
OR I G I N A L A R T I C L E

Understanding recessive disease risk in multi-ethnic
populations with different degrees of consanguinity

Luis A. La Rocca1 | Julia Frank2 | Heidi Beate Bentzen3 | Jean Tori Pantel4 |

Konrad Gerischer2 | Anton Bovier2 | Peter M. Krawitz1

1Institute for Applied Mathematics, University

of Bonn, Bonn, Germany

2Institute for Genomic Statistics and

Bioinformatics, University of Bonn, Bonn,

Germany

3Centre for Medical Ethics, Faculty of

Medicine, Univeristy of Oslo, Oslo, Norway

4Department of Digitalization and General

Practice, University Hospital RWTH Aachen,

Aachen, Germany

Correspondence

Peter M. Krawitz, Institute for Genomic

Statistics and Bioinformatics, University of

Bonn, Venusberg-Campus 1, 53127 Bonn,

Germany.

Email: pkrawitz@uni-bonn.de

Present address

Julia Frank, Institute of Medical Statistics and

Computational Biology, Faculty of Medicine

and University Hospital Cologne, University of

Cologne, Cologen, Germany.

Funding information

Deutsche Forschungsgemeinschaft

[Correction added after first online publication

on 25 November 2023. Author order has

been updated.]

Abstract

Population medical genetics aims at translating clinically relevant findings from recent

studies of large cohorts into healthcare for individuals. Genetic counseling concerning

reproductive risks and options is still mainly based on family history, and consanguin-

ity is viewed to increase the risk for recessive diseases regardless of the demo-

graphics. However, in an increasingly multi-ethnic society with diverse approaches to

partner selection, healthcare professionals should also sharpen their intuition for the

influence of different mating schemes in non-equilibrium dynamics. We, therefore,

revisited the so-called out-of-Africa model and studied in forward simulations with

discrete and not overlapping generations the effect of inbreeding on the average

number of recessive lethals in the genome. We were able to reproduce in both

frameworks the drop in the incidence of recessive disorders, which is a transient phe-

nomenon during and after the growth phase of a population, and therefore showed

their equivalence. With the simulation frameworks, we also provide the means to

study and visualize the effect of different kin sizes and mating schemes on these

parameters for educational purposes.
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1 | INTRODUCTION

Medical population genetics is dedicated to elucidating the role of

genomic variation in susceptibility to diseases and requires expertise

in medical genetics, population genetics, epidemiological genetics, and

community genetics. This knowledge is usually distributed over many

teams and labs and rarely integrated within a single institute, let alone

a single person (Giugliani et al., 2019). For the following work, there-

fore, we imagine a reader who is likely to excel in one of these areas

but is only familiar with the foundations of others. We hope that the

simulation frameworks we present will be so easy to use that many

will end up using them to perform further analysis. In the following,

we will motivate the choice of our parameter settings that are based

on findings that became available due to recent genome-wide

sequencing studies. Sequencing of large cohorts confirmed estimates

the number of recessive, lethal equivalents per genome which were

previously based on epidemiological data of disease prevalences and

stillbirths: On average, healthy individuals carry 0.5–2 heterozygous

variants that would prevent reproduction if they occurred in a homo-

zygous state (Bittles & Black, 2010; Chakraborty & Chakravarti, 1977;
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Gao et al., 2015; Narasimhan et al., 2016). With respect to population

genetics, it is irrelevant whether such variants cause a severe, lethal

condition in the affected individual before reproductive age or simply

result in complete sterility and are therefore also referred to as lethal

equivalents. In simulations that aim at reproducing empirical findings,

individuals who are homozygous for a lethal equivalent have a fitness

of s = �1 and are removed from the gene pool. In contrast, heterozy-

gous carriers of lethal equivalents have the same fitness as wildtypes,

s = 0, and with respect to simulations, modeling the mating pattern is

crucial for the dynamics in population genetics. However, the ques-

tion of how the ancestral background and the degree of consanguinity

affect the recessive lethal load per person is still vividly discussed

because empirical data and predictions by theoretical population

genetics are partially contradictory (Ballinger & Noor, 2018): in the

case of mutation-selection balance, the prevalence of recessive disor-

ders should be the same regardless of ethnicity and mating scheme.

