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Abstract

The aim of this paper is to survey some known properties of Cox rings of projective

surfaces and also present some new results. These results are explicit descriptions of

Cox rings of

• Del Pezzo surfaces and other rational surfaces occurring as blow-ups of P2 in special

configurations of points. In particular, we show that the Cox ring of the blow up of

P2 in n points lying on a line is a complete intersection ring with 2n+ 1 generators.

• Rational threefolds arising as blow-ups of P3 in points. In case of five points, we show

that the Cox ring is isomorphic to the coordinate ring of the Grassmannian G(2, 6).

We show using a correspondence of Mukai to invariant theory, that this phenomenon

generalizes to higher dimensions, i.e n+ 2 points in Pn give Cox ring isomorphic to

the coordinate ring of G(2, n + 3).

• K3 surfaces of Picard number 2. We give a new proof of a result of Artebani, Hausen,

and Laface on the finite generation of the Cox rings in this case. We also give strong

bounds for the number of generators and investigate explicit models of Cox rings of

some classical K3 surfaces including quartic surfaces in P3 and double covers of P2.

vii





Chapter 1

Generalities on Cox rings

1.1 Introduction

The coordinate ring of a variety is a fundamental object in algebraic geometry. Indeed,

classical projective geometry can be loosely described as the theory of translating geo-

metric properties of the variety into algebraic properties of the coordinate ring, that is,

in terms of commutative algebra. That being said, given a projective variety X, there

is no canonical candidate for its coordinate ring, since it depends on the embedding of

the variety into projective space, i.e it depends on a choice of a very ample line bundle

and a generating set of sections.

In the early 1990s David Cox [Cox95] constructed the homogeneous coordinate ring

of a toric variety to remedy this. The idea was to construct a multigraded polynomial

ring that encodes much of the combinatorics of the defining fan. Loosely speaking, this

ring is to a toric variety as the ring of polynomials k[x0, . . . , xn] is to Pn. When the

toric variety is projective, the ring also gives information about the various projective

embeddings. In addition, the ring realized many new similarities between toric varieties

and projective space Pn. For example, for a smooth projective toric variety X, the

homogeneous coordinate ring is a polynomial ring R such that

• Every closed subvariety of X correspond to a graded ideal of R,

• X can be recovered as a geometric invariant theory quotient of Spec(R) by a torus

action1, and

• Coherent sheaves on X correspond to R-modules.

Aiming to generalize Cox’ construction to a broader class of varieties, Hu and Keel

[HK00] introduced the Cox ring, or total coordinate ring of a variety. The ring is essen-

tially defined by

Cox(X) =
⊕

L∈Pic(X)

H0(X,L ),

with some mild restrictions on X. See Section 1.2 for a precise definition. The Cox ring

is thus the huge graded algebra consisting of all global sections from all line bundles

on X. This ring need not be finitely generated in general. It is a nice exercise to check

that the above definition coincides with Cox’ homogeneous coordinate ring when X is

toric, and Pic(X) is free (see Section 1.3).

1 As is the case for Pn = (Spec k[x0, . . . , xn] − 0) /Gm.

1



2 1 Generalities on Cox rings

The first natural question is: For which varieties X is Cox(X) a finitely generated

k-algebra?. This question has been a main focus in recent algebraic geometry, mainly

because finite generation of the ring has important implications on the birational geom-

etry of X. For example, the Cox ring being finitely generated means that the effective

cone and nef cone are both polyhedral and there are only finitely many small modifica-

tions, i.e contracting birational maps f : X 99K X ′ with X ′ projective and Q−factorial

and f an isomorphism in codimension one. Also, the condition ensures that the Mori

program can be carried out for any divisor on X [HK00, Prop. 1.11]. For these reasons,

Hu and Keel call varieties with finitely generated Cox ring Mori dream spaces. It was

conjectured in [HK00] that any log-Fano variety has a finitely generated Cox ring. This

was recently proved by Birkar, Cascini, Hacon and McKernan in their groundbreaking

paper [BCHM06].

There is also a surprising link between finite generation of the Cox ring and Hilbert’s

fourteenth problem. In its classical form, this problem asks if the ring of invariants SG

is finitely generated, where S is a polynomial ring and G is an algebraic group acting

linearly on S. The answer was shown to be positive by Hilbert himself in the case when

G is finite. In general however, the result does not hold. The first counterexample was

found in 1958 by Nagata: Consider a linear subspace G ⊂ G
9
a of codimension 3. The

group G induces a so-called Nagata action on S = C[x1, . . . , x9, y1, . . . , y9] by xi → xi,

yi → yi + tixi for 1 ≤ i ≤ 9. The ingenious idea of Nagata was to relate SG to (what

we today know as) a Cox ring of the blow-up of P2 in 9 general points. It is not hard

to see that this variety has infinitely many (−1)-curves, all of which are extremal in

the effective cone. The effective cone is then not finitely generated, contradicting the

finiteness of the Cox ring. This example was generalized by Mukai in [Muk01], who

considered more general blow-ups of projective space Pn. His precise result is

Theorem (Mukai). Let X be the blow-up of the projective space Pr−1 in n points in

general position. Then Cox(X) is not finitely generated if 1
2 + 1

r + 1
n−r ≥ 1.

In particular, we need n ≥ 9 general points in P2, and n ≥ 8 points in P3 for infinite

generation. See [Muk01] for more details.

The second natural question is: Given that Cox(X) is finitely generated, can we find

its explicit generators and relations? This means that we choose generating sections

x1, . . . , xn from the vector spaces H0(X,D1), . . . ,H
0(X,Dn) (here some of the Di may

coincide) and regard Cox(X) as a quotient

Cox(X) = k[x1, . . . , xn]/IX .

Here we consider the natural Pic(X)−grading on k[x1, . . . , xn] and IX given by letting

deg(xi) = Di, so that Cox(X) is in fact a multigraded ring. The ideal IX is always a

prime ideal, since Cox(X) has no zero divisors. In fact, under our assumptions, Cox(X)

is an UFD by the results in [Arz08].

In spite of the fact that the definition of the Cox ring is very explicit, finding its pre-

sentation is in general a very hard problem. It requires a lot of information about linear

systems and divisors of the variety X. An important example is the calculation of the

Cox ring of Del Pezzo surfaces, which is the content of the Batyrev-Popov conjecture.

This problem, originally formulated in [BP04], has gained a formidable amount of at-
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tention in recent literature in algebraic geometry [Der06, STV06, LV07, TVV08, SX08],

and shows that describing the behaviour of the Cox ring under blow-ups is a highly non-

trivial problem. The ideals of relations quickly become very complicated, and computer

calculations are infeasible. For example, when X is a degree one Del Pezzo surface, the

Cox ring is minimally generated by 242 sections, and the ideal IX above is generated

by 17399 quadrics [TVV08].

One may ask which varieties correspond to ”simple” Cox rings. Toric varieties are

the simplest in this respect since their Cox ring is a polynomial ring. In fact, using

GIT, Hu and Keel show that also the converse is true: A variety whose Cox ring is a

polynomial ring is also toric. The next step is to study varieties whose Cox rings have a

unique defining relation. Some examples of such spaces are given in [BH07] and [Der06].

Other than this, few actual computations of Cox rings has been carried out.

There exists one method which in principle works for any surface, namely Laface and

Velasco’s complex. This method was introduced in [LV07] to study the Cox rings of

Del Pezzo surfaces. Recently, Artebani, Laface and Hausen [AHL09] also investigated

Cox rings of certain K3 surfaces using this method. The basic idea is to reduce the

problem of finding minimal relations in the ideal to the vanishing of certain homology

groups. In the case of Del Pezzo surfaces, the latter problem in turn reduces to an

interesting combinatorial game on the graph of exceptional curves. The method relies

on a predefined set of generators for the ring and also heavily on vanishing theorems

like the Kawamata-Vieweg vanishing theorem. Although this approach is appealing,

the methods for computation of the homology groups are usually very ad hoc and so

the method is hard to apply in general.

One of the aims of this thesis is to provide more computations of Cox rings and apply

them to study the varieties in question. We will avoid the methods of [LV07], searching

for new techniques of computation. That being said, it seems futile to hope for a general

strategy for computing a Cox ring: Each of the varieties we study has its own special

geometric properties which must be employed to get information about the generators

and the ideal of relations of the Cox ring. In particular, one needs to choose explicit

generators wisely in order to say something at all about the relations. Our main focus

will be on surfaces, since there is already a great deal of classical theory to utilize for

these purposes. Also, studying numerical traits such as nefness and ampleness is easier

on surfaces, since divisors are curves: This allows us to easily apply numerical criteria

like the Nakai-Moishezon criterion.

The computation of Cox(X) can be divided into two subproblems as follows:

• Show that Cox(X) is finitely generated and find explicit generating sections.

• Find the relations between these and prove that they generate the whole ideal.

We think that both of these questions are hard problems in general. Finite generation

of the ring is perhaps a more important question in itself, and has been a main focus in

the study of Cox rings in recent literature. On the other hand, very few authors actually

find explicit generators. A few notable exceptions are Castravet’s articles [Cas07, CT06]

and [BP04]. The main tools we use to approach this question are Koszul cohomology,

Zariski’s theorem and induction.
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The second question is perhaps somewhat more delicate, since there are no familiar

techniques to apply or natural line of attack. Finding some relations is easy, by looking

at the multigraded Hilbert function of Cox(X) - the main difficulty here is proving that

these generate the entire ideal. Although we will try many different approaches to it in

this thesis, we have not found any preferred method.

The thesis is organized as follows. In Chapter 2, we investigate Cox rings of certain

rational surfaces with effective anticanonical divisor. We show that Cox rings of blow-

ups of P2 in ≤ 8 distinct points are finitely generated. In particular, when the points

are in general position, this is a converse of Mukai’s result above. Our results are

somewhat constructive in the sense that they tell us where to look for generators of the

ring. For example, we will see that we need a generator for each curve with negative

self-intersection. In the rest of the chapter, we study Del Pezzo surfaces. We give a

proof of the Batyrev-Popov conjecture for Del Pezzo surfaces of degree ≥ 3 and give

geometric interpretations for the defining relations of the ideal IX . We also study the

Cox ring of degree 5 Del Pezzo surfaces in greater detail. In particular, we study the

syzygies and the resolution of Cox(X) and find a quadratic Gröbner basis for the ideal.

In Chapter 3, we investigate rational surfaces X which arise as blow-ups of P2 in

special configurations of points. We find that the Cox rings actually become simpler as

the points move into special positions. We study in detail the extreme case when all

the points lie on a line. In contrast to earlier results, we show that in this case, the Cox

ring is always finitely generated for any number of blown-up points. We find explicit

generators and calculate the defining ideal using Gröbner bases and combinatorics. The

main result is that Cox(X) is a complete intersection ring with defining ideal generated

by quadrics.

In Chapter 4, we try to extend the techniques in Chapter 2 to threefolds occurring

as blow-ups of P3 in points. We find that as in the case of the quintic Del Pezzo, P3

blown up in 5 general points has a Cox ring isomorphic to the coordinate ring of a

Grassmannian variety. This turns out to be true in higher dimensions as well, as we

show using invariant theory.

In Chapter 5, we study Cox rings of K3 surfaces with Picard number 2. We find that

it is hard to say something in general about the defining ideal in this case, although the

Cox ring is generally finitely generated if its effective cone is. However, we are able to

compute the Cox ring in some cases, for example if if we assume that the Picard group

is generated by two projective lines or two elliptic curves.

Acknowledgements

I would like to thank all the persons in the group of Algebraic Geometry at the Uni-

versity of Oslo. In particular, I would like to thank Robin Bjørnetun Jacobsen, Abdul

Moeed Mohammad, Nikolay Qviller and Jørgen Vold Rennemo.

I would also thank Hans-Christian Graf von Bothmer and Alessandro Verra for in-

teresting discussions.

I wish to thank my supervisor, professor Kristian Ranestad for his guidance and

encouragement throughout the course of my algebraic geometry studies at UiO.

Finally, I would like to thank Veronica, for a wonderful time these years.



1.1 Introduction 5

Notations and basic results

We fix some notations. We denote by X a normal n−dimensional projective variety

over an algebraically closed field k of characteristic zero. We assume further that X

has finitely generated free Picard group Pic(X). Since X is normal, we will freely pass

between the three notions divisor class, line bundle and invertible sheaf. In general, the

notation will follow Hartshorne [Har77].

Let A(X) =
⊕n

i=0A
i(X) be the Chow ring, graded by codimension. We set

N1(X) = A1(X)/ ≡, N1(X) = An−1(X)/ ≡,

where ≡ denotes numerical equivalence. The pair (N1(X), N1(X)) is the Neron-Severi

bilattice of X and comes with a pairing

N1(X) ×N1(X) → Z, (C,D) 7→ C.D

defined by the intersection of cycles. We extend this pairing to the real vector spaces

N1(X) ⊗ R and N1(X) ⊗ R. These are finite-dimensional vector spaces and we call

their dimension, ρX the Picard number of X. In all cases in this thesis numerical

equivalence will equal linear equivalence, so that we will have Pic(X) ∼= N1(X,Z).

We will use capital letters for divisors and divisor class interchangeably - hopefully this

sloppy notation will be clear from the context. We will also use the standard short-hand

notations H0(X,D) = H0(X,OX(D)) and h0(X,D) = h0(X,OX (D)).

A divisor class D is said to be nef (or numerically eventually free) if D.C ≥ 0 for

each curve C ⊂ X, and is big if Dn > 0. Let NE1(X) ⊂ N1(X) denote the monoid of

effective divisors and NM1(X) the monoid of nef divisors. We let NE1(X,R) denote

the (pseudo)effective cone, i.e the smallest real closed cone containing all the effective

divisors of X. Similarly, we define NM1(X,R) as the nef cone of X. Note that for

surfaces these cones are dual in the sense that

D ∈ NM1(X,R) ⇐⇒ D.C ≥ 0, for all C ∈ NE1(X,R).

These cones will usually be finitely generated in this thesis since this is a necessary

condition for finite generation of the Cox rings. At this point it is appropriate to mention

the following general results:

Theorem (Kleiman) The interior of the nef cone, NM1(X,R)◦ is the ample cone of

X, i.e the cone generated by ample divisor classes.

Theorem (Hodge Index Theorem) If E is a divisor on X such that E2 > 0, then

for every divisor D on X such that E.D = 0 we have D2 ≤ 0. Furthermore, D2 = 0 if

and only if D ≡ 0.

We will often use the following equivalent result: If D1,D2 are numerically indepen-

dent divisors such that (aD1 + bD2)
2 > 0 for some a, b ∈ R, then

∣∣∣∣∣
D2

1 D1D2

D1D2 D2
2

∣∣∣∣∣ < 0.
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The next theorem along with Riemann-Roch will be our main tool for computing

ranks of cohomology groups. By Kleiman’s theorem, it can be seen as a generalization

of the Kodaira vanishing theorem.

Theorem (Kawamata-Vieweg Vanishing) Let D be a nef and big divisor on a

smooth projective variety. Then Hp(X,K +D) = 0 for all p > 0.

A divisor D is said to be semiample if the linear system |nD| is base-point free for

large n. Note that if D is base-point free then D.C ≥ 0 for any curve C, since we can

choose a representative of D not passing through a given point p ∈ C. So semiample

divisors are nef. It turns out that it will be important to prove the converse to this

in some cases. This is mainly because of the next result, namely Zariski’s theorem

[Laz05, Ex. 2.1.30], which concerns finite generation of the section ring for semiample

line bundles.

Theorem (Zariski) Suppose that L is a semiample line bundle on a normal projective

variety X. Then the section ring of L

⊕

k≥0

H0(X,L ⊗k)

is finitely generated.

We also recall a theorem due to Mori [Mor79], at the heart of the famous ’bend and

break’ technique:

Theorem (Mori) Let C ⊂ X be a rational curve such that −K.C ≥ n + 2. Then C

can be deformed into a cycle which is the sum of ≥ 2 rational curves.

This theorem will be important in studying effective cones in Chapter 2.

1.2 Cox rings of Projective Varieties

In this and the remaining sections we survey some well-known properties of Cox rings.

The formal definition goes as follows:

Definition 1.1. Let X be a projective variety whose Picard group Pic(X) is free of

rank r and coincides with N1(X). We define the Cox ring of X to be

Cox(X) =
⊕

(m1,...,mr)∈Zr

H0
(
X,L ⊗m1

1 ⊗ · · · ⊗ L
⊗mr
r

)

where we have chosen a collection L1, . . . ,Lr of line bundles on X whose classes form

a Z-basis of Pic(X). The ring product is given via the canonical multiplication map

H0(X,L ) ⊗H0(X,L ′) → H0(X,L ⊗ L
′).

It is possible to define the Cox ring also when Pic(X) differs from N1(X). See [Arz08]

and [BH07] for definitions using Cl(X). Note by the way that the assumptions of the
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definition are fulfilled if H1(X,OX) = 0 (say, when X is rational or a K3 surface) since

by [Bea96, I.10], Pic0(X) is isomorphic to the quotient H1(X,OX)/H1(X,Z).

