
of far reaching industry impact, among other factors, lead to
different incentives and value systems. Peer review perspectives
may also differ notably. In this paper, we discuss issues we
came across in the past when trying to develop and advance
technologies in the IETF or push presumed solid technology
solutions towards standardization. We summarize our personal
perspectives on the lessons learned.

I. INTRODUCTION

For researchers working on network communications, the
prospect of turning an idea into a standard can be alluring.
Standards, when deployed, can have significant practical real-
world impact. The Internet’s main standards development
organisation, the Internet Engineering Task Force (IETF), is
a particularly attractive prospect for standardising the results
of research, as it makes all materials freely available, allows
open participation, and offers several ways to participate free
of charge or at relatively low cost.

The authors of this article have contributed to the IETF in
various ways over the last ∼25 years, holding a large variety of
roles (document author, editor, working group chair, member
of review directorate, etc.). As co-authors of 65 RFCs, we
have had some success—but, naturally, we have also failed
to standardize some of our ideas. Indeed, the IETF, as any
(consensus-driven) organization, offers ample opportunity for
failure, and one can fail for reasons that may seem unexpected,
at least to academics. With “failure”, we mean “failing to
standardize” (publish as an RFC). It is not at all uncommon
for accepted and published standards to “fail” in terms of
deployment; such failures are out of scope of this paper, but
discussed in [1]–[4].

It seems obvious that one needs to do the “homework”.
Approaching a standardization body with a suggestion that
is not well thought out is bound to fail; such failure is
unsurprising, and hence not very interesting. It is, however,
quite possible to also fail with a proposal that may be (or, at
least: appears to be, to the proponent) proven and tested, and
technically sound. Here, we shed some light on this latter type
of failure, in the hope that this can keep our peers from falling
into certain less-than-obvious traps that we have fallen into.

In the next section, we present several of our failure stories,
as examples from which we believe that lessons can be
learned. We then summarize these lessons in section III.
Section IV concludes.

II. STORIES OF FAILURE

We highlight our prior attempts to develop standards that
ended in failure, covering transport and application protocols,
moving from technical to less technical issues encountered.

A. TCP Corruption Notification Options

The presumption underlying this proposal was that, if bit
errors happen in the payload, it is wrong for TCP to react
by assuming that a packet was lost due to congestion, and
hence a congestion control reaction is unnecessary and should
be avoided. However, since TCP’s checksum covers both the
header and the payload, if corruption in the payload occurs, it
is not even possible to correctly identify the host that should be
notified of the error (as the port numbers may also be wrong).

The proposed fix, described in [5], keeps the original
checksum unchanged, but attaches a new TCP option to the
header, containing a checksum that covers only the header.
If the “old” checksum fails but the “new” one does not, a
bit error has occurred in the payload, and another new TCP
option could be used by the recipient of the TCP segment to
notify the peer of a corruption loss, provoking re-transmission
but no congestion control reaction.

Balan et al. [6] have shown that this approach can be
beneficial. This was done using a real-life implementation,
where the Linux kernel was changed to support the necessary
TCP options, and loss was artificially generated in the testbed.

1) Reason for failure: The major argument given upon
presenting this proposal was that, in most practical real-life
scenarios, errors do not occur in such a fashion. Instead, bit
errors tend to affect blocks that are so large that they would
always include the header, rendering this idea useless. When
asked: “do you have proof?”, the person with the counter-
argument said “no, but do you have proof? You are the one
proposing something”; a fair point indeed.

Later, we investigated how such errors really do play out in
Wi-Fi networks. This involved disabling the link-layer CRC
checksum (without tweaking the driver in this fashion, TCP
would never even see any packets with errors). The results,
reported in [7], confirm the suspicion of our IETF “opponent”:



the number of packets with payload-only errors was miniscule.
For example, in an indoor test, approximately 1‰ of all
packets were deemed corrupt and handed over by the driver,
and 1% of these had errors in the payload only—30 out of 2.8
million packets.

Despite being limited to a specific link layer, these results
did not exactly support our IETF proposal. We shared them
with the IETF nevertheless, and received positive feedback for
the very fact that we openly shared a negative result.

2) Take-aways: Simulations or artificial testbed scenarios
are often not enough. Since a standard is supposed to operate
in the real world, test the proposal under realistic conditions.

