
Computers and Chemical Engineering 182 (2024) 108564

Available online 23 December 2023
0098-1354/© 2023 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

DEXPI process: Standardizing interoperable information for process design
and analysis

David B. Cameron a,*, Wilhelm Otten b, Heiner Temmen c, Monica Hole d, Gregor Tolksdorf e

a University of Oslo, SIRIUS Centre, Department of Informatics, Gaustadalléen 23B, 0373, Oslo, Norway
b WOtten-Consulting, Nussbaumweg 21A, D-64839, Münster (Hessen), Germany
c DEXPI, Fürst-Salm-Straße 14, D-46414, Rhede, Germany
d Aibel AS, Hagaløkkveien, Asker, Norway
e Evonik Operations GmbH, Technology & Infrastructure, Paul-Baumann Straße 1, 45772 Marl, Germany

A R T I C L E I N F O

Keywords:
DEXPI
Digitalization
Interoperability
Process design
Standards

A B S T R A C T

DEXPI Process is a proposed standard for modelling information about process design, as it is presented on block
flow and process flow diagrams. It was developed by the DEXPI+ working group and builds upon the DEXPI
(Data Exchange in the Process Industry) standard for piping and instrumentation diagrams. Digitalization is
making increasing demands on the exchange of information in the process facility lifecycle. Industry 4.0 methods
require shared terminology and knowledge models to exchange information. Standards, such as ISO15926,
CFIHOS and DEXPI, try to address this need. All these focus on the physical plant items, as shown on a PID or 3D
model. There is a lack of standards for early-phase, top-down process design. DEXPI Process fills this gap. This
paper presents the development of DEXPI Process in the context of knowledge modelling of process systems and
previews how the model is a foundation for applications of automated reasoning and decision support for design
and operations.

Abbreviations
AAS Asset Administration Shell.
API Application Programming Interface
BFD Block Flow Diagram.
CAE Computer-Aided Engineering.
CAD Computer-Aided Drafting.
CFIHOS Capital Facilities Information Hand-Over Standards
DEXPI Data Exchange in the Process Industry.
EPC Engineering, Procurement and Construction.
IMF Information Modelling Framework.
MDG Model-Driven Generation.
MTP Module Type Package.
NAMUR Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der

chemischen Industrie.
OWL Web Ontology Language.
PID Piping & Instrumentation Diagram. We follow ISO 10628 in

using this definition, instead of Process & Instrumentation
diagram, as defined in ISO 15519.

PFD Process Flow Diagram.

PPR Product-Process-Resources model.
RDF Resource Description Framework.
RDS Reference Designation System (ISO/IEC81346).
STEP Standard for the Exchange of Product model data.
SysML Systems Modelling Language.
UML Unified Modelling Language.
XMI XML Metadata Interchange.
XML Extended Mark-up Language.

1. Introduction

1.1. Interoperability in the process industry facility lifecycle

The digitalization of the process industries depends on easy access to
data. This data is spread, unfortunately, across many data sources and
applications. Each application vendor and database designer, of neces
sity, uses their own data models and semantics. This means that it is
laborious and difficult to collect information for use in optimization of
design, construction, or operations. It is also hard to transfer information
between applications and between different actors in the lifecycle. All

* Corresponding author.
E-mail address: davidbc@uio.no (D.B. Cameron).

Contents lists available at ScienceDirect

Computers and Chemical Engineering

journal homepage: www.elsevier.com/locate/compchemeng

https://doi.org/10.1016/j.compchemeng.2023.108564
Received 6 September 2023; Received in revised form 25 November 2023; Accepted 19 December 2023

mailto:davidbc@uio.no
www.sciencedirect.com/science/journal/00981354
https://www.elsevier.com/locate/compchemeng
https://doi.org/10.1016/j.compchemeng.2023.108564
https://doi.org/10.1016/j.compchemeng.2023.108564
https://doi.org/10.1016/j.compchemeng.2023.108564
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2023.108564&domain=pdf
http://creativecommons.org/licenses/by/4.0/

Computers and Chemical Engineering 182 (2024) 108564

2

too much information occurs as documents, rather than machine-
readable datasets. In addition, it is difficult to document requirements,
trace them through the design process and verify that they are met in the
built facility. Current ways of working with and managing engineering
information can lead to this information about requirements, the
rationale behind the design, being either lost or made inaccessible.

1.2. The need for the DEXPI process standard

This is not a new problem. These interoperability challenges are well
known, and are the motivation for more than three decades of work on
STEP standards: ISO 10303 (Nzetchou et al., 2019; Xiao et al., 2018) for
manufacturing and ISO 15926 (Leal, 2005) for the process industry.

In the process industries, recent initiatives have worked on simpli
fication of ISO 15926 for specific use cases. Thus, the CFIHOS initiative
(https://www.jip36-cfihos.org) has created a data model, with semantic
reference data, for process equipment, with focus on petroleum pro
cesses. This allows the creation of machine-readable specification data
sheets and the corresponding equipment data sheets. Similarly, the
DEXPI initiative (https://dexpi.org) has produced a standard for repre
senting piping & instrumentation diagrams (PID)1 in a standard,
machine-readable format. This allows PIDs to be shared between
different actors, for example, contractors and clients, in a vendor-neutral
format.

The current DEXPI data model has been described in reference
(Wiedau et al., 2019). It represents the equipment, piping and
control-system functions shown in the PID. This reference positions
DEXPI within the plant design phase of the asset lifecycle, as shown in
Fig. 1.

The DEXPI data model is semantic: It defines classes for equipment
that build on part 4 of the ISO 15926 standard (ISO TC 184 2019).
Because of this, there is a large overlap between DEXPI and CFIHOS
classes. This offers immediate opportunities for consolidation, where
aligned CFIHOS and DEXPI classes can be used to build a common data
model of a plant. This model can then be used to generate consistent
PIDs and data sheets.

In its current form, DEXPI models the plant: the specification of
physical artefacts that form a processing facility. The PID shows symbols
as placeholders for these artefacts and their topology. It is two-
dimensional representation of a more-detailed, three-dimensional (3D)
model. However, there is usually a one-to-one correspondence between
an artefact in the PID, the 3D model, items in a main equipment list and
CFIHOS specification documents.

PIDs are not the only schematic drawings used in process facility
design. They are only the final form of a top-down design activity that
began with conceptual design. Block Flow Diagrams (BFD) and Process
Flow Diagrams (PFD) document this activity. These diagrams are
important documents for design and operation. They provide engineers
with a high-level, easy to grasp, overview of the process and its ratio
nale. At present, these diagrams are usually drawings, without links
between the graphical content and engineering design. They would
benefit from representation as a machine-readable data model.

Here we have identified a gap in the standards. The STEP standards
focus on the equipment in the as-built plant. They contain neither the
concepts nor the reference data needed to support abstract, early-phase
process design. For this reason, the DEXPI initiative formed DEXPI+, a
working group, to define a data model for these diagrams and the un
derlying design activity. The data model is called DEXPI Process. This

paper presents the results of this work and puts it into the context of
ongoing work on knowledge representation for process facility design
(ISO 2014).

In this work, we aim to support the engineering lifecycle that was
identified in the ENPRO project (Wiedau et al., 2019) and the Norwe
gian IMF project (Cameron et al., 2022). The view of the engineering
lifecycle developed in these projects is combined and summarised in
Fig. 1. The ENPRO project presented a lifecycle where process design
was a preliminary to plant design. The IMF work emphasised the need to
keep functional requirements for process separate from requirements for
equipment. If this is done, we can expect easier access to engineering
data in operational contexts, as the process requirements are made
available for verification and optimization of operational behaviour.
Fig. 1 also shows the scope of current important standards. These will be
discussed in Section 2.1. However, at this point, we see that they do not
provide support for the process design activity.

1.3. Overview of this paper

This paper begins with an assessment of the standards landscape as
applied to plant and process modelling. Here we identify limitations in
previous work and select promising approaches to modelling process
design knowledge. This provides the technical basis of the DEXPI Pro
cess model.

This discussion is followed by a presentation of the model itself. We
describe the elements of the model and present a demonstration example
of how the model applies to the Tennessee Eastman example process, as
described in (Downs and Vogel, 1993).

We conclude with an exploration of how model can be used to
stimulate more effective process engineering and operations. We believe
that the proposed data model is not merely a standard way of repre
senting BFDs and PFDs. It offers a graph-based, semantically informed
data model. It supports better data and requirements management in the
top-down, early-phase conceptual and design processes. It can simplify
and automate the configuration and management of results from process
simulation tools. The graph model also opens opportunities for applying
automatic reasoning and graph-based data science methods to solve
design, safety, and operational issues.

2. Functional modelling of process facilities

2.1. DEXPI process: a novel approach to process information management

DEXPI Process provides a novel, and we believe necessary, approach
to managing engineering design information. It work builds on previous
work that applied aspect-oriented modelling to the representation of
BFDs and PFDs (Cameron et al., 2022). This previous work used the
SysML modelling language (Hernandez et al., 2016), a dialect of the
UML modelling language (Rumbaugh et al., 2004) adapted to systems
engineering, to create system objects that represented the process steps
shown on these diagrams. We follow this work in distinguishing be
tween the process in a facility and the plant that performs the process.
BFDs and PFDs represent process design, not plant design. This also
means that the linkage between objects on a BFD or PFD to a plant item,
as shown in a PID, is indirect.

2.2. What do objects on block flow diagrams and process flow diagrams
represent?

As noted above, the BFD and PFD are important design documents
for a facility. They give process engineers and operators an overview of
the logical structure and functional behaviour of the facility. However,
the existing international standards for these diagrams: ISO 10628 (ISO
2014) (ISO 2012) and ISO 15519 (ISO 2010), are unclear on what a
symbol in a BFD or PFD represents.

ISO 10628 (§4.3) says that a symbol represents equipment, and the

1 Standards differ on the use of the name Piping & Instrumentation Diagram
or Process & Instrumentation Diagram. ISO 15519 (ISO 2010) specifies the latter
whereas ISO 15926-4 (RDS329894), CFIHOS (700292) and ISO 10628 (ISO
2014) specify the former. Given the argument in this paper, we believe that
Piping & Instrumentation Diagram is the best term for these drawings, as they
are concerned with the plant structure, not the process.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

3

lines represent flows of mass, energy, or energy carriers. ISO 15519 (ISO
2010) defines a PFD to be a “diagram illustrating the configuration of a
process system or process plant by means of graphical symbols”. This
standard has the advantage of being informed by the systems thinking
and aspects described in ISO/IEC 81346–1 (IEC 2022).

ISO 10628 is unclear on what the BFD or PFD represents. A block can
represent process steps, unit operations or equipment. A symbol in the
PFD represents equipment. Both ISO 10628 and ISO 15519 state that the
BFD is a representation of the process [system] or process plant. This
ambiguity between process and plant is common and natural. For
example, a “distillation column” symbol is used on a PFD. Does it
represent the distillation equipment or the distilling process?

We argue here that objects on a BFD and a PFD represent process
systems, and only represent equipment indirectly. Thus, the “distilla
tion column” symbol on a PFD always represents a distilling process. Here
we have an object that is viewed through what ISO/IEC 81346 calls the
function aspect: what the object does. The standards, however, agree
about the meaning of the lines on the diagrams. They represent flows of
mass/material (also called streams) or energy. We supplement this with
flows of information. These are needed when a PFD shows control and
safety functions.

Here we return to a fundamental concept in chemical engineering:
the unit operation. This idea, introduced by Arthur D. Little in 1916,

transformed the design process by abstracting processes from the
equipment that perform the process (Flavell-White, 2011). It is worth
quoting his definition: “Any chemical process … may be resolved into a
coordinate series of what may be termed ‘unit operations’, as pulveris
ing, dyeing, roasting, crystallising, filtering, evaporation, electrolysing
and so on. The number of these basic unit operations is not large and
relatively few of them are involved in any particular process. The
complexity of chemical engineering results from the variety of condi
tions as to temperature, pressure etc., under which the unit operations
must be carried out in different processes, and from the limitations as to
material of construction and design of apparatus imposed by the phys
ical and chemical character of the reacting substances.”

This description describes the essence of DEXPI Process. We define a
small number of process steps and then provide a set of parameters that
allow the designer to create and maintain structured information about
the variety of conditions and constraints that determine the design of the
plant.

2.3. Background in existing standards

In this section we will examine some existing approaches to model
ling processes and plants. This expands on the perspective and review
given by Wiedau et al. (Wiedau et al., 2021). The review examines the

Fig. 1. An overview of the asset lifecycle, adapted from (Wiedau et al., 2019) with the V-model presented in (Cameron et al., 2022).