In this thesis all varieties will be normal, so every line bundle will be of the form

OX(D) for some divisor D. In this setting the Cox ring can be equivalently defined by

choosing a finite set of Cartier divisors D1, . . . ,Dr generating CaCl(X), and defining

Cox(X) =
⊕

(m1,...,mr)∈Zr

H0 (X,OX(m1D1 + . . .+mrDr)) .

In this setting, the ring product coincides with multiplication of sections as functions

in k(X).

At first the definition of Cox(X) may seem a bit unsettling, since it depends both

on the basis of Pic(X) and the choice of particular representatives of each isomorphism

class. In fact, there is no canonical way of choosing a Z-basis for Pic(X). Moreover,

even after such a choice has been made we still need to choose specific divisors, rather

than divisor classes. This is because even if D and D′ are linearly equivalent, there exist

no natural isomorphism between the vector spaces H0(X,OX (D)) and H0(X,OX (D′)).

This lack of naturality destroys some functorial properties of Cox(X). However, as one

might expect, all of these choices yield isomorphic rings and there is nothing to worry

about.

We note that the Cox ring contains a lot of geometric information about our variety

X. For example, suppose D is a very ample divisor, giving an embedding i : X →֒ Pn

and OX(D) = i∗OPn(1). We have a subring of Cox(X) given by

R(X,D) =
⊕

m∈Z

H0 (X,OX(mD)) .

We recognize this from [Har77, II.5, Ex. 5.13-14 and II.7] where it is shown that X

is completely determined by X ∼= Proj(R(X,D)). In this respect, the Cox ring has

all the ’coordinate rings’ as subrings, which explains the name ’total coordinate ring’.

In particular, when Pic(X) ∼= Z · H is generated by a very ample divisor H, and the

homogeneous coordinate ring S(X) under the projective embedding in |H| is an UFD,

Cox(X) ∼= S(X). This happens for example for all Grassmannians G(m,n) [LV09].

Proposition 1.2. If Cox(X) is finitely generated, then its dimension is given by

rkPic(X) + dimX.

Proof. See [BP04, Remark 1.4].

1.3 Toric Varieties and Cox’ Construction

We recall basic facts on toric varieties. The main references are [Ful93] and [Cox95].

A toric variety is a normal variety containing an open dense algebraic torus T ∼= G
n
m,

whose action extends to an action T ×X → X. Such varieties are determined by data

from convex geometry. To be precise, let N = Hom(k, T ) ∼= Zn be the character lattice

of T and NR = N ⊗R ∼= Rn the induced vector space. The dual lattice (resp. space) is

denoted by M (resp. MR), and there is a natural pairing 〈 , 〉 : M ×N → Z. A cone σ
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is a subset NR generated by non-negative linear combinations of a finite set of integer

vectors {v1, . . . , vr}. We assume that cones are strictly convex, i.e they contain no line

through the origin. Each cone σ has a dual cone σ∨ = {m ∈ M |〈m, v〉 ≥ 0,∀v ∈ σ} in

M . A fan ∆ consists of a finite collection of cones such that each face of a cone is also

in ∆, and any pair of cones σ, σ′ intersect in a common face.

To each cone σ in N we can associate an affine variety Uσ. More precisely, define

Sσ = σ∨ ∩M , which is a monoid, and consider the group algebra k[σ∨ ∩M ], which

is a finitely generated k-algebra. It consists of linear combinations of monomials χm,

m ∈ Sσ, and multiplication is induced by the addition in Sσ. We define Uσ = Speck[Sσ].

Given a fan ∆ we obtain a variety X by gluing together the affine varieties Uσ, σ ∈ ∆.

All toric varieties arise in this way.

Example 1.3. The fan corresponding to X = P2 is shown below. The corresponding

cones and affine varieties are given in the following table

σ Sσ Uσ

〈e1, e2〉 〈e∗1, e
∗
2〉 Spec k[X,Y ] ∼= k2

〈e2,−e1 − e2〉 〈−e∗1,−e
∗
1 + e∗2〉 Spec k[X−1, Y X−1] ∼= k2

〈e1,−e1 − e2〉 〈−e∗2, e
∗
1 − e∗2〉 Spec k[Y −1,XY −1] ∼= k2

Note how the affine toric varieties coincide with the affines in the standard covering of

P2.

σ0σ1

σ2

N ∼= Z2

Fig. 1.1 The fan of P2.

Given a fan ∆ in NR, let ∆(1) be the set of 1-dimensional cones in ∆. By the ’orbit-

cone correspondence’ [Ful93], these correspond to torus-invariant divisors Dρ on X. Let

Z∆(1) be the free group on the Dρ, and for each cone ρ ∈ ∆(1), let vp ∈ N be its unique

generator. We then have an exact sequence

M → Z∆(1) → Pic(X) → 0

where the first map is m 7→
∑

ρ∈∆(1)〈m, vp〉Dp. In particular, Pic(X) is generated by

Dρ for ρ ∈ ∆(1).

The original construction of Cox was to consider the polynomial ring

R = k[xρ : ρ ∈ ∆(1)],

with multigrading given by deg(xρ) = Dρ. So for example, in the case X = P2 we have

three such cones, and we recover the standard coordinate ring S = k[x0, x1, x2]. Note

also that the fan ∆ is recovered by the multigrading. We show that this ring coincides

with the previous definition of Cox(X):
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Proposition 1.4. The degree D part of R coincides with H0(X,D).

Proof. Let D =
∑
aρDρ. By [Ful93, §3.4], H0(X,D) is spanned by monomials xm

such that 〈m, vρ〉 ≥ −aρ for all ρ ∈ ∆(1). We then have a bijective map between

monomials xm ∈ H0(X,D) and monomials v
〈m,v1〉+a1
1 · · · v

〈m,vn〉+an
n in RD. It is clearly

injective, since the vρ span NR, and also surjective: Let xb1ρ1 · · · x
bn
ρn

a monomial in RD.

Then
∑

(bρ − aρ)Dρ = D − D = 0, so by the exact sequence above, there exists an

m ∈M such that bρ − aρ = 〈m, vρ〉 for all ρ, and m satisfies the above inequality since

〈m, vρ〉 = bρ − aρ ≥ −aρ. ⊓⊔

1.4 Cox rings in Geometric Invariant Theory

We recall some basics of GIT. For ease of exposition we takeX to be a projective variety,

although the GIT applies to general irreducible schemes with some modifications. Let G

be an algebraic group acting on X. A G-invariant map p : X → Y is called a categorical

quotient by G, if for every G-invariant map f : X → Z there exist a unique f̄ : Y → Z

such that f̄ ◦ p = f .

A G−equivariant map p : X → Y is a good quotient if p satisfies:

• For all open sets U ⊆ Y , p : OY (U) → OX(p−1(U)) is an isomorphism onto the

subring OX(p−1(U))G of G−invariant functions.

• If W ⊆ X is closed and G−invariant, then p(W ) is closed.

• If U, V ⊆ X are both closed, disjoint and G−invariant, then p−1(U) ∩ p−1(V ) = ∅.

The main objective of GIT is to study possible good quotients of the orbit space of

X by G. For this, one considers the data (L , π, σ), where L is a line bundle on X

with projection π : L → X, and σ is a G−linearization of L , i.e., an extension of the

action σ : G × X → X to an action σ̄ : L → L such that the zero-section of π is G

invariant, and the following diagram commutes:

G× L
σ̄

id×π

L

π

G×X
σ

X

If such a linearization is given, we get a linearization on all tensor powers L ⊗N . We

define the set of semi-stable points with respect to L as

Xss(L ) =
⋃

N≥0

⋃

s∈H0(X,L ⊗N )

supp(s)

(More generally, when X is not necessarily projective, we also require the sets Xs to

be affine). We define the set of unstable points as the complement X \Xss(L ).

By fundamental theorems of Mumford in [MFK94] the GIT quotient Xss//G always

exists as a quasiprojective variety, and in caseX is projective and L is ample,Xss//G ∼=

Proj(RL ), where RL is the ring
⊕

n≥0

H0(X,L ⊗n)G.
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whereH0(X,L ⊗n)G are the G-invariant sections of L ⊗n. The GIT quotient is different

from the topological quotient since it is not an orbit space in general. Topologically, it

is the quotient of Xss by the new equivalence relation

x ∼ y ⇔ G · x ∩G · y ∩Xss 6= ∅

Consider the case whereX = Spec(R), whereR = Cox(X), andG = Hom(Pic(X), k∗) ∼=
G
ρ
m is an algebraic torus. For any D = a1D1 + . . . + aρDρ ∈ Pic(X), G acts naturally

on each H0(X,D) by

G×H0(X,D) → H0(X,D)

(x, s) 7→ xDs

where x = (x1, . . . , xρ) and xD = xa11 · · · x
aρ
ρ . Thus G acts naturally on the affine variety

V . We will consider GIT quotients of V by G.

Consider the trivial bundle L = V × Spec(k[t]) on V . A linearization of T can be

given by choosing a divisor class D and its character χD ∈ Hom(G, k∗) ∼= Pic(X).

Explicitly, the linearization corresponds to a homomorphism

R[t] → R[t] ⊗k k[G] (1.1)

t 7→ t⊗ xD (1.2)

We consider the ring
⊕

n≥0H
0(V,T ⊗n), and its subring, RT of G-invariant sections.

Note that such sections correspond to R-algebra homomorphisms s : R[t] → R which

make the following diagram commutative:

R[t]

s

R[t] ⊗ k[G]

s⊗id

R R⊗ k[G].

Such homomorphisms are determined by where they send t, and by looking at the

Pic(X) grading, we see that they are in 1-1 correspondence with the sections in

H0(X,D), thus

H0(V,T )G = H0(X,D).

Taking higher tensor powers, we have




⊕

n≥0

H0(V,T ⊗n
D )




G

∼=
⊕

n≥0

H0(X,nD)

Thus the GIT quotient of V by G is nothing but the scheme Proj(
⊕

n≥0H
0(X,nD)).

When D is ample, this equals X.

The semi-stable points Xss ⊆ V are now of interest. We define the irrelevant ideal

IX as the ideal of the points which are not semi-stable, i.e the points where s(x) = 0,

for all s in
⊕

n≥0H
0(V,T ⊗n). Concretely, let s1, . . . , sN be generators for H0(X,D).

Then the ideal of the unstable points is given by

IX =
√

(s1, . . . , sN ).
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When D is an ample divisor, we see that X is a good geometric quotient of Xss =

Spec(R) − V (IX) by G.

When X is a toric variety, the ideal IX coincides with the ideal (xσ̄ : σ ∈ ∆) where xσ̄

is the product of all variables xρ such that ρ 6⊂ σ. The latter ideal is the toric irrelevant

ideal of Cox(X) and by the above, we recover a theorem of Cox [Cox95, Thm. 2.1].

It is natural to study how this quotient changes as we vary the divisor D. Here we do

not require D to be ample. This problem is central in the so-called variational geometric

invariant theory and is investigated in [HK00].

1.5 Examples when Cox(X) is not finitely generated.

In this section we present some classical examples of surfaces whose Cox ring is not

finitely generated.

It is a standard fact that if D is an effective divisor on a surface, Γ a curve and

D.Γ < 0, then Γ is a fixed component of the linear system |D| and Γ 2 < 0. This is

because we may write D = aΓ +D′ where a ≥ 0, Γ 6⊂ D′ and hence D′.Γ ≥ 0. Then

D.Γ = aΓ 2 +D′.Γ can only be negative if Γ 2 < 0 and a > 0.

Lemma 1.5. Let X be a surface containing an infinite number of curves of negative

self-intersection. Then Cox(X) is not finitely generated.

Proof. It suffices show that NE1(X,Z) = {D ∈ N1(X) : Cox(X)D 6= 0} is not finitely

generated, since Cox(X) is graded by this monoid. Suppose that the classes of the

divisors C1, . . . , CN generate NE1(X,Z). Let E be a curve on X with negative self-

intersection. Then E ∼
∑

imiCi for mi ≥ 0, since E is effective. Note that

E2 =
∑

i

mi(Ci.E).

The right-hand side can only be negative if some Ci.E < 0, so E is a component of Ci.

Since each of the Ci can only have finitely many fixed components, this contradicts the

assumption that X had infinitely such E. ⊓⊔

Definition 1.6. A curve E on X is called an exceptional curve (of the first kind) if it

is smooth and rational and E2 = −1. Or alternatively, by the genus formula, it is an

integral curve E satisfying E2 = −1 and −K.E = 1.

Lemma 1.7. Irreducible curves E, with E2 < 0 are extremal in the effective cone, i.e.,

If E = A+B, for A,B ∈ NE1(X,Z), then either A = 0 or B = 0.

Proof. This is a well-known result in Mori theory. See [Deb01, p. 145]. ⊓⊔

We present some classical examples due to Nagata [Nag60] of varieties with infinitely

many exceptional curves. Let p1, . . . , p9 be points in P2 which are the intersection of

two cubic curves. Let π : X → P2 be the blow-up of the plane in these points, and

let E1, . . . , E9 be the exceptional divisors. It is well-known that X has infinitely many

exceptional curves, so by Lemma 1.5, Cox(X) cannot be finitely generated. The usual

proof of this is based on computing the Mordell-Weil group (the group of sections) of
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the morphism X → P1 given by the anticanonical system |−KX | = |3L−E1−. . .−E9|,

since sections of this morphism correspond to exceptional curves. This group is known

to be isomorphic to Z8 [Deb01], so in particular there are infinitely many of them.

Suppose now that the points are in general position. Also here we get infinitely many

exceptional curves. We give a proof of this based on the Cremona transformation,

following an exercise in Hartshorne [Har77, V.4.15]. Suppose there are only finitely

many exceptional curves. In particular there exists a divisor D with divisor class aL−

b1E1 − . . . − b9E9, with b1 ≤ b2 ≤ . . . ≤ b9 and maximal a > 0. Consider the divisor

class

D̃ = (2a−b1−b2−b3)L−(a−b2−b3)E1−(a−b1−b3)E2−(a−b1−b2)E3−b4E4−. . .−b9E9.

This divisor class corresponds to the image of D after performing a Cremona trans-

formation based at p1, p2, p3, and in particular, D̃ is the class of an exceptional curve.

We claim that 2a − b1 − b2 − b3 > a, so that D̃ has higher coefficient of L than D,

contradicting the maximality of a. Suppose to the contrary that a − b1 − b2 − b3 ≤ 0.

Then

−K.D̃ = 3a− b1 − . . .− b9

≤ (a− b1 − b2 − b3) + (a− b1 − b2 − b3) + (a− b1 − b2 − b3)

≤ 0.

This contradicts the genus formula since −K.D̃ = 1. Hence 2a − b1 − b2 − b3 > a and

we are done.

Remark. It is possible to make a formula parameterizing infinitely many exceptional

curves on X by looking at the system of Diophantine equations D2 = −1 −K.D = 1.

One possibility is

3k(k + 1)L− k(k + 2)E1 − k2E2 − k(k + 1)(E3 + . . .+ E9) k = 0, 1, 2, . . .

Remark. It is also well-known that a K3 surface of Picard number 20 (e.g the Fermat

quartic X = Z(x4
0 + x4

1 + x4
2 + x4

3) ⊂ P3) has infinitely many curves of self-intersection

-2 (see [Kov94, §7]) and hence have infinitely generated Cox ring.



Chapter 2

Cox rings of Rational Surfaces with effective
anticanonical divisor

In this chapter we investigate Cox rings of certain rational surfaces with effective an-

ticanonical divisor −K. Standard examples are Del Pezzo surfaces and Hirzebruch

surfaces. Cox rings of such surfaces were first approached in this generality by Testa,

Várilly and Velasco in the recent paper [TVV09]. Their main result is the finite gen-

eration of Cox rings of rational surfaces for which −K is big. The aim of this chapter

is to give related results on finite generation of Cox rings of anticanonical surfaces.

In particular, we study blow-ups of P2 in distinct points and also study to Del Pezzo

surfaces in greater detail.

2.1 Complete linear systems and vanishing on an anticanonical
surface

Throughout this chapter, an anticanonical rational surface will refer to a non-singular

rational surface with −K effective. These have been thoroughly studied by Harbourne

in [Har97, Har98]. Here we recall some basic facts and vanishing theorems on such

surfaces. The results of this section are mostly standard and follow in some way from

results in Chapter V in [Har77].

Proposition 2.1. Let π : Y → X be a birational map of non-singular projective sur-

faces. Let π∗ : PicX → PicY be the pullback. Then the higher direct images Riπ∗OX

vanish, and for any L ∈ Pic(X) and i ≥ 0,

H i(Y, π∗L ) ∼= H i(X,L )

Proof. It is well-known that any birational map can be realized as a composition

of finitely may blow-ups in points and contractions [Har77, V.5.5]. The first result

Riπ∗OX = 0 now follows from [Har77, III.8]. From the projection formula, we get

Riπ∗(OY ⊗OY
π∗L ) ∼= Riπ∗OY ⊗OX

L ,

so Riπ∗π∗L = 0. The vanishing of Riπ∗π∗L and the isomorphism π∗π∗L ∼= L imply

that H i(Y, π∗L ) ∼= H i(X,L ) by [Har77, Ex. III. 8.1]. ⊓⊔

Note that the proposition implies that π∗ also preserves effectiveness of divisors in the

sense that D is effective if and only π∗(D) is.

