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Abstract

In this thesis we will apply forcing to domain theory. When a Scott domain represents
a function space, each function will be a filter in the basis of the domain. By using the
partially ordered basis as the forcing relation, each generic filter G yields a model of ZFC in
which G is a function, given some other model of ZFC containing this basis. Such generic
functions are the main concern of this thesis.

By case studies and general abstractions of these, we will investigate whether G is a
total function or not. We will specifically consider the function spaces Cf → N, NN → N,
NN → R and R → R. In the cases where the domain of G is σ-compact, G is total. For
X → R where X is a separable complete metric space, the main result is that G is total if
and only if X is σ-compact, given some rather weak additional condition on X . When G

is not total, we will explicitly construct x ∈ X for which G is not defined.
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Chapter 1

Domain Theory

Given some mathematical structure D, domain theory yields a theoretical foundation for
the study of computations in D. This is highly relevant in computer science and for the
development of programming languages. The obvious facts that only a finite number of
computations can be carried out by a computer in finite time and that input and output
always are finite, set the premises for these investigations. However, many of the compu-
tations we would like to perform are infinite. Getting an approximation of the true answer
is then the best we can hope for. An ordering of these approximations is then needed to
indicate how much information they contain, relative to each other.

Consider a computer program that produces decimals of π. We would rather like to get
the output π ∈ [3.14, 3.15] than π ∈ [3, 4], since this gives us more information about the
true answer of the computation. Let, as in this example, D be the set of closed intervals in
R. Every I ∈ D is then representing a piece of information by approximating every x ∈ I,
where shorter intervals corresponds to more information. This interpretation gives rise to
a partial information order. Such partial orders leads to the notion of a domain.

One of the main objectives in domain theory is to model recursive computations, or
functions, and thus make way for the functional programming languages. This subject will
not be treated here. The origination of domain theory is due to the work of Dana S. Scott
in the late 1960’s.

This brief introduction to domain theory is mainly based on [3] and [6], and partly on
[2] and [5]. [5] is an interesting attempt to achieve a foundation for computations with real
numbers, by extending the PCF programming language.

1.1 Modelling Information

Definition 1.1.1. (D,≺,⊥D) is the set D partially ordered by the binary relation ≺ with
a smallest element ⊥D, called bottom, that is;

∀p ∈ D(⊥D ≺ p). (1.1)

D is often called a poset(partially ordered set).

Notation. We will use D as an abbriviation for (D,≺,⊥D), and ⊥ for ⊥D when it is clear
from the context which partial order is being used.

1



2 CHAPTER 1. DOMAIN THEORY

In the above example ⊥ is naturally interpreted as R = (−∞,∞). Then ⊥ ≺ I for every
I ∈ D, where the ordering is given by reverse inclusion, i.e., I1 ≺ I2 when I2 ⊆ I1. This
illustrates why ⊥ can be seen to represent ’no information’. That ⊥ is an approximation
of the real interval I only implies the trivial statement I ⊆ R. In general, this is what (1.1)
tells us. The element ⊥ is used to model the output of nonterminating computations.

If the structure does not contain an element ⊥, it must be added. This would be the
case if we only considered intervals of finite length.

All partial orders, as considered above, are not interesting. Before defining which partial
orders aspires to be domains, we will look at two simple but important examples. Let

N⊥ = N ∪ ⊥,

where ⊥ ≺ n and n ≺ n for all n ∈ N, and

B⊥ = B ∪ ⊥,

where ⊥ ≺ T,F and T ≺ T, F ≺ F. Generally we let A⊥ = A ∪ ⊥, which is called the
lifting of A.

The following definition gives us the opportunity to express that two elements are in-
consistent, i.e., that they can not be approximations of the same element.

Definition 1.1.2. Let D be a poset and a, b ∈ D. a⊥b, or a and b are inconsistent, if

¬∃p ∈ D(a ≺ p ∧ b ≺ p).

In N⊥, all m and n such that m 6= n are inconsistent. If a computation gives the answer
’7’ for input I1, it should not give the answer ’10’ for input I2 when I1 and I2 are consistent,
because 7 and 10 are inconsistent in N⊥. In the poset of intervals in R, every I and J such
that I ∩ J = ∅ are inconsistent.

N⊥ and B⊥ are examples of flat domains, which means that all elements are mutually
inconsistent, except the bottom element. Such posets can be arranged in a tree structure;

. . . . . . . . .

⊥

0 1 2 3 4

Definition 1.1.3. Let D be a poset. A ⊆ D is directed if for all a and b in A, there exists
c in A such that a ≺ c and b ≺ c. If every directed A in D has a least upper bound

⊔

A, D
is complete. A complete partial order is called a cpo.
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In a cpo, ∅ is directed and
⊔

∅ must be smaller than all other elements, so
⊔

∅ = ⊥.
We included ⊥ in the partial order from the beginning since we will work exclusively with
cpo’s. From the discussion above, a directed set A contains only consistent information. If
A also has a least upper bound, it is uniquely determined by A, and all elements of A are
approximations of

⊔

A. This suggests that we can identify a directed set A with
⊔

A in a
cpo. This is important, and will be formalised later.

A directed set is in many aspects like converging sequences in analysis. The elements of
the sequence approximates better and better the (possible) limit. Completeness is then a
desired property, as we would like such sequences to have a limit. Thus, completeness has
a similar meaning in analysis and in domain theory.

1.2 Scott Domains

Definition 1.2.1. Let D be a cpo and a, b ∈ D. Then a is way below b, or a � b, if for
every directed A ⊆ D

b ≺
⊔

A⇒ ∃c ∈ A(a ≺ c).

D is a continuous domain if the following holds;

- ∀b ∈ D({a | a� b} is directed)

- ∀b ∈ D(
⊔

{a | a� b} = b)

Note that if a� b, then a ≺ b, since {b} is trivially directed and b ≺ b =
⊔

{b}. Consider
again the example where D is the set of closed intervals in R. D is a cpo since

⋂

{I | I ∈ A}
is nonempty when A ⊆ D is directed, and this will be the least upper bound of A. Then
I is way below J if J ⊆ int(I), for assume that I and J have a common endpoint, i.e.,
I = [a, c] and J = [a, b] where b < c. Then the set A = {[r, b] | r < a} is directed, and
⊔

A = [a, b]. We have trivially J ≺ J =
⊔

A, but I 6≺ [r, b] for all [r, b] ∈ A. This means
that I is not way below J . If however, J ⊂ int(I), it is clear that for every directed A,
there must exist I ′ ∈ A such that J ⊂ I ′ ⊂ I. Then I is indeed way below J .

In a continuous domain, an element can be characterized by the elements that are way
below it. However, sometimes it is sufficient to consider the elements way below belonging
to a subset of the domain for such a characterization. Such a subset will be called a basis.

Definition 1.2.2. Let D be a continuous domain. B ⊆ D is a basis for D if

- ∀b ∈ D({a ∈ B | a� b} is directed)

- ∀b ∈ D(
⊔

{a ∈ B | a� b} = b)

D is trivially a basis for itself, but this is of no interest. However, a small basis can
give much information about the domain. We will consider those domains that has a
basis of compact elements. That an element is compact means that it only contains finite
information, in the following sense;

Definition 1.2.3. Let D be a continuous domain. An element c ∈ D is compact if c� c.

Remark 1.2.4. This means that a compact c can not be a least upper bound of some
directed set in which c is not already contained.
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In every cpo ⊥ is trivially compact, but in the above example there are actually no
other compact elements. Assume for contradiction that [a, b] is compact in D. Then we can
form the directed set A = {[a′, b′] | a′ < a ∧ b < b′}. There is no I ∈ A such that [a, b] ≺ I,
which means [a, b] 6� [a, b].

Compactness can be illustrated by letting D be the powerset of N, where A ≺ B if
A ⊆ B. The compact elements of D are the finite subsets of N. If A is infinite, let

A′ = {B | B ⊂finite A}.

Then A =
⊔

A′, but A 6≺ B for all B ∈ A′. However, if A is finite, A′ is directed and
A ≺

⊔

A′, then A ≺ B for some B ∈ A′. Otherwise there would be an element a ∈ A such
that A \ {a} is an upper bound of A′, contradicting that A ≺

⊔

A′.
Compactness leads to the following notions;

Definition 1.2.5. Let D be a continuous domain. If the compact elements of D, denoted
by D0, forms a basis for D, then D is an algebraic domain. If also D0 is countable, we say
that D is separable or ω-algebraic.

There is still one additional property we would like a domain to have, namely that two
bounded elements has a least upper bound.

Definition 1.2.6. Let D be a partial order. If all bounded sets {a, b} ⊆ D has a least upper
bound, D is bounded complete. A Scott domain is a separable bounded complete algebraic
domain.

A bounded complete cpo is also often called consistently complete. A ⊆ D is consistent
if it is bounded. This makes sense in the interpretation of D as an information ordering.

Notation. From this point on we will mean Scott domain when refering to a domain. This
should not cause any confusion, since there is no precise definition of a domain.

Bounded completeness seems like a desirable property for a cpo to possess. And indeed,
in the example with closed intervals in R, I1∩I2 is the least upper bound of I1 and I2 when
they have a nonempty intersection. Note that this cpo is no domain since the compacts,
which is only ⊥, does not form a basis. There is a similar cpo which is not bounded complete,
namely the closed discs in R2 with radius r ≤ ∞. This is because the intersection of two
discs is not a disc. Assume that two discs have an intersection I with a nonempty interieor.
Then for every disc d in I we can find another disc in I not contained in d.

Why then use Scott domains, and not only algebraic cpo’s? The motivation is in the
construction of function spaces.

Definition 1.2.7. Let X and Y be cpo’s. A function f : X → Y are continuous if

- f is monotonic, i.e.,
f(a) ≺ f(b) whenever a ≺ b.

- f preserves least upper bounds of directed sets;

f(
⊔

A) =
⊔

f [A]

for all directed A ⊆ X.

The set of continuous functions from X into Y is denoted by X → Y .
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In trying to find an adequate model of computation, restricting our attention to contin-
uous functions is necessary. By giving more information as input, more information about
the output should be obtained. Also, a computation should produce consistent output from
consistent input. Otherwise a function would not model “real” computations according to
our intuition.

The set of continuous functions X → Y forms a cpo with pointwise ordering. Algebraic
cpo’s are much more useful than mere cpo’s due to the basis of compacts, but X → Y is in
general not an algebraic cpo when X and Y are algebraic cpo’s. The problem is that given
f ∈ (X → Y ), the set {g | g ≺ f and g is compact} is generally not directed. However, for
Scott domains we have

Theorem 1.2.8. Let X and Y be Scott domains, then X → Y is a Scott domain.

Proof. see [3] or [2]. Essential in the proof is the fact that the following functions are
compacts in A→ B,

f〈p,q〉(x) =

{

q if p ≺ x

⊥ otherwise

where p and q are compacts in A and B respectively.

