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Preface

The aim of my study has been to review models for credit contagion finalizing
the study to the computation of derivative prices. Credit contagion is a faérly
field to be studied. Kusuoka introduced a way to model dependent daefalif98
and Davis and Lo, [4], introduced a model for default contagion in 2@xEedit
contagion is an element of credit risk. Credit risk consists of individisitl ele-
ments, such as default probability and recovery rates, and it consiptatédlio
risk elements like default correlation. There are roughly two approachaedel
credit risk; structural modeling and intensity based modeling. The striichad:
els (also called firm value models) goes back to Merton. In these modedsi|tdef
triggered when the value process (which might be modeled by a standamtye
Brownian motion) of a firm falls below a pre-determined default boundarihe
intensity based models (also known as reduced form models) default ialtypic
described as a jump time of a jump process (for instance a Poisson process)

Default is, as mentioned, an element of credit risk. Modeling credit risk is im-
portaint when it comes to the modeling of derivative pricing, such as thegric
of credit default swaps, (CDS), and collateral debt obligations, (C@ich are
basic protection contracts against default of firms in a portfolio. CDS'GD®s
have been largely talked about during the latest financial crisis sinceygaatb-

ers, credit rating agencies (which evaluate the default probability aéissf debt
securities) failed to adequately account for large risks when rating gredects.
Credit rating agencies, like Moody’s and Credit Suisse, calculate tlaeiddikeli-
hood of firms. To model correlations between the default behavior of flomedit
Suisse uses the correlations in equity values as a replacement for teatons

in the default probabilities (also known as correlations in credit quality)od#ts
uses the 'diversity score’ which is based on the binomial expansion itpehn
where independence between firms is assumed. Moody'’s idea on howttmeca
correlations in a binomial distribution is to make a hypothetical portfolio consisting
of less firms than the original one, and having the hypothetical firms beirgy ind
pendent. Then a default in the 'new’ portfolio would correspond to, Zagfaults

in the original portfolio. Other ways to model default and credit contagiorhimig
be to introduce primary and secondary firms, as in the approach ofJamnab Yu,
referred to in [6]. In the model by Jarrow and Yu the defaults of the pgrfiems

are influenced by macoreconomic conditions (i.e. influenced by the goossstic
product, unemployment rate and inflation rate), but not by the credit fiskum-
terparties. The default of the secondary firm depends on the stattisenffoms,

so it suffices to focus on securities issued by secondary firms. Kasuagproach

to model default dependence, which is also referred to in [6], is basadhange

of probability measure. Kusuoka assumed that the default times wereeaxpon
tially distributed. The probability measure is then changed so that the parameter
of the exponential law belonging to one firm will jump to a pre-determined value
as soon as the default of another firm occurs. Yet another appo#oh one by
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Davis and Lo, [4]. They model default in a portfolio by independentBatii vari-
ables where default can occur due to direct default of a company coriagion.
The model suggested by Biagini, Fuschini and KlUppelberg is based améhiey
Davis and Lo.

My studies of the modeling of credit contagion and pricing of derivativedased

on the papers of Biagini, Fuschini and Kluppelberg [2] and of Hatchettkiihn

[3]. The paper is organized as follows: First | will give a short intrciihn to
contagion and default, as well as a general calculation of derivaticesor In
chapter 2 | will describe the default intensities for the discrete time model as in
[3]. In chapter 3 the continuous time model will be described as in [2]. | will
also compare some elements of the two models. The pricing of derivativesewill b
presented in the two chapters where the model description is taking plaa#ly,Fin

| will present an extention of the continuous time contagion description intehap

4. This extension consists in expanding the economic relationship between fir
from not just being present or absent, but to try to say how much thepftaence
each other economically if they are in an economic relationship. This means that
the extension is trying to describe which type of economic relationship the firms
are in - a competitive or cooperative economic relationship.
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Chapter 1

Introduction

Credit contagion arises when a company is in economic distress or if itltsefau
The default of a company will have implications for any firm that is economically
connected to this given company. The effect of the default, and thudfédut ef

the credit contagion, depends on which economic relation the defaultingazymp
has with other firms. If they were in a cooperative relationship, the defauitd
have a negative effect on the firms that are connected to the defaultimgacy.

For instance, if a company goes bankrupt, it will have a negative effettte credit
situation of its service provider or on its bank connection. On the other, ifahdy
were in a competitive economic relation, the default would have a positieeteff
on the firms that are connected to the defaulting company. For example,&f ther
is a default within a business section, the number of orders might increateef
surviving firms.

One of the main worries when investing in a portfolio consisting of defaultable
bonds is to not recieve the promised payment at the date of maturity, and this may
occur if a bond defaults. If one bond defaults, there might be the rislefafudt
contagion resulting in several defaults within the portfolio. Hence, the ldkbav

even larger. This is one of the reasons why one is interested in credthtggon.

1.1 Intensity based default

Default in an intensity based model is specified in terms of a jump proces#)@and
jump occurs at time which is typically modeled as a jump time of a jump process.
What drives contagion are the default intensities of the firms within the piortfo
The default probability is the probability that the obligor or counterparty vaH d
fault on its contractual obligations to repay its debt, [5]. Denote the rartdoe

of default by : O — R™ which is defined on a probability spac@, 7, P). 7 is
assumed to be unbounded and non-negative FlLet (F;):>o. Further, consider
the filtrationG = (G;):>0, Where, for any, G; is some giverr-algebra which con-
tains all the null sets aF; and is right-continuous on the given probability space
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with 7, C G;.

1.1.1 Definitions regarding default

Default in an intensity based model is regarded as a stopping time with réspect
a given filtration, and one has to consider the two different cases ahcows or
discrete time. Starting with the definition for a discrete time model.

Definition (Stopping time in discrete time) An F-stopping time o2, 7, P) is a
random variable : Q@ — N U { oo} suchthaf w € Q: 7(w) = n} isinF, for
all nin N.

The definition of the default time for a continuous time model is as follows:

Definition (Stopping time in continuous time) An F-stopping time or((2, 7, P)
is a random variable : Q — [0,00] suchtha{ w € Q : 7(w) < t} isin F; for
all tin [O,T].

Let F be the cumulative distribution function of thenF'(t) = P(7 < t) for ev-
eryt in R* is the default probability, and — F(¢) = P(r > t) is the survival
probability. If P(7 € (0,00)) > 0 the stopping time is non-trivial. The following
definition is from [6].

Definition (Hazard and intensity function) An increasing function
I': RT — R* given by the formula

I(t):= —In(1 — F(t)) foralltin R,

is called thehazard functionof . If the cumulative distribution functio’ is
absolutely continuous with respect to the Lebesgue measure - that is Fivhes
fot f(u)du, for a Lebesgue integrable functign R* — R, then

F(t)=1—eTW =1 — ¢~ Jor(du

wherey(t) = f(t)(1 — F(t))~!. The functiony is called thentensity functior(or
thehazard raté of the random time-.

By assuming tha#'(t) < 1, the hazard functiod’; is well defined for anyt in
R* since the functiory is positive and the cumulative distribution function also is
positive, the intensity functiofy is non-negative.

In order to give some examples of the different types of default intensiineshas

to define some processes. Remember that a counting pfddéestefined through
an increasing sequendeTy, 71, ...} of random variables, or random times, in
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[0,0¢]. The proces is called non-explosive ifim,, T;,, = +oc almost surely. Re-
call as well that a random variable X with outcome8, 1,2, ...} is Poisson dis-
tributed with parameteX in (0, o), written X ~ Po()), if P(X = z) = 3¢~
where0! = 1. The following definitions are from [7].

Definition (Poisson Processh Poisson process aG-adapted non-explosive count-
ing processN with deterministic intensity\ > 0 such thatf(f Asds is finite dt-
almost everywhere for ail with the property that, for all ands > ¢, conditional

on G, the random variableN, — N;) ~ Po( [, Audu).

The filtration(G;):>0 has been fixed in advance for the purpose of the definitions.
Alternatively, fors > t, one can say, since the increméit, — NV, ) is independent

of theo-field o (N, : u < 1), thatIP((Ns N = k\gt) - ]P’((Ns N = k) -
()\(Sk;'t))kef)\(sft).

Definition (Doubly Stochastic Processl.et N be aG-adapted non-explosive count-
ing process with intensityy > 0. N is doubly stochasticdriven byF, if A is [F-
predictable and if, for alt ands > ¢, conditional on the filtratio; Vv Fs,

(Ns — Ni) ~ Po([ Mw,u))du. A doubly stochastic process is also called a
Cox process

The intuition behind a doubly stochastic counting process iskhabntains enough
information to uncover the default intensity, but not information to uncover the
jump times of the counting process.

1.1.2 Some examples of default intensities

This thesis is not considering structural modeling, but just to have it megtione
In the basic Merton model of default,happens when the value of the firm at the
time of maturity, T, falls below the face value of the bond. Thus, default is only
possible at T. And in the model of Black and Caxjs modeled as a first pas-
sage time in which default happens when the value process of the firtresete
level of its debt for the first time. In these kinds of models default is economic
motivated. In the intensity based models defaults happen when an intensty bas
process makes a jump. One can mention three types of default intensitistarten

, deterministic- and stochastic default intensities.

In the three following cases, letbe exponentially distributed with intensity pa-
rameterh andr := inf{t > 0: N; = 1} , wherelV; is a Poisson process. This
means that the time of default can be seen as the time of the first jufkip of

In a model where the default intensity is constant, the default probability is
P(r < t) = 1 — e . The intensity function isy(t) = A for all ¢ in R* and it
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is constant for alk. A Poisson process with constant intensity> 0 is called a
time-homogeneous Poisson process.

If one has a deterministic default intensity, thah ~ Po(fot Aydu). The de-

fault probability would beP(r < t) = 1 — e~ Jo *«d¥_ The intensity function is
~v(t) = A(t) and it varies with the time. A Poisson process with deterministic
intensity A > 0 is called a time-inhomogeneous Poisson process.