13
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Lemma 2.2. Let X be a non-singular rational projective surface and let D be an ef-

fective divisor class on X. Then h2(X,D) = 0.

Proof. This is a standard argument. We claim that K −D cannot be effective. This is

because multiplication by a section in H0(X,D) gives an injection

H0(X,K −D) → H0(X,K).

But H0(X,K) = H2(X,OX ) = H2(P2,OP2) = 0 by rationality and the previous

proposition. SoH0(X,K−D) must be zero and hence alsoH2(X,D) = H0(X,K−D) =

0 by Serre duality. ⊓⊔

Lemma 2.3. Let D be a nef divisor class on a rational anticanonical surface. Then

D2 ≥ 0 and D is effective.

Proof. D2 ≥ 0 follows from Kleiman’s criterion. Then effectiveness follows from the

previous lemma and Riemann-Roch and from the fact that −K is effective:

h0(X,D) ≥
1

2

(
D2 −K.D

)
+ 1 ≥ 1.

since −K is effective. ⊓⊔

Hence all nef divisors are effective on an anticanonical surface. Note that if −K is ample,

i.e., X is a Del Pezzo surface, then the above inequality shows that h0(X,D) ≥ 2 for

all nef classes D. We need a result about the base-point freeness of nef divisors on X:

Lemma 2.4. If N is a nef divisor such that −K.N ≥ 2, then the linear system |N | is

basepoint free.

Proof. This is Theorem III, part a) in [Har97]. ⊓⊔

Note that if −K.D > 0, then the lemma implies that nD is base-point free for n ≥ 2.

In particular, D is semiample.

The next result is also well-known.

Proposition 2.5. Let X be a non-singular projective surface whose anticanonical di-

visor −K is nef. Suppose that D is a nef divisor on X. Then H i(X,OX (D)) = 0 for

each i > 0.

Proof. This is a consequence of the Kawamata-Vieweg vanishing theorem, since D =

(D −K) +K and D −K is nef and big: This follows by the inequalities

(D −K).C = D.C + (−K).C ≥ 0,

(D −K)2 = D2 − 2D.K +K2 > 0, ∀C ∈ NE1(X,R)

where all the last terms are non-negative since D is nef and K2 > 0. ⊓⊔

Surfaces with −K nef and big are called generalized Del Pezzo surfaces. They can be

characterized as blow-ups of P2 in ≤ 8 points in almost general position, i.e point sets

containing infinitely near points, no more than three collinear points or six points on a

conic. Using the previous proposition and Riemann-Roch, we determine the dimension

of Cox(X)D for D nef:
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Corollary 2.6. For nef divisor classes D we have

dimk Cox(X)D = χ(OX(D)) =
1

2
D.(D −K) + 1

This result will help us to find generators of Cox(X).

Lemma 2.7. Let E be an irreducible effective divisor with negative self-intersection.

Then H0(X,E) is one-dimensional. In particular, any generating set of Cox(X) must

contain some section of degree E.

Proof. Since E is effective H0(X,E) ≥ 1. If H0(X,E) ≥ 2, let s, t be two linearly

independent sections. The number of intersection points of (s)0 and (t)0 is non-negative

since they have no component in common, and this contradicts E2 < 0. The last part

of the lemma is clear since E is irreducible. ⊓⊔

2.2 Anticanonical rational surfaces with finitely generated Cox ring

In this section we prove that a relatively large class of rational surfaces have finitely

generated Cox ring. We focus on blow-ups of P2 in a finite number of points although

some of the results hold in greater generality. For example the next theorem holds

for general projective surfaces with finitely generated effective cone. The proposition

shows that when studying elements of Cox(X), we may ’chop off’ the negative curves

which are fixed components of D and we may assume D to be nef. This is good for our

purposes, since nef divisors have nice vanishing properties.

Proposition 2.8. Let X be a smooth projective surface with finitely generated ef-

fective cone, and let N = {Γ1, . . . , ΓN} be the set of integral curves with negative

self-intersection. Let xi be a generator for H0(X,Γi). Let D be an effective divisor

class with decomposition D = F + M where F is the fixed part and M is nef. Write

F = a1Γ1 + . . .+ anΓn. Then

Cox(X)D = xa11 x
a2
2 · · · xan

n Cox(X)M . (2.1)

If Cox(X) is finitely generated, say by sections s1, . . . , sN , then also

k[s1, . . . , sN ]D = xa11 x
a2
2 · · · xan

n k[s1, . . . , sN ]M

In particular, Cox(X) is finitely generated if and only if the subalgebra

⊕

N∈NM1(X,Z)

H0(X,N)

is.

Proof. Let D be an effective divisor and fix an ample divisor H on X so that we may

induct on the number H.D ≥ 0. Let s be a section in H0(X,D). For H.D = 0, (2.1)

trivially holds since D is the zero divisor, which is nef. Suppose that H.D > 0. If D is

not nef, there exists some negative curve, say Γ ∈ N such that that D.Γ < 0, and Γ

is necessarily in the fixed part of D. Multiplication by xΓ induces an exact sequence
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0 → H0(X,D − Γ ) → H0(X,D) → H0(Γ,D|Γ ) = 0

and so s = xΓ ·t for some t in H0(D−Γ ). Replacing D by D−Γ , we iterate the process

until we reach the divisor M , a nef divisor. This proves the first part.

If Cox(X) is finitely generated, then any monomialm = sa11 s
a2
2 · · · saN

N in k[s1, . . . , sN ]D
corresponds to writing D as a sum of effective divisors corresponding to the xi. If

D.Γ < 0, then as above we must have that Γ is a fixed component of D and Γ occurs

in the sum. This means that xΓ divides m. Replacing D by D − Γ , the result now

follows by induction on the degree of m.

The last part of the theorem is clear since X has only finitely many curves of negative

self-intersection. ⊓⊔

The above theorem will be very powerful in our study of Cox rings. For example, it

tells us that generators for Cox(X) are either sections corresponding to negative curves

or nef classes. This observation and Corollary 2.6 will help us to find explicit generators

for Cox(X). Also,

Corollary 2.9. If Cox(X) is finitely generated, the ideal IX is generated in degrees

corresponding to nef divisor classes.

Proof. Write D = N + F as before. Then since the ideal is homogeneous with respect

to the PicX-grading, any relation f ∈ ID can be written as a product of a monomial

xa11 x
a2
2 · · · xan

n and a relation in f ′ ∈ IN . ⊓⊔

It was shown in [TVV09] by Testa, Várilly and Velasco that all rational surfaces with

−K effective and big, has finitely generated Cox rings. The authors show that in this

case, there are finitely many curves of negative self-intersection and that this fact is

sufficient to ensure finite generation of Cox(X). Some similar results appear in [GM05]

for blow-ups of P2.

We present a new proof of a weakened version of this result, namely, we restrict to

anticanonical surfaces X with finitely generated effective cone, in particular, surfaces

which are blow-ups of P2 in r ≤ 8 points in arbitrary position. This includes all smooth

and generalized Del Pezzo surfaces, and is the main result of this section.

Lemma 2.10. Let X be the blow up of P2 in r ≤ 7 distinct points, then −K can be

written as a sum of classes of rational curves with negative self-intersection.

Proof. In terms of the standard basis for L,E1 . . . , Er (see Section 2.3), −K is given

by 3L− E1 − . . .− Er by [Har77, V.3].

If r ≤ 6, −K can be written as a sum of classes L−Ei−Ej and Ei. If r = 7, −K can

be written as (2L−E1− . . .−E5)+(L−E6−E7). These classes correspond to (possibly

reducible) rational effective divisors, so by further decomposing the summands, we get

the result. ⊓⊔

If r = 8, the result does not hold unless the points are in a special configuration (see

Chapter 3).

We now show that the effective cone of blow-ups of P2 in ≤ 8 points is finitely

generated. This result is folklore (it is in fact provable using Mori’s cone theorem

[Deb01]), but we present a (rather vulgar) proof in lack of reference for the form we

need.
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Proposition 2.11. Let X be the blow-up of P2 in r ≤ 8 distinct points. Then the

effective monoid NE1(X,Z) is finitely generated.

If r ≤ 7, it is generated by classes of negative rational curves if r ≤ 7. If r = 8, then

one needs in addition the class −K.

Proof. We argue by induction, by fixing an ample divisor H on X and defining the

degree of an effective divisor D as the number H.D ≥ 0. Note that when H.D = 0,

then D is the zero-divisor.

Let

R =
{
C ∈ NE1(X,Z) | C rational and −K.C ≤ 3

}
∪ {−K}.

Note that since −K has at most finitely many fixed components, there can be only

finitely many values of −K.C for C ∈ R. We show that R is finite and that it generates

NE1(X,Z).

Let aL −
∑r

i=1 biEr be the class of C in Pic(X). Assuming C is not one of the

exceptional divisors E1, . . . , Er, we must have bi ≥ 0. Write ρ = −K.C, so that 3a−ρ =∑
bi. By the genus formula we have D2 = a2 −

∑
b2i = ρ− 2.

Recall the Quadratic Mean-Arithmetic Mean Inequality,

∑n
i=1 x

2
i

n
≥

(∑n
i=1 xi
n

)2

which holds for non-negative real numbers xi. Using this we get a bound on the number

a:

(3a− ρ)2 = (b1 + . . .+ br)
2 ≤ r · (b21 + . . . + b2r) ≤ 8(a2 − ρ+ 2)

since r ≤ 8. This shows that a2 − 6 aρ + ρ2 + 8 ρ − 16 ≤ 0, and hence there are only

finitely many such a for each ρ. Now, for each fixed a and ρ, the conditions pa(C) = 0

and −K.C = ρ translate into a system of diophantine equations with only finitely many

solutions as in [Har77, V.4]. Since there are only finitely many possibilities for a and ρ,

R is finite.

We now show that R generates NE1(X,Z). Suppose C is an effective divisor which

we may take to be irreducible. If C is rational, and −K.C ≥ 4 then by Mori’s theorem,

the curve degenerates into a sum of rational curves of lower degree and we are done by

induction. If −K.C ≤ 3, then C ∈ R.

If C is not rational, we claim that C +K = C − (−K) is effective. Since −K ∈ R,

we are done by induction since C + K has lower degree than C. To prove the claim,

consider the exact sequence

0 → OX(−C) → OX → OC → 0

The long exact sequence in cohomology and duality gives h0(X,C−(−K)) = h2(X,−C) =

h1(C,OC) = pa(C) ≥ 1. This shows that the effective monoid is generated (non- mini-

mally) by elements of R.

It is possible to give a smaller generating set for NE1(X,Z). We use an idea by Har-

bourne [Har98]. Let D be an effective divisor. By subtracting if necessary the negative

curves E such that D.E < 0, we reduce to the case D nef. When the points p1, . . . , pr are

in general position, i.e the resulting blow-up is Del Pezzo, the proposition is well-known,

and the effective monoid is generated by the exceptional curves on X (see Section 2.3).
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When the points move into into special position, the effective cone can only get ’larger’

(this is because of the upper semicontinuity theorem [Har77, III. §8]), and its dual,

the nef cone gets ’smaller’. It follows that, the divisor class D = aL −
∑
biEi on X

remains nef when when the points are in general position. Since every nef divisor is

effective, we may then write D as a sum of classes of exceptional curves. On X, the

classes of the exceptional curves may be further reducible. In any case, there exists a

rational negative curve E with negative self-intersection such that D − E is effective.

By induction we get the result. ⊓⊔

We are now in position to prove the main theorem of this chapter.

Theorem 2.12. Let X be an anticanonical rational surface with finitely generated ef-

fective cone NE1(X,R). Then Cox(X) is finitely generated.

In particular, all blow-ups of P2 in r < 9 distinct points in arbitrary position have

finitely generated Cox ring.

Proof. Since NE1(X,R) is finitely generated, so is NE1(X,Z) by Gordan’s lemma

[Ful93], and the set of integral negative curves is finite. Hence by Proposition 2.8 above,

it is enough now to show that the subring

S =
⊕

D∈NM1(X,Z)

H0(X,D)

is finitely generated. We show first that all nef divisors are semiample, and then apply

Zariski’s theorem. Let N 6= 0 be a nef divisor on X. Recall that N2 ≥ 0 and −K.N ≥ 0

since −K is effective. If N2 = 0, then N is base-point free since two curves in |N |

intersect in N2 = 0 points. Suppose N2 > 0. If N = −nK, we have K2 > 0, then N is

semiample by Lemma 2.4. If N 6= −nK, then for some ǫ (N+ǫ(−K))2 = N2−2ǫN.K+

ǫ2K2 > 0. Now the Hodge Index Theorem implies that (−K.N)2 > N2 ≥ 0. Since in

any case −K.N ≥ 0 (N is nef) we have (−K.N) > 0. So nef divisors are semiample by

Lemma 2.4.

Since NE1(X,Z) is finitely generated, so is its dual, the nef monoid NM1(X,Z),

say by classes D1, . . . ,Dr. Now, we apply the following trick from the proof of Lemma

2.8 in [HK00]. Consider the projectivized bundle

P = P(OX(D1) ⊕ · · · ⊕ OX(Dr)).

We have S ∼=
⊕

n∈Z
H0(P,OP(n)). Since OP(1) is semiample, the latter algebra is

finitely generated by Zariski’s theorem, and so is Cox(X).

The last statement follows by the previous proposition. ⊓⊔

Remark. The finite generation of Cox(X) is usually not a formal consequence of the

finite generation of the effective cone, although we do not know of any counter-examples

in the case of surfaces. But an analogue of the theorem above would need additional

assumptions on X if dimX ≥ 3. For example, for surfaces, NE1(X,Z) is finitely gen-

erated if and only if NM1(X,Z) is, which is used in the proof. This no longer holds

in higher dimensions: For example, blowing up P3 in 9 distinct points lying on the

intersection of two cubic curves lying in a hyperplane gives an example of a variety for
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which NE1(X,Z) is finitely generated, but NM1(X,Z) is not, since X has infinitely

many curves of self-intersection -1. See [HT04] for more details.

Of course, the requirement r ≤ 8 is not possible to avoid, since 9 points gives Nagata’s

counterexample. However, blowing up special configurations of points in P2 may still

give finitely generated Cox rings, provided that the effective cone is finitely generated.

Castravet and Tevelev [CT06] show that P2 blown-up in any number of points lying on

a smooth conic has finitely generated Cox ring, and give explicit generators. In Chapter

3, we show this for P2 blown up in any number of points on a line.

We continue this chapter with a detailed study of the case of Del Pezzo surfaces, and

investigate blow-ups of special configurations in Chapter 3.

2.3 Cox Rings of Del Pezzo surfaces

A smooth projective surface X with an ample anticanonical class −K is called a Del

Pezzo surface. The standard examples are P2 and cubic surfaces in P3. Del Pezzo

surfaces and their Cox rings have been studied extensively [BP04, STV06, LV07, SX08,

TVV08]. We recall some of their basic properties.

It is well-known that all Del Pezzo surfaces except P1 × P1 arise as blow-ups Xr of

the projective plane in r ≤ 8 in general position, i.e no three points collinear, no six on a

conic and no eight points on a cubic curve. Since P1×P1 is a toric variety it is immediate

that Cox(X) is a polynomial ring, and we will only consider the surfaces Xr arising as

blow-ups in the following. The degree of Xr is defined as the number K2 = 9 − r, so

for example any smooth cubic Del Pezzo surface is isomorphic to a blow-up of P2 in

six general points. For r ≤ 6, −K is very ample and gives an embedding of Xr as a

surface of degree 9 − r in P9−r.

The Picard group of Xr has rank r+ 1 and is generated by the classes of the excep-

tional divisors E1, . . . , Er and L which is the pullback of a general line in P2 via the

blow-up morphism π : X → P2. The intersection form on N1(X) = PicX is given by

Ei ·Ej = −δij , Ei · L = 1, L2 = 1.

As before, the anticanonical class equals −K = 3L− E1 − . . .− Er in this basis.

Recall that an exceptional curve is defined as a smooth rational curve of self-

intersection -1. Note that the exceptional divisors Ei are exceptional curves. A fun-

damental theorem in the Enriques classification of surfaces is Castelnuovo’s theorem

which states a form for the converse statement: For any exceptional curve E ⊂ X, there

exists a surface Y and a morphism π : X → Y which is a blow-up of Y in a point with

E as the exceptional divisor. The proof is even constructive: It gives an algorithm for

constructing Y explicitly [Har77, V.5]. It is shown in [Man86, Cor. 24.5.2] that in case

of Del Pezzo surfaces, the contraction π : X → Y gives a new Del Pezzo surface, so in

this respect, Del Pezzo surfaces form an own class of rational surfaces.

