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A B S T R A C T   

DEXPI Process is a proposed standard for modelling information about process design, as it is presented on block 
flow and process flow diagrams. It was developed by the DEXPI+ working group and builds upon the DEXPI 
(Data Exchange in the Process Industry) standard for piping and instrumentation diagrams. Digitalization is 
making increasing demands on the exchange of information in the process facility lifecycle. Industry 4.0 methods 
require shared terminology and knowledge models to exchange information. Standards, such as ISO15926, 
CFIHOS and DEXPI, try to address this need. All these focus on the physical plant items, as shown on a PID or 3D 
model. There is a lack of standards for early-phase, top-down process design. DEXPI Process fills this gap. This 
paper presents the development of DEXPI Process in the context of knowledge modelling of process systems and 
previews how the model is a foundation for applications of automated reasoning and decision support for design 
and operations.    

Abbreviations 
AAS Asset Administration Shell. 
API Application Programming Interface 
BFD Block Flow Diagram. 
CAE Computer-Aided Engineering. 
CAD Computer-Aided Drafting. 
CFIHOS Capital Facilities Information Hand-Over Standards 
DEXPI Data Exchange in the Process Industry. 
EPC Engineering, Procurement and Construction. 
IMF Information Modelling Framework. 
MDG Model-Driven Generation. 
MTP Module Type Package. 
NAMUR Normenarbeitsgemeinschaft für Meß- und Regeltechnik in der 

chemischen Industrie. 
OWL Web Ontology Language. 
PID Piping & Instrumentation Diagram. We follow ISO 10628 in 

using this definition, instead of Process & Instrumentation 
diagram, as defined in ISO 15519. 

PFD Process Flow Diagram. 

PPR Product-Process-Resources model. 
RDF Resource Description Framework. 
RDS Reference Designation System (ISO/IEC81346). 
STEP Standard for the Exchange of Product model data. 
SysML Systems Modelling Language. 
UML Unified Modelling Language. 
XMI XML Metadata Interchange. 
XML Extended Mark-up Language. 

1. Introduction 

1.1. Interoperability in the process industry facility lifecycle 

The digitalization of the process industries depends on easy access to 
data. This data is spread, unfortunately, across many data sources and 
applications. Each application vendor and database designer, of neces
sity, uses their own data models and semantics. This means that it is 
laborious and difficult to collect information for use in optimization of 
design, construction, or operations. It is also hard to transfer information 
between applications and between different actors in the lifecycle. All 
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too much information occurs as documents, rather than machine- 
readable datasets. In addition, it is difficult to document requirements, 
trace them through the design process and verify that they are met in the 
built facility. Current ways of working with and managing engineering 
information can lead to this information about requirements, the 
rationale behind the design, being either lost or made inaccessible. 

1.2. The need for the DEXPI process standard 

This is not a new problem. These interoperability challenges are well 
known, and are the motivation for more than three decades of work on 
STEP standards: ISO 10303 (Nzetchou et al., 2019; Xiao et al., 2018) for 
manufacturing and ISO 15926 (Leal, 2005) for the process industry. 

In the process industries, recent initiatives have worked on simpli
fication of ISO 15926 for specific use cases. Thus, the CFIHOS initiative 
(https://www.jip36-cfihos.org) has created a data model, with semantic 
reference data, for process equipment, with focus on petroleum pro
cesses. This allows the creation of machine-readable specification data 
sheets and the corresponding equipment data sheets. Similarly, the 
DEXPI initiative (https://dexpi.org) has produced a standard for repre
senting piping & instrumentation diagrams (PID)1 in a standard, 
machine-readable format. This allows PIDs to be shared between 
different actors, for example, contractors and clients, in a vendor-neutral 
format. 

The current DEXPI data model has been described in reference 
(Wiedau et al., 2019). It represents the equipment, piping and 
control-system functions shown in the PID. This reference positions 
DEXPI within the plant design phase of the asset lifecycle, as shown in 
Fig. 1. 

The DEXPI data model is semantic: It defines classes for equipment 
that build on part 4 of the ISO 15926 standard (ISO TC 184 2019). 
Because of this, there is a large overlap between DEXPI and CFIHOS 
classes. This offers immediate opportunities for consolidation, where 
aligned CFIHOS and DEXPI classes can be used to build a common data 
model of a plant. This model can then be used to generate consistent 
PIDs and data sheets. 

In its current form, DEXPI models the plant: the specification of 
physical artefacts that form a processing facility. The PID shows symbols 
as placeholders for these artefacts and their topology. It is two- 
dimensional representation of a more-detailed, three-dimensional (3D) 
model. However, there is usually a one-to-one correspondence between 
an artefact in the PID, the 3D model, items in a main equipment list and 
CFIHOS specification documents. 

PIDs are not the only schematic drawings used in process facility 
design. They are only the final form of a top-down design activity that 
began with conceptual design. Block Flow Diagrams (BFD) and Process 
Flow Diagrams (PFD) document this activity. These diagrams are 
important documents for design and operation. They provide engineers 
with a high-level, easy to grasp, overview of the process and its ratio
nale. At present, these diagrams are usually drawings, without links 
between the graphical content and engineering design. They would 
benefit from representation as a machine-readable data model. 

Here we have identified a gap in the standards. The STEP standards 
focus on the equipment in the as-built plant. They contain neither the 
concepts nor the reference data needed to support abstract, early-phase 
process design. For this reason, the DEXPI initiative formed DEXPI+, a 
working group, to define a data model for these diagrams and the un
derlying design activity. The data model is called DEXPI Process. This 

paper presents the results of this work and puts it into the context of 
ongoing work on knowledge representation for process facility design 
(ISO 2014). 

In this work, we aim to support the engineering lifecycle that was 
identified in the ENPRO project (Wiedau et al., 2019) and the Norwe
gian IMF project (Cameron et al., 2022). The view of the engineering 
lifecycle developed in these projects is combined and summarised in 
Fig. 1. The ENPRO project presented a lifecycle where process design 
was a preliminary to plant design. The IMF work emphasised the need to 
keep functional requirements for process separate from requirements for 
equipment. If this is done, we can expect easier access to engineering 
data in operational contexts, as the process requirements are made 
available for verification and optimization of operational behaviour. 
Fig. 1 also shows the scope of current important standards. These will be 
discussed in Section 2.1. However, at this point, we see that they do not 
provide support for the process design activity. 

1.3. Overview of this paper 

This paper begins with an assessment of the standards landscape as 
applied to plant and process modelling. Here we identify limitations in 
previous work and select promising approaches to modelling process 
design knowledge. This provides the technical basis of the DEXPI Pro
cess model. 

This discussion is followed by a presentation of the model itself. We 
describe the elements of the model and present a demonstration example 
of how the model applies to the Tennessee Eastman example process, as 
described in (Downs and Vogel, 1993). 

We conclude with an exploration of how model can be used to 
stimulate more effective process engineering and operations. We believe 
that the proposed data model is not merely a standard way of repre
senting BFDs and PFDs. It offers a graph-based, semantically informed 
data model. It supports better data and requirements management in the 
top-down, early-phase conceptual and design processes. It can simplify 
and automate the configuration and management of results from process 
simulation tools. The graph model also opens opportunities for applying 
automatic reasoning and graph-based data science methods to solve 
design, safety, and operational issues. 

2. Functional modelling of process facilities 

2.1. DEXPI process: a novel approach to process information management 

DEXPI Process provides a novel, and we believe necessary, approach 
to managing engineering design information. It work builds on previous 
work that applied aspect-oriented modelling to the representation of 
BFDs and PFDs (Cameron et al., 2022). This previous work used the 
SysML modelling language (Hernandez et al., 2016), a dialect of the 
UML modelling language (Rumbaugh et al., 2004) adapted to systems 
engineering, to create system objects that represented the process steps 
shown on these diagrams. We follow this work in distinguishing be
tween the process in a facility and the plant that performs the process. 
BFDs and PFDs represent process design, not plant design. This also 
means that the linkage between objects on a BFD or PFD to a plant item, 
as shown in a PID, is indirect. 

2.2. What do objects on block flow diagrams and process flow diagrams 
represent? 

As noted above, the BFD and PFD are important design documents 
for a facility. They give process engineers and operators an overview of 
the logical structure and functional behaviour of the facility. However, 
the existing international standards for these diagrams: ISO 10628 (ISO 
2014) (ISO 2012) and ISO 15519 (ISO 2010), are unclear on what a 
symbol in a BFD or PFD represents. 

ISO 10628 (§4.3) says that a symbol represents equipment, and the 

1 Standards differ on the use of the name Piping & Instrumentation Diagram 
or Process & Instrumentation Diagram. ISO 15519 (ISO 2010) specifies the latter 
whereas ISO 15926-4 (RDS329894), CFIHOS (700292) and ISO 10628 (ISO 
2014) specify the former. Given the argument in this paper, we believe that 
Piping & Instrumentation Diagram is the best term for these drawings, as they 
are concerned with the plant structure, not the process. 
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lines represent flows of mass, energy, or energy carriers. ISO 15519 (ISO 
2010) defines a PFD to be a “diagram illustrating the configuration of a 
process system or process plant by means of graphical symbols”. This 
standard has the advantage of being informed by the systems thinking 
and aspects described in ISO/IEC 81346–1 (IEC 2022). 