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

4

standards listed in Fig. 1: CFIHOS, ISO 15926, NAMUR, and the Asset
Administration Shell. In addition, we discuss a promising German
standard: VDI/VDE 3682. We also examine another formalism for rep
resenting process design, namely the SFILES language (Vogel et al.,
2022).

2.3.1. CFIHOS
The CFIHOS and DEXPI data models have concentrated on plant

items: equipment and piping. Thus, the core data item in CHIFOS is a
tagged plant item (CFIHOS 2023), represented by a TAG object and an
EQUIPMENT object. The TAG object contains the specifications and
requirements for a plant item. The EQUIPMENT object contains the
properties of the equipment that meets these specifications. Both TAG
and EQUIPMENT objects are typed by TAG CLASS and EQUIPMENT
CLASS definitions. Thus, a TAG with type alternating current generator
will be fulfilled by an EQUIPMENT object the same type. Other, more
complex fulfilment patterns are possible. Several pieces of EQUIPMENT
can fulfil the specifications of a single TAG, or a more specific type of
EQUIPMENT can fulfil the specifications of a more general TAG. For
example, CFIHOS allows that a blow down valve TAG can be fulfilled by
EQUIPMENT with type ball control valve, butterfly control valve, gate
control valve, globe control valve, or plug control valve. Note that the
TAG and EQUIPMENT classes are identified by nouns, the names of
physical artefacts.

An extract of relevant parts of the CFIHOS data model is shown in
Fig. 2.

The data objects in CFIHOS reflect aspects of the design. Thus, an
AREA or SITE models a geographical location whereas a PLANT,
CONSTRUCTION ASSEMBLY or TAG models a physical artefact. This
allows us to organize the TAG objects in a model into aspect systems.

The PROCESS UNIT object in CFIHOS is relevant for DEXPI Process,
as it corresponds to a grouping of process functions, as shown on a BFD

or PFD. Traceability between a TAG and the PROCESS UNIT is obtained
by assigning a collection of TAG object identifiers to a PROCESS UNIT.
However, the PROCESS UNIT object functions merely as metadata for a
TAG.

The CFIHOS data model also defines a set of process-oriented classes
that allow a TAG to be related to a PROCESS ACTIVITY and a PROCESS
STREAM. The model also provides mechanisms for linking properties of
a PROCESS ACTIVITY or PROCESS STREAM to the property of a TAG.
It is not possible to model a BFD or PFD using these objects. In addition,
the current version of CFIHOS does not provide reference data for classes
of PROCESS ACTIVITY or PROCESS STREAM. We will return to how
DEXPI Process relates to this model in Section 6.3.1.

2.3.2. DEXPI and ISO 15926
Similarly, ISO 15296 and its reference data has concentrated on plant

items. Thus, Kim et al. (Kim et al., 2017; Kim et al., 2020) explore the use
of ISO 15296 to exchange plant 3D CAD data and integrate engineering
data with maintenance data. Their modelling is totally focused on the
plant item, represented as a functional physical object. A system in this
approach is then, merely, an assembly of physical objects.

A plant item is represented by three “anchor” objects: a main object,
an object that represents the function of the item (cf. the CFIHOS TAG
object) and an object that represents the physical aspect of the item (cf.
the CFIHOS EQUIPMENT object). Representations of the plant item:
symbols on a PID, renderings in a 3D model and specification sheets are
representations of so-called “temporal parts” of these anchor objects.

This model works where we are specifying and representing a single
plant item. However, it becomes unwieldy when we are dealing with
early-phase functional design. Here, the tight alignment between func
tion and physical realization limits our ability to model abstract func
tional systems. The functional object in this model is a placeholder for a
diverse set of process and equipment requirements for the plant item. It

Fig. 2. Part of the CFIHOS data model (CFIHOS 2023), showing the place of TAG and EQUIPMENT objects. The objects are coloured to indicate the aspect used to
classify the object: blue is a specified physical object, yellow is a functional aspect, red is a location aspect and green is a supplied physical object.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

5

does not correspond to a process step in our model or the ENPRO model.
The existing DEXPI standard for PIDs shares reference data with ISO

15926–4 and CFIHOS. The DEXPI standard defines a set of plant items
(or physical objects) and their topological arrangement. A DEXPI object
can contain values of design parameters that are typically shown with
the symbol on a PID.

2.3.3. NAMUR
The NAMUR organization (https://www.namur.net/en/index.html)

develops standards for automation in the chemical industries. Three of
these standards of direct relevance to this work:

• NE100. Lists of Properties and their Use in Process Control Engi
neering Workflows (NAMUR 2021).

• NE150 Standardised NAMUR-Interface for Exchange of Engineering-
Data between CAE-System and PCS Engineering Tools (NAMUR
2014).

• NE159. Standardized NAMUR interface for data exchange between
CAE systems for Process Design and CAE systems for PCT Hardware
Planning (NAMUR 2018).

The first two, NE100 and NE150, define standard property names
and interfaces to support interoperability of instrumentation specifica
tions and automation system configurations between engineering and
automation tools. The information described and transferred relates to
instruments, control system artefacts and configuration blocks in the
automation system.

NE159 provides a data model for transferring information about the
constraints imposed by process and plant design from an engineering
system into the system that specifies components in the control system.
This transfer is done for a specific actuator or valve or sensor. The
process data needed is sorted in four categories (NAMUR 2018), p7:

1. General properties of process and medium, e.g., the medium and its
difficult or dangerous properties, its general state (solid, liquid, or
gaseous), pressure and temperature.

2. Process-related design constraints and requirements, for example
upper limit and lower limit pressure and temperature.

3. Operation case data: volume flow, density, viscosity, and composi
tion for one or more operational cases.

4. Piping and location data, for example, the piping class, the nominal
diameter, and nominal maximum pressure specification of piping.

NE159 provides an XML schema for transferring this data. Data in
category four can be extracted from DEXPI data models, as it relates to
plant items: piping artefacts, apparatus, and machines. However, data in
categories 1 to 3 are related to process design and could be provided
using the DEXPI Process model. At present, however, use of NE159 re
quires the use of a custom exporter for each engineering database.

A further relevant initiative of NAMUR is the Module Type Package
(MTP) standard (VDI/VDE/NAMUR 2658), as described in (Tauchnitz,
2022). MTP defines a concept for building up a process facility from
self-contained modules of process equipment, safety functions and
automation. The facility is then built by connecting and orchestrating
these modules. This break-down of complex processes into simpler
process modules is like the top-down design that we are trying to
support.

2.3.4. Asset administration shell
The last standard shown in Fig. 1 is the Asset Administration Shell

(Wagner et al., 2017; Grüner et al., 2023) (AAS). This structures infor
mation around assets: entities “owned by or under the custodial duties of
an organization, having either a perceived or actual value to the orga
nization.” (Plattform Industrie 4.0, 2023). In practice, the entities that
have been provided with AAS data have been manufactured artefacts or
documents. However, we see no limitations on using AAS to represent

data about more abstract assets like a definition of a process step in an
early-phase design.

The hierarchical, object-oriented data model used in the AAS could
be used as an implementation of the DEXPI Process data model. Each
object type in the model would then have an AAS definition and a model
would be built by configuring and parameterising these AAS objects.
AAS could also be used to manage metadata, where a DEXPI Process data
model is embedded in an AAS as a blob of data in some other format,
such as XML or AutomationML. In this case, the AAS acts as an envelope
for the data, ensuring that a vendor and purchaser use consistent met
adata about a model that is exchanged.

2.3.5. VDI/VDE 3682 formalized process modelling
Finally, a German standard, VDI/VDE 3682 (VDI/VDE 2015a)

(VDI/VDE 2015b), presents a formal, graph-based model for chemical
processes. The model is built around a Process Operator object that
processes Product, Energy, and Information objects, as shown in
Fig. 3. A Technical Resource can then realize the Process Operator.

VDI/VDE supports hierarchical design, where a simpler, high-level
system is decomposed into more complex, lower-level systems. This is
done by aligning the Product, Energy, and Information nodes on
system boundaries at the higher level with the lower level.

As the reader will see below, the data model we propose has many
similarities with the VDI/VDE 3682 model. However, before we detail
the model, we need to discuss how a process model relates to the objects
on a BFD or PFD.

2.3.6. SFILES
SFILES is a text-based notation for process flowsheets (Vogel et al.,

2022). It provides a compact, textual representation of the structure of a
PFD. Process steps are represented by strings and connections are
implied by the sequence of process steps, grouping, symbols for
converging and diverging branches, and identifiers for nodes. The
SFILES representation corresponds to a graph where the nodes are
process steps, and the arcs are process connections.

The authors proposed a set of types for process steps, based on the
OntoCAPE ontology. Our taxonomy is richer. In the presentation of the
DEXPI Process taxonomy in section we have indicated the mapping to
SFILES for our types.

The SFILES text representation is compact and cryptic. It is designed
for machine use rather than human interaction. It models only the to
pology of the process, not the properties of process steps.

2.4. A systems approach to design

The information model required to support BFDs and PFDs needs to
model the process performed in a facility, as distinct from the plant,
which is the realization of the process by means of equipment. In
designing DEXPI Process, we have striven to build on and integrate
existing standards and best practices. The approach builds on the work
described in reference (Cameron et al., 2022), which presented an
experimental SysML modelling framework, where the process modelling
elements provided a foundation for the model.

DEXPI Process is built using systems engineering concepts. Thus,
each element in a BFD or PFD is represented by a system block, with
defined inputs and outputs. Here we draw upon modelling languages
such as IDEFx (IEEE Computer Society 1998) and SysML (Hernandez
et al., 2016). We draw on a small sub-set of SysML, namely the concept
of blocks with ports.

We draw on another systems engineering perspective, represented by
the ISO/IEC 81346 family of standards (IEC 2022; Balslev, 2020; Balslev
and Barré, 2022). Here, complex systems are broken down into con
stituent elements along different aspect trees. The standards describes
three primary aspects: function, product, and location. The primary
focus of ISO/IEC 81346 is providing a reference designation system
(RDS), i.e., a coding standard that identifies objects in the system

D.B. Cameron et al.

https://www.namur.net/en/index.html

Computers and Chemical Engineering 182 (2024) 108564

6

breakdown by type and aspect. ISO/IEC 81346–2 (IEC 2019) provides
reference data and a set of RDS codes for component systems. These
codes have been adapted for power systems in part 10 of the standard
(ISO 2022) and for oil & gas (READI, 2021). Both coding sets differen
tiate between technical systems, with two-letter RDS codes, defined in
the domain-specific standards, and component systems, with three letter
codes, and defined in ISO/IEC 81346–2. There is no linkage or inheri
tance between these codes. The German standard DIN 6779–13 (DIN
2018) provided an RDS for the process industries, which proposed a set
of two-letter codes, selected from the component system table in ISO/
IEC 81346–2. By doing this, they provide a set of technical systems that
can, if desired, be specialized through inheritance. For example, a pump
in DIN 6779–13 will have a -GP reference designation. This would apply
irrespective of type of pump. However, we can choose to use the
component system reference -GPB, if the pump is a centrifugal pump,
and -GPA, if it was a reciprocating pump. Similarly, we can use an =GP
reference to identify a DEXPI Process Pumping block or an =GPB
reference to identify a Pumping block with its Method property set to
CentrifugalMotion.

2.5. Aspect models

The key insight in the development of DEXPI Process is that a PFD
and a PID describe different aspects of the processing system. The idea of
aspect systems is a foundation for ISO/IEC 81346 and is also the basis of
the OntoCAPE knowledge model (Marquardt, 2010) for process systems.
An aspect model represents a specific viewpoint – a way of analysing a
technical system.

OntoCAPE views a planned or actual facility as an abstract chemical
process system. This system can be viewed using several aspects,
including requirements, function, realization, and behaviour, as shown
in Fig. 4. It differentiates between a Plant that represents the physical
realization of the system from the Process that represents the function of
the system.

We follow the OntoCAPE approach by defining a separate package in
the DEXPI model, called Process, and by using a base class called
ProcessStep for all classes that represent unit operations or process
blocks. Note also that our model contains elements that support both the
requirements and behaviour aspects.

Cheng and Ma (Cheng and Ma, 2017) presented the functional

Fig. 3. The Process Operator data model in VDI/VDE 3682.