1.3 Ideal Completion

Now we will see how a domain D can be identified with certain subsets of D0. These subsets
are the ideals, and this fact will be of great importance later on.

Definition 1.3.1. Let D be a partial order with a least element ⊥. A ⊂ D is an ideal if

- ⊥ ∈ A.

- if a ∈ A and b ≺ a, then b ∈ A.

- if a, b ∈ A there exists c ∈ A such that a, b ≺ c.

Theorem 1.3.2. If D is an algebraic cpo, then D and Id(D0), the ideals in D0, are
isomorphic.

Proof. This follows easily from D0 being a basis for D. The canonical embeddings between
the two spaces are

x 7→ {c ∈ D0 | c ≺ x}

and
A 7→

⊔

A.

From Remark 1.2.4 it follows that the elements of D can be divided into the ’finite’ or
compacts elements and the rest, the ’infinite’ or total elements. A compact need not be
finite in any literal way, but has properties resembling finiteness. Theorem 1.3.2 tells us
that D0 is the building blocks of D, so that we can work with a domain by only considering
D0 and let D consist of limits of compacts.
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Chapter 2

Forcing

Forcing is a technique developed by Paul Cohen in the 1960’s to achieve independence and
consistency proofs within set theory. The main idea is to consider a countable, transistive
model M of ZFC, Zermelo-Fraenkel set theory with the Axiom of Choice. Then, by picking
some G ⊂M such that G 6∈M , then M can be extended to the least model M [G] of ZFC
to contain G as an element. If G is carefully chosen, M [G] can be shown to have interesting
properties. The description of forcing in this chapter is mainly based on Kunen [4].

ZFC is generally accepted as the most natural axiomatic system to let mathematics take
place witin. It is formulated in the language of set theory, consisting of the binary relations
∈ and =. Relativization and absoluteness is a part of the logical framework for this thesis
and will be used both explicitely and implicitely. The formula φ relativized to the set M ,
φM , are φ where the existence quantifiers range over M . Then φ is absolute for M1,M2 if

φM1 ⇔ φM2 .

Throughout this chapter we must have in mind that our main objective is to apply
forcing to domain theory. So the poset regarded here can be considered as the poset of
Chapter 1, namely the compact elements of a domain. This poset is exactly what links
domain theory and forcing together.

2.1 Generic Filters and P-Names

Let M be a countable transitive model, abbriviated c.t.m., of ZFC and let (P,≤,1) be a
partial order with greatest element 1, such that (P,≤,1) ∈ M . Note that such a partial
order is essentially identical to those considered in Chapter 1, except that the ordering is
reverse. So when D has a smallest element ⊥, P has greatest element 1. We will use the
relation symbol ≺ for posets with a smallest element, and ≤ for posets with a greatest
element, following standard notation.

2.1.1 Generic Filters

The notion of an ideal from domain theory is equivalent to that of a filter in forcing.

Definition 2.1.1. A ⊆ P is a filter if:

- 1 ∈ A.

7



8 CHAPTER 2. FORCING

- ∀p ∈ A∀q ∈ P(p ≤ q ⇒ q ∈ A).

- ∀p, q ∈ A∃r ∈ A(r ≤ p ∧ r ≤ q).

Note that {1} is trivially a filter in P. We will be interested in a certain type of filters,
that in some sense are rather large.

Definition 2.1.2. A ⊆ P is dense if

∀p ∈ P ∃q ∈ A(q ≤ p).

A filter G ⊆ P is P-generic over M if for all dense D ⊆ P, D ∈M ⇒ G ∩D 6= ∅.

By this defintion, a generic filter should contain very much information. Just exactly
how much, in some special cases, is the main concern of this thesis. Generic filters are not
rare, and indeed we have;

Lemma 2.1.3. For all p ∈ P there exists a generic G such that p ∈ G.

Proof. The idea is that since M is countable, so is the dense subsets of P in M . Let these
subsets be {Dn}n∈N. Then, choose inductively pi ∈ Di such that

p = p0 ≥ p1 ≥ p2 ≥ . . .

This can be done since each Di is dense. Then let G be the filter generated by {pi}i∈N.
From the construction, G is generic.

The following lemma will be useful in later chapters.

Lemma 2.1.4. Let G be P-generic, p ∈ G, A ⊂ P, A ∈M and A dense below p, i.e.,

∀q ≤ p∃r ≤ q(r ∈ E).

Then G ∩A 6= ∅.

Proof. see [4].

2.1.2 The Construction of M[G]

The ZFC model M [G] will be a hereditary construction in M from the elements of G. This
follows from a definition by transfinite recursion;

Definition 2.1.5. Let τ be a P-name if τ is a relation and

∀〈σ, p〉 ∈ τ(σ is a P-name ∧ p ∈ P).

This means that V P, the collection of P-names, is to big to be a proper set, but is just
a class. We will only use the P-names definable in M , denoted by MP. Then we can use
the elements of MP and G to define M [G].

Definition 2.1.6. Let τ be a P-name, then

val(τ,G) = {val(σ,G) | ∃p ∈ G(〈σ, p〉 ∈ τ)}.

τG is used as a shorthand for val(τ,G). Define

M [G] = {τG | τ ∈MP}.
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It is clear that τG is not definable in M if G 6∈M , since the definition of τG depends on
G. This is the case we will be interested in. The following lemma illustrates why.

Lemma 2.1.7. If P satisfies

∀p ∈ P∃q, r ∈ P(r ≤ p ∧ q ≤ p ∧ q⊥r), (2.1)

then G 6∈M for every generic G.

Proof. see [4].

Most of the interesting P’s satisfy (2.1), and if (2.1) does not hold there exists a generic
G ∈M . This would make the use of forcing pointless. If P = D0 for some domain D as in
Chapter 1, (2.1) should indeed hold. This means that for all approximations p there exists
two inconsistent approximations extending p. Otherwise p could not approximate more
than possibly one infinite element of D(that is, of D \D0), which really does not make p
an approximation at all.

We can make two simple but important observations about M [G]. First, M ⊂ M [G].
To show this, we must find a suitable P-name for each x ∈M . Let

x̂ = {〈ŷ,1〉 | y ∈ x}.

Then x̂G = x. The point is that we know that 1 ∈ G for every generic G, making x̂ a copy
of x. Secondly, G ∈M [G]. Define the P-name

Γ = {〈p̂, p〉 | p ∈ P}.

Then
ΓG = {p̂G | p ∈ G} = {p | p ∈ G} = G.

To produce forcing results of any real value, it is important that M [G] is a model of ZFC,
or some subset thereof;

Theorem 2.1.8. Let M and P be as above. If G is P-generic over M , then M [G] satisfies
ZFC.

This is proved in detail in [4]. Proving this comes essentially down to constructing
names for the various sets assured to exists by the axioms of ZFC.

Now we can move on to the basic properties of forcing.

2.2 Forcing

Having constructed M [G], one might be interested in the truth or falsity of sentences in
M [G]. In M this is tricky business, since φM [G] depends on G, which M contains no infor-
mation about. However, there are possible within M to obtain some relative information
about φM [G]. If p is assumed to be contained in G, there is a chance that φ must be true in
M [G]. If this is the case, we say that p forces φ, or p  φ. This can be stated precisely as

Definition 2.2.1. Let M and P be as above, let φ(x1, . . . , xn) be a formula and let
τ1, . . . , τn ∈MP. If p ∈ P, then p P,M (φ(τ1, . . . , τn)) if

∀G[(G is P-generic over M ∧ p ∈ G) ⇒ φM [G](τ1G, . . . , τnG)].
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We will omit the subscript P,M in  when it is clear from the context which P and M
are under consideration The poset P is called the forcing relation. The following lemma
follows from this definition.

Lemma 2.2.2.

1. (p  φ(τ1, . . . , τn) ∧ q ≤ p) → q  φ(τ1, . . . , τn).

2. (p  φ(τ1, . . . , τn) ∧ p  ψ(τ1, . . . , τn)) ⇔ p  (φ(τ1, . . . , τn) ∧ ψ(τ1, . . . , τn)).

Since we have a quantifier over all generic G,  is not defined in M , but there is
possible to define a relation 

∗, which relativized to M is equivalent to . A lengthy and
technical argument, depending heavily on the fact that we consider only generic G’s, gives
the following fundamental theorem.

Theorem 2.2.3. Let M and P be as above, let φ(x1, . . . , xn) be a formula and τ1, . . . , τn ∈
MP. Then for all p ∈ P,

p  φ(τ1, . . . , τn) ⇔ (p 
∗ φ(τ1, . . . , τn))M . (2.2)

For every P-generic G,

φM [G](τ1G, . . . , τnG) ⇔ ∃p ∈ G(p  φ(τ1, . . . , τn)). (2.3)

For a proof, see [4]. The equivalence (2.2) tells us that it can be decided within M

whether a certain p forces φ in M [G] or not. Equivalence (2.3) tells us that for every true
φ in M [G], there exists some p in G which forces φ.

A large number of relative consistency results can be derived using forcing. That is,
statments like

Con(ZFC) → Con(ZFC + A) (2.4)

where A is some property not derivable from ZFC(otherwise (2.4) is trivial). The most
famous example of such a result is that CH is independent of ZFC. CH is the Continuum
Hypothesis, stating that there is no cardinal between that of the natural numbers and of
the real numbers, i.e., ω1 = 2ω. For this independence proof, it must be shown that both
CH and ¬CH are consistent with ZFC, that is

Con(ZFC) → Con(ZFC + CH) (2.5)

and
Con(ZFC) → Con(ZFC + ¬CH). (2.6)

The implication (2.6) is proved using forcing. From the assumption that we have a model
M of ZFC, we can construct a new model M [G] of ZFC as above. By choosing P with
care, it can be proved that ¬CH holds in M [G]. This shows why our forcing language is
important, and we are interested in what can be stated about M [G] in M . Implication
(2.5) is proved by showing that CH holds in L, the universe of constructible sets.



Chapter 3

Domain Theoretical
Constructions

3.1 The Algebraic Domain of Ideals

Let (D,≺,⊥) be a poset, and let FD be the set of ideals in D ordered by inclusion. We
will show that (FD,⊆) is an algebraic domain with a smallest element. First we need a
characterization of the compact elements of FD. We will use F instead of FD when it is
clear which poset is under consideration.

Proposition 3.1.1. F0, the compacts in F , is the ideals generated by one element of D,
that is

F0 = {fα | α ∈ D}

where fα is the least ideal in D containing α.

To prove this proposition, the following is useful;

Observation 3.1.2. When R ⊆ F is directed, tFR = ∪R.

