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Abstract

Electroencephalography (EEG) is a widely used method for recording electric
potentials originating from neural activity at the surface of the human head,
serving as an invaluable tool in both neuroscience research and clinical
applications. In this thesis, we address the EEG inverse problem, which is
concerned with localizing specific brain activity using EEG recordings.

Given the inherent complexity of the inverse problem, different neural
source configurations can give rise to identical EEG patterns on the scalp. To
tackle this challenge, we have utilized various neural network models, each
trained to localize and identify neural sources with diverse characteristics and
spatial extents. Using the New York Head Model, made accessible through
the LFPy 2.0 Python module, we have generated biophysically realistic EEG
data, represented as single time points, which has served as the data for
training and evaluation of the neural network approaches.

A fully connected feed-forward neural network (FCNN) is employed for
the purpose of recognizing patterns in electrical potentials stemming from
both single current dipoles and pairs of dipoles with fixed strengths. The
FCNN was extended to localize and identify current dipoles with variable
strengths. Further expansion of the FCNN led us to consider spherical regions
of active correlated current dipoles characterized by diverse radii and strengths,
resulting in enhanced precision in estimating current magnitudes. All FCNN
models demonstrated positional errors under 10 mm when evaluated with
unseen test data, in line with expected outcomes when approaching the
EEG inverse problem using data from biologically detailed head models, as
supported by prior studies [1, 2].

In parallel with the various FCNN approaches, we trained a convolu-
tional neural network (CNN) using interpolated EEG data with image-like
characteristics. While both the FCNN and CNN models achieved promising
accuracies when predicting the positions of single current sources, the CNN
exhibited somewhat less impressive performance when tasked with localizing
two current dipoles simultaneously, in comparison to the FCNN.
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Chapter 1

Introduction

1.1 Motivation

Electroencephalography (EEG) is a method for recording electric potentials
stemming from neural activity at the surface of the human head, and it
has important scientific and clinical applications. An important issue in
EEG signal analysis is the so-called EEG inverse problem where the goal
is to localize the source generators, that is, the neural populations that are
generating specific EEG signal components. An important example is the
localization of the seizure onset zone in EEG recordings from patients with
epilepsy. A drawback of EEG signals is however that they tend to be difficult
to link to the exact neural activity that is generating the signals.

Source localization from EEG signals has been extensively investigated
during the last decades, and a large variety of different methods have been
developed. Source localization is very technically challenging: because the
number of EEG electrodes is far lower than the number of neural populations
that can potentially be contributing to the EEG signal, the problem is
mathematically under-constrained. Additional constraints on the number
of neural populations and their locations must therefore be introduced to
obtain a unique solution.

For the purpose of analyzing EEG signals, the neural sources are treated
as equivalent current dipoles. This is because the electric potentials stemming
from the neural activity of a population of neurons will tend to look like the
potential from a current dipole when recorded at a sufficiently large distance,
as in EEG recordings. Source localization is therefore typically considered
completed when the locations of the current dipoles have been obtained. Tools
for calculating EEG signals from biophysically detailed neural simulations
have however recently been developed, and are available through the software
LFPy 2.0 [3]. This allows for simulations of different types of neural activity
and the resulting EEG signals, opening up for a more thorough investigation
of the link between EEG signals and the underlying neural activity.

1



2 CHAPTER 1. INTRODUCTION

The past decade has seen a rapid increase in the availability and soph-
istication of machine learning techniques based on artificial neural networks
(ANNs). These methods have also been applied to EEG source localization
with promising results. Prior research has demonstrated ANNs achieving
localization errors below 5%, exhibiting computational efficiency, and robust-
ness against measurement noise compared to traditional methods [4]. In 2019
Tankelevich introduced a deep feed-forward network capable of discerning
the correct source clusters within scalp signals, representing a notable ad-
vancement in distributed dipole solutions [5]. Moreover, in a recent study,
the authors embarked on an exploration of Convolutional Neural Networks
(CNNs) to tackle the EEG inverse problem. This network was designed to
identify multiple sources using training data adhering to biologically plausible
constraints [6].

In this master’s thesis, the primary objective is to investigate the feasibility
of employing both a fully-connected neural network and a convolutional
neural network for localizing current dipoles. This investigation extends to
identifying the strength and radius of dipole clusters, relying on self-simulated
EEG data generated with tools available through the LFPy software.

1.2 Structure of the Thesis

In Chapter 2, we provide an introductory overview of the fundamental struc-
ture and functions of neurons. This understanding serves as the cornerstone
for our exploration in Chapter 3, where we delve into the principles of the
EEG method and its associated inverse problem. We examine how EEG
signals can be biologically simulated by modeling neural activity as current
dipole moments within head models. Chapter 4 focuses on the practical
simulation of EEG signals. Here, we employ the Python module LFPy in
conjunction with The New York Head Model to create simulated EEG sig-
nals. Chapter 5 introduces a fully connected feed-forward neural network
(FCNN). This network is designed to address the EEG inverse problem by
mapping simulated EEG signals to their corresponding locations of single
current dipoles. We discuss the architecture and hyperparameters employed
to achieve this. Chapter 6 provides an in-depth exploration of the training
techniques used for the FCNN introduced in Chapter 5. The results and
outcomes of the training process, along with the network’s overall perform-
ance, are presented in Chapter 7. In Chapter 8, we present an alternative
neural network approach. Here, we utilize a convolutional neural network
(CNN) to solve the EEG inverse problem. This chapter elucidates the key
concepts of CNNs, data adjustments tailored to the CNN architecture, and
the accuracy of predictions following the network’s training process. Chapter
9 extends both neural network architectures to the localization of two current
dipoles simultaneously. We present the results from training and display the
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network’s performance in this context. In Chapter 10, an enhanced version
of the FCNN is introduced. We detail modifications made to the simulation
of EEG data, allowing the network to identify additional characteristics of
current dipoles beyond their positions. We introduce two new problems for
the network: predicting both the location and magnitude of the current source
in one case and estimating the center, radius, and signal strength of spherical
populations of dipoles in another. Chapter 11, as the final chapter, involves
a comprehensive discussion of the results obtained throughout the thesis.
Concluding remarks are provided, and suggestions for potential directions in
future research studies are discussed.

1.3 Code Availability

All source code to reproduce the simulation of EEG data and results of the
neural network approaches are available on GitHub 1. The machine learning
models are implemented in PyTorch. The code is freely available in the git
repository referenced above. The results have been produced on a personal
laptop with no GPU acceleration.

1github.com/kamillasulebakk/DiLoc

github.com/kamillasulebakk/DiLoc
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Chapter 2

Basic Concepts within
Neuroscience

Neuroscience is a multidisciplinary field focused on understanding the com-
plexities of the human brain and nervous system. At its core, neuronal
communication forms the foundation for brain function, where billions of
neurons interact through electrical signals. Electroencephalography (EEG)
plays a pivotal role in recording and analyzing the electrical communication
in the brain. Most importantly EEG serves as a non-invasive tool to detect
abnormal brain activity and identify neurological disorders such as epilepsy.

In this introductory chapter, we will explore some of the aspects of
neuronal communication, which will serve as a foundation for Chapter 2,
where we will delve into the principles of EEG recordings. By familiarizing
ourselves with some of the basic concepts within neuroscience, we aim to gain
deeper insights into the applications of EEG within this dynamic field. The
chapter is based on the books Neuronal Dynamics by Gerstner, Kistler, Naud,
and Paninski [7] and Principles of Computational Modelling in Neuroscience
by Sterratt, Graham, Gillies, and Willshaw [8].

2.1 The Neuron

Neurons are the fundamental units of the central nervous system, forming
intricate networks with numerous interconnections. Similar to other cells,
neurons have a voltage difference across their cell membrane known as the
membrane potential. This potential is a result of the selective permeability
of the cell membrane to different ions, particularly sodium Na+, calcium
Ca2+, and chloride Cl−. At rest, the neuron maintains a relatively higher
concentration of sodium ions outside the cell and a higher concentration of
potassium ions inside the cell. This difference in ion concentrations, along
with the presence of ion channels that regulate the flow of ions in and out
of the cell, contributes to the resting membrane potential. Typically, the

5
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Figure 2.1: Illustation of single neuron with dendrites, soma and axon. The
figure has been adapted from Wikimedia Commons with attribution to Quasar
Jarosz at English Wikipedia and is licensed under the Creative Commons
Attribution-Share Alike 3.0 Unported license [9]. The figure has been edited
to remove some of the original details.

membrane potential of a neuron is around −65 mV, indicating that the interior
of the cell is negatively charged compared to the external environment [8].

A neuron consists of three distinct parts: the dendrites, the soma, and
the axon. Dendrites, with their branching structure, play an important role
in collecting signals from other neurons. These signals are transmitted to
the soma, which acts as the central processing unit, performing essential
nonlinear transformations of signals. If the total input received by the
soma reaches a specific threshold, an action potential is initiated. This
signal generates an electrical current that travels along the axon. When
the electrical current reaches the synaptic cleft, chemical messengers known
as neurotransmitters are released. These messengers play the key role in
transmitting the signal to the next neuron. If receptors on the receiving
neuron accept the neurotransmitters, a new electrical signal is generated [7].
A basic illustration of a single neuron is presented in Figure 2.1.

When the electrical signals transmitted towards the soma reach a specific
threshold value, typically around -55 mV, the neuron initiates an action
potential – and we say that the neuron fires. This initiation of an action
potential, when observed in intracellular recordings, can be seen as a spike
with an amplitude of about 100 mV and a duration of 1-2 ms [7]. In Figure 2.2,
we have provided an illustration of the typical intracellular action potential.
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Figure 2.2: Illustation of a characteristic action potential. The figure have
been adapted from Wikimedia Commons and are licensed under the Creative
Commons Attribution-Share Alike 3.0 Unported license [10]. The figure has
been edited to remove some of the original details.
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The action potential is characterized by a rapid increase in electrical
potential, marked by a sharp, positive spike, followed by a quick return to
the resting state. This waveform retains a consistent shape as it propagates
along the axon. Therefore, when investigating spike patterns, the emphasis
is not typically on the waveform’s shape, but rather, in the analysis of the
number and timing of action potentials emitted by the neuron, which are
commonly referred to as spike trains.

Spike trains observed during epileptic seizures, which can be seen in EEG
recordings, exhibit distinguishable characteristics compared to spike trains in
regular neural activity. Epileptic seizures result from bilateral synchronous
firing of neurons and manifest as specific EEG patterns known as spike-and-
wave discharges. These discharges exhibit repetitive and rhythmic patterns,
typically occurring at a frequency of around 2.5 Hz, setting them apart from
the irregular and asynchronous firing of action potentials seen in typical spike
trains[7]. During epileptic events, the initiation of spike-and-wave discharges
involves complex mechanisms, including the interplay of voltage-gated sodium
and calcium channels and the role of inhibitory postsynaptic potentials [11].

2.2 The Cerebral Cortex

The brain is typically divided into various regions, with the cortex charac-
terized as a thin and folded sheet of neurons. Different cortical areas have
specific roles. [7] Within the oldest part of the cortex, we find the hippocam-
pus, which plays a major role in learning and memory functions. Within this
component, the development of some common epilepsy syndromes tends to
arise, making this part of the brain a topic of particular interest [12].

The cerebral cortex is a folded structure with varying thickness, typically
ranging from 2 to 5 mm and covering an approximate surface area of 1600 to
4000 cm2 [13]. Within the cortex, billions of neurons exist, forming strong
interconnections – where single presynaptic neurons can connect to more
than 10,000 postsynaptic neurons. While many axonal branches end close to
the neuron itself, some axons extend several centimeters to reach neurons in
other brain regions [7].

There are typically two primary classes of neurons in the cerebral cortex.
Pyramidal neurons send information to distant areas of the brain, playing a
crucial role in long-distance communication. On the other hand, interneurons
are considered local-circuit neurons, exerting their influence on nearby neurons.
Most pyramidal neurons form excitatory synapses, stimulating post-synaptic
neurons, while most interneurons form inhibitory synapses, suppressing the
activity of pyramidal cells or other inhibitory neurons [12]. Within EEG
recordings, pyramidal cells within the cortex are recognized as the primary
source of the electrical potentials measured.



Chapter 3

Electroencephalograpy

Electroencephalography is a prominent recording technique employed to
capture the electrical activity of the cerebral cortex. This invaluable tool
has significantly enriched our understanding of neuronal interactions and the
organizational complexity of the brain. As one of the most widely utilized
non-invasive methods in both neuroscience research and clinical practice, EEG
has played a pivotal role in studying brain activity during diverse cognitive
processes, facilitating disease diagnosis, and assessing functional connectivity.

In this chapter, our primary objectives are to explore the physiological
basis of EEG signaling, shed light on the concept of the inverse problem
in EEG, and introduce the use of head models to simulate realistic EEG
measurements. Understanding the foundations of EEG and its methodologies
will lay the groundwork when we further in this work will investigate the
possibilities of using simulated EEG measurements to train an artificial neural
network for the purpose of localizing the sources generating these signals.

3.1 The Physiological basis of EEG signaling

The roots of EEG trace back to the groundbreaking work of Hans Berger,
who recorded the first human brainwave in 1924, marking the beginning of
a new era in neuroscience research [11]. Since then, EEG has become an
indispensable method, providing valuable insights into brain dynamics and
functioning. EEG can be used to detect abnormalities in specific areas of the
brain, aiding in the diagnosis of various brain disorders, including epilepsy,
Alzheimer’s disease, and brain tumors. By identifying distinct patterns of
brain activity associated with these conditions, EEG has become an essential
tool for early detection and treatment planning.

The EEG technique involves the use of small metal disks, known as
electrodes, strategically positioned on the scalp to simultaneously capture
electrical signals generated by neuronal activity. Typically, each electrode
can detect synchronous signals emanating from an area of approximately 6

9
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cm2 on the cortical surface [12]. These recording electrodes are connected to
individual wires, which are subsequently linked to the inputs of an amplifier.
The amplifier serves to enhance the voltage between the recording electrodes
and a reference electrode while reducing noise. This amplified signal can
then be displayed on a data screen for analysis and interpretation. Figure 3.1
provides an illustration of the typical EEG measurement setup.

Figure 3.1: Illustration of the EEG method. The figures have been adapted
from Wikimedia Commons with attribution to SMART-Servier Medical Art
and are licensed under the Creative Commons Attribution-Share Alike 3.0
Unported license [14] [15]. The figures have been edited to remove some of
the original details.

Electrical potentials generated by individual neurons are far too small
to be picked up by the recording electrodes. Therefore EEG measurements
primarily reflect the summation of synchronous activity from thousands of
pyramidal neurons with similar spatial orientation. The activity originating
from neurons with different geometric alignments cannot be picked up because
their individual electrical signals tend to cancel each other out, resulting
in undetectable waves at the scalp electrodes [12]. The EEG is typically
described in terms of rhythmic activity and transients, which are divided into
frequency bands that can be extracted using spectral methods. Most of the
cerebral signals observed in the scalp EEG fall within the range of 1–20 Hz.

Abnormal activity can broadly be classified into epileptiform and non-
epileptiform activity. Epileptiform activity typically arises in EEG recordings
of patients with epilepsy and includes spikes and sharp waves, that can be
seen synchronously throughout the entire brain. In this context, spikes refer
to hypersynchronized bursts from a sufficient number of neurons, arising from
high-frequency bursts of action potentials [12].

Detecting and localizing abnormal electrical patterns in EEG represents
an important research pursuit. One of the fundamental aspects in this field
is the EEG inverse problem, which is concerned with localizing brain activity
of interest using EEG recordings. Further in this chapter, we will explore the
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concept of the EEG inverse problem and how to solve it. However, before
delving into this concept, we will take a look at the subject of head models
and the dipole approximation for the purpose of simulating EEG recordings,
which in turn can be used in artificial neural networks for the purpose of
solving the EEG inverse problem.

3.2 Head Models

To accurately simulate EEG data, head models that faithfully represent the
conductivity distribution within the human head can be utilized. Head models
serve as computational representations of the head’s anatomical structure,
commonly encompassing the brain, skull, cerebrospinal fluid, and scalp.

The intricate biophysical properties of the head significantly impact
EEG signals. Detailed head models play an important role in simulating
the propagation of electrical signals through various tissue compartments,
thus enabling the recreation of realistic neuronal activity. For instance,
the cerebrospinal fluid within the human brain exhibits a conductivity of
approximately 1.7 S/m, while the skull and scalp possess conductivities of
about 0.01 S/m and 0.5 S/m, respectively [16]. These conductivity variations
underscore the necessity for comprehensive head models that can account
for such differences, thereby elucidating the intricate path of electrical signal
propagation. In addition to conductivity considerations, detailed head models
often incorporate the influence of tissue arrangement on EEG signals, such
as whether a neuronal population is located within a sulcus or a gyrus [16].

3.2.1 The Current Dipole Approximation

In the context of head models, neural activity is often represented through
the simulation of current dipoles. The concept of the current dipole approx-
imation is rooted in the observation that, as the distance from the neuron
to the extracellular potential Ve increases, the neural contribution becomes
increasingly more dipole-like.

The key insight behind the current dipole approximation lies in the
multipole expansion, a technique that comes to our aid when the recording
point is situated at a significant distance from the source distribution. While
electrical charges within neural tissue can give rise to the formation of current
multipoles, the multipole expansion theorem offers a method to express the
extracellular potential Ve in terms of various pole contributions. In the context
of EEG signals, employing this theorem reveals that Ve can be effectively
approximated by a single dipole [17].

Neuronal multipoles depend on the spatial arrangement and symmetry
of the charge distribution and result from the interplay of current sources
and sinks [18]. The expression for the extracellular potential associated
with different multipole orders may take complicated forms, and be hard to
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interpreted. However, when the distance R from the center of the source
to the recording point surpasses the extent of the source, the technique of
multipole expansion can be utilized [19]. This expansion are often beneficial
as usually only the first few terms are needed in order to provide an accurate
approximation of the original function, as we will see now. Using the multipole
expansion theorem, the representation of the extracellular potential Ve(R)
takes the form:

Ve(R) =
Cmonopole

R
+

Cdipole

R2
+

Cquadrupole

R3
+

Coctopole

R4
+ .... (3.1)

where the numerators represents the contributions to the extracellular
potential. The terms denoted Cmonopole, Cdipole and Cquadrupole represents
contributions to the extracellular potential Ve and can in general be extremely
complicated as they depend on the relationship between radial coordinates
and symmetry of the current source and measurement electrode. We note that
the contributions beyond the dipole term decay more rapidly with distance
R. This means that in scenarios where we are considerably distant from
the source distribution, the higher-order terms become negligible, leaving us
primarily with the monopole and dipole contribution. However, as the net
sum of currents over a neuronal membrane is invariably zero, the monopole
contribution also vanishes. Consequently, we are left with an approximation
of the extracellular potential, Ve, that relies solely on the dipole contribution:

Ve(r) ≈
Cdipole

R2
=

1

4πσ

|p|cosθ
|r − rp|2

. (3.2)

Here we have substituted for Cdipole in terms of other properties, where
p is the current dipole moment within a medium of conductivity σ. The
distance between the current dipole moment at rp and the electrode location
r is denoted as R = |R| = |r− rp|. Additionally, θ signifies the angle between
p and R. This equation is recognized as the dipole approximation and stands
as a reliable method for calculating the extracellular potential, particularly
when the distance R significantly surpasses the dipole length. This condition
is inevitably met in EEG studies, as the dipole length cannot exceed the
depth of the cortex, while EEG electrodes are typically positioned several
centimeters away from the cortical surface on the scalp [16].