Note that the only negative curves on Xr are the exceptional curves: This follows by

the genus formula: C2 = 2g − 2−K.C ≥ −1 since g ≥ 0 and −K is ample. We denote

the set of exceptional curves on Xr by Er.
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Because of Castelnuovo’s remarkable theorem, and since Cox(X) must contain gener-

ators corresponding to negative curves, it seems natural to understand the exceptional

curves on X. On Del Pezzo surfaces these have been classified (see [Man86]), and there

is a rich theory devoted to them. The following theorem gives a geometric description

and the divisor class of each curve:

Theorem 2.13. (See [Man86]) Let 2 ≤ r ≤ 8. The exceptional curves on Xr are strict

transforms of:

• Points, the exceptional divisors, Ei.

• Lines through pairs of points, Lij = L− Ei − Ej .

• Conics through 5 points, 2L−
∑

5Ei.

• Cubics through 7 points, vanishing doubly at Ej, 3L− Ej −
∑

7Ei.

• Quartics through 8 points, vanishing doubly at Ej , Ek, El, 4L−Ej−Ek−El−
∑

8Ei.

• Quintics through 8 points, vanishing doubly at 6 points, 5L− 2
∑

8Ei + Ei + Ej .

• Sextics through 8 points, vanishing doubly at 7 points, and one triply 6L−2
∑

8Ei−

Ej .

There are interesting symmetries in the graph Gr of the exceptional curves. This

graph is constructed by taking the exceptional curves as nodes and adding an edge

between intersecting curves. For r = 4, the graph G4 is isomorphic to the Petersen

graph shown in Figure 2.1. These symmetries are encoded in the Weyl group Wr of Xr,

which is the subgroup of Aut(Pic(Xr)) which acts on divisor classes by permutations

and preserves K and the intersection form. This action restricts to the set Er, by

permuting the lines, thus providing the graph automorphisms of Gr. This explains the

nice symmetry in the graphs Gr

Fig. 2.1 Graphs of exceptional curves on X4.

Explicitly, one finds that the Weyl group Wr is generated by permutations of the

exceptional curves Ei for r ≥ 3, and the Cremona element σ given on the generators

as

σ(L) = 2L− E1 −E2 − E2 σ(E1) = L− E2 − E3 σ(E2) = L− E1 − E3

σ(E3) = L−E1 − E2 σ(Ei) = Ei ∀i 6∈ {1, 2, 3}.

Compare this with Section 1.5.
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2.3.1 Generators for Cox(Xr)

Let X be a Del Pezzo surface. By Theorem 2.12, Cox(X) is finitely generated, and

using Lemma 2.7, we see that the number of generators must be at least the number of

exceptional curves on X. In fact, Batyrev and Popov prove in [BP04] that their sections

are almost sufficient to generate the ring. More precisely, they prove

Theorem 2.14. [BP04] For 3 ≤ r ≤ 8, the ring Cox(Xr) is generated by elements of

degree 1. If r ≤ 7, the generators of Cox(Xr) are global sections of line bundles defining

the exceptional curves. If r = 8, then we must add to the above set of generators two

linearly independent sections of degree −K.

Note in particular that this implies that the effective monoid NE1(X,Z) is generated

by the exceptional curves and −K, which fits nicely with Proposition 2.11. The above

theorem allows us to view Cox(X) as a quotient of k[Er] = k[xE : E ∈ Er] by some

homogeneous prime ideal:

Cox(X) = k[Er]/Ir.

Note that monomials in k[Er]D correspond to ways of writing D as a sum of excep-

tional curves. We will also sometimes speak of a coarser grading on Cox(X) given by

Cox(X)n =
⊕

−K.D=nCox(X)D . Note that all variables have degree 1 with respect to

this grading.

We are interested in explicit generators for Ir in this presentation. Moreover, we wish

to prove

The Conjecture of Batyrev and Popov: [BP04] Cox rings of Del Pezzo surfaces

are quadratic algebras, i.e for 4 ≤ r ≤ 8, the ideal Ir above is generated by quadratic

polynomials.

We will restrict ourselves to the case where r ≤ 6, to avoid the extra complications

with the two extra sections from −K. The remaining cases r = 7, 8 were studied in

detail by Testa, Velasco and Várilly in [TVV08].

Notation. For simplicity we will label the variables according to their description in

Theorem 2.13:

variable divisor class

ei Ei
lij L− Ei − Ej
g 2L− E1 − . . .− E5 if r = 5.

gi 2L− E1 − . . .− E6 + Ei if r = 6.

2.3.2 Toric Del Pezzo Surfaces.

The surfaces Xr for r ≤ 3 are, along with P2 and X = P1 × P1, the toric Del Pezzo

surfaces. This can be seen as follows: Note that the action of PGL(3) act transitively

on triples in P2, so that it is possible to move any ≤ 3 points in general position to

the ”distinguished points”, or ”torus invariant” points (1 : 0 : 0), (0 : 1 : 0), (0 : 0 : 1).
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By the universal property of blowing-up [Har77, II.8], there is a unique isomorphism

between the blow-ups extending this action.

Consider the fan of P2 as shown in the figure. As explained in [Ful93], blowing up

P2 in the distinguished point p1 = [1, 0, 0] gives a toric variety (since the torus action

extends to the complement of the distinguished points), and the corresponding fan is

the ”star subdivision” of the cone σ1 into {σ′1, σ
′′
1}. This fan is obtained by inserting

a ray 〈e1 + e2〉, as shown in the fan for X1. Continuing this way we find the following

fans for the toric Del Pezzo surfaces. Note the corresponding Cox rings for each fan.

σ1σ2

σ3 σ4

P1 × P1

Cox(X) = k[x, y, s, t]

σ1σ2

σ3

P2

Cox(X) = k[x, y, z]

σ′1

σ′′1

σ2

X1

Cox(X1) = k[e1, x, y, z]

σ′1

σ′′1
σ′2

σ′′2

σ3

X2

Cox(X2) = k[e1, e2, x, y, z]

σ′1

σ′′1
σ′2

σ′′2

σ′3 σ′′3

X3

Cox(X3) = k[e1, e2, e3, x, y, z]

Note that the rays e1 +e2,−e1,−e2 correspond to the exceptional divisors on X3 and

that the remaining rays corresponds to the strict transforms of the lines through pairs

of blown-up points. These are precisely the exceptional curves on X3, in agreement

with Batyrev and Popov’s result.

2.4 Conic Bundles on Xr

We now turn to Del Pezzo surfaces arising as blow-ups of P2 in ≥ 4 general points.

These are not toric anymore, so we expect relations in their Cox rings. Before we are

able to say anything about the relations in Ir, we must examine which Pic(X)-degrees

they arise in.

Definition 2.15. A divisor class D is conic if D2 = 0 and −K.D = 2.



2.4 Conic Bundles on Xr 23

The name conic comes from the geometric fact that their sections give conic bundles

Xr → P1. This will be shown below.

First, we classify all conic divisor classes in terms of the standard basis for PicX:

Lemma 2.16. For 2 ≤ r ≤ 7, the conic divisor classes are given in the following table:

r Total # Divisor (up to permutation of Eis)

4 5 4 L− E1

1 2L− E1 −E2 − E3 − E4

5 10 5 L− E1

5 2L− E1 −E2 − E3 − E4

6 27 6 L− E1

15 2L− E1 −E2 − E3 − E4

6 3L− 2E1 − E2 − E3 − E4 − E5 − E6

7 126 7 L− E1

35 2L− E1 −E2 − E3 − E4

42 3L− 2E1 − E2 − E3 − E4 − E5 − E6

35 4L−2E1 −2E2−2E3−E4−E5−E6−E7

7 5L−2E1−2E2−2E3−2E4−2E5−2E6−E7

Proof. Set P = aL− b1E1 − . . .− brEr. From P 2 = 0, P.K = −2 we get the equations

a2 = b21 + . . . + b2r, 3a− 2 = b1 + . . .+ br (2.2)

By the Quadratic Mean-Arithmetic Mean Inequality, we get a bound on a:

(3a− 2)2 = (b1 + . . .+ br)
2 ≤ r · (b21 + . . .+ b2r) ≤ ra2

whence 1 ≤ a ≤ 2
3−√

r
. Plugging in each of these values of a in equation (2.2), gives us

the bi and we recover the list of conics. ⊓⊔

Note that since Cox(X) is generated by sections corresponding to exceptional curves,

the Weyl group acts in a natural way on k[Er] and Cox(X). In fact, the Weyl group

acts transitively on conics as well:

Lemma 2.17. The Weyl group Wr acts transitively on conics.

Proof. The Weyl group permutes conics since σ(−K) = −K, σ(Q)2 = Q2 = 0 and

−K.σ(Q) = −K.Q = 2. Recall that the Cremona element σ acts on a divisor class by

σ(aL−
r∑

i=1

biEi) = (2a− b1 − b2 − b3)L+ . . . .

Note that 2a − b1 − b2 − b3 < a for all conics in the table except L − E1, hence we

have an algorithm for running through the table of all conics: Start with the conic

Q = aL−
∑r

i=1 biEi with greatest a in the list, apply σ to it to reduce a, permute the
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Ei so that b1 ≥ b2 ≥ b3 ≥ · · · ≥ br (this permutation is an element of Wr), and reapply

σ. The process will stop when it is not possible to reduce a anymore, i.e when a = 1

and Q = L − E1. This shows that it is possible to run through all conics on the list

using the action of the Weyl group. The rest of the conics can be reached by permuting

the Ei. ⊓⊔

Lemma 2.18. A divisor class D is conic if and only if D = E + E′ for exceptional

curves E,E′ ∈ Er intersecting in a point. Any conic can be represented this way in

exactly r − 1 ways.

Proof. Since the effective monoid NE1(Xr,Z) is generated by the elements of Er and

−K.E = 1 for any E ∈ Er, we may write D as the sum of two exceptional curves E

and E′. Note that 2E.E′ = (E + E′)2 − E2 − E′2 = 0 + 2 = 2, hence E.E′ = 1 and so

E,E′ are classes of distinct exceptional curves that intersect in a point.

For the last part, we may (after possibly acting by the Weyl group) assume that D =

L−E1. Here it is obvious that L−E1 can be written only in the form (L−E1−Ej)+Ej
for j = 2, . . . , r. ⊓⊔

Lemma 2.19. Let Q be a conic divisor class. Then Q is nef, and the linear system |Q|

has no base points and determines a morphism X → P1, which is a conic bundle.

Proof. It is clear that D = E + E′ is nef since if there exists an exceptional curve F

such that (E + E′).F ≤ 0, we must have E = F or E′ = F , which gives (E + E′).F =

−1+1 = 0. Then by Riemann-Roch and Kawamata-Vieweg, we have that h0(X,Q) = 2,

so we get a rational map φ : Xr → P1. Take two generic sections s1, s2 in H0(X,Q)

and note that they do not intersect since Q2 = 0. In particular, this shows that |Q|

has no base points, and hence φ is a morphism. The generic fiber of this morphism is

a smooth conic, so the map is indeed a conic bundle. ⊓⊔

2.5 Quadratic relations in Cox(X).

Our interest in linear systems of conics D on Xr lies in the fact that they will provide us

with generators for the ideal Ir. More specifically, each conic has exactly r−1 reducible

sections by Lemma 2.18, namely the sections ξ · ξ′ for ξ ∈ H0(X,E), ξ′ ∈ H0(X,E′)
for each decomposition D = E + E′. Geometrically, these correspond to the singular

fibers of the conic bundle X → P1. Now, since h0(X,OX (D)) = 2, this means that we

have r − 3 linear relations between the sections, and each give a relation in Ir. This

happens for every conic on X, so the number of relations in Ir is at least (r− 3) times

the number of conics. We denote the ideal of these relations in Cox(X) by Jr.

Lemma 2.20. The ideal Jr generates the degree 2 part of Ir, i.e the degrees D for

which −K.D = 2.

Proof. We are only interested in the case where D is effective and −K.D = 2. We may

write as before D = E +E′ where E,E′ are divisor classes of lines in PicX. Note that

E,E′ ∈ {±1, 0}. If E.E′ = 1, then D is a conic by Lemma 2.18. If E.E′ ≤ 0, we claim

E,E′ are uniquely determined by E+E′ = D. This follows since E.D = E.(E +E′) =
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−1 + E.E′ ≤ −1, hence D has both E and E′ in its fixed components. Therefore we

have only one monomial of degree D, namely ξ · ξ′ where ξ ∈ H0(X,E), ξ′ ∈ H0(X,E′)

and of course no relations in ID. ⊓⊔

2.5.1 Degree 5 Del Pezzo surfaces

The degree 5 Del Pezzo surface X4 is the first non-toric Del Pezzo surface. It can be

realized as a fourfold hyperplane section of the Grassmannian G(2, 5) by the Plücker

embedding. In this section, we study the relations in J4 in detail.

Consider first the conic D = L−E1 on X4. There are 3 monomials of degree D and

they are of the form l1iei for i = 2, . . . , 4. Since h0(X,D) = 2, there must be one linear

relation between them. To see what it is, consider the blow-up morphism π : X4 → P2,

and the points p1, . . . , p4 ∈ P2. We may assume that these points are as follows

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1).

since PGL(3) acts transitively on quadruples of points in general position.

The projection of the section l1j by π is a section h1j in H0(P2,O(1)), whose zero

set is the line through p1 and pj . This is shown in the figure

p1 p2

p3 p4

h12 = 0

h13 = 0
h14 = 0

Fig. 2.2 l14l34 + l13l24 − l14l23 = 0.

As global sections of OP2(1), any three sections h1j going through p1 are linearly

dependent. This makes the computation of the relations just a task of linear algebra,

using simple determinants to find representatives for the sections and finding their

dependence relation. For example, we may choose the sections h12 = Z, h13 = Y ,

h14 = Y − Z,xs such that we have h12 − h13 + h14 = 0. The total inverse image of h1j

is the divisor l1je1ej, so pulling back the relation with π∗ and cancelling e1, this gives

us the following relation in J4:

l12e2 − l13e3 + l14e4 = 0.

The same thing happens for all the conics L−Ei, so we get 4 quadratic relations. There

is also an additional conic, of degree 2L−E1−E2−E3−E4. Here we have the monomials

l12l34, l13l24, l14l23 and a linear dependence relation between them. In P2, the projections

satisfy a relation h14h23 − h13h24 + h12h34 = (Y − Z)X − (X − Z)Y + Z(X − Y ) = 0.
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Pulling back these sections and cancelling e1e2e3e4, we see that the relation is

l14l23 − l13l24 + l12l34 = 0.

There is a similar geometric picture in this case. In all, we find the following relations:

Degree Relation

L−E1 e2l12 − e3l13 + e4l14
L−E2 e1l12 − e3l23 + e4l24
L−E3 e1l13 − e2l23 + e4l34
L−E4 e1l14 − e2l24 + e3l34

2L− E1 − E2 − E3 − E4 l14l23 − l13l24 + l12l34

We note that these are exactly the Plücker relations of the Grassmannian G(2, 5), and

so the relations in J4 are generated by the Pfaffians of the matrix



0 e1 e2 e3 e4
−e1 0 l34 l24 l23
−e2 −l34 0 l14 l13
−e3 −l24 −l14 0 l12
−e4 −l23 −l13 −l12 0




(2.3)

Remark. Once we show the equality I4 = J4, we have shown that X4 can be obtained

as a GIT quotient of the Grassmannian G(2, 5). This is a classical fact, see [Sko93].

2.6 A Proof of the Batyrev-Popov Conjecture for r ≤ 6

In this section we give a proof that the ideal Ir is generated by relations coming from

the conic divisor classes. This was shown in [BP04] up to radical. The proof is inspired

by Laface and Velasco’s article [LV07], and is somewhat computational by the fact that

we check that the section er is not a zero-divisor modulo the ideal Jr by computer.

Theorem 2.21. Let Xr be a Del Pezzo surface of degree 9 − r, and 4 ≤ r ≤ 6. The

ideal Ir is generated by quadrics coming from the conic divisor classes.

Proof. By induction on r, the number of blown-up points. We show that JN = IN for

all nef classes N = aL− b1E1 − . . .− brEr. Since N is nef we have br = N.Er ≥ 0. Let

D = N + brEr, and note that D.Er = 0. Let π : Xr → Xr−1 be the contraction of Er,

where Xr−1 is a Del Pezzo surface of degree 8− r. Note that since D.Er = 0, D = π∗B

for some divisor B on Xr−1. So we get, by fixing appropriate generators for Cox(Xr)

as a k-algebra, and abuse of notation, a map π∗ : k[Er−1]B → k[Er]D, mapping xE to

xπ∗E for each i. Set J3 = 0. For each r there is a commutative diagram

· · · k[Er−1]B
π∗

p◦π∗

k[Er]D

p

· · ·

· · ·
(
k[Er−1]/Jr−1

)

B

π∗
(
k[Er]/Jr

)

D
· · ·

Claim: The bottom map is surjective for each 4 ≤ r ≤ 6.
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Since π∗(Jr−1) ⊂ Jr this will follow if we show that p ◦ π∗ is surjective.

To see why this implies the theorem, note that we will have a composition of surjec-

tions (
k[Er−1]/Jr−1

)

B

π∗
(
k[Er]/Jr

)

D

(
k[Er]/Ir

)

D
(2.4)

Or equivalently, since by induction, H0(Xr−1, B) = (k[x1, . . . , xnr−1]/Jr−1)B ,

H0(Xr−1, B)
(
k[Er]/Jr

)

D
H0(Xr,D)

By lemma 2.1, this composition is an isomorphism, so this implies that the rightmost

map in (2.4) is an isomorphism and that JD = ID.