When one has the case of stochastic default intenaifyis a doubly stochastic
process which is Poisson distributed with paramégek(w, u)du. The parameter

of the exponential distribution i&(w, ), andr is a G-stopping time. Both the
intensity and the stopping time are stochastic, and this is why a Cox process is
sometimes called a doubly stochastic Poisson process. The generdlilinob&
default would be, fot < s,

Pt <7 <s|G)=E(l—-e" I7 A(w,u)du‘gt)'
And for ¢t = 0, the default probability becomes
P(r <s)=E(l—e" I A(w,U)du).

The expectations are und@r In these two cases the intensity functiony(s) =

Aw, s). The two expressions can be evaluated by the same means as in calculating
the price of a default free zero coupon bond (a contract paying miheficurrency

at the time of maturity), by letting; be the short term interest ratg, and solve

the stochastic differential equation by, for instance, the Vasicek or CléRiaoAs

an illustration one can consider the short term interest rate to be the ingansan
spot rate and the bank account to grow at each time instana rate of;. One

can look, for example, @ahe fundamental pricing formujdound in [12]:

The price of an attainable contingent claim with pay&if at timeT" > ¢ is given
by

— ffT rsds
Vi =Eqg(e™ /¢ Hr|F) (1.1)

where the risk neutral measug@e~ P is assumed to exist. Before moving on with
the calculations, one can recall the meaning of an attainable claim:

A contingent claims anFr-measurable random variable Fiia(Q). The contin-
gent claim F isattainableon the given market model if there exists an admissible
portfolio Z such that the value process of the portfolio at time T/ﬁT) =F
wherey = V#(0). The portfolio Z isadmissibleif it is self-financing and lower
boundedV,” > —K, K> 0 for all t P-almost surely. Bgelf-financingone means
thatdV,? = Z; - dX; whereX(4) is the price of security at timet, and the value
process has to be integrable.
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Moving on with the calculations of equation ( 1.1), let the short ratee the the
intensity function\; andH; = 1 as the face value of the zero coupon bond. By ap-
plying the Vasicek model, the dynamicsXxfis given by the stochastic differential
equation

d)\t = Cl(b — At)dt + O'dBt (12)
where a,b and are positive constants. (The CIR model is similar to the expres-
sion in equation ( 1.2), but where the tewiB; = o/\:dB;). B; is a standard
one-dimensional Brownian motion generatiAg Note thatF coinsides with the
filtration generated by,. By letting X; = —(b — \;) one gets that ( 1.2) can be
written as

dXt = —aXtdt + O'dBt
Xo=X—b

which is an Ohrnstein-Uhlenbeck process, and it is an affine prodash weans
that it is Markovian and that there exists an explicit expression for ( 1IThe

Ornstein-Uhlenbeck process is solved by applying Ité’s formula with iatéy

factore®, so

d(Xe™) = ae™ Xdt + ™ (—aX; + odBy)

and by integrating from to ¢ and dividing by the integrating factor one gets
t
X, = Xgeolt=s) 4 e_at/ oce™dB,, s<t.
By substitutingX; = — (b — \;), the answer to equation ( 1.2) is

t
Ao = Age=t=9) o p(1 — e=alt=9)y | o / eat-vgp,  (13)

The process\; is Gaussian. By looking at(\:|Fs) and Var(A\Fs), one finds
that

At ~ N()\Se—“(t‘s) Fb(1 — emalt=9) (1 — 6—2““—8))). By looking at
lim;,~ E(\:) = b, one can regartlas a long term average intensity.

The dynamics fon\; is underP. In order to use the pricing formula given in equa-
tion (1.1), one has to find the dynamics for the intensityinder the measur@.
By Girsanov Theorem (theorem 8.6.6 in [13]) one gets Bat= B; + [ qds,

whereq is in R andq = M Notice thatg depends ort through )¢, but
Vasicek assumed that the instantaneous spot rate (which isf)amder the mea-
surelP evolves as an Ornstein-Uhlenbeck process with constant coefficiBgts.
the given choice of it is also assumed that the coefficients are constant ugider
as well. The dynamics in equation ( 1.2) becomes
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d\t = a(b— \)dt + odB; underP
dr = a(b — Z4)dt — aldt + od B, underQ.
a

The last equality could be stated@slt + odB;, but in this case leth — %‘7) =b.
ThenX, = )\, — b implies that
dX, = —aX,dt + odB;. (1.4)

This is an Ornstein-Uhlenbeck process under the med3aewell, so it is Gaus-
sian with continuous paths. Féf;r = 1, the pricing formula given in equation
(1.1) can be written as

V, = Eg (e* Ir /\sds|ft> K (5 JT Xoth ds|ft>

- ftTB dsEQ (6_ ftT )st5|]_-t>. (1_5)
Since the coefficients in the Ornstein-Uhlenbeck equation are time-indepiend
one can write

Eq (a I Xsdsyft) — F(T —t,X,) (1.6)

wherefF is the function defined by’ (0, z) = Eg(e™ Iy X3ds) and X is the unique
solution of equation ( 1.4) satisfyin§¢ = . In this caser = Ao — b and Xz will

just be writtenX,. Recall that the Laplace transformation of a random variable,
foruin R, isE(e"X) = [, e*"Px(dz). The expectation is calculated by Laplace
transformation of a Gaussian random varibale:

The expectation becomes, where the first equality is due to Fubini’s,
0 0 ~
Eq / X.ds) = / Eg(As — b)ds
0 0

0 s
= / Eg(Aoe %) 4+ b(1 — e ) 4 ¢ / e 4B, — b)ds
0 0

Ao — b

a

= ( )(1— e ). (1.7)

To calculatel/ arg( f09 X ,ds) one starts out with writing the variance as the covari-
ance. Recall that for two random variables X and Y with expectatigrand 11y,
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respectively, the covariance is definedas)(X,Y) = E((X —px)(Y — /Ly)).

Then
0 0 ro B 5
Var@(/ Xsds):/ / Cov(Xy, Xy)du dt
0 0 JO

6 ro
= / / (1 sy + 1gp<uy )Cov( Xy, Xy )du dt. (1.8)
0 JoO

Looking at the expression for the covariance without the integrals atidgx; =
A+ — b and by using the expression given in equation ( 1.3) sfer0, one gets

Cov(Xy, X,) =

~ t ~ ~ ~
Eg ((Aoe*at +bh(l—e ™) +o / e 7948, —b— (Aoe ™ +b(1—e ) — b))
0

t
x (Aoe ™ +b(1—e ™) +o / e =) dB, —b— (Age ™ +b(1 —e W) — b)))

0

t u

:EQ((ae_“t/ e“sdBS)(Je_““/ e“sdBS)>
0 0
tAu
O_Qe—a(t—u)/ €205 Js
0

2a(tAu) _
02€—a(t—u) (6 1) )
2a

Inserting this answer into equation ( 1.8), one is left with calculating

Qa(t/\u) _
/ / 2 —at u 1)dudt
2a

(/ e—at au+2at e—at audt)d
2@ 0 0

o2 0 t
4+ (/ e—at—au+2at _ e—at—audu) dt
0

2a 0
%0 o2 a o? a
:?—ﬁ(l—e 0)_ﬁ(1_6 9)2. (19)

Finally, by putting together the expressions for the expectation in equatiof) ( 1
and the variance in equation ( 1.9), and by using equation ( 1.6), one getheh
pricing formula in equation ( 1.5) becomes:
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capl —HT — 1)~ (P2 0)(1 — T 0))
1/0%(T—t) o2 —a(T—t) o? —a(T—t)\2
ceap{ 5 (g — (=) - gt -
which is more frequently expressed as
P(t,T) = e~ (T=ORT=tA) (1.10)

which is the affine structure mentioned previously, and Wi&fE — ¢, \;) is given
by

~ 02 ~ 02 0'2
RO = (b~ o) = (b= oy = N1 =) = T (1= P2).

a? af 2a2

If the model for)\; is under the measui® historical data should be used to estimate
the drift and volatility. If the model is under the measupe the risk adjusted
drift and volatility can only be inferred from existing prices. One dravidaicthe
Vasicek model is ibh = )¢, then the dynamics becona@; = odB; and one has

a random walk. The Brownian component can take positive and negaiives,

so the intensity\; might be negative, and default intensities are supposed to be
positive . In the CIR model the default intenstiy will not become negativetimu
process is not Gaussian and explicit formulae are more difficult to come by.
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Chapter 2

Contagion model in discrete time

The paper of Hatchett and Kiihn, [3], describes credit contagion iscaede time
framework. They are using probability theory to express their findings.r&sults

are based on the use of the Law of Large Numbers and the Central Lindtdrhe

In order to use the Law of Large Numbers and the Central Limit Theorem the
random variables (the firms) has to be independent and identically disttjlzutd

the number of firmsm, has to tend to infinity. The firms and their enviroment
within the portfolio are assumed to be fairly homogeneous, so the firms are thus
assumed to be similar to each other or of the same type. The only possible states
for the firms are solvent or defaulted. They describe the default psdtg:)

by a discrete time Markov chain where the probability of default of firm a

given time step depends on the state of its economic partners at the begifining o
that given time period, as well as on the macroeconomic interference. The time
period[0,7] = { 0,1,...,7} describes a one year range. It is assumed that
the defaulting state is absorbing and that there is one single macroeconotuic fa
which is constant over the time period of one year. Hatchett and Kihn did no
consider pricing in their paper, so in section 2.4 there will be given sonra@ra

of pricing by using their default intensity.

2.1 The framework

Let the number of firmsn — oco. Foriin { 1,2,...,m} the default process of
the portfolio is denoted by/,(¢) for ¢ = 0,...,7 and is described by a binary
indicator variable, meaning

Z,(i) = 0 firmiis solvent at time,
=1 1 firmi has defaulted at timeby itself.
The default process is a Markov chain and it evolves accordingly:
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{ Z1(i) = Zu(@) + (1 = Ze(4) 1 wy(iy<oy » 2.1)

Zo(i) = 0

The Z,(i) are functions of the wealth, which is stochastic. It is assumed that a firm
defaults when its wealth falls below zero. The wealth procBs$;), is the value
of the total wealth of firm at timet and it is given by

{ Wt(l) 191'—2?1:1 Cth(j) —Ut(i) t= 1,2,...,T

Wo(i) = 0; > 0 (2:2)

The constanty; is the initial wealth of firmi at timet = 0. Note that the initial
wealthy); does not depend on time, so the model does not say anything about how
firm 4 is making or loosing money in each time epoch. By letting the wealth pro-
cessV;(i) depend ort and not ort + 1, i.e. notW,; (i), means that the possible
effect of credit contagion does not happen immediately. This means truefdngt
process can have its first default state&Zati). If the wealth process was depend-

ing ont + 1, i.e. Wi41(i), then any default contagion effect would influence the
portfolio default process immediately.