Fig. 4. Modelling of aspect systems in OntoCAPE.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

7

feature modelling cube as another way of understanding the interaction
between function, structure and behaviour in engineering design. This is
adapted to process design in Fig. 5.

The model shown in Fig. 5 complements OntoCAPE. It also makes it
clear that we need three sets of semantic reference data to model our
facilities. Firstly, we need reference data for the physical objects, the
plant items, in the plant. This is well-defined in ISO 15926, CFIHOS and
DEXPI. Secondly, we need data about physical quantities and phe
nomena that describe processes, plants, and their behaviour. Finally, we
need reference data for process steps. This has been lacking until now.

2.6. Summary: overview of process and plant modelling approaches

Table 1 summarizes our overview of the standard approaches to
modelling and interoperability of process and plant data.

3. The DEXPI process data model

3.1. Overview of the model

The DEXPI Process data model is shown in Fig. 6. This shows the
main classes in the model and how they are related. The section in which
the classes are described is indicated on the drawing. The model has
been developed using the UML modelling language (Rumbaugh et al.,
2004). We did this because the existing DEXPI standard uses UML.
However, the reader will see that the model is a graph model that can be
expressed as RDL. We have found that UML has been an effective tool for
developing and validating the model. However, it is unsuitable as a
format for use in interoperability and engineering applications. For this
reason, we have provided implementations of the model as an XML
schema and an AutomationML library. These are described in more
detail in Section 4.

3.2. Process steps and unit operations

3.2.1. The processstep class
The most important class in the model is the ProcessStep class. This

is the base class for all nodal elements in a BFD or PFD. The term process
step is taken from the OntoCAPE semantic model (Marquardt et al.,
2010). Here a process step is a system that performs an activity that is
part of a process. It focuses on function. The ProcessStep is a block data
structure that can be implemented as an object-oriented datatype, UML
block, SysML block or an AutomationML object.

Each ProcessStep can own one or more Port objects. A Port is a
logical point at which the ProcessStep exchanges material, energy, and
information with another ProcessStep. A Port has a nominal direction
(Inlet or Outlet). The Port class is abstract, so that a port needs to be of a
specific type: a MaterialPort, an InformationPort, an Elec
tricalEnergyPort, a MechanicalEnergyPort or a ThermalEnergyPort.
An outlet port is connected to an inlet port by a ProcessConnection
object. See Table 2.

An important feature of DEXPI Process is that we can build our
process model hierarchically, where a higher-level process step acts a
frame for a more detailed model. It is therefore necessary to align a port
in the more detailed model with a port in the process step higher in the
hierarchy. This is supported by SubReference and SuperReference
properties in each port. This alignment allows tracing of constraints,
requirements, and process properties up and down the process
hierarchy.

3.2.2. A taxonomy of process steps
DEXPI Process defines a hierarchical taxonomy of process steps and

unit operations. This is based on existing standards and taxonomies and,
we believe, can represent the processes in most process facilities. The
taxonomy has up to three layers, with inheritance between the layers. In
the top layer, the classes are typed by processing activities: single verbs

Fig. 5. The Functional Feature Modelling cube for process systems design, adapted from (Cheng and Ma, 2017). DEXPI Process models the process, the functional
decomposition of the system. The PID models the plant, the physical structure of the system.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

8

expressed using the present participle form with an object for the ac
tivity. For example: Separating and TransportingFluids.

At the lower levels, the taxonomy corresponds to the unit operations
concept. Here the process step is typed by how the activity will be done.
Here we specify the physical principle used in the process. Thus, the
Separating activity can be specialized into a Separa
tingByThermalProcess activity. The taxonomy here is based on the
German DIN-6779 standard (DIN 2018), which, in turn, draws on the
taxonomy of processes in the DDR TGL 25 000 Sheet 1 (VVB

Chemieanlagen,Leipzig 1974). These middle-level activities can be
specialized further according to physical principle. DEXPI Process uses
class inheritance to model this hierarchy. Thus, Distilling is a speciali
zation of SeparatingByThermalProcess, and VacuumDistilling is a
specialization of Distilling.

The following tables list the ProcessStep classes defined, with their
inheritance relations.

We start with separating processes, shown in Table 3. Here we model
with three levels of detail, following the schema in DIN-6779–13 (DIN
2018). The separation processes are classified according to the physical
phenomena that are used to achieve separation. At the third level we can
see separating processes that correspond to the common separation unit
operations.

We define three top-level processes for manipulating the thermal
energy content of a material, see Table 4. We can either supply, remove
or exchange thermal energy. We can also specify a heat exchange
method for any of these blocks. Here we indicate the arrangement of
heat transfer surface that will be used to realize the process.

DEXPI Process provides a library of process steps for solids

Table 1
Summary of process and plant modelling approaches.

Approach Modelling focus and assumptions Evaluation

ISO15926 Primary focus is on physical plant items, with process and function tightly coupled to the plant item. Provides reference data (classes) for CFIHOS and DEXPI.
CFIHOS Current implementation is a data model for specified and supplied properties of a plant item. Provides a taxonomy of plant items needed to build

chemical facilities.
DEXPI Provides a data model for the plant as shown on a PID. Taxonomy of plant items overlaps with CFIHOS.
NAMUR NE100 and NE150 focus on plant items for automation. NE159 links plant items to process design

information. MTP defines modular plant items.
Process steps in DEXPI Process can be realized with MTP
modules.

VDI/VDE
3682

Focuses on process, with inputs and outputs of material, information, and energy. Data model is consistent with DEXPI Process. The standard
does not provide a taxonomy of processes

SFILES Focuses on process topology and representation of the process as a graph. Concise tool for serializing and analysing process
structures.

ISO/
IEC81346

Taxonomy and reference designation for aspect modelling of systems. The model has a weak semantic
basis but can be aligned with stricter taxonomies such as CFIHOS or DEXPI.

Function and product aspects are used in this work. DEXPI
Process is a model in the functional aspect.

Fig. 6. The classes in the DEXPI Process Data Model, showing references to the section where they are described.

Table 2
Connections and ports.

Type of connection Port class ProcessConnection class

Material MaterialPort Stream
Information InformationPort InformationFlow
Electrical energy ElectricalEnergyPort ElectricalEnergyFlow
Thermal energy ThermalEnergyPort ThermalEnergyFlow
Mechanical energy MechanicalEnergyPort MechanicalEnergyFlow

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

9

processing, see Table 5. These are organized under three top-level pro
cesses: forming material, increasing particle size, or reducing particle
size.

Process steps are defined to store fluids, solids, electrical energy, and
thermal energy, see Table 6. Note that we do not differentiate between
storing gases and liquids. Both are treated as fluids.

Process steps are defined to supply fluids, solids, electrical energy,
and mechanical energy, see Table 7. The SupplyingMechanicalEnergy
class is parent for all driving processes: motors, engines, and turbines.

Process steps are defined for mixing and splitting flows of material,
see Table 8. Two types of process step are defined here. The Splitting
Material, SplittingEnergy and MixingSimple steps model simple
branching and converging of material and energy flows in a detailed
process flow diagram, whereas the other unit operations represent
processes that will be realized by specific items of equipment.

The library provides process steps for transporting material and

energy, see Table 9. Note that these process steps are used where there is
a substantial difference between the state of the material at the inlet and
outlet of the system. These blocks are not used to connect other process
steps. Thus, we would use a TransportingFluidsInPiping to model an
inlet manifold system or a long pipeline transfer of material between two

Table 3
Process Steps for Separating.

Top-level activity Middle-level activity Unit operation

Separating (SFILES sep) SeparatingByPhaseSeparation SeparatingByGravity
SeparatingByCentrifugalForce
SeparatingByCyclonicMotion (SFILES hcycl)
SeparatingByGasLiquidSeparation
SeparatingByScrubbing (SFILES scrub)
SeparatingByCoalescing
SeparatingByFlashing (SFILES flash)

SeparatingByThermalProcess Drying
Distilling (SFILES dist)
Evaporating
StrippingDistilling
StabilizingDIstilling (SFILES rect)
VacuumDistilling

SeparatingMechanically Filtering (SFILES gfilt, lfilt)
Skimming
Sieving

SeparatingByElectromagneticForce SeparatingByElectrostaticForce (SFILES egclean)
SeparatingByMagneticForce

SeparatingByPhysicalProcess Absorbing (SFILES abs)
Adsorbing
SeparatingByIonExchange
SeparatingByContact (SFILES extr)
SeparatingBySurfaceTension

Table 4
Process Steps for working with Thermal Energy.

Top-level activity Unit operation

ExchangingThermalEnergy
(SFILES hex)

Principle given by HeatExchangeMethod
attribute in block: Generic, Plate, Spiral or
Tubular.

RemovingThermalEnergy Cooling
SupplyingThermalEnergy HeatingInFurnace

Boiling
GeneratingSteam
Flaring
HeatingElectrical

Table 5
Process Steps for Solids Processing.

Top-level activity Unit Operation

FormingSolidMaterial Extruding
Pelletizing

IncreasingParticleSize Agglomerating
Crystallizing
Flocculating

ReducingParticleSize Crushing
Cutting
Grinding
CustomMilling

Table 6
Process Steps for Storing Material and Energy.

Top-level Activity Middle-level activity Unit operation

Storing (SFILES tank) StoringFluids StoringInTank
StoringInPressureVessel

StoringSolids StoringInSilo
StoringElectricalEnergy StoringInBattery
StoringThermalEnergy

Table 7
Process Steps for Supplying Material and Energy.

Top-level activity Unit operation

SupplyingFluids
SupplyingSolids
SupplyingElectricalEnergy GeneratingACPower

GeneratingDCPower
GeneratingInFuelCell
GeneratingCustom

SupplyingMechanicalEnergy DrivingByMotor (principle as attribute)
DrivingByEngine (principle as attribute)
DrivingByTurbine (principle as attribute) (SFILES
expand)

Table 8
Process Steps for Mixing and Splitting.

Top-level activity Unit operation

Splitting (SFILES splt) SplittingMaterial
SplittingEnergy

Mixing (SFILES mix) Mixing
Kneading
Humidifying
RotaryMixing
StaticMixing
MixingSimple

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

10

process steps.
We view Pumping and Compressing activities as a specialization of

a GeneratingFlow activity, see Table 10. We note that it is possible to
debate whether the function of pump or compressor is to generate flow
or increase pressure. We have adopted a pragmatic approach and
decided that the primary activity is to generate a flow of material. The
principle used for pumping and compressing can be specified using an
attribute of the block.

We complete the model with a ReactingChemicals class and a
Packaging class, see Table 11.

3.3. Process step details

A PFD can contain elements inside a process step that are important
for the process behaviour. For example, a process that performed in a
column is denoted by a symbol that shows the arrangement used to bring
fluids into contact, either trays or packing. Similarly, a reactor or mixer
may require agitation. Here we again see the ambiguity between process
and equipment. During process design, we need to indicate that the
Distilling process uses trays or packing. Similarly, the Reac
tingChemicals process requires a linked Agitating process.

DEXPI Process therefore defines ProcessStepDetail classes. These
are systems that cannot exist independently of a ProcessStep but that
perform necessary processes in that ProcessStep. These classes will
usually be used as part of process steps that represent unit operations in
Process Flow Diagrams.

Four such classes are defined:

• Agitating.
• ContactingOnTray. This class is used to represent stages in a

column-based separation process. It is functionally important that we
can represent and indicate top, bottom, draw-off and feed stages in
these processes.

• ContactingInPacking. This class is used to represent packed-bed
segments in separation and reaction unit operations.

• SupplyThermalEnergyInBurner.

3.4. Sources, sinks and emitting

Source and Sink blocks model the flow of material into and out of a
specific BFD or PFD. These are used to delimit drawings and plant
models. They can also function as off-page connectors between PFDs.
These classes correspond to the SFILES raw and prod nodes.

An Emitting class can be used instead of a Sink to document the
presence of a waste or emission stream. This can simplify identifying and
accounting for emissions from a facility.

3.5. Process instrumentation and control

3.5.1. Modelling process instrumentation and control
ISO 10628–1 says that a PFD can also contain “functional demands

for process measuring and control devices at important points” (ISO
2014 §4.3.3). In practice, this means that the PFD will include the su
pervisory control needed to run the process. For this reason, the PFD also
contains “essential valves and their arrangement in the process.”

A BFD and PFD are also valuable tools for designing and doc
umenting the safety and segmentation of the facility. For this reason, we
also include process steps that implement the safety design according to
ISO 10418 (ISO 2019) / API RP14C (API, 2018) or ISO 23251 / API Std
521 (API 2022).