We conclude that ebrr IN ⊆ ID = JD. It remains to check that er is not a zero divisor

modulo the ideal Jr for r = 4, 5, 6, this is done by a quick calculation in Macaulay 2.

So we have IN = JN .

Proof of claim. Let enrm be a monomial in k[Er]D, where er 6 |m, and let M = degm

be the divisor class corresponding to m. We show that we may (modulo the ideal Jr)

reduce the monomial to sections not intersecting Er.

Assume n > 0. Then since D.Er = 0, and D = deg enrm = nEr +M we must have

M.Er = n. In particular, there must be an exceptional curve F ⊂ M such that xF
divides m and F.Er > 0. Note that for r ≤ 6, the condition E.E′ > 0 implies E.E′ = 1

(see Theorem 2.13). This means that F + Er is a conic, so there is a relation

xF er =
∑

cEE′xExE′ .

Note that if Q = E + E′ and Q.F = 0, then either one of E,E′ is equal to F or

E.F = E′.F = 0. This means that the lines E,E′ ∈ Er in the sum above do not

intersect Er. Consequently, we have shown that modulo the ideal Jr, we may write

enrm as a sum of monomials with smaller exponent in er. Iterating this, we reduce n for

each step, until we arrive at the base case n = 0. Now, if n = 0, M.Er = D.Er = 0 and

so M does not intersect Er. This means that m is a product of sections coming from

Xr−1. This finishes the proof. ⊓⊔

Remark. This theorem can be proved in another way using a result of Popov from

[Pop05], where it is shown that the the ring k[Er]/Jr is Cohen-Macaulay for r ≤ 7. We

can use this to show that Jr is a prime ideal. A dimension argument can then be used

to conclude that Jr = Ir. Specifically, the Cohen-Macaulay property allows us to apply

Serre’s criterion [Eis95, Thm. 25.20] which states that in this case Jr is prime iff the

ideal generated by the c−minors of the Jacobian J =
(
∂fi

∂xj

)
has codimension ≥ 2. Here

c is the codimension of Jr in k[Er]. This hypothesis is tested for the ideals J4, J5, J6

in Macaulay2, and after a few days of computation the process stops and yields an

affirmative answer. Of course, this computerised deus ex machina may seem a little

unsatisfactory, but it is worth noting that this is a general approach to test if we have

found all the relations in the Cox ring. Also, the problem of proving the primality of

an ideal is in general a very difficult problem and Serre’s criterion is one of the few

methods we know.
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2.7 Syzygies of Cox(Xr)

Just as conic divisor classes gave the defining relations for the ideal of Cox(Xr), divisor

classes satisfying D2 = 1, −K.D = 3 will play the role for finding the first syzygies. We

will call such divisor classes cubic.

Note that C2 = 1,−K.C = 3 ⇔ (C − E)2 = 0,−K.(C − E) = 2 for every line E

such that C.E = 0, i.e., C − E is a conic. Hence by running through all Q and E such

that Q.E = 1, we get the cubics from the previous table of conics. Note that for r = 4,

D is conic if and only if −K −D is cubic. The cubic divisor classes Xr are given in the

following list for r = 4, 5:

r # Divisors(up to permutation of Ei’s)

4 5 L

2L− E1 −E2 − E3

5 16 L

2L− E1 −E2 − E3

3L− 2E1 − E2 − E3 − E4 − E5

Consider the Del Pezzo surface X4. We claim that there is exactly one syzygy for

every cubic divisor class C. First of all, C2 = 1,−K.C = 3 implies by Riemann-Roch,

that h0(X,C) = 3. Now, k[Er]C has dimension 6 (k[Er]L = span{lijeiej}, now use the

Weyl group), and there are four conics Q such that C − Q is effective (a line), hence

there must be one linear relation between the four relations coming from the Q’s for

each C. There are five cubic bundles on X4, and we find the following syzygies:

D Syzygy

L e2g1 − e1g2 − e3g3 + e4g4
2L− E1 − E2 − E3 l13g1 − l23g2 − l12g3 + e4g5
2L− E1 − E2 − E4 l14g1 − l24g2 − l12g4 + e3g5
2L− E1 − E3 − E4 l34g2 − l14g3 + l13g4 − e2g5
2L− E2 − E3 − E4 l34g1 − l24g3 + l23g4 − e1g5

The next proposition shows that the above syzygies generate the whole syzygy mod-

ule.

Proposition 2.22. The set {g1, . . . , g5} forms a Gröbner basis for I with respect to the

monomial ordering given by

e1 ≻ e2 ≻ e3 ≻ e4 ≻ l12 ≻ l13 ≻ l14 ≻ l23 ≻ l24 ≻ l34

and J = in(e1l12, e1l13, e1l14, e2l12, l14l23) is an initial ideal for I.

Also, the above relations generate the entire syzygy module of I.

Proof. We apply Buchberger’s criterion. We must show that the S-polynomials of the
pairs gi, gj reduce to zero modulo the ideal I for i 6= j. This can be done by looking at
the syzygies. For example, the S-polynomial of the pair {g1, g2} reduces to zero, since
the first syzygy in table 2.7 can be written

e2(e1l12−e3l23+e4l24)−e1(e2l12−e3l13+e4l14) = e3(e1l13−e2l23+e4l34)−e4(e1l14−e2l24+e3l34)

showing that the remainder is zero. The same thing happens for the pairs
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{g1, g3}, {g1, g4}, {g2, g3}, {g4, g5}.

Now the leading terms of the remaining pairs are relatively prime, hence their S-

polynomials also reduce to zero [AL94]. It follows that the {g1, . . . , g5} form a Gröbner

basis for I.

The last part follows from Schreyer’s theorem [Eis95], which states that the coeffi-

cients of the S-polynomials generate the syzygy module of the ideal. ⊓⊔

Since we have a Gröbner basis, this makes the study of the ideal I easier. For example,

we can verify, using Stanley’s criterion [Eis95], that Cox(X) is Gorenstein. We are also

able to write down the multigraded minimal resolution of Cox(X):

0 −→ R(K)
Gt

−→
⊕

Q

R(K +Q)
M
−→

⊕

Q

R(−Q)
G

−→ R −→ Cox(X) −→ 0.

where R = k[Er] and Q run through all conics and M is the matrix form in 2.3

2.7.1 The Cox Rings of X5 and X6

Note that in the case r = 5, there are a total of 2 · 10 = 20 relations in I5 (2 for each

conic), and 3 · 27 = 81 relations in I6. We may, without loss of generality, assume that

the first five blown-up points of P2 are in the positions

p1 = (1 : 0 : 0), p2 = (0 : 1 : 0), p3 = (0 : 0 : 1), p4 = (1 : 1 : 1), p5 = (1 : a : b).

Using the method of Section 2.5, we compute the following minimal relations in I5.

l14l23 + l12l34 − l13l24 e5l15 + ae3l13 − be2l12

l23e3 + l24e4 − l12e1 al23e3 + l25e5 − l12e1

l12l35 − l13l25 + l15l23 e3l34 + e1l14 − e2l24

l12l45 + l14l25 − l15l24 ge3 + bl14l25 − l15l24

l13l45 + l14l35 − l15l34 ge2 + al14l35 − l15l34

l23l45 + l24l35 − l25l34 ge1 + al24l35 − bl25l34

e4l34 + e2l23 − e1l13 e5l35 + be2l23 − e1l13

be2l25 − ae3l35 − e1l15 e4l14 + e3l13 − e2l12

(a− 1)l12l35 + ge4 − (b− 1)l13l25 ge5 + b(a− 1)l12l34 − a(b− 1)l13l24

(a− 1)e3l34 + e5l45 − (b− 1)e2l24 (b− 1)e2l25 − (a− 1)e3l35 − e4l45

Proposition 2.23. The generators for the ideals I5 and I6 form a quadratic Gröbner

basis with respect to the ordering given by ei ≻ lij ≻ g. The syzygy module of Ir is

generated in degrees ≤ 2. For r = 5, all non-Koszul relations come from conic divisor

classes.

Proof. A computation in Macaulay2 shows the first part. Now, since Ir have quadratic

Gröbner basis, this bounds the degrees of syzygies by 2. By inspecting the initial ideal

of Ir we see that there are no essential quadratic syzygies except the Koszul syzygies

gig
′
i − g′igi where gi, g

′
i are the two relations coming from a conic. ⊓⊔
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Note that for r = 6, there are more syzygies than the ones occurring in degree C for

C cubic (although all are generated in degrees ≤ 2). For example in degree −K, there

must be at least 25 syzygies: The number of monomials of degree −K is 60 (l1iljkllm
give 5 ·

(4
2

)
= 30 and gilikek give 6 · 5 = 30), h0(X,−K) = 4, so dim I−K = 56. Also,

since K2 = 3, for every conic D, there is a unique exceptional line E (= −K − D)

such that D + E = −K. This means that we get a total 81 relations of degree −K by

multiplying a relation of degree D by some xE . Hence there are 81 − 56 = 25 linear

syzygies between them.



Chapter 3

The Cox Ring of P2 Blown Up in Special
Configurations

In this chapter we will investigate Cox rings of P2 blown up in special configurations

of points. The first four sections give a detailed study of the case when the all the

points lie on a line. This case was studied first by Elizondo, Kurano, and Watanabe in

[EKW04] who show that the ring is noetherian. We generalize their result substantially

by showing that the Cox ring is finitely generated for any number of points, and give an

explicit presentation of the ring. The main result is that the ring is in fact a complete

intersection ring. In the last section we give a classification of the Cox rings of P2 blown

up in any ≤ 5 distinct points.

3.1 n points on a line

Let X be the blow-up of P2 in n distinct points p1, . . . , pn lying on a line Y in P2.

The Picard group PicX has rank n + 1 and is generated by the divisor classes of the

exceptional curves E1, . . . , En and L which is the pullback of a general line H in P2

not passing through any of the p1, . . . , pn. The main difference between X and the Del

Pezzo surfaces is that we have more negative effective divisors, in particular, a curve

with self-intersection −(n− 1): This corresponds to the pullback of the line Y , and has

the divisor class L− E1 − . . . − En .

Lemma 3.1. The monoid of effective divisor classes of X is finitely generated as fol-

lows:

NE1(X,Z) = Z≥0{L− E1 − . . .− En, E1, E2, . . . , En}.

Proof. It is clear that the generators above are all effective, hence we have the ”⊇”

inclusion. Conversely, note that these divisor classes actually form a Z-basis for PicX.

So let D be an irreducible effective divisor, and let

m(L−
n∑

i=1

Ei) +
n∑

i=1

aiEi

represent the corresponding divisor class. We show that all the coefficients are non-

negative. If D is not one of the generators above we have D.Ei = m − ai ≥ 0 and

D.(L − E1 − . . . − En) = −(n − 1)m +
∑n

i=1 ai = m −
∑n

i=1(m − ai) ≥ 0. These

inequalities imply that m ≥ 0 and m ≥ m − ai ≥ 0, ∀i = 1, . . . , n. Hence m,ai ≥ 0,

and we are done. ⊓⊔

31
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Note that the lemma and Theorem 2.12 imply that Cox(X) is finitely generated.

Lemma 3.2. The nef monoid NM1(X,Z) is generated by the divisor classes L,L −

E1, L−E2, . . . , L− En.

Proof. The above divisor classes are base-point free, hence nef, so their cone is in-

cluded in NM1(X,Z). Conversely, note that the nef condition and the generating

set of NE1(X) translates into the following set of inequalities on a nef divisor class

D = aL−
∑
bi:

a ≥ b1 + b2 + . . .+ bn, bi ≥ 0, ∀i = 1, 2, . . . , n

Now it is easy to see that we can decompose each D as a sum of the L−Ei’s by using

bi of L− Ei and finally add L a− b1 − b2 − . . . − bn ≥ 0 times. ⊓⊔

Note that L − Ei = (L − E1 − . . . − En) + E1 + . . . + Êi + . . . + En, hence every nef

divisor D on X is effective.

3.2 Cohomology vanishing for Nef Divisors on X

Note first that H2(X,D) = H0(X,K − D) = 0 by Serre duality, since K cannot be

effective on X. We now turn to H1(X,D), by recalling a result of Harbourne [Har98].

Lemma 3.3. Let X be a smooth projective surface and let N be the class of a non-

trivial effective divisor N on X. If N +K is not effective, and D meets every component

of N non-negatively, then h1(N,D|N ) = 0.

Proof. See [Har98, Lemma 2.4]. ⊓⊔

Lemma 3.4. If D is a nef divisor class on X, then h1(X,D) = 0.

Proof. The proof is done by induction on the number m of (L − Ei)-classes in the

decomposition of D in the nef cone. For m = 0 we have D = kL and the result is

trivial since h1(X, kL) = h1(P2,OP2(k)) = 0. So suppose m > 0 and w.l.o.g that

L − E1 occurs in the decomposition. Let C be an irreducible curve of |L − E1|. Note

that L.(K + (L−E1)) < 0, hence K + (L−E1) is not effective (since L is nef). By the

above lemma we get that h1(C,D|C ) = 0. Now we take the exact sequence

0 → OX(D − C) → OX(D) → OC(D|C) → 0

and the long exact sequence gives us h1(X,D) = 0, since by the induction assumption

we have h1(X,D − C) = 0. ⊓⊔

3.3 Generators for Cox(X).

We need some preparatory lemmas before we can find the generators for Cox(X) as a

k−algebra. The following lemma is the content of Exercise 17.18 in [Eis95]. We include

the proof here by lack of reference
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Lemma 3.5 (Castelnuovo’s base-point free pencil trick). Let X be an algebraic

variety over a field k, let F be any sheaf of OX -modules on X, let L be an invert-

ible sheaf on X and V a two-dimensional base-point free subspace of H0(X,L ). If

H1(X,F ⊗ L −1) = 0, then the multiplication map

V ⊗H0(X,F ) → H0(X,L ⊗ F ) (3.1)

is surjective.

Proof. Since L is generated by global sections, there exists generators s1, s2 ∈ V that

generate L locally everywhere. Taking the Koszul complex of the sequence s1, s2, we

get the following exact sequence

0 → L
−1 → V ⊗ OX → L → 0.

which is exact since V is base-point free. Now, L is locally free, so we may tensor the

sequence with F , giving

0 → F ⊗ L
−1 → F ⊗ V → F ⊗ L → 0

and taking the long exact sequence of cohomology we have

0 → H0(X,L −1⊗F ) → V ⊗H0(X,F ) → H0(X,L ⊗F ) → H1(X,F ⊗L
−1) → · · ·

The vanishing of H1(X,F ⊗ L −1) proves the surjection. ⊓⊔

Note that if L = OX(L−E1),F = OX(D− (L−Ei)) and H1(X,D− 2(L−Ei)) = 0,

under the assumptions above we have an exact sequence

0 → H0(X,D − 2(L− E1)) → H0(X,L− E1) ⊗H0(X,D − L+E1) → H0(X,D) → 0

We need a technical lemma,

Lemma 3.6. h1(X,nL− 2E1 − E2 − . . . − En) = 0.

Proof. Let C = L−E1−E2−. . .−En and D = nL−2E1−E2−. . .−En = C+(n−1)L−

E1. C is an irreducible rational curve, and so h1(C,OC(−1)) = 0 by Riemann-Roch.

Taking the long exact sequence of 0 → OX(D − C) → OX(D) → OC(D|C) → 0 gives

· · · → H1(X, (n − 1)L− E1) → H1(X,D) → H1(C,D|C) → · · · .

Now degD|C = D.C = −1, and (n − 1)L − E1 is nef for n ≥ 1, so the first and third

cohomology groups vanish and so H1(X,D) = 0, by exactness. ⊓⊔

We now proceed to find generators for Cox(X). We first choose some generators

e1, . . . , en for the 1-dimensional vector spaces H0(X,Ei), for i = 1, . . . , n. Also, let l

be a generator for H0(X,L − E1 − . . . − En). We now consider generators for classes

generating the nef cone. These are of course of the form L−Ei, and since H0(X,L−Ei)

is 2-dimensional, we need in addition to the section le1 · · · ei−1ei+1 · · · en, a new section

si to form a basis. Suppose we choose these sections such that their projections to P2

are as the three lines shown in Figure 3.1. That is, we choose a point q ∈ P2, and for

each i take a section corresponding to the strict transform of the line going through q

and pi. We now claim that these sections generate Cox(X).
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Fig. 3.1 The choice of the sections s1, s2, . . . , sn.

Proposition 3.7. Let X be the blow-up of P2 in n distinct points on a line. Then there

is a multigraded surjection

p : k[l, e1, e2, . . . , en, s1, s2, . . . , sn] → Cox(X).

Proof. By Proposition 2.7, we may take D to be nef. Write D (uniquely) as a sum of

the nef cone generators,

D = a1(L− E1) + a2(L− E2) + . . .+ an(L− En) + aL

where a, ai ≥ 0. Note that all the nef cone generators of the form L − Ei are indeed

base-point free pencils, so we may apply lemma 3.5. We proceed by induction on n and

a+ a1 + . . . + an. Let C be an irreducible conic in |L− Ei|.