The matrixC;; describes the credit contagion relation of firrandj, so for firm
i#jin{1l,...,m} onehas

C;; >0 firmiandjin a cooperative economic relation
C;; =0 firmiand jindependent
Ci; <0 firmiandjinacompetitive economic relation.

The case’;; = 0. If companyj defaults and”;; > 0 it means that the two firms
had a cooperative credit relation, and the defaujteduld contribute to a decrease
in the wealth of firmi. If C;; < 0, thenj andi had a competitive relation ariéf; (:)
would increase due to the default of firmThe case’;; = 0 means that the firms
are not in an economic relation at all. Further description of the contagionigr
will be given in section 2.2.

The fluctuating forces disturbing the wealth process of a company givesuetion
(2.2) is the random variablg (i) ~ N(0,07), and it is decomposed into a term
describing individual fluctuations (for instance, extremely productiwpleyees
or defect production equipments) and another term describing the ncaaaraic
factor, which is one dimensional. In other words,

18



m (i) = ai(y/pino + /1 — pi&e(i)). (2.3)

Here,o; is a scaling parameter. The random varial§l¢s ~ N(0, 1) are indepen-
dent and they describe the individual fluctuations of ficmhe macroeconomic
factor is described by, ~ N(0, 1), but it is assumed to be constant over the time
horizon of one year in this model. The informationpfis known at timet = 0,

S0 is treated as a known constant element of the model.

In choosing the correlations af(i) andn,(j), Hatchett and Kiihn followed the
prescription given by BASEL Il (which are recomondations on bankimgland
regulations) which sets

pi = 0.12(1 + e 50FDi), (2.4)

whereP D; is the probability of self default of firmover one year, ignoring credit
contagion effects. (More oR D; is found in section 2.3.)

2.2 The contagion model

The contagion quantitie§’;; which describe the loss or gain of firncaused by
the default of firmj are given by

Co C %]),

Cij = Cjj <7 + % i (2.5)

where the random variables; ~ AN (0, 1) are assumed to be pairwise indepen-
dent. Thec;; are randomly fixed in the sence that the way to assign the value of
ci; is according to a random generator. Tdeare fixed numbers that are either O
or 1, and they describe the absence or presence of a businesstammbetween
firm ¢ andj. Thec;; has a probability distribution given by

C

&
P(Cij S { 0, 1} ) = Eécij(l) + (1 - E)écm (0)7 Cij = Cjis
where the;; isin { 0,1} and

. 1 ,Cijzl
6Cij(1) _{ 0 ,Cij =0.

The quantit),(%+%:xij) ~ N(%, %2) by linear transformation (see appendix A).

It gives the size of the contagion strength and the size is not symmetric. difnis ¢
be understood by the following example, which is from [8]: Let there be on
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small supplier with one large company taking the majority of its orders. If the
larger company defaults then the small supplier may default as well. HowEver
the small supplier defaults then the larger company is less likely to suffer tdrmina
distress. The numberis the average number of connections that a firm has, and
the connections are symmetric, i.e;; = cj;. They also satisfy transitivity, i.e.
cinchj < c;j Or even some bigger loop. The value ¢ is assumed to be large.

It it assumed that,; (i), Zj CiiZi(5) and&, (i) (appearing in equation ( 2.3)) are
uncorrelated. The parameter§ andC determine the mean and variance(qf,
which means that i€, > 0 the firms are not independent on average. For future
calculations, one needs the distribution of

(2 + Jmm) 7). (2.6)
j=1

The numbere;; in { 0,1} is known in advance. Th% + % are numbers as
well, so the only randomness in the expression in ( 2.6) is figmwhich are
Gaussian with finite moments, and frafi(j). Through equation ( 2.1) one sees
that theZ, (i) are correlated, but Hatchett and Kilhn argue thatil{¢) are suffi-
ciently weakly correlated for the limit theorems to be applied. The contributions to
Z}”Zl Ci; Z4(j) are sufficiently weakly correlated because:

There are two ways that the neighbor firmsi @fan be correlated through the dy-
namics. Either through firm or through some other loop, i.e. one can hayg
andC;; so firmh and; are correlated through firmor one can have',, andCy;

so firmh andj are not correlated through firin However, as long a&;(:) = 0,
Zi(h) andZ,(j) can not influence each other through fitnBut whenZ, (i) = 1,
the correlation firmi induces omh andj are irrelevant for its own dynamics, i.e.
for the dynamics of firmi.

By assumption, both the average connectivityvhich was assumed to be large,
and the number of firms: — oo, andc¢/m — 0 with ¢ = O(log(m)), which
means that goes more slowly tao thanm does. The variables% + %xij)

are independent and identically distributed (i.i.d.). The default proceskiisaay
indicator variable taking the value 0 or 1. To find the distribution of the sum in
(2.6), exploit the fact tha(t% + %xij) andZ,(j) are independent. Hatchett and
Kihn treats the sum in ( 2.6) as a sum of Gaussian variables. This is saethfo
way the find the distributin of the sum.

icij <% + \%%‘)Zt(j) = icz'jc;ozt(j) + i%’ (\%fﬂz‘j)zt(j)-

j=1 7j=1
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They apply the Law of Large Numbers (appendix A) to the first sum, amjus
C=Cpy — OO

m

Yz L GEzG).

j=1

This is only valid if theZ,(j) are i.i.d., and if sd&(Z;(j)) = E(Z,(1)). Since

z;; ~ N(0,1), the expectation of the second part in the sum is zero. By using

thatVar(X) = E(X?) — (E(X))? for a random variableX, and the Continuity

Theorem (appendix A), sing&(u) = u? is a continuous function, then
i(c--(cx-)Z 1)) CVar(ei; (7))
: ij \ﬁ ij | 4t\J ij 4t\]

Jj=1

asc = ¢,;, — oo. Again, the variables have to i.i.d. If so, th€RV ar(c;; Z:(j)) =
C%(E(Z,(1)))2. Then they use the Central Limit Theorem to find the asymptotic
distribution of the sum in ( 2.6) and finds that

S (L+ Lo) ) L NGB (), CHEZW))?).
oo e Ve

Alternatively, one could argue that tt®(j) are random variables taking the value

0 or 1 where the randomness comes from the underlying stochastic wealth pr

cessW,(j) which is Gaussian, thus thg,(;j) are Gaussian as well. They are

independent of;;. The expectation of each element in the sum becomes, due to

independence,

E(Cij<co ¢ )Zt(j)) = TE(Cz’thU)),

- + %xij
and the variance
C C . C? )
Var(cgj (% + %l'ij)zt(]» = TVC”"(Cith(]))'

Use linear transformation on the Gaussian sum and obtain that the distribfition o
the sumin ( 2.6)
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icij (@ + giﬁz’j)Zt(j) ~ N<@ iE(Cith(j))a Cj 3 VGT(Cz’th(j))-

- c “
j=1 j=1
(2.7)

Let this be the distribution for the sum for future calculations.

2.3 The default intensities

The description of the default model is as seen from a structural poiwfsince
default happens when the wealth procB§$:) < 0. The starting point in an inten-
sity based model is the modeling of the intensity process. The basic idea laehind
intensity based model is that there are two states, solvent or defaultedttiBy le
Z(1) be the state at timeof firm i and \;(¢) the transition intensity from solvent
to default, then the transition intensity is interpreted as the probabilig gbing
from solvent to default in a short time interval.

Starting out with the very general case first, the variap(e) is now assumed to
be standard normal. In order to find the default intensity in this model forghe v
general case, one has to look at

P(Ze() = 1|20) = 0.3 Cz) = B(Lwgnenr = 1|30 Ci()

Jj=1 Jj=1

= P(Wt(i) < O‘ iC’ith(j)) = P(nt(i) > — i Cith(j)‘ i@j%(ﬁ)
j=1 J=1

i=1

— Dy — ;) . (2.8)

y=>_7L, Ci; Z¢(5)

The function®(.) denotes the cumulative distribution function of the standard nor-
mal density. This is then the general default intensityZgfi) where default can
occure due to both self default or default by contagion X€i) = ®(y — ;).

One can interpret the variablésandC;; in terms of the default probabilities. Let
the default probability without contagion of firnibe denoted by;, sop; is the self
default probability and 7", Ci; Z:(j) = 0. Then

pi =P(Wi(i) < 0| Y Ci; Zi(j) = 0) = () (2.9)
j=1
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and the initial wealth of firmi can be expressed as = —®!(p;). With p;
as the monthly default probability, thehD; in equation ( 2.3) is approximately
120(—1;).

On the other hand, the expected default of firgiven that only one firm, sayhas
defaulted would be

pi\j = P(Wt(i) < 0|Cith(j) = 1) = @(CZ — ’191)
This leads to the following expression of the contagion term:
™ (pyy;) = Cij + 27 (1)
=
Cij = @ Hpiy) + @' (pi)-

By moving on to the less general case where one uses the expressip(i fas

given in equation ( 2.3), sg:(i) = oi(\/pino + /1 — pi&(i)), one can start de-
scribing the default intensities in the cases of independent firms and fiposex
to credit contagion.

2.3.1 Independent default intensity

The following default models are for one time epoch, i.e.tfior [t,t+1]. The first
focus is on the case where the firms are independégnt= 0 for all i andj, so firm
i is thus not in an economic relation with any other fimrs.

