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Preface

The aim of my study has been to review models for credit contagion finalizing
the study to the computation of derivative prices. Credit contagion is a fairlynew
field to be studied. Kusuoka introduced a way to model dependent defaultsin 1998
and Davis and Lo, [4], introduced a model for default contagion in 2001. Credit
contagion is an element of credit risk. Credit risk consists of individual risk ele-
ments, such as default probability and recovery rates, and it consists ofportfolio
risk elements like default correlation. There are roughly two approachesto model
credit risk; structural modeling and intensity based modeling. The structural mod-
els (also called firm value models) goes back to Merton. In these models, default is
triggered when the value process (which might be modeled by a standard geometric
Brownian motion) of a firm falls below a pre-determined default boundary.In the
intensity based models (also known as reduced form models) default is typically
described as a jump time of a jump process (for instance a Poisson process).

Default is, as mentioned, an element of credit risk. Modeling credit risk is im-
portaint when it comes to the modeling of derivative pricing, such as the prices
of credit default swaps, (CDS), and collateral debt obligations, (CDO), which are
basic protection contracts against default of firms in a portfolio. CDS’ andCDOs
have been largely talked about during the latest financial crisis since, among oth-
ers, credit rating agencies (which evaluate the default probability of issuers of debt
securities) failed to adequately account for large risks when rating theseproducts.
Credit rating agencies, like Moody’s and Credit Suisse, calculate the default likeli-
hood of firms. To model correlations between the default behavior of firms, Credit
Suisse uses the correlations in equity values as a replacement for the correlations
in the default probabilities (also known as correlations in credit quality). Moody’s
uses the ’diversity score’ which is based on the binomial expansion technique,
where independence between firms is assumed. Moody’s idea on how to capture
correlations in a binomial distribution is to make a hypothetical portfolio consisting
of less firms than the original one, and having the hypothetical firms being inde-
pendent. Then a default in the ’new’ portfolio would correspond to, say,2 defaults
in the original portfolio. Other ways to model default and credit contagion might
be to introduce primary and secondary firms, as in the approach of Jarrow and Yu,
referred to in [6]. In the model by Jarrow and Yu the defaults of the primary firms
are influenced by macoreconomic conditions (i.e. influenced by the gross domestic
product, unemployment rate and inflation rate), but not by the credit risk of coun-
terparties. The default of the secondary firm depends on the status of other firms,
so it suffices to focus on securities issued by secondary firms. Kusuoka’s approach
to model default dependence, which is also referred to in [6], is based on a change
of probability measure. Kusuoka assumed that the default times were exponen-
tially distributed. The probability measure is then changed so that the parameter
of the exponential law belonging to one firm will jump to a pre-determined value
as soon as the default of another firm occurs. Yet another approachis the one by
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Davis and Lo, [4]. They model default in a portfolio by independent Bernoulli vari-
ables where default can occur due to direct default of a company or bycontagion.
The model suggested by Biagini, Fuschini and Klüppelberg is based on theone by
Davis and Lo.

My studies of the modeling of credit contagion and pricing of derivatives are based
on the papers of Biagini, Fuschini and Klüppelberg [2] and of Hatchett and Kühn
[3]. The paper is organized as follows: First I will give a short introduction to
contagion and default, as well as a general calculation of derivative prices. In
chapter 2 I will describe the default intensities for the discrete time model as in
[3]. In chapter 3 the continuous time model will be described as in [2]. I will
also compare some elements of the two models. The pricing of derivatives will be
presented in the two chapters where the model description is taking place. Finally,
I will present an extention of the continuous time contagion description in chapter
4. This extension consists in expanding the economic relationship between firms
from not just being present or absent, but to try to say how much they caninfluence
each other economically if they are in an economic relationship. This means that
the extension is trying to describe which type of economic relationship the firms
are in - a competitive or cooperative economic relationship.
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Chapter 1

Introduction

Credit contagion arises when a company is in economic distress or if it defaults.
The default of a company will have implications for any firm that is economically
connected to this given company. The effect of the default, and thus the effect of
the credit contagion, depends on which economic relation the defaulting company
has with other firms. If they were in a cooperative relationship, the defaultwould
have a negative effect on the firms that are connected to the defaulting company.
For instance, if a company goes bankrupt, it will have a negative effecton the credit
situation of its service provider or on its bank connection. On the other hand, if they
were in a competitive economic relation, the default would have a positive effect
on the firms that are connected to the defaulting company. For example, if there
is a default within a business section, the number of orders might increase for the
surviving firms.

One of the main worries when investing in a portfolio consisting of defaultable
bonds is to not recieve the promised payment at the date of maturity, and this may
occur if a bond defaults. If one bond defaults, there might be the risk of default
contagion resulting in several defaults within the portfolio. Hence, the loss will be
even larger. This is one of the reasons why one is interested in credit contagion.

1.1 Intensity based default

Default in an intensity based model is specified in terms of a jump process, andthe
jump occurs at timeτ which is typically modeled as a jump time of a jump process.
What drives contagion are the default intensities of the firms within the portfolio.
The default probability is the probability that the obligor or counterparty will de-
fault on its contractual obligations to repay its debt, [5]. Denote the randomtime
of default byτ : Ω → R+ which is defined on a probability space(Ω,F ,P). τ is
assumed to be unbounded and non-negative. LetF = (Ft)t≥0. Further, consider
the filtrationG = (Gt)t≥0, where, for anyt, Gt is some givenσ-algebra which con-
tains all the null sets ofFt and is right-continuous on the given probability space
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with Ft ⊂ Gt.

1.1.1 Definitions regarding default

Default in an intensity based model is regarded as a stopping time with respectto
a given filtration, and one has to consider the two different cases of continuous or
discrete time. Starting with the definition for a discrete time model.

Definition (Stopping time in discrete time)An F-stopping time on(Ω,F ,P) is a
random variableτ : Ω → N ∪ { ∞} such that{ ω ∈ Ω : τ(ω) = n} is in Fn for
all n in N.

The definition of the default time for a continuous time model is as follows:

Definition (Stopping time in continuous time)An F-stopping time on(Ω,F ,P)
is a random variableτ : Ω → [0,∞] such that{ ω ∈ Ω : τ(ω) ≤ t} is in Ft for
all t in [0,T].

Let F be the cumulative distribution function ofτ , thenF (t) = P(τ ≤ t) for ev-
ery t in R+ is the default probability, and1 − F (t) = P(τ > t) is the survival
probability. If P(τ ∈ (0,∞)) > 0 the stopping time is non-trivial. The following
definition is from [6].

Definition (Hazard and intensity function) An increasing function
Γ : R+ → R+ given by the formula

Γ(t) := −ln(1− F (t)) for all t in R+,

is called thehazard functionof τ . If the cumulative distribution functionF is
absolutely continuous with respect to the Lebesgue measure - that is, whenF (t) =∫ t
0 f(u)du, for a Lebesgue integrable functionf : R+ → R+, then

F (t) = 1− e−Γ(t) = 1− e−
∫ t

0 γ(u)du,

whereγ(t) = f(t)(1−F (t))−1. The functionγ is called theintensity function(or
thehazard rate) of the random timeτ .

By assuming thatF (t) < 1, the hazard functionΓt is well defined for anyt in
R+ since the functionf is positive and the cumulative distribution function also is
positive, the intensity functionγ is non-negative.

In order to give some examples of the different types of default intensities, one has
to define some processes. Remember that a counting processN is defined through
an increasing sequence{ T0, T1, . . .} of random variables, or random times, in
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[0,∞]. The processN is called non-explosive iflimn Tn = +∞ almost surely. Re-
call as well that a random variable X with outcomes{ 0, 1, 2, . . .} is Poisson dis-
tributed with parameterλ in (0,∞), writtenX ∼ Po(λ), if P(X = x) = λx

x! e
−λ

where0! = 1. The following definitions are from [7].

Definition (Poisson Process)A Poisson processis aG-adapted non-explosive count-
ing processN with deterministic intensityλ > 0 such that

∫ t
0 λsds is finite dt-

almost everywhere for allt, with the property that, for allt ands > t, conditional
onGt, the random variable(Ns −Nt) ∼ Po(

∫ s
t
λudu).

The filtration(Gt)t≥0 has been fixed in advance for the purpose of the definitions.
Alternatively, fors > t, one can say, since the increment(Ns−Nt) is independent

of theσ-field σ(Nu : u ≤ t), thatP
(
(Ns−Nt) = k|Gt

)
= P

(
(Ns−Nt) = k

)
=

(λ(s−t))k
k! e−λ(s−t).

Definition (Doubly Stochastic Process)Let N be aG-adapted non-explosive count-
ing process with intensityλ > 0. N is doubly stochastic, driven byF, if λ is F-
predictable and if, for allt ands > t, conditional on the filtrationGt ∨ Fs,
(Ns − Nt) ∼ Po(

∫ s
t
λ(ω, u))du. A doubly stochastic process is also called a

Cox process.

The intuition behind a doubly stochastic counting process is thatFt contains enough
information to uncover the default intensityλt, but not information to uncover the
jump times of the counting process.

1.1.2 Some examples of default intensities

This thesis is not considering structural modeling, but just to have it mentioned:
In the basic Merton model of default,τ happens when the value of the firm at the
time of maturity, T, falls below the face value of the bond. Thus, default is only
possible at T. And in the model of Black and Cox,τ is modeled as a first pas-
sage time in which default happens when the value process of the firm reaches the
level of its debt for the first time. In these kinds of models default is economic
motivated. In the intensity based models defaults happen when an intensity based
process makes a jump. One can mention three types of default intensities: constant-
, deterministic- and stochastic default intensities.

In the three following cases, letτ be exponentially distributed with intensity pa-
rameterλ andτ := inf{ t > 0 : Nt = 1} , whereNt is a Poisson process. This
means that the time of default can be seen as the time of the first jump ofNt.

In a model where the default intensity is constant, the default probability is
P(τ ≤ t) = 1 − e−λt. The intensity function isγ(t) = λ for all t in R+ and it
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is constant for allt. A Poisson process with constant intensityλ > 0 is called a
time-homogeneous Poisson process.

If one has a deterministic default intensity, thenNt ∼ Po(
∫ t
0 λudu). The de-

fault probability would beP(τ ≤ t) = 1 − e−
∫ t

0 λudu. The intensity function is
γ(t) = λ(t) and it varies with the timet. A Poisson process with deterministic
intensityλ > 0 is called a time-inhomogeneous Poisson process.

When one has the case of stochastic default intensity,Nt is a doubly stochastic
process which is Poisson distributed with parameter

∫ t
0 λ(ω, u)du. The parameter

of the exponential distribution isλ(ω, u), andτ is aG-stopping time. Both the
intensity and the stopping time are stochastic, and this is why a Cox process is
sometimes called a doubly stochastic Poisson process. The general probability of
default would be, fort ≤ s,

P(t < τ ≤ s|Gt) = E(1− e−
∫ s

t
λ(ω,u)du|Gt).

And for t = 0, the default probability becomes

P(τ ≤ s) = E(1− e−
∫ s

0 λ(ω,u)du).