Case 1: ai ≥ 2 for some 1 ≤ i ≤ n. Suppose this is a1 ≥ 2. First of all, H1(X,D −

2C) = 0, by nefness, and so we get by Castelnuovo’s base-point free pencil trick a

surjection

H0(X,D − C) ⊗H0(X,C) → H0(X,D).

By the induction hypothesis, H0(X,D − C) is generated by the above sections and so

the the claim follows by induction on a+ a1 + . . .+ an.

Case 2: ai = 1 for some 1 ≤ i ≤ n and a ≥ 1. Suppose D.E1 = 1 we need the exact

sequence 0 → OX(D − 2C − E1) → OX(D − 2C) → OE1(−1) → 0. This gives

H1(X,OX(D − 2C − E1)) → H1(X,OX(D − 2C)) → H1(E1,OE1(−1)) → 0

The first H1 is zero since D − 2C −E1 = (a− 1)L+ a2(L−E2) + . . .+ an(L−En) is

nef, while the last one is zero since h1(P1,OP1(−1)) = 0 by Riemann-Roch. Exactness

gives H1(X,OX(D− 2C)) = 0, and we get a surjection as above by the base-point free

pencil trick.

Case 3: ai = 0 for some 1 ≤ i ≤ n . Here we must have say, D.En = 0, and

OX(D) ∼= π∗OX′(D′) where π : X → X ′ is the morphism contradicting En and X ′

is a rational surface isomorphic to the blow-up of P2 in the points p1, . . . , pn−1. For

n = 2, the result is clear since Cox(X) is the polynomial ring k[e1, e2, l12, s1, s2]. Now, by

induction on n a generating set of Cox(X ′), is l′, s′1, . . . , s
′
n−1, e

′
1, . . . , e

′
n−1, and we have

π∗(e′i) = ei, π
∗(s′i) = si and π∗(l′) = len. Hence we can choose a basis of H0(X,OX (D))

of monomials in the variables {l, ei, si}i=1,...,n.
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Case 4: D = nL− E1 − . . . − En. This is the case a1 = · · · = an = 1, a = 0 above.

Note that we have an exact sequence

0 → OX(nL− 2E1 − E2 − . . .− En) → OX(nL− 2E1 − . . . −En) → OE1(1) → 0.

Taking the long exact sequence of cohomology and using the fact that H1(X,nL −

2E1 − . . .− En) = 0 by the lemma, we get

0 → H0(X,nL−2E1− . . .−En) → H0(X,nL−E1− . . .−En) → H0(E1,OE1(1)) → 0.

in which H0(E1,OE1(1)) is 2-dimensional. By induction H0(X,nL− 2E1 − . . .−En) ∼=

l ·H0(X, (n− 1)L−E1) is generated by the above sections, so we need only show that

H0(X,nL−E1 − . . .−En) has two sections that restrict to a basis of H0(E1,OE1(1)).

Consider the sections s = s1(s2s3 · · · sn) and t = le2 · · · en(s2s3 · · · sn). We claim that

the restrictions of s and t to E1 are linearly independent. Note that s meets the line E1

in the intersection between s1 and E1, while t meets E1 in the intersection with l. Recall

that s1 was defined as the pullback of a line through p1, q ∈ P2, where q was not lying

on the line C. These lines have different tangent directions through p1 which implies

that s1 meets e1 in a different point than l in the blow-up. Hence the two sections s, t

vanish at different points on E1 and hence restrict to linearly independent sections of

H0(E1,OE1(1)). ⊓⊔

3.4 Relations

Now, consider the divisor class L. We have h0(X,L) = 3, while there are n+1 monomials

of degree L in k[l, e1, e2, . . . , en, s1, s2, . . . , sn] :

s1e1, s2e2, · · · snen, le1e2e3 · · · en

Hence there are n − 2 linear dependence relations between them. Consider again the

projection of these sections in Figure 3.1. Of course any three of these lines are linearly
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independent, since they belong to the subsystem of |L| of lines through q. It follows

that we have minimal relations of the following form:
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g1 = s1e1 + a1sn−1en−1 + b1snen = 0

g2 = s2e2 + a2sn−1en−1 + b2snen = 0

...
... (3.2)

gn−2 = sn−2en−2 + an−2sn−1en−1 + bn−2snen = 0

where all of the coefficients ai, bi are non-zero. We denote the ideal generated by these

relations by J . The leftmost terms above are underlined since, as the next lemma shows,

they form an initial ideal for J .

Lemma 3.8. The set {g1, . . . , gn−2} is a Gröbner basis for J with respect to the graded

lexicographical order, and in J = (s1e1, . . . , sn−2en−2) is an initial ideal of J .

Proof. It is well-known (e.g see [AL94]) that a collection of polynomials with relatively

prime leading terms is a Gröbner basis for the ideal they generate. ⊓⊔

Theorem 3.9. Let X be the blow-up of n distinct points on a line. Then Cox(X) is a

complete intersection, with n− 2 quadratic relations.

Proof. We show that ID = JD for all nef classes D = mL− a1E1 − a2E2 − . . .− anEn,

where m ≥ a1 + . . . + an and ai ≥ 0. Note that since J ⊆ I, we have in any case a

multigraded surjection

k[l, e1, e2, . . . , en, s1, s2, . . . , sn]/J → Cox(X).

To show that this is an isomorphism in degree D we calculate the (multigraded) Hilbert

function of both sides. From Riemann-Roch we have

dimk Cox(X)D = h0(X,mL− a1E1 − a2E2 − . . .− anEn)

=

(
m+ 2

2

)
−

(
a1 + 1

2

)
− . . .−

(
an + 1

2

)
.

To calculate dimk R/JD, we use the Gröbner basis for J . Since the Hilbert function is

preserved when going to initial ideals, we have

dimk R/(f)D = dimk R/(s1e1, . . . , sn−2en−2)D

Now, any monomial m in R/(s1e1, . . . , sn−2en−2)D corresponds to a way of writing D

as a non-negative sum of divisor classes from

L− E1 − . . .− En, L− E1, . . . L− En, E1, . . . , En

such that not both L − Ei and Ei occur in the sum for i = 1, . . . , n − 2. Thus the

problem of finding dimk(R/J)D reduces to the following counting problem: finding the

number of non-negative solutions of

s1 + s2 + . . .+ sn + l = m

s1 + l − e1 = a1

s2 + l − e2 = a2 (3.3)

...
...

sn + l − en = an
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such that

si · ei = 0 for i = 1, . . . , n − 2.

Here, by horrible abuse of notation, the numbers si, ei, l represents respectively the

non-negative coefficients of L−Ei, Ei, L−E1 − . . .−En in the sum. Now, fix l ≥ 0 and

subtract l from each of the equations in (3.3) to get

s1 + s2 + . . . + sn = m− l

s1 − e1 = a1 − l

s2 − e2 = a2 − l (3.4)

...
...

sn − en = an − l

We count the number of non-negative solutions S(l) to this system. First we claim that

m− l ≥
n∑

k=1

max(ai − l, 0)

for l ≤ m. This is by induction on l: For l = 0, this is the nef condition on D. Now,

increasing l by one decreases the left hand side by one, and if there is some ai − l > 0,

then max(ai − l, 0) is also decreased by 1, if not, the right hand side is zero, so in any

case the inequality is preserved.

Now, note that si for 1 ≤ i ≤ n − 2 is completely determined by si.ei = 0, in fact

si = max(ai− l, 0). Hence by the first equation in (3.4) we are looking for non negative

solutions to

sn + sn−1 = m− l −
n−2∑

k=1

max(ak − l, 0)

such that sn ≥ max(an − l, 0) and sn−1 ≥ max(an−1 − l, 0), of which there are in total

m− l −
n−2∑

k=1

max(an−2 − l, 0) + 1 −
∑

k=n−1,n

max(ak − l, 0).

Hence the total number of solutions to (3.3) is

m∑

l=0

S(l) =

m∑

l=0

(
m+ 1 − l −

n∑

k=1

max(ak − l, 0)

)

=

(
m+ 2

2

)
−

a1∑

i=0

(a1 − i) −
a1∑

i=0

(a1 − i) − . . .−
an∑

i=0

(an − i)

=

(
m+ 2

2

)
−

(
a1 + 1

2

)
−

(
a2 + 1

2

)
− . . .−

(
an + 1

2

)
.

This finishes the proof that I = J . Now, from [BP04, Remark 1.4] we have dim Cox(X) =

n+3, furthermore by Proposition 3.7 we have that codim Cox(X) = (2n+1)−(n+3) =

n− 2, which is exactly the number of relations in I. ⊓⊔



38 3 The Cox Ring of P2 Blown Up in Special Configurations

Corollary 3.10. The ring Cox(X) is a Koszul algebra and is Gorenstein.

Proof. It is well known that any G−quadratic algebra is Koszul and that any complete

intersection is Gorenstein. ⊓⊔

Remark. It was shown in [Pop05] that the Cox rings of Del Pezzo surfaces are also

Gorenstein.

Remark. The above theorem can also be proved in another way, using the following

lemma, proved by Stillman in [ST05]:

Lemma 3.11. Let J ⊂ k[x1, x2, . . . , xn] be an ideal containing a polynomial f = gx1 +

h, with g, h not involving x1 and g a non-zero divisor modulo J . Then, J is prime if

and only if the elimination ideal J ∩ k[x2, . . . , xn] is prime.

Note that (g1, . . . , gn−2)∩k[s2, . . . , sn, e2 . . . , en, l] = (g2, . . . , gn−2) since {g1, . . . , gn−2}

is a Gröbner basis. Then the above lemma can be applied inductively, to prove that

J is prime (take x1 = e1, g = s1, h = a1sn−1en−1 + b1snen). For n = 3, the result is

obvious since s1e2 − s2e2 + s3e3 is irreducible. Then, since I ⊆ J are two prime ideals

with the same Krull dimension, it follows that they are in fact equal.

3.5 Three points on a line: Explicit computations

In this section we consider the case of three points on a line in more detail, using

Macaulay 2 to exhibit the relations. This is a ’limiting case’ in the sense that it is the

first case where the anticanonical divisor −K = 3L−E1 −E2 −E3 ceases to be ample,

since it contracts the line L. This makes the surface X a generalized Del Pezzo surface.

Also, this gives a simple example of a Cox ring with a single defining relation.

We exhibit the generators and relations by looking at the anticanonical map of X.

We have h0(X,−K) = 7 and so a generating set of sections of H0(X,−K) give a

rational map φ : X → P6. We get explicit equations by taking the linear system of

cubics through the points (1 : 0 : 0), (0 : 1 : 0), (1 : 1 : 0). This gives us the linear series

x0 = Z3, x1 = Z2X,x2 = Z2Y, x3 = XY Z, x4 = ZX2, x5 = ZY 2, x6 = XY (Y −X)

Using Macaulay 2, we compute the following elimination ideal, which defines the blow-

up as a surface Y in P6.

x2x6 − x3x5 + x4x5 x2
3 − x4x5 x2

2 − x0x5

x3x4 − x4x5 + x1x6 x2x3 − x1x5 x1x3 − x1x5 + x0x6

x2x4 − x1x5 + x0x6 x1x2 − x0x3 x2
1 − x0x4

The surface Y has its singularity in the point (0 : 0 : 0 : 0 : 0 : 0 : 1), which is the image

of L under φ. The intersection of Y with the hyperplane Z(x0, x1, x2) splits into three

projective lines, and so we find that the lines E1, E2, E3 are given by

E1 = Z(x0, x1, x2, x3, x4) E2 = Z(x0, x1, x2, x3, x5) E3 = Z(x0, x1, x2, x3−x5, x3−x4)

Furthermore, by intersecting Y with Z(x6), we get three conics
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Q1 = Z(x3, x1, x4, x6,−x
2
2 + x0x5), Q2 = Z(x3, x2, x5, x6,−x

2
1 + x0x4)

Q3 = Z(−x1 + x2,−x3 + x5,−x3 + x4, x6, x
2
1 − x0x3)

These correspond to conics of degree L− Ei. Using the equations above we determine

the anticanonical embedding

φ∗(x0) = l3e21e
2
2e

2
3 φ∗(x1) = l2e21e2e3s1 φ∗(x2) = l2e1e

2
2e3s2

φ∗(x3) = le1e2s1s2 φ∗(x4) = le21s
2
1 φ∗(x5) = le22s

2
2

φ∗(x6) = s1s2s3

where Qi = (φ∗si)0. Hence we find the following relation:

0 = φ∗(x2x4 − x1x5 + x0x6) = l3e31e
2
2e3s

2
1s2 − l3e21e

3
2e3s1s

2
2 + l3e21e

2
2e3s1s2s3

= l3e21e
2
2e3s1s2(e1s1 − e2s2 + e3s3),

clearly showing the relation e1s1 − e2s2 + e3s3 = 0 in H0(X,L).

3.6 Singularities

We now study the singularities of Proj Cox(X) and SpecCox(X). These are highly

singular, and the singular locus increases with n: Note for example that Cox(X) is

singular along the codimension 5 subscheme defined by

Z(e1 = e2 = . . . = en = s1 = sn−1 = sn) ∩ Z(I)

Proposition 3.12. The singular locus of Proj Cox(Xn) has codimension 5.

Proof. The proof is by induction on n. For n = 3, Proj Cox(X) is the hypersurface

Z(s1e1 − s2e2 + s3e3) ⊂ P6. There is an isolated singularity in the point p = (0 : 0 : 0 :

0 : 0 : 0 : 1). Now, the proof of [BP04, Prop. 4.4] extends to this case and shows that

UxE
∩ Proj Cox(Xn) ∼= Spec(Xn−1)

where E is a exceptional curve. Inductively this shows that the dimension of the singular

locus increases by one for each blow-up. ⊓⊔

3.7 Classification of Cox rings of P2 blown up in few points

In [Der06], Derenthal studied Cox rings of generalized Del Pezzo surfaces, whose Cox

rings have a unique defining relation. In this section, we provide related results by

giving a complete description of Cox rings of P2 blown in ≤ 5 points.

We are interested in studying how the Cox ring changes when the points blown

up vary. Already for the case of three points in the plane, we see that there is an

interesting phenomenon occurring: Here the ’general fiber’ in the family of Cox rings

is a polynomial ring, while the ’special fiber’ is a quadric hypersurface. The reason for

this is mainly because of the (−2)-curve, which becomes an extra generator. We think
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that it would be an interesting problem to find some general framework for studying

such families.

Special configurations other than points on a line provide no new difficulties in the

computation of their Cox rings. On the contrary, as the points move into ’more general’

position, it turns out that we need fewer ’extra sections’ like the sections si above. This

is because in the new setting, the effective cone needs more generators and the new

divisor classes provide enough generators for the Cox ring. For example, when r = 3

and the points are general, the sections l12e2, l13e2 constitute a basis for Cox(X)L−E1 .

This reflects the fact that L−E1 −E2 and L−E1 −E3 are minimal divisor classes in

the former case, but not in the latter.

In all the cases below, the effective cone will be generated by negative curves, and

there will be (base-point free) pencils in a generating set for the nef cone. This will allows

us to find generators for Cox(X) using the previous technique. We then find relations

among the generators in low-degree nef divisor classes by using explicit equations for

their projections to P2 and using elimination theory to find their linear dependencies.

Since there are only ≤ 5 relations in each case, we can proceed using a dimension

argument and a primality test to check that we have found all the minimal relations.

The results are presented in the table on the opposite page.

Note the equations for the sixth case where one of the points lie on the intersection of

the lines through the two other pairs of points. Making the substitution u = e5l125 and

v = e5l135, we recover the homogeneous coordinate ring of the Grassmannian G(2, 5).

Thus the equations seem to define some P1-bundle over the Grassmannian.
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Configuration Generators Relations

Points:
(1:0:0),(0:1:0),(0:0:1),
(1:1:1)

e1, e2, e3, e4,

l12, l13, l14, l24, l34

e1l12 − e3l23 + e4l24
e2l12 − e3l13 + e4l14
e1l13 − e2l23 + e4l34
e1l14 − e2l24 + e3l34
l14l23 − l13l24 + l12l34

Points:
(1:0:0),(0:1:0),(0:0:1),
(1:1:0)

e1, e2, e3, e4,

l14, l24, l34, l123

e1l14 + e2l24 + e3l34

Points:
(1:0:0),(0:1:0),(1:1:1),
(1:r:1)

e1, e2, e3, e4,

s1, s2, s3, s4, l1234

e1s1 + s3e3 + s4e4
e2s2 + as3e3 + bs4e4

Points:
(1:0:0),(0:1:0),(0:0:1),
(1:1:1),(1:a:b)

e1, e2, e3, e4, e5, l12
l13, l14, l23, l24, l34, g

20 quadrics.

See Section 2.7.1.