3.5.2. Steering flow: flow control functions
Since the data model is process oriented, we model “valves” in a PFD

by their function, using sub-classes of the SteeringFlow process step.
The classes defined are listed in Table 12.

When showing supervisory control, we use a RegulatingFlow or
FeedingMaterial block as the final control element. The ShuttingOff
Flow, PreventingBackflow, RelievingOverpressure, RelievingVac
uum, RelievingVacuumAndOverpressure, BlowingDown, Draining
and RestrictingFlow blocks are used if the PFD is to be used to show
safety system functions.

3.5.3. Process instrumentation systems and activities
The “functional demands for process measuring and control devices

at important points” noted above are modelled by two base classes. An
InstrumentationSystemActivity is a high-level class that models a
complete measuring and control loop function. Each instance of this will
contain one or more instances of InstrumentationActivity classes that
show the functional components of the loop.

We will describe the model using a fragment from the example
detailed PFD given in ISO 10628–1 (ISO 2014), shown in Fig. 7.

The discharge from an overhead product pumping system, P1/P2, is
split into two streams. A ratio controller is used to implement a reflux
ratio on the distilling system. The discharge pressure from the pumping
system is monitored.

Table 9
Process Steps for Transporting Material and Energy.

Top-level activity Unit operation

TransportingFluids (SFILES pipe) TransportingFluidsInPiping
TransportingFluidsInChannel
TransportingFluidsInHose

TransportingSolids TransportingSolidsContinuously
TransportingSolidsDiscontinuously

TransportingElectricalEnergy

Table 10
Generating Flow: Pumping and Compressing.

Top-level activity Unit operation

GeneratingFlow Pumping (SFILES pp)
Compressing (SFILES comp, blwr)

Table 11
Other Process Steps.

Top-level activity Unit operation

ReactingChemicals
(SFILES r)

ReactingChemicals. Method parameter defines
principle: Tubular, PackedBed, Tank, FluidizedBed,
Unspecified

Packaging

Table 12
ProcessStep classes for steering flow.

Top-level activity Unit operation Realizing piece of
equipment

SteeringFlow
(SFILES v)

ShuttingOffFlow On-off isolation valve
RegulatingFlow Modulating control

valve
PreventingBackflow Check or non-return

valve
RestrictingFlow (SFILES orif) Flow orifice
FeedingMaterial Feeding of solid

material
RelievingOverpressure Relief valve with piping
RelievingVacuum Breather valve with

piping
RelievingVacuumAndOverpressure Bi-directional breather

valve with piping
BlowingDown Blow-down valve with

piping
Draining Drain valve with piping

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

11

This structure is modelled using two InstrumentationSystemActi
vitity blocks. The first of these represents the pressure monitoring
function, while the other models the reflux control function. Each
InstrumentationSystemActivity block contains one or more Instru
mentationActivity blocks. The InstrumentationActivity classes are
listed in Table 13.

The fragment shown above can then be modelled as shown in Fig. 8.
Note that a MeasuringProcessVariable block is linked to the pro

cess by a reference to a parameter in a ProcessConnection, a Proc
essStep or a ProcessStepDetail. Thus, the =BP02 block presents a
measurement of the Pressure parameter in the Stream between =GP03
and Split3.

3.5.6. Alignment with DEXPI plant instrumentation modelling
The existing DEXPI standard has a more detailed model to represent

instrumentation functions in the PID. Fig. 9 shows how the DEXPI Pro
cess functions are realized by instrumentation functions and equipment.

3.6. Parameters and characterizations

Let us return to the quote from Arthur D. Little (Flavell-White, 2011).
“The complexity of chemical engineering results from the variety of
conditions as to temperature, pressure etc., under which the unit oper
ations must be carried out in different processes, and from the limita
tions as to material of construction and design of apparatus imposed by
the physical and chemical character of the reacting substances.”

The art of chemical process design is taking functional requirements
and using them to define a safe and optimal process that can be realized
by a safe and operable plant. We document these requirements and
verify compliance by making statements about – characterizations of –
the process and equipment. For this reason, each DEXPI Process class
defines a set of parameters that characterize that ProcessStep, Proc
essStepDetail or InstrumentationActivity. We use inheritance of

properties, so that a detailed ProcessStep can share properties with a
less detailed, higher-level ProcessStep, as shown in Fig. 10.

Note that we assume that it is meaningful to specify temperature,
pressure, ambient temperature, and ambient pressure for any Process
Step. Here we also specify identification, description and labelling pa
rameters that are common for all blocks. A SteeringFlow process step
inherits properties from its base class. In addition, we can specify the
mass flow and/or volume flow through this process. Further, if we need
regulate flow, we will be interested in specifying values of pressure drop,
opening time and closing time for the RegulatingFlow step.

The data model also allows specifications of properties of Stream,
EnergyFlow and InformationFlow objects at ports. This allows the
designer to reference properties and the inlet and outlet of a process step
or unit operation.

Note that these parameters are unqualified. A DEXPI Process model
states that there is pressure associated with every process step. It is up to
the designer to supply specifications for, and calculate estimates of, that
pressure. The designer will want to state many things about this pres
sure. We need to set specifications on the upper limit and lower limit
design pressure. It may be necessary to specify an upper limit allowable
pressure. The designer will also need to specify the expected operating
pressure. We can represent each of these specifications by supplying a
value of a qualified parameter.

A qualified parameter is a value of a parameter that contains infor
mation about what the value means.

This is done by supplying qualification information about the value.
DEXPI Process provides the option of adding the properties defined in
Table 14 to any parameter value.

Note that setting these properties is optional. This means that DEXPI
Process can be used as to build a single document where all values
supplied are interpreted as being nominal design values.

However, this approach allows the separation of the process model
from its characterisations. This is done by building a model that only
contains definitions of blocks and their connections. No parameter
values are stored in this model. The design system can then maintain
multiple data sets that contain qualified parameter values for parame
ters defined in the data model.

A simple implementation of this can be done using serialized DEXPI
Process documents. A master document contains the structure of the
process model. Additional documents supply qualified parameters for
blocks in the master document. In this way, we can model a PFD with
several design cases. The topology of the PFD is in the master and each
case is its own document. This is shown in Fig. 11.

3.7. Representation of material properties: streams and stream tables

The PFD often displays a set of stream tables, which show the flow,
state (pressure and temperature), composition and physical properties
for important streams. Where there are several phases, the stream tables
may also show flows, compositions, and physical properties for each
phase. Representation of these properties is essential for process design,
as the given properties of the feeds and desired properties of the prod
ucts are key functional requirements.

Recall the Functional Feature Modelling cube in Fig. 5. The stream
tables in a PFD are a snapshot of the behaviour of the process at a specific

Fig. 7. Illustrative fragment from ISO 10628–1.

Table 13
InstrumentationActivity classes.

Top-level activity Activity Realizing piece of equipment

InstrumentationActivity MeasuringProcessVariable Sensor and Transmitter
CalculatingProcessVariable Calculating function
ControllingProcessVariable Controller (SFILES C)
ConveyingSignal Long or complex signal transmission. InformationFlow is usually used for signals.
TransformingProcessVariable Sub-class of CalculatingProcessVariable, arbitrary transformation of a process variable
CalculatingSplitRange Sub-class of CalculatingProcessVariable, split range block.
CalculatingRatio Sub-class of CalculatingProcessVariable, ratio block.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

12

set of conditions. This behaviour is calculated using process simulators
that build upon software that calculates the physical and thermody
namic properties of the materials to be processed.

During the design process we see an iterative process where speci
fications from a DEXPI Process model are used to define simulation cases
that are run on a process simulator. The results of the simulation are then
extracted to produce the stream tables shown on the PFD. This work is
usually done using spreadsheets and a proprietary interface to the
simulation tool (Fricke and Schöneberger, 2015; Fontalvo, 2014; Pon
ce-Ortega and Hernández-Pérez, 2019; Romatier et al., 2015). This is
shown in Fig. 12.

DEXPI Process defines a data model for representing the properties of
process streams. We have based this model on the CAPE-OPEN standards
(CoLAN Consortium 2011). In doing so, we hope to simplify interchange
of data to and from simulators. The model is shown in Fig. 13.

This builds on the idea of a MaterialTemplate. An object of this type
is defined for every main type of process material in the facility. There
will only be a few templates in any project. For example, an oil & gas
facility project will define material templates for the process fluids and
for each utility fluid.

The MaterialTemplate defines the data structure for each Stream
object and the MaterialPort objects it connects. It defines a list of
chemical components in the stream. These can be either a Pure
MaterialComponent object, which have a well-defined chemical
composition, or a CustomMaterialComponent, such as the project-
specific pseudo-components used to characterize heavy hydrocarbons.
The MaterialTemplate also defines the number of phases to be shown in
the stream tables and provides labels for each of the phases.

The MaterialTemplate provides all the static information needed to
build the row headings in the stream table.

Fig. 8. Modelling the illustrative PFD fragment with instrumentation.

Fig. 9. Relationships between DEXPI+ (Process) and DEXPI (Plant) instrumentation classes.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

13

Each column in the stream table is built up of a Stream object. This
can either be a simple object, characterized by mass and volume flow,
temperature, and pressure, or can be expanded through a MaterialState
object to provide composition and physical property data for the total
stream and each phase.

Recall the workflow shown in Fig. 12. The data model allows pa
rameters and stream tables to be associated with a Case label. This al
lows simulation constraints and design case results to be linked to each
other in DEXPI Process documents.

3.8. Metadata

For documents, we use the metadata classes defined in the existing
DEXPI standard. This allows us to locate the DEXPI Process model into
an enterprise information structure. However, our process structure is
distinct from the plant structure, as shown in Fig. 14.

A model representing BFD or PFD would thus have the following
metadata.

• Location in the functional hierarchy: names and codes for the current
process step and its parents in the hierarchy.

• Reference to the plant hierarchy. The process step represented will
usually be realized by a plant section, area, system, or train.

• Project information.

Fig. 10. Inheritance of parameters between ProcessStep classes.

Table 14
Properties for qualified physical quantities.

Property Type Description

Case String An identifier to the Case object that
relates to this value

Description MultiLanguageString A human-readable description of the
specification or value. It can be in
several languages

Label String A display label for the specification
Mode QuantityMode The mode of the value: Allowable,

Design, Expected, Incidental,
Operating or Test

Provenance QuantityProvenance The provenance of the value:
Calculated, Estimated, Observed, Set
or Specified

ProvenanceURI AnyURI A link to further information about
the provenance of the value

Range QuantityRange The range of the value: Actual,
Average, LowerLimit, Nominal,
Normal or UpperLimit

ReferenceDataURI AnyURI A link to semantic reference data that
defines this specification.

SourceURI AnyURI A link to information about the source
of this value.

Fig. 11. An example of separation of model from characterizations using
multiple DEXPI Process documents.

Fig. 12. Workflow for preparation of stream tables for design cases. Microsoft
Excel is presented as an example of the most common interface between en
gineering data systems and simulations.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

14

• Metadata about the document – i.e., a snapshot of the BFD or PFD
information in the model: Revision number, approval information
(date, type, and name) and confidentiality.

4. Representations of DEXPI process models

4.1. UML representation

DEXPI Process is presented as a UML model that is consistent with
the model used to represent DEXPI. DEXPI Process is implemented as a
new UML package, called Process. We must also define the additional
physical quantities required to model process parameters and the
properties of material streams. These are added to the Phys
icalQuantities package. The additional quantities required are density,
dynamic viscosity, electric conductivity, electric current, electric resis
tance, energy, heat capacity, heat transfer resistance, kinematic viscos
ity, magnetic field intensity, magnetic flux density, mass concentration,
mass specific energy, mass specific heat capacity, mole concentration,
mole flow rate, mole specific energy, moment of force, particle size, pH,
surface tension, thermal conductivity, time interval and velocity.

A process model can be built by creating a class or object diagram
that contains instances of the ProcessStep and ProcessStepDetail
classes. Port objects are placed on these instances. These then provide
anchors for connecting the different process steps together.

Stream tables can be built by creating instances of the

MaterialTemplate class and instances of Stream and other Proc
essConnection classes where it is desired to display information about
material and energy flows.

The UML representation has been validated using the example BFD
and PFD diagrams presented in ISO 10628–1 (ISO 2014). For reasons of
space, we show in Fig. 16 how the model represents the BFD given in
Figure A.2 of this standard (Fig. 15).

UML models for this and other examples are provided in the sup
plementary material.