In Figure 3.2, we have provided a simulation of the extracellular potential
generated by a neuron in response to a single synaptic input, where the spatial
distribution of membrane current was explicitly taken into consideration.
The Figure has been collected from work done by Torbjørn Ness and Gaute
Einevoll. This simulation aligns with the dipole approximation, as it clearly
visualizes the distribution of electric charge in the extracellular potential of
the neuron’s surroundings, revealing distinct dipole patterns when observed
from a greater distance.
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Figure 3.2: Simulation of extracellular potential showing distinct dipole
pattern. The figure belongs to work carried out by Torbjørn Ness and Gaute
Einevoll.
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3.2.2 The New York Head Model

The New York Head Model (NYHM), developed by the Biomedical Engineer-
ing Department at the City University of New York [20], is a highly detailed
computer model designed for simulating electrical brain activity, with a fo-
cus on EEG source localization. Grounded in high-resolution anatomical
MRI data from 152 adult heads, this model enables the segmentation of six
distinct tissue types within the head: scalp, skull, cerebrospinal fluid, gray
matter, white matter, and air cavities. Its high level of detail and accuracy
makes it an appropriate tool for simulating and understanding brain activity
realistically. Providing a three-dimensional representation of the head and
brain, along with precise information about tissue geometry and electrical
properties, this head model will be employed in our work within the context
of EEG simulation to generate the data used for dipole source localization.

To accurately calculate EEG signals recorded at various scalp locations,
head models typically compute what is commonly referred to as a model-
specific lead field matrix L. A lead field can be thought of as a geometric
arrangement that links the sensitivity of EEG measurements from various
scalp locations to potential neural current sources within the brain. The lead
field matrix of the NYHM is computed for 231 electrode positions on the
scalp and 74,382 possible dipole source locations within the cortex. Each
location point includes the x-, y-, and z-coordinates, with the x-coordinate
ranging from -72 to 72 mm, the y-coordinate spanning -106 to 73 mm, and
the z-coordinate extending from -53 to 82 mm.

The forward modeling of the EEG signal Φ can be described through a
straightforward matrix multiplication:

Φ = Lp, (3.3)

where, the current dipole moment p = (px, py, pz) represents the dipole’s
magnitude in the x, y, and z-directions, respectively. In the context of the
NYHM, a forward configuration of an EEG signal encompasses the 231 values
measured at each of the scalp electrodes resulting from a current dipole p.

For more comprehensive details about the New York Head Model, we
recommend referring to Huang, Parra, and Haufe (2016) [20].

3.2.3 The Effect of Dipole Orientation

Figure 3.3 and 3.4 are borrowed from work done by Tornjørn Ness and
Gaute Einevoll, and illustrate the impact of dipole orientation on EEG
outcomes within the NYHM. Figure 3.3 represent the EEG signals obtained
from two manually selected dipole locations. These dipoles are situated in
a gyrus and a sulcus, respectively, and exhibit distinct EEG patterns. In
general, the contribution of an individual current dipole to the EEG signal
is maximized when the dipole is perpendicularly situated within a gyrus, as



3.2. HEAD MODELS 15

depicted in Figure 3.3B. Contrastingly, when a dipole is placed in a sulcus
with a perpendicular orientation, a significant EEG contribution may still be
observed, however unlike the dipole in the gyrus, it exhibits a more dipolar
pattern, as shown in Figure 3.3C.

Figure 3.3: A: Two selected dipole locations in the New York head model:
one in a gyrus (red) and one in a sulcus (blue). The head model is viewed
from the side (x, z-plane). Close to the chosen cross-section plane, EEG
electrode locations are marked in light blue. Available dipole locations near
the cortical cross-section form an outline of the cortical sheet and are marked
in pink. The current dipole moment for all cases was 1 nAm. B: Interpolated
color plot of EEG signal from the gyrus dipole, viewed from the top (x,
y-plane). The plotted EEG signal is scaled, with a maximum value of 1.1
µV. C: Interpolated color plot of EEG signal from the sulcus dipole. The
plotted EEG signal is scaled, with a maximum value of 0.7 µV. This Figure
is borrowed from work done by Torbjørn Ness and Gaute Einevoll [16].

Further, Figure 3.4 depicts the EEG signals from identical dipoles posi-
tioned in various folding patterns of the cortical surface. These patterns align
with the previous observations, as they showcases that the orientation of the
current dipole moment significantly influences the EEG outcome. Firstly,
Figure 3.4A and 3.4C provide an expanded illustration of the aforementioned
scenarios, incorporating additional dipole moments located in a gyrus and
a sulcus, respectively. In Figure 3.4B, where a collection of dipoles points
randomly upwards and downwards, the EEG signal contribution appears
to diminish significantly. Conversely, when the dipoles align in the depth
direction of the cortex and are distributed across both gyrus and sulcus, we
can expect an EEG contribution in between what we saw from Figure 3.4A
and 3.4B, as depicted in Figure 3.4D. Lastly, Figure 3.4E demonstrates the
minimal EEG contribution observed when the dipoles are divided between
two opposing sulci.
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Figure 3.4: Different folding patterns of the cortical surface are represented
by white dashed lines. EEG signals are calculated from four identical current
dipoles with varying orientations. A: Dipoles aligned in the same direction
within a gyrus. B: Dipoles pointing in opposite directions within a gyrus. C:
Dipoles aligned in the same direction within a sulcus. D: Dipoles distributed
between a gyrus and a sulcus, pointing towards the cortical surface. E:
Dipoles divided between opposing sulci, pointing towards the cortical surface.
Each panel features a dipole moment magnitude of 10 nAm, and the dipoles
are positioned at the centers of the arrows in the top row. This Figure is
borrowed from work done by Torbjørn Ness and Gaute Einevoll [16].

3.3 The Inverse Problem and Source Localization

In the field of neuroscience, the inverse problem involves locating the under-
lying neural activity responsible for a set of measured EEG data. In contrast
to the forward problem, where known parameters are used to predict the
resulting EEG potential, the inverse problem lacks a unique solution. This
implies that different configurations of neural sources can produce the same
EEG activity distribution on the scalp [6].

Machine learning techniques such as artificial neural networks can be
used to estimate probable source locations by learning patterns from large
data sets of EEG recordings and corresponding source locations, which can
be simulated through forward modeling using head models. Neural network
approaches for solving the inverse problem have been identified as yielding
faster inverse solutions than classical methods [21].

In the next chapter, we will take a practical step by simulating EEG data
using the New York Head Model. This simulated data will lay the foundation
for the development of neural networks in the following chapters, with the
purpose of addressing the EEG inverse problem.



Chapter 4

Method: Creating EEG Data

In preparation for the application of neural networks to address the inverse
problem, the acquisition of an appropriate EEG data set is essential. This
chapter focuses on utilizing the New York Head model in conjunction with
the current dipole approximation to construct biophysically realistic EEG
data. In Section 4.1, we will provide a detailed exploration of our EEG
data simulation methods. Moving forward to Section 4.2, we will discuss the
introduction of noise and its significance. Section 4.3 summarizes the features
of the final data set, which will be used to train models for solving the EEG
inverse problem.

4.1 Simulation of EEG Signals from Single Dipoles

To create EEG data we use the New York Head model and its lead field
matrix, which are integrated into the Python module LFPy 2.0 [3]. This
software is a userfriendly wrapper around the NYHM, allowing for simulations
of neural activity and the resulting EEG signals. Within LFPy, we use the
NYHeadModel class to calculate EEG signals originating from a desired current
dipole moment. For more information about the LFPy module, we refer the
reader to Hagen, Næss, Ness and Einevoll (2018) [3].

The implementation of the lead field matrix in the NYHeadModel class in
LFPy consists of 74,382 discrete points, each representing potential dipole
source locations within the cortex. To sample a single data point we position
a current dipole moment at one of the possible locations, and calulate its
corresponding EEG signal according to the procedure outlined in Chapter 3.
To begin with, we maintain uniform magnitudes for the dipole signals. By
setting these magnitudes to 1 nAm, the resulting EEG measurements span a
range of approximately -1 to 1 µV. The NYHM is solved for 231 electrode
positions. One sample consequently holds the signal measured at each of the
231 electrodes at the scalp.

To ensure that the dipole orientations are predominantly aligned with the

17
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radial direction of the cortex, which is crucial in order to generate detectable
electrical signals, as emphasized in Chapter 3, each dipole moment is rotated
to be normal to the surface of the cerebral cortex. Note that aligning the
dipole orientations radially to the cortex does not always lead to the dipole’s
normal vector pointing directly outward toward an EEG electrode. This
variability arises due to the complex folding patterns found in the human
cortex. In certain cases, when a dipole is located within a sulcus, the electrical
signal it generates originates deep in the brain. Consequently, the electrical
signal must traverse a longer path before reaching an EEG electrode [16].

In the preceding chapter, we discussed how EEG analysis often revolves
around the exploration of specific frequency bands. However, an alternative
and widely recognized method for EEG investigation involves the practice
of averaging EEG responses to specific stimuli across multiple trials [22].
These temporally aligned segments of EEG signals are commonly referred
to as event-related potentials (ERPs). Given that noise and various EEG
components are assumed to exhibit random variations across samples, the
averaging procedure effectively reduces noise and extracts the event-related
activity. In other words, this technique facilitates the identification of the
specific time step within the EEG time series where the averaged signal attains
its maximum magnitude, resulting in a ’static’ EEG signal characterized by
reduced noise.

An underlying principle for this approach is the quasi-static approximation,
which effectively assume that the potential measured from a dipole propagates
instantaneously from the source to the electrode. This simplification is based
on the assumption that the EEG signal at any point effectively captures a
snapshot of the dipole activity within the brain. This means that if a dipole
exhibits oscillations at a particular frequency, the corresponding EEG signal
will oscillate at the same frequency, without phase shifts [23].

In our data collection, we sample the EEG data to obtain what we may
consider an ERP, effectively representing a static snapshot of the electrode
recordings of a current dipole source with a magnitude of 1 nAm. In contrast
to clinical analyses of ERPs, we simulate one event per sample and do not
hesitate to average over multiple events to collect the final signal. This ap-
proach is justified by the fact that our simulated data is noise-free, eliminating
the risk of noise interference with the EEG samples. This simulated ERP
data can be viewed as an alternative to traditional time series data, offering
simplification and computational efficiency without significant deviation from
standard clinical EEG sampling. Consequently, we are left with time-locked,
one-dimensional EEG signals mirroring the electrode recordings of electrical
potentials generated by dipoles located at various positions within the cerebral
cortex.
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4.2 Noise

Real-world EEG recordings inevitably contain noise, which can disrupt the
accurate analysis of brain activity. Artifacts, which are signals recorded
by EEG but originating from sources other than neuronal communication,
pose a particular challenge in real-world data. Some artifacts can mimic
genuine epileptiform abnormalities or seizures, underscoring the importance
of identifying and distinguishing them from true brain waves [24].

Artifacts can be classified into two categories based on their origin.
Physiological artifacts arise from the patient’s own physiological processes,
including ocular activity, muscle activity, cardiac activity, perspiration, and
respiration. Technical artifacts, on the other hand, are electromagnetic
interferences from external factors such as cable and body movements [25].

Filtering techniques are commonly employed to mitigate artifacts in EEG
recordings before conducting analyses. It is important to note that while
these techniques can significantly reduce noise, they may not completely
eliminate all sources of interference. In the context of simulated EEG data,
there is no inherent noise present. However, to align the simulated data
with real-world EEG samples, controlled noise is intentionally introduced.
This process ensures that the simulated EEG data closely resembles real
measurements that have undergone appropriate filtering and preprocessing.
Consequently, the data maintains a high signal-to-noise ratio (SNR) while
incorporating a realistic amount of noise disturbance.

Utilizing realistic data is a critical step in enhancing the robustness of
the trained neural network, thereby ensuring its effectiveness in handling
real EEG recordings. However, the specific characteristics and quantity of
noise have not been the primary focus of our study, and we have therefore
adopted a straightforward approach. Our final data set incorporates normally
distributed noise with a mean of 0 and a standard deviation equal to 10%
of the standard deviation observed in the simulated EEG recordings. This
introduced noise introduces random variations around each data point, all
while preserving the overall statistical properties of the data set.

4.3 Final Data Set

The final data set, D, comprises 70,000 samples, where each sample holds 231
values representing the EEG measurements recorded at each electrode – a
configuration directly inherited from the NYHM. Target values for the EEG
samples are the x-, y- and z-coordinates of the different dipole sources.

Figure 4.1 presents an example of the input EEG data for a single sample,
with added noise. The prominent dipolar pattern in the figure indicates
that the dipole is located within a sulcus. In the figure the EEG measure
is visualized from multiple perspectives: the xz-plane, yz-plane, and the
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Figure 4.1: EEG measurements for a sample containing one single current
dipole source at an arbitrary position within the cerebral cortex. Noise is
added to the EEG signal. The EEG measure is seen from both sides (xz-
plane and yz-plane) and above (the xy-plane). EEG electrode locations are
presented as filled circles, where the color of the fill represents the magnitude
of the measured signal for the given electrode. The position of the current
dipole moment is marked with a yellow star.

xy-plane. The electrode locations are represented by filled circles, with the
color of the fill indicating the magnitude of the measured signal at each
electrode. The position of the current dipole moment is denoted by a yellow
star. As indicated by the colorbar in the figure, the EEG signal for the
specific sample ranges from -1 to 1 µV, which is the range that the simulated
EEG data for all samples will fall within.



Chapter 5

A Fully Connected
Feed-Forward Neural Network
Approach to Source
Localization

Having obtained a suitable data set we can start building neural networks to
address the EEG inverse problem. In this chapter, we provide a comprehensive
overview of a feed-forward neural network built to map measured EEG signals
to corresponding locations of current dipoles. We will be discussing its
architecture and parameters.

5.1 Machine Learning

The field of machine learning is concerned with constructing computer pro-
grams that learn from experience. Within this computational discipline we
find a spectrum of tasks these algorithms aim to understand and accomplish.
For the purpose of solving the EEG inverse problem the model is concerned
with the task of localizing the origins of abnormal electrical brain signals
within the human cortex. The machine learning algorithm will gain experi-
ence through the analysis of corresponding EEG data associated with these
abnormal sources.

Typically, machine learning problems are addressed using the same three
elements. The first element is the data set D = (X,Y ). X is commonly
referred to as the design matrix and Y is the set of target values we want the
model to predict as function of the elements in X. Next, we have the model
f(x;θ) itself which is a function f : X → Y used to predict an output y ∈ Y
from an input x ∈ X using the model parameters θ. Thirdly we have the cost
function C(y, f(x;θ)) for x ∈ X and y ∈ Y , which allows us to evaluate how
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well the model performs on the samples in D. Training a machine learning
model involves the adjustment of the model parameters θ to minimize the
cost function. The cost function yields high values when the model’s output
deviates from the desired target, and conversely, it produces smaller values
when the predictions align closely with the intended outcomes. The output
of the cost function is commonly referred to as the model’s cost or loss. We
will be using these terms interchangeably.

5.2 Neural Networks

Neural networks are a distinct class of so-called nonlinear machine learning
models capable of learning tasks by observing examples, without requiring
explicit task-specific rules [26]. The models mimic the way biological neur-
ons transmit signals, with interconnected nodes that communicate through
mathematical functions. Each connection between nodes is represented by a
weight variable, which encodes the strength of the communication between
the two nodes. During training, the neural network “learns” by adjusting
these weights to capture the underlying patterns and relationships in the
data.

We will mainly consider fully connected feed-forward neural networks,
henceforth abbreviated as FCNNs, whose nodes are grouped into layers with
the output of one layer serving as the input for the next. Typically, we call
the first layer of neural networks the input layer, the final layer of the model
output layer and the layers in between hidden layers. What lies in the term
“fully connected feed-forward” is that every node within each layer sends their
outputs to every node the next layer. Generally speaking, the outputs is only
sent forward, through all of the layers. The activation a

(l)
i of the i-th node in

layer l is the weighted sum

z
(l)
i =

Nl−1∑
j=1

w
(l)
ij a

(l−1)
j + b

(l)
i (5.1)

fed through an activation function act:

a
(l)
i = act

(
z
(l)
i

)
. (5.2)

Nl is the number of nodes in layer l. Activation functions introduce nonlin-
earity into the network’s computations. They play a critical role in enabling
the model to capture nonlinear patterns within the data. The bias b

(l)
i and

the weights w
(l)
ij are the trainable parameters θ of the model.
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5.3 Building a Feed-Forward Neural Network

The feed-forward neural network was one of the first artificial neural network
to be adopted and is yet today a wildly used algorithm within the domain
of machine learning. As a natural starting point, we therefore adopted a
fully connected, feed-forward neural network architecture for the purpose of
solving the inverse problem. This approach eventually proved to be the most
suitable framework among the ones tested. The fully connected feed-forward
neural network is known as one of the simpler forms of neural networks,
where information is processed in a unidirectional manner, flowing from the
input nodes through the hidden layers and ultimately to the output nodes.

5.3.1 Architecture

In our initial testing phase, we tried different network configurations through
an iterative trial-and-error procedure. Different network architectures with
various numbers of hidden layers and nodes were systematically examined.
Ultimately, we settled on a model with roughly 300,000 trainable parameters
which, after tweaking additional network attributes which will be elaborated
upon later in this chapter, yielded promising results in terms of prediction
accuracies.

The input layer is designed with 231 nodes, corresponding to the number
of features in our data set, i.e. the number of recording electrodes for each
sample. Subsequently, the network consists of five hidden layers, comprising
512, 256, 128, 64, and 32 nodes, respectively. Finally, the output layer holds
an x-, y- and z-coordinate representing the predicted position of the dipole
source. Figure 5.1 visualizes the structure of the fully connected neural
network.

5.3.2 Activation Functions

Activation functions are fundamental components within the architecture of
neural networks. Essentially, these functions introduce nonlinearity into the
network’s computations, thereby enabling the network to capture and model
complex relationships within data [28]. This property is essential because
many real-world phenomena and data patterns exhibit inherent nonlinearity.
Without activation functions, neural networks would essentially be linear
regression models, limiting their ability to predict other relationships between
inputs and outputs. In neural networks, activation functions are typically
applied at every node within the hidden layers and sometimes at the output
nodes in the final layer.