B. MulTFRC: TFRC with weighted fairness

TCP-Friendly Rate Control (TFRC) [8] is a well-known
congestion control mechanism that is meant for multimedia
content: it is TCP-friendly, i.e., it sends as much as TCP would
under comparable circumstances, yet it exhibits a “smoother”
behavior with less rate fluctuations. TFRC achieves this by
calculating the well-known equation by Padhye et al. [9] that
models TCP’s long-term average throughput, and then sending
data at the rate that the equation yields. We extended this
model to N TCP connections, and applied it by replacing
the equation in TFRC. The resulting mechanism, MulTFRC,
can be tuned with a single parameter to be as aggressive as
N TCP connections, with N ∈ Q>0. After publishing the
equation and the MulTFRC mechanism [10], we decided to
write a specification [11] and take it to the IETF.

1) Reason for failure: MulTFRC was reviewed in depth by
several IETF peers, and generally quite well received. There
was, however, one question that turned out to be devastating
for the whole proposal: “how could this be implemented in
the kernel”? Congestion control mechanisms were, at the time,
routinely implemented in the kernel of Operating Systems such
as Linux. Such kernels cannot handle floating point operations,
requiring workarounds such as pre-calculated tables. We failed
to adapt these workarounds to our model, and eventually
dropped the ball on the MulTFRC IETF endeavor.

Today, it is not uncommon to implement congestion control
mechanisms in user space (QUIC is a case in point [12]),
and we could, in principle, try to proceed with MulTFRC—
but “TCP-friendliness” is now an outdated concept. In-
stead, modern congestion control mechanisms for multimedia
applications—such as the ones brought forward in the Real-
Time Media Congestion Avoidance Techniques (RMCAT)
IETF Working Group—strive to achieve a balance between
competition with TCP on one hand, and latency minimization
(via early congestion indicators such as delay growth) on the
other.

2) Take-aways: Consider real-world implementation con-
straints for your algorithm, such as operating in the Linux
kernel vs. in user space. Also, strike while the iron is hot.

C. LISA: A linked slow-start algorithm for MPTCP

Multipath TCP (MPTCP) [13] divides a TCP connection
into multiple sub-flows, which are meant to traverse different

paths. It has a form of “coupled congestion control” [14],
where senders limit the total rate increase of sub-flows in Con-
gestion Avoidance, so as to keep an MPTCP connection from
being more aggressive than a single-path TCP connection. This
prevents MPTCP from gaining an unfair advantage.

In the Slow Start phase, however, no coupling happens, and
each subflow begins with its own TCP Initial Window (IW),
which is now commonly set to 10 packets. This means that a
single MPTCP connection with 4 subflows would transmit an
initial burst of 40 instead of 10 packets, and this can harm other
traffic and MPTCP itself. We have shown this problem in [15]
and specified a solution—the “Linked Slow-start Algorithm”
(LISA), which requires a new subflow to take a “credit” for its
IW from the congestion window (cwnd) of an already existing
subflow that is in Slow Start [16].

1) Reason for failure: The principles of MPTCP congestion
control are laid out in RFC 6356 [14]: “resource pooling”, “im-
prove throughput”, “do no harm” and “balance congestion”.
In response to the LISA proposal, we were informed about
another principle, which is not documented anywhere: “the
behavior of one subflow should not decrease the rate of another
good1 subflow”. We showed that, due to the aggressive nature
of Slow Start, the cwnd reduction caused by new subflows
is not necessarily a disadvantage—even when the subflows
do not share a bottleneck. Yet, the very idea of one subflow
reducing the cwnd of another was a too strong divergence from
the general behavior of MPTCP for the community to accept.

2) Take-aways: Get a thorough understanding of the under-
lying design principles of any mechanism or protocol that you
are proposing to change. This concerns both written principles
and unspoken rules. If you propose that protocol X should
implement mechanism Y, then Y should be in line with what
the designers of X intended (but, of course, knowing what they
intended isn’t necessarily straightforward).