The expectations are underP. In these two cases the intensity function isγ(s) =
λ(ω, s). The two expressions can be evaluated by the same means as in calculating
the price of a default free zero coupon bond (a contract paying one unit of currency
at the time of maturity), by lettingλt be the short term interest rate,rt, and solve
the stochastic differential equation by, for instance, the Vasicek or CIR models. As
an illustration one can consider the short term interest rate to be the instantaneous
spot rate and the bank account to grow at each time instantt at a rate ofrt. One
can look, for example, atthe fundamental pricing formula, found in [12]:

The price of an attainable contingent claim with payoffHT at timeT > t is given
by

Vt = EQ(e
−

∫ T

t
rsdsHT |Ft) (1.1)

where the risk neutral measureQ ∼ P is assumed to exist. Before moving on with
the calculations, one can recall the meaning of an attainable claim:
A contingent claimis anFT -measurable random variable F inL2(Q). The contin-
gent claim F isattainableon the given market model if there exists an admissible
portfolio Z such that the value process of the portfolio at time T isV Z

y (T ) = F

wherey = V Z(0). The portfolio Z isadmissibleif it is self-financing and lower
bounded,V Z

t ≥ −K, K > 0 for all t P-almost surely. Byself-financingone means
thatdV Z

t = Zt · dXt whereXt(i) is the price of securityi at timet, and the value
process has to be integrable.
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Moving on with the calculations of equation ( 1.1), let the short ratert be the the
intensity functionλt andHT = 1 as the face value of the zero coupon bond. By ap-
plying the Vasicek model, the dynamics ofλt is given by the stochastic differential
equation

dλt = a(b− λt)dt+ σdBt (1.2)

where a,b andσ are positive constants. (The CIR model is similar to the expres-
sion in equation ( 1.2), but where the termσdBt = σ

√
λtdBt). Bt is a standard

one-dimensional Brownian motion generatingFt. Note thatF coinsides with the
filtration generated byλt. By lettingXt = −(b − λt) one gets that ( 1.2) can be
written as

{
dXt = −aXtdt+ σdBt
X0 = λ0 − b

which is an Ohrnstein-Uhlenbeck process, and it is an affine process which means
that it is Markovian and that there exists an explicit expression for ( 1.1).The
Ornstein-Uhlenbeck process is solved by applying Itô’s formula with integrating
factoreat, so

d(Xte
at) = aeatXtdt+ eat(−aXt + σdBt)

and by integrating froms to t and dividing by the integrating factor one gets

Xt = Xse
−a(t−s) + e−at

∫ t

s

σeaudBu, s ≤ t.

By substitutingXt = −(b− λt), the answer to equation ( 1.2) is

λt = λse
−a(t−s) + b(1− e−a(t−s)) + σ

∫ t

s

e−a(t−u)dBu. (1.3)

The processλt is Gaussian. By looking atE(λt|Fs) andV ar(λt|Fs), one finds
that
λt ∼ N

(
λse

−a(t−s) + b(1− e−a(t−s)), σ
2

2a (1− e−2a(t−s))
)

. By looking at

limt→∞ E(λt) = b, one can regardb as a long term average intensity.

The dynamics forλt is underP. In order to use the pricing formula given in equa-
tion ( 1.1), one has to find the dynamics for the intensityλt under the measureQ.
By Girsanov Theorem (theorem 8.6.6 in [13]) one gets thatB̃t = Bt +

∫ t
0 qds,

whereq is in R andq = a(b−λt)−α
σ

. Notice thatq depends ont throughλt, but
Vasicek assumed that the instantaneous spot rate (which is nowλt) under the mea-
sureP evolves as an Ornstein-Uhlenbeck process with constant coefficients.By
the given choice ofq it is also assumed that the coefficients are constant underQ

as well. The dynamics in equation ( 1.2) becomes
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dλt = a(b− λt)dt+ σdBt underP

dλt = a(b− σq

a
)dt− aλtdt+ σdB̃t underQ.

The last equality could be stated asαtdt+ σdB̃t, but in this case let(b− σq
a
) = b̃.

ThenX̃t = λt − b̃ implies that

dX̃t = −aX̃tdt+ σdB̃t. (1.4)

This is an Ornstein-Uhlenbeck process under the measureQ as well, so it is Gaus-
sian with continuous paths. ForHT = 1, the pricing formula given in equation
( 1.1) can be written as

Vt = EQ

(
e−

∫ T

t
λsds|Ft

)
= EQ

(
e−

∫ T

t
X̃s+b̃ ds|Ft

)

= e−
∫ T

t
b̃ dsEQ

(
e−

∫ T

t
X̃sds|Ft

)
. (1.5)

Since the coefficients in the Ornstein-Uhlenbeck equation are time-independent,
one can write

EQ

(
e−

∫ T

t
X̃sds|Ft

)
= F (T − t, X̃t) (1.6)

whereF is the function defined byF (θ, x) = EQ(e
−

∫ θ

0 X̃
x
s ds) andX̃x

s is the unique
solution of equation ( 1.4) satisfying̃Xx

0 = x. In this casex = λ0 − b̃ andX̃x
s will

just be writtenX̃s. Recall that the Laplace transformation of a random variable,
for u in R, isE(euX) =

∫
R
euxPX(dx). The expectation is calculated by Laplace

transformation of a Gaussian random varibale:

EQ

(
e−

∫ θ

0 X̃sds
)
= e

(
−EQ(

∫ θ

0 X̃sds)+
1
2
V arQ(

∫ θ

0 X̃s)ds

)
.

The expectation becomes, where the first equality is due to Fubini’s,

EQ(

∫ θ

0
X̃sds) =

∫ θ

0
EQ(λs − b̃)ds

=

∫ θ

0
EQ(λ0e

−a(s) + b̃(1− e−a(s)) + σ

∫ s

0
e−a(s−u)dBu − b̃)ds

= (
λ0 − b̃

a
)(1− e−aθ). (1.7)

To calculateV arQ(
∫ θ
0 X̃sds) one starts out with writing the variance as the covari-

ance. Recall that for two random variables X and Y with expectationµX andµY ,
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respectively, the covariance is defined asCov(X,Y ) = E

(
(X − µX)(Y − µY )

)
.

Then

V arQ(

∫ θ

0
X̃sds) =

∫ θ

0

∫ θ

0
Cov(X̃t, X̃u)du dt

=

∫ θ

0

∫ θ

0
(1{ t>u} + 1{ t≤u} )Cov(X̃t, X̃u)du dt. (1.8)

Looking at the expression for the covariance without the integrals and putting X̃t =
λt − b̃ and by using the expression given in equation ( 1.3) , fors = 0, one gets

Cov(X̃t, X̃u) =

EQ

((
λ0e

−at+ b̃(1− e−at)+σ
∫ t

0
e−a(t−s)dBs− b̃− (λ0e

−at+ b̃(1− e−at)− b̃)
)

×
(
λ0e

−au+ b̃(1−e−au)+σ
∫ t

0
e−a(u−s)dBs− b̃− (λ0e

−au+ b̃(1−e−au)− b̃)
))

= EQ

(
(σe−at

∫ t

0
easdBs)(σe

−au
∫ u

0
easdBs)

)

= σ2e−a(t−u)
∫ t∧u

0
e2asds

= σ2e−a(t−u)
(e2a(t∧u) − 1)

2a
.

Inserting this answer into equation ( 1.8), one is left with calculating

∫ θ

0

∫ θ

0
σ2e−a(t−u)

(e2a(t∧u) − 1)

2a
dudt

=
σ2

2a

∫ θ

0

(∫ u

0
e−at−au+2at − e−at−audt

)
du

+
σ2

2a

∫ θ

0

(∫ t

0
e−at−au+2at − e−at−audu

)
dt

=
σ2θ

a2
− σ2

a3
(1− e−aθ)− σ2

2a3
(1− e−aθ)2. (1.9)

Finally, by putting together the expressions for the expectation in equation ( 1.7)
and the variance in equation ( 1.9), and by using equation ( 1.6), one gets that the
pricing formula in equation ( 1.5) becomes:
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exp{ −b̃(T − t)− (
λ0 − b̃

a
)(1− e−a(T−t))}

×exp{ 1

2

(σ2(T − t)

a2
− σ2

a3
(1− e−a(T−t))− σ2

2a3
(1− e−a(T−t))2

)
}

which is more frequently expressed as

P (t, T ) = e−(T−t)R(T−t,λt), (1.10)

which is the affine structure mentioned previously, and whereR(T − t, λt) is given
by

R(θ, λ) = (b̃− σ2

2a2
)− 1

aθ

(
(b̃− σ2

2a2
− λ)(1− e−aθ)− σ2

4a2
(1− e−aθ)2

)
.

If the model forλt is under the measureP, historical data should be used to estimate
the drift and volatility. If the model is under the measureQ, the risk adjusted
drift and volatility can only be inferred from existing prices. One drawback of the
Vasicek model is ifb = λt, then the dynamics becomedλt = σdBt and one has
a random walk. The Brownian component can take positive and negativevalues,
so the intensityλt might be negative, and default intensities are supposed to be
positive . In the CIR model the default intenstiy will not become negative, but the
process is not Gaussian and explicit formulae are more difficult to come by.
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Chapter 2

Contagion model in discrete time

The paper of Hatchett and Kühn, [3], describes credit contagion in a discrete time
framework. They are using probability theory to express their findings. The results
are based on the use of the Law of Large Numbers and the Central Limit Theorem.
In order to use the Law of Large Numbers and the Central Limit Theorem the
random variables (the firms) has to be independent and identically distributed, and
the number of firms,m, has to tend to infinity. The firms and their enviroment
within the portfolio are assumed to be fairly homogeneous, so the firms are thus
assumed to be similar to each other or of the same type. The only possible states
for the firms are solvent or defaulted. They describe the default processZt(i)
by a discrete time Markov chain where the probability of default of firmi in a
given time step depends on the state of its economic partners at the beginning of
that given time period, as well as on the macroeconomic interference. The time
period [0, T ] = { 0, 1, . . . , T} describes a one year range. It is assumed that
the defaulting state is absorbing and that there is one single macroeconomic factor
which is constant over the time period of one year. Hatchett and Kühn did not
consider pricing in their paper, so in section 2.4 there will be given some examples
of pricing by using their default intensity.

2.1 The framework

Let the number of firmsm → ∞. For i in { 1, 2, . . . ,m} the default process of
the portfolio is denoted byZt(i) for t = 0, . . . , T and is described by a binary
indicator variable, meaning

Zt(i) =

{
0 firm i is solvent at timet,
1 firm i has defaulted at timet by itself.

The default process is a Markov chain and it evolves accordingly:
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{
Zt+1(i) = Zt(i) + (1− Zt(i))1{ Wt(i)<0} ,
Z0(i) = 0

(2.1)

TheZt(i) are functions of the wealth, which is stochastic. It is assumed that a firm
defaults when its wealth falls below zero. The wealth process,Wt(i), is the value
of the total wealth of firmi at timet and it is given by

{
Wt(i) = ϑi −

∑m
j=1CijZt(j)− ηt(i) t = 1, 2, . . . , T

W0(i) = ϑi > 0
(2.2)

The constantϑi is the initial wealth of firmi at timet = 0. Note that the initial
wealthϑi does not depend on time, so the model does not say anything about how
firm i is making or loosing money in each time epoch. By letting the wealth pro-
cessWt(i) depend ont and not ont+ 1, i.e. notWt+1(i), means that the possible
effect of credit contagion does not happen immediately. This means that thedefault
process can have its first default state atZ2(i). If the wealth process was depend-
ing on t + 1, i.e. Wt+1(i), then any default contagion effect would influence the
portfolio default process immediately.

The matrixCij describes the credit contagion relation of firmi and j, so for firm
i 6= j in { 1, . . . ,m} one has





Cij > 0 firm i and j in a cooperative economic relation
Cij = 0 firm i and j independent
Cij < 0 firm i and j in a competitive economic relation.

The caseCii = 0. If companyj defaults andCij > 0 it means that the two firms
had a cooperative credit relation, and the default ofj would contribute to a decrease
in the wealth of firmi. If Cij < 0, thenj andi had a competitive relation andWt(i)
would increase due to the default of firmj. The caseCij = 0 means that the firms
are not in an economic relation at all. Further description of the contagion termCij
will be given in section 2.2.