However, in the Deciphering Developmental Disorders (DDD) cohort,

the proportion of cases due to recessive coding variants was 3.6% in

patients of European ancestry, compared to 31% in patients with

Pakistani ancestry (Martin et al., 2018). Even within the same popula-

tion, for example, in Iran, the probability for a recessive cause of intel-

lectual disability is four times higher for offspring from first-cousin

unions than for offspring of non-consanguineous partnerships (Hu

et al., 2018; Kahrizi et al., 2019; Musante & Ropers, 2014). To explain

this discrepancy between the load of recessive lethal variants and the

recessive disease burden, some authors recently argued that

the unexpectedly high frequency of lethal equivalents might also be

explained by an ascertainment bias, that is, some of the pathogenic

mutations reached high frequency by chance and are therefore over-

reported (Amorim et al., 2017). However, since the assumption of

mutation-selection balance is not justified, other authors studied the

effect of different demographic dynamics including explosive popula-

tion growth on mutation burden (Henn et al., 2015). Expanding popu-

lations incur a mutation burden, also referred to as expansion load,

which is a transient phenomenon but can persist for many generations

depending on the mating scheme and the coefficients of selection and

dominance (Balick et al., 2015; Gravel et al., 2011; Peischl &

Excoffier, 2015).

In this work, we explore the influence of different mating

schemes in nonequilibrium dynamics by means of two different simu-

lation frameworks with distinct and overlapping generations. Each

model had the advantage of handling certain aspects of population

genetics particularly well. The first is an adaption of the classical

Wright–Fisher model with discrete non-overlapping generations run

in the forward genetic simulation framework SLiM (Fisher, 1919;

Haller & Messer, 2019). In the second model, generations can overlap

because diploid individuals die and give birth at independent expo-

nential times on a continuous timescale (Amorim et al., 2017). For ran-

dom mating populations with two sexes, the equivalence of the

effective population size was already delineated for overlapping gen-

erations (Engen et al., 2007). In the following, we show that simula-

tions of the discrete, as well as the overlapping model yield

comparable results for an out-of-Africa scenario, suggesting that the

existing modeling approaches can be used to fit empirical data that

result from nonequilibrium dynamics (Brandvain & Wright, 2016).

2 | METHODS

Editorial policies and ethical considerations. This study was approved as

exempt from formal IRB review by Bonn University since no human

subject material was analyzed.

Throughout this framework, the mutation burden is defined as the

average number of lethal equivalents per individual. The lethal alleles in

the genome are deleterious alleles that are disease-causing if both cop-

ies of a gene in an individual harbor at least one such variant. The total-

ity of these pathogenic variants could also be regarded as the

theoretical superset of an extended carrier screen (Antonarakis, 2019).

By this means, we are able to focus on the incidence rate of severe

recessive disorders with early onset that prevent reproduction almost

with certainty. Likewise, we can study how the selection of a partner,

which we refer to as a mating scheme, influences the disease preva-

lence and mutation burden and we are able to monitor these parame-

ters in the population over time. This is done by counting the number

of lethal equivalents that enter the gene pool due to a constant de novo

mutation rate, or leave the gene pool due to selection. If the disease

prevalence does not change any more, the population is in a steady

state, that is a flux balance for lethal equivalents.

In population genetics, the lifespan of individuals that do not

reproduce does not matter. In our simulations we therefore used the

same age distribution for every individual, regardless of the number of

lethal equivalents or the affection status. With the same life span in

affected and unaffected individuals, disease prevalence and incidence

are also equivalent and their rate is proportional to the amount of

lethal equivalents removed from the gene pool per generation or time

unit. In fact, the expected number of lethal equivalents that is lost by

an affected individual that is not propagating is two. This is equivalent

to the difference in the average mutation burden between affected

and unaffected individuals and can also be derived from the simula-

tions. An expansion of the population will affect prevalence and muta-

tion burden as we will discuss in more detail in the following.