ISO 10628 is unclear on what the BFD or PFD represents. A block can 
represent process steps, unit operations or equipment. A symbol in the 
PFD represents equipment. Both ISO 10628 and ISO 15519 state that the 
BFD is a representation of the process [system] or process plant. This 
ambiguity between process and plant is common and natural. For 
example, a “distillation column” symbol is used on a PFD. Does it 
represent the distillation equipment or the distilling process? 

We argue here that objects on a BFD and a PFD represent process 
systems, and only represent equipment indirectly. Thus, the “distilla
tion column” symbol on a PFD always represents a distilling process. Here 
we have an object that is viewed through what ISO/IEC 81346 calls the 
function aspect: what the object does. The standards, however, agree 
about the meaning of the lines on the diagrams. They represent flows of 
mass/material (also called streams) or energy. We supplement this with 
flows of information. These are needed when a PFD shows control and 
safety functions. 

Here we return to a fundamental concept in chemical engineering: 
the unit operation. This idea, introduced by Arthur D. Little in 1916, 

transformed the design process by abstracting processes from the 
equipment that perform the process (Flavell-White, 2011). It is worth 
quoting his definition: “Any chemical process … may be resolved into a 
coordinate series of what may be termed ‘unit operations’, as pulveris
ing, dyeing, roasting, crystallising, filtering, evaporation, electrolysing 
and so on. The number of these basic unit operations is not large and 
relatively few of them are involved in any particular process. The 
complexity of chemical engineering results from the variety of condi
tions as to temperature, pressure etc., under which the unit operations 
must be carried out in different processes, and from the limitations as to 
material of construction and design of apparatus imposed by the phys
ical and chemical character of the reacting substances.” 

This description describes the essence of DEXPI Process. We define a 
small number of process steps and then provide a set of parameters that 
allow the designer to create and maintain structured information about 
the variety of conditions and constraints that determine the design of the 
plant. 

2.3. Background in existing standards 

In this section we will examine some existing approaches to model
ling processes and plants. This expands on the perspective and review 
given by Wiedau et al. (Wiedau et al., 2021). The review examines the 

Fig. 1. An overview of the asset lifecycle, adapted from (Wiedau et al., 2019) with the V-model presented in (Cameron et al., 2022).  

D.B. Cameron et al.                                                                                                                                                                                                                            



Computers and Chemical Engineering 182 (2024) 108564

4

standards listed in Fig. 1: CFIHOS, ISO 15926, NAMUR, and the Asset 
Administration Shell. In addition, we discuss a promising German 
standard: VDI/VDE 3682. We also examine another formalism for rep
resenting process design, namely the SFILES language (Vogel et al., 
2022). 

2.3.1. CFIHOS 
The CFIHOS and DEXPI data models have concentrated on plant 

items: equipment and piping. Thus, the core data item in CHIFOS is a 
tagged plant item (CFIHOS 2023), represented by a TAG object and an 
EQUIPMENT object. The TAG object contains the specifications and 
requirements for a plant item. The EQUIPMENT object contains the 
properties of the equipment that meets these specifications. Both TAG 
and EQUIPMENT objects are typed by TAG CLASS and EQUIPMENT 
CLASS definitions. Thus, a TAG with type alternating current generator 
will be fulfilled by an EQUIPMENT object the same type. Other, more 
complex fulfilment patterns are possible. Several pieces of EQUIPMENT 
can fulfil the specifications of a single TAG, or a more specific type of 
EQUIPMENT can fulfil the specifications of a more general TAG. For 
example, CFIHOS allows that a blow down valve TAG can be fulfilled by 
EQUIPMENT with type ball control valve, butterfly control valve, gate 
control valve, globe control valve, or plug control valve. Note that the 
TAG and EQUIPMENT classes are identified by nouns, the names of 
physical artefacts. 

An extract of relevant parts of the CFIHOS data model is shown in 
Fig. 2. 

The data objects in CFIHOS reflect aspects of the design. Thus, an 
AREA or SITE models a geographical location whereas a PLANT, 
CONSTRUCTION ASSEMBLY or TAG models a physical artefact. This 
allows us to organize the TAG objects in a model into aspect systems. 

The PROCESS UNIT object in CFIHOS is relevant for DEXPI Process, 
as it corresponds to a grouping of process functions, as shown on a BFD 

or PFD. Traceability between a TAG and the PROCESS UNIT is obtained 
by assigning a collection of TAG object identifiers to a PROCESS UNIT. 
However, the PROCESS UNIT object functions merely as metadata for a 
TAG. 

The CFIHOS data model also defines a set of process-oriented classes 
that allow a TAG to be related to a PROCESS ACTIVITY and a PROCESS 
STREAM. The model also provides mechanisms for linking properties of 
a PROCESS ACTIVITY or PROCESS STREAM to the property of a TAG. 
It is not possible to model a BFD or PFD using these objects. In addition, 
the current version of CFIHOS does not provide reference data for classes 
of PROCESS ACTIVITY or PROCESS STREAM. We will return to how 
DEXPI Process relates to this model in Section 6.3.1. 

2.3.2. DEXPI and ISO 15926 
Similarly, ISO 15296 and its reference data has concentrated on plant 

items. Thus, Kim et al. (Kim et al., 2017; Kim et al., 2020) explore the use 
of ISO 15296 to exchange plant 3D CAD data and integrate engineering 
data with maintenance data. Their modelling is totally focused on the 
plant item, represented as a functional physical object. A system in this 
approach is then, merely, an assembly of physical objects. 

A plant item is represented by three “anchor” objects: a main object, 
an object that represents the function of the item (cf. the CFIHOS TAG 
object) and an object that represents the physical aspect of the item (cf. 
the CFIHOS EQUIPMENT object). Representations of the plant item: 
symbols on a PID, renderings in a 3D model and specification sheets are 
representations of so-called “temporal parts” of these anchor objects. 

This model works where we are specifying and representing a single 
plant item. However, it becomes unwieldy when we are dealing with 
early-phase functional design. Here, the tight alignment between func
tion and physical realization limits our ability to model abstract func
tional systems. The functional object in this model is a placeholder for a 
diverse set of process and equipment requirements for the plant item. It 

Fig. 2. Part of the CFIHOS data model (CFIHOS 2023), showing the place of TAG and EQUIPMENT objects. The objects are coloured to indicate the aspect used to 
classify the object: blue is a specified physical object, yellow is a functional aspect, red is a location aspect and green is a supplied physical object. 
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does not correspond to a process step in our model or the ENPRO model. 
The existing DEXPI standard for PIDs shares reference data with ISO 

15926–4 and CFIHOS. The DEXPI standard defines a set of plant items 
(or physical objects) and their topological arrangement. A DEXPI object 
can contain values of design parameters that are typically shown with 
the symbol on a PID. 

2.3.3. NAMUR 
The NAMUR organization (https://www.namur.net/en/index.html) 

develops standards for automation in the chemical industries. Three of 
these standards of direct relevance to this work: 

• NE100. Lists of Properties and their Use in Process Control Engi
neering Workflows (NAMUR 2021).  

• NE150 Standardised NAMUR-Interface for Exchange of Engineering- 
Data between CAE-System and PCS Engineering Tools (NAMUR 
2014).  

• NE159. Standardized NAMUR interface for data exchange between 
CAE systems for Process Design and CAE systems for PCT Hardware 
Planning (NAMUR 2018). 

The first two, NE100 and NE150, define standard property names 
and interfaces to support interoperability of instrumentation specifica
tions and automation system configurations between engineering and 
automation tools. The information described and transferred relates to 
instruments, control system artefacts and configuration blocks in the 
automation system. 

NE159 provides a data model for transferring information about the 
constraints imposed by process and plant design from an engineering 
system into the system that specifies components in the control system. 
This transfer is done for a specific actuator or valve or sensor. The 
process data needed is sorted in four categories (NAMUR 2018), p7:  

1. General properties of process and medium, e.g., the medium and its 
difficult or dangerous properties, its general state (solid, liquid, or 
gaseous), pressure and temperature.  

2. Process-related design constraints and requirements, for example 
upper limit and lower limit pressure and temperature. 

3. Operation case data: volume flow, density, viscosity, and composi
tion for one or more operational cases.  

4. Piping and location data, for example, the piping class, the nominal 
diameter, and nominal maximum pressure specification of piping. 

NE159 provides an XML schema for transferring this data. Data in 
category four can be extracted from DEXPI data models, as it relates to 
plant items: piping artefacts, apparatus, and machines. However, data in 
categories 1 to 3 are related to process design and could be provided 
using the DEXPI Process model. At present, however, use of NE159 re
quires the use of a custom exporter for each engineering database. 

A further relevant initiative of NAMUR is the Module Type Package 
(MTP) standard (VDI/VDE/NAMUR 2658), as described in (Tauchnitz, 
2022). MTP defines a concept for building up a process facility from 
self-contained modules of process equipment, safety functions and 
automation. The facility is then built by connecting and orchestrating 
these modules. This break-down of complex processes into simpler 
process modules is like the top-down design that we are trying to 
support. 