The fluctuating forces disturbing the wealth process of a company given inequation
( 2.2) is the random variableηt(i) ∼ N (0, σ2i ), and it is decomposed into a term
describing individual fluctuations (for instance, extremely productive employees
or defect production equipments) and another term describing the macroeconomic
factor, which is one dimensional. In other words,
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ηt(i) = σi(
√
ρiη0 +

√
1− ρiξt(i)). (2.3)

Here,σi is a scaling parameter. The random variablesξt(i) ∼ N (0, 1) are indepen-
dent and they describe the individual fluctuations of firmi. The macroeconomic
factor is described byη0 ∼ N (0, 1), but it is assumed to be constant over the time
horizon of one year in this model. The information ofη0 is known at timet = 0,
soη0 is treated as a known constant element of the model.

In choosing the correlations ofηt(i) andηt(j), Hatchett and Kühn followed the
prescription given by BASEL II (which are recomondations on banking laws and
regulations) which sets

ρi ≈ 0.12(1 + e−50PDi), (2.4)

wherePDi is the probability of self default of firmi over one year, ignoring credit
contagion effects. (More onPDi is found in section 2.3.)

2.2 The contagion model

The contagion quantitiesCij which describe the loss or gain of firmi caused by
the default of firmj are given by

Cij = cij

(C0

c
+

C√
c
xij

)
, (2.5)

where the random variablesxij ∼ N (0, 1) are assumed to be pairwise indepen-
dent. Thecij are randomly fixed in the sence that the way to assign the value of
cij is according to a random generator. Thecij are fixed numbers that are either 0
or 1, and they describe the absence or presence of a business connection between
firm i andj. Thecij has a probability distribution given by

P(cij ∈ { 0, 1} ) = c

m
δcij (1) + (1− c

m
)δcij (0), cij = cji,

where thecij is in { 0, 1} and

δcij (1) =

{
1 , cij = 1
0 , cij = 0.

The quantity(C0
c
+ C√

c
xij) ∼ N (Co

c
, C

2

c
) by linear transformation (see appendix A).

It gives the size of the contagion strength and the size is not symmetric. This can
be understood by the following example, which is from [8]: Let there be one
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small supplier with one large company taking the majority of its orders. If the
larger company defaults then the small supplier may default as well. However, if
the small supplier defaults then the larger company is less likely to suffer terminal
distress. The numberc is the average number of connections that a firm has, and
the connections are symmetric, i.e.cij = cji. They also satisfy transitivity, i.e.
cihchj ≤ cij or even some bigger loop. The value c is assumed to be large.

It it assumed thatZt(i),
∑

j CijZt(j) andξt(i) (appearing in equation ( 2.3)) are
uncorrelated. The parametersC0 andC determine the mean and variance ofCij ,
which means that ifC0 > 0 the firms are not independent on average. For future
calculations, one needs the distribution of

m∑

j=1

cij

(C0

c
+

C√
c
xij

)
Zt(j). (2.6)

The numbercij in { 0, 1} is known in advance. TheC0
c

+ C√
c

are numbers as
well, so the only randomness in the expression in ( 2.6) is fromxij , which are
Gaussian with finite moments, and fromZt(j). Through equation ( 2.1) one sees
that theZt(i) are correlated, but Hatchett and Kühn argue that theZt(i) are suffi-
ciently weakly correlated for the limit theorems to be applied. The contributions to∑m

j=1CijZt(j) are sufficiently weakly correlated because:
There are two ways that the neighbor firms ofi can be correlated through the dy-
namics. Either through firmi or through some other loop, i.e. one can haveChi
andCij so firmh andj are correlated through firmi or one can haveChℓ andCℓj
so firmh andj are not correlated through firmi. However, as long asZt(i) = 0,
Zt(h) andZt(j) can not influence each other through firmi. But whenZt(i) = 1,
the correlation firmi induces onh andj are irrelevant for its own dynamics, i.e.
for the dynamics of firmi.

By assumption, both the average connectivityc, which was assumed to be large,
and the number of firmsm → ∞, andc/m → 0 with c = O(log(m)), which
means thatc goes more slowly to∞ thanm does. The variables(C0

c
+ C√

c
xij)

are independent and identically distributed (i.i.d.). The default process is abinary
indicator variable taking the value 0 or 1. To find the distribution of the sum in
( 2.6), exploit the fact that(C0

c
+ C√

c
xij) andZt(j) are independent. Hatchett and

Kühn treats the sum in ( 2.6) as a sum of Gaussian variables. This is seen form the
way the find the distributin of the sum.

m∑

j=1

cij

(C0

c
+

C√
c
xij

)
Zt(j) =

m∑

j=1

cij
C0

c
Zt(j) +

m∑

j=1

cij

( C√
c
xij

)
Zt(j).
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They apply the Law of Large Numbers (appendix A) to the first sum, and using
c = cm → ∞

m∑

j=1

cij
C0

c
Zt(j)

P−→ C0E(Zt(j)).

This is only valid if theZt(j) are i.i.d., and if soE(Zt(j)) = E(Zt(1)). Since
xij ∼ N (0, 1), the expectation of the second part in the sum is zero. By using
thatV ar(X) = E(X2) − (E(X))2 for a random variableX, and the Continuity
Theorem (appendix A), sincef(u) = u2 is a continuous function, then

m∑

j=1

(cij

( C√
c
xij

)
Zt(j))

2 P−→ C2V ar(cijZt(j))

asc = cm → ∞. Again, the variables have to i.i.d. If so, thenC2V ar(cijZt(j)) =
C2(E(Zt(1)))

2. Then they use the Central Limit Theorem to find the asymptotic
distribution of the sum in ( 2.6) and finds that

m∑

j=1

cij

(C0

c
+

C√
c
xij

)
Zt(j)

L−→ N (C0E(Zt(1)), C
2(E(Zt(1)))

2).

Alternatively, one could argue that theZt(j) are random variables taking the value
0 or 1 where the randomness comes from the underlying stochastic wealth pro-
cessWt(j) which is Gaussian, thus theZt(j) are Gaussian as well. They are
independent ofxij . The expectation of each element in the sum becomes, due to
independence,

E(cij

(C0

c
+

C√
c
xij

)
Zt(j)) =

C0

c
E(cijZt(j)),

and the variance

V ar(cij

(C0

c
+

C√
c
xij

)
Zt(j)) =

C2

c
V ar(cijZt(j)).

Use linear transformation on the Gaussian sum and obtain that the distribution of
the sum in ( 2.6)
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m∑

j=1

cij

(C0

c
+

C√
c
xij

)
Zt(j) ∼ N

(C0

c

m∑

j=1

E(cijZt(j)),
C2

c

m∑

j=1

V ar(cijZt(j)
)
.

(2.7)

Let this be the distribution for the sum for future calculations.

2.3 The default intensities

The description of the default model is as seen from a structural point ofview since
default happens when the wealth processWt(i) < 0. The starting point in an inten-
sity based model is the modeling of the intensity process. The basic idea behindan
intensity based model is that there are two states, solvent or defaulted. By letting
Zt(i) be the state at timet of firm i andλt(i) the transition intensity from solvent
to default, then the transition intensity is interpreted as the probability ofZt going
from solvent to default in a short time interval.

Starting out with the very general case first, the variableηt(i) is now assumed to
be standard normal. In order to find the default intensity in this model for the very
general case, one has to look at

P

(
Zt+1(i) = 1

∣∣∣Zt(i) = 0,

m∑

j=1

CijZt(j)
)
= P

(
1{ Wt(i)<0} = 1

∣∣∣
m∑

j=1

CijZt(j)
)

= P

(
Wt(i) < 0

∣∣∣
m∑

j=1

CijZt(j)
)
= P

(
ηt(i) > ϑi −

m∑

j=1

CijZt(j)
∣∣∣
m∑

j=1

CijZt(j)
)

= Φ(y − ϑi)
∣∣∣
y=

∑m
j=1 CijZt(j)

. (2.8)

The functionΦ(.) denotes the cumulative distribution function of the standard nor-
mal density. This is then the general default intensity ofZt(i) where default can
occure due to both self default or default by contagion, i.e.λt(i) = Φ(y − ϑi).

One can interpret the variablesϑi andCij in terms of the default probabilities. Let
the default probability without contagion of firmi be denoted bypi, sopi is the self
default probability and

∑m
j=1CijZt(j) = 0. Then

pi = P(Wt(i) < 0
∣∣
m∑

j=1

CijZt(j) = 0) = Φ(−ϑi) (2.9)
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and the initial wealth of firmi can be expressed asϑi = −Φ−1(pi). With pi
as the monthly default probability, thenPDi in equation ( 2.3) is approximately
12Φ(−ϑi).

On the other hand, the expected default of firmi given that only one firm, say,j has
defaulted would be

pi|j = P(Wt(i) < 0
∣∣CijZt(j) = 1) = Φ(Cij − ϑi).

This leads to the following expression of the contagion term:

Φ−1(pi|j) = Cij +Φ−1(pi)

⇐⇒
Cij = Φ−1(pi|j) + Φ−1(pi).

By moving on to the less general case where one uses the expression forηt(i) as
given in equation ( 2.3), soηt(i) = σi(

√
ρiη0 +

√
1− ρiξt(i)), one can start de-

scribing the default intensities in the cases of independent firms and firms exposed
to credit contagion.

2.3.1 Independent default intensity

The following default models are for one time epoch, i.e. fort in [t,t+1]. The first
focus is on the case where the firms are independent,Cij = 0 for all i andj, so firm
i is thus not in an economic relation with any other fimrs.

P(Zt+1(i) = 1|Zt(i) = 0,
m∑

j=1

CijZt(j) = 0)

= P(1{ Wt(i)<0} = 1
∣∣
m∑

j=1

CijZt(j) = 0)

= P(Wt(i) < 0|
m∑

j=1

CijZt(j) = 0) = P(ϑi − ηt(i) < 0|
m∑

j=1

CijZt(j) = 0)

= 1− P(σi(
√
ρiη0 +

√
1− ρiξt(i)) < ϑi|

m∑

j=1

CijZt(j) = 0).

By using thatσi ≡ 1 andη0 is constant over a risk horizon of a year, the expression
becomes

1− P(
√
1− ρiξt(i) < ϑi −

√
ρiη0|

m∑

j=1

CijZt(j) = 0)
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= Φ(

√
ρiη0 − ϑi√
1− ρi

). (2.10)

This is thus thedefault probability without contagion effect.

2.3.2 Contagion default intensity

Moving on to the other case whereCij 6= 0 for all i andj, one gets

P(Zt+1(i) = 1|Zt(i) = 0,
m∑

j=1

CijZt(j) 6= 0) = P(Wt(i) < 0|
m∑

j=1

CijZt(j) 6= 0)

= P(ϑi −
m∑

j=1

CijZt(j)− σi(
√
ρiη0 +

√
1− ρiξt(i)) < 0|

m∑

j=1

CijZt(j) 6= 0)

Where again, by using thatσi ≡ 1 andη0 is constant over a risk horizon of a year,
the expression becomes

P(−
m∑

j=1

cij

(C0

c
+
C√
c
xij

)
Zt(j)−

√
1− ρiξt(i) < −ϑi+

√
ρiη0|

m∑

j=1

CijZt(j) 6= 0).

(2.11)
By linear transformation one gets, since

√
1− ρiξt(i) ∼ N (0, 1− ρi), that

m∑

j=1

cij

(C0

c
+

C√
c
xij

)
Zt(j) +

√
1− ρiξt(i)

is normally distributed with meanC0
c

∑m
j=1 E(cijZt(j)) and variance

1 − ρi +
C2

c

∑m
j=1 V ar(cijZt(j)). Returning to equation ( 2.11), one gets by

standardizing

P(−
m∑

j=1

cij

(C0

c
+
C√
c
xij

)
Zt(j)−

√
1− ρiξt(i) < −ϑi+

√
ρiη0|

m∑

j=1

CijZt(j) 6= 0)

= Φ
(a+√

ρiη0 − ϑi√
1− ρi + b

)∣∣∣
a=

C0
c

∑m
j=1 E(cijZt(j)),b=

C2

c

∑m
j=1 V ar(cijZt(j))

(2.12)

which is thedefault probability with contagion effectof firm i.
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2.3.3 The default number

Hatchett and Kühn introduce the fraction of defaulted firms and use the Lawof
Large Numbers in their result. This means that theZt(j) must be i.i.d. for the re-
sults hold. They present the fraction of defaulted firms and it ismt =

1
m

∑m
j=1 Zt(j).