Drawing inspiration from the behavior of biological neurons, activation
functions can be understood as decision-makers within the artificial neural
network, determining which information should be relayed to the next node.
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Figure 5.1: Architecture of the fully connected Feed-Forward Neural
Network. The input layer comprises 231 electrode recording input values,
and the network outputs predicted x-, y-, and z-coordinates of the dipole
generating the EEG signal. The FCNN consists of five hidden layers.
The visualization has been made with Latex, with code adapted from Neural
Networks in TikZ with attribution to Izaak Neutelings and is licensed under
the Creative Commons Attribution-ShareAlike 4.0 International License [27].

This process is analogous to the process in biophysics where the axon of one
cell takes the output signal from the preceding cell and converts it into a
format suitable for input to the next cell. Some activation functions can
also be directly associated with biological phenomena like action potentials
and spikes within neurons. Similar to how real neurons respond to incoming
electrical signals, activation functions decide whether a node in a neural
network should be activated or not based on the strength of the input it
receives. If the input exceeds a certain threshold, the artificial neuron “fires”;
otherwise, it remains inactive [29].
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Rectified Linear Unit

Within the input layer of the FCNN network, nodes utilize the Rectified
Linear Units (ReLU) activation function defined as

ReLU(x) =

{
x, if x > 0

0, otherwise,
(5.3)

and visually depicted in Figure 5.2. ReLU closely resembles the behavior of
biological neurons. Specifically, it echoes the concept of the action potential:
if a threshold is reached, the neuron fires; otherwise, the neuron remains
inactive. Positive input values remain unchanged, while negative input values
are suppressed by setting them to zero. The widespread adoption of ReLU in
neural networks can be attributed to its advantages in terms of computational
speed, performance, and generalization capabilities.
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Figure 5.2: Rectified Linear Unit (ReLU) Activation Function: pre-
serves positive input values x unchanged and enforces a transformation of
negative input values to zero.

Hyperbolic Tangent

For the hidden layers, we employed another activation function known as the
Hyperbolic Tangent (tanh) defined by

tanh(x) =
ex − e−x

ex + e−x
, (5.4)
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which is visualized in Figure 5.3. This activation function smoothly compresses
input values into the range between −1 and 1, thereby preventing activations
from becoming large, which could potentially cause problems during training.
While ReLU is known for its computational speed and simplicity, tanh has
the possible advantage that it keeps all data flowing through the network
during a forward pass. ReLU effectively removes the flow of information from
some nodes through the network by clipping all negative values to zero. This
could be a positive feature, but potentially also a problem causing some of
the nodes to never be able to influence the output of the model, thereby
decreasing its ability to learn.
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Figure 5.3: Hyperbolic tangent activation function: maps the input
value x into a continuous range between -1 and 1.

Linear Activation

In our specific application, the target positions are the coordinates of current
dipole sources, with values ranging from -70 to 70 mm for x, -58 to 78 mm
for y, and -69 to 59 mm for z. In the context of regression problems like ours,
it is common practice to use linear activations – which is simply the absence
of any activation function at all – in the output layer. We have done the
same in our model, thus enabling it to output unbounded coordinate values.
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5.3.3 Initialization of Parameters

Neural networks train by fine-tuning their parameters θ to capture and adapt
to intricate patterns within data. Weights and biases serve as the inner
parameters of neural networks. The total number of parameters is equal to
the sum of all connections between layers plus the total number of biases in
every layer. In the architecture provided in Figure 5.1, our FCNN comprises
just under 300,000 parameters.

The initialization of weights and biases can significantly impact how
quickly the model converges during training, and there exist several procedures
commonly employed. In the FCNN we have used Xavier initialization, as
this procedure is commonly paired with the tanh activation function, which
is the one applied in our hidden layers. For every layer l, the weights w(l) are
sampled from a normal distribution with mean µ and variance σ2:

w(l) ∼ N
(
µ = 0, σ2 =

2

Nl−1 +Nl

)
. (5.5)

Nl denotes the number of neurons in layer l. Nl and Nl−1 are the number of
rows and columns in w(l) respectively. The biases b(l) are sampled uniformly
between −

√
1

Nl−1
and

√
1

Nl−1
:

b(l) = U
(
−
√

1

Nl−1
,

√
1

Nl−1

)
. (5.6)
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Chapter 6

Training the Fully Connected
Feed-Forward Neural Network

This chapter will explore the training process of the fully connected feed-
forward neural network (FCNN), outlining the decisions made. Carefully
choosing and adjusting elements of the training process ensures the FCNN’s
ability to make accurate predictions, establishing it as a valuable tool for
solving the inverse EEG problem. Subsequent chapters will delve into the
results and outcomes of this training, providing insights into the model’s
effectiveness.

6.1 Overview of Training Methods

Having constructed the fully connected feed-forward neural network architec-
ture, we now embark on the phase of training the model to effectively localize
current dipoles from EEG signals. This chapter delves into the process of
training the FCNN and addresses various aspects that influence the perform-
ance of the network. Training a neural network requires careful consideration
and tuning of several key factors to achieve optimal results. In the process of
training FCNN, we will explore the following essential elements:

Data Preparation: We begin by preparing the data set, involving data
segmentation and standardization.

Cost Function: Moving forward, we explore the significance of the cost
function in guiding the network towards convergence. Understanding
how to choose the appropriate cost function tailored to the problem is
important.

Backpropagation: The backpropagation algorithm is used to calculate the
gradients of the cost function with respect to the trainable parameters
of the model.
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Optimization Algorithm: The gradients calculated during backpropaga-
tion are used to update the values of the parameters of the model in
order to minimize the cost. The choice of optimization algorithm plays
an important role in training efficiency and convergence speed. We
delve into the technique of gradient descent and its implications in the
context of the FCNN.

Regularization Techniques: Overfitting is a common challenge in neural
network training. We examine regularization techniques like dropout
and weight decay to mitigate this issue.

Learning Rate Scheduling: Finally we present the method of adaptive
learning rates. We discuss how learning rates significantly influence
training dynamics, and how methods for scheduling learning rates
during training ensure steady convergence.

6.2 Data Preparation

6.2.1 Data Segmentation

The first step in preparing to fit a machine learning model, is to perform a
split of the data set D into distinct sets for training, validation, and testing.
As the name suggests, training data is used for training the model, while
validation and test data are used for evaluating the model’s performance
on unseen samples. This allows us to check for and avoid overfitting, a
phenomenon where the network becomes excessively attuned to the training
data and consequently performs poorly on new data. The size of each set
commonly depends on the size of the data set available, however a general
guideline is that the majority of the data are allocated into the training set
with the remainder going into the validation and test sets [30].

The data set of simulated EEG signals contains 70,000 samples. 20,000
of these are randomly selected for the test set. Of the remaining 50,000
samples, 80 percent are randomly assigned to the training set with the rest
making up the validation set. Upon completion of the training process, the
test set serves as the ultimate benchmark for evaluating the model’s capacity
to generalize and make accurate predictions on new instances of data. By
adhering to this train-validation-test data partitioning, we ensure a robust
evaluation of the FCNN’s performance and its capacity to effectively handle
real-world scenarios with previously unseen data.

6.2.2 Data Scaling

Having addressed the data segmentation, we proceed to the task of data
scaling, which is a highly recommended procedure within machine learning.
Data standardization involves centering the EEG data of the design matrix
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X around the mean and scaling it to achieve unit standard deviation. To
achieve this we calculate the mean µ and the standard deviation σ of all the
elements in X. We then subtract µ from X element-wise and divide by σ,

X ′ =
X − µ

σ
, (6.1)

to produce a scaled design matrix with zero mean and unit standard deviation.

6.3 Cost Function

In the field of machine learning, cost functions are used to evaluate how well
models make predictions. Selecting an appropriate cost function is important.
In our regression task, where the objective is to predict x, y, and z coordinates
of single current dipoles, we use Euclidean distance to quantify the error of a
single sample. For a batch of N samples we use mean Euclidean distance,
defined by

MED(θ) =
1

N

N∑
i=1

√
(xi − x̃i)2 + (yi − ỹi)2 + (zi − z̃i)2. (6.2)

Here θ are the model parameters, xi, yi, zi denote the predicted values, and
x̃i, ỹi, z̃i are the corresponding true values.

6.4 Backpropagation Algorithm

The backpropagation algorithm is a fundamental technique used in neural
networks in order to adjust the weights for the purpose of minimizing the cost
function. To explain the implementation details of this technique, we follow
the guidance provided in the book A high-bias, low-variance introduction to
machine learning for physicists (Pankaj Mehta, et al., 2019) as it offers a com-
prehensive treatment of the topic. The backpropagation technique leverages
the chain rule from calculus to compute gradients for weight adjustments
and can be summarized using four equations.

Before introducing the equations, Mehta et al. establish some useful
notation. We let L denote the total number of layers within the neural
network, with each layer identified by an index l ranging from 1 to L inclusive.
Like in Chapter 5 the weights of layer l are denoted w

(l)
ik . They represent the

strength of the connection between the k-th neuron in the previous layer,
l − 1, and the i-th neuron in the current layer, l. The bias of node i in layer
l is denoted b

(l)
i .

The first of the four equations is the shorthand

δ
(l)
i =

∂C

∂z
(l)
i

, (6.3)
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where

z
(l)
i =

Nl−1∑
j=1

w
(l)
ij a

(l−1)
j + b

(l)
i (6.4)

is the value of the i-th neuron in layer l pre-activation. The quantity δ
(l)
i can

be thought of as the change to the cost function caused by an infinitesimal
increase in a

(l)
i .

The partial derivative of the cost function with respect to the bias b
(l)
i is

δ
(l)
i :

∂C

∂b
(l)
i

=
∂C

∂z
(l)
i

∂z
(l)
i

∂b
(l)
i

= δ
(l)
i . (6.5)

When applying the chain rule here, we have used the fact that the i-th node
in the l-th layer is the only one whose activation is influenced by b

(l)
i .

By applying the chain rule, we can express the error δ
(l)
i in Equation 6.3

in terms of the equations for layer l + 1, giving us the third equation used in
the backpropagation algorithm:

δ
(l)
i =

∂C

∂z
(l)
i

=

Nl+1∑
j=1

∂C

∂z
(l+1)
j

∂z
(l+1)
j

∂zli

=

Nl+1∑
j=1

δ
(l+1)
j

∂z
(l+1)
j

∂a
(l)
i

∂a
(l)
i

∂z
(l)
i

=

Nl+1∑
j=1

δ
(l+1)
j w

(l+1)
ji

∂ act(l)(z)
∂z

∣∣∣∣∣
z
(l)
i

. (6.6)

The last factor in the last line is the derivative of the activation function in
the l-th layer evaluated at z

(l)
i .

Finally the last of the four backpropagation equations is the derivative of
the cost function with respect to the weights:

∂C

∂w
(l)
ij

=

Nl∑
k=1

∂C

∂z
(l)
k

z
(l)
k

∂w
(l)
ij

= δ
(l)
i a

(l−1)
j . (6.7)

With these four equations in hand we can calculate the gradient of the
cost function with respect to all the weights and biases of the network starting
from the output layer and working our way backwards. The backpropagation
algorithm can be performed with the four following steps: 1) Do a forward
pass calculating z

(l)
i and a

(l)
i for all layers. 2) Calculate the cost of the

prediction. 3) Propagate the error backwards and calculate δ
(l)
j for all layers,



6.5. OPTIMIZATION ALGORITHM 33

using equation 6.6. 4) Use equation 6.5 and 6.7 in order to calculate ∂C

∂b
(l)
i

and ∂C

∂w
(l)
ij

.

This description makes clear the incredible utility and computational
efficiency of the backpropagation algorithm. Derivatives can be calculated
using so-called “forward” and “backward” passes through the neural network.
This offers computational efficiency which is essential when having to calculate
the gradient with respect to all parameters of the neural network at each
step of gradient descent, an optimization algorithm that we will be delving
into in the next section.

6.5 Optimization Algorithm

6.5.1 Gradient Descent

In order to minimize the cost function and find the optimal values for the
model parameters, θ, an optimization algorithm is employed. One widely
used optimization algorithm is gradient descent, which iteratively updates
the parameters based on the gradient of the cost function with respect to the
parameters [30].

Gradient descent is an iterative optimization algorithm used to locate a
local minima of a differentiable function. The core concept of the algorithm
is based on the observation that a function F (x) will decrease most rapidly if
we repeatedly move in the opposite direction of the gradient of the function,
i.e. in the direction of −∇F (x). This means that the sequence {x0,x1, . . . }
given by

xn+1 = xn − η∇F (xn) (6.8)

for a sufficiently small learning rate η will consist of points at which the
function F has smaller and smaller values. The process begins with an
arbitrary initial point x0, and eventually converges to a local minimum of F .

In the neural network weights and biases are updated as follows to find a
minimum of the cost function C:

w
(l)
ij → w

(l)
ij − η

∂C

∂w
(l)
ij

(6.9)

b
(l)
i → b

(l)
i − η

∂C

∂b
(l)
i

. (6.10)

It is important to note that the error function in gradient descent is
computed based on the entire training set, meaning that all samples are
processed in order to evaluate the gradient in every step, which is often
inefficient. Another potential issue with gradient descent is its sensitivity
to the initial values of the model parameters, and the choice of the learning
rate η. The sensitivity to initial conditions can be explained by the fact
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that we often deal with high-dimensional, non-convex cost functions with
numerous local minima where we risk getting stuck in a suboptimal region
of the parameter space. Choosing a too large learning rate may result in
overshooting minima, leading to unpredictable behavior, while a too small
learning rate increases the number of iterations required to reach a minimum.
Stochastic Gradient Descent, described in the next subsection, is a popular
alternative which attempts to mitigate some of these issues [31].

6.5.2 Stochastic Gradient Descent

The Stochastic Gradient Descent (SGD) method is a powerful optimization
technique that diverges from traditional gradient descent by randomly select-
ing subsets of the data, called mini-batches, during each iteration, as opposed
to considering the entire data set [31]. This is also the main property that
distinguishes it from traditional gradient descent. SGD restricts its focus
to smaller portions of the data, meaning that only a subset of the data are
processed when evaluating the gradient in each step. This is efficient, as
there is less computation required for each step in the gradient descent.

The random sampling of smaller subsets from the data introduces stochasti-
city to the model. This is a potential downside which could mean that the
gradient calculated in one step does not point in the direction which minim-
izes the cost on the entire data set, which is what we ultimately want to do.
However, this can potentially have a positive effect as well by allowing the
model to escape a suboptimal local minima thanks to the small randomness
introduced, which might allow the model to find superior solutions compared
to gradient descent.

6.5.3 Momentum

Furthermore, an incorporation of momentum into the SGD algorithm may
enhance convergence speed even further. Momentum introduces a form of
memory into the optimization process by accumulating information about
previous movements in parameter space. Returning to our general description
of gradient descent as a sequence of points which minimizes a function F (x),
we update the procedure described by Equation (6.8) to

vt = γvt−1 + η∇F (xt), (6.11)
xt = xt−1 − vt. (6.12)

In these equations, vt represents the momentum vector at iteration t, γ is
the momentum coefficient, η is the learning rate, and ∇F (xt) signifies the
gradient of Fn [26].

In our FCNN, these equations are used to update the weights and biases
based on the gradients calculated during backpropagation using a separate
momentum for each parameter.
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During the training of the FCNN, we observed that a learning rate of
0.001 yielded the most favorable results. Moreover, a mini-batch size of 32
was employed. The momentum coefficient γ was set to 0.35, a value that
struck an optimal balance between convergence speed and sensitivity to the
initial learning rate parameter.

6.6 Regularization Techniques

Regularization techniques in machine learning help prevent overfitting. One
common regularization technique is called the L2-norm penalty. In this
technique, we add an extra term to our cost function that depends on the
size of the model’s weights. This added term ensures that the weights do
not become excessively large while fitting the training data. By doing this,
regularization reduces the risk of the model fitting the training data too
closely, which can lead to overfitting. [26].

We can measure the size of the weights using the L2-norm, which modifies
our cost function from C(θ) to

C ′(θ) = C(θ) + λ
∑
i,j,l

(
w

(l)
ij

)2
. (6.13)

The tuning parameter λ controls how much we penalize the flexibility of our
model. Here, flexibility means how much the model can adjust its coefficients
to fit the data precisely. Choosing a large value for λ restricts the parameters
to smaller values, giving a less flexible model which will try to find simpler
patterns in the data, which in turn reduces the chances of overfitting [32].

6.7 Learning Rate Scheduling

The learning rate η plays a critical role in the iterative Stochastic Gradient
Descent procedure used to update model parameters during training, influen-
cing the size of the steps taken to minimize the cost function. To simplify
the process of selecting an appropriate learning rate we employ a learning
rate scheduler. This scheduler dynamically adjusts the learning rate during
the optimization, enhancing both performance and training efficiency.

Various methods can be used to make the learning rate adaptive. A com-
mon approach involves starting with a higher learning rate at the beginning
of training. This allows for larger steps during the initial phases, speeding
up process. As training progresses and the model approaches convergence,
smaller steps are taken to fine-tune the parameters near the minimum, pre-
venting overshooting. This strategy balances rapid initial convergence with
meticulous fine-tuning later on [33].
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We have used the PyTorch’s built-in ReduceLROnPlateau 1. This learning
rate scheduler adjusts the learning rate when the change in the loss has been
under a specific threshold for a certain number of epochs. In other words, the
learning rate remains unchanged as long as it enhances model performance
but is reduced when results starts converging.

1https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.
ReduceLROnPlateau.html

https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html
https://pytorch.org/docs/stable/generated/torch.optim.lr_scheduler.ReduceLROnPlateau.html


Chapter 7

Localizing Single Current
Dipole Sources

In this chapter, we will delve into the performance of the fully connected
feed-forward neural network (FCNN) in solving the inverse problem. Our
primary focus centers on investigating whether the accuracy of the neural
network can be linked to the precise positioning and orientation of the current
dipoles it is tasked with identifying or if the performance remains consistent
across all brain regions and structures. Moreover, we shall employ a range of
diverse error metrics to rigorously evaluate the performance of the network
in this task.

7.1 EEG Sensitivity of Dipole Location and Orient-
ation

According to Ness et al. (2021) [16], EEG signals demonstrate limited
sensitivity to minor shifts in the precise location of neural current dipoles.
This insensitivity can be attributed to the considerable separation between
EEG electrodes and cortical neural sources compared to the dimensions of
individual neurons and the thickness of the human cortex. Before evaluating
the overall performance of our network, our investigation seeks to ascertain
whether neighboring neural dipoles yield nearly indistinguishable EEG signals
or exhibit noticeable distinctions. This exploration provides valuable insights
into the network’s ability to handle the complexity of the problem. If two
dipoles located only 1 mm apart yield nearly identical results, it signifies a
commendable performance by the network if it is able to distinguish at this
scale. We emphasize that in this context, ”neighboring” is defined based on
the resolution of the NYHM. To assess the similarity in EEG signals between
nearby dipoles, we employ the Pearson correlation coefficient.