2.3.4. Asset administration shell 
The last standard shown in Fig. 1 is the Asset Administration Shell 

(Wagner et al., 2017; Grüner et al., 2023) (AAS). This structures infor
mation around assets: entities “owned by or under the custodial duties of 
an organization, having either a perceived or actual value to the orga
nization.” (Plattform Industrie 4.0, 2023). In practice, the entities that 
have been provided with AAS data have been manufactured artefacts or 
documents. However, we see no limitations on using AAS to represent 

data about more abstract assets like a definition of a process step in an 
early-phase design. 

The hierarchical, object-oriented data model used in the AAS could 
be used as an implementation of the DEXPI Process data model. Each 
object type in the model would then have an AAS definition and a model 
would be built by configuring and parameterising these AAS objects. 
AAS could also be used to manage metadata, where a DEXPI Process data 
model is embedded in an AAS as a blob of data in some other format, 
such as XML or AutomationML. In this case, the AAS acts as an envelope 
for the data, ensuring that a vendor and purchaser use consistent met
adata about a model that is exchanged. 

2.3.5. VDI/VDE 3682 formalized process modelling 
Finally, a German standard, VDI/VDE 3682 (VDI/VDE 2015a) 

(VDI/VDE 2015b), presents a formal, graph-based model for chemical 
processes. The model is built around a Process Operator object that 
processes Product, Energy, and Information objects, as shown in 
Fig. 3. A Technical Resource can then realize the Process Operator. 

VDI/VDE supports hierarchical design, where a simpler, high-level 
system is decomposed into more complex, lower-level systems. This is 
done by aligning the Product, Energy, and Information nodes on 
system boundaries at the higher level with the lower level. 

As the reader will see below, the data model we propose has many 
similarities with the VDI/VDE 3682 model. However, before we detail 
the model, we need to discuss how a process model relates to the objects 
on a BFD or PFD. 

2.3.6. SFILES 
SFILES is a text-based notation for process flowsheets (Vogel et al., 

2022). It provides a compact, textual representation of the structure of a 
PFD. Process steps are represented by strings and connections are 
implied by the sequence of process steps, grouping, symbols for 
converging and diverging branches, and identifiers for nodes. The 
SFILES representation corresponds to a graph where the nodes are 
process steps, and the arcs are process connections. 

The authors proposed a set of types for process steps, based on the 
OntoCAPE ontology. Our taxonomy is richer. In the presentation of the 
DEXPI Process taxonomy in section we have indicated the mapping to 
SFILES for our types. 

The SFILES text representation is compact and cryptic. It is designed 
for machine use rather than human interaction. It models only the to
pology of the process, not the properties of process steps. 

2.4. A systems approach to design 

The information model required to support BFDs and PFDs needs to 
model the process performed in a facility, as distinct from the plant, 
which is the realization of the process by means of equipment. In 
designing DEXPI Process, we have striven to build on and integrate 
existing standards and best practices. The approach builds on the work 
described in reference (Cameron et al., 2022), which presented an 
experimental SysML modelling framework, where the process modelling 
elements provided a foundation for the model. 

DEXPI Process is built using systems engineering concepts. Thus, 
each element in a BFD or PFD is represented by a system block, with 
defined inputs and outputs. Here we draw upon modelling languages 
such as IDEFx (IEEE Computer Society 1998) and SysML (Hernandez 
et al., 2016). We draw on a small sub-set of SysML, namely the concept 
of blocks with ports. 

We draw on another systems engineering perspective, represented by 
the ISO/IEC 81346 family of standards (IEC 2022; Balslev, 2020; Balslev 
and Barré, 2022). Here, complex systems are broken down into con
stituent elements along different aspect trees. The standards describes 
three primary aspects: function, product, and location. The primary 
focus of ISO/IEC 81346 is providing a reference designation system 
(RDS), i.e., a coding standard that identifies objects in the system 
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breakdown by type and aspect. ISO/IEC 81346–2 (IEC 2019) provides 
reference data and a set of RDS codes for component systems. These 
codes have been adapted for power systems in part 10 of the standard 
(ISO 2022) and for oil & gas (READI, 2021). Both coding sets differen
tiate between technical systems, with two-letter RDS codes, defined in 
the domain-specific standards, and component systems, with three letter 
codes, and defined in ISO/IEC 81346–2. There is no linkage or inheri
tance between these codes. The German standard DIN 6779–13 (DIN 
2018) provided an RDS for the process industries, which proposed a set 
of two-letter codes, selected from the component system table in ISO/
IEC 81346–2. By doing this, they provide a set of technical systems that 
can, if desired, be specialized through inheritance. For example, a pump 
in DIN 6779–13 will have a -GP reference designation. This would apply 
irrespective of type of pump. However, we can choose to use the 
component system reference -GPB, if the pump is a centrifugal pump, 
and -GPA, if it was a reciprocating pump. Similarly, we can use an =GP 
reference to identify a DEXPI Process Pumping block or an =GPB 
reference to identify a Pumping block with its Method property set to 
CentrifugalMotion. 

2.5. Aspect models 

The key insight in the development of DEXPI Process is that a PFD 
and a PID describe different aspects of the processing system. The idea of 
aspect systems is a foundation for ISO/IEC 81346 and is also the basis of 
the OntoCAPE knowledge model (Marquardt, 2010) for process systems. 
An aspect model represents a specific viewpoint – a way of analysing a 
technical system. 

OntoCAPE views a planned or actual facility as an abstract chemical 
process system. This system can be viewed using several aspects, 
including requirements, function, realization, and behaviour, as shown 
in Fig. 4. It differentiates between a Plant that represents the physical 
realization of the system from the Process that represents the function of 
the system. 

We follow the OntoCAPE approach by defining a separate package in 
the DEXPI model, called Process, and by using a base class called 
ProcessStep for all classes that represent unit operations or process 
blocks. Note also that our model contains elements that support both the 
requirements and behaviour aspects. 

Cheng and Ma (Cheng and Ma, 2017) presented the functional 

Fig. 3. The Process Operator data model in VDI/VDE 3682.  

Fig. 4. Modelling of aspect systems in OntoCAPE.  
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feature modelling cube as another way of understanding the interaction 
between function, structure and behaviour in engineering design. This is 
adapted to process design in Fig. 5. 

The model shown in Fig. 5 complements OntoCAPE. It also makes it 
clear that we need three sets of semantic reference data to model our 
facilities. Firstly, we need reference data for the physical objects, the 
plant items, in the plant. This is well-defined in ISO 15926, CFIHOS and 
DEXPI. Secondly, we need data about physical quantities and phe
nomena that describe processes, plants, and their behaviour. Finally, we 
need reference data for process steps. This has been lacking until now. 

2.6. Summary: overview of process and plant modelling approaches 

Table 1 summarizes our overview of the standard approaches to 
modelling and interoperability of process and plant data. 

3. The DEXPI process data model 

3.1. Overview of the model 

The DEXPI Process data model is shown in Fig. 6. This shows the 
main classes in the model and how they are related. The section in which 
the classes are described is indicated on the drawing. The model has 
been developed using the UML modelling language (Rumbaugh et al., 
2004). We did this because the existing DEXPI standard uses UML. 
However, the reader will see that the model is a graph model that can be 
expressed as RDL. We have found that UML has been an effective tool for 
developing and validating the model. However, it is unsuitable as a 
format for use in interoperability and engineering applications. For this 
reason, we have provided implementations of the model as an XML 
schema and an AutomationML library. These are described in more 
detail in Section 4. 

3.2. Process steps and unit operations 

3.2.1. The processstep class 
The most important class in the model is the ProcessStep class. This 

is the base class for all nodal elements in a BFD or PFD. The term process 
step is taken from the OntoCAPE semantic model (Marquardt et al., 
2010). Here a process step is a system that performs an activity that is 
part of a process. It focuses on function. The ProcessStep is a block data 
structure that can be implemented as an object-oriented datatype, UML 
block, SysML block or an AutomationML object. 

Each ProcessStep can own one or more Port objects. A Port is a 
logical point at which the ProcessStep exchanges material, energy, and 
information with another ProcessStep. A Port has a nominal direction 
(Inlet or Outlet). The Port class is abstract, so that a port needs to be of a 
specific type: a MaterialPort, an InformationPort, an Elec
tricalEnergyPort, a MechanicalEnergyPort or a ThermalEnergyPort. 
An outlet port is connected to an inlet port by a ProcessConnection 
object. See Table 2. 

An important feature of DEXPI Process is that we can build our 
process model hierarchically, where a higher-level process step acts a 
frame for a more detailed model. It is therefore necessary to align a port 
in the more detailed model with a port in the process step higher in the 
hierarchy. This is supported by SubReference and SuperReference 
properties in each port. This alignment allows tracing of constraints, 
requirements, and process properties up and down the process 
hierarchy. 

3.2.2. A taxonomy of process steps 
DEXPI Process defines a hierarchical taxonomy of process steps and 

unit operations. This is based on existing standards and taxonomies and, 
we believe, can represent the processes in most process facilities. The 
taxonomy has up to three layers, with inheritance between the layers. In 
the top layer, the classes are typed by processing activities: single verbs 

Fig. 5. The Functional Feature Modelling cube for process systems design, adapted from (Cheng and Ma, 2017). DEXPI Process models the process, the functional 
decomposition of the system. The PID models the plant, the physical structure of the system. 
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expressed using the present participle form with an object for the ac
tivity. For example: Separating and TransportingFluids. 