D. Single-Path TCP Congestion Control Coupling

Combining the congestion control mechanisms of parallel
TCP connections can yield several performance benefits. It
eliminates competition between the flows, gives a large share
of cwnd values to short flows to improve the overall start-
up behavior and to skip Slow Start, fairly allocates available
bandwidth, and reduces overall delay and loss. However,
previous coupling mechanisms (e.g., the Congestion Man-
ager [17]) have never been widely deployed because they
require revamping the entire Internet protocol stack. To this
end, we specified a lightweight congestion control coupling
mechanism that combines the congestion control mechanisms
of TCP connections when they traverse a same bottleneck [18].
We also proposed a lightweight, dynamically configured TCP-
in-UDP (TiU) encapsulation scheme to enforce a common
bottleneck by ensuring the same 5-tuple is used by multiple
connections. We demonstrated the efficacy of our mechanism
using ns2 and an implementation in FreeBSD [19], [20].

1This was colloquial email text, where the word “good” was meant to
indicate that the “other subflow” in question has not experienced congestion.



1) Reason for failure: We did not invest the effort into
trying to get our code accepted in a major Operating System
such as Linux (in which case, we may have tried harder to
get this proposal standardized); instead, our hope was that our
mechanism would be attractive enough for a hyperscaler to
take on. However, such companies tend to run their servers
load-balanced, on multiple machines, so that multiple TCP
connections to the same client may not originate from the
same physical device. Moreover, we were told that the need
for TiU encapsulation gets in the way of hardware support for
TCP such as TCP Segment Offloading (TSO).

2) Take-aways: Consider if the test environment matches
the environment used by the target audience for the proposal
(the IETF participants who should implement it). Consider
also interoperability with current hardware.

E. Positive Acknowledgements for RTP Media Packets

The Real-time Transport Protocol (RTP) [21] and its orig-
inal profiles for conferences with minimal control [22] were
originally devised to support multicast-based conferences, in
which information about multicast transport addresses for
multimedia conferences would be shared, so that interested
parties would join these addresses (e.g., via the multicast
backbone, Mbone) to receive the corresponding media feeds,
with security achieved by means of encryption. This led the
design the of RTP Control Protocol (RTCP) to operate in a
scaleable fashion and adjust the per-participant transmission
of control information as a function of the observed group
size, usually targeting to use no more than 5% of the total
session data rate and a minimum interval of 2.5s between
transmissions for control traffic.

This mechanism worked well for obtaining approximate
group size information and sharing rough media reception
(and thus “quality”) statistics, deemed sufficient for larger
groups. With the growing importance of voice-over-IP (VoIP)
and thus point-to-point or small group calls, also includ-
ing video, a demand arose to allow repairing packet loss.
But the irregular transmission and especially the minimum
transmission interval of the default RTP profile [22] made it
effectively impossible to provide timely feedback to a media
sender to immediately repair packet losses. As a remedy, a
dedicated RTP profile was developed to enable more timely
feedback [23], at least statistically for two-party calls and small
conferences. This profile was designed with multicast in mind
and hence provided mechanisms against feedback implosions.
While numerous features for media feedback found broad
support and made it into the final specification, published
as RFC 4585 [23], one useful feature had to be removed:
positive acknowledgements of received packets. Those would
obviously bear the risk of ACK implosions if used in (larger)
multicast groups, but the profile supported a dedicated point-
to-point mode for faster feedback and simpler operation;
yes, ACKs were even dismissed for this restricted usage. A
similar mechanism was, however, found necessary to enable
congestion control for real-time media and was only defined
some 15 years later in RFC 8888 [24], after the advent of web-

based real-time conferencing, WebRTC, suggested a large-
scale uptake of multimedia conferencing, which required the
development of real-time congestion control protocols, which
ultimately took place in the RMCAT WG as noted above.

1) Reason for failure: The main cause for failure appears
to have been of principled nature. The new RTP profile
was not allowed by default to provide feedback once per
RTT from the receiver to the sender (but the parameters for
RTCP data rate could have been tuned in this way). Feedback
per RTT would, however, be necessary to realize a suitable
congestion control algorithm for real-time media. The fear was
(or: appeared to be) that allowing lower-rate acknowledgments
might lead implementers to mistake this feedback signal as
suitable and sufficient for congestion control and thus support
congestion control algorithms that could harm the Internet at
large (as they, would, e.g., not be TCP-friendly [25], [26]).
In hindsight, rather than removing ACKs altogether from the
specification, it would have more productive to understand in
detail the concerns, and the real and perceived needs, and
devise an extension to the same specification, or develop a
complementary specification, that would specify exactly how
to enable congestion control.