3 on a line,
Points:
Points:
(1:0:0),(0:1:0),(0:0:1),
(1:1:1),(1:0:c)

e1, e2, e3, e4, e5, l12
l135, l14, l23, l24, l34, l45, l25

l14e1 − l24e2 + l34e3
l12e1 − l23e2 + l24e4
l13e1 − l23e2 + l34e4
(c− 1)l34e3 + l24e2 − l45e5
(c− 1)l23e3 + l24e4 − l25e5
l23l24 − l24l34 − l23l45 + l34l25

Points:
(1:0:0),(0:1:0),(0:0:1),
(1:1:0),(1:0:1)

e1, e2, e3, e4, e5,

l135, l245, l14, l23, l34

e1l12 − e3l23 + e4e5l245
e2l12 − e3l135e5 + e4l14
e1e5l13 − e2l23 + e4l34
e1l14 − e2e5l245 + e3l34
l14l23 − e25l135l245 + l12l34

Points:
(1:0:0),(0:1:0),(0:0:1),
(1:a:0),(1:b:0)

e1, e2, e3, e4, e5,

s1, s2, s3, s4, s5, l12345

e1s1 + s4e4 + s5e5
e2s2 + as4e4 + bs5e5
e3s3 + cs4e4 + ds5e5





Chapter 4

Cox Rings of Blow-ups of P3

Let Xr denote a blow-up of P3 in r points p1, . . . , pr in general position. It follows from

Proposition 6.7 in [Ful93], that we have an isomorphism

Ak(X) ∼= Ak(P
3) ⊕AkE1 ⊕ · · · ⊕AkEr, k = 1, 2

We choose a basis for A2(X) = Pic(X) by taking the pullback H of a plane in P3 and

the exceptional planes E1, . . . E5. Similarly, we choose a basis for the group of 1−cycles

A1(X) by taking l = H2 to be the pullback of a line in P3 and li = E2
i lines in Ei for

i = 1, . . . , 5. The intersection pairing is given by

H.l = 1, H.li = 0, Ei.l = 0, Ei.lj = −δij . (4.1)

Lemma 4.1. The Chern classes of Xr are given by

c1(X) = −KX = 4H2 − 2E1 − . . .− 2Er

c2(X) = π∗c2 = 6H2

Proof. This follows at once from the blow-up for Chern classes in [Ful93, §15.4] or

[GH78, §4.6], using the values c1(P
3) = 4H and c2(P

3) = 6H2. ⊓⊔

Proposition 4.2. Let X be the blow-up of P3 in r points in general position, and let

D = aH − b1E1 − . . . − brEr be a divisor class on X. Then the following formula for

χ(OX(D)) holds:

χ(OX(D)) =

(
a+ 3

3

)
−

(
b1 + 2

3

)
− . . .−

(
br + 2

3

)
(4.2)

Proof. By the Hirzebruch-Riemann-Roch theorem [Ful84], we have the following for-

mula for χ(L ) on a threefold

χ(OX(D)) =

∫

X
D3 +

1

4
c1 ·D

2 +
1

2
(c21 + c2) ·D +

1

24
c1c2

=

∫

X
D3 +

1

4
c1 ·D

2 +
1

2
(c21 + c2) ·D + 1

where we have used that 1
24c1c2 = χ(OX) (which is obtained by setting D = 0 above)

and χ(OX) = 1−pa = 1. The above formula for χ(OX(D)) is then obtained by a rather

tedious substitution using Lemma 4.1 for the Chern classes and the relations (4.1). ⊓⊔

43
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4.1 P3 blown up in ≤ 4 distinct points

Blow-ups of P3 in r ≤ 4 points are toric and their fans and Cox rings are computed as

in Section 2.3.2.

r Cox(Xr)

0 k[z, y, z, w]

1 k[z, y, z, w, e1 ]

2 k[z, y, z, w, e1 , e2]

3 k[z, y, z, w, e1 , e2, e3]

4 k[z, y, z, w, e1 , e2, e3, e4]

4.2 P3 blown up in five distinct points

Let X = X5 be the blow-up of P3 in points p1, . . . , p5 in general position. By the

transitive action of PGL(4) on general quintuples, we may take the five points to be

p1 = (1, 0 : 0 : 0), p2 = (0 : 1 : 0 : 0), p3 = (0 : 0 : 1 : 0)

p4 = (0 : 0 : 0 : 1), p5 = (1 : 1 : 1 : 1).

Let x1, . . . , x5 be the generators for the cohomology groups H0(X,E1), . . . ,H
0(X,E5)

respectively, and let hijk denote a generator for H0(h−Ei−Ej−Ej). Geometrically the

zero-sections of x1, . . . , x5 correspond to the exceptional planes and hijk corresponds

to pullbacks of planes through pi, pj, pk in P3. We will for this reason henceforth refer

to xi, hijk as the planar sections.

In this notation, Cox(X4) is generated by the sections x1, . . . , x4, hijk, {i, j, k} ⊂

{1, 2, 3, 4} distinct.

Lemma 4.3. If D = aH −
∑
biEi is an effective divisor class and b1, . . . , b5 ≥ 0, then

a ≥ bi for all i = 1, . . . , 5.

Proof. We show that the 1-cycle l−li has positive intersection number with any effective

divisor, i.e., it is a ’nef’ curve. This is because a curve with class l − li is the pullback

of a line in P3 through pi, which means that for any point p in X, there is a curve with

class l − ei passing through p. Therefore D.(l − li) = a− bi ≥ 0. ⊓⊔

Lemma 4.4. The class of curve 3l − l1 − l2 − l3 − l4 − l5 is nef.

Proof. Note that for any given point p of P3 there is a conic with class (2l−l1−l2−l3−l4)

going through p, so it is base-point free. The class 3l − l1 − l2 − l3 − l4 − l5 is now the

sum of (2l− l1 − l2 − l3 − l4) and (l− l5), both of which are base-point free, hence nef.

We are now in position to calculate the Cox ring of X5. The approach is somewhat

different than the technique used in the proof of Theorem 3.7, and owes debt to Cas-

travet and Tevelev’s work in [CT06], where we got the idea for the approach used in

the proof.
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Theorem 4.5. Let X be the blow-up of P3 in the five general points p1, . . . , p5.

Then Cox(X) is generated by the sections xi, hijk from the respective divisor classes

E1, . . . , E5 and H − Ei − Ej − Ek, 1 ≤ i, j, k ≤ 5 distinct.

Proof. Let p : P3
99K P2 be the projection from p5 = (0 : 0 : 0 : 1) and let q1 = (1 : 0 :

0), q2 = (0 : 1 : 0), q3 = (0 : 0 : 1), q4 = (1 : 1 : 1) denote the images of p1, . . . , p4 under

p.

P2

p5

p1

p2

p4

p3

Let Y be the Del Pezzo surface obtained by blowing up the points q1, . . . , q4. Let

E′
1, . . . , E

′
4 denote the respective exceptional divisors and let L denote the pullback

of a line in P2. As before, we fix generating sections e1, . . . , e4, l12, . . . , l34 generating

Cox(Y ). We construct a map φ : H0(X,D) → Cox(Y ).

Let aH−b1E1−b2E2−b3E3−b4E4−b5E5 be the divisor class of D. We may assume

the following ordering on the bi:

b1 ≥ b2 ≥ · · · ≥ b5 > 0.

This follows by permutation of the p1, . . . , p5 and since in case b5 ≤ 0, we may consider

the divisor D′ = D − b5E5: Note that D′ = π∗(B) for some effective divisor B on X4.

Since generators forX4 pull back to generators for Cox(X) via the blow-up π : X → X4,

this means that H0(X,D′) is generated by the planar sections and hence also H0(X,D)

via multiplication by eb55 . We may by Lemma 4.3 also assume that a ≥ bi.

To define the map φ in degree D, first identify E5
∼= P2 with the image of the

projection p and regard the restriction map r as a map

r : H0(X,D) → H0(E5,D|E5) = H0(P2,OP2(b5)) = H0(Y, b5L).

Note that if for some i = 1, . . . , 4 one has (l− li− l5).D = a−bi−b5 < 0, then l−ei−e5
is a fixed component in the linear system |D| and consequently, the projection of any

section in H0(X,D) to P2 is a curve through the point qi with multiplicity bi + b5 − a.

This means that the image of r lies in the linear subsystem |b5L−(bi+b5−a)E
′
i| ⊂ |b5L|,

hence r(s) is divisible by ebi+b5−ai for any s ∈ H0(X,D). It therefore makes sense (as

in [CT06]) to formally define

φ(s) = r(s) · ea−b1−b51 ea−b2−b52 ea−b3−b53 ea−b4−b54 .

Note that the kernel of the map φ is precisely ker r ∼= H0(X,D − E).

The map φ induces a linear map α : Pic(X) → Pic(Y ) given by
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α : aH −
5∑

i=1

aiEi 7→ b5L−
4∑

i=1

(bi + b5 − a)E′
i

making the following diagram commute (cf. [CT06]):

H0(X,D)
φ

r

H0(Y, α(D))

b∗

H0(E5,D|E5) H0(P2,OP2(b5))

Here b∗ is the map given by push-forward via the blow-up b : Y → P2.

Note that α(Ei) = E′
i for i = 1, 2, 3, 4, so φ(xi) is some scalar multiple of ei. By

replacing section xi by a scalar multiple, we may assume that φ(xi) = ei. Similarly,

α(H −Ei − Ej − E5) = L− E′
i −E′

j i 6= j, so we may take φ(hij5) = lij.

Since kerφ ∼= H0(X,D − E), we have an exact sequence:

0 → H0(X,D −E) → H0(X,D) → H0(Y, α(D)).

We claim that the right hand map is surjective and that any section of H0(Y, α(D))

can be lifted to a linear combination of products of sections xi, hijk.

Let us first explain why this implies the theorem. Let s be any section of H0(X,D).

Then r(s) is a section in H0(Y, α(D)) which by hypothesis lifts to a section s′ ∈

H0(X,D) which a polynomial in the xi, hijk. Since r(s) = r(s′), this means that

s − s′ ∈ ker r = H0(X,D − E), i.e s − s′ = e5t for some t ∈ H0(X,D − E). This

means that we reduce to showing that H0(X,D − E) is generated by the planar sec-

tions. Continuing this process, we must reach a divisor such that D−E is not effective

anymore, and at this point we have H0(X,D) ∼= H0(Y, α(D)) and we are done (since

generators for H0(Y, α(D)) lift isomorphically to generators of H0(X,D)).

Since Cox(Y ) is generated by sections corresponding to exceptional curves, it suffices

to show that any section s =
∏
i e
ni

i

∏
i6=j l

nij

ij ∈ H0(Y, α(D)) can be lifted to a section

in H0(X,D), as above.

The section s has Pic(Y )-degree

α(D) =
∑

i

niE
′
i +
∑

i6=j
nij(L− E′

i −E′
j).

We will lift the sections lij of degree L− Ei − Ej to the sections hij5. This gives us a

divisor class on X,

F =
∑

i6=j
nij(H − Ei − Ej −E5)

Consider the divisor class D′ = D − F . We will show that D′ is an effective divisor

on X and that there exist a degree D′ monomial in the planar sections that that map

to the remaining part
∏
i e
ni

i . Note that since
∑

i6=j nij = b5, D
′ is a divisor on X not

containing E5. Write

D′ = cH − d1E1 − . . . − d4E4,

where c = a− b5.

Note that both xi and ĥi := hjkl, {j, k, l} = {1, 2, 3, 4} \ {i}, map to the variable

ei via φ. The plan is to lift the monomial m =
∏
i e
ni

i to a monomial in H0(X,D′),
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by taking a product of c ĥi’s and the remaining of the form xi. By construction, the

product we get will map to m via φ.

For example, if D = 2H −E1 −E2 −E3 −E4 −E5, then α(D) = L and we must lift

say, the section l12e1e2 ∈ H0(Y,L). We lift l12 to h125, so we have to find a monomial

of degree

D′ = (2H − E1 − E2 − E3 − E4 − E5) − (H − E1 − E2 − E5) = H − E3 − E4

mapping to the monomial e1e2 ∈ H0(Y,L). We decompose H − E3 − E4 as

(H−E2−E3−E4)+E2 which gives the section h234x2 ∈ H0(X,D′). Finally, the section

s = h125h234x2 has degree D and is mapped by φ to the section l12e1e2 in H0(X,L).

We show that it is always possible to decompose D′ as above. For this, we first show

that
∑
ni ≥ c = a− b5. This essentially means that we have enough E′

is to decompose

D′. The explicit algorithm to decompose D′ as above is given below. Note that

α(D) =
∑

i

niE
′
i +
∑

i6=j
nij(L−E′

i − E′
j) = b5L+

4∑

i=1

(a− bi − b5)E
′
i. (4.3)

Hence we get by counting Ei’s,

4∑

i=1

ni − c =

4∑

i=1

(a− bi − b5) + 2
∑

i6=j
nij − (a− b5)

= 4a− 4b5 −
4∑

i=1

bi + 2 · b5 − a+ b5

= 3a−
5∑

i=1

bi = D.(3l − l1 − . . . − l5)

≥ 0

Where the last inequality follows by the nefness of the curve 3l− l1− . . .− l5, by Lemma

4.4. Hence
∑
ni ≥ c.

Also, by intersecting both sides of the equation (4.3) with the divisor class L − Ei,

we see that also

0 ≤ ni ≤ a− bi ≤ a− b5 = c.

Because of these inequalities, it is possible to decompose
∑4

i=1 niE
′
i as a sum

∑4
i=1 n

′
iE

′
i+∑4

i=1 n
′′
iE

′
i, where 0 ≤ n′i ≤ ni such that

∑4
i=1 n

′
i = c, and consider the section

u =
4∏

i=1

ĥni

i ·
4∏

i=1

x
n′′

i

i ∈ H0(X,D′′).

where D′′ is some divisor on X. By the construction, u is a section that will map to∏
i e
ni

i via φ.

It remains to check that the ’lifted’ divisor classD′′ actually equalsD′ on X. Consider

their difference M = D′′−D′. Note that the map α is surjective, so by comparing ranks

of the Picard groups, we see that the kernel of α is generated by one element, namely

H −E1 − . . .−E5. Since both D′′ and D′ map to the same divisor class on Y , we must
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have that α(M) = 0 and so M is of the form m(H−E1− . . .−E5) for some m ∈ Z. But

in fact m = l.M = c − c = 0, so M = 0 and D′ = D′′. This shows that D′ is effective,

and that there exists a section u mapping to
∏
i e
ni

i via φ.

This completes the proof. ⊓⊔

Corollary 4.6. The effective cone NE1(X,Z) is generated by E1, . . . , E5 and H−Ei−

Ej − Ek, 1 ≤ i, j, k ≤ 5 distinct.

4.2.1 Relations.

Consider the divisor class D = H−E1−E2. In P3, this corresponds to the linear system

of planes through the points p1 and p2. Using this observation, or using Riemann-Roch,

we find that dimH0(X,D) = 2. Of course, there are 3 monomials of degree D, namely

h123x3, h124x4, h125x5 corresponding to ways of writing D as a sum of effective divisor

classes (H−E1−E2−Ei)+Ei. This shows that there is exactly one quadratic relation

in ID, in fact,

h123x3 − h124x4 + h125x5 = 0.

The same thing happens for all classes H − Ei − Ej , so we have 10 relations.

There is a similar argument for the divisor classes 2H − 2E1 − E2 − E3 − E4 − E5.

This gives five relations. In all, we find a total of 15 quadrics in the quadratic part of

I. Moreover, we recognize these as the Plücker quadrics of the Grassmannian G(2, 6).

We thus have a surjective map between the coordinate ring of G(2, 6) and Cox(X). It

is clear that this is the entire ideal since we have a surjection k[G(2, 6)] → Cox(X) and

their dimensions agree:

dimR/J = dimG(2, 6) + 1 = 9 = dim Pic(X) + dimX = dim Cox(X).

This shows the following theorem:

Theorem 4.7. The Cox ring of X is isomorphic to the coordinate ring of the Grass-

mannian variety G(2, 6).

Here it is understood that the isomorphism is taken with respect to the coarser grading

given by letting all the xi, hijk have degree 1.

The theorem shows that the blow-up of P3 in 5 general points realizes a GIT quotient

of G(2, 6) by the maximal torus in SL(2). This is at least very intuitive: By the Gelfand-

MacPherson correspondence [Kap93], GIT quotients of G(2, 6) correspond to quotients

(P3)6/PSL(4). Think of the moduli space of 6 points p1, . . . , p6 in P3. Fix 5 of the

points to get rid of the action of PSL(4) - the remaining point p6 moves freely and so

the moduli space is some compactification of P3 \ {p1, . . . , p5}.

4.3 Cox(X) as an invariant ring

In this section we calculate the Cox ring of the blow-up Pn in n + 2 points, using

Mukai’s correspondence. This is an interesting case, since blow-ups of Pm in ≤ n + 1
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general points are toric so this represents some boundary case. We will see that the

Cox ring is isomorphic to the Grassmannian G(2, n+3), thus generalizing the previous

theorem. Let us first recall Mukai’s correspondence. Let G ⊂ G
m
a be the nullspace of

the matrix

A =




a11 a12 · · · a1m

a21 a22 · · · a2m
...

. . .
. . .