Assume thatE(Zt(j)) = ξ and thatV ar(Zt(j)) <∞. By the Law of Large Num-
bers, asm→ ∞,

mt =
1

m

m∑

j=1

Zt(j)
P−→ E(Zt(j)).

The dynamics of the fraction of defaulted firms,mt, can be found by looking at
equation ( 2.1). Then one gets that

mt+1 =
1

m

m∑

j=1

Zt+1(j) =
1

m

m∑

j=1

(
Zt(j) + (1− Zt(j))1{ Wt(j)<0}

)

= mt +
1

m

m∑

j=1

(1− Zt(j))1{ ϑj−
∑m

i=1 CjiZt(i)−σj(√ρjη0+
√

1−ρjξt(j))<0} . (2.13)

Let σj ≡ 1 and exploit thatZt(j), ξt(j) and
∑m

i=1CjiZt(i) are uncorrelated. By
applying the Law of Large Numbers, asm→ ∞, one gets that

1

m

m∑

j=1

(1− Zt(j))1{ ϑj−
∑m

i=1 CjiZt(i)−(
√
ρjη0+

√
1−ρjξt(j))<0}

P−→ E(1− Zt(j))E(1{ ϑj−
∑m

i=1 CjiZt(i)−(
√
ρjη0+

√
1−ρjξt(j))<0} |

m∑

i=1

CjiZt(i))

= E(1−Zt(j))P
(
ϑj−

m∑

i=1

CjiZt(i)−√
ρjη0−

√
1− ρjξt(j) < 0|

m∑

i=1

CjiZt(i)
)

= E(1−Zt(j))Φ
(a+√

ρjη0 − ϑj√
1− ρj + b

)∣∣∣
a=

C0
c

∑m
i=1 E(cijZt(i)),b=

C2

c

∑m
i=1 V ar(cjiZt(i))

.

If theZt(j) are not identically distributed, but independent, one could still find out
how the expected number of defaults evolves. Generally, by using equation ( 2.8)
one gets

E(mt+1) = E(mt) +
1

m

m∑

j=1

E(1− Zt(j))Φ(y − ϑj)
∣∣
{ y=∑

i CjiZt(i)} .
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To find the distribution ofmt, notice thatmt is a monotone increasing function of
the macroeconomic factorη0 ∼ N (0, 1), somt = mt(η0) and one gets that the
cumulative density function, cdf, of the fraction of defaulted firms is

P(mt(η0) < m) = Φ(m−1
t m) (2.14)

The density function is found by differentiating the cdf, i.e.(Φ(m−1
t m))′ =

φ( m
mt

)( m
mt

)′. Hatchett and Kühn found that the evolution of the fraction of de-
faulted firms when considering credit contagion hardly differed from thecase when
there were only independent firms in the portfolio. However, when they looked at
the probability density function of the fraction of defaulted firms they found that
the tail of the distribution was fatter when one included credit contagion. i.e. when
(C0, C) = (1, 1) the tail was fatter then when(C0, C) = (0, 0).

2.4 Pricing

Hatchett and Kühn did not consider pricing in their paper, but they did present
the default probabilities which are to be interpreted as the default intensities.The
default intensity in the general case was found to be

P(Zt+1(i) = 1|Zt(i) = 0,

m∑

j=1

CijZt(j)) = P(Wt(i) < 0
∣∣
m∑

j=1

CijZt(j))

= P(ηt(i) > ϑi −
m∑

j=1

CijZt(j)|
m∑

j=1

CijZt(j))

= 1−P(ηt(i) ≤ ϑi−
m∑

j=1

CijYt(j)|
m∑

j=1

CijZt(j)) = Φ(y−ϑi)
∣∣∣
{ y=∑m

j=1 CijZt(j)}
.

On the underlying stochastic basis(Ω,G,Q,F) with F = (Ft)t≥0,Ft ⊂ G, the
risk-neutral measureQ ∼ P is assumed given. Theσ-algebraFt contains the
market information up to timet. The macroeconomic factorη0 is F0-measurable
and it is not a trivialσ-algebra. One can define a random time, or the default time,
by

τi = inf{ t > 0 : Zt(i) = 1} .

For i in { 1, . . . ,m} , t = 0, 1, . . . , T one hasGt = Ft ∨ σ(τi ≤ u : u ≤ t), and
Gt ⊇ Ft ⊇ F0 ⊇ σ(η0). Recall that the information ofη0 is know att = 0, so it
is treated as a known constant that does not change during the time period of this
model. Note thatτi areG-stopping times.
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Define the counting process (Poisson process) by

Nt(i) =

{
1 if τi ≤ t
0 if τi > t

which means that the event of a stopping time occurs in time as a Poisson process
with intensityλi > 0. The survival probability of the Poisson process is

P(τi > t) = P(no jumps until t) = P(Nt(i) = 0) = e−λit ∼ Exp(λi).

Thus, by substitutingλi for the intensity presented by Hatchett and Kühn, one gets
thatτi ∼ Exp(Φ(∑j CijZt(j)− ϑi)).

Assume that the stochastic interest ratert is bounded and continuous. The timet
price of a defaultable zero coupon bondon firm i with maturity T is given by the
following formula:

Vt(i) = EQ

(
e−

∫ T

t
rsds1{ τi>T} |Gt

)
. (2.15)

Equation ( 2.15) is, by the tower property of conditional expectations, equal to

EQ

(
EQ(e

−
∫ T

t
rsds1{ τi>T} |GT ) |Gt

)
= EQ

(
e−

∫ T

t
rsdsEQ(1{ τi>T} |GT ) |Gt

)

= EQ

(
e−

∫ T

t
(rs+λs(i))ds|Gt

)
.

And if rs andλs(i) are independent, then the expression becomes

Vt(i) = EQ

(
e−

∫ T

t
rsds|Gt

)
EQ

(
e−

∫ T

t
λs(i)ds|Gt

)
.

Moving on and looking at the price of a claim when the default intensities are spec-
ified as in sections 2.3.1 and 2.3.2, and starting with the case in which the default
probability is without contagion effect. Recall that the default intensity of firm i

not being exposed to default contagion isΦ(
√
ρiη0−ϑi√
1−ρi ) as given in equation ( 2.10).

Let rt and the default intensities be independent. By substitutingλs(i) with

Φ(
√
ρiη0−ϑi√
1−ρi ) one obtains that the price of a defaultable zero coupon bond at timet

in { 0, 1, . . . , T} issued by firmi, where the issuer is not in an economic relation
with other firms, would amount to calculate
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Figure 2.1: Credit Default Swap

Vt(i) = EQ

(
e
−

∫ T

t
(rs+Φ(

√
ρiη0−ϑi√

1−ρi
))ds|Gt

)
. (2.16)

= EQ

(
e−

∫ T

t
rsds|Ft

)
EQ

(
e
−

∫ T

t
Φ(

√
ρiη0−ϑi√

1−ρi
)ds|η0

)
.

= e
−Φ(

√
ρiη0−ϑi√

1−ρi
)(T−t)

EQ

(
e−

∫ T

t
rsds|Ft

)

where the last equality follows from the assumption thatη0 is known and constant.
The default intensityΦ(

√
ρiη0−ϑi√
1−ρi ) is constant for the given firmi. Since the short

rate is stochastic the price in equation ( 2.16) would be, if one uses the Vasicek
model as described in section 1.1.2 ,

Vt(i) = e
−Φ(

√
ρiη0−ϑi√

1−ρi
)(T−t)

P (t, T ), (2.17)

whereP (t, T ) is given in equation ( 1.10).

Another element of credit risk is the recovery rate, R, which says how much of
the face value of the bond that can be recovered if the obligor defaults. If one
includes a stochastic and independent recovery rateRi which is paid at maturity

T , then the payoff for a defaultable zero coupon bond is
(
e−

∫ T

t
rsds1{ τi>T} +

Rie
−

∫ T

t
rsds1{ τi≤T}

)
, and the price given in equation ( 2.15) will then be

Vt(i) = EQ

(
e−

∫ T

t
rsds1{ τi>T} +Rie

−
∫ T

t
rsds1{ τi≤T} |Gt

)

= EQ

(
e−

∫ T

t
rsds(1{ τi>T} +Ri(1− 1{ τi>T} ))|Gt

)

= EQ

(
e−

∫ T

t
rsds(Ri + (1−Ri)1{ τi>T} )|Gt

)

= EQ

(
e−

∫ T

t
rsdsRi|Gt

)
+ EQ

(
e−

∫ T

t
rsds(1−Ri)1{ τi>T} )|Gt

)

= EQ

(
Rie

−
∫ T

t
rsds|Gt

)
+ EQ

(
(1−Ri)e

−
∫ T

t
(rs+λs(i))ds|Gt

)

and with the default intensities inserted, the price will be

EQ

(
Rie

−
∫ T

t
rsds|Gt

)
+ e

−Φ(
√
ρiη0−ϑi√

1−ρi
)(T−t)

EQ

(
(1−Ri)e

−
∫ T

t
rsds|Gt

)
. (2.18)
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A credit default swap, CDS, is a protection contract against default ofa firm where
the protection buyer pays periodic payments to the protection seller who in turn
pays a one-off contingent payment if default occurs before maturity ofthe bond
(referance asset) issued by companyi. The periodic payments to the protection
seller continues until either default or maturiy. Ifτi ≤ T , assume that the protection
seller has to pay the protection buyer(1 − Ri), called loss given default and is
the loss in percentage in case of default. The protection buyer has to pay afixed
amounts, called spread, set at the time of evaluation such that the contract is fair.
The payment dates for the spread are0 = t0 < t1 < . . . < tn = T which are
assumed to be equally spaced and no accured interest rate is paid. (If theaccured
interes rate is paid then an extra term is added to the value of the claim of the
seller). Then the value at timet ≤ tj for j in { 0, 1, . . . , n} of the claim regarding
firm i of the protection buyer is

V Buyer
t (i) = EQ

(
s

n∑

j=0

e−
∫ tj
t rsds1{ τi>tj} |Gt

)
,

and by equation ( 2.15) the above price becomes

V Buyer
t (i) = EQ

(
s

n∑

j=0

e
−

∫ tj
t (rs+Φ(

√
ρiη0−ϑi√

1−ρi
))ds|Gt

)

= s
n∑

j=0

EQ

(
e
−

∫ tj
t (rs+Φ(

√
ρiη0−ϑi√

1−ρi
))ds|Gt

)

= s
n∑

j=0

e
−Φ(

√
ρiη0−ϑi√

1−ρi
)(tj−t)

EQ

(
e−

∫ tj
t rsds|Ft

)
(2.19)

where the last equality follows from the default intensity of firmi being constant. If
the Vasicek model is used, then the expression in equation ( 2.19) could be written
as

V Buyer
t (i) = s

n∑

j=0

e
−Φ(

√
ρiη0−ϑi√

1−ρi
)(tj−t)

P (t, tj). (2.20)

For the protection seller one gets that the value of the claim is, forRi constant,

V Seller
t (i) = EQ

(
e−

∫ τi
t rsds(1−Ri)1{ t<τi≤T} |Gt

)

= (1−Ri)EQ

(
e−

∫ τi
t rsds1{ t<τi≤T} |Gt

)
. (2.21)

29



Sincee−
∫ τi
t rsds is bounded and continuous, and the default intensity is continuous,

corollary 5.1.3 in [6] gives that equation ( 2.21) becomes

(1−Ri)Φ(

√
ρiη0 − ϑi√
1− ρi

)1{ τi>t} e
∫ t

0 Φ(
√
ρiη0−ϑi√

1−ρi
)ds

×EQ

(∫ T

t

e−
∫ u

t
rsdse

−
∫ u

0 Φ(
√
ρiη0−ϑi√

1−ρi
)ds
du|Ft

)

= (1−Ri)Φ(

√
ρiη0 − ϑi√
1− ρi

)1{ τi>t} e
Φ(

√
ρiη0−ϑi√

1−ρi
)t

×
∫ T

t

e
−Φ(

√
ρiη0−ϑi√

1−ρi
)u
EQ

(
e−

∫ u

t
rsds|Ft

)
du. (2.22)

If one was using the Vasicek model to calculate the expectation, then equation
( 2.22) would be

V Seller
t (i) = (1−Ri)Φ(

√
ρiη0 − ϑi√
1− ρi

)1{ τi>t} e
Φ(

√
ρiη0−ϑi√

1−ρi
)t

×
∫ T

t

e
−Φ(

√
ρiη0−ϑi√

1−ρi
)u
P (t, u)du. (2.23)

The contract values are set to be zero at initiation of the contract, so in order to find
the fair spread,s, one equates the two expressions, i.e.V Buyer

t (i) = V Seller
t (i)

and solves fors.