The Pearson correlation coefficient is a statistical measure that quantifies
the relationship between two variables. It is defined as the ratio of the

37
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covariance of the two variables to the product of their standard deviations.
The coefficient ranges from -1 to 1, with -1 denoting a perfect negative
correlation and 1 indicating a perfect positive correlation. A coefficient of 0
signifies the absence of a linear relationship between the variables [34].

In Figure 7.1, we present EEG signals corresponding to dipoles located
in close proximity within the New York Head Model’s cortical matrix. The
upper panel illustrates the two distinct EEG signals originating from the blue
and green dipoles, while the lower panel shows the EEG signal corresponding
to the blue and red dipoles. The blue central dipole is positioned between
the green and red dipoles, located at the leftmost and rightmost positions
in the NYHM cortical matrix, respectively. The Euclidean distance between
the blue and green dipoles is 0.914 mm, while the blue and red dipoles are
separated by 1.926 mm.

In Figure 7.1, the EEG signals of the blue and green dipoles exhibit
significant overlap, with a high correlation coefficient of 0.966, indicating a
strong positive relationship. In contrast, the EEG signals of the blue and
red dipoles show less resemblance, with a correlation coefficient of 0.695,
indicating a weaker linear relationship.

The observed variability in the correlation between the EEG signals
of neighboring dipoles can be attributed to differences in the orientation
of their respective dipole’s normal vectors. The observed smaller value in
the correlation matrix between the red and blue dipole, in contrast to the
higher correlation between the blue and green dipole, is related to the more
pronounced angular disparity in the normal vector alignment between the red
dipole and the blue dipole. In contrast, there is a relatively smaller angular
difference observed between the green dipole’s normal vector and that of the
blue dipole.

The distinct differences in the orientation of normal vectors arise from
constraints imposed during data generation, which are designed to ensure
that dipole orientations remain perpendicular to the complex folding of the
cerebral cortex. As a result, neighboring dipoles within the NYHM possess
distinct normal vectors, potentially leading to significantly different simulated
EEG signals.

Furthermore, it is important to note that the separation between the red
dipole and the blue dipole is somewhat greater than the distance between the
blue and green dipoles. This variation in separation can be attributed to the
specific construction of the NYHM cortex, as established by its developers.

In conclusion, these findings underscore the intricate nature of EEG
signals, where the correlation analysis reveals varying degrees of similarity
for neighboring dipoles. In some scenarios, it becomes evident that the linear
relationship between EEG signals originating from distinct dipoles is relatively
small, suggesting the network’s capability to separate the EEG signals. In
other instances, the EEG signals exhibit significant similarity, which may
pose a challenge for the network in distinguishing them.
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Figure 7.1: EEG signals plotted against electrode number for three neighbor-
ing dipoles with normal vectors (-0.60, 0.11, 0.79), (-0.75, -0.15, 0.64), (-0.21,
0.32, 0.93) and positions (-12.04, 34.71, 60.07), (-12.37, 33.92, 59.75), (-10.24,
34.61, 60.75). The correlation coefficient between the blue and green dipole
is 0.97, while it is 0.70 for the blue and red dipole. The origin is defined as
the center of the cortex.

7.2 Performance Evaluation

Based on the findings of Akalin Acar and Makeig 2013 [1] and Biasiucci
et al. 2019 [2], source localization using spherical head models typically
yields localization errors in the range of 10-30 mm. On the other hand,
the utilization of modern subject-specific head models is expected to result
in errors of less than 10 mm. The New York Head Model falls within the
second category, and we will, therefore, let 10 mm serve as our guideline
when evaluating the network’s predictions.

Nevertheless, we emphasize that our primary objective is not necessarily
the development of a flawless neural network for immediate clinical applica-
tions. Our aim is to ascertain whether a simple fully connected feed-forward
neural network can effectively discern patterns and approximate dipole po-
sitions based on the simulated EEG data, collected using LFPy and the
integrated Head Model, as outlined in Chapter 3.

Within this section, we will employ various techniques to assess the
network’s performance. This evaluation will include tracking the loss during
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training, utilizing different sets of error metrics to calculate the average
prediction error, and determining the distribution of test samples falling
within predefined threshold values.

7.2.1 Results from Training and Validation

The FCNN underwent 500 epochs of training, and the convergence of the mean
Euclidean distance (MED) is illustrated in Figure 7.2. The entire training
process, encompassing data loading and preprocessing, took approximately
1.5 hours, with each epoch having an average training duration of about 11.00
seconds.

The validation loss exhibited a noticeable stabilization trend after approx-
imately 350 epochs. At this point, the training could have been terminated.
However, we chose to continue training for the full 500 epochs to confirm
that no further improvements in validation data performance were attainable
and to emphasize the network’s full convergence.

Figure 7.2 visually demonstrates a clear reduction in loss, indicating
the network’s effective learning of patterns in the data. Validation loss
stabilization becomes evident around the 350-epoch mark, while the training
loss continues to decrease until it stabilizes between 400 and 500 epochs. This
observation suggests that the model did not demonstrate signs of overfitting,
as the validation loss remained constant, and the training loss ultimately
stabilized. At epoch 500, the MED training loss is equal to 0.317 mm, while
the MED validation loss measures 1.781 mm.

Furthermore, Figure 7.3 offers insight into the evolution of validation
loss for the individual target coordinates—x, y, and z—as plotted against
training epochs. This figure reaffirms that all three target coordinates were
equally weighted, resulting in somewhat similar loss values for each. Addi-
tionally, it illustrates that the minor fluctuations in loss observed before 350
epochs disappear beyond this threshold, indicating a stable loss for all three
target coordinates. This observation aligns with the trend of validation loss
stabilization observed at approximately 350 epochs, as shown in Figure 7.2.

7.2.2 Results from Testing and Accuracy Scores

Upon achieving full training convergence, a neural network demonstrates
its capacity to discern essential patterns within the training data set, op-
timizing its parameters to minimize the cost function. To further assess
the performance of the FCNN, our attention turns to an independent test
data set, comprising 20,000 samples. This data set remains entirely shielded
from the network during the training process, serving as an unbiased and
objective gauge of the model’s predictive accuracy and its ability to generalize
effectively to novel, unseen data.

In order to comprehensively evaluate the neural network’s performance on
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Figure 7.2: Training- and validation MED loss for the fully connected feed-
forward (FCNN) neural network with 50,000 samples.

the untouched test data set and ensure the comparability of our results with
other models, we employ a diverse set of error metrics. In addition to the
primary metric of mean Euclidean distance used for assessing the accuracy
of the network’s predictions regarding the positions of current dipoles in the
cerebral cortex, utilizing the metrics of Mean Absolute Error (MAE), Mean
Squared Error (MSE) and Root Mean Squared Error (RMSE) are utilized in
order to evaluating the network’s performance with respect to distinct target
coordinates. This approach enables us to discern whether the network faces
greater challenges in predicting one dimension over others or if it consistently
maintains a uniform level of performance across all coordinate dimensions.

The MAE metric provides a direct measure of the magnitude of the
difference between predicted coordinates (x, y, or z) and their true val-
ues. MAE offers a straightforward and easily interpretable indicator of the
model’s prediction accuracy for each dimension. It allows us to ascertain
whether the network consistently delivers precise predictions for all target
values or whether variations in accuracy manifest across different coordinate
dimensions.

The MSE on its side introduces a squaring process that significantly
penalizes larger errors. MSE measures the variance of residuals in squared
units. While this feature emphasizes and addresses substantial error spread
within the predictions, it does present values in squared units of the target
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Figure 7.3: Validation MED loss for the separate target values; the x-, y-,
z-coordinate.

values. This can pose a challenge when assessing individual coordinate
components.

To mitigate the squared unit issue associated with MSE while still con-
sidering error spread, RMSE is included in the evaluation framework. RMSE
measures the standard deviation of residuals, balancing the emphasis on
significant errors while presenting results in units that align with the target
coordinate values.

Both MSE and RMSE exhibit a higher sensitivity to larger errors, as they
penalize substantial deviations more strongly when calculating the average
squared differences between predicted and actual values. This contrasts with
the MAE metric, which treats all errors, regardless of size, on an equal footing.
Consequently, a high MSE or RMSE signifies a more extensive error spread,
wherein predictions substantially deviate from the true values. Conversely, a
lower MSE or RMSE indicates that prediction errors are less dispersed, and
most predictions closely align with the true values. Smaller MSE and RMSE
values signify a superior model fit and lower prediction error.

Position Spesific Performance

The MED between the network’s predictions on the unseen test data and
the true target values measures 1.33 mm. It is worth noting that this error
is smaller than the one observed in the validation data, mainly due to the
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Euclidean Distance for Test Samples
ED <5 mm ED <10 mm ED <15 mm
99.735 % 99.995 % 100%

Table 7.1: ED between targets and predictions of test samples;
Predicting Single Dipole Location with a FCNN
Performance of the network on the test data set comprising 20,000 samples,
presented as the percentage of samples falling within ED thresholds of 5 mm,
10 mm and 15 mm respectively.

absence of noise in the test data. This high level of precision is further
exemplified by the statistics presented in Table 7.1. All predictions for the
test samples exhibit an Euclidean distance of less than 15 mm, signifying a
consistently high level of accuracy. Furthermore, an impressive 99.995% of
the predictions fall within an Euclidean distance of less than 10 mm, and
97.753% of the predictions achieve an Euclidean distance of less than 5 mm.
This numbers indicate a notably high degree of precision.

Table 7.2 displays the results for various error metrics corresponding to
the network’s predictions. Beginning with the MAE values for the x, y, and
z-coordinates, we observe results ranging from 0.645 mm to 0.678 mm. These
findings indicate that, on average, the network’s predictions exhibit errors
smaller than 1 mm in each coordinate.

The MSE values range from 0.747 mm2 to 0.824 mm2. The smaller MSE
values signify high performance, with all values comfortably below a 1 mm2

threshold. This finding indicate minimal error spread and few significant
deviations between predicted and true coordinates.

RMSE values range from 0.864 mm to 0.908 mm. It is important to note
that RMSE is slightly higher than the corresponding MSE values due to the
square root operation involved. However, all RMSE values remain below
the 1 mm threshold, signifying that the predictions maintain a limited error
spread, typically staying within 1 millimeter of the actual values.

For an assessment of overall positional errors, the table holds the averaged
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean
Squared Error (RMSE) across the three spatial coordinates. The resulting
error values reveal minimal deviations, yielding a total MAE of 0.662 mm, a
total MSE of 0.782 mm2, and a total RMSE of 0.884 mm. Notably, among
the three coordinates, the z-coordinate exhibits the highest errors across
all metrics. This observation suggests that the network might encounter
somewhat greater challenges in accurately predicting the z-coordinate of the
dipole source.

To further demonstrate the network’s performance, we examine a ran-
domly selected sample from the test data set. For a dipole located at x = 66.5
mm, y = -26.4 mm, and z = 41.9 mm, the network predicts the coordinates
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Error Metrics for Target Values
x-coordinate
[mm]

y-coordinate
[mm]

z-coordinate
[mm]

Position
Error [mm]

MAE 0.645 0.665 0.678 0.662
MSE 0.747 0.775 0.824 0.782
RMSE 0.864 0.880 0.908 0.884

Table 7.2: Evaluation of the FCNN performance utilizing different
Error Metrics.
FCNN performance on test data set consisting of 20,000 samples. The errors
are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE).

to be x̃ = 66.9 mm, ỹ = -26.1 mm, and z̃ = 41.7 mm. The predicted values
closely align with the true values, exhibiting a minimal error of 0.4 mm in the
x-coordinate, 0.3 mm in the y-coordinate, and 0.2 mm in the z-coordinate,
resulting in a total Euclidean distance of 0.54 mm. In Figure 7.4, we have
illustrated the network’s predicted position r of the dipole alongside the
target position r̃.

7.2.3 Performance at Different Brain Structures

Figure 7.5 presents the distribution of Euclidean Distances for various dipole
locations within the New York head model cortex matrix. The figure offers
valuable insights into the spread of errors across different regions of the cortex,
with three cross-sections—front, top, and side—provided for examination.
It is important to note that these cross-sections unavoidably include data
points from the training, validation, and test data sets, making these res-
ults indicative of the network’s overall performance rather than real-world
scenarios. However, the analysis aims to examine the distribution of errors
and identify potential areas where the network’s performance may be weaker,
helping to gain valuable insights into its predictive capabilities.

The Euclidean Distance (ED) values presented in the panels are mostly
below 1 mm, which indicates a high level of accuracy in the network’s
predictions. These results are promising and demonstrate the network’s
ability to estimate dipole locations with a high level of precision. The
panels also provide an opportunity to evaluate whether the network exhibits
differential performance for dipoles located in a gyrus as opposed to those in
a sulcus.

Initially, it might be assumed that EEG signals originating from dipoles in
the sulcus present greater challenges for the network’s analysis and prediction.
This assumption is based on the deeper placement of dipoles within a sulcus
compared to those in a gyrus, as well as the potential complexities introduced
by the dipole’s orientation within the cortex. However, upon closer examina-
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Figure 7.4: The network’s predicted position r of a dipole within the test
data set and the target position r̃. The target dipole is marked in orange and
the predicted position is marked by a red dot.
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tion of Figure 7.5, it becomes evident that the distribution of ED values does
not exhibit a clear correlation with the brain’s structural characteristics. The
ED values seem to vary across different regions, suggesting that the network’s
performance is not notably affected by the differentiation between gyri and
sulci. Surprisingly, the Mean Euclidean Distance for all data points where
dipoles are located in a sulcus is measured to be 1.68 mm, which is even
smaller than for dipoles in a gyrus, where the Mean Squared Error measures
1.70 mm. This observation further challenges the initial assumption and
indicates that the network demonstrates exceptional accuracy in predicting
dipole locations, irrespective of their placement within the cortex.

Further, the panels reveal a slightly higher concentration of data points
with red marks in the deeper locations within the cortex, indicating higher
ED values. This observation is consistent with the slightly higher error values
observed for the z-coordinate, as presented in Table 7.2, and aligns with the
theory related to the nature of the inverse problem. Deep brain structures
often generate weaker EEG signals, making their precise detection challenging.
Hence EEG patterns for dipole sources do not cause substantial changes in
the pattern of electrical potential recordings; instead, they primarily influence
the magnitude of the signals, which may potentially challenge the network’s
ability to discriminate deep sources from each other. Said with other words,
the presence of higher ED values in deeper cortical regions might be attributed
to the decreasing signal-to-noise ratio of EEG signals originating from these
cortical areas.

In conclusion, the detailed analysis of the network’s performance through
cross-sectional representations provides valuable insights into its predict-
ive capabilities. The consistently low ED across different cortical regions
demonstrate the network’s remarkable accuracy in estimating dipole locations.
Moreover, the absence of a clear correlation between ED and brain structural
characteristics suggests that the network performs robustly across diverse
cortical structures.
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Figure 7.5: Different cross-sections of the cortex from the New York head
model, seen from front, top and side. Each scatter point represents a possible
position in the cortex matrix. The color of the fill in each circle indicates
the Euclidean distance (ED) between the prediction and true value for the
position of the specific dipole.
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Chapter 8

Convolutional Neural Network
Approach for Localizing Single
Dipole Sources

In this chapter, we explore the utilization of a Convolutional Neural Network
(CNN) for the task of localizing simple current dipoles from EEG recordings.
The CNN is a type of feed-forward neural network that excels at learning
spatial features from images. The objective of this investigation is to assess
whether leveraging spatial information in EEG recordings as images can
enhance a neural network’s ability to analyze EEG data and yield more
accurate predictions for localizing the sources generating the neural signals.

8.1 Adjusting the Data Set

Convolutional Neural Networks are well-known for their effectiveness in
processing image data. Images share an intrinsic structure. Commonly they
are stored as three-dimensional arrays; with an width axis, height axis and
what is commonly referred to as a channel axis. In image data, the number of
channels a pixel has determines how many values are needed to describe its
color. A standard RGB image holds three distinct channels used to specify
the color of the pixel, while for a grayscale image, there is only one channel
used to specify the brightness of that pixel.

In order to utilize CNNs for EEG data analysis, we perform an interpola-
tion process on the original data set presented in Chapter 3. Interpolation is
a mathematical technique that estimates values between known data points,
effectively filling in the gaps by providing approximations for unobserved data
points. By applying interpolation to our EEG data, we create a representa-
tion resembling the structure of an image. This transformation converts the
original one-dimensional EEG data into a regular 2D grid format, imparting
image-like characteristics while preserving spatial structures.
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The resulting data is represented as a 20x20x1 array, mirroring the
structure of a grayscale image. Within this array, each element stores the
intensity value of the EEG potential recorded at a specific spatial location.
Unlike traditional grayscale images where pixel values convey color intensity,
in our context, each pixel’s value signifies the intensity of the recorded EEG
signal at the corresponding position. This representation may empower the
CNN to leverage the spatial arrangement of the EEG data, uncover relevant
patterns, and discern local relationships, similar to the way CNNs process
conventional image data.

By preserving these spatial structures, we hope for the network to effect-
ively utilize local relationships among neighboring recording electrodes. For
instance, when one electrode records a high EEG value, the inherent data
patterns suggest that nearby electrodes should also register relatively high
EEG values due to their close spatial proximity. These spatial relationships
may expedite the network’s training compared to the simpler fully connected
feed-forward neural network (FCNN), as it efficiently captures meaningful
representations by harnessing these inherent patterns.

Figure 8.1 illustrates the process of interpolation. The right panel shows
scatter plots of samples from the original data, where the EEG data is plotted
at corresponding electrode locations at the scalp seen from above (xy-plane).
Each measuring electrode is depicted as a circle holding the EEG recording
at that specific electrode. The middle and left panels display the contour
plots of the original EEG data and the interpolated data, respectively. The
contour plot of the interpolated data illustrates how the input data for the
convolutional neural network is organized in an image-like manner.
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Figure 8.1:
Right Panel: EEG measures for three different samples, expressed in micro-
volts (µV). Each sample represents an EEG recording at specific electrode
positions.
Middle and Left Panels: Illustration of the interpolation of the EEG data
into a two-dimensional matrix. The interpolated data represents the trans-
formation of original electrode recordings into a regular 2D grid, effectively
converting the one-dimensional EEG data into an image-like format. The
contour plots visualize the spatial distribution of EEG potential intensities,
with each point in the matrix corresponding to a specific electrode location.