P(Zus1 (i) = 1Z(i) = 0, Cij Zu(j) = 0)
j=1

=P(1{ wy)<op =1 Z CijZy(j) = 0)
=

= P(Wi(i) < 0] > CijZu(j) = 0) = P(d; — mi(i) < 0] > _ Ci; Zi(j) = 0)

Jj=1 Jj=1

=1-P(oi(v/pino + /1 = pi&(i)) < 9| Y Ci; Zu(§) = 0).

j=1
By using thatr; = 1 andry is constant over a risk horizon of a year, the expression
becomes

1—P(\/1 = pi&u(i) < 0 = /pimol D Ci Ze(j) = 0)
j=1
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VPino — Vi
= @(7m )- (2.10)

This is thus thalefault probability without contagion effect

2.3.2 Contagion default intensity

Moving on to the other case whetg; # 0 for all i andj, one gets

P(Zy41(i) = 1]Z4(3) —OZCth = P(W, <0|Zc”zt ) #0)

=P — Y Cyi Zi(5) — oi(/pimo + /1 = pi(i)) < 0> Ci Zi(5) # 0)
j=1

=1

Where again, by using that = 1 andry is constant over a risk horizon of a year,
the expression becomes

%.(Ciu%xij) Zo(i)—/T = pitali) < —Ii++/inol ;cijzt(ﬁ #0).

(2.11)
By linear transformation one gets, sing@& — p;&: (i) ~ N(0,1 — p;), that

J=1

m
ZQ]( \/—xz])Zt +vV1—=p; t

J=1

is normally distributed with meaﬁ;Q > i1 E(cijZ4(4)) and variance

1 —pi+ %QZ;.”:I Var(ci;Z:(j)). Returning to equation ( 2.11), one gets by
standardizing

Z Cij ( \[l‘z]> Zt \/ ngt < —1; +\/E770| Z Cz] Zt 7£ O)

7j=1

_ q,(W) (2.12)

V1—pi+b

C . 2 .
a==L 3 B(eij Ze(4))b="% 27, Var(cij Ze(5))

which is thedefault probability with contagion effeof firm i.

24



2.3.3 The default number

Hatchett and Kihn introduce the fraction of defaulted firms and use theofaw
Large Numbers in their result. This means that#éj) must be i.i.d. for the re-
sults hold. They present the fraction of defaulted firms andhiis- = > i1 Zi()-
Assume thaE(Z;(j)) = ¢ and thatVar(Z:(j)) < oo. By the Law of Large Num-
bers, asn — oo,

m

mi=— 3" Zi(5) > E(Z())):

j=1

The dynamics of the fraction of defaulted firms;, can be found by looking at
equation ( 2.1). Then one gets that

m

M = sz = =S (206) + (0 - 20wy )

J=1

1 & _
=Mt m Z_:(l N Zt(]))l{ V=201, CjiZe(i) =05 (\/Pimo++/1-p;j&(5))<0} (2.13)

Leto; = 1 and exploit thatZ,(j), & (j) and) ;" | Cj; Z,(i) are uncorrelated. By
applying the Law of Large Numbers, as — oo, one gets that

1 m
ng (1—-Z()1 { 0,3 CjiZe(i)— (3mo++/1—p;&:(5)) <0}
=

P .
— B = ZG)EQ s 002000~ (ypmmot o Trie) ><0}‘Zcﬂzt 1)

= E(1-Z(j)P(9; ZC],Zt — Ao — /1= pilj <0|Zcﬂzt)

=E(1 —Zt(j))q’(a j—/%%)

a=0 S B(ei; Z4(i) =2 | Var(cji Ze(i)

If the Z,(j) are not identically distributed, but independent, one could still find out
how the expected number of defaults evolves. Generally, by using eq&i8)
one gets

m

1
E(mt+1) = E(mt) + E E 1E(1 - Zt(.])) (y 19 ‘{ Y= Z C]ZZt( )}
ji=
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To find the distribution ofn;, notice thatm; is a monotone increasing function of
the macroeconomic facteg ~ N (0,1), som; = my(no) and one gets that the
cumulative density function, cdf, of the fraction of defaulted firms is

P(mi(no) < m) = ®(m; 'm) (2.14)

The density function is found by differentiating the cdf, i.€®(m; 'm))’ =
¢(n-)(5i:)'. Hatchett and Kihn found that the evolution of the fraction of de-
faulted firms when considering credit contagion hardly differed frontse when
there were only independent firms in the portfolio. However, when thekelbat
the probability density function of the fraction of defaulted firms they fourad th
the tail of the distribution was fatter when one included credit contagion. henw
(Co, C) = (1,1) the tail was fatter then whey, C') = (0, 0).

2.4 Pricing
Hatchett and Kihn did not consider pricing in their paper, but they didegnte

the default probabilities which are to be interpreted as the default intendities.
default intensity in the general case was found to be

P(Zsy1(i) = 1|Z4(i) = 0, Zcmzt P(W, (i <0\chzt )
7j=1

= Z Cii Z4(j Z Cij Z4(j

— 1— ) < 19— . ; . ) — _9.
1=P(n; (i) < ¥ ;%Yt(y)l ;%Zt(y)) O (y—1) =S Coz)
On the underlying stochastic bagi®, G, Q,F) with F = (F;)i>0,F: C G, the
risk-neutral measur® ~ P is assumed given. The-algebraF; contains the
market information up to time. The macroeconomic factey is Fyo-measurable
and it is not a trivialr-algebra. One can define a random time, or the default time,
by

=inf{t>0:Zi)=1}.

Foriin{1,...,m},t=0,1,...,Tonehagj, = F; Vo(r; <u:u<t),and

Gt 2 Fr 2 Fo 2 o(no). Recall that the information afy is know att = 0, so it
is treated as a known constant that does not change during the time plettdsl o
model. Note that; areG-stopping times.
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Define the counting process (Poisson process) by

. 1 If Tigt
Nt(”_{o if 7>t

which means that the event of a stopping time occurs in time as a Poissongproces
with intensity A; > 0. The survival probability of the Poisson process is

P(7; > t) = P(no jumps until } = P(N;(i) = 0) = e~ ~ Exp(\;).

Thus, by substituting,; for the intensity presented by Hatchett and Kiihn, one gets
thatr; ~ 5%])((13(2] CUZt(]) — 192))

Assume that the stochastic interest ratés bounded and continuous. The time
price of a defaultable zero coupon bonod firm ¢ with maturity T is given by the
following formula:

Vi(i) = Eg (e_ L PO \gt). (2.15)

Equation ( 2.15) is, by the tower property of conditional expectationslequ

Eq(Eg(e™ /" ™1 1omy (67) 1G1) = Bg(e™ /" Eq(1( rory |07) 11)

_ EQ (6_ ftT(TSJ’_)\S(i))dS|gt>'

And if r; and\4(7) are independent, then the expression becomes

Vili) = B (e~ I 701G, g (¢ I 205 G,

Moving on and looking at the price of a claim when the default intensitieg@e s

ified as in sections 2.3.1 and 2.3.2, and starting with the case in which the default
probability is without contagion effect. Recall that the default intensity of fir

not being exposed to default contagio@i@\/%_m) as given in equation ( 2.10).

pi

Let r, and the default intensities be independent. By substitutifig) with
@(%Zi’%) one obtains that the price of a defaultable zero coupon bond at time
in{0,1,...,T} issued by firmj, where the issuer is not in an economic relation
with other firms, would amount to calculate
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pays contingent payment

Protection sellef Referance asset Protection buyer

pays spread, s

Figure 2.1: Credit Default Swap

s \/WWO 94
Vi) = Bo(e VTR g, (2.16)

K (e_ r Tsds‘.Ft>EQ (ei e

VPing =95
:e e V1-p; I(T- t) Q(G_ftTTst|ft)

(\/E"O*.ﬂi )dS
Vimes ’770)-

where the last equality follows from the assumption thas known and constant.

The default mtensﬂy@(‘@"oip19 ) is constant for the given firm Since the short

rate is stochastic the price in equation ( 2.16) would be, if one uses the Kasice
model as described in section 1.1.2

_ (rﬁ() 94 )(Tft)

Vi(i) = Vi

whereP(t,T) is given in equation ( 1.10).

P(t,T), (2.17)

Another element of credit risk is the recovery rate, R, which says howhroiic
the face value of the bond that can be recovered if the obligor defadltsnel
includes a stochastic and independent recovery Raterhich is paid at maturity

T, then the payoff for a defaultable zero coupon bon(éds 5 ’"Sdsl{ n>T) +

Rie™ I ’"Sdsl{ 7<T} ), and the price given in equation ( 2.15) will then be

Vi(i) = Eq (67 I A1 sy + Rie” I [l PR !Qt)
=Eq (67 JErsds(1e oy + Ri(l— Ly oy ))|gt>
= Eq <€_ Jirsds (R, 4 (1~ Ri)1{ 751y )\Qt)
~Eg (e_ s rstRi\gt) +Eg (e_ JErsds(1 = R oy )ygt)

=Eq (Rie_ I rsds|gt> + EQ((l ~ R)e” ftT(rs+)\5(i))ds’gt)

and with the default intensities inserted, the price will be

— (LRI Yy (g
N R = ) )EQ<(1—Ri)e_ftT“ds]gt>. (2.18)
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A credit default swap, CDS, is a protection contract against defaalfiofn where

the protection buyer pays periodic payments to the protection seller who in turn
pays a one-off contingent payment if default occurs before maturitheobond
(referance asset) issued by companyThe periodic payments to the protection
seller continues until either default or maturiysJf< 7', assume that the protection
seller has to pay the protection buy@r— R;), called loss given default and is
the loss in percentage in case of default. The protection buyer has tofpaga
amounts, called spread, set at the time of evaluation such that the contract is fair.
The payment dates for the spread are- ty < t; < ... < t, = T which are
assumed to be equally spaced and no accured interest rate is paid.a¢ttired
interes rate is paid then an extra term is added to the value of the claim of the
seller). Then the value at time< ¢; for jin { 0,1,...,n} of the claim regarding

firm ¢ of the protection buyer is

yBuver (i) E@( Ze [ B1L ) |gt)

and by equation ( 2.15) the above price becomes

iy =B 3o F g

:sim(efff@ww@rf*;%wwgt)

n q>\ﬁno

— 5 Z e Ni=n pz (- t)EQ (e_ f:j rsds|]_-t) (2.19)

where the last equality follows from the default intensity of firbeing constant. If
the Vasicek model is used, then the expression in equation ( 2.19) couldttew
as

f"o Yivig.
VB (; sZe PO b ), (2.20)