If the issuer of the defaultable claim is in an economic relation with other firms,
then the default intensity isΦ

(at+√
ρiη0−ϑi√

1−ρi+bt
)
, at =

C0
c

∑m
j=1 E(cijZt(j)) and

bt =
C2

c

∑m
j=1 V ar(cijZt(j)) as given in equation ( 2.12). The price of a default-

able zero coupon bond at timet, where firmi is in an economic relation with other
firms and the short rate is independent of the default intensity, is

Vt(i) = EQ

(
e
−

∫ T

t
(rs+Φ

(
as+

√
ρiη0−ϑi√

1−ρi+bs

)
)ds|Gt

)
(2.24)

= EQ

(
e−

∫ T

t
rsds|Ft

)
EQ

(
e
−

∫ T

t
Φ
(

as+
√

ρiη0−ϑi√
1−ρi+bs

)
ds|Gt

)
.

When the firms are in an economic relation with each other, the default intensities
are deterministic sinceat =

C0
c

∑m
j=1 E(cijZt(j)) andbt = C2

c

∑m
j=1 V ar(cijZt(j))

are numbers that change in time. So with deterministic default intensities that in-
cludes the contagion effect, the price in equation ( 2.17) would be
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Vi(i) = e
−

∫ T

t
Φ
(

as+
√
ρiη0−ϑi√

1−ρi+bs

)
ds
P (t, T ).

If the stochastic recovery rate is included, one would get that equation ( 2.18) would
be

EQ

(
Rie

−
∫ T

t
rsds|Gt

)
+ e

−
∫ T

t
Φ(

as+
√

ρiη0−ϑi√
1−ρi+bs

)ds
EQ

(
(1−Ri)e

−
∫ T

t
rsds|Gt

)
.

When the default intensities include the contagion term, the price of a CDS would
be, for equation ( 2.20)

V Buyer
t (i) = s

n∑

j=0

e
−

∫ tj
t Φ(

as+
√
ρiη0−ϑi√

1−ρi+bs
)ds
P (t, tj).

And for the protection seller equation ( 2.23) would be

V Seller
t (i) = (1−Ri)1{ τi>t} e

∫ t

0 Φ(
as+

√
ρiη0−ϑi√

1−ρi+bs
)ds

×
∫ T

t

e
−

∫ u

0 Φ(
as+

√
ρiη0−ϑi√

1−ρi+bs
)ds

Φ(
au +

√
ρiη0 − ϑi√

1− ρi + bu
)P (t, u)du.

2.5 Remarks

The portfolio default process is a binary indicator variable taking the values 0 and
1, so it can be understood as Bernoulli random variables

Zt(i) =

{
1 with probability pi
0 with probability 1− pi,

The self default probabilitypi = Φ(−ϑi), is as found in equation ( 2.9). This
means that theZt(i) are not identically distributed. They might be independent
by the argument given by Hatchett and Kühn in section 2.2. Since theZt(i) are
not i.i.d., the Law of Large Numbers and the Central Limit Theorem can not be
applied to find the asymptotic distribution of the sum in expression ( 2.6), and the
dynamics of the fraction of defaulted firms can not converge in probability.
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In general, there is no clear description of default caused by bad performance of
firm i itself and default caused by contagion from firmj in this model. In the model
presented by Hatchett and Kühn, a firm defaults if its wealth falls below zero, and
the wealth is the difference of the assets and liabilities of firmi. This means that
firm i defaults if it has more liabilities than it has assets. If one wants to introduce
a model that distinguishes between self default and default by contagion one could
proceed as follows:

Let the wealth of firmi be denotedVt(i) and let

{
Vt(i) = ϑi − ηt(i) t = 1, . . . , T
V0(i) = ϑi > 0

whereϑi andηt(i) are given as in [3]. Then introduce a self default processYt(i)
given by

Yt(i) = 1{ Vt(i)<ℓi} =

{
1 self default of firm i
0 firm i solvent

whereℓi < 0 is the admissible level of liabilities. Let the portfolio default process
be, fort = 0, . . . , T

{
Zt+1(i) = Zt(i) + (1− Zt(i))

(
Yt+1(i)− (1 + Yt+1(i))1{ Wt+1(i)<0}

)

Z0(i) = 0.

The wealth process is depending ont+1 now, which means that the model captures
default immediately. The portfolio default process is still 1 if firmi has defaulted,
and 0 otherwise. TheYt(i) are independent, but not identically distributed, but they
are driven by some Gaussian noice. The probability of default in the portfolio for
firms that are not in an economic relation with other firms is

P(Zt+1(i) = 1
∣∣Zt(i) = 0)

= P

(
Yt+1(i) + (1− Yt+1)1{ Wt+1(i)<0} = 1

∣∣Yt(i) = 0,1{ Wt+1(i)<0} = 0
)

= Φ(
ℓi − ϑi +

√
ρiη0√

1− ρi
).

The default probability for firmi being in an economic relation with other firms is
the same as in the model suggested by Hatchett and Kühn, i.e.
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P(Zt+1(i) = 1
∣∣Zt(i) = 0)

= P

(
Yt+1(i) + (1− Yt+1)1{ Wt+1(i)<0} = 1

∣∣Yt(i) = 0,1{ Wt+1(i)<0} = 1
)

= Φ
(a+√

ρiη0 − ϑi√
1− ρi + b

)∣∣∣
a=

C0
c

∑m
j=1 E(cijYt+1(j)),b=

C2

c

∑m
j=1 V ar(cijYt+1(j))

.
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Chapter 3

Contagion model in continuous
time

Biagini, Fuschini and Klüppelberg, [2], present a contagion model in continuous
time which is based on [4]. They chose to let the default intensities depend
on a long range dependent process describing the macroeconomic factor because
macroeconomic factors tend show a long range dependence effect. As inthe dis-
crete time model, a default in the portfolio can be caused by either self defaultor
default by contagion. Opposite to [3], their paper is considering the pricing of
defaultable derivatives, where the derivatives depend on the macroeconomic pro-
cess and are exposed to default contagion. Biagini, Fuschini and Klüppelberg are
able to give explicit pricing formulas for derivatives. It is assumed that the primary
assets on the market (a primary asset in banking might be the bank’s reserves or
loans) are not driven by a long range dependent process. Both selfdefault and de-
fault by contagion happen instantaneously and the defaulting state is absorbing.

3.1 The default model

There are only two states for the firms in the portfolio: defaulted or solvent. Let
a portfolio consist ofm firms, where each firm is indexed byi in { 1, 2, . . . ,m} .
Theportfolio default processis taking the values{ 0, 1} m and is described by

Zt = (Zt(1), . . . , Zt(m)), t ≥ 0,

where each random componentZt(i) describes if firmi has defaulted or not by
time t, meaning that

Zt(i) =

{
0 firm i is solvent at timet,
1 firm i has defaulted at timet .
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Since one is interested in credit contagion, one has to distinguish between default
in the portfolio which is caused by the firm itself or by contagion from the default
of other firms. Theself default indicator process, which is a random vector taking
the values{ 0, 1} m, is described by

Yt = (Yt(1), . . . , Yt(m)), t ≥ 0,

where eachYt(j) is given by

Yt(j) =

{
0 firm j is solvent at timet,
1 firm j has defaulted at timet by itself.

Denote byτj = τj(ω) the default time of firmj for j in { 1, 2, . . . ,m} . Then
Yt(j) = 1{ τj≤t} , t ≥ 0. The random variableYt(j) generates the natural filtra-

tion denotedFY (j)
t := σ(Yu(j) : u ≤ t). The self default processes are assumed

to be independent.

In [2], the suggested modeling of credit contagion in continuous time is through a
contagion matrix indicator process. The matrixCt is inRm×m and its coefficients
indicate if there is contagion between the firms or not. This means that if firmi
defaults, thenCt(i, j) will determine if there was any infection from firmi to firm
j at timet. For any timet ≥ 0, the coefficients in the matrix are described by

Ct(i, j) =

{
0 no infection of default,
1 if default of firm i causes firmj to default at timet.

This way of describing contagion differs from the one in the discrete time model.
In the discrete time model, the entries in the contagion matrix can be both positive
and negative, but in the continuous time model the entries are either 0 or 1. Inthe
discrete time model the contagion is more of an average contagion between the
firms that may be in a competitive or cooperative economic relationship, whereas
in the continuous time model the default contagion is not divided into ’good’ and
’bad’ contagion. The contagion is a pure default contagion from firmi to firm j, and
no other firms can get firmj back in business. In the discrete time model there is
no clear description of the self default process as it is in the continuous time model.

The contagion matrix process generates the filtrationFCij

t = σ(Cu(i, j) : u ≤ t)
for everyi, j in { 1, . . . ,m} , i 6= j. One can express the portfolio default indicator
process of firmj as

Zt(j) = Yt(j) + (1− Yt(j))
(
1−

∏

i 6=j
(1−Ct∧τi(i, j)Yt(i))

)
, t ≥ 0. (3.1)
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Since firmj obviously is influencing itself,Ct(j, j) ≡ 1, the portfolio default pro-
cess can be written in a shorter form;

Zt(j) = 1−
m∏

i=1

(1− Ct∧τi(i, j)Yt(i)), t ≥ 0. (3.2)

Defaults in the portfolio are caused by fluctuations in the macroeconomic factor,
and defaults happen atτi, and the stopping timeτi has an intensityλi which is
driven by an underlying stochastic processΨ = (Ψt)t≥0 with values inRd rep-
resenting the evolution of the macroeconomy.Ψ generates the filtrationFΨ

t =
σ(Ψu : u ≤ t). Ψ will be described in details later in section 3.4.

3.2 The probability space and assumptions

The system is described by the process(Ψt, Yt, Ct)t≥0 on the complete probability
space(Ω,F ,P), whereFt := FΨ

t ∨ FY
t ∨ FC

t . The larger filtrationGt := FΨ
∞ ∨

FY
t ∨ FC

t contains information about the whole path of(Ψt)t≥0. All filtrations
are assumed to be right-continuous andP-augmented. It is aslo assumed that the
investors have knowledge about(Ft)t≥0, that the investors know the contagion
structure and if a firm has defaulted or not. Further assumptions are

1. Ψ is not affected by Y and Z, meaning that for every boundedFΨ
∞-measurable

random variableη, E(η|Ft) = E(η|FΨ
t ), t ≥ 0.