8.2 Layers in Convolutional Neural Networks

Convolutional Neural Networks draw inspiration from the information pro-
cessing mechanisms in the visual cortex of the brain. In the visual cortex,
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neurons respond selectively to stimuli within specific regions known as recept-
ive fields. This intricate ability allows neurons to effectively capture spatial
correlations found in natural images. In the realm of CNNs, this selective
response is approximated mathematically using convolutional operations,
copupled with pooling layers and fully connected layers [26].

The selective processing observed in the visual cortex is imitated in CNNs
by establishing local connections between nodes in a convolutional layer
and a subset of nodes from the preceding layer. This stands in contrast to
fully connected feed-forward neural networks, where each node connects to
every node in the preceding layer. This selective approach enables CNNs to
specialize in learning and capturing localized features from input data, such
as edges or textures.

A convolution is performed using a filter, often described as a small matrix
with learnable parameters. Starting from the top-left corner of the input, a
filter is systematically positioned over a specific region, depending on its size.
At each location, one computes the element-wise product between the filter
and the corresponding region of the input data, subsequently summing these
products to yield a single value representing the convolution result at that
position. After each computation, the filter shifts to the next position. Once
the convolution operation is performed at every possible pixel location, the
output elements together constitute the activation map. The convolutional
processes is repeated for an optional number of filters, generating a new
activation map for each filter. Given our EEG input data with dimensions of
20x20x1, using six 5x5 convolutional filters yields an output with dimensions
of 16x16 and six channels. In essence, this process reduces the spatial
dimensions of the image data while increasing its depth. The convolutional
process is visually depicted in Figure 8.2.
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Figure 8.2: Illustration of the convolutional process. The figure has been
adapted from Lecture Notes in the course IN5400 from 2021, with attribution
to Andreas Kleppe [35].

Following each convolution operation, it is common practice to apply
an activation function to each element of the output independently. In our
network, we apply the ReLU activation function, as discussed in detail in
Chapter 4. The mathematical formulation for each element in the output
activation map follows the same structure as in FCNNs:

a = act(wTx+ b) (8.1)

Here, w represents the learnable coefficients within the convolutional filter, x
denotes the input, b stands for the bias, act is the activation function, and a
symbolizes the output activation map. Importantly, the nature of w differs
from the weights in FCNNs; it represents a local spatial region instead of the
entire input. Furthermore, w is reused across all spatial regions, functioning
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as a pattern detector applied in a position-independent manner. Consequently,
convolutional layers entail considerably fewer trainable parameters compared
to their fully connected counterparts, which are prevalent in FCNNs [36].

Following the convolutional layers commonly is the pooling layers. Pooling
operations reduce the size of activation maps by the use of a max pooling
function that in some sense works very much like a discrete convolution [37].
The max pooling function replaces the linear combination in the convolutional
layers with a strided maximum filtering. This method simply chooses the
maximum value inside the filter spatial region. By sliding a pooling filter of
optional size with a specified stride, which determines how much the filter
shifts over the input, the highest pattern detector response over the field
of view is selected. In this way, spatial information is removed, and the
dimension is further decreased.

8.3 Architecture, Hyperparameters and Training

The first layer in our constructed CNN, is a 2D convolutional layer. This layer
takes an input image with one channel and applies six distinct filters, each of
size 5x5. These filters are responsible for learning specific spatial patterns
and detecting relevant features within the input image. As a result of this
convolutional operation, the output tensor’s spatial dimensions reduce to
16x16, and the depth becomes 6, signifying the extraction of 6 distinct feature
maps. Following the convolution layer, a Max Pooling layer, with kernel
size 2x2 and stride 1 is employed. This pooling layer aims to downsample
the spatial dimensions of the feature maps while preserving the most salient
features. The pooling operation reduces the spatial resolution to 15x15, and
the depth remains unchanged at six. Next, a second 2D convolutional layer,
takes the six-channel output from the previous pooling layer. This layer
employs 16 filters of size 5x5, extracting a more complex hierarchy of features
from the input data. The output tensor from this layer has spatial dimensions
of 11x11 and a depth of 16, signifying the presence of 16 distinct feature maps.
Following another Max Pooling layer is employed. Similar to the previous
pooling operation, this layer further downsamples the spatial dimensions
while preserving the depth, resulting in a feature map size of 10x10 with 16
channels. Further, the output from the last pooling layer is flattened into
a one-dimensional vector. This process collapses the spatial dimensions of
the feature maps, resulting in a 1D tensor of size 1600 (10x10x16). After
flattening, the network proceeds with three fully connected, dense, layers.
These layers are responsible for incorporating global context and making
high-level abstractions from the learned features. The first fully connected
layer, consists of 120 nodes, followed by 64 nodes. Lastly, we have the output
layer with three output nodes, corresponding to the three coordinates of
the source generating the EEG signal. In Figure 8.3, we have provided an
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illustration of the architecture of the Convolutional neural network.
ReLU activation function is applied after each convolutional and pooling

layer, as well as between the fully connected layers. This ReLU activation
facilitates the network’s ability to capture and propagate complex, nonlinear
relationships in the learned features. However, in the output layer, a linear
transformation is employed without the use of an activation function in order
to enable the neural network to provide direct and unconstrained predictions
for the x-, y-, and z-coordinates of the desired dipole source.

Throughout the convolutional network, the weights of the fully connected
layers are initialized using the Xavier normal distribution, a method that was
also employed in the design of the simple FCNN, as described in Chapter
4. This initialization strategy contributes to the convergence and training
stability of the network, ensuring it effectively learns and generalizes from
the provided EEG data.

The training process for the CNN follows techniques similar to those
applied for the simple FCNN, as extensively detailed in Chapter 5. To ensure
effective learning and optimal predictions, we employ stochastic gradient
descent with momentum as the optimizer, alongside a customized cost function
based on the mean Euclidean distance. During training, mini-batches of size
32 are utilized to introduce data variability and prevent the network from
converging to local minima. The CNN also maintains a learning rate of 0.001,
weight decay of 0.5 and a momentum of 0.35, consistent with the settings
used for the FCNN. To facilitate convergence, a learning rate scheduling
approach is adopted, gradually reducing the learning rate during training to
strike a balance between rapid initial convergence and fine-tuning in later
stages. Following the training process, a rigorous evaluation of the CNN’s
performance is conducted on an independent test data set, providing an
unbiased assessment of its predictive accuracy and its ability to generalize to
novel data.

8.4 Performance Evaluation

Figure 7.2 illustrates the convergence of the mean Euclidean distance loss.
The neural network underwent 600 training epochs, with each training epoch
lasting approximately 25 seconds. This resulted in a total training time of
approximately 4 hours. It is important to note that this duration encompasses
data loading and preprocessing steps. Notably, the CNN required longer
epoch times compared to the previously studied FCNN. This difference can
be attributed to the additional data preparation and interpolation required
to suit the CNN’s architecture. In contrast, the simpler FCNN had quicker
epochs since its data was already in the desired format, with preprocessing
mainly involving data scaling and splitting.

Figure 8.4 reveals that both training and validation losses appeared
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Figure 8.3: Architecture of the Convolutional Neural Network for localizing
single current dipoles.
The visualization has been created using the NN-SVG tool, which was adapted
from LeNail (2019) and is licensed under the Creative Commons Attribution
4.0 International License [38].

to stabilize between 400 and 600 epochs. Prior to this phase, there were
noticeable fluctuations in validation loss, which gradually subsided as the
network approached convergence. The figure suggests that the model did not
exhibit signs of overfitting, as both training and validation losses consistently
decreased. At the final epoch, the training loss measures 1.460 mm, while
the validation loss stabilizes at 2.280 mm.

Additionally, Figure 8.5 provides insights into the evolution of validation
loss concerning individual target coordinates across training epochs. This
figure offers information similar to what was observed for the FCNN, indicat-
ing that all individual target coordinates carried a roughly similar weight,
resulting in comparable loss values for each coordinate. Furthermore, it
demonstrates that the fluctuations in loss observed before the 400th epoch
disappeared beyond this point, signifying stabilization in loss across all three
target coordinates. Notably, the x-coordinate exhibited the lowest loss, fol-
lowed by the y-coordinate, while the z-coordinate stabilized at the highest
loss, consistent with observations from the FCNN. We emphasize, however,
that these differences are small and may not be statistically significant in the
context of our primary interest.

The mean Euclidean distance of the CNN’s predictions on the unseen test
data is measured at 1.80 mm. In Table 8.1, we have presented the percentages
of samples falling within various Euclidean distance threshold values. Notably,
the network exhibits outstanding predictive accuracy, with more than 99.993%
of the samples within the test data set having predictions accurate to within
15 mm. Furthermore, the network achieves a performance exceeding 99.815%
for the 10 mm threshold Euclidean distance values. Approximately 98.030%
of the predictions exhibit an Euclidean distance smaller than 5 mm, a notable
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Figure 8.4: Training- and validation MED loss for the convolutional neural
network with 50,000 samples and tanh as activation function.

achievement that places the CNN’s performance just slightly behind the
results obtained with the simple FCNN.

Euclidean Distance for Test Samples
ED <5 mm ED <10 mm ED <15 mm
98.030 % 99.815 % 99.993%

Table 8.1: ED between targets and predictions of test samples;
Predicting Single Dipole Locations with a CNN
Performance of the network on the test data set comprising 20,000 samples,
presented as the percentage of samples falling within ED thresholds of 5 mm,
10 mm and 15 mm respectively.
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Figure 8.5: Training- and validation MED loss for the convolutional neural
network with 50,000 samples and tanh as activation function.

Table 8.2 presents the results for various error metrics associated with the
network’s predictions. The MAE values for the x, y, and z coordinates fall
within a narrow range, from 0.864 mm to 0.919 mm. These findings indicate
that, on average, the network’s predictions exhibit an error of less than 1 mm
in each coordinate, a level of precision consistent with that achieved by the
FCNN.

The MSE values, ranging from 1.579 mm2 to 1.638 mm2, are slightly
higher than those observed with the FCNN. However, these values are still
relatively small, signifying high performance. The marginally higher MSE
values might indicate a slightly broader spread of errors compared to the
previous FCNN. To further assess accuracy, we computed the RMSE values,
which range from 1.257 mm to 1.280 mm.

Among the three coordinates, the z-coordinate exhibits the highest MAE.
This observation suggests that the network faces greater challenges in accur-
ately predicting the z-coordinate of the dipole source, as indicated earlier
in Figure 8.5. However, the y coordinate holds the highest MSE, indicating
slightly more significant deviations between predicted and true coordinates
compared to the other target coordinates.

For an overall assessment of positional errors, the table provides the aver-
age values for MAE, MSE, and RMSE across the three spatial coordinates.
These averaged error values remain small, reinforcing also the convolutional
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neural network’s precision in predicting dipole locations for the inverse prob-
lem.

Error Metrics for Target Values
x-coordinate
[mm]

y-coordinate
[mm]

z-coordinate
[mm]

Position
Error [mm]

MAE 0.0.864 0.911 0.919 0.898
MSE 1.579 1.710 1.638 1.643
RMSE 1.257 1.308 1.280 1.282

Table 8.2: Evaluation of the CNN’s performance utilizing different
Error Metrics.
CNN performance on test data set consisting of 20,000 samples. The errors
are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE).

To assess the network’s performance, we examine a prediction for the
same sample within the test set, as we did when evaluating the FCNN. For
the dipole located at x̃ = 66.5 mm, ỹ = −26.5 mm, and z̃ = 41.9 mm, the
network predicts the coordinates to be x = 66.4 mm, y = −27.3 mm, and
z = 41.5 mm. The predicted values closely align with the true values, showing
an error of 0.1 mm in the x-coordinate, 0.8 mm in the y-coordinate, and 0.4
mm in the z-coordinate, resulting in a Euclidean distance of 0.99 mm. In
Figure 8.6, we have plotted the predicted position r of the dipole alongside
the target position r̃.
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Figure 8.6: The CNN’s predicted position r of a dipole within the test data
set and the target position r̃ The target dipole is marked in orange and the
predicted position is marked by a red dot.



Chapter 9

Localizing Two Current Dipole
Sources

In this chapter we want to explore the FCNN’s and the CNN’s ability to
predict the positions of two individual dipole sources located at different
regions within the cortex, jointly contributing to the EEG signals recorded
by the scalp electrodes. These extensions aim to comprehensively evaluate
the networks’ adaptability and generalization to more intricate problems that
might be of interest in real-world applications.

9.1 Adjusting Data Set, Architecture and Hyper-
parameters

To begin, we generate EEG data to represent the electrical signals originating
from two distinct dipoles, with positions r1 and r2, localized within the
New York Head cortex. The locations of the dipoles are randomly selected
from the available positions, allowing for the possibility of neighboring dipole
placements within the cortex. Similar to our approach with single dipoles
in the previous problem, we maintain equal magnitudes of 1 nAm, for every
dipole. The collection of EEG data is done for 70,000 samples, where 40,000
will serve as training data, 10,000 as validation data and 20,000 as test data,
equal to the splitting procedure as done for the single dipole problem.

In Figure 9.1, we showcase a randomly selected sample from the adjusted
data set, illustrating the simulated EEG data generated by two dipoles. The
fully connected feed-forward neural network (FCNN) directly employs this
adjusted data set, while the convolutional neural network (CNN) applies
interpolation techniques to adapt the data to its architecture.
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Figure 9.1: EEG data for a randomly selected sample from the data set
containing two dipole sources. These dipoles are positioned at random
locations within the cerebral cortex. The EEG measurements are visualized
from different perspectives: from above the skull in the xy-plane, from the
front in the xz-plane, and from the side in the yz-plane. The EEG electrode
locations are represented as filled circles, with the color fill indicating the
amplitude of the measured signal at each electrode. The positions of the
current dipole moments are marked with yellow stars.

In this more complex problem, the total number of target values has
increased to six, covering the x-, y-, and z-coordinates for the location
of each dipole. However, the network architecture still maintains its 231
input nodes. The number of hidden layers and nodes, the use of dropout
techniques, network weight initialization, choice of activation functions, and
other hyperparameters largely mirrors those employed in the single current
dipole problem for both networks. However, one notable adjustment has been
made to the weight decay value in the FCNN network. This hyperparameter
has been fine-tuned to 0.1, as this change resulted in a slightly enhanced
performance compared to the previous setting of 0.5 used in the single dipole
problem.

9.2 Customized cost function

Our new objective is to build a model capable of accurately predicting the
positions of not just one but two dipoles contributing to an EEG signal. To



9.3. PERFORMANCE EVALUATION USING THE FCNN 63

achieve this, we extend the mean Euclidean distance (MED) cost function
used in the previous problem for localizing single dipoles. The extended MED
function is represented as follows:

MED =
1

N

N∑
i=1

m∑
j=1

√
(xi,j − x̃i,j)2 + (yi,j − ỹi,j)2 + (zi,j − z̃1,i)2. (9.1)

In this equation, the variable N denotes the total number of samples, while
m represents the number of dipoles under consideration. However, given that
our task involves localizing two distinct dipoles, our target vector encompasses
two sets of coordinates representing the positions of these dipoles that we aim
to predict. Consequently, the neural network also produces an output vector
containing two sets of coordinates. Conventional cost functions, including the
MED utilized for the single dipole problem, typically assume a one-to-one
mapping between the first set of coordinates in the target and the first set
of coordinates in the network’s output. This rigid mapping assumes the
order of these elements without flexibility. Such an approach may overlook
the possibility that the other permutation of coordinates may be the correct
mapping.

The primary task of our neural network is to discern patterns and learn
from the input EEG data. Without explicit instructions, the network cannot
inherently determine the correct order in which to arrange the coordinates of
the two dipoles in its output vector (i.e., which should come first or second).
Neglecting this potential permutation ambiguity could lead to suboptimal
mappings, subsequently affecting the weight updates during loss calculation.

To overcome this challenge, we instruct the customized cost function to
systematically explore all possible permutations of target and output vectors.
This approach ensures that all valid combinations are considered, allowing
us to determine which permutation yields the minimum loss. During each
epoch, the network calculates the loss (Equation 9.1) for each permutation,
ultimately selecting the permutation that results in the smallest loss. This
process is repeated for every epoch, facilitating more precise weight updates
and adaptation. To validate the intended functionality of the customized cost
function, we have developed several unit tests. This customized cost function
is designed to accommodate an arbitrary number of dipoles.

9.3 Performance Evaluation using the FCNN

In Figure 9.2, we display the training and validation mean Euclidean distance
loss as a function of training epochs. Our network underwent 800 training
epochs, with each lasting approximately 27 seconds. It is noteworthy that the
validation loss ceased to improve significantly between 200 and 300 epochs,
suggesting that training could have been terminated before reaching 800
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epochs. The training loss also plateaued after 400 epochs, demonstrating no
signs of overfitting. Both training and validation losses exhibited considerable
fluctuations until reaching epoch 190. At epoch 191, the learning rate was
reduced to 0.0002, resulting in a significant decline of the validation loss and
eliminating further fluctuations. The validation loss eventually stabilized at
a value of 18.71 mm by epoch 800, starting from an initial loss of 105.90 mm.
We emphasize that this loss represents the mean Euclidean distance for two
dipoles. If we want to calculate the mean Euclidean distance for a single
dipole alone, we would need to divide this measure by 2, as we will be doing
in the results presented from here.
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Figure 9.2: Training and validation loss for the FCNN, predicting two current
dipole sources, as function of epochs.

The mean Euclidean distance between predicted and target dipole loc-
ations within the EEG test data containing no noise, originating from two
current dipoles is 17.41 mm. This indicates that the average error for a single
dipole’s position is 8.71 mm. Table 9.1 provides an evaluation of the model’s
accuracy concerning the Euclidean distance (ED) (averaged over the two
dipoles in each sample) between predicted and target dipole positions within
the test data set. The FCNN demonstrates an accuracy of less than 15 mm
for 90.85% of the samples in the test data set. However, as the ED threshold
becomes stricter at 10 mm and further at 5 mm, the accuracy decreases to
73.06% and 19.00%, respectively. To visualize the distribution of localization
errors across the data set, Figure 9.3 presents a histogram of the ED between
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Euclidean Distance for Test Samples
ED <5 mm ED <10 mm ED <15 mm
18.995 % 73.055 % 90.850 %

Table 9.1: ED between targets and predictions of test samples;
Predicting Two Dipole Locations with the FCNN
Performance of the FCNN on the test data set comprising 20,000 samples,
presented as the percentage of samples falling within ED thresholds of 5 mm,
10 mm and 15 mm respectively.

predicted and target positions for 20,000 test samples. The data is grouped
into bins with a width of 3 mm. Each bin represents the number of samples
with prediction errors falling within the specified interval. This histogram
reveals that the majority of predictions exhibit errors smaller than 15 mm.
Nonetheless, approximately 10% of the predictions fall outside this threshold.
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Figure 9.3: Histogram illustrating the Euclidean Distance for predicted
dipole locations, organized into bins of width 3 mm. The ED thresholds are
organized into bins of width 3 mm. Each bin holds the number of samples
with prediction errors that falls within the given interval.