Proof of Observation 3.1.2. We must show that ∪R is an ideal. Let x ∈ ∪R, that means
there exists r ∈ R such that x ∈ r. If for some y ∈ D y ≺ x then y ∈ r since r is an ideal.
This implies that we also have y ∈ ∪R. Then let x, y ∈ ∪R, so x ∈ r1 and y ∈ r2 for some
r1, r2 ∈ R. Then, because R is directed, there exists r ∈ R such that r1 ⊆ r and r2 ⊆ r.
Then x, y ∈ r, and we can find z ∈ r such that z ≺ x and z ≺ y. Since z ∈ ∪R, ∪R is an
ideal. ∪R is obviously the smallest ideal containing R.

2

Proof of Proposition 3.1.1. We have to show that

f ∈ F0 ⇔ ∃α ∈ D(f = fα). (3.1)

For the ”⇒”-direction of (3.1), it is enough to show that f 6= fα ⇒ f 6∈ F0 for all α ∈ D. So
let f ∈ F be given such that f 6= fα for all α ∈ D. Let R = {fβ | β ∈ f}, then R is directed
and f = ∪R = tR follows from Observation 3.1.2. But f 6⊆ r for all r ∈ R, so from the
definition of compactness, f is not compact. For the ”⇐”-direction of (3.1), assume f = fα

and let R be a directed set such that f ⊆ tR. Then, since R is directed, tR = ∪R. Hence

11
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f ⊆ ∪R

⇒ α ∈ ∪R

⇒ ∃r ∈ R(α ∈ r)

⇒ ∃r ∈ R(f ⊆ r)

⇒ f ∈ F0.

This completes the proof.

2

Lemma 3.1.3. Let (D,≺,⊥) be a poset, then FD is an algebraic domain with a smallest
element ordered by inclusion.

Proof. First, {⊥D} is trivially an ideal, and included in all other ideals, so ⊥F = {⊥D}. F
is algebraic if F0 is a basis for F , so the following two proporties of F0 must be verified:

1) ∀f ∈ F ({y ∈ F0 | y � f} is directed)

2) ∀f ∈ F (f =
⊔

{y ∈ F0 | y � f})

For 1), let f ∈ F and y1, y2 ∈ F0 such that y1, y2 � f . Then there is α and β in D such
that y1 = fα and y2 = fβ. Since y1, y2 ⊆ f , both α and β are in f . Hence, since f is an
ideal, there exists γ ∈ f such that α ≺ γ and β ≺ γ. We need to show that fγ � f , which
will imply 1). We have;

fα, fβ ⊆ fγ ⊆ f.

Then fγ � f follows from the fact that generally, f1 ⊆ f2 ⇒ f1 � f2 when f1 ∈ F0. To
see this, let R be directed and let f2 ⊆ tR. Then

f1 = fα ⊆ f2 ⊆ tR = ∪R,

which means there is r ∈ R such that α ∈ r, and hence fα ⊆ r.

For 2) we have

t{y ∈ F0 | y � f}

= ∪{ y ∈ F0 | y � f}

= ∪{ fα | α ∈ f}

= f .

The first equality follows from 1) and Observation 3.1.2. 1) and 2) shows that (F,⊆) is an
algebraic domain.
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3.2 An Extension of P

Let (P,≤,1) be a poset. We will show that P can be extended to a partial order which
is bounded complete without changing it in an essential way for our purposes, that is, so
it preserves generic filters. We use P and the reverse order ≤ since this section is not
purely domain theoretical, but related to forcing via the generic filters. First, we prove the
following;

Proposition 3.2.1. Every generic filter is maximal.

Proof. Let G be a generic filter. Assume for contradiction that G can be extended with p,
that is, that G ∪ {p} is a filter. Let

E = {q ∈ P | q ≤ p ∨ q⊥p} \ {p}

Then E is dense below p. This follows from the construction of E as long as E is nonempty.
If E was empty, every q ∈ P would have been consistent with p, i.e., p, q ≤ r for some r ∈ P.
If r = p for every q, {p} would be dense and hence be an element of G since G is generic,
so we have a contradiction. If on the other hand r 6= p, we would have r ∈ E, which
contradicts that E is empty. So E is nonempty. Thus there exists some x in G∩E because
G is generic. Since x ∈ E either x ≤ p, which contradicts that p 6∈ G, or x⊥p, which
contradicts that G ∪ {p} is a filter.

Definition 3.2.2. Let P+ be the set consisting of all finite, bounded subsets A ⊆ P and let
A ≤ B if

∀p ∈ B ∃q ∈ A (q ≤ p). (3.2)

We will use the relation symbol ≤ for both P and P+, and try to make sure it is always
clear which poset is under consideration.

Lemma 3.2.3. Given a poset P, then P can be extended to a bounded complete poset P+

such that there is a canonical one-to-one relation between the generic filters in P and P+.

Proof. Let P+ be as in Definition 3.2.2. If G is P-generic, let

G+ = {A ∈ P+ | A ⊆ G}.

We will show that G+ is P+-generic. First of all, G+ is a filter; let A ∈ G+ and B ∈ P+

such that A ≤ B. Since A ⊆ G, (3.2) implies that every p ∈ B also is an element of G.
Hence B ⊆ G, and B ∈ G+. Then let A,B ∈ G+. Since both A and B are finite and G is
a filter, there exists c ∈ G such that ∀a ∈ (A ∪B)(c ≤ a). Letting C = {c} ∈ P+, we have
C ≤ B and C ≤ A. Hence G+ is a filter.

Next we have to show that G+ ∩ ∆+ 6= ∅ when ∆+ ⊆ P+ is dense. Let

∆ = {x ∈ P | ∃X ∈ ∆+(X bounded by x)}.

Then ∆ is dense in P; let p ∈ P, then {p} ∈ P+. Since ∆+ is dense, there exists A ∈ ∆+

such that A ≤ {p} and A is bounded by some x ∈ P from the definition of P+. So x ≤ p and
x ∈ ∆, since x is a bound of a set in ∆+. Hence ∆ is dense. Then there exists x ∈ (∆∩G),
so x is an upper bound of some set B ∈ ∆+. Now

∀y ∈ B(y ∈ G)
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because G is a filter and x ∈ G. So B ∈ G+, and thus

B ∈ (G+ ∩ ∆+).

This means that G+ is P+-generic.
So a generic filter in P gives us a generic filter in P+. Now we want to show that generic

sets in P+ remains generic in P. Let H ⊆ P+ be P+-generic. Then

H− =
⋃

{A | A ∈ H}

will be P-generic. First, H− is a filter. Let p ∈ H− and q ∈ P such that p ≤ q. Then
{q} ∈ P+, and A ≤ {q} for the A ∈ H such that p ∈ A. Since H is a filter, {q} ∈ H , and
from the definition of H− it follows that q ∈ H−.

To show the second condition for H− to be a filter, that two elements of H− has a
common bound, it is surprisingly not enough to use that H is a filter. Given two elements
of H−, a bound can be found, but this may not be in H−. So let p, q ∈ H−, we need to
find r ∈ H− such that r ≤ p and r ≤ q. Let A,B ∈ H be such that p ∈ A and q ∈ B. Since
H is a filter, we can find Z ∈ H such that Z ≤ A and Z ≤ B. Let z be a bound for Z, and
let

∆+ = {A′ ∈ P+ | ∃r′ ∈ A′(r′ ≤ p ∧ r′ ≤ q)}.

If we can show that ∆+ ⊆ P+ is dense below Z, then H ∩ ∆+ 6= ∅ from Lemma 2.1.4,
and from the definition of ∆+ we will have r as required. So let E ∈ P+ and assume that
E ≤ Z. E is bounded by some e ∈ P, and e ≤ z ≤ p, q. This means that {e} ∈ ∆+, and
{e} ≤ E implies that ∆+ is dense below Z.

Finally, we must show that H− is P-generic, so let ∆ be dense in P. Define now

∆+ = {{x} | x ∈ ∆.}

Then ∆+ is dense in P+; let E ∈ P+, where E is bounded by e ∈ P. Since ∆ is dense, there
exists x ∈ ∆ such that x ≤ e, and we will have {x} ≤ {e} ≤ E. Then ∆+ is dense since
{x} ∈ ∆+. Since H is P+-generic, there exists some {x} ∈ ∆+ ∩ H , which implies that
x ∈ ∆ ∩H−.

Having constructed P+ and showed that it preserves generic sets, we must make sure
that it is bounded complete. Let A,B ⊆ P+ be bounded by Z, which is bounded in P by
z. Then C = A ∪ B is finite and bounded by z, so C ∈ P+. Both A and B are obviously
bounded by C. To prove minimality of C, let C′ be some other bound for A and B. Every
c ∈ C is an element of either A or B, so anyway there exists c′ ∈ C′ such that c′ ≤ c. Hence

C′ ≤ {A,B} ⇒ C′ ≤ C,

and consequently P+ is bounded complete.

This result indicates that we should be able to assume that the domain under consider-
ation is bounded complete, and thus a Scott domain, when using forcing.

3.3 Domain Representation

As discussed in Chapter 1, we will be interested in finding domains in which a metric space
X can be interpreted as a subset. That is, we will look for a domain D and a surjective
mapping

f : D → X.
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In short, such pairs (D, f) will be called a domain representation of X . For a more formal
definition, see [7]. The metric spaces R and NN will be in frequent use in this thesis. We will
now introduce domain representations for both spaces, before we in section 3.3.3 consider a
general method for obtaining domain representations for arbitrary separable metric spaces.
We will also briefly take a look at compact elements in domains representing function spaces,
as these will be of special interest later on.

3.3.1 Representation of NN

The space NN is the set of functions from N into N, or equivalently, the set of infinte
countable lists of natural numbers;

NN = N → N = {{ai}i∈N | ai ∈ N}.

Geometrically, NN can be seen as a tree with infinite countable branching, where each
infinite branch corresponds to an element of NN. There is then one node in the tree for
each f(n) where f ∈ NN and n ∈ N. We will use the following metric on NN;

d(f1, f2) =

{

0 if f1 = f2
2−µk.(f1(k) 6=f2(k)) otherwise.

This means that B(ε, f), the open balls of radius ε centered at f , has a clear interpretation
as the full subtree above f(n), where n is maximal such that 2−n > ε. The compact subsets
of NN is given by

Proposition 3.3.1. S ⊂ NN is compact if and only if S ⊆ Cf for some f ∈ NN, where

Cf = {f ′ | ∀nf ′(n) ≤ f(n)}.

Now we need a domain representation of NN. N⊥ is trivially a domain, where all elements
are compact. Then

D = (N⊥ → N⊥) = N
N⊥

⊥

is a domain according to Theorem 1.2.8, and D will consist of all total and partial functions
N⊥ → N. The functions f such that f(n) = ⊥ for some n are strictly speaking total, but
we will say that they are partial, since the natural interpretation of ⊥ is ’undefined’. The
induced ordering in this domain is;

f1 ≺ f2 ⇔ f1(x) ≺ f2(x) for all x ∈ N⊥.