2. The processes(Yt(i))t≥0 and(Ct(i, j))t≥0 are conditionally orthogonal of
the filtration(Gt)t≥0, meaning that for every{ i1, . . . , ik} ⊆ { 1, . . . ,m}
and for every choice of(α1, β1), . . . , (αl, βl) in
{ (i, j) ∈ { 1, . . . ,m} 2|i 6= j} one gets that for alltj ≥ t, j = 1, . . . , k and
sn ≥ t, n = 1, . . . , l

E

( k∏

j=1

l∏

n=1

f(Ytj (ij))g(Csn(αn, βn))|Gt
)

=
k∏

j=1

E

(
f(Ytj (ij))|FΨ

∞∨FY (ij)
t

) l∏

n=1

E

(
g(Csn(αn, βn))|FΨ

∞∨FC(αn,βn)
)

for f, g : {0, 1} → R andi, j in { 1, . . . ,m} , i 6= j .

3. The self default process(Yt(i))t≥0 is a doubly stochastic process with re-
spect to the filtration (FΨ

∞ ∨ FY
t )t≥0. The stochastic intensity of(Yt(i))t≥0

is denotedλi(t,Ψt) for λi : R2 → R+. This means that

E(1− Ys(i)|Gt) = (1− Yt(i))e
−

∫ s

t
λi(u,Ψu)du, s ≥ t.
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4. The contagion processes(Ct(i, j))t≥0 for i 6= j areFΨ
∞-conditionally time-

inhomogeneous Markov chains, i.e. for every functionf : { 0, 1} → R,

E

(
f(Cs(i, j))|FΨ

∞ ∨ FC(i,j)
t

)
= E

(
f(Cs(i, j))|FΨ

∞ ∨ σ(Ct(i, j))
)
, s ≥ t.

5. For all i,j in { 1, . . . ,m} , i 6= j, and statesh,k in { 0, 1} , the conditional
transition probabilities are denoted by

pijts(k, h) = P

(
Cs(i, j) = h|FΨ

∞ ∨ σ(Ct(i, j) = k)
)

and the process(pijts(k, h))s∈R+ is assumed to be continuous for evertyt in
R+, i,j in { 1, . . . ,m} andk,h in { 0, 1} .

3.3 Contagion classes

By assuming that the matrix C istime-independentanddeterministicone can divide
the m firms in the portfolio into fixedcontagion classes. Firms belonging to the
same contagion class need to satisfy the following:

1. Reflexivity:C(i, i) = 1 for all i in { 1, . . . ,m} .

2. Symmetry:C(i, j) = C(j, i) for all i,j in { 1, . . . ,m} .

3. Transitivity:C(i, h)C(h, j) ≤ C(i, j) for all i,j,h in { 1, . . . ,m} .

The contagion classes are disjoint and denoted by

[i] := { j ∈ { 1, . . . ,m} |C(i, j) = 1}

where it is assumed that the portfolio consists ofk ≤ m contagion classes[i1], . . . , [ik].
The contagion classes might represent local markets. There can not betwo differ-
ent contagion classes defaulting at the same time, otherwise the two classes would
actually be the same. Since the matrix C now is assumed to be time-independent
and deterministic the portfolio default process in equation ( 3.1) becomes

Zt(j) = Yt(j) + (1− Yt(j))
(
1−

∏

i 6=j
(1− C(i, j)Yt(i))

)
.

One sees thatZt(j) = 1 if Yt(j) = 1 andZt(j) = 1 −∏
i 6=j(1 − C(i, j)Yt(i)) if

Yt(j) = 0. The contagion part
(
1−∏

i 6=j(1−C(i, j)Yt(i))
)
= 1 and gives default

in the portfolio in positionj if there exists somei such thatC(i, j)Yt(i) = 1. This
means that there must be at least onei in [j] in order to have a default in the

portfolio in positionj. On the other hand, if
(
1 − ∏

i 6=j(1 − C(i, j)Yt(i))
)
= 0

thenC(i, j)Yt(i) = 0 for all i. In order forC(i, j)Yt(i) = 0, eitherYt(i) = 0 or
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Yt(i) = 1 andC(i, j) = C(j, i) = 0, by the symmetry assumption. This means
thatYt(i) = 0 for all j in [i], and one gets that

Zt(i) = 0 ⇐⇒ Zt(j) = 0 for all j in [i] ,

which means that either all firms in the same contagion class have defaulted or that
all firms are solvent. According to Biagini, Fuschini and Klüppelberg this form
of classification of the firms makes their modeling different from usual credit risk
contagion modeling since usual modeling would increase the default hazardof all
the other firms in the same class when a default in that class occured. All firms
belonging to the same contagion class[i] have a default intensity given by

λ
[i]
t =

∑

j∈[i]
λj(t,Ψt).

Since the contagion matrix is assumed to be time-independent and deterministic,
the default intensities of the portfolio default process,(Zt)t≥0, are as the default
intensities of the self default indicator process(Yt(j))t≥0. The different contagion
classes are independent.

In the discrete time model all the firms and their enviroments were assumed to
be fairly homogeneous, but they could not be put in the type of contagion classes
described above since the contagion matrix is not symmetric. In the discrete time
model the contagion matrix is deterministic and thecij which describes if there
exists a connection between the firmsi andj is symmetric and transient.

3.3.1 The default number

Like in the discrete time model, one can find the average number of defaulted firms
within the portfolio. In the continuous time model, the default number process is
linked to the contagion classes. All the firms in the portfolio are split intol ≤ m
homogeneous groups, denoted byG1, . . . , Gl, where each group contains all the
firms that have the same default intensity. The groups might represent firmswith
identical credit rating (the probability of the issuer being able to pay its debt) or
firms belonging to the same industry. Forh in { 1, . . . , l} , Gh can be written as
the disjoint union of contagion classes, i.e.

Gh =

sh⋃

k=1

[jhk ]

wheresh is the number of contagion classes that groupGh consists of. Then the
weighted average number of defaults within groupGh is given by

mt(h) :=
1

sh

( ∑

i∈[jh1 ]

Zt(i)

nh1
+ . . .+

∑

i∈[jhsh ]

Zt(i)

nhsh

)
(3.3)
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wherenhi is the cardinality of the contagion class[jhi ] for i in { 1, . . . , sh} and
mt := (mt(1), . . . ,mt(l)). Since the contagion classes are conditionally indepen-
dent of the filtrationGt, by assumption in section 3.2, the summands of the process
mt are conditionally independent as well.

Recall that there can not be simultaneous defaults of contagion classes and all firms
within a contagion class default at the same time. By following the reasoning of the
proof of Lemma 3.4 in [11] one gets that, forh in { 1, . . . , l} , the counting process

(mt)t≥0 will jump from a stateu in Rl with u = (u1, . . . , ul) =
(
(v1
s1
, . . . , vl

sl
) :

vh ∈ { 0, . . . , sh}
)

to a state of the formu+ eh
sh

if and only if the next defaulting

firm belongs to groupGh. Theeh is theh-th element in the standard basis ofRl.
Theuh increases only in steps of1

sh
. The transition intensity ofmt(h) from the

stateu into the stateu+ eh
sh

is given by

λ
mt(h)
t (u, u+

eh
sh

) = sh(1− uh)λ
Gh(t,Ψt)

whereλGh(t,Ψt) is the default intensity of every firm belonging to groupGh, i.e.
the default intensiyt ofGh, anduh is the proportion of firms that have defaulted in
groupGh at timet.

The following example is ment to illustrate the contagion matrix and group struc-
ture.

Example:Let there be two groups,Gi, i = 1, 2, with 3 firms in one group and
4 firms in the other group. Let the contagion matrix be deterministic. Then the
contagion matrix is as follows:

C =

(
C3×3 C3×4

C4×3 C4×4

)

Let Id be the identity matrix inRd, 0d×k be the zero matrix and let1d×k be the
matrix with only entries 1. Then one can consider the two following contagion
cases:

C1 =

(
13×3 03×4

04×3 14×4

)
C2 =

(
13×3 03×4

14×3 I4×4

)

The interpretation of the case inC1 is that there is default contagion between the
3 firms in group 1, as well as it is contagion between the 4 firms in group 2. The
zero matrices tells that there is no default contagin fromG1 and over toG2 and
no contagion the other way around either. The matrixC2 models contagion within
G1, no default contagion fromG1 to G2, default contagin from group 2 over to
group 1 and no contagion within group 2. If the matrixC = 112×12 there is

39



default contagion between all the 12 firms, and the caseC = I12 means that there
is no default contagion between the firms. To explain the contagion effect inthe
case ofC2 a little bit more in detail, assume that the firms in groupG1 are called
a1, a2 anda3, and the firms inG2 are calledb1, b2, b3 andb4. Then13×3 means
that Ct(ai, aj) = 1 for all i, j = 1, 2, 3. I4×4 means thatCt(bi, bi) = 1 for
all i = 1, 2, 3, 4. The case where03×4 tells thatCt(ai, bj) = 0 for all i, j, and
14×3 means thatCt(bi, aj) = 1 for all i, j as well as it has to include self default,
Ct(bi, bi) = 1.

3.4 The macroeconomic process

The macroeconomic processΨ is chosen to be modeled as a one dimensional frac-
tional Brownian motion,fBm, with Hurst indexH > 1

2 , (See appendix B). Since
the process is one dimensional it might be seen to represent a weighted meanof a
vector of macroeconomic variables. ThefBmwas chosen to represent the macroe-
conomic factors (such as supply and demand, unemploymentrate and inflation)
since these factors often show a long range dependence. SincefBm is a long range
time dependent process, it is not Markovian. The macroeconomic variableis given
by

ΨH
t := ψ(

∫ t

0
g(s)dBH

s ), t ∈ [0, T ], (3.4)

whereψ is an invertible continuous function, and g is a deterministic function in
Hµ([0, T ]) (see appendix B for more) such that1

g(s) is defined for alls in [0,T].
Sinceg is a deterministic function the integral in equation ( 3.4) can be understood
in a pathwise Riemann-Stieltjes sense by using the formula for integration by parts.
(See page 124 in [1].)

Biagini, Fuschini and Klüppelberg restricted themself to the case where, for all i
in { 1, . . . ,m} the default intensities of the self default processes(Yt(i))t≥0 are
stochastic and of the form

λi(t,ΨH
t ) = βi(t)

∫ t

0
g(s)dBH

s + γi(t), t ∈ [0, T ] (3.5)

whereβi andγi are continuous functions.

The modeling choice of both [2] and [3] when it comes to the macroeconomic pro-
cess is thus a zero mean Gaussian process. The disturbing element to the wealth
process in equation ( 2.3) is decomposed into one term handling the macroeco-
nomic factor and another term describing the individual fluctuations disturbing the
wealth of a firm, whereas in the continuous time model only the macroeconomic
factor is described explicitly. One big difference in the two models studied is re-
garding the macroeconomic factor. In the discrete case, the macroeconomicfactor
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is constant over the time horizon of one year, but in the continuous model it is a
stochastic process representing a mean of macroeconomic variables. Themacroe-
conomic process in the continuous time model is a fractional Brownina motion,
so it is not a Markovian process. If the macroeconomic variable in the discrete
time model was not constant, it would be Gaussian and thus a (standard) Brownian
motion as well as it would be Markovian.

3.5 The price of credit derivatives

The prices of derivatives are influenced by the contagion matrix C and bythe
macroeconomic factorΨ. Before presenting the pricing formulas, there are some
assumptions that need to be stated:

1. The information that the investor has at timet is given byFt, i.e. the investor
knows the processesΨ, the self default process Y and the contagion matrix
C up to timet.

2. The default free interest rate is deterministic, and it is set equal to 0.

3. The risk neutral pricing measureQ exists and is known such that the price at
timet of anyFT -measurable claimLT inL1(Ω,Q) is given byEQ(LT |Ft) =
Lt for 0 ≤ t ≤ T .