Consider a finite population of individuals where each individual

is characterized by a diploid set of N gene segments of different sizes.

Pathogenic variants appear at every gene independently with a rate

that is proportional to its size. As long as an individual carries a patho-

genic variant at only one gene, its fitness is unaffected. But as soon as

both copies of a gene carry a pathogenic variant, the individual's

reproductive fitness is reduced to zero. In this case, the individual will

be excluded from the mating process and is not able to reproduce any

more. Other than that, all individuals are equally fit, no matter how

many recessive disorders they carry. Simulations always start with a

small, healthy population. After a period of time in which a mutation

selection balance is established, a logistic growth phase starts, that

settles after a new population equilibrium is reached. We investigate

changes of the dynamics of the mutation burden and the prevalence

when the population applies different mating schemes. On one hand,
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random mating occurs, where individuals select their partner from all

potential partners with non-zero fitness uniformly. On the other hand,

a consanguineous mating scheme is employed, in which individuals

exhibit a preference for mating with close relatives.

2.1 | Discrete model

In the default setting, the simulation package from Haller and Messer

(2019) samples a diploid population evolution according to the stan-

dard Wright–Fisher model. Sexes were added such that each sex is

equally represented in the population at any time. In generation n ≥ 1

there is a finite number of individuals Mn ≥ 0 with a total of 2Mn

genomes alive. In the initial phase the population size is held constant

with Mn = M0 for all generations n ≤ ngrow in order to establish a

mutation selection balance (“burn-in”). Afterwards, the growth phase

begins and the population size of each generation grows logistically

with growth rate r > 0 until it approaches the carrying capacity K.

Therefore, the population size of each generation is determined by

the following formula

Mn ¼ Kj j
1þC0e

�rK n�ngrowð Þ for all n≥ ngrow,

where C0 ¼ K�M0
M0

.

The two mating schemes—random and consanguineous mating—

are introduced as following. To generate generation (n + 1), first

select Mn+1 females from generation n independently at random with

replacement among all females with non-zero fitness. For the random

mating scheme, each female then selects a male uniformly at random

from the pool of potential partners who possess positive fitness. To

implement the consanguineous mating scheme, utilize the pedigree

information provided by SLiM for the last two generations, tracing

backwards in time. For each individual, their parents and grandparents

are known. In the consanguineous population, a female now selects a

mate using a weighted uniform distribution from the set of all poten-

tial partners. This choice is influenced by weights α, and β � [0, 1] with

α + β ≤ 1. The individual then chooses a male partner with non-zero

fitness with

two common grandparents with probability α.

one common grandparent with probability β.

no common grandparents with probability 1 � (α + β).

Notice that having two grandparents is akin to a cousin relation-

ship, while sharing one grandparent relates to a half-cousins relation-

ship, as depicted in Figure 4a.

To start the simulation select N gene segments from the entire

human genome. Each with an independently and uniformly distributed

number of base pairs w1, …, wN � [[a,b], where a, b > 0, representing

the minimum and maximum segment size, respectively. Furthermore,

the entire genome is divided into nc chromosomes. During birth,

changes in the offspring's genetic information occur not only through

mutation but also via recombination. For each chromosome, initiate an

independent Poisson Process with rate rrec > 0, which identifies the

recombination breakpoints. Here rrec represents the overall recombina-

tion rate. The discrete model was implemented in SLiM version 3.2.1.

2.2 | Adaptive dynamics

We employ a diploid version of the adaptive dynamic models intro-

duced by Fournier and Collet (Collet et al., 2013; Fournier &

Méléard, 2004). A distinct characteristic of these models lies, firstly, in

their foundation on a Poisson process. This entails that individuals

produce offspring and undergo mortality at independent rates. Sec-

ondly, a noteworthy feature is the ongoing feedback between demo-

graphics and ecology due to the competition among individuals. This

competitive pressure for finite resources among individuals enables

the modeling of a naturally fluctuating population with limited

capacity. In the following, we outline the key features of the model.