For the protection seller one gets that the value of the claim isRf@onstant,
VSeller( ) EQ( - [ i rsds(l — Rz)l{ t<m<T} ]Qt)
= (1- R)Eg (e_ft sy, oy |gt>. (2.21)
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Sincee~ Ji" 745 js bounded and continuous, and the default intensity is continuous,
corollary 5.1.3 in [6] gives that equation ( 2.21) becomes

pino — Vi JE (/=i g
(1= R)B(IR Iy PO
MWO*ﬂi)d

T U — ufb S
XEQ(/t e Ji rsdse Jo *C R du!]-})

ino — Ui H(VPin0_Yi
:<1_Ri)®(%)1{ e v
T —CD 7\/71.7]0_191. u u
></ e "V By (e S| F ) du, (2.22)
t

If one was using the Vasicek model to calculate the expectation, then equation
(2.22) would be

o — U4 & (VP Vi
VS ) = (1= Ry ERE iy MOV
T 7(1)(\/977707"92' ”
x/ e Vi=ei TUP(t u)du. (2.23)
t

The contract values are set to be zero at initiation of the contract, soentortind
the fair spreads, one equates the two expressions, & "V (i) = V, ¢er(4)
and solves fos.

If the issuer of the defaultable claim is in an economic relation with other firms,

then the default intensity @(%) ap = >t E(eijZi(j5)) and

by = %2 Z;"zl Var(c;jZ(j)) as given in equation ( 2.12). The price of a default-
able zero coupon bond at timgwhere firmi is in an economic relation with other
firms and the short rate is independent of the default intensity, is

_ftT(Ts+<I>(“S+l\/i\/il%’7$b_s’9i))ds|gt>

Vi(i) = Eq (e (2.24)

ftT P ( astyPimo—Yi ) 4

= Eq (e 7 Bq ¢ ) 1G:)-

When the firms are in an economic relation with each otger, the default intensities
are deterministic sincg = % > o1 E(eijZi(4)) andb, = o > ey Var(eii Zi(j5))

are numbers that change in time. So with deterministic default intensities that in-
cludes the contagion effect, the price in equation ( 2.17) would be
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— ftT i) ( as++/Ping—Y; d

Vi(i) = e ) "P(t,T).

If the stochastic recovery rate is included, one would get that equati@8) &ould
be

T (TP 9; i)ds

Eg (Rie_ ftTrsds‘gt) Te V1—pi+bs Q<(1 — Ri)e™ I Tsds‘gt>.

When the default intensities include the contagion term, the price of a CDS would
be, for equation ( 2.20)

“s+\/ﬂ7i0 9 )d

Buyer sZe Sl Vi-pitbs sP(t,tj).

And for the protection seller equation ( 2.23) would be

(a3+\/ﬂno ﬁl)ds
V@) = (1= R)1 g ¢ "V
T _[ru as+/Pino—"Y; d A _19
X/ o W AT g Gt VPT0 — Vi by
t Vl_pi+bu

2.5 Remarks

The portfolio default process is a binary indicator variable taking the salund
1, so it can be understood as Bernoulli random variables

Z,(i) = 1 with probability p;
= 0 with probability 1 — p;,

The self default probability; = ®(—;), is as found in equation ( 2.9). This
means that theZ,(i) are not identically distributed. They might be independent
by the argument given by Hatchett and Kihn in section 2.2. Sinc&th¢ are

not i.i.d., the Law of Large Numbers and the Central Limit Theorem can not be
applied to find the asymptotic distribution of the sum in expression ( 2.6), and the
dynamics of the fraction of defaulted firms can not converge in probability.
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In general, there is no clear description of default caused by badrpeifce of

firm 7 itself and default caused by contagion from fifrim this model. In the model
presented by Hatchett and Kihn, a firm defaults if its wealth falls below asim

the wealth is the difference of the assets and liabilities of firmhis means that
firm ¢ defaults if it has more liabilities than it has assets. If one wants to introduce
a model that distinguishes between self default and default by contagéocowld
proceed as follows:

Let the wealth of firmi be denoted/;(i) and let

{ Vi(i) =9 —m(i) t=1,...,T
Vo(i) =9 >0

whered; andn, (i) are given as in [3]. Then introduce a self default procéé$s)
given by

1 self default of firmi

Yi(i) = L viy<ty = { 0 firm i solvent

wherel; < 0 is the admissible level of liabilities. Let the portfolio default process
be, fort =0,...,T

{ Zuw () = Zu(@) + (1 = Z0)) (Y1 G) = (14 Yerr )1 wer <o )
Zo(i) = 0.

The wealth process is dependingtanl now, which means that the model captures
default immediately. The portfolio default process is still 1 if fitrhas defaulted,
and 0 otherwise. ThE, (i) are independent, but not identically distributed, but they
are driven by some Gaussian noice. The probability of default in thegliortbr
firms that are not in an economic relation with other firms is

P(Zt41(i) = 1‘Zt(i) =0)

= IP’<Yt+1(i) + (1 =Y ) (y<oy = 1Ye(D) = 0,1 wyy(iy<oy = 0)

bi — i + \/pino

==,

).

The default probability for firmi being in an economic relation with other firms is
the same as in the model suggested by Hatchett and Kiihn, i.e.
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P(Zi11(i) = 1| Z4(i) = 0)
= IP’<Yt+1(i) + (1= Yer ) wipy<0p = 1Y2(0) = 0, 1wy ()<0y = 1)

- @<a+1\/—p7;0+_bﬁi>

C . 2 A
‘1:70 E;’Ll E(CintJrl(J))»b:cT Z;nzl Var(ci;Yi+1(5))
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Chapter 3

Contagion model in continuous
time

Biagini, Fuschini and Kluppelberg, [2], present a contagion model imigoous
time which is based on [4]. They chose to let the default intensities depend
on a long range dependent process describing the macroeconomichiachuise
macroeconomic factors tend show a long range dependence effect.tifesdis-
crete time model, a default in the portfolio can be caused by either self default
default by contagion. Opposite to [3], their paper is considering the gricfn
defaultable derivatives, where the derivatives depend on the ntacromic pro-
cess and are exposed to default contagion. Biagini, Fuschini and élligrg are
able to give explicit pricing formulas for derivatives. It is assumed thaptimary
assets on the market (a primary asset in banking might be the bank'seeser
loans) are not driven by a long range dependent process. Botthesaiflt and de-
fault by contagion happen instantaneously and the defaulting state idaigsor

3.1 The default model

There are only two states for the firms in the portfolio: defaulted or solveet. L
a portfolio consist ofn firms, where each firm is indexed byn { 1,2,...,m} .
Theportfolio default processs taking the value$ 0, 1} ™ and is described by

Zy = (Z(1),..., Z(m)), t>0,

where each random componéfit(i) describes if firmi has defaulted or not by
timet, meaning that

Z,(i) = 0 firmiis solvent at time,
BV 1 firmi has defaulted at time.
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Since one is interested in credit contagion, one has to distinguish betwieent de
in the portfolio which is caused by the firm itself or by contagion from the wlefa
of other firms. Theself default indicator processvhich is a random vector taking
the valued 0,1} ™, is described by

th:(n(l)v"-vn(m))v t>0,

where eact;(j) is given by

Yi(j) = 0 firm jis solvent at time,
)71 firm j has defaulted at timeby itself.

Denote byr; = 7j(w) the default time of firmj for j in { 1,2,...,m} . Then
Yi(j) = 1{r,<¢y » t = 0. The random variablé&;(j) generates the natural filtra-

tion denoted}f(” = o(Yy(y) : u < t). The self default processes are assumed
to be independent.

In [2], the suggested modeling of credit contagion in continuous time is thraug
contagion matrix indicator proces3he matrixC; is in R™>*"™ and its coefficients
indicate if there is contagion between the firms or not. This means that ifi firm
defaults, therC(7, j) will determine if there was any infection from firio firm

j attimet. For any timet > 0, the coefficients in the matrix are described by

Cy(i, j) = 0 no infection of default,
1= if default of firmi causes firnj to default at time.

This way of describing contagion differs from the one in the discrete time mode

In the discrete time model, the entries in the contagion matrix can be both positive
and negative, but in the continuous time model the entries are either 0 ottie In
discrete time model the contagion is more of an average contagion between the
firms that may be in a competitive or cooperative economic relationship, wherea
in the continuous time model the default contagion is not divided into 'good’ an
'bad’ contagion. The contagion is a pure default contagion fromifiorfirm j, and

no other firms can get firmback in business. In the discrete time model there is
no clear description of the self default process as it is in the continuous tirdelmo

The contagion matrix process generates the fiItraﬁgﬁ = 0(Cyu(i,j) 1 u<t)
foreveryi,jin{1,...,m} ,i # j. One can express the portfolio default indicator
process of firnj as

Z(3) = Vi) + (=) (1 - [[0 = Cunnii¥a@), ¢z 0. 3.)
G

35



Since firmj obviously is influencing itselfC;(j, j) = 1, the portfolio default pro-
cess can be written in a shorter form;

Zy(j) =1— H(l — Cinr, (1, )Yi(4)), t>0. (3.2)

=1

Defaults in the portfolio are caused by fluctuations in the macroeconomia,facto
and defaults happen at, and the stopping time; has an intensity\’ which is
driven by an underlying stochastic proceis= (¥,);>o with values inR? rep-
resenting the evolution of the macroeconomy.generates the filtratiosF,’ =
o(¥, :u <t). ¥ will be described in details later in section 3.4.