4.2. Experimental XML representation

The UML model is an effective way of designing and documenting ths
structure of a data model. However, it is unsuitable for practical
implementation in engineering workflows. For this reason, we built an
XML schema representation of the model and tested how it worked in
representing the information on a set of realistic BFDs and PFDs.

We were able to implement all features of the data model using XML
schema representation. The schema was then able to verify the cor
rectness of syntax for XML documents that modelled the example
diagrams.

The schema and data files are available in the supplementary ma
terial for this paper. The reader should note that this representation is
experimental. It has no status as a standard.

Fig. 13. DEXPI Process classes used to model material properties and stream tables.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

15

4.3. AutomationML representation

AutomationML is a promising standard for information modelling
and document serialization for automation systems (Berardinelli et al.,

2016). It has been successfully used to model control-system configu
rations to support automatic transfer of designs from engineering to
implementation (Ingebrigtsen and Drath, 2021). It provides an
XML-based, object-orientated framework for information modelling. It

Fig. 14. Positioning a facility hierarchy showing both plant hierarchy and process hierarchy.

Fig. 15. Simple block diagram example, Figure A.4 in ISO 10628–1.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

16

was therefore of interest to see whether DEXPI Process could be
implemented using AutomationML.

The model for the simple block flow diagram example from ISO
10628 is shown in the AutomationML Editor tool in Fig. 17.

We found that it was straightforward to implement our model as an
AutomationML model. In fact, we found that it was beneficial to base

DEXPI Process classes on AutomationML built-in classes (Drath, 2021).
We used the Product-Process-Resources (PPR) model from Automa

tionML. This required some translation. An AutomationML Process
maps straightforwardly to a ProcessStep. In AutomationML a Process
does an operation on a Product and is realized by a Resource. This
means that an AutomationML Product corresponds to a

Fig. 16. A UML representation of the example BFD.

Fig. 17. The AutomationML editor showing parts of the model for the simple ISO 10628 BFD example.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

17

ProcessConnection, and a Resource corresponds to a DEXPI plant item.
Thus, we derive the ProcessStep, InstrumentationSystemActivity,

InstrumentationActivity and ProcessStepDetail classes from the
AutomationML Process class. This allows us to use inheritance to build a
set of AutomationML role classes, organized as a role class library.

A DEXPI Process Port can be derived from AutomationML built-in
interface classes. Material and energy ports are derived from the Auto
mationML Port interface class, while the InformationPort is derived
from the SignalInterface class. These classes are declared in an interface
class library.

All property types are declared in an attribute type library. It proved
to be straightforward to implement the qualified property approach
described above.

Finally, the MaterialTemplate and Case classes are implemented in
a system unit class.

The actual process model is built in the InstanceHierarchy window.
This is equivalent to the UML object diagram. All process steps are
defined in the ProcessStructure branch of the tree, and all process
connections are defined in the ProductStructure branch. A fragment of
the instance hierarchy is shown in Fig. 18.

We connect ports together and link them to process connections
using the AutomationML PPRConnector class. SubReferences and
SuperReferences are implemented as instances of a Hier
archyConnector interface defined in our interface class library.

In summary, we found that it was straightforward to implement our
model in AutomationML. We were able to leverage built-in classes in
AutomationML and use them in meaningful ways to organize the process
model. This is promising, as it means that we can use existing Auto
mationML APIs and tools to build DEXPI Process models in Automa
tionML. However, we found that the AutomationML editor was not a
suitable tool for building large models.

The AutomationML files for the example are supplied in the sup
plementary material.

4.4. Knowledge graph and text representations

A DEXPI Process model can be straightforwardly represented as a
knowledge graph in RDF format where the nodes are classes in DEXPI
process and the arcs model relationships between the classes. In this
work, we are collaborating with the READI Information Modelling
Framework (IMF) (Fjøsna and Waaler, 2021; Waaler, 2022), which is
developing an RDF language for aspect system modelling. DEXPI Process
provides a set of types and parameters that cover the functional aspect of
chemical process design. Fig. 19 shows a fragment of a DEXPI Process
model expressed using the IMF RDF.

It is also simple to map the structure of a DEXPI Process to the SFILES
text representation of process flowsheets (Vogel et al., 2022; Mann et al.,
2023). The process steps are represented by strings, while the connec
tions map to the topology symbols in SFILES, as described in Section
2.3.6.

We believe that the standard types of nodes and process connections
proposed here, implemented as graphs or SFILES strings, will advance
research on exploitation of process knowledge graphs, such as that
described in (Vogel et al., 2023), where PFDs, represented as knowledge
graphs, are used to train generative algorithms for automated process
design.

5. Demonstration on the Tennessee Eastman Process

5.1. Motivation for the demonstration

The DEXPI Process model was developed and validated in two en
gineering projects, where an engineering company used the standard to
produce process models that were then successfully transferred to the
operating company for use in their modelling tools. The engineering
company used DEXPI Process objects implemented as SysML to model
all the PFDs – the entire process design - for an offshore oil platform. This
was then transferred as RDF to the operator, who was able to reconstruct
the model in their modelling tool. Our findings were that DEXPI Process
provided all the resources needed to represent the plant PFDs. We found
that SysML is an effective tool for building the model structure. How
ever, it is not suitable for use by process engineers, as our modelling uses
only a fraction of the capabilities of UML and SysML. We also saw that a
graphical model editor is also unsuitable for accessing and manipulating
data such as stream tables. We address these issues further in Section
6.2.3.

The process designs are confidential, so for this reason we have
prepared a demonstration on a realistic, open process model, the Ten
nessee Eastman process. We provide the source model and serializations
of the model as supporting material as a support for further research and
development of methods.

5.2. Modelling the block flow diagram

The Tennessee Eastman Process is an example process, first pub
lished in (Downs and Vogel, 1993), that has been widely used as a
realistic teaching and research example for process design. It was used in
previous work on aspect-oriented SysML modelling of process functions
(Cameron et al., 2022).

The process is described by a PFD and a set of stream tables. The
identity of the chemical components is obscured by letter identifiers.
Sensors and final control elements are shown in the PFD, but the su
pervisory control structure is omitted deliberately. Fig. 20 shows the
PFD as presented in the original paper.

The DEXPI Process model is hierarchical. It starts with a high-level
representation of the main process steps, forming a BFD, shown in
Fig. 21. Here we use top-level process steps, e.g., Compressing, Sepa
rating and ReactingChemicals. We also create stream objects for each
labelled stream in the process and a single MaterialTemplate object.

5.3. Detailed process flow diagram

A detailed process flow diagram is then built for each block in the
high-level model. At this level, we build the detailed model inside the
frame of the upper-level model. For reasons of space, we will only show
the detailed model for the Stripping process, =KC2, shown in Fig. 22.

Here we use more detailed unit operations, such as StrippingDis
tilling. We also model the sensors and control elements in the system
using MeasuringProcessVariable and RegulatingFlow blocks. Finally,
we use SubReferences and SuperReferences to align ports. This means
that port XL1 in =KC2 is aligned with port XL5 in =HPD1 and port XL2
in =QNA2 is aligned with port XL3 in =KC2.

The full model is supplied as a set of drawings and an XMI model
interchange file in the supplementary material. Fig. 18. An extract of the instance hierarchy for our example BFD.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

18

6. Conclusion: use of DEXPI Process as a data model

6.1. Summary and prospects

This paper has presented the DEXPI Process data model as a proposed
standard for modelling process design and its design artefacts: the BFD
and PFD. This model is designed to integrate existing standards and, in
this way, enable better interdisciplinary collaboration around the en
gineering and operations of chemical process facilities. The work

integrates the following concepts and best practices. We adopt the data
model of blocks with ports from SysML (Hernandez et al., 2016), IDEF0
(IEEE Computer Society 1998) and VDI/VDE 3682 (VDI/VDE, 2015b)
(VDI/VDE, 2015a). The OntoCAPE ontology (Marquardt, 2010) pro
vided the concept of a ProcessStep and formalized aspect modelling.
The ENPRO project (Wiedau et al., 2019) provided us with a facility
lifecycle that makes a clear distinction between process, plant and asset
structure. ISO 15926 provided us with a set of activities that gave us a
starting point for defining the types of ProcessStep. The CFIHOS

Fig. 19. A fragment of a DEXPI Process model expressed as an IMF knowledge graph. Here DEXPI provides the purpose of the IMF blocks and the Stream instances.
Relations defined by IMF are used to connect the graph. Note that IMF uses the word terminal instead of port. The terms are synonyms.

Fig. 20. The Tennessee-Eastman process to be modelled, redrawn from diagram in (Downs and Vogel, 1993).

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

19

Fig. 21. The top-level, BFD representation of the Tennessee Eastman process.

Fig. 22. The lower-level model for the stripping process.

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

20

standard (CFIHOS 2023) provides us with PROCESS ACTIVITY and
PROCESS STREAM classes that fill the same roles as the ProcessStep
and ProcessConnection classes.

This development has drawn extensively on ISO/IEC 81346. Our
aspect-orientated approach is motivated by this standard and we have
aligned types defined in ISO/IEC 81346–2 (IEC 2019) and the RDS for oil
& gas (READI, 2021) with the DEXPI Process types. We have adopted the
taxonomy of processes presented in DIN6779–13 (DIN 2018) directly in
the standard.

We believe that DEXPI Process fills a critical gap in interoperability
standards and can be a mechanism for improving the efficiency of pro
cess engineering. It is, however, a work in progress. We therefore
conclude the paper with description of the work needed to further
develop and exploit the potential of the data model.

6.2. Prospects for further work

6.2.1. Graphical presentation
The current version of the standard only models the non-graphical

design information shown on the BFD or PFD. The graphical represen
tation of the diagram remains to be defined. A clear separation should be
kept between the data layer (as modelled here) and the presentation
layer. Integration between the two layers may be done through:

• Defining linkages between symbol files and process step classes.
• Defining the position on the symbol for each port.
• Defining the location of labels and other metadata.
• Defining mappings between connection lines and types of process

connection objects.
• Defining templates for display of stream tables.

The existing DEXPI standard provides resources for these tasks.

6.2.2. Serialization
The data model presented here is independent of its serialization

format. However, it is necessary to provide effective formats for
exchanging and storing DEXPI Process models.

This paper has presented three serialization formats: a UML format,
an experimental XML format and an AutomationML format. The UML
format is proprietary but can be exported as an XMI file. This, however,
is a poor format for data exchange, as the engineering data is lost in a
large quantity of presentation data related to the UML modelling tool.

The experimental XML format verified that the data model could be
described and verified using an XML schema. This format is concise and
only includes the engineering data. The schema provides a basis for
simple integration into XML-aware tools. More concise serialization
formats, such as JSON, could also be used.

Finally, we have verified that the AutomationML language can be
used to represent DEXPI Process models. This solution was elegant, as
we were able to use existing semantics in AutomationML to organize and
structure the data model.

The DEXPI Process data model generates a graph data structure. This
means that graph formats such as RDF (Cyganiak et al., 2014) can be
used to serialize the structural aspects of the model: plant items, ports,
and connections.

We are less convinced about using RDF (Cyganiak et al., 2014) to
serialize the parameters and stream tables in the model. Here a better
approach may be to use formats where nodes and arcs in a graph
structure can be allocated parameters, such as JSON-LD (W3C 2020) or
Microsoft’s Digital Twins Definition Language (Microsoft 2022). We also
believe that serialization as Extended SFILES strings will be useful as an
enabler for process synthesis activities (Mann et al., 2023).

6.2.3. Tools
Efficient use of the data model requires suitable tools. The proto

typing and development work done here has used the Enterprise

Architect (https://sparxsystems.com) UML and SysML modelling tool,
an XML editor (AltovaXML Spy, https://www.altova.com/xmlspy-x
ml-editor) and the AutomationML Editor (https://www.automationml.
org/download-archive/).

These tools were suitable for the development tasks but are not
suitable for use in process engineering contexts. UML editors are pro
prietary and often implement subtly different versions of UML and
SysML. This makes transfer of models between tools using XMI files
difficult. In addition, the user interface for these tools is powerful, but
complex. DEXPI Process uses only a few features of the UML language.
However, it is difficult to isolate this functionality. This problem can be
alleviated by providing a tailored interface to the tool. For example, the
Enterprise Architect tool supports custom symbol libraries and Model
Driven Generation (MDG) framework for this purpose.

Practical use of DEXPI Profess models will require the following tools
for:

• Graphical construction and maintenance of the structural part of
DEXPI Process models. This can be done at present in Enterprise
Architect or the AutomationML Editor, but this is not acceptable for
process engineers. This functionality can be incorporated into
existing process CAD tools, where our type definitions and syntax are
associated with symbols and connections in the BFD and PFD
drawing functionality.