For a comprehensive mathematical description, please refer to

Appendix S1. We initiate the simulations within a small, entirely

healthy population. This population not only settles into a mutation-

selection equilibrium but also experiences fluctuations around a natu-

ral population size. This size is contingent upon birth and death rates,

as well as the interplay of competition among individuals and the

mutation rate. Following the initial burn-in phase, we decrease com-

petition, thereby providing the population with more resources. This

alteration triggers logistic population growth until the growth rate

tapers off upon reaching the new population equilibrium. To simulate

consanguineous mating, we equip each individual additionally to the

genetic information with two family flags, aimed at indicating the ori-

gin of the individual. During each birth, the newly born individual

inherits one randomly chosen family flag from each parent. If both

parents possess the same family information, the offspring inherits an

identical copy of this information. This modeling approach presents

several challenges. Firstly, we must ensure that family groups do not

become too large and should periodically disintegrate once the maxi-

mum family size of κ is reached. Secondly, this identification mecha-

nism only partially mirrors actual families. For instance, in this model,

it is possible that grandparents and their grandchildren do not belong

to the same family. In the random mating scheme, individuals select

partners randomly from the pool of fit individuals. On the other hand,

in the consanguineous mating scheme, partner selection depends on

family affiliation. We model the reproductive compatibility between

two individuals such that, in an equilibrium population, the probability

of selecting a partner with the same family flags is α as long as the

family size fluctuates around κ/2. Conversely, the probability of

selecting a partner who shares only one of the family flag with oneself

is β. Finally, a partner outside the family is chosen with a probability

of 1 � α � β. This holds assuming the population is in equilibrium and

the relevant family has a size of κ/2. During each birth, a Poisson-

distributed number of pathogenic variants is randomly distributed

across the 2N gene segments. The pathogenic variants are allocated

to the N genes using a weighted uniform distribution, where the

weights correspond to the respective sizes of the genes. Each muta-

tion contributes to the degeneration of the gene segment. There are
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no back mutations, beneficial mutations, or neutral mutations in this

scenario. Instead of recombination, we employ a form of genetic

information reshuffling. During each gamete formation, the genetic

information is divided into nc chromosomes, and from these, one copy

is randomly selected. We have implemented the simulations in Python

version 3.8 using a Gillespie algorithm.

2.3 | Comparing both models

Both models, the discrete generation model implemented with SLiM

and the adaptive dynamics model using the Gillespie algorithm, excel

in different aspects of capturing nature. A prominent advantage of

SLiM and the discrete model lies in the precise pedigree information

generated for every individual. However, the adaptive model can only

roughly cluster individuals into family groups and cannot differentiate

among members within a single family, as depicted in Figure 4b.

Nonetheless, a significant drawback of the discrete model is its non-

overlapping generations. This limitation precludes the possibility of

matings between individuals on different pedigree levels, such as

uncle–niece marriages. This constraint is overcome by the

continuous-time model. As individuals independently give birth and

die, different generations coexist due to varying ages. The discrete

model, similar to the Wright–Fisher model, operates with constant or

deterministically increasing population sizes. Conversely, the continu-

ous model accommodates a fluctuating and naturally growing popula-

tion, as depicted in Figure 5. It is worth noting that for large

populations, the random fluctuations in population size are of order

K1, and the stochastic process converges in law to the solution of a

deterministic logistic equation (Fournier & Méléard, 2004). Recombi-

nation is also approached differently in the two models. SLiM oper-

ates with genuine interchromosomal recombination, while the

adaptive model simply reshuffles parental chromosomes during gam-

ete production. This distinction arises from SLiM's ability to record

the precise base positions of mutations on the human genome. In con-

trast, the adaptive dynamics model possesses information only about

the number of pathogenic variants per gene segment and lacks knowl-

edge of their exact locations within each segment. Given the assump-

tion that all genes are compound heterozygotes, the varying

implementations of recombination do not impact the fitness of indi-

viduals. However, this reduction in information brings a significant

advantage in terms of algorithm runtime.