It is not assumed that the pricing measure necessarily is unique. Without thespe-
cific expression of the macroeconomic processΨ as given in equation ( 3.4), Bi-
agini, Fuschini and Klüppelberg formulated the following pricing formula which
is given without any restrictions on the matrix C, i.e. the matrix is stochastic and
depends on time:
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Theorem 1. Let f : R × Rm −→ R be a bounded measurable function. Let
α = (α1, . . . , αm), β = (β1 . . . , βm) andz = (z1, . . . , zm) be in{ 0, 1} m and
h(i), k(i) be in{ 0, 1} m−1 for i = 1, . . . ,m. Sethii = kii := 1 for i = 1, . . . ,m,
hij := [h(i)]j andkij := [k(i)]j for i 6= j. Then for t in [0,T]

EQ(f(ΨT , ZT )|Ft) =
∑

α,β,z∈{ 0,1} m

(−1)
∑m

j=1 αjzj

m∏

j=1

z
1−αj

j

×
m∏

i=1

(
(Yt(i)at(i))

1−βi(1− Yt(i))
βi
)

EQ

(
f(ΨT , z)

m∏

i=1

bt,T (i)
βi |FΨ

t

)
, (3.6)

with

at(i) =
∑

h(i)∈{ 0,1} m−1

1{ h̃i(α,h)=0} 1{ C(i)
τi

=h(i)}

bt,T (i) =
∑

h(i),k(i)∈{ 0,1} m−1

1{ C(i)
t =k(i)}

×
(∫ ∞

T

λi(u,Ψu)e
−

∫ u

t
λi(s,Ψs)dspt,u(k

(i), h(i))du

+1{ h̃i(α,h)=0}

∫ T

t

λi(u,Ψu)e
−

∫ u

t
λi(s,Ψs)dspt,u(k

(i), h(i))du
)

where

h̃i(α, h) :=

{
0 if

∑m
j=1 αjhij = 0,

1 otherwise .
(3.7)

andpt,τi(k
(i), h(i)) :=

∏m
j=1 p

ij
tτi
([k(i)]j , [h

(i)]j) denotes the joint transition prob-

abilities of the random vectorC(i)
τi from time t to timeτi.

For proof, see [2].

If one assumes a time-independent contagion matrix which might be random, mean-
ing that

Ct(i, j) = Cω(i, j), t ≥ 0, (3.8)

where theCω(i, j) are given by i.i.d. random variables which are independent of
the processes Y andΨ. Then the filtration
Ft = FΨ

t ∨ FY
t ∨ σ(C) for t > 0. Again, without specifying the macroeconomic

process the general pricing formula becomes as in the following theorem:
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Theorem 2. If the contagion matrix is of the form ( 3.8), the pricing formula ( 3.6)
for 0 < t ≤ T is given by

EQ(f(ΨT , ZT )|Ft) =
∑

α,z∈{ 0,1} m

∑

h∈{ 0,1} m(m−1)

(−1)
∑m

i=1 αizi

×
m∏

i=1

z1−αi

i (1− Yt(i))
h̃i(α,h)

× 1{ C=h} EQ

(
f(ΨT , z)e

−
∫ T

t

∑m
i=1 h̃i(α,h)λ

i(u,Ψu)du
∣∣∣FΨ

t

)
(3.9)

and for t = 0 the pricing formula becomes

EQ(f(ΨT , ZT )) =
∑

α,z∈{ 0,1} m

∑

h∈{ 0,1} m(m−1)

(−1)
∑m

i=1 αizi

×
m∏

i=1

z1−αi

i Q(C = h) EQ

(
f(ΨT , z)e

−
∫ T

0

∑m
i=1 h̃i(α,h)λ

i(u,Ψu)du
)

(3.10)

whereh̃i(α, h) is as in ( 3.7) withhii := 1 for i = 1, . . . ,m andhij := [h]ij
for i 6= j.

For proof, see [2].

If the contagion matrix is deterministic, i.e. for everyi,j in { 1, . . . ,m} and all
t ≥ 0,

Ct(i, j)(ω) = Ct(i, j) for all ω ∈ Ω,

one has that the filtrationFC
t = { ∅,Ω} for everyt in [0,T]. In this situation, the

pricing formula ( 3.6) becomes:

Corollary 1. Assuming that the contagion matrix is deterministic, the pricing for-
mula ( 3.6) simplifies to

EQ(f(ΨT , ZT )|Ft) =
∑

α,z∈{ 0,1} m

(−1)
∑m

i=1 αizi

m∏

i=1

z1−αi

i (1− Yt(i))
h̃i(α)

× EQ

(
f(ΨT , z)e

−
∫ T

t

∑m
i=1 h̃i(α)λ

i(u,Ψu)du|FΨ
t

)
(3.11)

where

h̃i(α) :=

{
0 if

∑m
j=1 αjCT (i, j) = 0,

1 otherwise .
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The following is an example of the use of formula ( 3.11).

Example:To find the price of a defaultable bond of a firm in groupGi for i = 1, 2,
let there be one bond of one firm inGi at one time. Recall that firms in the same
group have the same default intensity. The short rate was assumed deterministic
and it was set to be 0. The bond has payofff(ΨT , z) = (1− Z

[i]
T ), and one has to

calculate
V

[i]
0 = EQ

(
(1− Z

[i]
T )e−

∫ T

0

∑m
i=1 h̃i(α)λ

i(u,Ψu)du
)
.

Since the macroeconomic process has not been specified yet, one can specify the
default intensityλi(u,Ψu) = λi(u,Bu) = λiu by, for instance the Vasicek model
as was done in section 1.1.2. The number of firms,m, is equal to the total number
of firms in the two groups.

If one is to consider the pricing of a CDS in this setting, one would get that the value
of the pricing formula at timet = 0 for the protection buyer of a defaultable bond
with payoff (1− Z

[i]
T ) would be, if the spread is paid continuously until default,

Buyer V
[i]
0 = s

∫ T

0
EQ

(
(1− Z

[i]
T )e−

∫ u

0

∑m
i=1 h̃i(α)λ

i(s,Ψs)ds
)
du,

and for the protection seller one gets

Seller V
[i]
0 =

∫ T

0
EQ

(
(1− Z

[i]
T −R[i])e−

∫ u

0

∑m
i=1 h̃i(α)λ

i(s,Ψs)ds

×
m∑

i=1

h̃i(α)λ
i(u,Ψu)

)
du.

And to find the fair spread, one equates the expression for the buyer and seller and
solves for the spreads.

By specifying the macroeconomic process as done in section 3.4, the pricingfor-
mula for a long range dependent macroeconomic state variable process is given in
the following theorem.
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Theorem 3. Assume that the contagion matrix C is deterministic and that for all i
in { 1, . . . ,m} the intensities of the self default processesYi = (Yt(i))t≥0 are of
the form

λi(t,ΨH
t ) := βi(t)

∫ t

0
g(s)dBH

s + γi(t) t ≥ 0,

whereβi andγi are continuous functions. g is inHµ([0, T ]) ⊂ LH2 ([0, T ]) with
µ > 1-H and such that 1

g(s) is well defined for all s in [0,T]. Letf(·, z) andψ(·) be

deterministic continuous functions and denote for all z in{ 0, 1} m

fψ(x, z) := f(ψ(x), z), x ∈ R

and
fψα (x, z) := e−αxfψ(x, z), α, x ∈ R,

wherefψ = f ◦ ψ. Assume that there exists some a inR such thatfψa (·, z) and its
Fourier transformf̂ψa (·, z) belong toL1(R) for all z in { 0, 1} m. Finally, letψ be
invertible and set

ΨH
t := ψ(

∫ t

0
g(s)dBH

s ).

Then the price ( 3.11) at time t in [0,T] is given by the following formula

EQ(f(ΨT , ZT )|Ft) =
∑

α,z∈{ 0,1} m

(−1)
∑m

i=1 αizi

m∏

i=1

(
z1−αi

i (1− Yt(i))
h̃i(α)

)
e−

∫ T

t

∑m
i=1 h̃i(α)γ

i(u)du

× e
∫ t

0

∑m
i=1 h̃i(α)β

i(u)
∫ u

0 g(s)dBH
s du

1

2π

∫

R

e
1
2

∫ T

t

∫ t

0 η(s,ξ)η(u,ξ)|u−s|2H−2dsdu

× e
∫ t

0 η(s,ξ)dB
H
s (3.12)

× e

∫ t

0

(
I
−(H−

1
2 )

t−

(
I
−(H−

1
2 )

T−

(
(η(s,ξ)1[t,T ](s))

H−
1
2

)))H−
1
2
dBH

s ˆ
fψα (ξ, z)dξ

where

h̃i(α) :=

{
0 if

∑m
j=1 αjCT (i, j) = 0,

1 otherwise ,

and

η(s, ξ) := g(s)
(
a+ iξ −

∫ T

s

m∑

i=1

h̃i(α)β
i(u)du

)
, s ∈ [0, T ]

and forα = H − 1
2 in (0,12 )

(I−α
t−
η)(s) :=

1

Γ(1− α)

d

ds

(∫ t

s

η(r)(r − s)α−1dr
)

For a proof, see [2], and for more on the Fourier transform in this case, see ap-
pendix A.
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Chapter 4

An extension of the contagion
model in continuous time

This chapter is aiming at an extension of the description of the contagion matrix
introduced in [2]. Instead of having a zero-one model indicating whetherthere is
default contagion or not, one could try to describe the possible default contagion
of firm i as a positive or negative contagion relative to firmj as was done in [3].
The self default of firmj is the indicator variableYt(j) = 1{ τj≤t} , t ≥ 0. The
Yt(j) are assumed to be independent of each other.

The probability space and assumptions are the same as in the continuous time
model which are stated in sections 3.2 and 3.5.

4.1 The contagion model

The default model of firmj in { 1, . . . ,m} is the same used by [2] and is given
by

Dj(t) = Yt(j) + (1− Yt(j))
(
1−

∏

i 6=j
(1−Ct∧τi(i, j)Yt(i))

)
, t ≥ 0, (4.1)

and sinceCt(i, i) ≡ 1 the processDt(j) can be written in a shorter form:

Dt(j) = 1−
m∏

i=1

(1− Ct∧τi(i, j)Yt(i)), t ≥ 0. (4.2)

Let x ≥ 1 be inN. The contagion matrix is now of the form

Ct(i, j) =





1− 1
x

firm i has a negative contagion effect on firmj,
0 firm i has no contagion effect on firmj,
1− x firm i has a positive contagion effect on firmj .
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10-∞

1-y1-z

Figure 4.1: Possible values ofDt(j).

which means that ifx = 1 thenCt(i, j) = 0 for all i 6= j in { 1, . . . ,m} so there
does not exist any economic relations between the different firms in the portfolio
and they are thus all independent of each other. The expression ’negative contagion
effect’ is to be understood as firmi andj were in a cooperative economic relation
and the default of firmi was not good for firmj, whereas ’positive contagion ef-
fect’ means that firmi andj were in a competitive business relation and the default
of firm j was good for firmi.

By looking at the contagion term
∏m
i=1(1 − Ct∧τi(i, j)Yt(i)) whenYt(i) = 1 one

gets that, fori 6= j,

m∏

i=1

(1− Ct(i, j)) =





∏m
i=1

1
xij

= y ∈ (0, 1]

1∏m
i=1 xij = z ∈ [1,∞].

Then the default model expressed in equation ( 4.2 ) gives the following interpre-
tation for alli, j in { 1, . . . ,m} , including the case wheni = j:

Dt(j) = 1−
m∏

i=1

(1− Ct∧τi(i, j)Yt(i))

=





1 self-default of firm j
1− y > 0 ∈ [0, 1) default by contagion for firm j
0 firm j is solvent
1− z < 0 ∈ [−∞, 0] firm j is solvent after contagion

where the last equality follows from firmi having defaulted. So this means that
Dt(j) is taking values in[−∞, 1]. If Dt(j) = (1 − y) > 0 it means that firm
j has defaulted by contagion from the default of firmi, i.e. there has been a
negative contagionwhich was bad for firmj. If Dt(j) = 1 firm j has defaulted
by itself. If Dt(j) = 0 there was no default effect in the portfolio and firmj is
solvent, and ifDt(j) = 1 − z < 0 then the firms were in a competitive eco-
nomic relation and firmj is better off than it was previously, i.e. there has been a
positive contagion. Thus, the closerDt(j) is to−∞, the better it is for firmj as
illustrated in figure 4.1. All in all, ifDt(j) > 0 there is a default in the portfolio
at postitionj and ifDt(j) ≤ 0 firm j in the portfolio is solvent. One could then
describe the processZt(j) given in the continuous time model in chapter 3 by the
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indicator functionZt(j) = 1{ Dt(j)>0} .