Some of the partial functions will be finite branches in the tree structure, i.e., f(n) = ⊥
when n > k, and f(n) 6= ⊥ when n ≤ k for some k. Denote the set of such partial functions
by D. Each f ∈ D approximates exactly the subtree above the node f(k). All other partial
functions N⊥ → N⊥ has ’holes’, and have no natural interpretation in the tree structure.
The elements of D will be treated as finite sequences of natural numbers.

Definition 3.3.2. For f ∈ D let length(f) be the unique m such that

f(n) 6= ⊥ for all n < m

f(n) = ⊥ for all n ≥ m.

We will use concatenation of sequences the usual way, that is

f ∗ 〈i〉 = 〈f(0), f(1), . . . , f(n− 1), i〉.
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It is easy to verify the following

Proposition 3.3.3. f is a compact element of D if and only if f(n) ∈ N for only finitely
many n ∈ N.

In a basis for N⊥ → N⊥ we will need all the compacts. However, we are only interested
in the total functions N → N. To represent these functions, it is sufficient to consider
ideals in D, which we will do in section 4.2.1. The elements of D0 \ D are only needed to
approximate the nontotal functions N → N.

3.3.2 Representation of R

The real numbers R will typically be the codomain of the function spaces under considera-
tion. Hence, we will need a representation of R as a domain.

Lemma 3.3.4. Let

R = {[a, b] | a ≤ b ∧ a, b ∈ Q} ∪ {(−∞,∞)}

and
< = Id(R).

Then ⊥ = (−∞,∞) and let ≺ be the partial order by reverse inclusion, that is

I ≺ J ⇔ J ⊆ I for I, J ∈ R.

Then (Id(R),≺, {⊥}) is a domain, and R can be identified with the set

<̄ = {A ∈ Id(R) |
⊔

A ∈ R}.

Proof. First of all, (R,≺,⊥) is obviously a partial order, and ⊥ ≺ I for all I ∈ R. That
< is an algebraic domain follows then from Lemma 3.1.3. From this construction, the
compacts are the ideals with proper rational intervals as least upper bounds, containing
this interval. This set constitutes a countable base for <, and hence < is separable. Since
closed rational intervals are closed under intersection, < is bounded complete and is thus a
Scott domain.

This representation is not completely satisfactory in the sense that an element q ∈ Q is
not represented by an unique ideal. The element q may, or may not, be an endpoint of the
intervals in the ideal. This means that there are tree ideals representing q:

A1 = {[a, b] | a < q ∧ q < b}

A2 = {[a, b] | a ≤ q ∧ q < b}

A3 = {[a, b] | a < q ∧ q ≤ b}

This ambiguity is an important nuance as [a, b] ∈ R can be represented by both of the
following ideals;

A1 = {[a′, b′] | a′ < a ∧ b < b′}

A2 = {[a′, b′] | a′ ≤ a ∧ b ≤ b′}

Only A2 is compact in Id(R) according to Proposition 3.1.1. As explained after Definition
1.2.3, only ⊥ is compact in the partial order R. However, since we have no interest in
representing proper rational intervals, this is no problem. We will work with the elements
of R as compacts approximating real numbers. For a more thoroughly treatment of this
subject, see [6].
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3.3.3 Representation of Metric Spaces

In the general case in this thesis we will use separable metric spaces (X, d), where separable
means that there exists a dense countable subset of X denoted by {ai}i∈N. In this section,
a domain representation of X will be introduced, which is based on [7].

Definition 3.3.5. A family F of closed nonempty subsets of X, including X, is a closed
neighbourhood system if

1) A,B ∈ F and A ∩B 6= ∅ implies A ∩B ∈ F .

2) x ∈ U for an open set U implies ∃A ∈ F (x ∈ int(A) ∧A ⊆ U).

It is clear that R in the previous section is a closed neighbourhood system of R. Let
F be a closed neighbourhood system of X , then F is a partial order by using reverse
inclusion. Then the least element ⊥ of F is X . F is bounded complete since if {A,B} ⊆ F

is consistent, then A∩B ∈ F is the least upper bound of {A,B}. Thus, D = (Id(F ),⊆) is,
according to Lemma 3.1.3, an algebraic domain which is also bounded complete. However,
D will represent the elements of X and the elements of the closed neighbourhood system,
which we will interpret as approximations of elements of X . Let A ∈ D be a converging
ideal if A contains sets of arbitrarily small diameter. Denote the set of converging ideals in
D by D̄. Then every element of D̄ will uniquely determine an element of X , so;

Theorem 3.3.6. Every metric space (X, d) is domain representable.

The set of all closed subsets of X is clearly a closed neighbourhood system. However,
this neglects the fact that we are interested i Scott domains, which also must be separable,
and that we consider separable metric spaces. Use the dense subset {ai}i∈N and define

Bn,q = {x ∈ X | d(an, x) ≤ q} for q ∈ Q and q > 0.

Then we can let F be the family of finite intersections of such Bn,q-sets together with X .
Now F satisfies 1) of Definition 3.3.5 since we consider finite intersections and 2) is satisfied
since {ai}i∈N is dense. So F is a closed neighbourhood system and hence (Id(F),⊆) is a
bounded complete algebraic domain which also is separable, since F is countable.

Lemma 3.3.7. Every separable metric space (X, d) can be represented by a Scott domain.

We will regard function spaces A → B where we already have domain representations
A and B of A and B respectively. According to Theorem 1.2.8, A → B is a domain, which
will represent A→ B. A basis for A → B is formed by the compacts

p = {〈I1, J1〉, . . . , 〈In, Jn〉},

where Ii and Ji are Bn,q-sets of A and B respectively, and

Ii ∩ Ij 6= ∅ ⇒ Ji ∩ Jj 6= ∅ (3.3)

for all i ≤ n.
Implication (3.3) tells us that p is consistent and thus approximates actual functions.

Let P be the set of these compact functions with the following ordering; p ≺ q if

∀i ≤ n∃j ≤ m(Ii ⊆ I ′j ∧ J
′
j ⊆ Ji).
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when
p = {〈I1, J1〉, . . . , 〈In, Jn〉} and q = {〈I ′1, J

′
1〉, . . . , 〈I

′
m, J

′
m〉}.

Given f : A→ B, f is approximated by p ∈ P if

f [Ii] v Ji for i ≤ n.

Notation. Even though the elements of P are not functions, we will say that p is defined
for A′ ⊆ A if

∀x ∈ A′∃〈Ii, Ji〉 ∈ p(x ∈ Ii).



Chapter 4

Generic Functions

When the domain D under consideration is a function space, Theorem 1.3.2 (ideal comple-
tion) tells us that a function is assosiated with a filter of compacts in the domain. Hence,
a generic filter G in P = D0 is interpreted as a generic function. If M is a c.t.m. with
(P,≤,1) ∈ M , G will be a generic function in M [G], see Chapter 2. These functions will
be our main concern, and in this and the next chapter we will investigate under which
circumstances they are total.

4.1 A Function Defined From σG

Let M be a c.t.m., let (P,≤,1) ∈ M , G be P-generic over M and D ∈ M be a domain. FP

is the filters in P ordered by inclusion. FP will, as before, be denoted by F . Note that P is
ordered by ≤ and D by ≺. We then have the following;

Lemma 4.1.1. Given x ∈ DM [G], there exists a continuous function f : F → D in M such
that f(G) = x.

Proof. Let σ be a P-name for {y ∈ D0 | y ≺ x} and let p ∈ G be such that

p  (σ is an ideal in D0).

Such a p exists from (2.2) of Theorem 2.2.3. Then we can define in M the function

f ′(q) =

{

t{c ∈ D0 | q  (c ∈ σ)} if p ≺ q

⊥ otherwise

from P into D. From (2.3), f ′ is in M . We must make sure that f ′ is well defined, which
amounts to showing that K = {c ∈ D0 | q  (c ∈ σ)} is directed when p ≺ q, and hence
has a least upper bound. Note that generally

c ≺ b⇔ c� b

when c is compact. We will also in the following make use of Lemma 2.2.2. Let a, b ∈ K,
i.e.,

q  (a ∈ σ ∧ b ∈ σ ∧ σ is an ideal).

19
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Then
q  (∃c ∈ σ(a ≺ c ∧ b ≺ c)). (4.1)

However, we must be able to point at a particular such c in K. Since D is a domain, {a, b}
has a least upper bound c. Then (4.1) gives us

q  (∃c′ ∈ σ(c ≺ c′)),

and since q forces that σ is an ideal,

q  (c ∈ σ).

Thus c ∈ K.
Then we can define the function f : F → D as:

f(A) =
⊔

{f(q) | q ∈ A}.

This means that f produces least upper bounds of subideals of σG = {q ∈ D0 | q � x}.
For f to be well defined, we must show that ↓f(A) is an ideal for each A ∈ F , where1

↓f(A) = {c ∈ D0 | c ≺ f(A)}.

Assume b ∈↓f(A) and a ≺ b ∈ D0. This means that there exists some q ∈ A such that
q ≤ p and

q  (b ∈ σ ∧ (σ is an ideal)).

This implies
q  (a ∈ σ),

and hence a ∈↓f(A). Let then a, b ∈↓f(A), that is

∃q1, q2 ∈ A(q1, q2 ≤ p ∧ q1  (a ∈ σ) ∧ q2  (b ∈ σ)).

Since A is a filter, there exists q ∈ A such that q ≤ q1, q2 and then

q  (∃c ∈ σ(a ≺ c ∧ b ≺ c)).

As for (4.1), this means that the least upper bound of {a, b} is in ↓f(A). This means that
↓f(A) is an ideal, and thus represents an unique element of D.

The informal statement f(G) = x (G is not defined in M) can now be verified. To show
that σG =↓f(G), let c ∈ σG, that means (c ∈ σG)M [G]. From (2.2), there exists some q′ ∈ G

such that
q′  c ∈ σ.

Since G is a filter and p and q′ are in G, there exists q ∈ G that extends both q′ and p.
Then we have c ≺ f ′(q) since also q will force c ∈ σ. This will again mean that c ≺ f(A),
and c ∈↓f(A).

Now we have σG ⊆↓f(A), and since σG is maximal in the codomain of f , σG =↓f(A).
That f is monotonic is rather obvious. Let A1 ⊆ A2 be filters in P and let c ∈↓f(A1),

which means there exists some q in A1 such that q  (c ∈ σ). Since q is also in A2,
c ∈↓f(A2), and hence f(A1) ≺ f(A2).

1The notation ↓x = {y ∈ P | y ≺ x} is according to [5].
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To show that f preserves least upper bounds, let R be a directed set of filters in P.
From Observation 3.1.2 we have tR = ∪R, so we must show tf(R) = f(∪R). Let first
c ∈↓(tf(R)). Since f is monotonic, f(R) is directed and therefore, since c is compact,
c ≺ f(A) for some A ∈ R, and hence c ≺ f(A) ≺ f(∪R). This implies c ∈↓f(∪R), which is
what we wanted.