Apart from all the differences outlined, a substantial effort has

been made to ensure parameter equality between both simulations.

This includes factors such as the number of gene segments N, the ini-

tial and equilibrium population size M0 and K, and numerous other

parameters. Additionally, in the continuous model, family sizes are cal-

ibrated to attain an approximate balance between the number of

potential partners in the consanguineous setting of both models. Simi-

larly, the birth rate in the continuous-time model is established at

b = 1, ensuring that within a time interval of t � [n, n + 1], corre-

sponding to one discrete generation, there are Mt+1 birth events,

where Mt denotes the population size at that particular time. The only

distinction lies in the discrete generation model having exactly Mn+1

births in generation n, whereas the continuous-time model experi-

ences on average that number of births.

3 | RESULTS

We initiate our simulations with a population of 500 individuals,

allowing for approximately 500 generations to reach a steady state,

that is no significant change in the mutation burden. A comparable

size has also been suggested for the population that left the African

continent 10,000 to 200,000 years ago (Gutenkunst et al., 2009;

Tenesa et al., 2007). Following this out-of-Africa event, the population

expands to a size of 10,000 individuals in approximately 130 genera-

tions. This corresponds to an estimated duration of around

2500 years and an average growth of 1–2% per generation. The pop-

ulation expansion adheres to a logistic growth curve, which takes on

the appearance of a step function (as depicted by the gray curve in

Figure 1), due to the extensive duration of our complete simulations

spanning 2000 generations. All individuals have diploid genomes with

1000 recessive genes that we deem crucial for reproductive success.

Their coding sequence ranges between 500 and 10,000 base pairs

(bp) per gene, novel alleles are introduced with a de novo mutation

rate of 1.2 � 10�8 per bp, and one out of nine mutations is expected

to be a lethal equivalent (Kong et al., 2002, 2012). The choice of these

parameters are motivated by the distribution of coding lengths and

the deleteriousness scores for known autosomal recessive genes

(Kircher et al., 2014; Kochinke et al., 2016). Pairs for procreation are

formed either randomly or based on their relatedness that is traced

over the two most recent generations. In a highly consanguineous

mating scheme, the number of potential partners is hardly affected by

the population size, as most marriages happen within families. In our

simulations, this mating scheme is realized as follows: 50% of all part-

nerships share two grandparents, 30% share one grandparent, and

only 20% share no grandparent. In this scenario, the mutation burden

and prevalence do not change during population growth (Figure 1b).

However, linkage disequilibrium suggests that out-of-Africa popula-

tions have only reached effective populations sizes of around 3k, thus

this might be an overestimate (Tenesa et al., 2007). In contrast, in a

randomly mating population, there is a sharp transient drop of inci-

dence rates during expansion at the expense of an increasing muta-

tion burden (Figure 1a). However, after the final size of the population

is reached, it takes almost another 550 generations until the mutation

burden reaches its new plateau of approximately three pathogenic

variants in 1000 recessive disease genes. In contrast to the mutation

burden, the prevalence is independent of effective population size

and a function of mutation rate only. For constant μ, the prevalence

returns to the initial value before the expansion. Since affected indi-

viduals in our simulation have the same life expectancy and only do

not propagate, prevalence and incidence are the same and there are

roughly 70 affected individuals per generation in a population of

10,000 or 0.7%. The mutation burden in the steady state increases in

both mating schemes with the number of autosomal recessive genes,
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but with population size only for random mating (Figure 3a,b). This is