Table 9.2 offers further evaluation of the model’s performance using
various error metrics. The MAE for the x-, y-, and z-coordinates of the
dipole positions are all below 5 mm, indicating precise predictions in these
dimensions. However, the MSE values, ranging from 36.98 mm2 to 40.83
mm2, are considerable higher than those observed in the single dipole case,
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signifying increased error spread in this more complex scenario. RMSE
averages at 6.243 mm, further confirming the model’s higher error spread.

Once again, we observe slightly higher errors in all metrics when predicting
the z-coordinate of the dipole source, suggesting that accurately predicting
this spatial coordinate remains a somewhat greater challenge for the FCNN
in this multi-dipole scenario.

Error Metrics for Target Values
x-coordinate
[mm]

y-coordinate
[mm]

z-coordinate
[mm]

Position
Error [mm]

MAE 4.156 4.379 4.485 4.340
MSE 36.977 39.122 40.834 38.978
RMSE 6.081 6.255 6.390 6.243

Table 9.2: FCNN: Evaluation of the network’s performance utilizing
different Error Metrics.
FCNN performance on test data set consisting of 20,000 samples. The errors
are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE).

For illustrative purposes, we examine a specific prediction from our model.
Consider a sample containing two dipoles located at r̃1 = (52.53, -16.25, 8.60)
and r̃2 = (-63.48, -45.06, 22.67) in units of mm. Our model predicts the
positions r1 = (55.95, -17.07, 13.43) and r2 = (-64.09, -48.73, 19.89) in units
of mm, respectively. This results in an Euclidean distance of approximately
5.98 mm between r̃1 and r1, and approximately 4.65 mm between r̃2 and r2.
Although this prediction exhibits a slightly larger localization error compared
to the single-dipole scenario, it still falls below the 1 cm threshold we aim
for. It is however important to note that this example represents one of the
better-performing predictions, as only 19% of the test data set’s predictions
falls below a precision of 5 mm. In Figure 9.4, we visualize the predicted
positions (r1 and r2) of the dipoles alongside the target positions (r̃1 and
r̃2).
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r̃1 = (52.53, -16.25, 8.60)

r1 = (55.95, -17.07, 13.43)

r̃2 = (-63.48, -45.06, 22.67)

r2 = (-64.09, -48.73, 19.89)

Example of Prediction for Location of Two Current Dipoles

Figure 9.4: Depiction of prediction and true value of the locations of two
current dipoles within a sample from the test data set.

9.4 Performance Evaluation using the CNN

We proceed to assess the performance of our Convolutional Neural Network
in the task of predicting the positions of two current dipoles within the NY
cortex. In Figure 9.5, we present the training and validation mean Euclidean
distance loss as function of training epochs. The CNN underwent a training
process, comprising 800 epochs, with each epoch requiring approximately
40 seconds to complete. This training duration represents a slight increase
compared to the FCNN. Analogous to our observations with the FCNN model,
we noted that the validation loss stabilized around epoch 300, suggesting that
an earlier termination of training could have been considered. The training
loss, much like the FCNN, reached a plateau after 400 epochs, indicating the
absence of overfitting. The learning rate scheduling, mitigate fluctuations in
the validation loss, where the learning rate was decreased to 0.0002 at epoch
250, leading to a decline in the validation loss and eventual stabilization
at a value of 19.65 mm by epoch 800. Notably, this final validation loss is
somewhat higher than that achieved by the FCNN.
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Figure 9.5: Training- and validation loss for the CNN, predicting two current
dipole sources, as function of epochs.

The mean Euclidean distance for the CNN between predicted and target
dipole locations within the EEG test data containing no noise, originating
from two current dipoles is 23.60 mm - giving an average positional error of
11.8 mm for each of two dipoles. Table 9.3 provides an evaluation of the CNN’s
accuracy, expressed in terms of the Euclidean distance between predicted
and target dipole positions for the test data set. The CNN demonstrates an
accuracy smaller than 15 mm for 78.87% of the test samples. However, as
the ED threshold is progressively tightened to 10 mm and subsequently to 5
mm, the accuracy diminishes to 50.46% and 7.55%, respectively. To provide
a visual representation of the distribution of localization errors, Figure 9.6
showcases a histogram of the ED between predicted and target positions for
20,000 test samples, organized into bins of width 3 mm. As lined out in
the previous result section for the FCNN each bin represents the number of
samples with prediction errors falling within the specified interval with range
3 mm. However, in contrast to the FCNN model, this histogram reveals
that while most predictions exhibit errors smaller than 15 mm, a significant
proportion experiences higher errors, with approximately 20% falling beyond
this threshold, which is a double from what we saw with the FCNN.

Table 9.4 provides a comprehensive evaluation of the CNN’s performance,
employing various error metrics. The MAE for the x, y, and z-coordinates
of the dipole positions averages at 5.40 mm, indicating accurate localization
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Euclidean Distance for Test Samples
ED <5 mm ED <10 mm ED <15 mm

7.545 % 50.460 % 78.870 %

Table 9.3: ED between targets and predictions of test samples;
Predicting Two Dipole Locations with CNN
Performance of the network on the test data set comprising 20,000 samples,
presented as the percentage of samples falling within ED thresholds of 5 mm,
10 mm and 15 mm respectively.
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Figure 9.6: Histogram illustrating the Euclidean Distance for predicted dipole
locations, organized into bins of width 3 mm.

predictions in these spatial dimensions. However, the MSE values, ranging
from 63.53 mm2 to 79.95 mm2, are higher than the corresponding values
observed in the FCNN model, suggesting a broader dispersion of errors. The
RMSE averages at 8.397 mm. Consistent with the single-dipole problem and
the FCNN’s performance in this multi-dipole problem, we observe somewhat
higher errors across all metrics when predicting the z-coordinate of the dipole
sources. This suggests that accurate z-coordinate prediction remains the
most challenging target. However, it is important to note that the increase
in errors is modest and should not be considered significant without further
investigation.
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Error Metrics for Target Values
x-coordinate
[mm]

y-coordinate
[mm]

z-coordinate
[mm]

Position
Error [mm]

MAE 5.395 5.534 6.265 5.731
MSE 63.533 64.433 79.952 69.306
RMSE 7.971 8.027 8.942 8.325

Table 9.4: CNN: Evaluation of the network’s performance utilizing
different Error Metrics.
CNN performance on test data set consisting of 20,000 samples. The errors
are measured using Mean Squared Error (MSE), Mean Absolute Error (MAE),
and Root Mean Squared Error (RMSE).



Chapter 10

Extending the Fully Connected
Feed-Forward Neural Network

So far we have seen how a simple FCNN and a compatible convolutional
neural network performs in the task of localizing both single and multiple
current dipoles. In this chapter, we will delve into how minor adjustments
in data design and network architecture can enhance the FCNN’s ability
to identify various attributes of current dipoles. We will introduce two
distinct extensions of the initial inverse problem, which will put the predictive
capabilities of the FCNN to the test in handling more complex scenarios.

The first case involves extending the data set by assigning individual
magnitudes to each dipole source. This extension presents the network with
the task of predicting both location of the source and its corresponding
magnitude. The second scenario transitions from predicting the location of a
single dipole source to estimating the center and radius of a population of
dipoles, while also determining the magnitude of the signal strength of the
entire dipole population.

In Section 10.1, we will outline the modifications made to the data and
network architecture that have been implemented to address both of the
problems. Transitioning to Sections 10.2 and 10.3, we will delve into the
specifics of data simulation tailored to each problem, in addition to evaluating
the network’s performance when dealing with these more complex problems.

10.1 Adjusting Data Set and Architecture

Before delving into the performance of the FCNN regarding the intricate
problems of predicting dipole strength and radius alongside location, we
will address important considerations that apply to both extensions. This
encompasses instructing the network on how to handle varying units in its
output, selecting an optimal cost function tailored to our specific problems,
and establishing criteria for assessing the network’s performance in the context
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of its intended tasks.

10.1.1 Scaling of Target Values

In the extended EEG inverse problems, the neural network is tasked with
predicting target values that vary significantly in their range and units. To
comprehend why this can be problematic, it is essential to revisit the purpose
of the cost function. Neural networks employ cost functions to quantify the
error between their predicted outputs and the target values. Depending on
the cost function utilized, this error is expressed in units related to the true
dimension of the target value. When a neural network has multiple outputs,
the overall cost is determined by the sum of distinct errors corresponding
to each output. However, adding together error terms with distinct units is
a non-intuitive task. Letting the network do so, may lead to an ambiguous
interpretation of the cost and hinder meaningful evaluation of the network’s
performance. Furthermore, the variation in the range of target values poses
an additional challenge. This variation can result in certain domains of
the data having an imbalanced influence on the overall error calculation,
potentially overshadowing targets with smaller ranges. Such an asymmetry
in the error calculation can lead to a biased optimization process and hinder
the network’s ability to effectively learn from the data.

To address these issues, a preprocessing step is required, which involves
scaling of the target data. By instructing the neural network to output
dimensionless vectors y with elements constrained within the range of 0 to
1, these challenges can be mitigated. This instruction can be given to the
network by scaling the its target values ỹi ∈ Y for i ∈ {0, N − 1}, where N is
the number of samples. The scaling is done by normalizing each component
of the target vector ỹi = [ỹi,0, ỹi,1, ..., ỹi,d−1] separately. Here, d denotes the
dimension of ỹi, which corresponds to the number of target values contained
in each sample. The normalized target value ỹ′i,j for the i-th sample and the
j-th dimension, is calculated as follows:

ỹ′i,j =
ỹi,j − min({ỹ}j)

max({ỹ}j)− min({ỹ}j)
. (10.1)

In this equation, min({ỹj}) and max({ỹj}) represent the minimum and
maximum values for a specific target dimension across all samples. By
normalizing the target values in this manner, the neural network is guided to
produce predictions within the range of 0 to 1. Consequently, the network’s
cost is computed by summing the dimensionless errors corresponding to
each target prediction, for each dimension, ensuring that all target values
contribute equally to the overall error calculation. As a result, the neural
network learn more effectively, thereby enhancing its performance in various
tasks.
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Figure 10.1: Sigmoid activation function: transforms the input value x
into a smooth S-shaped curve, mapping it to a range between 0 and 1.

10.1.2 Sigmoid as Last Layer Activation Function

In the context of predicting the position of a single dipole source, the FCNN
did not employ any activation in its final layer. However, given that our
output data has been normalized, we find it appropriate to use the Sigmoid
activation function in the output layer. Sigmoid is a logistic mathematical
function that maps its input to a bounded range between 0 and 1, as expressed
by the equation:

f(x) =
1

1 + e−x
. (10.2)

In Figure 10.1 we have provided a visualization of Sigmoid’s transformation
characteristics. The mapping of input values aligns with our desired output
range, with normalized target values for the extended problems. This choice of
activation in the output layer aligns with our desired output range, considering
the normalized target values for the extended problem domains. The final
layer activation aims to facilitate the training process, constraining the
network from generating outputs beyond the intended normalized target
range.
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10.1.3 Choosing an Optimal Cost Function

The formulation of a customized cost function tailored to the specific modeling
objectives is imperative when confronted with machine learning problems
in need of multiple network outputs, each characterized by distinct units
and interpretations, such as ours. We aim to construct a model that can
effectively predict not only the spatial coordinates of a current dipole moment
but also accurately estimate the dipole’s magnitude and the radii associated
with a population of multiple current dipoles. To achieve this objective, our
ideal cost function comprises several components.

Firstly, it calculates the Euclidean distance between predicted spatial
coordinates x, y, z ∈ y and corresponding true values x̃, ỹ, z̃ ∈ ỹ for N number
of samples:

MED(y, ỹ) =
1

N

N−1∑
i=0

√
(xi − x̃i)2 + (yi − ỹi)2 + (zi − z̃i)2. (10.3)

Additionally, the cost function calculates the absolute error between the
predicted magnitude A ∈ y and the true magnitude Ã ∈ ỹ:

MAEA(y, ỹ) =
1

N

N−1∑
i=0

|Ai − Ãi|. (10.4)

Similarly, it aims to quantify the absolute error between the predicted radius
r ∈ y and the true radius r̃ ∈ ỹ:

MAEr(y, ỹ) =
1

N

N−1∑
i=0

|ri − r̃i| (10.5)

With an output y ∈ Y(d), where d represents the dimension of y and
Y(d) ⊂ Rd, a collective cost function, tailored for each of the distinct problem
scenarios, can be defined as follows:

C =



MED(x, y, z), if d = 3

MED(x, y, z) + MAE(A) if d = 4

MED(x, y, z) + MAE(A) + MAE(r), if d = 5.

(10.6)

In the case where d = 3, the simplest problem is considered, where the
network predicts the coordinates of a single-point current dipole, as explored
in Chapter 7 and Chapter 8. If d = 4, the network predicts the x-, y-,
and z-coordinates of a single dipole, in addition to the magnitude A of the
signal strength. When d = 5, the target vector encompasses all previously
mentioned values, along with the radius of a current dipole population.
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10.1.4 Overview of Architecture and Hyperparameters

Figure 10.2 presents a visualization of the architecture of the extended FCNN,
which is designed to produce d target values depending on the specific problem
to solve. The architecture of the FCNN is equal to that employed for both
the single dipole problem discussed in Chapter 7 and the multipole dipole
problem examined in Chapter 9, with 231 input nodes, corresponding to the
number of electrode recording measurements for one sample, and retains the
same number of hidden nodes and layers.

Figure 10.2: Architecture of the Extended Feed-Forward Neural
Network. The input layer comprises 231 electrode recording input values,
and the network outputs predicted d target values depending on the specific
problem to solve. The FCNN consists of five hidden layers.
The visualization has been made with Latex, with code adapteded from Neural
Networks in TikZ with attribution to Izaak Neutelings and is licensed under
the Creative Commons Attribution-ShareAlike 4.0 International License [27].

In this extension of the FCNN, we continue to employ ReLU as the activ-
ation function in the input layer and the hyperbolic tangent for the hidden
layers. This choice of architecture, combined with the selected hyperpara-
meters, has consistently yielded promising results. The key difference in this
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Extended FCNN
Hyperparameters Value
Hidden layers 5
Optimizer SGD
Learning rate (initial) 0.001
Momentum 0.35
Weight decay 0.1
Mini-batch size 32
Dropout 0.5
Act.func in first layer ReLU
Act.func in hidden layers Tanh
Act.func in last layer Sigmoid

Table 10.1: Hyperparameters for the Extended FCNN.

extended network architecture is the integration of the Sigmoid activation
function in the output layer. For an overview of the essential hyperparameters
utilized to generate the forthcoming results in this extended model, please
refer to Table 10.1, which offers a summary of these overall elements.

10.1.5 Denormalization for Performance Evaluation

In this extended version of the fully connected feed-forward neural network
(FCNN), assessing network performance through standard train-validation-
loss plots becomes less informative due to the normalization of target values
and a more complex cost function. Reading off dimensionless loss values from
plots, where the cost function value is plotted against epochs, provides little
insight beyond whether the network is capable of decreasing the loss with an
increasing number of training iterations.

When evaluating the network’s performance on the test data set, which
still comprises 20,000 samples, it is therefore essential that the predictions out-
putted by the FCNN undergo denormalization. This enables us to facilitate
a meaningful evaluation against the true target values. The denormaliz-
ation process takes a straight forward approach, where we simply do the
opposite operations from the once performed during normalization 10.1. The
denormalized predicted value ỹi,j of the network is then given as:

ỹi,j =

(
ỹ′i,j + min({ỹ}j

)(
max({ỹ}j)− min({ỹ}j)

)
. (10.7)

Here, ỹ′i,j is the normalized target value for the i-th sample and the j-th
dimension of the target vector , where i ∈ {0, N − 1} and j ∈ {0, d− 1}. In
the equation min({ỹj}) and max({ỹj}) denotes the minimum and maximum
values for the specific target dimension across all samples.
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10.2 Predicting Single Current Dipole Sources with
Varying Magnitudes

In this section, we introduce the concept of various magnitudes for single
current dipole sources, which adds an additional dimension to the output of
the FCNN, with d = 4. Besides predicting the coordinates of the dipoles for
each sample, the network now also estimates the magnitude of the dipole
signals. In real-world scenarios, it might be of interest to not only pinpoint the
location generating abnormal brain activity but also comprehend the strength
of abnormality.By incorporating magnitude prediction into the network, we
gain valuable insights into the problem at hand, allowing the network to
extract more detailed information about the underlying brain activity from
the EEG data.

10.2.1 Adjusting Data Set

For the purpose of this extended EEG inverse problem, the data set is
modified by introducing varying magnitudes to each dipole, ranging from 1
to 10 nAm. This adjustment does not impact the number of features, which
corresponds to the number of electrode recordings for each sample. However,
it does increase the number of target values by 1. Figure 10.3 showcases two
examples from the data set, where the dipole’s location remains constant
while the magnitude of the dipole signal varies. We observe that the shape
of the EEG signal remains consistent while the strength of the EEG signal
is significantly higher for the dipole with the largest initiated magnitude, as
intended.

It is important to note that this data set represents the data before the
standardization procedure of the input data. However, scaling the EEG data
ensures that each electrode measurement is uniformly affected, maintaining
consistent relative differences in magnitude between weaker and stronger
dipole signals.

10.2.2 Performance Evaluation

To assess the network’s performance, we start by analyzing the accuracy in
relation to training epochs, as depicted in Figure 10.4. We emphasize that it
is important to note that the target values have been normalized, resulting in
dimensionless loss measurements. Therefore, the figure provides a qualitative
representation of the network’s training progress rather than precise loss
values. The plot clearly demonstrates a consistent pattern of decreasing loss
as the number of epochs increases, indicating that the network is able to
capture underlying patterns in the data. Moreover, both the training and
validation loss stabilize after approximately 1100 epochs, suggesting that the
network has reached its optimal performance level. Each epoch takes about
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Figure 10.3: EEG data for two samples with current dipole magnitudes equal
to 5 and 10 nAm, respectively. The EEG recordings have a range between
-10 and 10 µV.

20 seconds to finish, leaving us with a training time of roughly 8.5 hours in
total.
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Figure 10.4: Training and validation loss as functions of epochs for the exten-
ded FCNN model, which predicts both location and magnitude parameters.
The analysis is based on simulated data comprising 50,000 samples and spans
a training duration of 1500 epochs.
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In Figure 10.5, we present the progression of the loss for the target para-
meters. Notably, after approximately 1100 epochs, the loss stops fluctuating
for all target values, suggesting potential full convergence at this stage. It is
evident that the loss for the magnitude target converges at a higher value,
compared to the target coordinates. The x-, y-, and z-coordinate targets
gradually converge to values that closely align with one another. Among
these, the y-coordinate achieves the lowest loss, followed by the x-coordinate,
and then the z-coordinate.
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Figure 10.5: Validation loss as a function of epoch for each target value,
including the x-, y-, and z-coordinates of the dipole, as well as the magnitude
of the dipole signal.