2) Take-aways: The main take-away is that principled
issues are difficult to address. They require understanding the
broader perspective, and developing possible mid- to long-
term solutions to addressing the underlying concerns, rather
than focusing on the specific technical issue at hand. This
also requires “reading” the critics well and understanding their
broader concerns, and being able to encourage them to assist
in finding a way forward. This is doubly complex when parts
of the community want a quick fix, to meet short-term business
needs, while other parts raise broader issues of principle.

F. Session Description Protocol Next Generation (SDPng)

The Session Description Protocol (SDP) [27], [28] is used
to communicate media descriptions of a multimedia session
(such as a VoIP or video call) between peers. Such descriptions
indicate which media codecs are to be used with which param-
eters, how media data is to be encapsulated into RTP, which
RTP Profiles are used, which IP addresses and port numbers
should be used by each peer. SDP was originally designed
to minimally describe multicast-based multimedia conferences
or distribution channels as used on the Mbone. But, with the
advent of VoIP and the development of the Session Initiation
Protocol (SIP) [29], [30] in the late 1990s, the descriptive
nature of SDP and its interpretation was adapted to perform
feature negotiation in the Offer/Answer model [29], [31].
This required not just a request-response style redefinition
of its usage semantics but also more structure than a simple
sequence of (key, value) pairs were able to deliver, so that
sophisticated grouping, identification, and cross-referencing
mechanisms were bolted on top of SDP. The simple design
of SDP also led to conflating what functionality an endpoint
supports, i.e., its capabilities, and which functionality an
endpoint intends to use, i.e., its initial media codec and
transport configuration. Practical workarounds were found to



address the most pressing issues within SDP, but the idea grew
to define a more expressive replacement protocol.

SDPng [32] was devised to overcome the apparent short-
comings of SDP, offering structured descriptions based upon
XML, which also supports grouping, naming, and referencing
as well as a clean separation of capabilities, i.e., potential
configurations, and choices for active use, termed actual
configurations. The description language was first proposed in
2001 and revised repeatedly until 2005. In parallel, a transition
document from SDP to SDPng was developed [33] to guide
implementations moving from SDP to SDPng.

The SDPng proposal was formally adopted by the IETF
Multiparty Multimedia Session Control Working Group, but
did not receive sufficient industry support and the development
was abandoned in the end. The SDPng transition document,
for which even an RFC number—RFC 4637—was already
allocated was never published, and RFC 4637 remains “not
issued”. Nevertheless, some concepts put forward in SDPng
were picked up for SDP and documented as Simple Capability
Declaration [34], also mechanisms for grouping and referenc-
ing media descriptions were developed for SDP [35].

1) Reasons for failure: While it is hard to pinpoint precisely
the multi-faceted reasons for failure in retrospect, especially
many years later, two aspects appear relevant. Firstly, SDPng
used technology that was ahead of the time in IETF standards:
XML as a data representation scheme. Industry stakeholders
deemed XML too complex for the lightweight implementation
needs of low-cost VoIP telephone devices. Interestingly, those
critics overlapped with the ones supporting or developing the
use of XML for further extensions to SIP not much later. Yet,
XML may well have been a poor choice as it was clearly way
more powerful than necessary to satisfy the needs at hand, thus
violating the principle of using the least complex mechanism
that suffices for a given task.

Secondly, beyond the choice of message encoding, SDPng
was considered rather complex, while the promise of SIP
(originally named SCIP, the Simple Conference Invitation
Protocol) and SDP was to keep things simple, especially in
contrast to the ITU-T efforts on H.323. The simple and easy to
parse nature of SDP was in stark contrast to H.323’s over-use
of ASN.1, and SDP seemed to be good enough for what was
needed at the time. Of course, “what was needed at the time”
grew rapidly over the years, demanding further kludges to keep
SDP functioning. The more of those got added, however, the
less need was for a wholesale replacement by a next generation
technology, ultimately rendering SDPng unnecessary.