4.2 Pricing formula

By considering the case where the contagion matrix C is deterministic, one gets
the following pricing formula:

Theorem 1. Let f : R × Rm −→ R be a bounded measurable function. Let
α = (α1, . . . , αm) be in{ 0, 1} m, dj in [−∞, 1] for eachj in { 1, . . . ,m} . For t
in [0,T]

EQ(f(ΨT , DT )|Ft) =
∑

d∈[−∞,1]m

∑

α∈{ 0,1} m

(−1)
∑

j αj

×
m∏

j=1

m∏

i=1

(
1− CT (i, j) + CT (i, j)(1− Yt(i))

)αj

× EQ

(
f(ΨT , d)(e

−
∫ T

t
λi(u,Ψu)du)αj |FΨ

t

)
.

Proof. By the law of total probability (see appendix A) it follows that

EQ

(
f(ΨT , DT )|Ft

)
= EQ

(
EQ(f(ΨT , DT )|Gt)|Ft

)

= EQ

( ∑

d∈[−∞,1]m

f(ΨT , d) EQ(1{ ~DT=~d} |Gt) |Ft
)
. (4.3)

Equation ( 4.2) becomesDT (j) = 1 − ∏m
i=1(1 − CT (i, j)YT (i)). Starting by

focusing on the inner expectationE(1{ ~DT=~d} |Gt) and looking at

1{ DT (j)=dj} =

{
1 Dj = dj ,
0 otherwise,

for dj in [−∞, 1] for eachj in { 1, . . . ,m} , and putting

1{ DT (j)=dj} = 1− aT (j).

Then

1{ ~DT=~d} =
m∏

j=1

(1− aT (j)) (4.4)

whereaT (j) =
∏m
i=1(1− CT (i, j)YT (i)).

By applying the following identity:

m∏

j=1

(Aj +Bj) =
∑

α∈{ 0,1} m

m∏

j=1

(A
1−αj

j B
αj

j ),
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whereαj ∈ { 0, 1} for j = 1, . . . ,m. Setting00 := 1 the formula also holds if
there exists somej in { 1, . . . ,m} such thatAj = 0 or Bj = 0. Applying this
formula to equation ( 4.4) with

Aj = 1 and Bj = (−aT (j))

one gets that
m∏

j=1

(1− aT (j)) =
∑

α∈{ 0,1} m

m∏

j=1

(−aT (j))αj ,

and the inner conditional expectation in equation ( 4.3) becomes

EQ(1{ ~DT=~d} |Gt) = EQ(
∑

α∈{ 0,1} m

(−1)
∑m

j=1 αj

m∏

j=1

(aT (j))
αj |Gt)

=
∑

α∈{ 0,1} m

(−1)
∑m

j=1 αjEQ

( m∏

j=1

m∏

i=1

(
(1− CT (i, j)YT (i))

)αj |Gt
)
.

Since T≥ t, assumption 2 in section 3.2 holds and

=
∑

α∈{ 0,1} m

(−1)
∑m

j=1 αj

m∏

j=1

m∏

i=1

EQ(
(
(1− CT (i, j)YT (i))

)αj |Gt). (4.5)

Since
EQ(

(
(1− CT (i, j)YT (i))

)αj |Gt)

= EQ(
(
(1− CT (i, j) + CT (i, j)− CT (i, j)YT (i))

)αj |Gt)

=
(
1αj − CT (i, j)

αj + CT (i, j)
αjEQ((1− YT (i))

αj |Gt)
)

is the same asEQ(
(
(1 − CT (i, j)YT (i))

)αj |Gt) for αj = 0, 1, and since the ex-

pression is either 1 forαj = 0 or
(
1 − CT (i, j) + CT (i, j)EQ((1 − YT (i))|Gt)

)

for αj = 1, then theαj can come out. The product of a measurable fuction is still
measurable, so by assumption 3 in section 3.2 one gets that equation ( 4.5) is equal
to the following:

∑

α∈{ 0,1} m

(−1)
∑m

j=1 αj

m∏

j=1

m∏

i=1

(
1−CT (i, j)+CT (i, j)(1−Yt(i))e−

∫ T

t
λi(u,Ψu)du

)αj

.

Returning to the aim, which is equation ( 4.3), one gets that

EQ(f(ΨT , DT )|Ft) = EQ

( ∑

d∈[−∞,1]m

f(ΨT , d) EQ(1{ ~DT=~d} |Gt) |Ft
)
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= EQ

( ∑

d∈[−∞,1]m

∑

α∈{ 0,1} m

(−1)
∑m

j=1 αj

m∏

j=1

m∏

i=1

f(ΨT , d)

×
[
1− CT (i, j) + CT (i, j)(1− Yt(i))e

−
∫ T

t
λi(u,Ψu)du

]αj |Ft
)

=
∑

d∈[−∞,1]m

∑

α∈{ 0,1} m

(−1)
∑m

j=1 αj

m∏

j=1

m∏

i=1

(
1−CT (i, j)+CT (i, j)(1−Yt(i))

)αj

× EQ

(
f(ΨT , d)(e

−
∫ T

t
λi(u,Ψu)du)αj |FΨ

t

)
,

where the last equatlity follows from assumption 1 in section 3.2.

�
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Appendix A

Elements on analysis and
probability theory

Most of the contents in this section is from [9].

Weak Law of Large Numbers
LetX1, . . . , Xn be independent and identically distributed (i.i.d.) with meanE(Xi) =

ξ and varianceσi <∞. Then the averageX = (X1+...+Xn)
n

satisfies

X
P−→ ξ asn→ ∞.

The meaning of ’weak’ is that the convergence is only for then’th element in the
sequence, versus the strong Law of Large Numberes where the convergance is for
the whole sequence.

Linear transformation I
If X ∼ N (µ, σ2), thenY = aX + b ∼ N (aµ+ b, a2σ2) for a and b constants.

Linear transformation II
If X and Y are independent random variables with distributionsX ∼ N (µX , σ

2
X)

andY ∼ N (µY , σ
2
Y ), then the sumX + Y ∼ N (µX + µY, σ2X + σ2Y ).

The Continuity Theorem

If Xn is a sequence of random variables such thatXn
P−→ X and if the functionf

is continuous at X, then

f(Xn)
P−→ f(X) asn→ ∞.
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Central Limit Theorem
LetX1, . . . , Xn be i.i.d. with meanE(Xi) = ξ and varianceσi <∞. Then

√
n(X − ξ)

σ

L−→ N (0, 1) asn→ ∞.

The next definition is the definition of expectation of a random variable.

Expectation
A random variableX : Ω → Rn on the probability space(Ω,F ,P) such that X is
F-measurable hasexpectationE(X) =

∫
ΩX(ω)dP(ω) if

∫
Ω |X(ω)|dP(ω) < ∞.

And for some A inF ,

E(1A) =

∫

Ω
1AdP(ω) =

∫

A

dP(ω) = P(A).

The law of total probability is as follows:

The Law of Total Probability
LetB1, . . . Bm be such that∪mi=1Bi = Ω andBi∩Bj = ∅ for i 6= j with P(Bi) > 0
for all i. Then, for any event A inΩ,

P(A) = P(A ∩ Ω) =
m∑

i=1

P(A ∩Bi) =
m∑

i=1

E(1A∩Bi
) =

m∑

i=1

E(1A1Bi
).

Some more on the Fourier transform which occurs in equation ( 3.12).
Recall that the Fourier transformation of a functionf(x) is the characteristic func-
tion of f(x), i.e. if

∫
R
|f(x)|dx < ∞, thenφX(u) = E(eiuX) =

∫
R
eiuxf(x)dx.

The formulaf(x) = 1
2π

∫
R
e−iuxφ(u)du determines the densityf(x) of a random

variable X.

Fourier transform
For a andx in R and forf ◦ ψ := fψ, define the functionfψa := e−axfψ(x) and

its Fourier transform bŷfψa (ξ) :=
∫
R
e−iξxfψa (x)dx for ξ in R. Assume thatf and

ψ are such that

A := { a ∈ R|fψa (·) ∈ L1(R) and f̂ψa (·) ∈ L1(R)} 6= ∅.

Then the following inversion formula holds:

fψa (x) =
1

2π

∫

R

eiξxf̂ψa (ξ)dξ, x ∈ R.
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Appendix B

Elements on fractional Brownian
motion

Most of the topic regarding the fractional Brownian motion is from [1].

Definition (Fractional Brownian Motion)
Let H be a constant belonging to (0,1). Afractional Brownian motion, fBm, (BH

t )t≥0

of Hurst index H is a continuous centered Gaussian process with covariance func-
tion

E(BH
t , B

H
s ) :=

1

2
(t2H + s2H − |t− s|2H), t, s ∈ R+.

A fBm has the following properties:

• BH
0 = 0 andE(BH

t ) = 0 for all t ≥ 0.

• BH
t+s−BH

t has the same distribution asBH
t for s, t ≥ 0, i.e. the increments

of BH are homogeneous.

• BH is a Gaussian process andE
(
(BH

t )2
)
= t2H , t ≥ 0 for all H in (0,1).

• BH has continuous trajectories.

The covariance between(BH
t+h − BH

t ) and (BH
s+h − BH

s ) with s + h ≤ t and
t− s = nh is

ρH(n) = Cov(BH
t+h −BH

t , B
H
s+h −BH

s ) = E

(
(BH

t+h −BH
t )(BH

s+h −BH
s )

)

= −|t− s|2H +
1

2
|t+ h− s|2H +

1

2
|t− s− h|2H

=
|h|2H
2

(
(n+ 1)2H + (n− 1)2H − 2|n|2H

)
∼ H(2H − 1)n2H−2 , n→ ∞
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and since

lim
n→∞

ρH(n)

H(2H − 1)n2H−2
= 1

thenBH
t exhibitslong-range dependencefor H > 1

2 . Two increments of the form
(BH

t+h−BH
t ) and(BH

t+2h−BH
t+h) are positively correlated forH > 1

2 , negatively
correlated forH < 1

2 and forH = 1
2 the fBm is a standard Brownian motion

which has independent increments.

For a comparison to the standard Brownian motion the following definition and
remark are from [10].

Definition (Standard, one-dimensional Brownian Motion).A one-dimensional
Brownian motionis a continuous, adapted processB = { Bt,Ft; 0 ≤ t < ∞} ,
defined on some probability space(Ω,F ,P) with the properties thatB0 = 0 a.s.
and for0 ≤ s < t, the increment(Bt − Bs) is independent ofFs and is normally
distributed with mean zero and variance(t-s).

Remark: A one-dimensional Brownian motion is a zero mean Gaussian process
with covariance

cov(Bt, Bs) = s ∧ t; s, t ≥ 0.

Some more details regarding the spaceHµ([0, T ]):
If the deterministic functiong is in the Schwartz spaceS([0, T ]), then the norm of
g is

||g||2H :=

∫ T

0

∫ T

0
g(s)g(t)H(2H − 1)|s− t|2H−1dsdt <∞.

If S([0, T ]) is equipped with the inner product

< f, g >:=

∫ T

0

∫ T

0
f(s)g(t)H(2H−1)|s− t|2H−1dsdt <∞ f, g ∈ S([0, T ]),

then the completion ofS([0, T ]) is the separable Hilbert spaceLH2 ([0, T ]). The
space of Hölder continuous functionsHµ([0, T ]) ⊂ LH2 ([0, T ]), µ > 1 − H. In
[2], g ∈ Hµ([0, T ]).
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