Then assume that c ∈↓f(∪R), which means that there exists A ∈ R and q ∈ A such
that

q  (c ∈ σ).

Then

c ≺ f(A) ≺ tf(R).

So c ∈↓ (tf(R)). This means that f preserves least upper bounds of directed sets and
consequently that f is continous.

4.2 Total Generic Functions

In this section we will consider two kinds of generic functions f ∈ X → Y . In both cases
X is σ-compact, and in the first case X is also compact. As will be shown, X is ’small’
enough to assure that f is total. These results points to Theorem 5.3.3, and the strategy
in the proofs are similar.

4.2.1 Totalness of Generic G : Cf → N

Let D be a domain representation of NN → N according to section 3.3.1. We use (D0,≺) as
the forcing relation. The compact elements of this domain are the finite partial functions
of the form

σ = {〈τ1, n1〉, . . . , 〈τk, nk〉},

where τi : {0, 1, . . . , ni} → N.
We then have

Lemma 4.2.1. Let G be D0-generic and S = Cf for some f ∈ NN, then G defines a total
function

g : SM [G] → N.

Proof. Define in M [G]

g(f ′) = n⇔ ∃σ ∈ G∃〈τi, n〉 ∈ σ(τi ≺ f ′).

We say that σ is total on Cf if

∀f ′ ∈ Cf∃〈τ, n〉 ∈ σ(τ ≺ f ′).

First we must show in M that E = {σ | σ is total on Cf} is dense. Then we will have an
element σ ∈ G ∩ E since G is generic. This element will then be total on Cf in M [G] as
well, since being total on a compact set is absolute, which will be verified below. So σ will
in M [G] guarantee that g is total and well defined.
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To show that E is dense, let σ0 ∈ D0 be arbitrary. We need to find σ ∈ E such that
σ0 ≺ σ and σ is total on Cf . Let

k = max{length(τ) | 〈τ, n〉 ∈ σ0}

and
σ = {〈τ, n〉 | 〈τ, n〉 ∈ σ0 ∨ (length(τ) = k ∧ n = h(τ, σ0))}

where

h(τ, σ0) =

{

m if ∃〈τ ′,m〉 ∈ σ0(τ
′ ≺ τ)

0 otherwise.

So σ is the tree σ0 with the ’missing’ branches defined consistently with σ0, giving the value
0 if σ0 does not give any information about τ . The way σ extends σ0 can be illustrated as
follows;

An example with k = 4 and f(n) = 2, the strippled branches are added to σ0.

7 7 2 5 0 3 0 0 9 7 0 1 3 3 3 3

r

r r r r r r

r

b b b b b b b b b b

7

3

Then σ0 ≺ σ because σ contains σ0. The new elements of σ that extends elements of
σ0 does this consistently, that is;

¬∃〈τ1, n〉, 〈τ2,m〉 ∈ σ(τ1 ≺ τ2 ∧m 6= n).

Thus σ is total on Cf since σ must contain an approximation of all elements in Cf . For σ to
be an element of D0, we must make sure that it is finite. Considering Cf as an infinite tree,
the branching in depth n is equal to f(n). Since σ only consists of branches of maximal
depth k, there can only be finitely many of them.

Finally we must show that being total on a compact is absolute, i.e.,

(σ is total on Cf )M ⇔ (σ is total on Cf )M [G]. (4.2)
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The “⇐”-direction of (4.2) is trivial since M ⊂M [G]. Then assume for contradiction that
σ is total on Cf in M and that σ is not total on Cf in M [G]. That means there exists some
f ′ ∈ Cf in M [G] such that there is no approximation of f ′ in σ. Let k be as above, and let
τ be f ′ restricted to length k. Then τ has neither got an approximation in σ. Since both σ
and τ are finite, σ does not approximate τ in M . Then σ will not approximate any h ∈ Cf

in M extending τ , and this contradicts that σ is total on Cf in M .

4.2.2 Absoluteness of Total Compact Functions

For later arguments, such as the proof of Theorem 4.2.3, we will need a generalization of
(4.2). This establishes the main connection between M and M [G] that we will make use of.
By showing that a compact function (i.e., an element of P = D0) is total in a certain sense,
on a compact C in M , we will know that this also is the case in M [G]. For our purposes
we must consider the general case where D → < is a domain for X → R where (X, d) is a
complete, separable metric space.

Lemma 4.2.2. Let p ∈ (D → <)0 be defined with a precision of δ on the compact C in M .
That is,

(∀x ∈ C∃〈I, J〉 ∈ p(x ∈ I ∧ |J | ≤ δ))M (4.3)

Then (4.3) also holds in M [G], i.e., relativized to M [G].

Proof. Let (x ∈ C)M [G] and let I =
⋃

i≤m Ii where p is defined with a precision of δ on each

Ii. Since C is a compact, there exists f ∈ NN and open balls B(εn, xn,i) where i ≤ f(n)
and εn = 1

n
, such that

C = {
⋂

n∈N

B(εn, xn,f ′(n)) | f ′ ≤ f}.

This means that C can be seen as a tree structure with finite branching. Let f ′ be such
that

x =
⋂

n∈N

B(εn, xn,f ′(n)).

Now, for every n we can find xn ∈ B(εn,f ′(n)) such that (xn ∈ C)M . From the assumption
that p is defined with a precision of δ on C, xn ∈ I. Then {xn}n∈N is a sequence in I with
limit x, and since I is closed, x is also in I. This proves (4.3) for all (x ∈ C)M [G].

4.2.3 Totalness of Generic G : R → R

Let < be a domain representation of R and let the forcing relation P be the compact
elements of < → <, i.e., the elements of the form

p = {〈I1, J1〉, . . . , 〈In, Jn〉}

where Ii and Ji are closed rational intervals and Ii ∩ Ij 6= ∅ implies Ji ∩ Jj 6= ∅.

Theorem 4.2.3. Let G be P-generic. Then G defines a total g : R → R in M [G].

Proof. The filter G will in M [G] define the function

g(x) =
⋂

{J | ∃〈I, J〉 ∈ ∪G(x ∈ I)}.
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We need to show that g(x) is a nonempty interval of length 0. For every x ∈ R there exists
N ∈ N such that x ∈ [−N,N ]. Thus it is sufficient to show that g is total on each [−N,N ],
since this is a compact in R. First, there is 〈I, J〉 ∈ ∪G such that g(x) ⊆ J . For let ∆ be
the set of all p ∈ P defined for x, i.e.,

∆ = {p | ∃〈I, J〉 ∈ p(x ∈ I)}.

Then ∆ is dense in M ; either an arbitrary p is already defined for x, or p can be extended
with some 〈I, J〉 where x ∈ I. Since G is generic ∆ ∩ G 6= ∅. Knowing this, g(x) must be
nonempty.

Now we will show that |g(x)| = 0, it is then enough to show that the following sets are
dense in M ;

Ak = {p | ∀x ∈ [−N,N ] ∃〈I, J〉 ∈ p(x ∈ I ∧ |J | ≤ 2−k)}

for all k ∈ N. To see this, notice first that Ak ∩ G 6= ∅ for all k since G is generic. Let
pn ∈ An ∩ G, then there exists 〈In, Jn〉 ∈ pn such that x ∈ In and |Jn| ≤ 2−n for all
x ∈ [−N,N ]. From Lemma 4.2.2 each pn is also defined with precision 2−n in M [G]. From
the definition of g, it follows that

g(x) ⊆
⋂

n∈N

Jn,

and hence

|g(x)| ≤ |
⋂

n∈N

Jn| = 0.

So it comes down to showing that Ak is dense. Let p ∈ P be arbitrary, we must then find
p′ ∈ P such that p ≺ p′ and p′ ∈ Ak. We will add certain elements to p to construct p′.
These new elements must guarantee that p′ is defined with a precision of 2−k on [−N,N ].
In the end we will have a fine partition of [−N,N ] with corresponding short intervals J .
During this process it is safe to add 〈I, J〉 to p′ if it does not contradict the construction
of p′ up until this point, i.e., if not I ∩ I ′ 6= ∅ and J ∩ J ′ = ∅ for 〈I ′, J ′〉 ∈ p′. This is the
main idea behind the construction of p′.

If

{[ai, bi]}
m
i=0 = {I | 〈I, J〉 ∈ p ∧ I ∩ [−N,N ] 6= ∅},

let {δi}n
i=0 be the finite partition of [−N,N ] generated by the points −N , N , ai and bi

for 0 ≤ i ≤ m. So we use p to create a partition of [−N,N ]. How p is defined outside of
[−N,N ] is of no importance.

Each of the intervals I = [δi, δi+1] in this partition is of one of the following three types:

1) (int Ii) ∩ I 6= ∅ for more than one I such that 〈I, J〉 ∈ p.

2) (int Ii) ∩ I 6= ∅ for exactly one I such that 〈I, J〉 ∈ p.

3) (int Ii) ∩ I = ∅ for all I such that 〈I, J〉 ∈ p.
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[δ5, δ6] is of type 1), [δ2, δ3] of type 2) and [δ1, δ2] of type 3).

We shall first consider all the intervals of type 1) and 2). Here p′ must be defined as
a refinement of how p is defined on this interval. For the intervals of type 3), we have no
such information from p, so here we only need to make sure that the construction of p′ is
consistent with the definition of p′ on the adjacent intervals. It is important to notice that
an interval of type 3) always has adjacent intervals of type 1) or 2).

So assume that I = [δi, δi+1] is of type 1). Let

J =
⋂

{K | 〈I ′,K〉 ∈ p ∧ I ′ ∩ [δi, δi+1] 6= ∅}.

This means that p is defined to be J on the interval I. Then make a finite partition
{∆i,j}

ni

j=0 of J such that

|[∆i,j ,∆i,j+1]| < 2−k for all j < ni.

This is possible since J is an interval of finite length. Having done this, we must make an
arbitrary partition {δi,j}

ni

j=0 of [δi, δi+1]. Then we can add the following elements to p′;

〈[δi,0, δi,1], [∆i,0,∆i,1]〉, . . . , 〈[δi,ni−1, δi,ni
], [∆i,ni−1,∆i,ni

]〉.