At the lower levels, the taxonomy corresponds to the unit operations 
concept. Here the process step is typed by how the activity will be done. 
Here we specify the physical principle used in the process. Thus, the 
Separating activity can be specialized into a Separa
tingByThermalProcess activity. The taxonomy here is based on the 
German DIN-6779 standard (DIN 2018), which, in turn, draws on the 
taxonomy of processes in the DDR TGL 25 000 Sheet 1 (VVB 

Chemieanlagen,Leipzig 1974). These middle-level activities can be 
specialized further according to physical principle. DEXPI Process uses 
class inheritance to model this hierarchy. Thus, Distilling is a speciali
zation of SeparatingByThermalProcess, and VacuumDistilling is a 
specialization of Distilling. 

The following tables list the ProcessStep classes defined, with their 
inheritance relations. 

We start with separating processes, shown in Table 3. Here we model 
with three levels of detail, following the schema in DIN-6779–13 (DIN 
2018). The separation processes are classified according to the physical 
phenomena that are used to achieve separation. At the third level we can 
see separating processes that correspond to the common separation unit 
operations. 

We define three top-level processes for manipulating the thermal 
energy content of a material, see Table 4. We can either supply, remove 
or exchange thermal energy. We can also specify a heat exchange 
method for any of these blocks. Here we indicate the arrangement of 
heat transfer surface that will be used to realize the process. 

DEXPI Process provides a library of process steps for solids 

Table 1 
Summary of process and plant modelling approaches.  

Approach Modelling focus and assumptions Evaluation 

ISO15926 Primary focus is on physical plant items, with process and function tightly coupled to the plant item. Provides reference data (classes) for CFIHOS and DEXPI. 
CFIHOS Current implementation is a data model for specified and supplied properties of a plant item. Provides a taxonomy of plant items needed to build 

chemical facilities. 
DEXPI Provides a data model for the plant as shown on a PID. Taxonomy of plant items overlaps with CFIHOS. 
NAMUR NE100 and NE150 focus on plant items for automation. NE159 links plant items to process design 

information. MTP defines modular plant items. 
Process steps in DEXPI Process can be realized with MTP 
modules. 

VDI/VDE 
3682 

Focuses on process, with inputs and outputs of material, information, and energy. Data model is consistent with DEXPI Process. The standard 
does not provide a taxonomy of processes 

SFILES Focuses on process topology and representation of the process as a graph. Concise tool for serializing and analysing process 
structures. 

ISO/ 
IEC81346 

Taxonomy and reference designation for aspect modelling of systems. The model has a weak semantic 
basis but can be aligned with stricter taxonomies such as CFIHOS or DEXPI. 

Function and product aspects are used in this work. DEXPI 
Process is a model in the functional aspect.  

Fig. 6. The classes in the DEXPI Process Data Model, showing references to the section where they are described.  

Table 2 
Connections and ports.  

Type of connection Port class ProcessConnection class 

Material MaterialPort Stream 
Information InformationPort InformationFlow 
Electrical energy ElectricalEnergyPort ElectricalEnergyFlow 
Thermal energy ThermalEnergyPort ThermalEnergyFlow 
Mechanical energy MechanicalEnergyPort MechanicalEnergyFlow  
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processing, see Table 5. These are organized under three top-level pro
cesses: forming material, increasing particle size, or reducing particle 
size. 

Process steps are defined to store fluids, solids, electrical energy, and 
thermal energy, see Table 6. Note that we do not differentiate between 
storing gases and liquids. Both are treated as fluids. 

Process steps are defined to supply fluids, solids, electrical energy, 
and mechanical energy, see Table 7. The SupplyingMechanicalEnergy 
class is parent for all driving processes: motors, engines, and turbines. 

Process steps are defined for mixing and splitting flows of material, 
see Table 8. Two types of process step are defined here. The Splitting
Material, SplittingEnergy and MixingSimple steps model simple 
branching and converging of material and energy flows in a detailed 
process flow diagram, whereas the other unit operations represent 
processes that will be realized by specific items of equipment. 

The library provides process steps for transporting material and 

energy, see Table 9. Note that these process steps are used where there is 
a substantial difference between the state of the material at the inlet and 
outlet of the system. These blocks are not used to connect other process 
steps. Thus, we would use a TransportingFluidsInPiping to model an 
inlet manifold system or a long pipeline transfer of material between two 

Table 3 
Process Steps for Separating.  

Top-level activity Middle-level activity Unit operation 

Separating (SFILES sep) SeparatingByPhaseSeparation SeparatingByGravity 
SeparatingByCentrifugalForce 
SeparatingByCyclonicMotion (SFILES hcycl) 
SeparatingByGasLiquidSeparation 
SeparatingByScrubbing (SFILES scrub) 
SeparatingByCoalescing 
SeparatingByFlashing (SFILES flash) 

SeparatingByThermalProcess Drying 
Distilling (SFILES dist) 
Evaporating 
StrippingDistilling 
StabilizingDIstilling (SFILES rect) 
VacuumDistilling 

SeparatingMechanically Filtering (SFILES gfilt, lfilt) 
Skimming 
Sieving 

SeparatingByElectromagneticForce SeparatingByElectrostaticForce (SFILES egclean) 
SeparatingByMagneticForce 

SeparatingByPhysicalProcess Absorbing (SFILES abs) 
Adsorbing 
SeparatingByIonExchange 
SeparatingByContact (SFILES extr) 
SeparatingBySurfaceTension  

Table 4 
Process Steps for working with Thermal Energy.  

Top-level activity Unit operation 

ExchangingThermalEnergy 
(SFILES hex) 

Principle given by HeatExchangeMethod 
attribute in block: Generic, Plate, Spiral or 
Tubular. 

RemovingThermalEnergy Cooling 
SupplyingThermalEnergy HeatingInFurnace 

Boiling 
GeneratingSteam 
Flaring 
HeatingElectrical  

Table 5 
Process Steps for Solids Processing.  

Top-level activity Unit Operation 

FormingSolidMaterial Extruding 
Pelletizing 

IncreasingParticleSize Agglomerating 
Crystallizing 
Flocculating 

ReducingParticleSize Crushing 
Cutting 
Grinding 
CustomMilling  

Table 6 
Process Steps for Storing Material and Energy.  

Top-level Activity Middle-level activity Unit operation 

Storing (SFILES tank) StoringFluids StoringInTank 
StoringInPressureVessel 

StoringSolids StoringInSilo 
StoringElectricalEnergy StoringInBattery 
StoringThermalEnergy   

Table 7 
Process Steps for Supplying Material and Energy.  

Top-level activity Unit operation 

SupplyingFluids  
SupplyingSolids  
SupplyingElectricalEnergy GeneratingACPower 

GeneratingDCPower 
GeneratingInFuelCell 
GeneratingCustom 

SupplyingMechanicalEnergy DrivingByMotor (principle as attribute) 
DrivingByEngine (principle as attribute) 
DrivingByTurbine (principle as attribute) (SFILES 
expand)  

Table 8 
Process Steps for Mixing and Splitting.  

Top-level activity Unit operation 

Splitting (SFILES splt) SplittingMaterial 
SplittingEnergy 

Mixing (SFILES mix) Mixing 
Kneading 
Humidifying 
RotaryMixing 
StaticMixing 
MixingSimple  
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process steps. 
We view Pumping and Compressing activities as a specialization of 

a GeneratingFlow activity, see Table 10. We note that it is possible to 
debate whether the function of pump or compressor is to generate flow 
or increase pressure. We have adopted a pragmatic approach and 
decided that the primary activity is to generate a flow of material. The 
principle used for pumping and compressing can be specified using an 
attribute of the block. 

We complete the model with a ReactingChemicals class and a 
Packaging class, see Table 11. 

3.3. Process step details 

A PFD can contain elements inside a process step that are important 
for the process behaviour. For example, a process that performed in a 
column is denoted by a symbol that shows the arrangement used to bring 
fluids into contact, either trays or packing. Similarly, a reactor or mixer 
may require agitation. Here we again see the ambiguity between process 
and equipment. During process design, we need to indicate that the 
Distilling process uses trays or packing. Similarly, the Reac
tingChemicals process requires a linked Agitating process. 

DEXPI Process therefore defines ProcessStepDetail classes. These 
are systems that cannot exist independently of a ProcessStep but that 
perform necessary processes in that ProcessStep. These classes will 
usually be used as part of process steps that represent unit operations in 
Process Flow Diagrams. 

Four such classes are defined:  

• Agitating.  
• ContactingOnTray. This class is used to represent stages in a 

column-based separation process. It is functionally important that we 
can represent and indicate top, bottom, draw-off and feed stages in 
these processes.  

• ContactingInPacking. This class is used to represent packed-bed 
segments in separation and reaction unit operations.  

• SupplyThermalEnergyInBurner. 

3.4. Sources, sinks and emitting 

Source and Sink blocks model the flow of material into and out of a 
specific BFD or PFD. These are used to delimit drawings and plant 
models. They can also function as off-page connectors between PFDs. 
These classes correspond to the SFILES raw and prod nodes. 

An Emitting class can be used instead of a Sink to document the 
presence of a waste or emission stream. This can simplify identifying and 
accounting for emissions from a facility. 