In Table 10.2, we present the network’s performance across various target
categories using different error metrics. Analyzing the outcomes pertaining
to the target coordinates reveals a noteworthy consistency in mean absolute
error, with an average deviation of less than 1.5 mm from the true values.
In contrast to when studying single dipoles with constant strength, the z-
coordinate stands for the highest contribution to this MAE. The MAE for
the magnitude variable equals 0.539 nAm. Having that the magnitude range
spans from 1 to 10 nAm, this error translates to a relative error of 6.00%.
In other words, the network’s predictions for the magnitude variable are, on
average, within 6.00% of the true values within this range.

In addition to MAE, we look into the network’s performance through
the metrics of mean squared error and root mean squared error, which offer
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complementary insights. For the x-coordinate, the MSE stands at 3.438
mm2, while for the y- and z-coordinate, it is 3.860 mm2 and 3.862 mm2,
respectively. The MSE for the magnitude target, measures 0.650 nA2m2.

The Root Mean Squared Error, which indicates the standard deviation
of prediction errors and their distribution around the mean, reports values
slightly lower than the corresponding Mean Squared Error values. Specifically,
RMSE values measure at 1.854 mm, 1.965 mm, and 1.965 mm for the distinct
target coordinates, and 0.806 nAm for the magnitude target. These RMSE
values suggest that, on average, the prediction errors align with the overall
spread of errors, without significant outliers or extreme deviations from the
mean error. This indicates a level of stability and predictability in the error
distribution.

Error Metrics for Target Values
x-coordinate
[mm]

y-coordinate
[mm]

z-coordinate
[mm]

Position
Error [mm]

Magnitude
[nAm]

MAE 1.348 1.448 1.420 1.405 0.539
MSE 3.438 3.860 3.862 3.720 0.650
RMSE 1.854 1.965 1.965 1.929 0.806

Table 10.2: Evaluation of the extended FCNN’s performance utilizing
different Error Metrics.
Performance for the extended FCNN on test data set consisting of 1000
samples. The errors are measured using Mean Squared Error (MSE), Mean
Absolute Error (MAE), and Root Mean Squared Error (RMSE).

In Figure 10.6, we present the AE and SE metrics calculated between
predicted and target coordinate values as a function of the magnitude of
the dipole strengths. The figures reveal a relatively higher occurrence of
outliers when the magnitude of the dipole strength is small, with elevated
AE and SE values. This trend may initially suggest that the neural network
encounters greater challenges in accurately predicting the positions of dipoles
with smaller magnitudes. However, we cannot rule out that these disparities
might be related to alternative factors such as depth positioning or intricate
cortical folding patterns.

When examining the correlation coefficients for each of the figures, we
find that the correlation between the strength of the dipole and the error in
position prediction has a correlation of -0.01 and -0.02 for the AE and SE,
respectively. These correlation coefficients do suggest a negative correlation
(decreasing error with increasing magnitudes), but their values are nearly
zero, indicating a weak linear relationship. Upon closer inspection of the
figure, keeping in mind that it contains 20,000 scatter points, we notice that
most of the predictions exhibit an AE smaller than 5 nAm and an SE smaller
than 10 nA2m2. This suggests that, despite observed variations in predictions



10.2. POPULATION OF DIPOLES WITH MAGNITUDES 81

Euclidean Distance for Test Samples
ED <5 mm ED <10 mm ED <15 mm
90.930 % 99.505 % 99.925 %

Table 10.3: ED between targets and predictions of test samples;
Predicting Location and Magnitude with the FCNN
Performance of the FCNN on the test data set comprising 20,000 samples,
presented as the percentage of samples falling within ED thresholds of 5 mm,
10 mm and 15 mm respectively.

for samples with smaller magnitudes, the majority of the FCNN’s positional
predictions consistently cluster within this range of lower errors.

The Mean Euclidean Distance of the FCNN’s predictions on the unseen
test data is measured at 2.815 mm. Table 10.3 presents the percentages
of predictions of test samples falling within various MED threshold values.
Notably, the network achieves an accuracy smaller than 12 mm for 99.8%
of the test data. Furthermore, 64.3% of the samples exhibit a MED smaller
than 3 mm, an achievement that, while robust, falls slightly short of the
FCNN’s performance in the previous, less complex problem.

Figure 10.7 displays two panels, depicting the ED between predicted and
true target coordinates and AE between predicted and true magnitude of
each test sample within bins of width 1 unit. In the left panel, representing
the ED histogram, the bins corresponding to ED values of 2 and 3 mm are
the most populated, containing the largest proportion of samples. This panel
also illustrates that the majority of predicted locations for the test samples
exhibit a ED error smaller than 14 mm.

Turning our attention to the right panel, which displays the AE for pre-
dicted magnitudes, we observe that the bin holding samples with a magnitude
prediction AE less than 1 nAm holds the most samples. Within this bin,
17,014 out of the 20,000 samples can be found, signifying that the network
predicts the magnitude with a AE smaller than 1 nAm for approximately
85% of the sample set.

10.3 Predicting Region of Active Correlated Cur-
rent Dipoles with Magnitudes

In this problem we expand the data set for the FCNN to include varying radii
and magnitudes for the origins generating the electrical activity detected
by the recording electrodes. In this extension, the FCNN progresses from
predicting the location and magnitude of individual current dipole moments
to estimating the centers of larger spherical populations. This enhancement
aims to enable the network to extract more detailed information from EEG
data, which could be valuable in scenarios where understanding the extent of
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magnitude of dipole electrical signal, presented in a similar format, with bins
of width 1 nAm.
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brain abnormalities is crucial.

10.3.1 Adjusting Data Set

In order to optimize the neural network’s capacity for predicting dipole
population regions, we made specific adjustments to the data set. Within this
framework, each dipole population comprises individual dipoles distributed
across all points within the NY head cortex falling within a spherical volume
ranging from 1 mm to 15 mm in radius. Notably, guidelines established
by Delucchi et al. (1962)[39], Cooper et al. (1965)[40], Ebersole (1997)[41],
Nunez and Srinivasan (2006)[13], and Schomer and Lopes da Silva (2018)[42]
in the clinical context of spontaneous EEG, suggest that for EEG recordings
to detect brain activity, approximately 6-10 cm2 of contiguous brain tissue
must exhibit synchronous activity. A spherical radius of 15 mm translates to
an approximate area of 7 cm2, and thus falls within this criterion [43].

However, when sampling event-related potentials (ERPs), which is perhaps
most similar to our simulated EEG data, a different perspective emerges. In
ERPs the brain’s responses to specific stimuli is investigated and in order
to enhance the reliability of these responses, trial-averaging is a common
practice, as outlined in Chapter 4. Consequently, as suggested by these
authors, it becomes plausible that EEG activity arising from brain regions
smaller than the typical 6-10 cm2 criterion for spontaneous EEG could be
detectable - population sizes that we will be training our network to identify.

For simplification reasons, we maintain the maximum amplitude strength
of the total populations at 10 nAm. Consequently, we calculate the maximum
number of points within a volume sphere with a radius of 15 mm and reduce
this number by 10 in order to determine the strength of a distinct dipole
within a given area. Having that the maximum number of dipoles that fit
within a volume sphere with an ideal center and radius 15 mm was 899
dipoles, we were left with a dipole strength of 10/899 nAm for each dipole.
The strength of a dipole population is thus directly proportional to the radius
of the dipole population. While this may not perfectly represent real-world
scenarios, it provides a reasonable approximation for our model.

In Figure 10.8, we present an example of a dipole population and the
corresponding EEG signal. The upper panels show the EEG signals for
the specific sample, seen from different angels. The recording electrode
locations are presented as filled circles, where the color of the fill represents
the amplitude of the measured EEG signal for the given electrode. The yellow
filled circles in the plots in the lower panel represents the dipole populations,
i.e. positions within the cortex where dipoles have been placed. The plots
within the figure are seen from the xz-plane, xy-plane, and yz-plane.
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Figure 10.8: EEG for a sample containing a spherical population of current
dipole sources with a random center within the cerebral cortex. Upper
panels: The EEG measure is seen from the front (xz-plane), side (yz-plane),
and top (xy-plane) of the cortex. EEG electrode locations are presented
as filled circles, where the color of the fill represents the amplitude of the
measured signal for the given electrode. Lower panels: Gray filled circles
represent points within the NY cortex where a dipole could have been placed.
Yellow filled circles represent positions within the cortex where dipoles have
been placed.

10.3.2 Performance Evaluation

In Figure 10.9, we present the training and validation customized loss for
the FCNN as a function of epochs. We once again emphasize that the
network’s loss is dimensionless, meaning that the figure only provides a
visual representation of the network’s training progress rather than directly
interpretable loss values. The network was trained for 1000 epochs. We
see a clear trend of decreasing loss with an increasing number of epochs.
However, after epoch 800, both training and validation loss appears to reach
convergence, and beyond this point, there is no further improvement in loss.
We can therefore conclude that overfitting has not taken place during training.
At epoch 749, the learning rate is adjusted from 0.001 to 0.00004, resulting
in a noticeable reduction and stabilization for both training and validation
loss. On average, each epoch takes approximately 23 seconds to complete,
resulting in a total training time of approximately 9.5 hours.
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Figure 10.9: Training and validation custom loss trends as functions of epochs
for the FCNN model, which predicts the center, magnitude, and radius of
dipole populations. The analysis is based on simulated data comprising
50,000 samples and spans a training duration of 1500 epochs.

Figure 10.10 displays the validation loss for each target value as function of
epochs. We observe that the loss curves for the target coordinates reach their
minima at 100 epochs and then begin to increase before stabilizing around
800 epochs. Here, the loss curves for the x- and z-coordinates are somewhat
similar and stabilize at higher values than the loss for the y-coordinate.
Shifting our focus to the magnitude and radius targets, we observe that the
loss evaluations corresponding to these values follow a similar pattern. The
loss curves have similar shapes, but the radius loss curve has higher losses
than the magnitude curve. Somewhere between 700 and 800 epochs, these
loss curves also converge. Although the loss curves for the target coordinates
have their lowest values at an earlier stage, the model aims to minimize the
overall loss, and, therefore, training is not stopped at the point where the
coordinate losses have their minima.
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Figure 10.10: Validation MSE loss as a function of epoch for each target value,
including the x-, y-, and z-coordinates of the center of the dipole population,
as well as the amplitude and radius.

We further evaluate our model’s predictions, by feeding it with unseen
test data. By denormalizing the output of the network and comparing it to
the target values the MED between the predicted and target coordinates
measures to 7.85 mm, MAE between predicted and target magnitude equals
0.33 nAm and MAE between predicted and target radius is 0.76 mm. The
MED measures a slightly higher value compared to when predicting only
position and magnitude strength of the dipole. However, we note that the
MAE corresponding to the magnitude has decreased in this more complex
problem, now corresponding to a relative error of only 3.67%. In table 10.4
we can read off the percentages of the network predictions of test samples that
falls within various threshold values. We have that 79.68 % of the predictions
has a ED in position smaller than 10 mm, 98.57% an AE in magnitude smaller
than 2 nAm and 97.22% an AE in radius smaller than 3 mm.

Table 10.5 further provides an overview of the percentage of samples that
fulfill multiple of threshold values at once. These numbers have been found
with the initial condition that all predictions fulfill the constraint that the
ED between predicted and target position is smaller than 10 mm. A result
drawn from the table is that 78.290% of the FCNN’s predictions have an AE
smaller than 2 nAm in magnitude and 3 mm in radius.

To ensure the model’s accuracy is comparable to the work done by others
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Euclidean Distance: Position Absolute Error: Magnitude Absolute Error: Radius
ED

<5 mm
ED

<10 mm
ED

<15 mm
AE

<1 nAm
AE

<2 nAm
AE

<3 nAm
AE

<1 mm
AE

<3 mm
AE

<5 mm
56.045% 79.680% 86.435% 92.900% 98.565% 99.685% 74.210% 98.220% 99.770%

Table 10.4: Overview of network predictions of test samples falling within
various threshold values.

Predictions within different thresholds
(Initial condition for position: ED <10 mm)
AE <1 nAm AE <2 nAm AE <3 nAm

AE <1 mm 58.075 % 59.940 % 60.055 %

AE <3 mm 74.045 % 78.290 % 78.765 %

AE <5 mm 74.315 % 78.890 % 79.515 %

Table 10.5: Evaluation of the Extended FCNN utilizing different
Error Metrics. Performance of the extended FCNN on a test data set
consisting of 20,000 samples. The errors are measured using Mean Absolute
Error (MAE), Mean Absolute Percentage Error (MAPE), Mean Squared
Error (MSE), and Root Mean Squared Error (RMSE) for various target
values.

and to further assess its ability to predict the center of dipole populations, in
addition to magnitude and radius, we employ the same evaluation metrics as
in previous problems: MAE, MSE, and RMSE. The results for these error
metrics are presented in Table 10.6.

The MAEs for the target coordinates, i.e., the center of the dipole popu-
lation, average at 3.96 mm. This is the highest MAE measured among the
predictions made by the network across all the problems studied. As observed
when predicting both the magnitude and position in the previous problem,
the z-coordinate contributes the most to this MAE.

Concerning the MSE, we observe relatively small errors for amplitude
and radius, with values of 0.312 and 1.114 mm2, respectively. The MSE
between the predicted and target coordinates ranges from 42.58 mm2 to
66.816 mm2, indicating the widest spread of errors compared to the previous
problems studied. An increase in RMSE is also evident. This suggests that,
on average, the prediction errors do not always align with the overall spread
of errors. In other words, the model sometimes provides accurate predictions,
while in other cases, it does not. This indicates a lower level of stability
and predictability in the error distribution compared to the other problems
studied.

In Figure 10.11, we present the MAE and MSE metrics calculated between
the predicted and target population center values as functions of radius. The
panels within the figure do not indicate any significant correlation between the
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Error for different target values
x

[mm]
y

[mm]
z

[mm]
Center
[mm]

Magnitude
[nAm]

Radius
[mm]

MAE 3.819 4.342 3.722 3.961 0.325 0.765
MSE 42.581 66.816 41.681 50.359 0.313 1.114

RMSE 6.525 8.174 6.456 7.096 0.559 1.056

Table 10.6: Dipole Population: Evaluation of the Extended FCNN
utilizing different Error Metrics. Performance of the extended FCNN on
a test data set consisting of 20,000 samples. The errors are measured using
Mean Absolute Error, Mean Squared Error, and Root Mean Squared Error
for various target values.

size of a dipole population and the predictive error regarding its center. This
observation aligns with the correlation coefficients, which are approximately
0.01 for AE and 0.00 for SE in the prediction of the center.

The panels also reveal that the majority of the samples are predicted with
an absolute error smaller than 15 mm. Moreover, the left panel illustrates
that the network predictions on the test samples result in a mean error larger
than 1000 mm2. This suggests a comparatively lower level of stability and
predictability in the error distribution, in contrast to the other problems
studied.
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Figure 10.11: Dipole Population: Scatter plot of Mean Absolute Error and
Mean Squared Error computed between predicted and target center values,
as function of the radius of the dipole populations.



Chapter 11

Discussion and Final Remarks

In this chapter, we will delve into the key findings derived from the fully con-
nected neural network (FCNN) and the convolutional neural network (CNN)
concerning the localization and identification of current dipole moments. In
Section 11.1, we will present an overview of the main results of this thesis,
emphasizing the most noteworthy and pivotal findings. Subsequently, sections
11.2 and 11.3 will delve into the architectural aspects of the networks and
the data set employed for training and result acquisition before discussing
computing time and head-specific modeling in Section 11.4. Section 11.5 is
dedicated to contextualizing our results within existing research. Finally, Sec-
tion 11.7 and Section 11.6 provide some final remarks on the work done in this
thesis, along with a discussion of future prospects following our approaches.

11.1 Summary of Main Results

Throughout the various approaches to the EEG inverse problem in this thesis,
we have systematically evaluated the neural networks’ performance using
MED, MSE, and MAE. In Table 11.1, we present a summary of the main
results throughout this thesis.

11.1.1 Predicting Dipole Position

As highlighted in Chapter 7, it is possible to achieve a desirable level of
accuracy, specifically an error margin smaller than 10 mm, when addressing
the inverse EEG problem. This achievement is consistently observed when
utilizing head models that accurately represent head geometry and electrode
placement, as exemplified by the New York Head Model applied through the
LFPy 2.0 software.

In all our fully-connected feed-forward neural network (FCNN) approaches,
we have consistently succeeded in localizing current dipole moments with
precision that remains under this 10 mm threshold. Whether the task is

91
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Summary of Main Results

Singe Dipole:
FCNN

Single Dipoles:
CNN

Two Dipoles:
FCNN

Two Dipoles:
CNN

Dipole with
Magnitude:

FCNN

Dipole
Population:

FCNN
d 3 3 6 6 4 5

Coordinate with
highest MAE z z z z y z

MED(x, y, z) [mm] 1.3 1.8 8.71 11.78 2.815 7.85
MSE(x, y, z) [mm2] 0.782 1.643 38.978 69.306 3.720 50.359
MAE(x, y, z) [mm] 0.662 0.898 4.340 5.731 1.405 3.961

MAEA [nAm] - - - - 0.539 0.33
MAER [mm] - - - - - 0.76

Table 11.1: Summary of main results of the thesis.

to predict single dipole locations, two dipole locations at once, or dipole
locations alongside dipole characteristics, this level of precision is consistently
maintained. Similarly, the convolutional neural network (CNN) effectively
localizes single current dipoles, albeit exhibiting predictions just above this
threshold when tasked with concurrent localization of two current dipoles.

For single dipole localization, the FCNN achieved an error of less than 10
mm for 99.995% of the test samples, while the CNN reached the same level
of accuracy for 99.815% of the samples. Subsequently, when the FCNN was
challenged to predict varying magnitudes in addition to dipole location, it
maintained an accuracy below 10 mm for 99.505% of the test data. However,
when faced with the task of predicting the center of dipole populations of
varying sizes, only 79.680% of the test sample predictions fell below the
desired threshold. In the scenario where the FCNN and CNN were tasked
with predicting the positions of two current dipoles contributing to a collective
EEG signal, only 73.055% and 50.460% of the predictions, for the FCNN and
CNN respectively, exhibited an accuracy smaller than 10 mm.

The accuracy, quantified by the Mean Euclidean Distance (MED), exhib-
ited a diminishing trend as the output dimension ’d’ of the FCNN increased.
A similar trend was also observed in the CNN, with the MED notably decreas-
ing when predicting the coordinates of a single dipole compared to predicting
the spatial coordinates of two dipoles simultaneously.