• Viewing and editing parameters in the model. We have seen in
Section 3.6 that a structural model will be associate with many sets of
parameters and stream properties. Our experience is that the
graphical editors used to build the structural model are inefficient for
entering and editing this type of data. Here we need tools with a
spreadsheet-like user interface that allow creation and inspection of
substantial amounts of tabular data. This functionality will require
integration with proprietary and corporate engineering databases.

• Exposing DEXPI Process data models to other applications. An
application programming interface (API) that exposes components of
a model would be a useful tool for developing analytical applications
and integrating the models into engineering workflows.

6.2.4. Integration of workflows with DEXPI PID models
Our ambition is that DEXPI Process models of the process can be

linked with and provide a context for DEXPI models of the plant. A
challenge here is that DEXPI Process uses a different approach to
modelling topology to the existing DEXPI model. DEXPI Process uses
ports to manage connections, whereas DEXPI uses a PipingConnection
object to link together PipingNode objects. These PipingNode objects
are owned by a Nozzle on equipment (apparatus and machines) or a
PipingComponent object.

The DEXPI Process data model has been developed in the context of
an oil & gas project where we wanted to document a top-down func
tional design and document it at each level with a BFD or PFD and sets of
associated parameters. As the process design advances, engineers will
begin to consider how the process is to be realized. This can be done
through a transformation of aspect, where we build an information
model for the plant using DEXPI classes and do this within a conceptual
frame with the same extent as the corresponding ProcessStep in the
process model. We can then align Port objects on the ProcessStep with
Node objects owned by off-page connectors in the plant model.

6.3. Alignment with other standards

6.3.1. CFIHOS
In Section 2.3.1 we presented how the CFIHOS data model supports

the modelling of process steps and process connections. This was done
by defining PROCESS ACTIVITY and PROCESS STREAM objects and
establishing relationships between these objects, TAG objects and their
parameters. This was shown in Fig. 2.

Alignment of DEXPI Process with CFIHOS is straight-forward. Each

D.B. Cameron et al.

https://sparxsystems.com
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor
https://www.automationml.org/download-archive/
https://www.automationml.org/download-archive/

Computers and Chemical Engineering 182 (2024) 108564

21

DEXPI Process ProcessStep maps to a PROCESS ACTIVITY object and
each ProcessConnection maps to a PROCESS STREAM. CFIHOS lacks
the concept of ports, using a list of input and output streams for each
PROCESS ACTIVITY.

The DEXPI Process model has defined a set of reference data for
ProcessStep classes and their parameters. Implementation of this
reference data in CFIHOS would support interoperability and fill a
current gap in that standard.

6.3.2. ISO 15926
The DEXPI+ working group has developed a set of types for pro

cessing activities that can be incorporated into new revisions of ISO
15926–4. This offers opportunities for using semantic models expressed
as ontologies, to model relationships between DEXPI Process types.
These semantic models capture the meaning of the data model and
thereby support reasoning and checking of consistency (Cameron et al.,
2022). We are aware of ongoing activities in this area. It may be possible
to reflect the model using the Templates and OWL implementation
defined in parts 7, 8 and 11 in the standard. It remains to be seen,
however, whether the ontology-based OWL and RDF modelling in ISO
15926 is adequate to model DEXPI Process data in a scalable and
user-centred way.

6.3.3. NAMUR standards
Using DEXPI Process data models can simplify the use of both the

NE159 standard for using process data in automation equipment design
(NAMUR 2018) and the MTP framework. It is straightforward to write a
mapping between NE159 and DEXPI Process data related to a Meas
uringProcessVariable or RegulatingFlow block so that the relevant
process data is exported in the NE159 standard.

Regarding the MTP, the process modular breakdown given in this
standard fits well with the top-down process breakdown modelled in
DEXPI Process. This will allow the transformation of models into defi
nitions of MTP modules and their interfaces.

6.3.4. Asset administration shell
Finally, the AAS offers a further way of serializing our models. We

propose further prototyping to define the best way of doing this. An
advantage of adopting AAS is that we can use the open-source tools and
APIs that have been developed to work with AAS datasets. The authors
of this paper have also been involved in the definition of an AAS tem
plate for DEXPI Plant datasets (IDTA, 2023). This template supports two
use cases (Grüner and Otten, 2023). Firstly, a DEXPI file can be
embedded in an AAS, so that consistent metadata is shared between
parties in a data handover. The second use case involves using the AAS
to expose identifiers to the objects in the DEXPI model in the shell. This
allows other AAS objects to refer to plant items in the DEXPI model. It is
a natural further step to apply this approach to DEXPI Process models.

6.4. DEXPI Process as the process engineering reference for an integrated,
aspect-based engineering information system

DEXPI Process is a standard for chemical process engineering.
However, its structure is amenable to any aspect-based engineering
model. This means that similar standards can be developed in related
disciplines, such as electrical or construction to support top-down
functional modelling. Here we can draw on different parts of ISO/IEC
81346. For example, ISO/IEC 81346 part 10 (ISO 2022) provides a
breakdown for electrical systems and utilities.

Here we seen an opportunity for building interdisciplinary models
that explicitly represent and track the interfaces between disciplines.
This can give benefits in standard chemical facility projects, but we see
that the on-going twin transition to digital and renewable energy re
quires exactly this type of interdisciplinarity. The next generation of
process facilities will require ever-tighter integration of information
from the process, electrical and construction domain. In this case DEXPI

Process provides the reference data for the chemical engineering
domain. Similar work is needed to represent other domains. The IMF
project, described by Fjøsna and Waaler (Fjøsna and Waaler, 2021) is
working to demonstrate this type of framework.

6.5. Exploiting the process graph for automation of design and process
analyses

Chemical processes are well suited to the application of graph theory
methods for design and analysis (Martinez-Hernandez, 2023). This is
due to the graph structure of the process and plant. As noted by Preisig
(Preisig, 2009), graph theory was the key to designing the algorithms
that converge process simulators. Representation of a process design by
a graph allows application of graph algorithms to analyse the structure
and contents of the process design. Thus, Rantala et al. (Rantala et al.,
2019) use algorithms to find similarities between different designs of
pulp and paper plants and Sierla et al. (Sierla et al., 2020; Sierla et al.,
2021) use a graphical representation of the PID to partially configure a
simulation-based digital twin.

DEXPI Process provides a standard representation of processes that
can be used to support automated process synthesis. Mencarelli et al.
(Mencarelli et al., 2020) review a variety of methods of representing and
optimizing process structure. We believe that all of these can be aligned
with this data model. Garg et al. (Garg et al., 2020) present process
synthesis algorithms based on a set of Phenomena Building Blocks
(PBB). These PBBs map closely to classes in DEXPI Process. We also see
potential for using graph reasoning and graph-based machine learning
to analyse DEXPI Process models. Oeing et al. (Oeing et al., 2023)
explore the ways in which graph-based machine learning can be used to
analyse plant graphs (PIDs) represented as graphs to automate good
design practices. We expect that this approach can be extended to pro
cess graphs.

We have already noted two examples of use of process graphs for
process synthesis. Conversion of a model or a graph or SFILES repre
sentation (Mann et al., 2023; Vogel et al., 2023) allows the application of
generative artificial intelligence algorithms. We are at present working
in applying design rules to the graph model built using DEXPI Process.

Graph based methods are also useful for analysing and designing
safety systems. For example, O’Halloran et al. (O’Halloran et al., 2021)
use a process graph of pressurised-water nuclear reactor to analyse
functional failure propagation in the process.

We see an opportunity here for this work to act as a catalyst to the
wider adoption of these methods. We also see an opportunity to revisit
earlier research on automated applications such as cause and effect
analysis (Thambirajah et al., 2009) and HAZOP (Venkatasubramanian
et al., 2000; Hu et al., 2015; Rodríguez and de la Mata, 2012). The
impact of these earlier works was limited by a lack of standard data
models and the complexity and expense of the commercial tools used. A
standard, non-proprietary data model like DEXPI Process can act as a
stimulus to translation from research to implementation for these al
gorithms and methods.

6.6. Effective data transfer between engineering databases and simulators

In developing DEXPI Process we have deliberately drawn inspiration
from the data models used in the CAPE-OPEN standards for simulator
interoperability (van Baten and Pons, 2014). As noted in Section 3.7, the
concept of a MaterialTemplate object is derived from the CAPE-OPEN
Thermodynamic Interface standard (CoLAN Consortium 2011). The
ideas of ports and stream objects are also shared between DEXPI Process
and CAPE-OPEN.

This model offers therefore an opportunity to expand CAPE-OPEN to
support automated extraction of data from simulation results. A speci
fication has been made for a Flowsheet Monitoring Interface (COLaN
consortium 2019). This provides a way for a simulator to report values of
material, energy and information streams, flowsheet structure and unit

D.B. Cameron et al.

Computers and Chemical Engineering 182 (2024) 108564

22

operation parameters. The interface provides only read-only access to
the simulator. We believe that linking this interface to a DEXPI Process
format can increase adoption in the industry and simplify the retrieval
and management of simulation results.

In the longer term, we wish to be able to use a DEXPI Process data set
to configure simulators. This is at present beyond the scope of CAPE-
OPEN. However, we see possibilities in building bridging applications,
or harnesses, between DEXPI Process models and commonly used sim
ulators. This will require mapping of ProcessStep types to unit opera
tion types (or clusters thereof) in the simulator. We will also need to map
parameters. Such a harness requires an API, offered by the simulator
vendor, which supports configuration of model topology and setting of
modelling constraints.

Supporting Information

The following supporting information is provided:

• A UML model defining the DEXPI Process classes and containing
example models, including the Tennessee-Eastman model described
here.

• An XML schema for the DEXPI Process model and XML example files.
• An AutomationML file that defines the DEXPI Process data model and

applies it to an example BFD:

CRediT authorship contribution statement

David B. Cameron: Conceptualization, Methodology, Software,
Writing – original draft, Visualization. Wilhelm Otten: Conceptualiza
tion, Methodology, Writing – review & editing, Supervision. Heiner
Temmen: Conceptualization, Methodology, Writing – review & editing,
Supervision. Monica Hole: Conceptualization, Methodology, Writing –
review & editing, Supervision. Gregor Tolksdorf: Conceptualization,
Methodology, Writing – review & editing, Supervision, Validation.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Data availability

Data will be made available on request.

Acknowledgements

This work was supported by the Research Council of Norway through
the SIRIUS Centre for Scalable Data Access in the Oil & Gas Domain and
the PeTWIN project. Work has also been funded through the DISC
(formerly) NOAKA project collaboration with support from Equinor,
AkerBP, Aker Solutions and Aibel. The DEXPI+ working group was
supported by the in-kind and cash contributions of the operating com
panies in the DEXPI project.

Supplementary materials

Supplementary material associated with this article can be found, in
the online version, at doi:10.1016/j.compchemeng.2023.108564.

References

API, 2022. API Standard 521: Pressure-relieving and Depressuring Systems. API,
Washington, DC. Nov.

API, 2018. ‘API RP 14C. Analysis, Design, Installation, and Testing of Safety Systems for
Offshore Production Facilities. Eight Edition, February 2017. Errata 1, May 2018’.
API, May 2018.

Balslev, H., Barré, T., 2022. Why system models need the RDS 81346 reference model. In:
Proceedings 32nd Annual INCOSE Symposium, p. 18. Detroit, MIJun.

Balslev, H., 2020. A Guide to RDS - Reference Designation Systems. TAG Numbers for
Systems in Accordance with the ISO/IEC81346 Standard Series., 3rd ed. in DS
Handbooks. Danish Standards Foundation, Copenhagen.

Berardinelli, L., et al., 2016. Cross-disciplinary engineering with AutomationML and
SysML. Autom 64 (4), 253–269. https://doi.org/10.1515/auto-2015-0076. Apr.

Cameron, D.B., Waaler, A., Fjøsna, E., Hole, M., Psarommatis, F., 2022. A semantic
systems engineering framework for zero-defect engineering and operations in the
continuous process industries. Front. Manuf. Technol. 2, 945717 https://doi.org/
10.3389/fmtec.2022.945717. Sep.

Cameron, D.B., et al., 2022. The Digital Design Basis. Demonstrating a framework to
reduce costs and improve quality in early-phase design. Digit. Chem. Eng. 2, 100015
https://doi.org/10.1016/j.dche.2022.100015. Mar.