We now suppose that [δi, δi+1] is of type 2). This case is essentially the same as for
intervals of type 1), except that J will not be an intersection. We let J be the interval J
for which 〈I ′, J〉 ∈ p and int [δi, δi+1] ∩ I ′ 6= ∅. Then we can make a further extension of p′

exactly the same way as we did for intervals of type 1).
Having done this for all intervals of type 1) and 2) we can move on to the intervals of

type 3). Assume first that i 6∈ {0, n−1}, so that [δi, δi+1] is not the first or the last interval
of the partition {δi}n

i=0. The adjacent intervals, [δi−1, δi] and [δi+1, δi+2], must be of type
1) or 2), so both

J1 = [∆i−1,ni−1−1,∆i−1,ni−1
]
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and
J2 = [∆i+1,ni+1−1,∆i+1,ni+1

]

are already defined. It is just to check the indices and see that these intervals are the
adjacent intervals in the codomain of p′. Let a be the end point of J1 and let b be the
starting point of J2. Now we must make an extension of p′ which in some sense ’fills the
gap’ between a and b. Let J be the interval between a and b. As before, construct a
finite partition {∆i,j}

ni

j=0 of J such that each interval in this partition has length less than

2−k. Then make the corresponding arbitrary partition {δi,j}
ni

j=0 of [δi, δi+1]. Now we must
consider which elements we want to add to p′. If a ≤ b, we can do as before and add the
following elements;

〈[δi,0, δi,1], [∆i,0,∆i,1]〉, . . . , 〈[δi,ni−1, δi,ni
], [∆i,ni−1,∆i,ni

]〉.

However, if b < a the intervals in the domain and codomain must be matched the other
way around, so add to p′ the elements;

〈[δi,0, δi,1], [∆i,ni−1,∆i,ni
]〉, . . . , 〈[δi,ni−1, δi,ni

], [∆i,0,∆i,1]〉.

This ends the construction of p′.
Now we must verify that p′ has the required properties, that is p′ ∈ P, p ≺ p′ and

p′ ∈ Ak. This should follow geometrically from the figure. Indeed, p′ is finite since it is
constructed from finite partitions of a finite partition. If Ii ∩ Ij 6= ∅ for 〈Ii, Ii〉 and 〈Ij , Ij〉
new elements in p′, Ii and Ij have only a single point in common. Assume, without loss
of generality, that 〈Ii, Ji〉 was added to p′ first. From the construction of 〈Ij , Jj〉 we made
sure that Ji and Jj had a common endpoint, so Ji ∩ Jj 6= ∅. If one of 〈Ii, Ii〉 or 〈Ij , Ij〉 is
an element of p, the conclusion follows from the fact that p′ is constructed as a consistent
extension of p. This shows that p′ ∈ P. It is also trivially true that p ≺ p′ since p ⊂ p′.

Let now x ∈ [−N,N ] be arbitrary. Then there is an interval [δi,j , δi,j+1] which contains
x since these intervals is constructed from a partition of [−N,N ]. From the construction
of p′, the corresponding interval [∆i,j ,∆i,j+1] has length less than 2−k. This means that
p′ ∈ Ak, and having shown that Ak is dense, the proof is complete.



Chapter 5

Nontotal Generic Functions

In this chapter we will first consider two specific function spaces X → Y , both in which
generic functions are nontotal in M [G]. In both cases we let X be NN, and we let Y be
N and R respectively. This means that the result in section 5.2 is a generalization of the
result in Section 5.1. In neither case is X σ-compact, and this fact gives us the motivation
for the results in Section 5.3, showing that σ-compactness of X is an essential indicator of
totalness of generic functions.

5.1 The Function Space NN→ N

Lemma 4.2.1 states that every generic G defines a total function g : S → N⊥ in M [G] when
S ⊂ NN is compact in M . So from the full tree NN with infinite branching, we restricted
g to a subtree with only finite branching. Now we will show that g is not total on NN by
constructing a branch f for which g is not well defined.

Theorem 5.1.1. Let D be a domain representation for NN → N, M be a c.t.m. and G be
D0-generic. If

∃q ∈ G∃〈τi, ni〉, 〈τj , nj〉 ∈ q(ni 6= nj) (5.1)

then G is not total in M [G].

Proof. Obviously, we must assume that g is not constant, which is assured by assumption
(5.1). Otherwise the theorem would be trivially false. The function defined from G in M [G]
is;

g(f) = n⇔ ∃〈τ, n〉 ∈ ∪G(τ ≺ f).

We will construct a sequence f = {ai}i∈N recursively for which g is not well defined, i.e.,
does not determine an unique element of N. Let

A0 = {p ∈ P | ∃a ∈ N ∃〈τi, ni〉, 〈τj , nj〉 ∈ p(〈a〉 ≺ τi, τj ∧ ni 6= nj)}.

So A0 is the set of compact functions not constant on some 〈a〉. If we can show that this
set is dense below the q ∈ G assured to exist from (5.1), we are able to define 〈a0〉 for which
g is not constant. Then we will try to find an extension 〈a0, a1〉 of 〈a0〉 where g also is not
constant. By continuing this process we end up with a branch f for which g is not well
defined.

27
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Let p ∈ P be arbitrary such that q ≺ p. Since p is finite and has no common definition
for all of NN, we can choose the least a ∈ N such that p is not defined for 〈a〉. Then we
can make a finite extension p′ ∈ P of p by adding the two elements 〈〈a, 0〉, 0〉 and 〈〈a, 1〉, 1〉
to p. Such an extension will be consistent since p can be given any value where it is not
already defined. Now p ≺ p′ and p′ ∈ A0. This means that A0 is indeed dense below q, and
since G is generic we have G ∩A0 6= ∅ from Lemma 2.1.4. Then let a0 be the least a such
that g is not constant on 〈a〉, i.e.,

a0 = µa.(∃〈τi, ni〉, 〈τj , nj〉 ∈ ∪G(〈a〉 ≺ τi, τj ∧ ni 6= nj)).

Assume then for induction that a0, . . . , an has been defined. We make a minor change
in the definition of A0 to define An+1;

An+1 = {p | ∃a ∈ N∃〈τi, ni〉, 〈τj , nj〉 ∈ p(〈a0, . . . , an, a〉 ≺ τi, τj ∧ ni 6= nj)}.

From the previous step of the induction there exists q′ ∈ G that is an element of An. If
we can show that An+1 is dense below q′ we will have G ∩ An+1 6= ∅ by Lemma 2.1.4. So
let p be arbitrary such that q′ ≺ p. Since p can not have a common definition of the full
subtree 〈a0, . . . , an〉 and p is finite, we can choose the least a such that p is not defined for
〈a0, . . . , an, a〉. Similar to the first induction step, we construct p′ by adding the following
elements to p;

〈〈a0, . . . , an, a, 0〉, 0〉

and
〈〈a0, . . . , an, a, 1〉, 1〉.

Then p′ is a finite and consistent extension of p, i.e., p ≺ p′ ∈ P, and consequently An+1 is
dense below q′. Since we know that G ∩Ai 6= ∅ we can define an+1 to be the least a such
that g is not constant on the subtree 〈a0, . . . , an, a〉. More precisely, and analogously to the
first induction step, we define

an+1 = µa.(∃〈τi, ni〉, 〈τj , nj〉 ∈ ∪G(〈a0, . . . , an, a〉 ≺ τi, τj ∧ ni 6= nj)).

This completes the definition of f = {ai}i∈N.
Now we have an infinite branch f in NN, and we want to show that g is not defined for

f . For each n we can, from the existence of f , find f ′
n, f

′′
n ∈ NN such that

d(f ′
n, f) ≤ 2−n, d(f ′′

n , f) ≤ 2−n

and
g(f ′

n) 6= g(f ′′
n ).

Then g can not be well defined for f since g is continuous.

5.2 The Function Space NN→ R

In section 5.1 we considered a generic G with codomain N. By making some changes in the
argument, this result can be somewhat generalized;

Theorem 5.2.1. Let D be a domain representing NN → R, M a c.t.m. and G a D0-generic
filter. If G is not a constant function, i.e.,

∃q ∈ G∃r ∈ R∃〈τi, Ji〉, 〈τj , Jj〉 ∈ q(d(Ji, Jj) ≥ r), (5.2)

then G is not total in M [G].
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Proof. Now G defines in M [G] the function

g(f) =
⋂

{J | ∃〈τ, J〉 ∈ ∪G(τ ≺ f)}.

We will try to construct an element f of NN for which g is not well defined. This f will be
such that g(f) = ∅. As in section 5.1, we will by induction construct a sequence f = {ai}i∈N.
To find a0, consider the set

A0 = {p ∈ P | ∃a ∈ N∃〈τ1, J1〉, 〈τ2, J2〉 ∈ p(〈a〉 ≺ τ1, τ2 ∧ d(J1, J2) ≥ r)},

where r is fixed and satisfies assumption (5.2). So we look at those compact functions
sending subsets of some 〈a〉 onto sets seperated by at least a distance of r. That g varies
with at least r will be preserved along the branch f , and thus make sure that g is not well
defined for f .

We will show that A0 is dense below q, where q is given by (5.2), so let p ∈ P be arbitrary
such that q ≺ p. Since p is finite, we can choose the least a such that

∀〈τ, J〉 ∈ p(τ ∩ 〈a〉 6= ∅ ⇒ τ = ⊥).

Let

J = [j1, j2] =

{
⋂

{J ′ | 〈⊥, J ′〉 ∈ p} if ∃〈⊥, J ′〉 ∈ p

[0,r] otherwise.

This J will be used to make sure that the extension of p is consistent. So let p′ be p

extended with the elements
〈〈a, 0〉, [j1 − 1, j1]〉

and
〈〈a, 1〉, [j2, j2 + 1]〉.

These elements will not make p′ inconsistent, and since d([j1−1, j1], [j2, j2+1]) ≥ r, p′ ∈ A0.
Hence A0 is dense. Then we can define

a0 = µa.(∃〈τi, Ji〉, 〈τj , Jj〉 ∈ ∪G(〈a〉 ≺ τi, τj ∧ d(Ji, Jj) ≥ r)).

Assume then that a0, . . . , an are defined. Consider the set

An+1 = {p ∈ P | ∃a ∈ N∃〈τi, Ji〉, 〈τj , Jj〉 ∈ p(τi, τj ≺ 〈a0, . . . , an, a〉 ∧ d(Ji, Jj) ≥ r)}.

From the induction hypothesis we know that there exists some q′ ∈ G ∩ An. We want to
show that An+1 is dense below q′. So let p ∈ P such that q′ ≺ p be arbitrary and

J = [j1, j2] =

{
⋂

{J ′ | 〈τ, J ′〉 ∈ p} if ∃〈τ, J ′〉 ∈ p(τ ≺ 〈a0, . . . , an〉)
[0,r] otherwise.

Then we can consistently extend p with

〈〈a0, . . . , an, a, 0〉, [j1 − 1, j1]〉

and
〈〈a0, . . . , an, a, 1〉, [j2, j2 + 1]〉

where
a = µm.(∀〈τ ′, J ′〉 ∈ p(τ ′ ∩ 〈a0, . . . , an,m〉 6= ∅ ⇒ τ ′ ≺ 〈a0, . . . , an〉)).
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Thus An+1 is dense below q′. Since then An+1 ∩G 6= ∅ we can define

an+1 = µa.(∃〈τi, Ji〉, 〈τj , Jj〉 ∈ ∪G(〈a0, . . . , an, a〉 ≺ τi, τj ∧ d(Ji, Jj) ≥ r)).