3.2 The probability space and assumptions

The system is described by the procggs, Y3, C;):>0 on the complete probability
space(f), F,P), whereF; := FY v 7Y v FF. The larger filtratiorG; := F¥ v

FY v FE contains information about the whole path (@f,);>o. All filtrations
are assumed to be right-continuous &dugmented. It is aslo assumed that the
investors have knowledge abo{f;);>o, that the investors know the contagion
structure and if a firm has defaulted or not. Further assumptions are

1. ¥is not affected by Y and Z, meaning that for every boun@gdmeasurable
random variable), E(n|F;) = E(n|FY),t > 0.

2. The processe&;(i)):>0 and (Cy(7, j))i>o are conditionally orthogonal of
the filtration (G;)+>0, meaning that for every iy,...,ix} C {1,...,m}
and for every choice dfay, 51), ..., (az, 5;) in
{(G,j)e{1,...,m}?i #j} onegetsthatforall; >¢,j=1,...,kand
sp>t,n=1,...,1

(ﬁHfYt ZJ ( sn(anaﬁn)ﬂgf,)

j=1n=1

—HE( (¥, (i) FEVE, “)HE( Co, (0t )| F v FCenin)

forf,g: {0,1} - Randi,jin{1,....,m},i#j.

3. The self default proces¥;(i)):>o is a doubly stochastic process with re-
spect to the filtrationFY, v FY)i>0. The stochastic intensity @t (7)):>o
is denoted\!(¢, ;) for ' : R? — R*. This means that

E(1 - Ya(i)|Gy) = (1 — V(i)™ O X (mtdu g > ¢,
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4. The contagion processés; (i, 7)):>o for i # j areF.-conditionally time-
inhomogeneous Markov chains, i.e. for every functfon{ 0,1} — R,

E(£(Coli MIFLV F W) = B(F(CLli,)IFL Y 0(Culi,7))) 5 = ¢

5. Forallijin{1,...,m},: # j, and stated,kin { 0,1} , the conditional
transition probabilities are denoted by

PRk h) = B(Cy(iv j) = RIFL V o(Culiv j) = F))

and the proces@” (k, h)),cg+ is assumed to be continuous for everip
R*,i,jin{1,...,m} andkhin{0,1}.

3.3 Contagion classes

By assuming that the matrix Ctisne-independergnddeterministicone can divide
them firms in the portfolio into fixedcontagion classesFirms belonging to the
same contagion class need to satisfy the following:

1. Reflexivity:C(i,i) =1foralliin{1,...,m}.
2. Symmetry:C(i,j) = C(j,¢) foralli,jin{1,...,m}.
3. Transitivity: C'(i, h)C(h, j) < C(i,j) forallijhin{1,...,m}.

The contagion classes are disjoint and denoted by

[i]:={j7€{1,...,m}|C(i,j) =1}

where it is assumed that the portfolio consists 6f m contagion class€s; |, . . ., [ix].

The contagion classes might represent local markets. There can twvab bidfer-

ent contagion classes defaulting at the same time, otherwise the two classes wo
actually be the same. Since the matrix C now is assumed to be time-independent
and deterministic the portfolio default process in equation ( 3.1) becomes

Zu(j) = i) + (1= i) (1 - [T = C€G.3)Ya@)) ).
i#j
One sees that,(j) = 1if Y;(j) = 1andZ,(j) = 1 — [[,,;(1 — C(i, j)Ya(d)) if
Y:(j) = 0. The contagion pavél—H#j(l —C(i,j)i@(i))) = 1 and gives default
in the portfolio in positiory if there exists someésuch that”' (s, j)Y;(i) = 1. This
means that there must be at least aria [j] in order to have a default in the

portfolio in position;. On the other hand, i(l — L1 - C’(i,j)Yt(z’))) =0
thenC(i, j)Y:(i) = 0 for all 7. In order forC(i, j)Y:(i) = 0, eitherY;(i) = 0 or
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Y:(i) = 1andC(i,j) = C(4,4) = 0, by the symmetry assumption. This means
thatY;(:) = 0 for all j in [i], and one gets that

Zi(i) =0 = Zi(7) =0 foralljin[i,

which means that either all firms in the same contagion class have defaulted or th
all firms are solvent. According to Biagini, Fuschini and Klippelberg thisnfo

of classification of the firms makes their modeling different from usualitrist
contagion modeling since usual modeling would increase the default heizaitd

the other firms in the same class when a default in that class occured. All firms
belonging to the same contagion clggave a default intensity given by

A =S N ).
j€li]
Since the contagion matrix is assumed to be time-independent and deterministic,
the default intensities of the portfolio default procegs;):>o, are as the default
intensities of the self default indicator procé€3%(;)):>o. The different contagion
classes are independent.

In the discrete time model all the firms and their enviroments were assumed to
be fairly homogeneous, but they could not be put in the type of conta¢peseas
described above since the contagion matrix is not symmetric. In the discrete time
model the contagion matrix is deterministic and thewhich describes if there
exists a connection between the firirend; is symmetric and transient.

3.3.1 The default number

Like in the discrete time model, one can find the average number of defauftesd fir
within the portfolio. In the continuous time model, the default number process is
linked to the contagion classes. All the firms in the portfolio are split ikom
homogeneous groups, denoted@®y, .. . , G;, where each group contains all the
firms that have the same default intensity. The groups might representitms
identical credit rating (the probability of the issuer being able to pay its debt) o
firms belonging to the same industry. Fom { 1,...,l} , G}, can be written as
the disjoint union of contagion classes, i.e.

Sh
Gp = U k]
k=1
wheresy, is the number of contagion classes that gréijpconsists of. Then the
weighted average number of defaults within gragpis given by

my(h) = i( 3 th) T Zt(i)) (3.3)

h
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wheren! is the cardinality of the contagion clagg] foriin { 1,...,s,} and

my = (my(1),...,my(l)). Since the contagion classes are conditionally indepen-
dent of the filtratiorG;, by assumption in section 3.2, the summands of the process
m, are conditionally independent as well.

Recall that there can not be simultaneous defaults of contagion claskais fims
within a contagion class default at the same time. By following the reasoning of th

proof of Lemma 3.4 in [11] one gets that, fom { 1, ...,{}, the counting process
(m4) >0 Will jump from a stateu in R! with . = (uq,...,u) = ((2—1, e g—;) :

v €{0,...,8,} ) to a state of the form + z—}h if and only if the next defaulting

firm belongs to grougy,. Thee;, is theh-th element in the standard basisR/
The uy, increases only in steps 9515 The transition intensity ofn,(h) from the
stateu into the state; + ¢ is given by

A (o il) = sn(1 = un) A7 (t, 1)
h

where\@» (¢, 1) is the default intensity of every firm belonging to groGy, i.e.
the default intensiyt of7;,, andu,, is the proportion of firms that have defaulted in
groupGy, at timet.

The following example is ment to illustrate the contagion matrix and group struc-
ture.

Example:Let there be two groups7;,: = 1,2, with 3 firms in one group and
4 firms in the other group. Let the contagion matrix be deterministic. Then the
contagion matrix is as follows:

C— < C3x3 C3xa )
Ciaxsz Cuxa

Let I; be the identity matrix ifR¢, 04, be the zero matrix and ldt,,; be the
matrix with only entries 1. Then one can consider the two following contagion

cases:
13«3 O3x4 ) < 13x3 O3x4 >
Cl = Cy =
! <04><3 1yxa 2 l1axs Iyxs

The interpretation of the case @ is that there is default contagion between the
3 firms in group 1, as well as it is contagion between the 4 firms in group 2. The
zero matrices tells that there is no default contagin fidmand over toG, and

no contagion the other way around either. The matkxmodels contagion within

G1, no default contagion frond/; to G2, default contagin from group 2 over to
group 1 and no contagion within group 2. If the matlix = 115412 there is
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default contagion between all the 12 firms, and the ¢ase I, means that there
is no default contagion between the firms. To explain the contagion efféoein
case ofC, a little bit more in detail, assume that the firms in gratipare called
a1, as andag, and the firms inG; are calledby, bo, b3 andbs. Thenlsy,z means
that C¢(a;,a;) = 1 for all 4,5 = 1,2,3. I4x4 means thatCy(b;,b;) = 1 for
alli = 1,2,3,4. The case wher®sy, tells thatCy(a;,b;) = 0 for all ¢, j, and
14x3 means thaC;(b;, a;) = 1 for all 7, j as well as it has to include self default,
Cy(bi, b;) = 1.

3.4 The macroeconomic process

The macroeconomic proce¥sis chosen to be modeled as a one dimensional frac-
tional Brownian motionfBm, with Hurst indexd > % (See appendix B). Since
the process is one dimensional it might be seen to represent a weightedhaean
vector of macroeconomic variables. TiBmwas chosen to represent the macroe-
conomic factors (such as supply and demand, unemploymentrate and inflation
since these factors often show a long range dependence.fBméga long range
time dependent process, it is not Markovian. The macroeconomic vaisagilen

by

t
(ZLES w(/o g(s)dBH), te0,T], (3.4)

where is an invertible continuous function, and g is a deterministic function in
HH([0,T]) (see appendix B for more) such th;}%% is defined for allsin [0, T].
Sinceg is a deterministic function the integral in equation ( 3.4) can be understood
in a pathwise Riemann-Stieltjes sense by using the formula for integrationtsy par
(See page 124 in[1].)

Biagini, Fuschini and Kluppelberg restricted themself to the case wherallfb
in{1,...,m} the default intensities of the self default proces3g$:)):>o are
stochastic and of the form

N =50 [ gedB w0, teT) @9
0
wheres! and~* are continuous functions.

The modeling choice of both [2] and [3] when it comes to the macroeconoimic pr
cess is thus a zero mean Gaussian process. The disturbing element talie we
process in equation ( 2.3) is decomposed into one term handling the macroeco
nomic factor and another term describing the individual fluctuations disithe
wealth of a firm, whereas in the continuous time model only the macroeconomic
factor is described explicitly. One big difference in the two models studied is re
garding the macroeconomic factor. In the discrete case, the macroecdaotarc
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is constant over the time horizon of one year, but in the continuous model it is a
stochastic process representing a mean of macroeconomic variablepatioe-
conomic process in the continuous time model is a fractional Brownina motion,
so it is not a Markovian process. If the macroeconomic variable in theedéscr
time model was not constant, it would be Gaussian and thus a (standavd)iBmno
motion as well as it would be Markovian.