One may add that the concept and details of SDPng itself
evolved significantly during its IETF years, thus maybe not
offering a sufficiently complete alternative from the outset.
Looking back at the industry at the time, IP-based audiovisual
communication, especially VoIP, was in the middle of the hype
cycle and developing rapidly, so the industry players had a
hard enough time keeping up with all the other SIP-related
(standards) developments. This may explain the lack of interest
or resources for exploring an unproven technology. SDPng
never received sufficient buy-in from industry stakeholders.

2) Take-aways: Developing next generation specifications
of a given technology may easily fall victim to competition
with the legacy for many reasons, including that the new
technology has unknown limitations while those of the existing
version are known, and that there is experience with (and
investment in) the legacy version. This experience allows for
easily developing extensions that, over time, may marginalize
the potential benefits of the next generation. Extending the
present technology a bit at a time is often perceived to
be simpler (and it indeed is for every single delta!) than
embracing a radically different design, which leads to forces
of inertia that must not be underestimated. Also timing is
important: if the stakeholders don’t have cycles for a refined
technology, there won’t be any buy-in.

G. Message Bus (MBus)

Multimedia conferencing systems may provide vastly differ-
ent functions: audio and video communication, shared editing,
and session control, among others. These features may be
implemented in a stand-alone device or as code to run on
any sufficiently powerful computer; in either case, following
the separation of concerns, modules (with well-defined APIs)
may implement these functions. The Message Bus [36], partly
inspired by CCCP [37], was designed to allow flexibly in-
terconnecting such modules via host/link-local multicast for
a system design that could reach beyond a given physical
device, allowing co-located devices and functions to form a
coherent system. Mbus was developed partly in cooperation
with industry, implemented, tested, and proven to work. Yet,
it failed adoption in the IETF and was ultimately just published
as an Informational RFC by the authors [36].

1) Reason for failure: Mbus received some pushback and
not much support within the IETF. The pushback can partly be
attributed to the encoding scheme chosen for Mbus: Scheme
expressions of the style method (arg arg arg), allow-
ing for LISP-style nested structures and easy implementation
of (key, value) pairs. This very notation, however, also could
look like a function call to the casual observer, and there has
been a strong opinion at the time that the IETF would not stan-
dardize APIs. Thus, choosing an unfamiliar encoding did not
help getting people on board. More important was, however,
the lack of industry support when Mbus was proposed: it was
simply too early. As noted for SDPng, companies were busy
specifying, following, and implementing SIP to get working
products in the first place; concerns about advanced modularity
(and functions) were likely not even on their radar.

2) Take-aways: Again, timing is everything. Moreover, a
contributor should express herself in languages familiar to the
target community—at a given time, as what is fashionable
changes. People don’t necessarily read specs but may quickly
form—and articulate(!)—an opinion at first glance, no matter
if their perception is right or wrong. This risk reduces if a spec
language helps avoiding misunderstandings. This is even more
important if tens of drafts compete for people’s attention.



III. LESSONS LEARNED

After several decades experience working in the IETF, some
successes, and many failures—some of which we describe in
Section II—what have we learnt?

Firstly, that standards development can be an incredibly
rewarding experience. The nature of this paper is that we focus
on our failures, and try to learn from what didn’t work. But we
have also succeeded. The standards we have developed, with a
wide range of industry collaborators, have been implemented
and deployed in billions of devices and are in global use every
day. As an academic researcher, if you want the results of your
research to have real-world impact, standards development can
be a very rewarding experience.

Secondly, we learn that standards development is hard. It’s
a slow and difficult process, that can be incredibly frustrating,
and that often doesn’t fit well with the dictates of an academic
career. Standards development can take many years [1], [2],
requires engagement with practical engineering and deploy-
ment concerns that get in the way of pure research, that no
guarantee of success. In the following we explore these lessons
and why they are both problematic and rewarding.

A. Understand Practical Deployment Concerns

The real-world Internet is a much larger and more complex
system than any laboratory testbed or simulation. Participants
in the IETF have long experience building and deploying
protocols at scale, and hence are deeply familiar with issues
that do not arise in the small-scale tests typically conducted
by academic researchers. One of the benefits of engaging
with the IETF is the ability to learn from this experience.
As authors, we have received, and learnt from, detailed public
explanations of why our research ideas won’t work in practical
deployments, and been forced to rethink and redesign our
initial ideas. While such learning can be painful, we have
all significantly benefited from these experiences. Systems
research results are strengthened if they apply to the real-
world, and not just to over-simplified experimental scenarios.