3.5. Process instrumentation and control 

3.5.1. Modelling process instrumentation and control 
ISO 10628–1 says that a PFD can also contain “functional demands 

for process measuring and control devices at important points” (ISO 
2014 §4.3.3). In practice, this means that the PFD will include the su
pervisory control needed to run the process. For this reason, the PFD also 
contains “essential valves and their arrangement in the process.” 

A BFD and PFD are also valuable tools for designing and doc
umenting the safety and segmentation of the facility. For this reason, we 
also include process steps that implement the safety design according to 
ISO 10418 (ISO 2019) / API RP14C (API, 2018) or ISO 23251 / API Std 
521 (API 2022). 

3.5.2. Steering flow: flow control functions 
Since the data model is process oriented, we model “valves” in a PFD 

by their function, using sub-classes of the SteeringFlow process step. 
The classes defined are listed in Table 12. 

When showing supervisory control, we use a RegulatingFlow or 
FeedingMaterial block as the final control element. The ShuttingOff
Flow, PreventingBackflow, RelievingOverpressure, RelievingVac
uum, RelievingVacuumAndOverpressure, BlowingDown, Draining 
and RestrictingFlow blocks are used if the PFD is to be used to show 
safety system functions. 

3.5.3. Process instrumentation systems and activities 
The “functional demands for process measuring and control devices 

at important points” noted above are modelled by two base classes. An 
InstrumentationSystemActivity is a high-level class that models a 
complete measuring and control loop function. Each instance of this will 
contain one or more instances of InstrumentationActivity classes that 
show the functional components of the loop. 

We will describe the model using a fragment from the example 
detailed PFD given in ISO 10628–1 (ISO 2014), shown in Fig. 7. 

The discharge from an overhead product pumping system, P1/P2, is 
split into two streams. A ratio controller is used to implement a reflux 
ratio on the distilling system. The discharge pressure from the pumping 
system is monitored. 

Table 9 
Process Steps for Transporting Material and Energy.  

Top-level activity Unit operation 

TransportingFluids (SFILES pipe) TransportingFluidsInPiping 
TransportingFluidsInChannel 
TransportingFluidsInHose 

TransportingSolids TransportingSolidsContinuously 
TransportingSolidsDiscontinuously 

TransportingElectricalEnergy   

Table 10 
Generating Flow: Pumping and Compressing.  

Top-level activity Unit operation 

GeneratingFlow Pumping (SFILES pp) 
Compressing (SFILES comp, blwr)  

Table 11 
Other Process Steps.  

Top-level activity Unit operation 

ReactingChemicals 
(SFILES r) 

ReactingChemicals. Method parameter defines 
principle: Tubular, PackedBed, Tank, FluidizedBed, 
Unspecified 

Packaging   

Table 12 
ProcessStep classes for steering flow.  

Top-level activity Unit operation Realizing piece of 
equipment 

SteeringFlow 
(SFILES v) 

ShuttingOffFlow On-off isolation valve 
RegulatingFlow Modulating control 

valve 
PreventingBackflow Check or non-return 

valve 
RestrictingFlow (SFILES orif) Flow orifice 
FeedingMaterial Feeding of solid 

material 
RelievingOverpressure Relief valve with piping 
RelievingVacuum Breather valve with 

piping 
RelievingVacuumAndOverpressure Bi-directional breather 

valve with piping 
BlowingDown Blow-down valve with 

piping 
Draining Drain valve with piping  
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This structure is modelled using two InstrumentationSystemActi
vitity blocks. The first of these represents the pressure monitoring 
function, while the other models the reflux control function. Each 
InstrumentationSystemActivity block contains one or more Instru
mentationActivity blocks. The InstrumentationActivity classes are 
listed in Table 13. 

The fragment shown above can then be modelled as shown in Fig. 8. 
Note that a MeasuringProcessVariable block is linked to the pro

cess by a reference to a parameter in a ProcessConnection, a Proc
essStep or a ProcessStepDetail. Thus, the =BP02 block presents a 
measurement of the Pressure parameter in the Stream between =GP03 
and Split3. 

3.5.6. Alignment with DEXPI plant instrumentation modelling 
The existing DEXPI standard has a more detailed model to represent 

instrumentation functions in the PID. Fig. 9 shows how the DEXPI Pro
cess functions are realized by instrumentation functions and equipment. 

3.6. Parameters and characterizations 

Let us return to the quote from Arthur D. Little (Flavell-White, 2011). 
“The complexity of chemical engineering results from the variety of 
conditions as to temperature, pressure etc., under which the unit oper
ations must be carried out in different processes, and from the limita
tions as to material of construction and design of apparatus imposed by 
the physical and chemical character of the reacting substances.” 

The art of chemical process design is taking functional requirements 
and using them to define a safe and optimal process that can be realized 
by a safe and operable plant. We document these requirements and 
verify compliance by making statements about – characterizations of – 
the process and equipment. For this reason, each DEXPI Process class 
defines a set of parameters that characterize that ProcessStep, Proc
essStepDetail or InstrumentationActivity. We use inheritance of 

properties, so that a detailed ProcessStep can share properties with a 
less detailed, higher-level ProcessStep, as shown in Fig. 10. 

Note that we assume that it is meaningful to specify temperature, 
pressure, ambient temperature, and ambient pressure for any Process
Step. Here we also specify identification, description and labelling pa
rameters that are common for all blocks. A SteeringFlow process step 
inherits properties from its base class. In addition, we can specify the 
mass flow and/or volume flow through this process. Further, if we need 
regulate flow, we will be interested in specifying values of pressure drop, 
opening time and closing time for the RegulatingFlow step. 

The data model also allows specifications of properties of Stream, 
EnergyFlow and InformationFlow objects at ports. This allows the 
designer to reference properties and the inlet and outlet of a process step 
or unit operation. 

Note that these parameters are unqualified. A DEXPI Process model 
states that there is pressure associated with every process step. It is up to 
the designer to supply specifications for, and calculate estimates of, that 
pressure. The designer will want to state many things about this pres
sure. We need to set specifications on the upper limit and lower limit 
design pressure. It may be necessary to specify an upper limit allowable 
pressure. The designer will also need to specify the expected operating 
pressure. We can represent each of these specifications by supplying a 
value of a qualified parameter. 

A qualified parameter is a value of a parameter that contains infor
mation about what the value means. 

This is done by supplying qualification information about the value. 
DEXPI Process provides the option of adding the properties defined in 
Table 14 to any parameter value. 

Note that setting these properties is optional. This means that DEXPI 
Process can be used as to build a single document where all values 
supplied are interpreted as being nominal design values. 

However, this approach allows the separation of the process model 
from its characterisations. This is done by building a model that only 
contains definitions of blocks and their connections. No parameter 
values are stored in this model. The design system can then maintain 
multiple data sets that contain qualified parameter values for parame
ters defined in the data model. 

A simple implementation of this can be done using serialized DEXPI 
Process documents. A master document contains the structure of the 
process model. Additional documents supply qualified parameters for 
blocks in the master document. In this way, we can model a PFD with 
several design cases. The topology of the PFD is in the master and each 
case is its own document. This is shown in Fig. 11. 

3.7. Representation of material properties: streams and stream tables 

The PFD often displays a set of stream tables, which show the flow, 
state (pressure and temperature), composition and physical properties 
for important streams. Where there are several phases, the stream tables 
may also show flows, compositions, and physical properties for each 
phase. Representation of these properties is essential for process design, 
as the given properties of the feeds and desired properties of the prod
ucts are key functional requirements. 

Recall the Functional Feature Modelling cube in Fig. 5. The stream 
tables in a PFD are a snapshot of the behaviour of the process at a specific 

Fig. 7. Illustrative fragment from ISO 10628–1.  

Table 13 
InstrumentationActivity classes.  

Top-level activity Activity Realizing piece of equipment 

InstrumentationActivity MeasuringProcessVariable Sensor and Transmitter 
CalculatingProcessVariable Calculating function 
ControllingProcessVariable Controller (SFILES C) 
ConveyingSignal Long or complex signal transmission. InformationFlow is usually used for signals. 
TransformingProcessVariable Sub-class of CalculatingProcessVariable, arbitrary transformation of a process variable 
CalculatingSplitRange Sub-class of CalculatingProcessVariable, split range block. 
CalculatingRatio Sub-class of CalculatingProcessVariable, ratio block.  
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set of conditions. This behaviour is calculated using process simulators 
that build upon software that calculates the physical and thermody
namic properties of the materials to be processed. 

During the design process we see an iterative process where speci
fications from a DEXPI Process model are used to define simulation cases 
that are run on a process simulator. The results of the simulation are then 
extracted to produce the stream tables shown on the PFD. This work is 
usually done using spreadsheets and a proprietary interface to the 
simulation tool (Fricke and Schöneberger, 2015; Fontalvo, 2014; Pon
ce-Ortega and Hernández-Pérez, 2019; Romatier et al., 2015). This is 
shown in Fig. 12. 

DEXPI Process defines a data model for representing the properties of 
process streams. We have based this model on the CAPE-OPEN standards 
(CoLAN Consortium 2011). In doing so, we hope to simplify interchange 
of data to and from simulators. The model is shown in Fig. 13. 

This builds on the idea of a MaterialTemplate. An object of this type 
is defined for every main type of process material in the facility. There 
will only be a few templates in any project. For example, an oil & gas 
facility project will define material templates for the process fluids and 
for each utility fluid. 