3.5 The price of credit derivatives

The prices of derivatives are influenced by the contagion matrix C anthdy
macroeconomic factob. Before presenting the pricing formulas, there are some
assumptions that need to be stated:

1. Theinformation that the investor has at timegiven byF;, i.e. the investor
knows the processeb, the self default process Y and the contagion matrix
C up to timet.

2. The default free interest rate is deterministic, and it is set equal to 0.

3. Therisk neutral pricing measugeexists and is known such that the price at
timet of any Fr-measurable claim7 in L; (€2, Q) is given byEq(Lr|F;) =
Lifor0<t<T.

It is not assumed that the pricing measure necessarily is unique. Withagpehe
cific expression of the macroeconomic procesas given in equation ( 3.4), Bi-
agini, Fuschini and Kluppelberg formulated the following pricing formula \whic

is given without any restrictions on the matrix C, i.e. the matrix is stochastic and
depends on time:

41



Theorem 1. Let f : R x R™ — R be a bounded measurable function. Let
a=(a1,...,am), = (P1...,0m)andz = (z1,...,2y,) bein{ 0,1} ™ and
™ k@) bein{0,1} ™ fori=1,...,m. Sethy; = ky := 1fori=1,...,m,
hij = [h)]; andk;; := [k@)]; for i # 4. Then for tin [0,T]

Bo(f(¥r,Zr)lF) = 3 (~nFmes [[57

a,B,2€{ 0,1} ™ j=1

m

< TT((@)a @)= (1 = (@)™ ) Eq(f(r, =) [[ur()*|7" ), (36)

i=1 i=1
with

ar(i) = Yo Yian—o Lot _pon
hde{ 0,1} m—1

bir(i) = Z 1{ c =k}
h(z’)’k(i)e{ 0’1} m—1

< / N(u, Wy )em IO, (60, hO)du
T

+1, ,;i(a’h)o}/t N(u, W, )e Jr ’\(S"I’S)dspt,u(k(z)’h(l))du)

where

- 0 if S, ajhij =0
, — 7=1""7""1 )
hi(a, h) : { 1 otherwise . 3.7)

andpy -, (K@, h) := [T, pil. (D], [1)];) denotes the joint transition prob-

abilities of the random vectc@'ﬁf) from time t to timer;.

For proof, see [2].

If one assumes atime-independent contagion matrix which might be random, mea
ing that

Ci(i,7) = Cu(i,j), t>0, (3.8)
where theC,, (i, j) are given by i.i.d. random variables which are independent of
the processes Y anél. Then the filtration
Fi = FY Vv F vo(C)fort>0. Again, without specifying the macroeconomic
process the general pricing formula becomes as in the following theorem:
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Theorem 2. If the contagion matrix is of the form ( 3.8), the pricing formula ( 3.6)
for0<t < Tis given by

EQ(JCOI/TvZT)‘]:t) = Z Z (_1)2211 ;2

a,z€{ 0,1} ™ he{ 0,1} m(m—1)

m

x [T - vig)hen

=1
(0, 2pe I S ¥ Gt

X 1{ C’:h} EQ fg) (39)

and for t = 0 the pricing formula becomes

Eo(f(¥r, Zr) = Y. T (e

a,z€{ 0,1} ™ pe{ 0,1} m(m=1)

X zz-l_o‘iQ(C =h) Eqg (f(\IfT, z)e” Jo T ﬁi(a’h)’\i("’q]“)du> (3.10)
i=1

whereh;(a, h) is as in (3.7) withh;; := 1fori=1, ..., m andh,; := [h];
fori #j.
For proof, see [2].

If the contagion matrix is deterministic, i.e. for evearyin { 1,...,m} and all
t >0,

Ci(i,5)(w) = Cy(i,5) forall we Q,
one has that the filtratio¥" = { §,Q} for everyt in [0,T]. In this situation, the
pricing formula ( 3.6) becomes:

Corollary 1. Assuming that the contagion matrix is deterministic, the pricing for-
mula ( 3.6) simplifies to

Eo(f(Wr Zr)lF) = Y. (~)ERes [ - vi(i) ™
a,z€{ 0,1} ™ =1
T —m i
X Eq(f(Wr, e 1 D Nty £ ) (3.11)
where

) — 0 if ZT:I aJCT(Z>]) :Oa
hi() _{ 1 otherwise .
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The following is an example of the use of formula ( 3.11).

Example:To find the price of a defaultable bond of a firm in gratipfori = 1, 2,

let there be one bond of one firm @, at one time. Recall that firms in the same
group have the same default intensity. The short rate was assumed disiitmin
and it was set to be 0. The bond has paydf¥r, z) = (1 — Zq[f]), and one has to

calculate ' ' . o
V) = Eg((1 - Zfhe o Tl Rl (upuan)

Since the macroeconomic process has not been specified yet, oneecidp s
default intensity\‘(u, ¥,,) = X(u, B,) = A, by, for instance the Vasicek model
as was done in section 1.1.2. The number of firmsis equal to the total number
of firms in the two groups.

If one is to consider the pricing of a CDS in this setting, one would get thattiue v

of the pricing formula at time = 0 for the protection buyer of a defaultable bond
with payoff (1 — Zq[f}) would be, if the spread is paid continuously until default,

; T ; u m i
Buyer V! = s / EQ((l — ZMye Jo S il (Sv‘l’s)d5>du,
0

and for the protection seller one gets
; T ; . u m - i
Seller V! = / Eg ((1 — 7zl — Rl Jo" Sy ha(e) ' (s, W) ds
0

X Z hi() N (u, \I/u)) du.
i=1

And to find the fair spread, one equates the expression for the buyesetiar and
solves for the spread

By specifying the macroeconomic process as done in section 3.4, the dadcing

mula for a long range dependent macroeconomic state variable procéssisng
the following theorem.
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Theorem 3. Assume that the contagion matrix C is deterministic and that for all i
in{1,...,m} the intensities of the self default proces$gs= (Y;(7)):>o are of

the form
t

N = B0 [ gdBl (0 120,

wherej3? and~* are continuous functions. g is iH* ([0, T]) ¢ L ([0, 7)) with

w1 > 1-H and such thatg(l—s) is well defined for all s in [0, T]. Lef(+, z) and(-) be

deterministic continuous functions and denote forall £ in1} ™

fY(x,2) = f(i(z),2), z€R

and
f;f’(ac, z) = e_o‘wf‘b(x, z), «,x€R,

wheref¥ = f o 1. Assume that there exists some &isuch thatfgf(~, z) and its
Fourier transformfY (-, z) belong toL1 (R) for all zin { 0,1} ™. Finally, lets be
invertible and set

t
v = ol [ g(s)aBd),
Then the price ( 3.11) at time tin [0,T] is given by the following formula

Eo(f(¥r, Zr)|F:) =

S pEEes I (20 - vy() @) ) e IR e

a,ze{ 0,1} ™ i=1

o I Bi(@)B ) [ g(s)dBE du 1 / o3 I J5 n(sm(w8)lu—s|*H ~2dsdu
R

27
w elon(sdBH (3.12)
1
o b (e=hH( YW\ 2 g
» efo (It— <IT_ ((77( )L 1)(s)) 7))) dB; fg({,z)dﬁ

where 5 )

- 0 if Y7, a;Cr(i,j) =0

. — Jj=1"J ) ’

hi(e) : { 1 otherwise ,
and

T _m )
05, i=g(s) (a+ i€~ [ YR wdu), s € 0.7
s =1
and fora = H — 1in (0,3)

(=" n)(s) := F(ll—oz)c;i ( /: n(r)(r - s)o‘*ldr>

For a proof, see [2], and for more on the Fourier transform in this, cese ap-
pendix A.
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Chapter 4

An extension of the contagion
model in continuous time

This chapter is aiming at an extension of the description of the contagion matrix
introduced in [2]. Instead of having a zero-one model indicating wheliese is
default contagion or not, one could try to describe the possible defautgion

of firm ¢ as a positive or negative contagion relative to fifms was done in [3].
The self default of firmy is the indicator variablé’(j) = 1( < , ¢t > 0. The
Yi(j) are assumed to be independent of each other.

The probability space and assumptions are the same as in the continuous time
model which are stated in sections 3.2 and 3.5.

4.1 The contagion model

The default model of firny in { 1,...,m} is the same used by [2] and is given
by
D;(t) = i) + (1 = ¥i(G) (1= [[( = Conn (iY@, £20, (4.1)
i)

and since”;(i,4) = 1 the proces®,(j) can be written in a shorter form:

Di(j) = 1= [[(1 = Cinrs (i, HYa(3)), >0, (4.2)
=1
Letz > 1 be inN. The contagion matrix is now of the form
— % firm i has a negative contagion effect on fiym
Ci(i,j) =14 0 firm i has no contagion effect on firm
1 — 2 firmi has a positive contagion effect on fijm
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Figure 4.1: Possible values 6f;(j).

which means that it: = 1 thenC;(i,j) = 0foralli # jin{1,...,m} sothere
does not exist any economic relations between the different firms in tlti@lpor
and they are thus all independent of each other. The expressi@tireegontagion
effect’ is to be understood as firfrandj were in a cooperative economic relation
and the default of firmi was not good for firmj, whereas ’'positive contagion ef-
fect’ means that firm and; were in a competitive business relation and the default
of firm j was good for firm.