There are three key lessons around testbeds and deployment.
Firstly, simulations or test-bed results are often not enough.
Standards have to operate in the real world, so it’s essential
to test your proposals and ideas under realistic conditions, not
just in idealised testbeds. You will be surprised at how often,
and in what ways, the real Internet differs from simulations,
controlled testbed experiments, and textbook examples.

Second, explore real-life implementation conditions, such
as operating in the Linux kernel vs. in user space. Consider
whether your testing environment matches the deployment
environment of the target audience for the proposal—the IETF
participants who should implement it—and to what extent
those differences matter. Think about interoperability with
current and developing hardware, programming models, and
deployment realities.

Finally, ensure you have a thorough understanding of the
underlying design principles of any mechanism or protocol
that you are proposing to change. This concerns both the
written principles and the unspoken rules. For better or worse,

it is rare that an RFC tells the whole story about a protocol.
Talk to developers of the RFCs, and those implementing and
deploying the resulting standards, to understand what’s really
intended and how the RFC is used in practise.

B. Timing is Crucial
Getting industry engagement on the problem, and buy-

in on the requirements analysis, is difficult when industry
isn’t (yet) experiencing the problem being solved. Academic
work is supposed to be forward-looking and to address future
problems. This makes it difficult to engage with the standards
community when they are struggling to implement solutions
to today’s problems and customer needs. Solving problems
before the industry realises they matter is the core of academic
research, but can be a problem when engaging with the
standards community.

This is tricky for academic research labs that need to have
impact with a small team. You need to be early enough that
the problem is apparent, and the community is small enough
that your voice is heard, but not so early that the standards
community doesn’t yet understand the problem. Too early, and
no-one cares about your ideas. Too late, and your PhD student
is competing with the engineering might of a multinational
corporation. We see this in our experience. Mbus was too
early, solving a need industry did not yet have. In contrast,
SDPng came right in the middle of the hype, when industry
was fighting to keep-up with deploying what they had, even
if it was clear that extensions would eventually be needed.

Alternatively, you may work with mature protocols, where
the initial hype has dissipated and the protocol is widely used
as an infrastructure component. This has the benefit that those
implementing the protocol have calmed down enough to be
willing to listen to outside input and ideas, but suffers because
the full complexity of the network is now known and the
deployment challenges are greater. Our experiences with TCP
corruption notification and congestion control highlight this.

C. Abstractions, Generality, and Protocol Ossification
As academic researchers, we abstract and generalise. Those

implementing products want something concrete and realisable
today, and will worry about the broader issues later—if they’re
still in business. One of the problems we’ve seen several times
is that, even when it’s recognised that generalising the protocol
will be necessary, persuading the standards community to
spend the effort to look ahead is a difficult sell.

Equally, introducing hooks to build the more general frame-
work early in the protocol design also may not work. Im-
plementations tend to build what’s needed today, leaving
extension points unimplemented, ossified, and unusable in
practise [38]. The SDPng transition is an example here.

The Internet only just works [39]. The protocols are a
convoluted mess, patched together to solve numerous short-
term issues, with limited effort spent to develop a coherent
long-term architecture. This is expected and normal. The
need to work with what is, rather than what should be,
and to propose incremental improvements, that solve smaller
problems than you desire, is a key lesson.



IV. CONCLUSION

The IETF is known as a somewhat intimidating environ-
ment, where harsh technical criticism is common. Thus, pro-
ponents of new ideas understand that they must first implement
and evaluate their proposals before trying to standardize them.
However, even when a proposal is sound, the IETF can present
unwelcome surprises. For instance, as we have discussed,
evaluations may need to be done differently than one might
expect in a common academic setting—it is very important
to consider the right environment, which may include con-
siderations such as hardware support, kernel vs. user space
implementation, and very realistic real-life network conditions.
The notion of “realistic” can sometimes even be limited to
deployment scenarios that are in use at the most influential
industry players, as these might strongly oppose proposals that
do not fit their conditions.