CFIHOS, 2023. CFIHOS Data Model’, IOGP, London, C-DM-001 Version 1.5.1.
AprAccessed: Aug. 03, 2023. [Online]. Available. https://www.jip36-cfihos.org/w
p-content/uploads/2023/04/C-DM-001-CFIHOS-Data-Model-V1.5.1.pptx.pptx.

Cheng, Z., Ma, Y., 2017. Explicit function-based design modelling methodology with
features. J. Eng. Des. 28 (3), 205–231. https://doi.org/10.1080/
09544828.2017.1291920. Mar.

CO-LaN consortium, 2019. Flowsheet Monitoring Interface Specification’. CO-LaN. Jul.
CoLAN Consortium, 2011. CAPE-OPEN Thermodynamic and Physical Properties v1.1’.

CoLAN Consortium. May 10.
Cyganiak, R., Wood, D., Lanthaler, M. 2014, ‘RDF 1.1 Concepts and Abstract Syntax’,

W3C Recommendation. Accessed: Dec. 02, 2021. [Online]. Available: https://www.
w3.org/TR/rdf11-concepts/.

DIN, 2018. DIN 6779-13 Kennzeichnungssystematik für technische Produkte und
Technische Produktdokumentation – Teil 13: Chemieanlagen’. DIN Deutsches
Institut für Normung e. V., Berlin. Jan.

Downs, J.J., Vogel, E.F., 1993. A plant-wide industrial process control problem. Comput.
Chem. Eng. 17 (3), 245–255.

Drath, R., 2021. AutomationML: The Industrial Cookbook. De Gruyter, Berlin. Accessed:
Jul. 07, 2023. [Online]. Available. https://www.degruyter.com/document/doi/
10.1515/9783110676693/html.

Fjøsna, E., Waaler, A., 2021. READI Information modelling Framework (IMF). Asset
Information Modelling Framework’, READI Joint Industry Project, Oslo. Mar
[Online]. Available. https://readi-jip.org/wp-content/uploads/2021/03/Informa
tion-modelling-framework-V1.pdf.

Flavell-White, C., 2011. Dedicated to industrial progress. The Chemical Engineer 841,
54–56.

Fontalvo, J., 2014. Using user models in Matlab® within the Aspen Plus® interface with
an Excel® link. Ing. E Investig. 34 (2), 2. https://doi.org/10.15446/ing.investig.
v34n2.41621. ArtMay.

Fricke, A., Schöneberger, J., 2015. Industrie 4.0 with MS-Excel? Chem. Eng. Trans. 43,
1303–1308. https://doi.org/10.3303/CET1543218. Jan.

Garg, N., Kontogeorgis, G.M., Gani, R., Woodley, J.M., 2020. A process synthesis-
intensification method for generation of novel and intensified solutions. Chem. Eng.
Process. - Process Intensif. 156, 108103 https://doi.org/10.1016/j.
cep.2020.108103. Oct.

Grüner, S., Otten, W., 2023. DEXPI Submodel For Industry 4.0 Asset Administration
Shell. Towards a Digital Thread through Engineering and Operations’, Presented At
the 24. VDI-Kongress Automation 2023. Baden-BadenJul.

Grüner, S., Hoernicke, M., Stark, K., Schoch, N., Eskandani, N., Pretlove, J., 2023.
Towards asset administration shell-based continuous engineering in process
industries. Autom 71 (8), 689–708. https://doi.org/10.1515/auto-2023-0012. Aug.

Hernandez, C., Rodriguez, M., Diaz, I., Sanz, R., Kravanja, Z., Bogataj, M., 2016. Model
based engineering of process plants using SysML. In: Computer Aided Chemical
Engineering, 38. Elsevier, pp. 1281–1286. https://doi.org/10.1016/B978-0-444-
63428-3.50218-6, 26 European Symposium on Computer Aided Process
Engineering.

Hu, J., Zhang, L., Cai, Z., Wang, Y., 2015. An intelligent fault diagnosis system for process
plant using a functional HAZOP and DBN integrated methodology. Eng. Appl. Artif.
Intell. 45, 119–135. https://doi.org/10.1016/j.engappai.2015.06.010. Oct.

IDTA, 2023. ‘DEXPI Submodel Template For AAS’, GitHub. Accessed: Sep. 06, 2023.
[Online]. Available: https://github.com/admin-shell-io/submodel-templates/tree/
main/development/DEXPI/1/0.

IEC, 2019. IEC81346-2 Industrial systems, Installations and Equipment and Industrial
products: Structuring Principles and Reference designations. Part 2. Classification of
Objects and Codes For Classes. IEC, Geneva.

IEC, 2022. IEC81346-1 Industrial systems, Installations and Equipment and Industrial
Products - Structuring principles and Reference Designations - Part 1: Basic rules.
IEC, Geneva.

IEEE Computer Society, 1998. IEEE Standard for Functional Modeling Language - Syntax
and Semantics for IDEF0. IEEE, New York, NY. Nov.

Ingebrigtsen, I.P., Drath, R., 2021. 10 AML Domain Model For System Control Diagrams:
Automatic code Generation Through Digitization of the IEC PAS 63131’, in 10 AML
Domain Model For System Control Diagrams: Automatic code Generation Through
Digitization of the IEC PAS 63131, De Gruyter Oldenbourg, pp. 165–196. https://
doi.org/10.1515/9783110745979-011.

ISO, 2010. ISO15519-1 Specification for Diagrams For Process Industry — Part 1:
General rules. ISOGenevaMar. 01.

ISO, 2012. ISO10628-2 Diagrams for the Chemical and Petrochemical Industry Part 2:
Graphical symbols. ISO, GenevaDec. 01.

D.B. Cameron et al.

https://doi.org/10.1016/j.compchemeng.2023.108564
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0042
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0042
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0031
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0031
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0030
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0030
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0030
https://doi.org/10.1515/auto-2015-0076
https://doi.org/10.3389/fmtec.2022.945717
https://doi.org/10.3389/fmtec.2022.945717
https://doi.org/10.1016/j.dche.2022.100015
https://www.jip36-cfihos.org/wp-content/uploads/2023/04/C-DM-001-CFIHOS-Data-Model-V1.5.1.pptx.pptx
https://www.jip36-cfihos.org/wp-content/uploads/2023/04/C-DM-001-CFIHOS-Data-Model-V1.5.1.pptx.pptx
https://doi.org/10.1080/09544828.2017.1291920
https://doi.org/10.1080/09544828.2017.1291920
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0075
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0047
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0047
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-concepts/
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0035
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0035
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0035
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0009
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0009
https://www.degruyter.com/document/doi/10.1515/9783110676693/html
https://www.degruyter.com/document/doi/10.1515/9783110676693/html
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
https://readi-jip.org/wp-content/uploads/2021/03/Information-modelling-framework-V1.pdf
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0014
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0014
https://doi.org/10.15446/ing.investig.v34n2.41621
https://doi.org/10.15446/ing.investig.v34n2.41621
https://doi.org/10.3303/CET1543218
https://doi.org/10.1016/j.cep.2020.108103
https://doi.org/10.1016/j.cep.2020.108103
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0060
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0060
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0060
https://doi.org/10.1515/auto-2023-0012
https://doi.org/10.1016/B978-0-444-63428-3.50218-6
https://doi.org/10.1016/B978-0-444-63428-3.50218-6
https://doi.org/10.1016/j.engappai.2015.06.010
https://github.com/admin-shell-io/submodel-templates/tree/main/development/DEXPI/1/0
https://github.com/admin-shell-io/submodel-templates/tree/main/development/DEXPI/1/0
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0032
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0032
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0032
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0013
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0013
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0013
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0029
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0029
https://doi.org/10.1515/9783110745979-011
https://doi.org/10.1515/9783110745979-011
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0004
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0004
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0012
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0012

Computers and Chemical Engineering 182 (2024) 108564

23

ISO, 2014. ISO10628-1 Diagrams for the Chemical and Petrochemical Industry Part 1:
Specification of Diagrams. ISO, GenevaSep. 15.

ISO, 2019. ISO10418 Petroleum and Natural Gas Industries — Offshore production
Installations — Process safety Systems. ISO, GenevaMay.

ISO, 2022. ISO-81346-10 Industrial systems, Installations and Equipment and Industrial
Products — Structuring principles and Reference Designations — Part 10: Power
supply Systems. ISO, GenevaAug.

ISO TC 184, 2019. Automation Systems and integration, and Subcommittee SC 4,
Industrial data, ‘ISO/TS 15926-4 Industrial automation Systems and Integration -
Integration of Life-Cycle Data For Process Plants Including Oil and Gas Production
Facilities - Part 4: Initial reference Data. ISO, Geneva, Technical Specification IS0/TS
15926-4:2019(E)Oct.

Kim, B.C., Jeon, Y., Park, S., Teijgeler, H., Leal, D., Mun, D., 2017. Toward standardized
exchange of plant 3D CAD models using ISO 15926′. Comput.-Aided Des 83, 80–95.
https://doi.org/10.1016/j.cad.2016.10.005. Feb.

Kim, B.C., Kim, B., Park, S., Teijgeler, H., Mun, D., 2020. ISO 15926–based integration of
process plant life-cycle information including maintenance activity. Concurr. Eng. 28
(1), 58–71. https://doi.org/10.1177/1063293X19894041. Mar.

Leal, D., 2005. ISO 15926 “Life Cycle Data for Process Plant”: an Overview. Oil Gas Sci.
Technol. 60 (4), 629–637. https://doi.org/10.2516/ogst:2005045. Jul.

vol. 52 Mann, V., Gani, R., Venkatasubramanian, V., Kokossis, A.C., Georgiadis, M.C.,
Pistikopoulos, E., 2023. Intelligent Process Flowsheet Synthesis and Design using
Extended SFILES Representation. In: Computer Aided Chemical Engineering, 52.
Elsevier, pp. 221–226. https://doi.org/10.1016/B978-0-443-15274-0.50036-6. vol.
5233 European Symposium on Computer Aided Process Engineeringvol.

Marquardt, W., Morbach, J., Wiesner, A., Yang, A., 2010. Chemical Process Systems.
OntoCAPE, in RWTHedition. Springer Berlin Heidelberg, Berlin, Heidelberg,
pp. 241–321. https://doi.org/10.1007/978-3-642-04655-1_8.

Marquardt, W., 2010. OntoCAPE: a Re-Usable Ontology For Chemical Process engineering. in
RWTH Edition. Springer, Heidelberg ; New York.

Martinez-Hernandez, E., 2023. Digitalisation of chemical processes as graphs and
applications of modular decomposition to process design and analysis. Digit. Chem.
Eng. 6, 100075 https://doi.org/10.1016/j.dche.2022.100075. Mar.

Mencarelli, L., Chen, Q., Pagot, A., Grossmann, I.E., 2020. A review on superstructure
optimization approaches in process system engineering. Comput. Chem. Eng. 136,
106808 https://doi.org/10.1016/j.compchemeng.2020.106808. May.

Microsoft, 2022. Digital Twins Definition Language’. Microsoft Azure. Jan. 02Accessed:
Jan. 04, 2022. [Online]. Available. https://github.com/Azure/opendigitaltwins-dt
dl/blob/fba3c79b9c2363b0b44bd5d85cb958371aaa847f/DTDL/v2/dtdlv2.md.

NAMUR, 2014. NE150 Standardisierte NAMUR-Schnittstelle Zum Austausch von
Engineering-Daten zwischen CAE-System Und PCS-Engineering-Werkzeugen.
Standardised NAMUR-Interface For Exchange of Engineering-Data between CAE-
System and PCS Engineering Tools’. NAMUR - Interessengemeinschaft
Automatisierungstechnik Der Prozessindustrie e.V. LeverkusenOct. 13.

NAMUR, 2018. NE159 Standardized NAMUR Interface For Data Exchange Between CAE
Systems For Process Design and CAE Systems For PCT Hardware Planning’. NAMUR
- Interessengemeinschaft Automatisierungstechnik Der Prozessindustrie e.V.
LeverkusenFeb. 27.

NAMUR, 2021. NE100 Merkmalleisten und Deren Nutzung in PLT-Engineering-
Workflows’. NAMUR - Interessengemeinschaft Automatisierungstechnik Der
Prozessindustrie e.V., Leverkusen. Oct. 21.