The MaterialTemplate defines the data structure for each Stream 
object and the MaterialPort objects it connects. It defines a list of 
chemical components in the stream. These can be either a Pure
MaterialComponent object, which have a well-defined chemical 
composition, or a CustomMaterialComponent, such as the project- 
specific pseudo-components used to characterize heavy hydrocarbons. 
The MaterialTemplate also defines the number of phases to be shown in 
the stream tables and provides labels for each of the phases. 

The MaterialTemplate provides all the static information needed to 
build the row headings in the stream table. 

Fig. 8. Modelling the illustrative PFD fragment with instrumentation.  

Fig. 9. Relationships between DEXPI+ (Process) and DEXPI (Plant) instrumentation classes.  
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Each column in the stream table is built up of a Stream object. This 
can either be a simple object, characterized by mass and volume flow, 
temperature, and pressure, or can be expanded through a MaterialState 
object to provide composition and physical property data for the total 
stream and each phase. 

Recall the workflow shown in Fig. 12. The data model allows pa
rameters and stream tables to be associated with a Case label. This al
lows simulation constraints and design case results to be linked to each 
other in DEXPI Process documents. 

3.8. Metadata 

For documents, we use the metadata classes defined in the existing 
DEXPI standard. This allows us to locate the DEXPI Process model into 
an enterprise information structure. However, our process structure is 
distinct from the plant structure, as shown in Fig. 14. 

A model representing BFD or PFD would thus have the following 
metadata.  

• Location in the functional hierarchy: names and codes for the current 
process step and its parents in the hierarchy.  

• Reference to the plant hierarchy. The process step represented will 
usually be realized by a plant section, area, system, or train.  

• Project information. 

Fig. 10. Inheritance of parameters between ProcessStep classes.  

Table 14 
Properties for qualified physical quantities.  

Property Type Description 

Case String An identifier to the Case object that 
relates to this value 

Description MultiLanguageString A human-readable description of the 
specification or value. It can be in 
several languages 

Label String A display label for the specification 
Mode QuantityMode The mode of the value: Allowable, 

Design, Expected, Incidental, 
Operating or Test 

Provenance QuantityProvenance The provenance of the value: 
Calculated, Estimated, Observed, Set 
or Specified 

ProvenanceURI AnyURI A link to further information about 
the provenance of the value 

Range QuantityRange The range of the value: Actual, 
Average, LowerLimit, Nominal, 
Normal or UpperLimit 

ReferenceDataURI AnyURI A link to semantic reference data that 
defines this specification. 

SourceURI AnyURI A link to information about the source 
of this value.  

Fig. 11. An example of separation of model from characterizations using 
multiple DEXPI Process documents. 

Fig. 12. Workflow for preparation of stream tables for design cases. Microsoft 
Excel is presented as an example of the most common interface between en
gineering data systems and simulations. 
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• Metadata about the document – i.e., a snapshot of the BFD or PFD 
information in the model: Revision number, approval information 
(date, type, and name) and confidentiality. 

4. Representations of DEXPI process models 

4.1. UML representation 

DEXPI Process is presented as a UML model that is consistent with 
the model used to represent DEXPI. DEXPI Process is implemented as a 
new UML package, called Process. We must also define the additional 
physical quantities required to model process parameters and the 
properties of material streams. These are added to the Phys
icalQuantities package. The additional quantities required are density, 
dynamic viscosity, electric conductivity, electric current, electric resis
tance, energy, heat capacity, heat transfer resistance, kinematic viscos
ity, magnetic field intensity, magnetic flux density, mass concentration, 
mass specific energy, mass specific heat capacity, mole concentration, 
mole flow rate, mole specific energy, moment of force, particle size, pH, 
surface tension, thermal conductivity, time interval and velocity. 

A process model can be built by creating a class or object diagram 
that contains instances of the ProcessStep and ProcessStepDetail 
classes. Port objects are placed on these instances. These then provide 
anchors for connecting the different process steps together. 

Stream tables can be built by creating instances of the 

MaterialTemplate class and instances of Stream and other Proc
essConnection classes where it is desired to display information about 
material and energy flows. 

The UML representation has been validated using the example BFD 
and PFD diagrams presented in ISO 10628–1 (ISO 2014). For reasons of 
space, we show in Fig. 16 how the model represents the BFD given in 
Figure A.2 of this standard (Fig. 15). 

UML models for this and other examples are provided in the sup
plementary material. 

4.2. Experimental XML representation 

The UML model is an effective way of designing and documenting ths 
structure of a data model. However, it is unsuitable for practical 
implementation in engineering workflows. For this reason, we built an 
XML schema representation of the model and tested how it worked in 
representing the information on a set of realistic BFDs and PFDs. 

We were able to implement all features of the data model using XML 
schema representation. The schema was then able to verify the cor
rectness of syntax for XML documents that modelled the example 
diagrams. 

The schema and data files are available in the supplementary ma
terial for this paper. The reader should note that this representation is 
experimental. It has no status as a standard. 

Fig. 13. DEXPI Process classes used to model material properties and stream tables.  
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4.3. AutomationML representation 

AutomationML is a promising standard for information modelling 
and document serialization for automation systems (Berardinelli et al., 

2016). It has been successfully used to model control-system configu
rations to support automatic transfer of designs from engineering to 
implementation (Ingebrigtsen and Drath, 2021). It provides an 
XML-based, object-orientated framework for information modelling. It 

Fig. 14. Positioning a facility hierarchy showing both plant hierarchy and process hierarchy.  

Fig. 15. Simple block diagram example, Figure A.4 in ISO 10628–1.  
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was therefore of interest to see whether DEXPI Process could be 
implemented using AutomationML. 

The model for the simple block flow diagram example from ISO 
10628 is shown in the AutomationML Editor tool in Fig. 17. 

We found that it was straightforward to implement our model as an 
AutomationML model. In fact, we found that it was beneficial to base 

DEXPI Process classes on AutomationML built-in classes (Drath, 2021). 
We used the Product-Process-Resources (PPR) model from Automa

tionML. This required some translation. An AutomationML Process 
maps straightforwardly to a ProcessStep. In AutomationML a Process 
does an operation on a Product and is realized by a Resource. This 
means that an AutomationML Product corresponds to a 

Fig. 16. A UML representation of the example BFD.  

Fig. 17. The AutomationML editor showing parts of the model for the simple ISO 10628 BFD example.  
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ProcessConnection, and a Resource corresponds to a DEXPI plant item. 
Thus, we derive the ProcessStep, InstrumentationSystemActivity, 

InstrumentationActivity and ProcessStepDetail classes from the 
AutomationML Process class. This allows us to use inheritance to build a 
set of AutomationML role classes, organized as a role class library. 

A DEXPI Process Port can be derived from AutomationML built-in 
interface classes. Material and energy ports are derived from the Auto
mationML Port interface class, while the InformationPort is derived 
from the SignalInterface class. These classes are declared in an interface 
class library. 

All property types are declared in an attribute type library. It proved 
to be straightforward to implement the qualified property approach 
described above. 

Finally, the MaterialTemplate and Case classes are implemented in 
a system unit class. 

The actual process model is built in the InstanceHierarchy window. 
This is equivalent to the UML object diagram. All process steps are 
defined in the ProcessStructure branch of the tree, and all process 
connections are defined in the ProductStructure branch. A fragment of 
the instance hierarchy is shown in Fig. 18. 

We connect ports together and link them to process connections 
using the AutomationML PPRConnector class. SubReferences and 
SuperReferences are implemented as instances of a Hier
archyConnector interface defined in our interface class library. 

In summary, we found that it was straightforward to implement our 
model in AutomationML. We were able to leverage built-in classes in 
AutomationML and use them in meaningful ways to organize the process 
model. This is promising, as it means that we can use existing Auto
mationML APIs and tools to build DEXPI Process models in Automa
tionML. However, we found that the AutomationML editor was not a 
suitable tool for building large models. 

The AutomationML files for the example are supplied in the sup
plementary material. 

4.4. Knowledge graph and text representations 

A DEXPI Process model can be straightforwardly represented as a 
knowledge graph in RDF format where the nodes are classes in DEXPI 
process and the arcs model relationships between the classes. In this 
work, we are collaborating with the READI Information Modelling 
Framework (IMF) (Fjøsna and Waaler, 2021; Waaler, 2022), which is 
developing an RDF language for aspect system modelling. DEXPI Process 
provides a set of types and parameters that cover the functional aspect of 
chemical process design. Fig. 19 shows a fragment of a DEXPI Process 
model expressed using the IMF RDF. 

It is also simple to map the structure of a DEXPI Process to the SFILES 
text representation of process flowsheets (Vogel et al., 2022; Mann et al., 
2023). The process steps are represented by strings, while the connec
tions map to the topology symbols in SFILES, as described in Section 
2.3.6. 

We believe that the standard types of nodes and process connections 
proposed here, implemented as graphs or SFILES strings, will advance 
research on exploitation of process knowledge graphs, such as that 
described in (Vogel et al., 2023), where PFDs, represented as knowledge 
graphs, are used to train generative algorithms for automated process 
design. 