The IETF is a community in its own right—it is not simply
an outlet that one should consider at the very last stage of
development. Our advice is therefore to get involved in this
community early, to gain an understanding of the direction
of travel, the unspoken rules, and how people operate. We
illustrate this point with an anecdote: at a recent academic
conference, one of us was asked how to bring a specific
proposal based on a well-accepted academic paper to the IETF.
This proposal required to re-purpose a seemingly unoccupied
bit combination in a protocol header. As a research idea, this
makes sense. But, we were the first to inform the proponent
that use of this particular bit combination had been under
heavy debate in the IETF for the better part of a decade, and
that an alternate proposal to use it had just succeeded.

ACKNOWLEDGEMENTS

Work supported, in part, by EPSRC grant EP/S036075/1.

REFERENCES

[1] S. McQuistin, M. Karan, P. Khare, C. S. Perkins, G. Tyson, M. Purver,
P. Healey, W. Iqbal, J. Qadir, and I. Castro, “Characterising the IETF
through the lens of RFC deployment,” in Proceedings of the Internet
Measurement Conference. Online: ACM, Nov. 2021.

[2] P. Khare, M. Karan, S. McQuistin, C. S. Perkins, G. Tyson, M. Purver,
P. Healey, and I. Castro, “The web we weave: Untangling the social
graph of the IETF,” in Proc. ICWSM. Atlanta: AAAI, Jun. 2022.

[3] M. Nikkhah, A. Mangal, C. Dovrolis, and R. Guérin, “A statistical ex-
ploration of protocol adoption,” IEEE/ACM Transactions on Networking,
vol. 25, no. 5, pp. 2858–2871, 2017.

[4] D. Thaler and D. B. D. Aboba, “What Makes for a Successful Protocol?”
RFC 5218, Jul. 2008.

[5] M. Welzl, “TCP corruption notification options,” Internet Draft draft-
welzl-tcp-corruption-00.txt, Jun. 2004, work in Progress.

[6] R. K. Balan, B. Lee, K. R. R. Kumar, L. Jacob, W. K. G. Seah, and
A. L. Ananda, “TCP HACK: TCP header checksum option to improve
performance over lossy links,” in Proceedings of IEEE Infocom, 2001.

[7] M. Welzl, M. Rossi, A. Fumagalli, and M. Tacca, “TCP/IP over IEEE
802.11b WLAN: the challenge of harnessing known-corrupt data,” in
Proceedings IEEE ICC. Beijing, China: IEEE, May 2008.

[8] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based
congestion control for unicast applications,” in Proceedings of the
SIGCOMM Conference. ACM, 2000.

[9] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP Reno
performance: a simple model and its empirical validation,” IEEE/ACM
Transactions on Networking, vol. 8, May 2000.

[10] D. Damjanovic and M. Welzl, “An extension of the TCP steady-state
throughput equation for parallel flows and its application in MulTFRC,”
Networking, IEEE/ACM Transactions on, vol. 19, no. 6, p. 1, Dec. 2011.

[11] M. Welzl, D. Damjanovic, and S. Gjessing, “MulTFRC: TFRC with
weighted fairness,” Internet Draft draft-irtf-iccrg-multfrc-01, Jul. 2010,
work in Progress.

[12] J. Iyengar and I. Swett, “QUIC Loss Detection and Congestion Control,”
RFC 9002, May 2021.

[13] A. Ford, C. Raiciu, M. J. Handley, O. Bonaventure, and C. Paasch,
“TCP Extensions for Multipath Operation with Multiple Addresses,”
RFC 8684, Mar. 2020.

[14] C. Raiciu, M. J. Handley, and D. Wischik, “Coupled Congestion
Control for Multipath Transport Protocols,” RFC 6356, Oct. 2011.
[Online]. Available: https://www.rfc-editor.org/info/rfc6356

[15] R. Barik, M. Welzl, S. Ferlin, and O. Alay, “LISA: A linked slow-start
algorithm for MPTCP,” in 2016 IEEE ICC, May 2016.

[16] R. Barik, S. Ferlin, and M. Welzl, “A Linked Slow-Start Algorithm for
MPTCP,” Jun. 2016, work in Progress.

[17] H. Balakrishnan and S. Seshan, “The Congestion Manager,” RFC 3124,
Jun. 2001. [Online]. Available: https://www.rfc-editor.org/info/rfc3124

[18] M. Welzl, S. Islam, K. Hiorth, and J. You, “TCP-CCC: single-path TCP
congestion control coupling,” Oct. 2016, work in Progress.