By looking at the contagion terfi[\" , (1 — Ciar, (4, 7)Y2(7)) whenY; (i) = 1 one
gets that, for # j,

m [Tz =y €(0,1]

[[a-ci) =14 1

i=1 [[iZ zij =2 €[1,00].
Then the default model expressed in equation ( 4.2 ) gives the followingiete
tation for allé, jin { 1,...,m} , including the case when= j:

m

Dy(j) =1- H(l — Ciar, (4,7)Yi())

i=1

1 self-default of firm j
) 1—-y>0 €]0,1) default by contagion for firm j
)10 firm j is solvent

1—2<0 €[-00,0] firmjis solvent after contagion

where the last equality follows from firmhaving defaulted. So this means that
Dy(j) is taking values if—oo,1]. If D.(j) = (1 —y) > 0 it means that firm

j has defaulted by contagion from the default of fiimi.e. there has been a
negative contagiomvhich was bad for firmj. If D.(j) = 1 firm j has defaulted
by itself. If D;(j) = 0 there was no default effect in the portfolio and fignis
solvent, and ifD;(j) = 1 — z < 0 then the firms were in a competitive eco-
nomic relation and firny is better off than it was previously, i.e. there has been a
positive contagion Thus, the closeD;(j) is to —oo, the better it is for firmj as
illustrated in figure 4.1. Allin all, ifD.(j) > 0 there is a default in the portfolio
at postitionj and if D;(j) < 0 firm j in the portfolio is solvent. One could then
describe the proces4 (j) given in the continuous time model in chapter 3 by the
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indicator functionZ,(j) = 14 p,(j)>oy -

4.2 Pricing formula

By considering the case where the contagion matrix C is deterministic, one gets
the following pricing formula:

Theorem 1. Let f : R x R™ — R be a bounded measurable function. Let
a=(o,...,o,)bein{ 0,1} ™, d; in [—oo,1] foreachj in { 1,...,m} . Fort

in [0,T]
Eo(f(¥r, Dr)|F) = ) Yo (1)

de€l—o0,1]™ acf{ 0,1} ™
<TITL (1 - Crtid) + Crli i - viti))) ™
j=li=1
< Eq( f(Wr, d)(e I Nwteyes 70

Proof. By the law of total probability (see appendix A) it follows that

Eq(f(¥r, Dr)|F) = Eq(Eq(f(r, Dr)|G)\F:)

—Eo( Y S(Wr.d) Boll; p,_g 19) |F). (4.3)

de[—oo,1]m

Equation ( 4.2) becomeBr(j) = 1 — [[;*,(1 — Cr(4,7)Y7(i)). Starting by
focusing on the inner expectatldﬂﬂ{ Dr—d} ]Qt ) and looking at

1 D;=d;,
L Dr()=d;) :{ 0 otherwise
for d; in [—oo, 1] foreachj in { 1,...,m} , and putting

L pr(j)=a,3 =1 —ar(j)-
Then

m

L pegy = [ —ar(5) (4.4)

j=1
wherear(j) = 172, (1 — Cr(i,5)Yr(4)).

By applying the following identity:

m

[T +8y=" > J[@; B,
j=1

a€{ 0,1} m j=1
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wherea; € { 0,1} forj = 1,...,m. Setting0® := 1 the formula also holds if
there exists somgin { 1,...,m} such thatd; = 0 or B; = 0. Applying this
formula to equation ( 4.4) with

Aj=1 and B; = (—ar(j))

one gets that

Hl—a”»: S arGy™,

ae{ 0,1} ™ j=1
and the inner conditional expectation in equation ( 4.3) becomes

m

Bo(ly p,_gy 19) =Ea( Y (~1)==% [[(ar(i)*|G)

ac{ 0,1} m j=1

= (1)29”—16‘3'E@(ﬁﬁ(<1cTu,j)YT(z')))“ﬂgt)-

ae{ 0,1} ™ Jj=li=1
Since T> t, assumption 2 in section 3.2 holds and
— Y o [T el - Crtiayen)Ig). @8
ac{ 0,1} ™ j=1li=1
Since o
Eo(((1 - Crli.j)Yr(@) ' 19)
= Eo(((1 = Cr(i,4) + Cri,5) - Crli, )Yr(@) " 19)
= (1% = Cr(i, ) + Cri, ) Eg((1 - Yr(i))1G:))

is the same aE@(<(1 - CT(i,j)YT(z')))aj\gt) for a; = 0,1, and since the ex-

pression is either 1 for; = 0 or (1 — Cr(i,5) + Cr(4, j)Eg((1 — YT(z’))|gt))

for o; = 1, then then; can come out. The product of a measurable fuction is still
measurable, so by assumption 3 in section 3.2 one gets that equation ( 4U8lis eq
to the following:

S =R [T (1-Crli ) +0r G5 (1-Yiiy)e KX i)™

ac{ 0,1} ™ j=1i=1

Returning to the aim, which is equation ( 4.3), one gets that

Eq(f(¥r, Dr)\F) =Bg( > f(¥r.d) Bl 5,z 16) 1F)
de[—o0,1]™
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:E@( > > u=meI[IIswra

d€[—o0,1]™ aef{ 0,1} ™ j=li=1
% [1=Crli ) + Crli, (1 = Vi I ¥ v0i]™ | 7)

= > > =R (-0t i+ Crt, ) -Yi@) ™

de[—o0,1]™ ac{ 0,1} ™ j=1i=1
x B (f(r,d)(e” I X rdnes 7l

where the last equatlity follows from assumption 1 in section 3.2.

0
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Appendix A

Elements on analysis and
probability theory

Most of the contents in this section is from [9].

Weak Law of Large Numbers
Let X1, ..., X, beindependent and identically distributed (i.i.d.) with médiX;) =
¢ and variance; < co. Then the averag& = K1t=+Xn)  gatisfies

n

~ P
X — ¢ asn— .

The meaning of 'weak’ is that the convergence is only forritie element in the
sequence, versus the strong Law of Large Numberes where thergange is for
the whole sequence.

Linear transformation |
If X ~N(u,0?),thenY =aX + b~ N(au+ b,a%0?) for aand b constants.

Linear transformation Il
If X and Y are independent random variables with distributighs- N (ux, 0%)
andY ~ N (uy,o?), thenthe sunX + Y ~ N (ux + pY, 0% + o).

The Continuity Theorem

If X,, is a sequence of random variables such m,ati X and if the functiorf
is continuous at X, then

(X)) 5 f(X)  asn — .
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Central Limit Theorem
Let Xi,..., X, beiid. withmean®(X;) = ¢ and variance; < co. Then

\/ﬁ()i—ﬁ) L, N(0,1) asn — occ.

The next definition is the definition of expectation of a random variable.

Expectation

A random variableX : Q — R™ on the probability spac&?, 7, P) such that X is
F-measurable hasxpectationE(X) = [, X (w)dP(w) if [, |X (w)]|dP(w) < oc.
And for some A inF,

E(14) = / 14dP(w) = / dP(w) = P(A).
Q A
The law of total probability is as follows:

The Law of Total Probability
LetBy,... By, besuchthat! B, = QandB;NB; = ( fori # j withP(B;) > 0
for all i. Then, for any event A if2,

m m m

P(A) =P(ANQ) = P(ANB) =Y E(lanp,) =Y E(lalp,).

i=1 =1 i=1

Some more on the Fourier transform which occurs in equation ( 3.12).

Recall that the Fourier transformation of a functipfx) is the characteristic func-
tion of f(z), i.e. if [ |f(z)|dz < oo, thengx (u) = E(e™X) = [; €™ f(z)dx.
The formulaf(z) = 5= [ e "“¢(u)du determines the densitf(x) of a random
variable X.

Fourier transform
Foraandxin R and for f o ¢ := f¥, define the functioryy := e~ f¥(z) and

its Fourier transform by’ (¢) := Jz e~i6% f¥ (z)da for ¢ in R. Assume that and
1) are such that

A= {a€RIfI() € L(R) and f{() € L(R)} #0.

Then the following inversion formula holds:

(@) = % /R ei&ff?(g)dg, z eR.
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Appendix B

Elements on fractional Brownian
motion

Most of the topic regarding the fractional Brownian motion is from [1].

Definition (Fractional Brownian Motion)
Let H be a constant belonging to (0,1) fidctional Brownian motion, fBi{B{7);>¢
of Hurst index H is a continuous centered Gaussian process with covarianc-
tion

E(BH,BH) .= 1(t2H+32H—\t—s\2H), t,s € RT.

2
A fBm has the following properties:
» B =0andE(Bf) = 0forallt > 0.

« BfL, — BH has the same distribution & for s,¢ > 0, i.e. the increments
of BH are homogeneous.

+ B is a Gaussian process a]E@(B{{)Q) =t ¢ > 0forallHin (0,1).
« BH has continuous trajectories.

The covariance betweefB/, — Bf') and (B2, — BY) with s + h < t and
t—s=mnhis

p(n) = Cov(BIL, - BY, BY,, — BI) =E((BIL, - BI")(BL, - B))

1 1
= —|t—5|2H+§|t+h—s\2H—|—§|t—s—h|2H

B ‘h’2H

; ((n F1)2H 4 (n—1)%H 2|n|2H> ~ HZH — 1)n*2 n 5 o
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and since
lim pH(n)

=1
n—oo H(2H — 1)n?H—-2

then B/ exhibitslong-range dependender H > % Two increments of the form
(BE, — Bf')and(B/ ,, — B[.,) are positively correlated o > 1, negatively
correlated ford < 3§ and forH = 3 the fBm is a standard Brownian motion

which has independent increments.

For a comparison to the standard Brownian motion the following definition and
remark are from [10].

Definition (Standard, one-dimensional Brownian Motion).A one-dimensional
Brownian motionis a continuous, adapted procd3s= { By, F4;0 < t < oo},

defined on some probability spat®@, 7, P) with the properties thaB, = 0 a.s.
and for0 < s < t, the incremen{B; — By) is independent af; and is normally
distributed with mean zero and varianges).

Remark: A one-dimensional Brownian motion is a zero mean Gaussian process

with covariance
cov(By, Bs) =sAt; s,t>0.

Some more details regarding the sp&t([0, 77):
If the deterministic functiory is in the Schwartz spac®([0, T']), then the norm of
gis
T T
lollr = [ [ als)gter 2t — 1)]s 11 dsdt < o
0 0
If S([0,T7) is equipped with the inner product
T T
<t [ [ 16lgOHEH-1s— o dsdt < o fg € S(0.7)
0 0
then the completion of ([0, 7)) is the separable Hilbert spadg?([0,7]). The

space of Holder continuous functiod& ([0, T]) ¢ L& ([0,T]), u > 1 — H. In
2], g € H*([0,T]).
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