5. Demonstration on the Tennessee Eastman Process 

5.1. Motivation for the demonstration 

The DEXPI Process model was developed and validated in two en
gineering projects, where an engineering company used the standard to 
produce process models that were then successfully transferred to the 
operating company for use in their modelling tools. The engineering 
company used DEXPI Process objects implemented as SysML to model 
all the PFDs – the entire process design - for an offshore oil platform. This 
was then transferred as RDF to the operator, who was able to reconstruct 
the model in their modelling tool. Our findings were that DEXPI Process 
provided all the resources needed to represent the plant PFDs. We found 
that SysML is an effective tool for building the model structure. How
ever, it is not suitable for use by process engineers, as our modelling uses 
only a fraction of the capabilities of UML and SysML. We also saw that a 
graphical model editor is also unsuitable for accessing and manipulating 
data such as stream tables. We address these issues further in Section 
6.2.3. 

The process designs are confidential, so for this reason we have 
prepared a demonstration on a realistic, open process model, the Ten
nessee Eastman process. We provide the source model and serializations 
of the model as supporting material as a support for further research and 
development of methods. 

5.2. Modelling the block flow diagram 

The Tennessee Eastman Process is an example process, first pub
lished in (Downs and Vogel, 1993), that has been widely used as a 
realistic teaching and research example for process design. It was used in 
previous work on aspect-oriented SysML modelling of process functions 
(Cameron et al., 2022). 

The process is described by a PFD and a set of stream tables. The 
identity of the chemical components is obscured by letter identifiers. 
Sensors and final control elements are shown in the PFD, but the su
pervisory control structure is omitted deliberately. Fig. 20 shows the 
PFD as presented in the original paper. 

The DEXPI Process model is hierarchical. It starts with a high-level 
representation of the main process steps, forming a BFD, shown in 
Fig. 21. Here we use top-level process steps, e.g., Compressing, Sepa
rating and ReactingChemicals. We also create stream objects for each 
labelled stream in the process and a single MaterialTemplate object. 

5.3. Detailed process flow diagram 

A detailed process flow diagram is then built for each block in the 
high-level model. At this level, we build the detailed model inside the 
frame of the upper-level model. For reasons of space, we will only show 
the detailed model for the Stripping process, =KC2, shown in Fig. 22. 

Here we use more detailed unit operations, such as StrippingDis
tilling. We also model the sensors and control elements in the system 
using MeasuringProcessVariable and RegulatingFlow blocks. Finally, 
we use SubReferences and SuperReferences to align ports. This means 
that port XL1 in =KC2 is aligned with port XL5 in =HPD1 and port XL2 
in =QNA2 is aligned with port XL3 in =KC2. 

The full model is supplied as a set of drawings and an XMI model 
interchange file in the supplementary material. Fig. 18. An extract of the instance hierarchy for our example BFD.  
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6. Conclusion: use of DEXPI Process as a data model 

6.1. Summary and prospects 

This paper has presented the DEXPI Process data model as a proposed 
standard for modelling process design and its design artefacts: the BFD 
and PFD. This model is designed to integrate existing standards and, in 
this way, enable better interdisciplinary collaboration around the en
gineering and operations of chemical process facilities. The work 

integrates the following concepts and best practices. We adopt the data 
model of blocks with ports from SysML (Hernandez et al., 2016), IDEF0 
(IEEE Computer Society 1998) and VDI/VDE 3682 (VDI/VDE, 2015b) 
(VDI/VDE, 2015a). The OntoCAPE ontology (Marquardt, 2010) pro
vided the concept of a ProcessStep and formalized aspect modelling. 
The ENPRO project (Wiedau et al., 2019) provided us with a facility 
lifecycle that makes a clear distinction between process, plant and asset 
structure. ISO 15926 provided us with a set of activities that gave us a 
starting point for defining the types of ProcessStep. The CFIHOS 

Fig. 19. A fragment of a DEXPI Process model expressed as an IMF knowledge graph. Here DEXPI provides the purpose of the IMF blocks and the Stream instances. 
Relations defined by IMF are used to connect the graph. Note that IMF uses the word terminal instead of port. The terms are synonyms. 

Fig. 20. The Tennessee-Eastman process to be modelled, redrawn from diagram in (Downs and Vogel, 1993).  
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Fig. 21. The top-level, BFD representation of the Tennessee Eastman process.  

Fig. 22. The lower-level model for the stripping process.  
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standard (CFIHOS 2023) provides us with PROCESS ACTIVITY and 
PROCESS STREAM classes that fill the same roles as the ProcessStep 
and ProcessConnection classes. 

This development has drawn extensively on ISO/IEC 81346. Our 
aspect-orientated approach is motivated by this standard and we have 
aligned types defined in ISO/IEC 81346–2 (IEC 2019) and the RDS for oil 
& gas (READI, 2021) with the DEXPI Process types. We have adopted the 
taxonomy of processes presented in DIN6779–13 (DIN 2018) directly in 
the standard. 

We believe that DEXPI Process fills a critical gap in interoperability 
standards and can be a mechanism for improving the efficiency of pro
cess engineering. It is, however, a work in progress. We therefore 
conclude the paper with description of the work needed to further 
develop and exploit the potential of the data model. 

6.2. Prospects for further work 

6.2.1. Graphical presentation 
The current version of the standard only models the non-graphical 

design information shown on the BFD or PFD. The graphical represen
tation of the diagram remains to be defined. A clear separation should be 
kept between the data layer (as modelled here) and the presentation 
layer. Integration between the two layers may be done through:  

• Defining linkages between symbol files and process step classes.  
• Defining the position on the symbol for each port.  
• Defining the location of labels and other metadata.  
• Defining mappings between connection lines and types of process 

connection objects.  
• Defining templates for display of stream tables. 

The existing DEXPI standard provides resources for these tasks. 

6.2.2. Serialization 
The data model presented here is independent of its serialization 

format. However, it is necessary to provide effective formats for 
exchanging and storing DEXPI Process models. 

This paper has presented three serialization formats: a UML format, 
an experimental XML format and an AutomationML format. The UML 
format is proprietary but can be exported as an XMI file. This, however, 
is a poor format for data exchange, as the engineering data is lost in a 
large quantity of presentation data related to the UML modelling tool. 

The experimental XML format verified that the data model could be 
described and verified using an XML schema. This format is concise and 
only includes the engineering data. The schema provides a basis for 
simple integration into XML-aware tools. More concise serialization 
formats, such as JSON, could also be used. 

Finally, we have verified that the AutomationML language can be 
used to represent DEXPI Process models. This solution was elegant, as 
we were able to use existing semantics in AutomationML to organize and 
structure the data model. 

The DEXPI Process data model generates a graph data structure. This 
means that graph formats such as RDF (Cyganiak et al., 2014) can be 
used to serialize the structural aspects of the model: plant items, ports, 
and connections. 

We are less convinced about using RDF (Cyganiak et al., 2014) to 
serialize the parameters and stream tables in the model. Here a better 
approach may be to use formats where nodes and arcs in a graph 
structure can be allocated parameters, such as JSON-LD (W3C 2020) or 
Microsoft’s Digital Twins Definition Language (Microsoft 2022). We also 
believe that serialization as Extended SFILES strings will be useful as an 
enabler for process synthesis activities (Mann et al., 2023). 

6.2.3. Tools 
Efficient use of the data model requires suitable tools. The proto

typing and development work done here has used the Enterprise 

Architect (https://sparxsystems.com) UML and SysML modelling tool, 
an XML editor (AltovaXML Spy, https://www.altova.com/xmlspy-x 
ml-editor) and the AutomationML Editor (https://www.automationml. 
org/download-archive/). 

These tools were suitable for the development tasks but are not 
suitable for use in process engineering contexts. UML editors are pro
prietary and often implement subtly different versions of UML and 
SysML. This makes transfer of models between tools using XMI files 
difficult. In addition, the user interface for these tools is powerful, but 
complex. DEXPI Process uses only a few features of the UML language. 
However, it is difficult to isolate this functionality. This problem can be 
alleviated by providing a tailored interface to the tool. For example, the 
Enterprise Architect tool supports custom symbol libraries and Model 
Driven Generation (MDG) framework for this purpose. 

Practical use of DEXPI Profess models will require the following tools 
for:  

• Graphical construction and maintenance of the structural part of 
DEXPI Process models. This can be done at present in Enterprise 
Architect or the AutomationML Editor, but this is not acceptable for 
process engineers. This functionality can be incorporated into 
existing process CAD tools, where our type definitions and syntax are 
associated with symbols and connections in the BFD and PFD 
drawing functionality.  

• Viewing and editing parameters in the model. We have seen in 
Section 3.6 that a structural model will be associate with many sets of 
parameters and stream properties. Our experience is that the 
graphical editors used to build the structural model are inefficient for 
entering and editing this type of data. Here we need tools with a 
spreadsheet-like user interface that allow creation and inspection of 
substantial amounts of tabular data. This functionality will require 
integration with proprietary and corporate engineering databases.  

• Exposing DEXPI Process data models to other applications. An 
application programming interface (API) that exposes components of 
a model would be a useful tool for developing analytical applications 
and integrating the models into engineering workflows. 

6.2.4. Integration of workflows with DEXPI PID models 
Our ambition is that DEXPI Process models of the process can be 

linked with and provide a context for DEXPI models of the plant. A 
challenge here is that DEXPI Process uses a different approach to 
modelling topology to the existing DEXPI model. DEXPI Process uses 
ports to manage connections, whereas DEXPI uses a PipingConnection 
object to link together PipingNode objects. These PipingNode objects 
are owned by a Nozzle on equipment (apparatus and machines) or a 
PipingComponent object. 