best explained by a limit of the effective number of available partners

that the consanguineous mating scheme imposes, regardless of the

final population size. In line with that argument, there is a transition

from the dynamics of consanguineous to random when we incremen-

tally increase family size, which would correspond to more potential

mating partners (Figure 3). Although the phase of population growth

lasts only 130 generations in our simulations, the time span to reach

the new equilibrium for the mutation burden lasts much longer. In

both simulation frameworks, we were able to achieve numbers of

lethal equivalents that are in accordance with observations from the

literature that are based on epidemiological data as well as population

genetic data. In a recent study, Narasimhan et al. analyzed exomes of

3222 British adults of Pakistani heritage with a high parental related-

ness and found a significantly lower number of homozygous knockout

genotypes than expected from the summary statistics of a more out-

bred population. By this means, they were able to compute an aver-

age number of 1.6 recessive-lethal equivalents per individual

(Narasimhan et al., 2016). In mutation-selection balance, the number

of recessive-lethal equivalents is only a function of genome architec-

ture and the effective population, which the mating scheme influ-

ences. In the non-equilibrium dynamics, however, the choice of the

partner has the greatest influence on the increase of recessive lethal

equivalents. Since human societies almost mirror the unmanageable

variety of mating systems in the mammalian kingdom it is noteworthy

that with the discrete and adaptive simulations, different aspects of

(b)

(a)

F IGURE 1 Dynamics of mutation load and prevalence for severe recessive disorders: (a) population expansion from 500 to 10,000 individuals
(gray), starting in generation 500 does not affect prevalence (orange) nor mutation load (red) if partners are preferentially chosen within relatives
(consanguineous mating scheme) (b). In contrast, in a random mating population, there is a transient drop of prevalence at the expense of an
increasing mutation load (a). It takes more than 550 generations after the end of the growth phase, until the steady state is reached and the
prevalence for both mating schemes are comparable again. The plots show the average of 50 exact trajectories of the stochastic process
simulated with the Wright–Fisher model.
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mating can be modeled (Clutton-Brock, 1989). In the adaptive frame-

work, for example, we allowed partnerships between different

generations and for each offspring the parents were selected anew

(lottery polygyny) (Caballero, 1994). Despite the differences in the

implementation details, both simulations yielded comparable dynamics

when the extended family size κ and the autozygosity were adjusted.

Over certain historic periods, the extended family size κ, which was

the parameter used in the adaptive model, might be easier to delin-

eate. Whereas kinship coefficients could be estimated with exact ped-

igrees and genomic data. We therefore extended the possibilities of

how empirical data can be explained by population genetic

simulations.

4 | DISCUSSION

The empirical observation that consanguinity is associated with an

increased risk of autosomal recessive disorders, has been made in

many countries but are only based on records of relatively few gener-

ations. Martin et al. showed that the contribution of autosomal reces-

sive developmental disorders is 31% in the current British population

if the autozygosity is above 0.02 (Martin et al., 2018). Likewise, in the

Iranian population it is estimated that offspring from first-cousin

unions have a probability for intellectual disabilities that is four times

higher than in non-consanguineous partnerships (Hu et al., 2018;

Kahrizi et al., 2019; Musante & Ropers, 2014). Although population

genetics predicts these findings as a transient phenomenon in none-

quilibrium dynamics, this literature is often not cited in the empirical

works (Balick et al., 2015; Glémin, 2003; Gravel et al., 2011; Henn

et al., 2015; Kirkpatrick & Jarne, 2000; Lohmueller et al., 2008;

Peischl & Excoffier, 2015; Simons & Sella, 2016). In our work we stud-

ied how rapid changes in population size affect the expected number

of lethal equivalents when generations overlap, and achieved similar

results as in the Wright–Fisher model. By that means we addressed

an outstanding question in nonequilibrium population genetics. We

hypothesize that epidemiological data accumulated over a few centu-

ries, which is a short time period with respect to recessive selection

and a lack of knowledge in population genetics, might frame a biased

risk perception that might even influence aspects of social norms.