This completes the construction of f = {an}n∈N. Now we can for every n find f ′
n, f

′′
n ∈ NN

such that
d(f ′

n, f) ≤ 2−n, d(f ′′
n , f) ≤ 2−n

and
|g(f ′

n) − g(f ′′
n )| ≥ r.

As in the proof of Theorem 5.1.1, this means that g is not well defined for f .

5.3 The General Case X → R

The previous results suggests that there is a connection between X being σ-compact and
X → R (or N) being total. In this section we will investigate this further. First we will show
that a generic G will be total for X → R when X is a complete separable σ-compact metric
space. This is a generalization of Theorem 4.2.3. Then we will try to find out whether the
converse holds; that G being generic and total implies that X is σ-compact.

5.3.1 X σ-Compact

Let (X, d) be a σ-compact complete separable metric space, and {an}n∈N be a dense set in
X . Let D be the domain representingX , according to section 3.3.3, generated by nonempty
finite intersections of sets of the form

Bn,r = {x ∈ X | d(x, an) ≤ r}.

This means that P = D0 is ordered by reverse inclusion and consists of elements

p =

k
⋂

i=1

{Bni,ri
}.

In the proof of Theorem 5.3.3 we will make use of a generalization of the Tietze-Urysohn
extension theorem.

Theorem 5.3.1. (Tietze-Urysohn) Let X be a complete, separable metric space. If
A ⊆ X and B ⊆ R are closed and f : A → B is continuous, then f can be extended to a
continuous g : X → R.

See [8] for a proof.

Lemma 5.3.2. (Normann) Let X be a complete separable metric space and let

〈B1, I1〉, . . . , 〈Bl, Il〉

be pairs of closed Bi ⊆ X and closed Ii ⊆ R such that
⋂

i≤k

Bi 6= ∅ ⇒
⋂

i≤k

Ii 6= ∅.

Then there exists a continuous f : X → R such that f [Bi] ⊆ Ii for all i ≤ l.
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Proof. For each x ∈ X let r(x) = |{Bi | x ∈ Bi}|. Then r(x) is bounded by l, so let
m = max{r(x) | x ∈ X}. We will define f by induction on m − i. In the induction
start we define f for A = {x ∈ X | r(x) = m}. Then A is a disjoint union of {Ai}i≤k

where Ai =
⋂

j≤m Bij
. The Ai’s must be disjoint since they otherwise would have been

intersections of more than m Bi’s, which would be a contradiction. Fix xi ∈
⋂

j≤m Iij
.

Then we can define

f(Ai) = xi.

This completes the induction start. Assume then that f has been defined continuously
for {x ∈ X | r(x) > n}, we will then define f for A = {x ∈ X | r(x) ≥ n}. Note that
{x ∈ X | r(x) > n} ⊆ A, so f has already been defined for some parts of this set. As in
the induction start, A =

⋃

i≤k Ai. We consider each of the Ai’s in turn:

- If Ai ∩ {x ∈ X | r(x) > n} = ∅, we have a high degree of freedom to define f , and we
can let

f(Ai) = xi

for some xi ∈
⋂

j≤n Iij
where Ai =

⋂

j≤n Bij
.

- If B = Ai ∩ {x ∈ X | r(x) > n} 6= ∅, B is a finite disjoint union of closed sets, as
showed in the figure, so B is closed. From the induction hypothesis, f is already
defined for B. Theorem 5.3.1 can then be applied to Ai and B such that f can be
continuously extended to all of Ai.

The shaded area shows Ai ∩ {x ∈ X | r(x) > 0}.

Ai

However, such an extension g may fail to send Ai into

Bi =
⋂

j≤n

Iij
= [b1, b2],

which is required. But g can be modified for the input values mapped outside of Bi,
so let

g′(x) = h(x) ◦ g(x)
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where

h(x) =







b1 if x < b1
b2 if x > b2
x otherwise

Since continuity is preserved under composition, g′ will be continuous and hence f
can be extended to g′.

Then f is defined for each Ai and thereby for A. We know that f is continuous on
each Ai, but we must make sure that f is also continuous on A. Disjoint Ai’s are
separated and f is therefore trivially continuous on the union. If Ai and Aj has a
nonempty intersection, it is clear from the figure that f is continuous on Ai∪Aj since
f is continuous on Ai, Aj and Ai ∩Aj .

The recursion end will define f for A = {x ∈ X | r(x) ≥ 0}. Then f is already defined
continuously for {x ∈ X | r(x) > 0}, which is a closed set. From Theorem 5.3.1, f can be
extended to all of X . This completes the proof.

Theorem 5.3.3. Let D be a domain representation of X → R for a complete separable
σ-compact metric space (X, d). Let M be a c.t.m. Then a D0-generic G will be total in
M [G].

Proof. G defines the function g in M [G] as follows;

g(x) =
⋂

{I | ∃〈I, J〉 ∈ ∪G(x ∈ I)}. (5.3)

First we must show that g(x) is nonempty for all x. For this, we must prove the following.

∃〈I, J〉 ∈ ∪G(x ∈ I ∧ J 6= ∅). (5.4)

∀y ∈ g(x)∀〈I, J〉 ∈ ∪G(x ∈ I ⇒ y ∈ J). (5.5)

Both follows quite easily from G being a generic filter. For (5.4), let A be the set of those
p ∈ P defined for x, i.e.,

A = {p ∈ P | ∃〈I, J〉 ∈ p(x ∈ I)}.

If A is dense, G∩A 6= ∅ and (5.4) will indeed be satisfied. So let p ∈ P be arbitrary. Either
p is already defined for x, which means there is 〈I, J〉 ∈ p such that x ∈ I, or we can make
an extension p′ of p, which is defined for x. Since p is finite, we can find n ∈ N and a
sufficiently small r ∈ R such that x ∈ Bn,r and I ∩Bn,r = ∅ for each 〈I, J〉 ∈ p. By adding
〈Bn,r, [0, 1]〉 to p, we have constructed p′ ∈ A, a finite consistent extension of p defined for
x. Statement (5.5) follows trivially from G beeing a filter. If 〈I1, J1〉, 〈I2, J2〉 ∈ ∪G and
I1 ∩ I2 6= ∅, then J1 ∩ J2 6= ∅.

Now we must show something far less obvious, namely that g(x) is well defined, in the
sense that g(x) is an interval of length 0 and thus an unique element of R. Since X is
σ-compact, X =

⋃

n∈N
Cn, where Cn is compact. It is then sufficient to show that g is well

defined for each Cn. Consider the sets

Ak
n,r = {q ∈ P | ∀x ∈ Cn∃〈I, J〉 ∈ q(x ∈ I ∧ |J | ≤ 2−k)}.

Ak
n,r is the set of those q ∈ P that are defined for all of Cn with a precision of 2−k. If each

Ak
n,r is dense, then Ak

n,r ∩G 6= ∅. From Lemma 4.2.2, stating that totalness on compacts is
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absolute for compact functions, g must then also in M [G] be defined with a precision 2−k

for each k. Thus |g(x)| = 0 for every x ∈ Cn.
So it is sufficient to show that Ak

n,r is dense in M . Let p ∈ P be arbitrary, we need to

construct an extension p′ of p that is an element of Ak
n,r. Here we can use the continuous

f assured to exist by Lemma 5.3.2, where f extends the definition of p. We use f as a
foundation for p′, without this f , the construction of p′ would pose big practical problems.

Now we want to pick {ani
}m

i=1 such that {Bni,r′ | 0 < i < m} is a cover of Cn for a
specific r′ ∈ R. This is possible since Cn is compact. This r′ must be small enough to allow
a very fine definition of p′. Since f is continuous on the compact Cn, f is also uniformly
continuous on this set. This is a standard result from analysis, see e.g. [9]. In accordance
with the definition of uniform continuity, we can choose a sufficiently small r′ such that

diam(f(Bni,r′)) < 2−(k+1)

for i ≤ m.
Let p′ be p extended with the elements

〈Bni,r′ , [f(ani
) − 2−(k+1), f(ani

) + 2−(k+1)]〉

for i ≤ m.
The idea behind this is that if 〈Bni,r′ , Ii〉 and 〈Bnj ,r′ , Ij〉 are new elements in p′ and

Bni,r′ intersect Bnj ,r′ , the distance d(ani
, anj

) between ani
and anj

is less than 2r′. From
the uniform continuity of f it follows that

|f(ani
) − f(anj

)| < 2 · 2−(k+1) = 2−k,

and thus Ii ∩ Ij 6= ∅. This means that the new elements in p′ is consistent with each other.
Assume now that 〈I, J〉 ∈ p and that I ∩ Bni,r′ 6= ∅. Then d(ani

, I) ≤ r′, and since f is
consistent with p, f(x) ∈ J for all x ∈ I. So d(f(ani

), J) < 2−(k+1) and thus Ij ∩ J 6= ∅.
We have constructed a finite cover of Cn, and thus ensured that p′ is total on Cn. We

showed above that p′ ∈ P, and p ≺ p′ follows trivially from the fact that p′ is an extension
of p. The construction of p′ gives us that p′ is defined with a precision of 2−k on Cn. All
this implies that p′ ∈ Ak

n,r and hence that Ak
n,r is dense in P. This completes the proof.

5.3.2 X not σ-Compact

Now we have proved that if X is σ-compact, every generic G defines a total function. It is
natural to ask whether the inverse statement holds. If we assume that every generic G is
total, is X then σ-compact?

First we will need some notation.

Definition 5.3.4. Let B be the set of finite intersections of Bn,q-sets in X, i.e.,

B = {
⋂

i<m

Bni,qi
| m,ni ∈ N ∧ qi ∈ Q}.

Note that B is countable since we let q range over the rational numbers.

Definition 5.3.5. Let A ∈ B. Define the predicates T and T ∗ as follows;
T (A) if there exists a finite set {Ai}

n
i=1 where each Ai ∈ B such that
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- A \Ai is not σ-compact for all i ≤ n

- A \
⋃

i≤nAi is σ-compact

If also

- diam(Ai) ≤ ρ · diam(A) for some ρ < 1,

then T ∗(A).

T ∗ is stronger than T , so we have;

∀A ∈ B(T ∗(A) → T (A)).

We can now formulate one of the main results.

Theorem 5.3.6. Let (X, d) be a non σ-compact complete separable metric space and let D
be a domain representing X → R. Let M be a c.t.m. and let G be D0-generic. If

∀A ∈ B(T (A) ⇔ T ∗(A)) (5.6)

and
∃X ′ ∈ B(¬T ∗(X ′) ∧ ∃p ∈ G(p not constant on X ′)). (5.7)

then G is not total in M [G].