Nzetchou, S., Durupt, A., Remy, S., Eynard, B., 2019. Review of CAD visualization
standards in PLM. In: Fortin, C., Rivest, L., Bernard, A., Bouras, A. (Eds.), Product
Lifecycle Management in the Digital Twin Era. IFIP Advances in Information and
Communication Technology. Cham: Springer International Publishing, pp. 34–43.
https://doi.org/10.1007/978-3-030-42250-9_4.

O’Halloran, B.M., Papakonstantinou, N., Giammarco, K., Van Bossuyt, D.L., 2021.
A graph theory approach to predicting functional failure propagation during
conceptual systems design. Syst. Eng. 24 (2), 100–121. https://doi.org/10.1002/
sys.21569.

Oeing, J., Brandt, K., Wiedau, M., Tolksdorf, G., Welscher, W., Kockmann, N., 2023.
Graph learning in machine-readable plant topology data. Chem. Ing. Tech. 95 (7),
1049–1060. https://doi.org/10.1002/cite.202200223.

Plattform Industrie 4.0, ‘Plattform Industrie 4.0 Glossary’. Accessed: Aug. 04, 2023.
[Online]. Available: https://www.plattform-i40.de/IP/Navigation/EN/Indus
trie40/Glossary/glossary.html.

Ponce-Ortega, J.M., Hernández-Pérez, L.G., 2019. Optimization of Process Flowsheets
Through Metaheuristic Techniques. Springer International Publishing, Cham.
https://doi.org/10.1007/978-3-319-91722-1.

Preisig, H.A., 2009. A graph-theory-based approach to the analysis of large-scale plants.
Comput. Chem. Eng. 33 (3), 598–604. https://doi.org/10.1016/j.
compchemeng.2008.10.016. Mar.

Rantala, M., Niemistö, H., Karhela, T., Sierla, S., Vyatkin, V., 2019. Applying graph
matching techniques to enhance reuse of plant design information. Comput. Ind.
107, 81–98. https://doi.org/10.1016/j.compind.2019.01.005. May.

READI JIP, 2021. ‘Reference Designation System For Oil and Gas – READI’. Accessed:
Dec. 21, . [Online]. Available: https://readi-jip.org/reference-designation-syste
m-for-oil-and-gas/.

Rodríguez, M., de la Mata, J.L., 2012. Automating HAZOP studies using D-higraphs.
Comput. Chem. Eng. 45, 102–113. https://doi.org/10.1016/j.
compchemeng.2012.06.007. Oct.

Romatier, C., Huang, R., Klecka, R., 2015. Utilizing Spreadsheet User Interfaces with
Flowsheets of a CPI Simulation System’, US 9,053,260 B2. Jun. 09.

Rumbaugh, J., Jacobson, I., Booch, G., 2004. Unified Modeling Language Reference
Manual, The (2nd Edition). Pearson Higher Education.

Sierla, S., Sorsamäki, L., Azangoo, M., Villberg, A., Hytönen, E., Vyatkin, V., 2020.
Towards semi-automatic generation of a steady state digital twin of a brownfield
process plant. Appl. Sci. 10 (19), 19. https://doi.org/10.3390/app10196959.
ArtJan.

Sierla, S., et al., 2021. Roadmap to semi-automatic generation of digital twins for
brownfield process plants. J. Ind. Inf. Integr., 100282 https://doi.org/10.1016/j.
jii.2021.100282. Sep.

Tauchnitz, T., 2022. MTP Automation of Modular Plants, 1st Edition. Vulkan Verlag,
Essen.

Thambirajah, J., Benabbas, L., Bauer, M., Thornhill, N.F., 2009. Cause-and-effect analysis
in chemical processes utilizing XML, plant connectivity and quantitative process
history. Comput. Chem. Eng. 33 (2), 503–512. https://doi.org/10.1016/j.
compchemeng.2008.10.002. Feb.

van Baten, J., Pons, M., 2014. CAPE-OPEN: interoperability in Industrial Flowsheet
Simulation Software. Chem. Ing. Tech. 86 (7), 1052–1064. https://doi.org/10.1002/
cite.201400009.

VDI/VDE, 2015a. VDI/VDE 3682 Blatt 1 Formalisierte Prozessbeschreibungen Konzept
Und Grafische Darstellung Part 1 Formalised process Descriptions Concept and
Graphic Representation. VDI Verein Deutscher Ingenieure, Berlin. May.

VDI/VDE, 2015b. VDI/VDE 3682 Blatt 2 Formalisierte Prozessbeschreibungen
Informationsmodell /Part 2 Formalised process Descriptions Information model. VDI
Verein Deutscher Ingenieure, Berlin. May.

Venkatasubramanian, V., Zhao, J., Viswanathan, S., 2000. Intelligent systems for HAZOP
analysis of complex process plants. Comput. Chem. Eng. 24 (9), 2291–2302. https://
doi.org/10.1016/S0098-1354(00)00573-1. Oct.

Vogel, G., Balhorn, L.S., Hirtreiter, E., Schweidtmann, A.M., 2022. SFILES 2.0: an
extended text-based flowsheet representation. arXiv. https://doi.org/10.48550/
arXiv.2208.00778. Jul. 25.

Vogel, G., Schulze Balhorn, L., Schweidtmann, A.M., 2023. Learning from flowsheets: a
generative transformer model for autocompletion of flowsheets. Comput. Chem.
Eng. 171, 108162 https://doi.org/10.1016/j.compchemeng.2023.108162. Mar.

VVB Chemieanlagen,Leipzig, 1974. TGL 25 000 Blatt 1 Verfahrenstechnik
Grundoperationen Klassifikation. Deutsche Demokratische Republik, Berlin. Mar.

W3C, 2020. JSON-LD 1.1’, W3C, W3C Recommendation. JulAccessed: Aug. 07, 2023.
[Online]. Available. https://www.w3.org/TR/json-ld11/.

Waaler, A., 2022. IMF Asset Information Modelling Framework’, Presented At the Join
the READI Revolution. OsloMay 24.

Wagner, C., et al., 2017. The role of the Industry 4.0 asset administration shell and the
digital twin during the life cycle of a plant. In: 2017 22nd IEEE International
Conference on Emerging Technologies and Factory Automation (ETFA). IEEE,
Limassol, pp. 1–8. https://doi.org/10.1109/ETFA.2017.8247583. Sep.

Wiedau, M., von Wedel, L., Temmen, H., Welke, R., Papakonstantinou, N., 2019. ENPRO
data integration: extending DEXPI towards the asset lifecycle. Chem. Ing. Tech. 91
(3), 240–255. https://doi.org/10.1002/cite.201800112.

Wiedau, M., Tolksdorf, G., Oeing, J., Kockmann, N., 2021. Towards a systematic data
harmonization to enable AI application in the process industry. Chem. Ing. Tech. 93
(12), 2105–2115. https://doi.org/10.1002/cite.202100203.

Xiao, J., Anwer, N., Durupt, A., Duigou, J.Le, Eynard, B., 2018. Information exchange
standards for design, tolerancing and additive manufacturing: a research review. Int.
J. Interact. Des. Manuf. IJIDeM 12 (2), 495–504. https://doi.org/10.1007/s12008-
017-0401-4. May.

D.B. Cameron et al.

http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0005
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0005
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0040
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0040
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0033
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0033
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0033
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0007
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0007
https://doi.org/10.1016/j.cad.2016.10.005
https://doi.org/10.1177/1063293X19894041
https://doi.org/10.2516/ogst:2005045
https://doi.org/10.1016/B978-0-443-15274-0.50036-6
https://doi.org/10.1007/978-3-642-04655-1_8
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0036
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0036
https://doi.org/10.1016/j.dche.2022.100075
https://doi.org/10.1016/j.compchemeng.2020.106808
https://github.com/Azure/opendigitaltwins-dtdl/blob/fba3c79b9c2363b0b44bd5d85cb958371aaa847f/DTDL/v2/dtdlv2.md
https://github.com/Azure/opendigitaltwins-dtdl/blob/fba3c79b9c2363b0b44bd5d85cb958371aaa847f/DTDL/v2/dtdlv2.md
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0021
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0022
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0020
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0020
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0020
https://doi.org/10.1007/978-3-030-42250-9_4
https://doi.org/10.1002/sys.21569
https://doi.org/10.1002/sys.21569
https://doi.org/10.1002/cite.202200223
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/Glossary/glossary.html
https://www.plattform-i40.de/IP/Navigation/EN/Industrie40/Glossary/glossary.html
https://doi.org/10.1007/978-3-319-91722-1
https://doi.org/10.1016/j.compchemeng.2008.10.016
https://doi.org/10.1016/j.compchemeng.2008.10.016
https://doi.org/10.1016/j.compind.2019.01.005
https://readi-jip.org/reference-designation-system-for-oil-and-gas/
https://readi-jip.org/reference-designation-system-for-oil-and-gas/
https://doi.org/10.1016/j.compchemeng.2012.06.007
https://doi.org/10.1016/j.compchemeng.2012.06.007
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0046
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0046
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0011
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0011
https://doi.org/10.3390/app10196959
https://doi.org/10.1016/j.jii.2021.100282
https://doi.org/10.1016/j.jii.2021.100282
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0023
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0023
https://doi.org/10.1016/j.compchemeng.2008.10.002
https://doi.org/10.1016/j.compchemeng.2008.10.002
https://doi.org/10.1002/cite.201400009
https://doi.org/10.1002/cite.201400009
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0027
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0027
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0027
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0028
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0028
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0028
https://doi.org/10.1016/S0098-1354(00)00573-1
https://doi.org/10.1016/S0098-1354(00)00573-1
https://doi.org/10.48550/arXiv.2208.00778
https://doi.org/10.48550/arXiv.2208.00778
https://doi.org/10.1016/j.compchemeng.2023.108162
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0039
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0039
https://www.w3.org/TR/json-ld11/
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0052
http://refhub.elsevier.com/S0098-1354(23)00434-9/sbref0052
https://doi.org/10.1109/ETFA.2017.8247583
https://doi.org/10.1002/cite.201800112
https://doi.org/10.1002/cite.202100203
https://doi.org/10.1007/s12008-017-0401-4
https://doi.org/10.1007/s12008-017-0401-4

	DEXPI process: Standardizing interoperable information for process design and analysis
	1 Introduction
	1.1 Interoperability in the process industry facility lifecycle
	1.2 The need for the DEXPI process standard
	1.3 Overview of this paper

	2 Functional modelling of process facilities
	2.1 DEXPI process: a novel approach to process information management
	2.2 What do objects on block flow diagrams and process flow diagrams represent?
	2.3 Background in existing standards
	2.3.1 CFIHOS
	2.3.2 DEXPI and ISO ​15926
	2.3.3 NAMUR
	2.3.4 Asset administration shell
	2.3.5 VDI/VDE 3682 formalized process modelling
	2.3.6 SFILES

	2.4 A systems approach to design
	2.5 Aspect models
	2.6 Summary: overview of process and plant modelling approaches

	3 The DEXPI process data model
	3.1 Overview of the model
	3.2 Process steps and unit operations
	3.2.1 The processstep class
	3.2.2 A taxonomy of process steps

	3.3 Process step details
	3.4 Sources, sinks and emitting
	3.5 Process instrumentation and control
	3.5.1 Modelling process instrumentation and control
	3.5.2 Steering flow: flow control functions
	3.5.3 Process instrumentation systems and activities
	3.5.6 Alignment with DEXPI plant instrumentation modelling

	3.6 Parameters and characterizations
	3.7 Representation of material properties: streams and stream tables
	3.8 Metadata

	4 Representations of DEXPI process models
	4.1 UML representation
	4.2 Experimental XML representation
	4.3 AutomationML representation
	4.4 Knowledge graph and text representations

	5 Demonstration on the Tennessee Eastman Process
	5.1 Motivation for the demonstration
	5.2 Modelling the block flow diagram
	5.3 Detailed process flow diagram

	6 Conclusion: use of DEXPI Process as a data model
	6.1 Summary and prospects
	6.2 Prospects for further work
	6.2.1 Graphical presentation
	6.2.2 Serialization
	6.2.3 Tools
	6.2.4 Integration of workflows with DEXPI PID models

	6.3 Alignment with other standards
	6.3.1 CFIHOS
	6.3.2 ISO ​15926
	6.3.3 NAMUR standards
	6.3.4 Asset administration shell

	6.4 DEXPI Process as the process engineering reference for an integrated, aspect-based engineering information system
	6.5 Exploiting the process graph for automation of design and process analyses
	6.6 Effective data transfer between engineering databases and simulators

	Supporting Information
	CRediT authorship contribution statement
	Declaration of competing interest
	Data availability
	Acknowledgements
	Supplementary materials
	References