According to our simulations and previous work, the advantage of

outbreeding is a transient phenomenon for a population that is initially

in mutation-selection balance and that starts to grow. The lower prev-

alence compared to an inbred population lasts for many generations

even after the expansion phase has ended, until mutation-selection

balance is reached again with a higher count of lethal equivalents. We

found it intriguing that, for example, first-cousin marriage in Europe

was banned after several generations of population growth during the

Roman empire and considerable migration and admixture (Henn

et al., 2015). While this continent clearly benefitted at that time point

from a change of social conventions with respect to the recessive dis-

ease burden, the consequences of different mating schemes, for

example, on the proportion of congenital malformation are less promi-

nent in populations that were more constant in size over a long period

of time (Chakraborty & Chakravarti, 1977). One of the most extreme

examples of descendants of a small group might be the Hutterites,

who increased in population size by more than a factor of 400 in less

F IGURE 2 Influence of family size on mutation load and prevalence: The mating scheme is characterized by the family size and a probability
function that describes how many of the partners are chosen within the family. In a preferentially consanguineous mating population the
dynamics change when the maximum family size increases (upper left panel to lower right from 10, 25, 50, 100, 500 up to 10,000). The mutation
load starts to increase considerably if mating is happening in tribes of 500 individuals. However, at this stage there is still only a minor effect of
further population growth. In the lower right the maximum of the allowed family size is equivalent to the population size and thus, dynamics do
not differ from a random mating scheme any more. The plots show the average of 10 exact trajectories of the stochastic process simulated with
the individual-based model of adaptive dynamics model.
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than 200 years from a founding population of less than 100 people

(Boycott et al., 2008). This is comparable to a kin of 100 which is still

too small to benefit from a drop in prevalence during growth as shown

in Figure 2. The few initial lethal equivalents of the founders were

amplified to high prevalence and are now also listed as recessive

alleles of high frequency in the database of genetic disorders in Amish,

Mennonite and Hutterite (Payne et al., 2011). However, a transient

reduction of recessive disease burden can be achieved by marriage

that is colony exogamous, which is also most likely for that reason a

social accepted mating scheme. The occurrence and coexistence of

different marriage patterns over many centuries can certainly not be

understood by population genetics alone since social, cultural and

economic factors interact with demographics in a complex manner

(Henn et al., 2015). It is therefore concerning when questionable

genetic reasoning is used in the legislature. For instance, the

European Court of Human Rights case of Stübing v. Germany con-

cerned consanguineous siblings who had four children following con-

sensual intercourse, whereupon both siblings were charged with

incest (“Stübing v. Germany,” 2012). One of the siblings lodged a

complaint, arguing that the legislature violated his right to sexual self-

determination, his private and family life. The Court found that 24 out

of 44 European States reviewed, criminalized consensual sexual acts

between adult siblings, and all prohibited siblings from getting mar-

ried. The German government argued that the law against incest

partly aimed to protect against the significantly increased risk of

genetic damage among children from an incestuous relationship (“Bes-
chluss des Zweiten Senats,” 2008). However, motivating a law to

avoid a higher probability of disease can be viewed as eugenic: As the

German Ethics Council opined after the judgment, no convincing argu-

ment can be derived from there being a risk of genetic damage

(Deutscher Ethikrat, 2014). The Council also pointed out that prohibit-

ing procreation in non-consanguineous couples who carry a genetic

burden, would not be allowed to be proposed or considered in any

manner (Deutscher Ethikrat, 2014). Any prohibition of consanguine-

ous relationships should therefore build on non-genetic reasoning.

The view of the German Ethics Council concurs with a statement by

the German Society of Human Genetics criticizing eugenic reasoning

in a judgment by the German Federal Constitutional Court in 2008 on

F IGURE 3 Influence of genomic architecture and population size: The capacity of the genome for deleterious mutations is larger in the
random mating population. With an increasing number of genes and growing population size, deleterious mutations accumulate (a). In contrast, in
the consanguineous mating scheme, family size limits the effective population size, and therefore mutation load is independent of the total
number of individuals (b). Prevalence increases linearly in both mating schemes when the number of genes increases and is independent from
population size, as regression analysis indicates (c,d).
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criminal liability of incest between siblings. The Society stated that