Remark 5.3.7. The statement ’p not constant on X ′’ in assumption (5.7) means that the
information in p contradicts that G defines a total constant function on X ′. This implies
that there exists some q ∈ G and 〈Ii, Ji〉, 〈Ij , Jj〉 ∈ q such that Ji ∩ Jj = ∅ and neither Ii
nor Ij is σ-compact. In terms of forcing, p forces that G is not total on X ′.

Proof. The definition of the generic function g from G is as before, and given by (5.3).
The main idea is that we can embed NN into X ′ in a certain way. Any embedding will
not do, it must have some specific properties. Then a similar argument as in the proof of
Theorem 5.2.1 can be carried out. The strategy will be to first find non σ-compact disjoint
sets {Sn}n∈N in X ′. For each Sn we can find a countable set of non σ-compact disjoint sets
contained in Sn. Continuing this process, we obtain a tree structure with countable infinite
branching of non σ-compact sets. The main concern in this proof is the way these sets are
chosen.

More precisely, we will find non σ-compact sets Sf for all f : {0, . . . ,m} → N such that
Sf1

⊂ Sf2
whenever f2 ≺ f1. So, by following the branch f to depth m − 1 in the tree,

each Sf∗〈n〉 represents a further branching on depth m. After a recursive definition of Sf ,
we can define the mapping

f̄ =
⋂

f ′≺f

Sf ′ . (5.8)

Since X is complete, f̄ will be an element of X if each Sf has diameter less than 1
m

, where
m = length(f), since X is complete. This can be assured to hold during the construction.
Now we move on to the definition of Sf .

Let {B′
n}n∈N be an enumeration of B. Then let Bn = B′

n ∩ X ′. By going through
{Bn}n∈N we shall construct a set S of disjoint subsets of X ′. For each n ∈ N, if

1) Bn is not σ-compact
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2) Bn ⊆ X ′ \
⋃

S

3) ¬T ∗(Bn)

4) X ′ \ (
⋃

S ∪Bn) is not σ-compact

5) diam(Bn) ≤ 1

we add Bn to S. For S to be as required, we need:

a) X ′\
⋃

S contains no non σ-compact Bn.

b) S is an infinite set.

For a), assume that there exists Bn ⊆ (X ′ \
⋃

S) that is not σ-compact. We will obtain
a contradiction by showing that Bn is σ-compact. Since Bn was not added to S during
the construction, either 3), 4) or 5) fails. If 4) and 5) fails there must exist Bm ⊂ Bn for
which only 3) fails since Bm 6∈ S. Otherwise there would have been a decreasing sequence
{Bmi

}i∈N in Bn with

lim
i→∞

diam(Bmi
) = 0

for which only 4) and 5) (and possibly 3)) fails for each Bmi
. This would imply that

⋃

i∈N

(X ′ \ (
⋃

S ∪Bmi
)) = X ′ \

⋃

S

is σ-compact, since it is a countable union of σ-compact sets, which is a contradiction
from the construction of S. So we can without loss of generality assume that only 3) fails
for Bn, i.e., T ∗(Bn). This means that there exists {S′

i}
m
i=1 such that S′

i ∈ B, Bn \ S′
i is

not σ-compact and Bn \
⋃

i≤m S′
i is σ-compact. We can without loss of generality assume

that S′
i ∩ Bn is not σ-compact, since S′

i otherwise could be excluded from {S′
i}

m
i=1. Let

Si = S′
i ∩ Bn, then Si ∈ B. We will now construct a branching of sets in Bn. This

branching will, contrary to the main construction in this proof, be finite. So we will find
sets Kf ′ where f ′ is finite and f ′(n) ≤ f(n) for some f ∈ NN, i.e., f ′ ∈ Cf . Define

K〈i〉 = Si for i ≤ m.

Assume for induction on the length of f ′ that Kf ′ has been constructed. Then T ∗(Kf ′),
since Kf ′ has not been added to S. Then, analogously to the induction start, there is
{Si}m

i=0 ⊂ Kf ′ such that Kf ′ \Si is not σ-compact and Kf ′\
⋃

i≤m Si is σ-compact. Define

Kf ′∗〈i〉 = Si for i ≤ m.

Let also

Ff ′ = Kf ′\
⋃

i≤m

Kf ′∗〈i〉,

which is σ-compact. We now have for some f ∈ NN;

Bn = {
⋂

f ′′≺f ′

Kf ′′ | f ′ ∈ Cf} ∪ {Ff ′′ | f ′′ ≺ f ′ ∧ f ′ ∈ Cf}. (5.9)
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The second set in (5.9) is a countable union of σ-compact sets, and we can show that the
first set is compact by using the T ∗ property;

diam(Kf ′) ≤ ρ−length(f ′).

The proof of this is the same as a standard proof of Lemma 3.3.1. So Bn is σ-compact,
contradicting the assumption, and hence X ′ \

⋃

S contains no non σ-compact Bn.
To show b), assume for contradiction that S is finite. From the construction of S,

X ′ \
⋃

S is not σ-compact. From a), each Bn ⊆ X \
⋃

S is σ-compact, and these sets will
constitute a countable cover of X \

⋃

S, since this is an open set. This contradicts that
X ′ \

⋃

S is not σ-compact.
Let now {Sn}n∈N be an enumeration of S. Define

S〈n〉 = Sn for all n ∈ N.

The S〈n〉’s constitute the branching on depth 1 in our intended tree structure. This com-
pletes the induction start with respect to the depth of the tree, so assume now that Sf ′

has been constructed for a finite f ′. We can carry out the exactly same argument as above
with Sf ′ in the place of X ′ since Sf ′ is not σ-compact. The only difference is that we use

diam(Bn) ≤ 2−(length(f ′)+1)

instead of requirement 5) when adding Bn to S during the construction. So, in Sf ′ we
can find {Si}i∈N of non σ-compact disjoint sets such that Sf ′ \

⋃

i∈N
Si contains no non

σ-compact Bn. This completes the construction of Sf ′ for each

f ′ : {0, . . . , n} → N, n ∈ N.

We have now done the groundwork for the second part of the proof, where we need to
find some f ∈ NN in M [G] such that g(f̄) = ∅.

From the construction of the Sf ′ -sets, we have

diam(Sf ′) ≤ 2−length(f ′),

which assures that f̄ is an uniquely determined element of X . We will first define f(0), and
then define f(n) by induction for all n ∈ N. Consider the set

A0 = {p ∈ P | ∃k ∈ N∃〈Ii, Ji〉, 〈Ij , Jj〉 ∈ p(Ii, Ij ⊂ S〈k〉 ∧ d(Ji, Jj) ≥ r)},

where r = d(J1, J2) and J1, J2 are such that

∃〈I1, J1〉, 〈I2, J2〉 ∈ q(J1 ∩ J2 = ∅ ∧ I1, I2 not σ-compact), (5.10)

according to assumption (5.7).
Now we want to show that A0 is dense below q, so let p ∈ P be arbitrary such that

q ≺ p. Then we can consistently add to p the elements

〈S〈n,0〉, J1〉

and
〈S〈n,1〉, J2〉
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where
n = µm.(∀〈I, J〉 ∈ p(S〈m〉 ∩ I 6= ∅ ⇒ (X ′ \ I) σ-compact)).

This means that A0 is dense below q, and thus G ∩A0 6= ∅. Then we can define

f(0) = µm.(∃〈Ii, Ji〉, 〈Ij , Jj〉 ∈ ∪G(Ii, Ij ⊂ S〈m〉 ∧ d(Ji, Jj) ≥ r)).

Assume then for induction that f(n) has been defined. This means that f now can be
treated as a finite sequence. Consider the set

An+1 = {p ∈ P | ∃k ∈ N∃〈Ii, Ji〉, 〈Ij , Jj〉 ∈ p(Ii, Ij ⊂ Sf∗〈k〉 ∧ d(Ji, Jj) ≥ r)}.

We know from the induction hypothesis that there exist q′ ∈ G∩An. Then, equivalently
as for (5.10), let J1, J2 be such that

∃〈I1, J1〉, 〈I2, J2〉 ∈ q′(d(J1, J2) ≥ r ∧ I1, I2 not σ-compact).

Let p be arbitrary such that q′ ≺ p. Since ¬T ∗(Sf ) we can, as in the induction start, define

k = µm.(∀〈I, J〉 ∈ p(Sf∗〈m〉 ∩ I 6= ∅ ⇒ (Sf \ I) σ-compact)).

Then we can consistently extend p with the elements

〈Sf∗〈k,0〉, J1〉

and
〈Sf∗〈k,1〉, J2〉.

So An+1 is dense below p and G ∩An+1 6= ∅. This means that we can define

f(n+ 1) = µm.(∃〈Ii, Ji〉, 〈Ij , Jj〉 ∈ ∪G(Ii, Ij ⊂ Sf∗〈m〉 ∧ d(Ji, Jj) ≥ r)).

This completes the construction of f , and it remains to show that g(f̄) is not well
defined. The existence of f implies that there are sequences {an}n∈N and {bn}n∈N in X ′

such that
lim

n→∞
an = lim

n→∞
bn = f̄

and
d(g(an), g(bn)) ≥ r for all n ∈ N.

Thus, g is not well defined for f̄ . This completes the proof of the theorem.

5.4 An Application to the Urysohn Space

Theorem 5.3.6 can be applied to a wide range of metric spaces. One such space is the
Urysohn space, discovered by the russian mathematician Pavel Urysohn in 1925, see [1].
This is the universal separable metric space.

Definition 5.4.1. A metric space (U, d) is called Urysohn universal if;

- U is a complete, separable metric space.

- If A ⊆ B are finite metric spaces and φ : A → U is an isometry, then φ can be
extended to an isometry ψ : B → U .
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Two Urysohn universal metric spaces are always isomorphic. This can be seen by con-
structing an isomorphism between the dense countable subsets of the spaces by induction.
Since these spaces are unique up to isomorphism, they are in some sense the same space,
and this is called the Urysohn space. This space has got nothing to do with the topological
property of a space beeing a Urysohn space, which means that it is Hausdorff with a slightly
stronger separation axiom.

Lemma 5.4.2. Let U be the Urysohn space, U and < domains representing U and R

respectively. Then an (U → <)0-generic G is not total.

Proof. Urysohn proved that every separable metric space can be imbedded isomorphically
into U . This means that there is an isomorphism ψ : NN → U . The proof of Theorem 5.2.1
then gives us a way of constructing an x ∈ U for which G is not defined, by considering the
subspace ψ(NN) of U .

Intuitively, this result is not surprising. It has become clear that ’large’ metric spaces
give rise to non total generic functions. Thus, as a maximal complete separable metric
space, U should indeed have this property. However, to show that

T (A) ⇔ T ∗(A)

holds in U , so that Theorem 5.3.6 can be applied directly, a more technical argument is
required.
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