[19] S. Islam and M. Welzl, “Start me up: Determining and sharing TCP’s
initial congestion window,” in Proceedings of the 2016 Applied Net-
working Research Workshop, 2016, pp. 52–54.

[20] S. Islam, M. Welzl, K. A. Hiorth, D. Hayes, G. Armitage, and S. Gjess-
ing, “ctrlTCP: reducing latency through coupled, heterogeneous Multi-
Flow TCP congestion control,” in Proceedings of the IEEE Global
Internet Symposium, Honolulu, USA, Apr. 2018.

[21] H. Schulzrinne, S. L. Casner, R. Frederick, and V. Jacobson, “RTP: A
Transport Protocol for Real-Time Applications,” RFC 3550, Jul. 2003.

[22] S. L. Casner and H. Schulzrinne, “RTP Profile for Audio and Video
Conferences with Minimal Control,” RFC 3551, Jul. 2003.

[23] C. Burmeister, J. Rey, N. Sato, J. Ott, and S. Wenger, “Extended
RTP Profile for Real-time Transport Control Protocol (RTCP)-Based
Feedback (RTP/AVPF),” RFC 4585, Jul. 2006.

[24] Z. Sarker, C. Perkins, V. Singh, and M. A. Ramalho, “RTP Control
Protocol (RTCP) Feedback for Congestion Control,” RFC 8888, Jan.
2021. [Online]. Available: https://www.rfc-editor.org/info/rfc8888

[25] S. Floyd, M. Handley, J. Padhye, and J. Widmer, “Equation-based con-
gestion control for unicast applications,” in Proc. SIGCOMM. Stock-
holm, Sweden: ACM, Aug. 2000.

[26] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling TCP
throughput: A simple model and its empirical validation,” in Proc.
SIGCOMM. Vancouver, Canada: ACM, Aug. 1998.

[27] C. Perkins, M. J. Handley, and V. Jacobson, “SDP: Session Description
Protocol,” RFC 4566, Jul. 2006.

[28] A. C. Begen, P. Kyzivat, C. Perkins, and M. J. Handley, “SDP: Session
Description Protocol,” RFC 8866, Jan. 2021.

[29] H. Schulzrinne, E. Schooler, J. Rosenberg, and M. J. Handley, “SIP:
Session Initiation Protocol,” RFC 2543, Mar. 1999.

[30] E. Schooler, J. Rosenberg, H. Schulzrinne, A. Johnston, G. Camarillo,
J. Peterson, R. Sparks, and M. J. Handley, “SIP: Session Initiation
Protocol,” RFC 3261, Jul. 2002.

[31] H. Schulzrinne and J. Rosenberg, “An Offer/Answer Model with Session
Description Protocol (SDP),” RFC 3264, Jul. 2002.

[32] D. Kutscher, J. Ott, and C. Bormann, “Session description and capability
negotiation,” Internet Draft draft-ietf-mmusic-sdpng-08, Feb. 2005.

[33] C. Perkins and J. Ott, “Sdpng transition,” Internet Draft draft-ietf-
mmusic-sdpng-trans-04, May 2003.

[34] F. Andreasen, “Session Description Protocol (SDP) Simple Capability
Declaration,” RFC 3407, Oct. 2002.

[35] H. Schulzrinne, G. Camarillo, G. A. Eriksson, and J. Holler, “Grouping
of Media Lines in the Session Description Protocol (SDP),” RFC 3388,
Dec. 2002. [Online]. Available: https://www.rfc-editor.org/info/rfc3388

[36] C. Perkins, D. Kutscher, and J. Ott, “A Message Bus for Local
Coordination,” RFC 3259, May 2002.

[37] M. Handley, I. Wakeman, and J. Crowcroft, “The conference control
channel protocol (CCCP): a scalable base for building conference control
applications,” ACM SIGCOMM CCR, vol. 25, 10 1995.

[38] M. Thomson and T. Pauly, “Long-Term Viability of Protocol Extension
Mechanisms,” RFC 9170, Dec. 2021.

[39] M. Handley, “Why the Internet only just works,” BT Technology Journal,
vol. 24, no. 3, pp. 119–129, Jul. 2006.