“The argument that reproduction needs to be thwarted in couples

whose children possess an elevated risk for recessively inherited ill-

nesses is an attack on the reproductive freedom of all.” [“Das Argu-

ment, es müsse in Partnerschaften, deren Kindern ein erhöhtes Risiko

für rezessive erbliche Krankheiten haben, einer Fortpflanzung entge-

gengewirkt werden, ist ein Angriff auf die reproduktive Freiheit aller”.]
(“Stellungnahme der Deutschen Gesellschaft für Humangenetik

(GfH),” 2008). The Society added that apart from being factually

incorrect, eugenic reasoning also encourages discrimination and

should therefore be avoided by the courts (“Stellungnahme der

Deutschen Gesellschaft für Humangenetik (GfH),” 2008).
Furthermore, as our work shows, the argument that there exists

an increased risk of genetic damage requires the definition of a refer-

ence population for comparison. However, there is neither agreement

about a suitable reference nor an accurate measurement for mutation

burden (Henn et al., 2015). When genetic counseling is sought, the

predicted recessive disease burden that is communicated in the con-

sultation might influence decisions, for example, about the choice of

partners or family planning. Since this risk does not only depend on

F IGURE 4 Comparison of implementation of consanguineous mating scheme: The upper image (a) depicts a typical pedigree resulting from
the implementation of consanguineous mating in SLiM. Precise inheritance up to two generations in the past are known. it is highly unlikely for
two parents to have more than one child together since females independently choose partners for each mating. The pivotal factor in partner
selection is the number of shared ancestors in the previous generation lineage. If two parents have two common ancestors, a mating occurs with
probability α; if they share one common ancestor from two generations ago, mating occurs with probability β; and if they lack any common

ancestors, mating transpires with probability 1 � α � β. In the lower image (b), a schematic visualization of consanguineous mating in the adaptive
model is presented. Within families, no specific structures is retained. Mating within the family occurs with a probability of α + β, while mating
outside the family transpires with a probability of 1 � α � β. In addition to the probabilities α, β the average family size κ/2 plays a decisive
role here.
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mating schemes but also on mutation burden it is important to mea-

sure this parameter as accurately as possible. In our simulations, an

individual of the outbreed population had on average four times more

lethal equivalents than an individual of the inbred population when

the mutation-selection balance was reached again many generations

after the growth phase ended.

Interestingly, these values and the range are comparable to what

has also been described in the literature for real populations. With

respect to the British subpopulations of Pakistani (PABI) and European

(EABI) ancestry in Martin et al., this could mean that PABI with a consid-

erably higher autozygosity and many first-cousin marriages are closer to

mutation-selection balance than EABI. This would imply that the disease

prevalence for recessive disorders will remain constant for PABI while it

will approach that level for EABI in the following generations, given that

the different mating schemes continue. In contrast, the higher mutation

burden in the EABI subgroup due to the higher effective population size

might already now contribute to a higher risk for autism spectrum disor-

ders, which are also highly heritable but do not follow monogenic inheri-

tance (Ji et al., 2016). Since assessing recessive lethals based on family

history is very challenging, genetic counseling should increasingly focus

on carrier testing in cases where individuals seek help to gain informa-

tion to make their own decisions. Based on current ClinVar statistics,

there are more than 150,000 pathogenic alleles known for recessive

genes that cause severe disorders. In large German cohort of individuals

with rare disorders, a diagnosis could be established in 125 cases due to

homozygosity or compound heterozygosity of pathogenic variants.

Ninety-four of these causative variants would also have been classified

as pathogenic in the healthy parents in a preconceptional exome analy-

sis (Schmidt et al., 2023). Expanded carrier screens can play an impor-

tant role in genetic counseling in multi-ethnic populations with different

degrees of consanguinity, and it should be discussed who should

have access to this test to make their own informed decisions

(Antonarakis, 2019; Schmidtke & Cornel, 2020).
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the Wright–Fisher model the adaptive dynamics population was given more capacity which also leads to a logistic grow.
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