The DEXPI Process data model has been developed in the context of 
an oil & gas project where we wanted to document a top-down func
tional design and document it at each level with a BFD or PFD and sets of 
associated parameters. As the process design advances, engineers will 
begin to consider how the process is to be realized. This can be done 
through a transformation of aspect, where we build an information 
model for the plant using DEXPI classes and do this within a conceptual 
frame with the same extent as the corresponding ProcessStep in the 
process model. We can then align Port objects on the ProcessStep with 
Node objects owned by off-page connectors in the plant model. 

6.3. Alignment with other standards 

6.3.1. CFIHOS 
In Section 2.3.1 we presented how the CFIHOS data model supports 

the modelling of process steps and process connections. This was done 
by defining PROCESS ACTIVITY and PROCESS STREAM objects and 
establishing relationships between these objects, TAG objects and their 
parameters. This was shown in Fig. 2. 

Alignment of DEXPI Process with CFIHOS is straight-forward. Each 

D.B. Cameron et al.                                                                                                                                                                                                                            

https://sparxsystems.com
https://www.altova.com/xmlspy-xml-editor
https://www.altova.com/xmlspy-xml-editor
https://www.automationml.org/download-archive/
https://www.automationml.org/download-archive/


Computers and Chemical Engineering 182 (2024) 108564

21

DEXPI Process ProcessStep maps to a PROCESS ACTIVITY object and 
each ProcessConnection maps to a PROCESS STREAM. CFIHOS lacks 
the concept of ports, using a list of input and output streams for each 
PROCESS ACTIVITY. 

The DEXPI Process model has defined a set of reference data for 
ProcessStep classes and their parameters. Implementation of this 
reference data in CFIHOS would support interoperability and fill a 
current gap in that standard. 

6.3.2. ISO 15926 
The DEXPI+ working group has developed a set of types for pro

cessing activities that can be incorporated into new revisions of ISO 
15926–4. This offers opportunities for using semantic models expressed 
as ontologies, to model relationships between DEXPI Process types. 
These semantic models capture the meaning of the data model and 
thereby support reasoning and checking of consistency (Cameron et al., 
2022). We are aware of ongoing activities in this area. It may be possible 
to reflect the model using the Templates and OWL implementation 
defined in parts 7, 8 and 11 in the standard. It remains to be seen, 
however, whether the ontology-based OWL and RDF modelling in ISO 
15926 is adequate to model DEXPI Process data in a scalable and 
user-centred way. 

6.3.3. NAMUR standards 
Using DEXPI Process data models can simplify the use of both the 

NE159 standard for using process data in automation equipment design 
(NAMUR 2018) and the MTP framework. It is straightforward to write a 
mapping between NE159 and DEXPI Process data related to a Meas
uringProcessVariable or RegulatingFlow block so that the relevant 
process data is exported in the NE159 standard. 

Regarding the MTP, the process modular breakdown given in this 
standard fits well with the top-down process breakdown modelled in 
DEXPI Process. This will allow the transformation of models into defi
nitions of MTP modules and their interfaces. 

6.3.4. Asset administration shell 
Finally, the AAS offers a further way of serializing our models. We 

propose further prototyping to define the best way of doing this. An 
advantage of adopting AAS is that we can use the open-source tools and 
APIs that have been developed to work with AAS datasets. The authors 
of this paper have also been involved in the definition of an AAS tem
plate for DEXPI Plant datasets (IDTA, 2023). This template supports two 
use cases (Grüner and Otten, 2023). Firstly, a DEXPI file can be 
embedded in an AAS, so that consistent metadata is shared between 
parties in a data handover. The second use case involves using the AAS 
to expose identifiers to the objects in the DEXPI model in the shell. This 
allows other AAS objects to refer to plant items in the DEXPI model. It is 
a natural further step to apply this approach to DEXPI Process models. 

6.4. DEXPI Process as the process engineering reference for an integrated, 
aspect-based engineering information system 

DEXPI Process is a standard for chemical process engineering. 
However, its structure is amenable to any aspect-based engineering 
model. This means that similar standards can be developed in related 
disciplines, such as electrical or construction to support top-down 
functional modelling. Here we can draw on different parts of ISO/IEC 
81346. For example, ISO/IEC 81346 part 10 (ISO 2022) provides a 
breakdown for electrical systems and utilities. 

Here we seen an opportunity for building interdisciplinary models 
that explicitly represent and track the interfaces between disciplines. 
This can give benefits in standard chemical facility projects, but we see 
that the on-going twin transition to digital and renewable energy re
quires exactly this type of interdisciplinarity. The next generation of 
process facilities will require ever-tighter integration of information 
from the process, electrical and construction domain. In this case DEXPI 

Process provides the reference data for the chemical engineering 
domain. Similar work is needed to represent other domains. The IMF 
project, described by Fjøsna and Waaler (Fjøsna and Waaler, 2021) is 
working to demonstrate this type of framework. 

6.5. Exploiting the process graph for automation of design and process 
analyses 

Chemical processes are well suited to the application of graph theory 
methods for design and analysis (Martinez-Hernandez, 2023). This is 
due to the graph structure of the process and plant. As noted by Preisig 
(Preisig, 2009), graph theory was the key to designing the algorithms 
that converge process simulators. Representation of a process design by 
a graph allows application of graph algorithms to analyse the structure 
and contents of the process design. Thus, Rantala et al. (Rantala et al., 
2019) use algorithms to find similarities between different designs of 
pulp and paper plants and Sierla et al. (Sierla et al., 2020; Sierla et al., 
2021) use a graphical representation of the PID to partially configure a 
simulation-based digital twin. 

DEXPI Process provides a standard representation of processes that 
can be used to support automated process synthesis. Mencarelli et al. 
(Mencarelli et al., 2020) review a variety of methods of representing and 
optimizing process structure. We believe that all of these can be aligned 
with this data model. Garg et al. (Garg et al., 2020) present process 
synthesis algorithms based on a set of Phenomena Building Blocks 
(PBB). These PBBs map closely to classes in DEXPI Process. We also see 
potential for using graph reasoning and graph-based machine learning 
to analyse DEXPI Process models. Oeing et al. (Oeing et al., 2023) 
explore the ways in which graph-based machine learning can be used to 
analyse plant graphs (PIDs) represented as graphs to automate good 
design practices. We expect that this approach can be extended to pro
cess graphs. 

We have already noted two examples of use of process graphs for 
process synthesis. Conversion of a model or a graph or SFILES repre
sentation (Mann et al., 2023; Vogel et al., 2023) allows the application of 
generative artificial intelligence algorithms. We are at present working 
in applying design rules to the graph model built using DEXPI Process. 

Graph based methods are also useful for analysing and designing 
safety systems. For example, O’Halloran et al. (O’Halloran et al., 2021) 
use a process graph of pressurised-water nuclear reactor to analyse 
functional failure propagation in the process. 

We see an opportunity here for this work to act as a catalyst to the 
wider adoption of these methods. We also see an opportunity to revisit 
earlier research on automated applications such as cause and effect 
analysis (Thambirajah et al., 2009) and HAZOP (Venkatasubramanian 
et al., 2000; Hu et al., 2015; Rodríguez and de la Mata, 2012). The 
impact of these earlier works was limited by a lack of standard data 
models and the complexity and expense of the commercial tools used. A 
standard, non-proprietary data model like DEXPI Process can act as a 
stimulus to translation from research to implementation for these al
gorithms and methods. 

6.6. Effective data transfer between engineering databases and simulators 

In developing DEXPI Process we have deliberately drawn inspiration 
from the data models used in the CAPE-OPEN standards for simulator 
interoperability (van Baten and Pons, 2014). As noted in Section 3.7, the 
concept of a MaterialTemplate object is derived from the CAPE-OPEN 
Thermodynamic Interface standard (CoLAN Consortium 2011). The 
ideas of ports and stream objects are also shared between DEXPI Process 
and CAPE-OPEN. 

This model offers therefore an opportunity to expand CAPE-OPEN to 
support automated extraction of data from simulation results. A speci
fication has been made for a Flowsheet Monitoring Interface (COLaN 
consortium 2019). This provides a way for a simulator to report values of 
material, energy and information streams, flowsheet structure and unit 
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operation parameters. The interface provides only read-only access to 
the simulator. We believe that linking this interface to a DEXPI Process 
format can increase adoption in the industry and simplify the retrieval 
and management of simulation results. 

In the longer term, we wish to be able to use a DEXPI Process data set 
to configure simulators. This is at present beyond the scope of CAPE- 
OPEN. However, we see possibilities in building bridging applications, 
or harnesses, between DEXPI Process models and commonly used sim
ulators. This will require mapping of ProcessStep types to unit opera
tion types (or clusters thereof) in the simulator. We will also need to map 
parameters. Such a harness requires an API, offered by the simulator 
vendor, which supports configuration of model topology and setting of 
modelling constraints. 

Supporting Information 

The following supporting information is provided:  

• A UML model defining the DEXPI Process classes and containing 
example models, including the Tennessee-Eastman model described 
here.  

• An XML schema for the DEXPI Process model and XML example files.  
• An AutomationML file that defines the DEXPI Process data model and 

applies it to an example BFD: 
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