CNN in Comparison to FCNN

When comparing the MED between the two networks, we observed that the
FCNN yields more satisfactory results compared to the CNN. This preference
for the FCNN’s performance was the basis for our decision to proceed with the
FCNN architecture when extending the EEG inverse problem to encompass
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the identification of dipole strength, as well as population strength and radius,
for an area of active correlated current dipoles.

With this said, we emphasize that the architecture and hyperparameters of
the FCNN were explored in greater detail compared to what was done for the
CNN. While the FCNN provided the most satisfactory results in our work, we
must acknowledge that a CNN might perform equally well or even better with
a more optimized architecture and hyperparameters. Consequently, we cannot
definitively conclude whether or not the performance of a neural network in
predicting spatial coordinates is positively influenced by the preservation of
spatial structure in the input data, as is the case for CNNs in general. Given
more time, it would have been valuable to further investigate this possibility.

Error Variation

Following the definition of MAE and RMSE, it can be shown that RMSE
is always greater than or equal to MAE. Using these metrics together, offer
valuable insights into the variation in error measurements within a data set:
the greater difference between them, the greater the variance in the individual
errors in the sample. If the RMSE is equal to the MAE, then all the errors
are of the same magnitude, which is considered ideal.

With respect to the MSD between predicted and target spatial coordinates,
we observes that the RMSE was consistently somewhat higher than the
measured MAE for all positional predictions across all network approaches.
This discrepancy suggests the presence of relatively larger errors in the data
set, meaning that the predictions of the networks and do not consistently
align with the overall distribution of errors. This disparity between MAE
and RMSE is most pronounced when localizing two dipoles simultaneously
and when predicting the centers of dipole populations with varying radii
and strengths. While this divergence indicates room for improvement in the
models, it is important to acknowledge that some variation in neural network
predictions is expected.

Predicting Spatial Coordinates

Predicting the z-direction of the dipoles yielded varied results across the
different approaches to the inverse problem. In most of the neural network
models, a slightly higher MAE was observed in the z-coordinate. An initial
explanation for this outcome might be rooted in the construction of the EEG
method, where recording electrodes are situated along both the right-left
(x-axis) and front-back (y-axis) directions, whereas electrodes along the z-axis
are primarily placed on top of the head.

An exception to the elevated MAE in the z-coordinate emerged when
predicting dipoles with varying strengths, as the y-coordinate exhibited the
highest MAE among the spatial coordinates. One might initially attribute
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the reason why the prediction of the z-coordinate did not exhibit the highest
MAE in that specific scenario to the fact that, in most of the corresponding
data, dipoles in this particular case exhibited significantly larger strengths
(with randomly assigned strengths ranging from 1 to 10 nAm) as opposed
to when predicting dipoles with a constant strength of 1 nAm, making all
spatial coordinates of the dipoles easier to detect, even within the constraints
of electrode placement and skull conductivity. However, this explanation is
challenged when considering scenarios involving varying strengths for dipole
populations. In such cases, the z-coordinate once again demonstrated the
highest MAE, despite the increased strength of the dipoles.

Another observation that contradicts the notion that z-coordinates of
the dipoles are inherently harder to detect accurately is the alternation in
coordinates displaying the highest MSE. While, in terms of MSE, the x-
coordinate consistently displayed the lowest value, the predictions for the y-
and z-coordinates alternated as having the highest MSE. Thus, it is reasonable
to conclude that the somewhat poorer predictions in the z-coordinate, as
observed in some models, may be influenced by various factors, potentially
including variability in the measurement process, rather than being solely
attributed to the spatial properties of the z-coordinate of the dipole’s location
itself.

Predicting Dipole Strength and Population Radius

When predicting dipole strength, we utilized two alternative versions of the
FCNN, as presented in Chapter 10. In the first version of the network we
focused on single dipoles, where the strength exhibited variation across the
data set. The primary objective of this network was to predict the spatial
coordinates for each current dipole, alongside determining the magnitude of
the current potential. Within this configuration, our model gave fulfilling
spatial predictions, yielding a MED of 2.815 mm. The magnitude predictions
exhibited an associated MAEA of 0.539 nAm. This error corresponded to a
relative error of 6.00% within the simulated range of 1-10 nAm.

In contrast, our second, more complex version of the alternative FCNN
was tailored to address populations of active correlated current dipoles char-
acterized by varying strengths and radii. In this scenario, we achieved a MED
of 7.85 mm, and a MAEA in magnitude measuring 0.33 nAm. Remarkably,
the transition from the previous model to this more complex version led to
a 5 mm increase in MED, while the MAEA decreased to 0.33 nAm, which
corresponds to 3.6% of the target range.

These differences in model performance can be attributed to the inherent
correlation between the prediction of radius and strength. The manner in
which our simulated data is generated establishes a strong interdependence
between these two variables. As a consequence the model’s optimization
process might indirectly give more importance to reducing errors in radius
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and strength, even though we in our customized cost function, gained equal
weighting to the target coordinates and the absolute error associated with the
predicted radius and strength. In other words, when we reduce the error in
radius prediction, it also reduces the error in strength prediction because they
are strongly related. In contrast, the position of the dipole, as reflected in
the Euclidean distance, is not correlated with strength or radius. Therefore,
while reducing errors in strength or radius can indirectly benefit each other
due to their correlation, this does not translate into a reduction in the error
of the Euclidean distance.

In practice, this results in varying degrees of emphasis on Euclidean
distance and absolute errors in strength and radius due to their strong
correlation – which for the most complex version of the alternative FCNN, lead
to an significantly improvement in MAEA for the dipole strength. To achieve
equal importance for all target values, we could have considered addressing
these correlations in the cost function design by assigning weighting factors
to determined the relative importance of each of the terms contributing to
the total cost. This would most likely opened up for an even more precise
accuracy in the center of the current dipole populations.

The MAEr of the network measured 0.74 mm for the predictions of the
radius on the test samples, corresponding to an relative error of 5.4% of the
target range. With this level of accuracy, we can be confident that the network
effectively distinguishes between very small, medium, and large populations
of active correlated current dipoles. This confidence is supported by the
findings in Chapter 10, as shown in Figure 10.11, where it was observed that
the accuracy of the predictions in position remained consistent across varying
dipole population sizes. This consistency reaffirms the network’s ability to
handle a wide range of dipole population sizes, making it a robust tool for
the task.

Predicting Multiple Dipoles

When instructing the neural networks to simultaneously output the positions
of two current dipoles, we observed the highest positional errors, measured
as the Mean Euclidean Distance, across all scenarios. However, the FCNN
provided accurate predictions below the 10 mm threshold, whilst the CNN
gave predictions just above this threshold. The increased positional error when
predicting an additional dipole position can be attributed to various factors.
Firstly, predicting dipoles in close proximity presents a greater challenge for
neural networks. The increased challenge arises from the strong electromag-
netic field interactions that occur when dipoles are located near each other.
These interactions give rise to complex patterns, thereby necessitating the
neural network to learn more intricate relationships.

To address these difficulties, one potential approach would be to ma-
nipulate the available dipole positioning, ensuring that dipoles are always
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separated by a minimum or constant distance. However, this approach might
limit the network’s ability to handle real-world scenarios, and its impact on
prediction performance remains uncertain. Alternatively, employing a more
complex neural network architecture with a greater number of adjustable
parameters to accommodate the data patterns is an option. Nevertheless,
this also increases the risk of overfitting.

Despite the increased positional error compared to scenarios requiring
fewer dimensions in the network’s outputs, we found the results satisfying,
given that the MED for the dipoles in the FCNN predictions remained below
the 10 mm threshold.

11.2 Network Architecture

The selection of hyperparameters for the neural networks underwent an
iterative process of trial and error, leading to the architecture used in the
presented results chapters. A notable feature of the FCNNs is the deliberate
use of various activation functions within the hidden layers. Following the
initial linear transformation of input data, ReLU activation was employed,
followed by the hyperbolic tangent in subsequent hidden layers. For the
extended FCNNs predicting outputs with multiple units, we opted for the
sigmoid activation function to deal with normalized target values, instead of
the standard linear layer often used in regression problems.

The introduction of diverse activation functions across the network layers
allows for varying degrees of nonlinearity . In the best case scenario, it can
enhance the network’s ability to generalize effectively to unseen data by
capturing distinct patterns, offering a more comprehensive representation of
the data. However, it is important to note that this diversity may have made
the networks more complex than necessary. While increased flexibility can
be advantageous for certain problems, it also raises the risk of overfitting.

Our primary objective in developing various neural network approaches
was not to attain perfection, but rather to investigate the network’s adaptabil-
ity in addressing the EEG inverse problem across diverse levels of complexity.
This complexity included variations in output strengths and radii of neural
activity that generated the input EEG signal. In most of our approaches, we
successfully achieved localization errors smaller than 10 mm.

However, in clinical contexts, there exists a considerable distinction
between a localization error of 10 mm and 1.0 mm. It is important to
underscore that an error of 1.3 mm, as observed in the case of the FCNN pre-
dicting dipole position alone, is significantly more accurate than the 8.71 mm
error observed when predicting the position of two current dipoles. Both from
a modeling perspective and in clinical practice, smaller errors are preferable.
Nevertheless, it is essential to recognize that further diminishing the error
beyond a certain point may lose clinical significance. While there may be a
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noticeable percentage improvement in the model’s loss, within the context of
cortical measurements, such improvements may not be practically discernible.
In other words, striving for additional model optimization can be beneficial
up to a certain point, but beyond that, it may not necessarily result in
substantial clinical advantages.

11.3 Data Set

In our neural network approach for localizing current dipoles, we employed the
New York Head Model integrated into the LFPy Python Module to simulate
EEG data. To enhance the realism of the data, we introduced normally
distributed noise, characterized by a mean of 0 and a standard deviation
amounting to 10% of the standard deviation observed in the simulated EEG
recordings, into the final data set used for both training and validation. In
subsequent testing on noise-free data, we found that, in most cases, the neural
networks produced predictions with positions falling below 10 mm.

One notable advantage of working with self-simulated data is the high
degree of control it affords. This control allowed us to create data for specific
scenarios, including the cases with two dipoles, dipoles featuring varying
strengths, and populations of dipoles exhibiting varying radii. Having access
to the correct answers for training and evaluation enabled us to effectively
assess the performance of the neural networks. Furthermore, the New York
Head Model, offering 74,382 discrete points for dipole source localization,
facilitated the creation of an extensive data set suited for both training and
testing.

Nevertheless, it is essential to acknowledge that our networks have not been
tested on real-world EEG recordings. Consequently, it is highly probable that
the extent to which our networks faithfully capture the complexity, noise, and
variability present in clinical EEG data will not align with the performance
demonstrated on simulated validation and test data. This disparity is a well-
documented limitation in the field of machine learning, where the performance
achieved with both simulated and experimental data may not consistently
translate directly to specific real-world scenarios. Consequently, it is expected
that our framework’s performance will be suboptimal when directly applied
to EEG recordings from actual patients.

In future studies, there are valuable insights to be gained by exposing the
networks to actual patient recordings, which would provide an opportunity
to assess their performance in genuine clinical contexts. Nonetheless, as just
outlined it is highly likely that our network approaches may not perform
optimally with real experimental data. In the event that these approaches is
applied within an authentic clinical setting, such as for a patients requiring
brain surgery, it may be plausible to construct patient-specific head models
that can be integrated into our framework, subsequently training the networks
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with data extracted from the patients head models. Nonetheless, it is crucial
to underscore that the effectiveness of such an approach would necessitate
empirical testing within a real-world healthcare environment, and the degree
of success in practice remains uncertain.

11.4 Computation Speed

The time required for training the neural networks ranged from approximately
1.5 to 9.5 hours, depending on the number of training epochs and network
complexity. All training processes were conducted on a personal laptop
without the utilization of GPU acceleration. It is worth noting that running
these training processes on high-performance GPUs or employing paralleliza-
tion techniques holds the potential to significantly enhance the efficiency of
the training procedure, which could be an area of interest for future studies.
Nonetheless, for the objectives of our current work, the training times were
found to be satisfactory and aligned with our research goals.

Training neural networks for challenging tasks inevitably demands a
significant amount of computational resources. For patient-specific head
model construction, followed by training the networks using data extracted
from these individualized models, one can anticipate a substantial requirement
for processing power and time. The computational speed necessary for training
is inherently influenced by the number of parameters θ to be adjusted, as
well as the complexity of the problem and its solution space. In the context
of solving the EEG inverse problem, reducing the spatial resolution of the
neural positions of interest could potentially accelerate training. However,
such a reduction would likely lead to a decrease in model accuracy.

Once a network is fully trained, it generally exhibits efficient execution
times for individual samples. It is worth noting that we did not precisely
measure the time taken for our network to predict a single sample. Neverthe-
less, the rapid execution observed for a batch of 20,000 samples suggests that
the time required for processing a single sample would be considerably shorter.
An important point to note is that even though head-specific models would
require time to develop, once fully trained, they are likely to require very
short time for outputting predictions – potentially making neural networks
invaluable tools in clinical applications of EEG.

11.5 Contextualizing: Existing Research on
ConvDip

Numerous studies have explored the use of neural networks to address the
EEG inverse problem. Among these, ConvDip, a convolutional neural network,
stands out as a classification-based solution, that aims to predict the location
of multiple dipole clusters along with the extent of these populations [6].
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ConvDip tackled the EEG inverse problem using simulated EEG data,
from dipole populations of different extent. The network demonstrated an
ability to produce inverse solutions from single time points of EEG data and
provided plausible results for real EEG recordings from human participants.
The network was trained on samples containing 1 to 5 source clusters and
proved effective in handling even more complex cases. It strived to predict
the correct source size and localize sources at varying depths, a task achieved
by categorizing source extents into five sizes.

To generate realistic training data, the researchers constructed a source
model with 5,124 dipoles distributed across the cortex, simulating 31 recording
electrodes and incorporating real noise from EEG recordings. Additionally,
they employed an alternative head model for test data to prevent overoptim-
istic results. The training data set contained 100,000 samples, while the test
data set comprised 1,000 samples.

In ConvDip’s case, EEG data was interpolated into a 2D image grid
preserving spatial information and without the introduction of new. The
network’s output vector contained 5,124 elements, corresponding to dipole
positions in the source model. Performance was evaluated by comparing the
network’s active output nodes with the true distribution of dipoles, with node
activation indicating the network’s prediction of a dipole source at a specific
location. The network’s ability to estimate source extent was assessed by
evaluating the proximity of neighboring outputted dipoles.

ConvDip demonstrated robust localization accuracy across different source
depths, something we could also have investigated given more time. However,
it exhibited reduced accuracy in estimating source extent with increased
depth. This specific relationship was not explored in our work. For single
dipole populations, ConvDip achieved a mean localization error of 11.05 mm,
somewhat higher than our FCNN’s error of 7.85 mm when prediction the
center of our constructed spherical populations. Notably, direct comparisons
between these networks are intricate due to variations in head models and data
set characteristics. Our training data featured more positions for localizing
dipoles, allowing our FCNN to capture finer details for the specific head
model. Furthermore, our evaluation data set lacked noise, making ConvDip’s
performance on more complex, noisy data noteworthy.

ConvDip was tested on real EEG data from human subjects. While the
results were promising, it most of all emphasized the importance of individual
variability in head anatomy, suggesting individual neural networks to be
trained based on specific MRI data for each subject. This approach, though
effective, raised concerns regarding computing time. To address this, an
individual transfer learning method was suggested, where a network trained
on one subject’s anatomy could be fine-tuned for subsequent subjects with
new training data. This transfer learning method holds potential relevance
for our own approach.

ConvDip represents one of the numerous neural network-based approaches
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for addressing the EEG inverse problem. Although our approach diverges
from ConvDip in terms of architectural design, several overlapping research
aspects have been explored.

In this work, we have focused on training the neural network for localizing
no more than two dipoles simultaneously. Nevertheless, it is worth noting
that the code framework allows for simulating and training the neural network
to handle an arbitrary number of dipoles, which could be a subject of interest
for future studies.

11.6 Conclusion

This thesis is centered on addressing the EEG inverse problem, which involves
the localization of neural populations responsible for specific EEG signals.
To analyze EEG measurements, neural sources are often approximated as
current dipoles. The New York Head Model, accessible through the LFPy
2.0 Python module, was utilized to simulate realistic EEG data. This data
served as the foundation for training various neural network models aimed
at localizing and identifying neural sources with varying characteristics and
extents.

A fully connected feed-forward neural network (FCNN) was developed
to tackle source localization by recognizing patterns in electrical potentials
resulting from single current dipoles as well as pairs of dipoles with fixed
strengths. Upon evaluation, the FCNN successfully predicted the localization
of single current dipoles, although the positional error increased when tasked
with simultaneous localization of two current dipoles. Expanding the FCNN’s
capabilities to handle current dipoles with varying strengths resulted in a
reduction in localization accuracy, although the network excelled in identifying
dipole strengths. The FCNN was further tasked with predicting spherical
regions of active correlated current dipoles with varying radii and strengths,
which showed an enhanced precision in dipole strength. All FCNN approaches
provided positional errors smaller than 10 mm.

Besides the FCNN approach, a convolutional neural network (CNN)
was employed to explore whether incorporating spatial information in EEG
recordings as images could enhance a neural network’s ability to analyze EEG
data and improve source localization. The CNN architecture, as implemented
in this work, exhibited a somewhat elevated mean positional error compared to
the FCNN. While both network types achieved accuracy within an acceptable
range, the CNN’s performance was less consistent when tasked with localizing
two current dipoles simultaneously, in contrast to the FCNN.

Overall, this study provides insights into the strengths and limitations of
neural network approaches in EEG source localization, emphasizing the need
for further investigation and fine-tuning of methods to determine the most
suitable approach for tackling the EEG inverse problem.
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11.7 Outlook

We have employed simulated EEG data using the software LFPy 2.0 to train
neural networks in localizing current dipoles. Building on this foundation, an
exciting opportunity presents itself: identifying the specific type of neural
activity responsible for a localized current dipole. To the best of our know-
ledge, neural networks have not yet been harnessed to discern the neural
origin of EEG signals while also localizing these neural sources.

LFPy stands out as a versatile tool. Beyond facilitating the simulation
of distinct point dipoles, it enables the simulation of various types of neural
activity, resulting in specific dipoles. For instance, the type of synaptic input,
whether it is excitatory or inhibitory, to a population of neurons, and the
synaptic input’s location (apical or basal) result in different current dipoles
[3]. Furthermore, there is speculation that dendritic calcium spikes can be
detected from EEG signals, potentially leading to exciting new possibilities
for studying learning mechanisms in the human brain [44].

To decode different types of neural activity from EEG signals, we must first
comprehend how diverse neural activities are mirrored in these signals. This
understanding can be gained through simulations with LFPy, which provides
a platform for simulating varying neural activities and their resulting EEG
signals. This, in turn, opens the door to a more comprehensive exploration
of the relationship between EEG signals and the underlying neural activity,
through neural networks.
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