...

ar1 ar2 · · · arm




Elements (t1, . . . , tm) ∈ G act on R = k[x1, . . . , xm, y1, . . . , ym] by the following Nagata

action:

xi 7→ xi, yi 7→ yi + tixi (4.4)

We are interested in the polynomials invariant under this action:

Theorem 4.8 (Mukai). The ring RG coincides with the Cox ring of the blow-up of

Pr−1 in the points p1, . . . , pm whose coordinates are the column vectors of A.

We want to study the Cox ring of Pn blown up in n+ 2 general points from this point

of view. This means that we consider the case m = n + 2, r = n + 1. In this case,

since the points are in general position, G is one-dimensional and we may after a linear

change of variables of R, take

G = Span{(1, 1, . . . , 1)} ⊂ G
n+2
a .

Theorem 4.9. The Cox ring of Pn blown up in n + 2 distinct general points is iso-

morphic to the coordinate ring of the Grassmannian G(2, n + 3).

Proof. By Mukai’s theorem we want to find all polynomials invariant under G, i.e all

f ∈ R such that for all t ∈ k,

f(x1, . . . , xn+2, y1 + tx1, . . . , yn+2 + txn+2) = f(x1, . . . , xn+2, y1, . . . , yn+2). (4.5)

Of course the xi are invariant under (4.4), as are the determinants

pij = xiyj − xjyi

We claim that the invariant ring is generated by these, i.e.

RG = k[x1, . . . , xn, p12, p13, . . . , p(n+1)(n+2)].

Using the Taylor formula, we see that a polynomial f ∈ RG is invariant if and only

it lies in the intersection

k[x1, . . . , xn, y1 + tx1, . . . , yn + txn] ∩ k[x1, . . . , xn, y1, . . . , yn].

We view this intersection as a subalgebra of R[t] with the monomial ordering: t ≻ x1 ≻

· · · ≻ xn ≻ y1 ≻ · · · ≻ yn.

Lemma 4.10. Any leading monomial in k[xi, xit+ yi] is a product of the monomials

xi, xiyj, xit, 1 ≤ i < j ≤ n+ 2.
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Proof. Proving this lemma is essentially is the same as showing that {xi, txi + yi, pij}

forms a sagbi basis for k[xi, xit + yi] with respect to the ordering above (cf. [RS90]).

This follows from the sagbi basis algorithm [RS90], and the following ’straightening

relations’

xipjk − xjpik = −xkpij pikpjl − pilpjk = pijpkl (4.6)

qipjk − qjpik = −qkpij xiqj − xjqi = pij

where qi = txi + yi. ⊓⊔

Note that two equations (4.6) are exactly the Plücker relations on the polynomials

xi, pij.

Let f be an arbitrary element in the intersection above. Note that its leading term

cannot be divisible by t, and so the leading term is a product of xi’s and xiyj ’s for

i < j. Suppose the leading term is

cxa11 · · · x
an+2

n+2 · (x1y2)
b12 · · · (xn+1yn+2)

b(n+1)(n+2)

and consider the following polynomial:

g = f − cxa11 · · · x
an+2

n+2 · (p12)
b12 · · · (p(n+1)(n+2))

b(n+1)(n+2) .

The polynomial g is clearly invariant under (4.5) and has leading term strictly smaller

than that of f . Repeating the process with g we eventually reach a polynomial which

is invariant under G, which has constant leading term, that is, a constant polynomial.

This shows that we may write any invariant f as a polynomial in the xi, pij and so

f ∈ k[x1, . . . , xn, p12, p13, . . . , p(n+1)(n+2)]. Hence

RG = k[x1, . . . , xn, p12, p13, . . . , p(n+1)(n+2)].

A dimension argument now completes the proof1,

dimCox(X) = rank Pic(X) + dimX = (n+ 3) + n

= 2(n+ 2) + 1 = dimk[G(2, n + 3)].

⊓⊔

1 Alternatively, one could argue here directly using a sagbi basis argument, since by [RS90], the defining ideal
is generated by the straightening relations (4.6).



Chapter 5

K3 Surfaces with ρ = 2

Let X be a K3 surface, i.e., a projective surface with KX = OX and H1(X,OX) = 0.

It is well-known that the generic K3 surface has PicX = Z, and so the Cox ring is

simply the coordinate ring
⊕

n≥0H
0(X,nH). Generators and relations of this ring are

investigated by Saint-Donat in [SD74]. We assume henceforth that ρ = rank PicX = 2.

Cox rings of K3 surfaces were first studied by Abertani, Hausen and Laface in the

recent paper [AHL09]. In this paper it is proved that K3 surfaces with finitely generated

effective cone have finitely generated Cox ring. The authors make some attempt in

finding some explicit generators, although they do not prove the sufficiency of these.

The authors also discuss the problem of finding relations for a special class K3 surfaces

using Laface and Velasco’s complex.

In this chapter, we also address some of the problems investigated in [AHL09]. We

we will prove finite generation of the Cox rings of K3 surfaces with ρ = 2. We will study

in detail K3 surfaces arising as double covers of P2 and some quartic surfaces. Some

of the results on finite generation coincide with results from [AHL09], although there

does not seem to be much overlap between their methods and the following.

5.1 Complete linear systems and vanishing on K3 Surfaces

We recall some standard results on linear systems on K3 surfaces. Most of the results

here are due to Saint-Donat [SD74].

Lemma 5.1. [SD74, Corollary 3.2] Let D be an effective divisor on a K3 surface. Then

|D| has no base-points outside its fixed components.

Lemma 5.2. [SD74, Corollary 2.6] Let D be a nef divisor on a K3 surface. If D2 > 0,

then |D| is base-point free, h1(X,D) = 0 and the generic member of |D| is smooth and

irreducible. Furthermore, if D2 = 0, then |D| is composed with a pencil, i.e D = kE,

where E is an elliptic pencil.

The vanishing of h2(X,D) for D effective is immediate by duality: h2(X,D) =

h0(X,−D) = 0.

Lemma 5.3. [SD74, Proposition 5.2] Let D be a nef divisor such that D2 ≥ 4. Then

D is hyperelliptic only if there exists an elliptic curve E with D.E = 1, or D = 2B for

some genus 2 curve B.

51
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We also have the following result about the ideal of the embedding given by D.

Proposition 5.4. [SD74, Theorem 7.2] Let H be an effective divisor class, such that

H2 ≥ 8 such that the general member of |H| is smooth and non-hyperelliptic. Then

the algebra A =
⊕

n≥0H
0(X,nH) is generated in degree 1, and the kernel of the map

SymH0(X,H) → A is generated by elements of degree 2, except if there is a curve E

such that E2 = 0 and E.L = 3 in which case the ideal is generated in degrees 2 and 3.

The following result due to Kovacs is a special case of Theorem 2 of [Kov94]. It gives

information about the effective divisor classes in Pic(X).

Proposition 5.5. [Kov94] Let X be a K3 surface with ρX = 2. The effective cone

NE1(X,R) is generated by the classes of curves with self intersection −2 or 0.

Note that if NE1(X,R) = R≥0Γ1 ⊕ R≥0Γ2, then Γ1, Γ2 are linearly independent, and

hence form a basis for Pic(X). In particular this implies that we need only consider the

cases: Pic(X) = ZΓ1 ⊕ ZΓ2 where Γ 2
i ∈ {−2, 0}.

5.2 K3 Surfaces with two smooth rational curves

In this section we consider the case where the Picard group of X is generated by two

smooth rational curves, say, Γ1 and Γ2. By the adjunction formula we have Γ 2
1 = Γ 2

2 =

−2. Let d = Γ1.Γ2 be their intersection number. Note that the Hodge Index Theorem

implies that

∣∣∣∣∣
Γ 2

1 Γ1Γ2

Γ1Γ2 Γ 2
2

∣∣∣∣∣ = 4 − d2 < 0, so d ≥ 3. Furthermore d = 3 is attainable (see

section 5.3).

Lemma 5.6. The effective monoid NE1(X,Z) is generated by Γ1 and Γ2.

If d = 2n the nef monoid is generated by the classes of jΓ1 + Γ2 and Γ1 + jΓ2 for

j = 1, . . . , n and if d = 2n + 1, also the classes of Γ1 + dΓ2 and dΓ1 + Γ2.

Proof. Of course the cone τ = Z≥0{Γ1, Γ2} ⊆ NE1(X,Z). Let τ∗ be the dual cone of

τ . Note that

(aΓ1 + bΓ2) · Γ1 ≥ 0 ⇐⇒ −2a+ db ≥ 0

(aΓ1 + bΓ2) · Γ2 ≥ 0 ⇐⇒ da− 2b ≥ 0.

These inequalities imply that τ∗ is generated over R by the classes dΓ1 + 2Γ1 and

2Γ1 + dΓ2. Over Z this means that the dual monoid is generated by the classes listed

in the lemma. Note in particular that all of these classes are effective, being positive

integer combinations of Γ1, Γ2. Now, let D ∈ Pic(X) be the class of an effective curve.

We can write

D = nΓ1 +mΓ2 +M

where M is an effective divisor with M.Γi ≥ 0, i.e M ∈ τ∗. Since all elements of τ∗ are

positive integer combinations of Γ1, Γ2. This shows that D ∈ τ , as required. ⊓⊔
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Theorem 5.7. The Cox ring of X is finitely generated, and a generating set of Cox(X)

contains sections of degrees Γ1 + aΓ2, aΓ1 + Γ2 for a = 0, . . . , ⌊d2⌋ and also 2Γ1 + dΓ2

and dΓ1 + 2Γ2) if d is odd. In particular, such a set must contain at least d(d−2)
2 + 3

elements if d is even, and (d−1)2

2 + 4 if d is odd. These bounds are sharp.

Proof. We first show that any nef divisor is base-point free. By Lemma 5.2, the divisor

D is base-point free if it is big, i.e D2 > 0. But note that all of the generators of the nef

cone are big, so the same must apply for any positive linear combination of them. This

means that any nef divisor is base-point free, hence semi-ample, so the finite generation

follows by arguing as in the proof of Theorem 2.12.

We now look for generators. Note that we need two generators s, t in degrees Γ1, Γ2

respectively. Consider the classes D = aΓ1 + Γ2. These are nef by the previous lemma.

Since also all nef divisors are big, it follows from the Kawamata-Vieweg vanishing

theorem and Riemann-Roch that

h0(X,aΓ1 + Γ2) = a(d− a) + 1.

For a = 1, note that we need at least d− 1 new generators in addition to s · t of degree

Γ1 + Γ2, since h0(X,Γ1 + Γ2) = d ≥ 3. In fact, the multiplication map

H0(X, (a − 1)Γ1 + Γ2) ⊗H0(X,Γ1) → H0(X,aΓ1 + Γ2)

is never surjective, since h0(X,Γ1) = 1 and since h0(aΓ1 + Γ2) − h0((a− 1)Γ1 + Γ2) =

d−2a+1 > 0. This means that we need d−2a+1 new generators in the degrees listed

above. Summing the differences gives the bound on the number of generators:

If d = 2n is even:

1 + 1︸ ︷︷ ︸
Γ1,Γ2

+ d− 1︸ ︷︷ ︸
Γ1+Γ2

+2
n∑

a=2

(d− 2a+ 1)︸ ︷︷ ︸
aΓ1+Γ2

=
d(d− 1)

2
+ 3

If d = 2n+ 1 is odd, we need at least one generator in each of the degrees dΓ1 + 2Γ2

and 2Γ1 + dΓ2, and so we need at least

1 + 1︸ ︷︷ ︸
Γ1,Γ2

+ 1 + 1︸ ︷︷ ︸
dΓ1+2Γ2,2Γ1+dΓ2

+ d− 1︸ ︷︷ ︸
Γ1+Γ2

+2

n∑

a=2

(d− 2a+ 1)︸ ︷︷ ︸
aΓ1+Γ2

=
(d− 1)2

2
+ 4

generators. The example for Section 5.4 shows that the bound above is sharp. ⊓⊔

Note that the theorem does not reveal anything about the sufficiency of these sections

in generating the Cox ring, it merely states that Cox(X) needs minimal generators of

the Pic(X)-degrees generating NE1(X,Z) and NM1(X,Z). Note that this number of

variables increases with d, so the rings become increasingly more complicated. Also,

this indicates that the number of minimal generators grows (at least) quadratically

with d. For example, for d = 5, we need at least 12 generators, and hence at least

12 − dimCoxX = 12 − 4 = 8 relations. Another problem is that we haven’t chosen

explicit sections for the generators - all we know is their multidegrees. That means that

we don’t know anything about the relations in the ideal, except their multidegrees.

Hence the computation of the ideal Id for large d is not a very manageable problem.

In the next section we investigate the Cox ring of X, when d = 3, to give some idea

of the complexity of the problem.
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5.3 K3 surfaces arising as double covers of P2

We give an explicit description of a K3 surface with intersection matrix

(
−2 3

3 −2

)
and

study its Cox ring.

Let π : X → P2 be a double cover of P2 ramified over a sextic curve C = V(f). An

example of such surface X can be realized by taking a subscheme of P(3, 1, 1, 1), with

defining equation

w2 = f(x0, x1, x2)

where f(x0, x1, x2) is the equation of the sextic curve. The surface X comes equipped

with an ample divisor, H = π∗(L) with self-intersection 2.

The generic K3 surface has ρX = 1, so we are dealing with a very special case. This

is also reflected in the nature of the sextic curve: we assume that there is a line L ⊂ P2

which is tritangent to the sextic C. The restriction of f to L is the square of a section

g in OL(3), and we may write f = g2 + lP where P ∈ OP2(5) and L = V (l). The

pullback of L is given by π∗(L) = Γ1 +Γ2, where Γ1, Γ2 corresponds to the curves given

by w = ±g. Γ1 and Γ2 are lines, since they are isomorphic to L. For a simple example

one could take

f = x5
2x0 − x2

1(x
2
1 − x2

2)
2.

Here L = V (x0), Γ1 = V (w − x1(x
2
1 − x2

2)), Γ2 = V (w + x1(x
2
1 − x2

2)).

As before, by the adjunction formula we have Γ 2
i = −2. Also, since l2 = 1 in P2,

we have (Γ1 + Γ2)
2 = (deg π)l2 = 2, giving d = Γ1.Γ2 = 3. Let σ : X → X be

the involution that switches the sheets of X over P2, i.e sends w to −w above. This

induces an automorphism σ∗ : Pic(X) → Pic(X) such that σ(Γ1) = Γ2. This means

that Γ = {Γ1, Γ2} is a nice Z-basis for PicX and we will use this in the following.

By Lemma 5.6, we have NE1(X,R) = R≥0Γ1 + R≥0Γ2 and the nef monoid is

generated by the divisor classes

H := Γ1 + Γ2, N1 := 2Γ1 + 3Γ2, N2 = 3Γ1 + 2Γ2.

The two cones are plotted in Figure 5.1.
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Fig. 5.1 NM1(X) as a subcone of NE1(X) with the ‘special’ divisor classes plotted.

Note that all the above classes are nef and big, which means that we have nice

vanishing on X. By Kawamata-Vieweg and the Riemann-Roch formula, we have for

aΓ1 + bΓ2 nef:

h0(X,aΓ1 + bΓ2) = 3ab− a2 − b2 + 2.
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Lemma 5.8. Let sR be a section defining the ramification divisor on X. Then

H0(X,OX (kH)) ∼= π∗H0(P2,O(k)) ⊕ π∗H0(P2,O(k − 3))sR

Proof. This follows from [BPV84, I.17.2] and the projection formula. ⊓⊔

In particular, we may choose a basis ofH0(X,H) andH0(X, 2H) consisting of pullbacks

of sections from OP2(1).

5.3.1 Generators

We now look for generators for Cox(X). Of course we need at least two sections

corresponding to the (−2)-curves: We let x, y denote generators for H0(X,Γ1) and

H0(X,Γ2), respectively.

In degree 2, we have the divisor class H, in which H0(X,H) is 3-dimensional by

Riemann-Roch, hence we need two new generators for a basis. Call these z1, z2. Note

that these are the pullback of sections from H0(P2,OP2(1)) by Lemma 5.8, and in

particular the sections in H0(X,H) are invariant under the involution σ.

The divisor class D = 2H needs no new sections, since also these sections are pull-

backs: H0(X,D) ∼= H0(P2,OP2(2)) = Sym2(H0(X,H)). Consider now the divisor class

D = 2Γ1 +3Γ3. This has a 7-dimensional cohomology group, while we can only create 6

monomials in degree D with the generators created so far: these are all from the basis

for H0(X, 2H) multiplied with y. Hence we need one new generator for a basis. Call

this monomial v.

The same thing happens for the divisor class D = 3Γ1 + 2Γ2, and we need another

section, say w. In fact we may choose w = σ(v), since this cannot be linearly dependent

on the previous monomials (since by applying σ, the same would apply to v).

In all we have shown that we need generators x, y, z1, z2, v, w in degrees Γ1, Γ2, Γ1 +

Γ2, 2Γ1 + 3Γ2, 3Γ1 + 2Γ2 respectively, in accordance with Lemma 5.6. We now claim

that these sections are sufficient to generate the Cox ring.

Proposition 5.9. Cox(X) is generated by the sections x, y, z1, z2, v, w.

Proof. Koszul cohomology and induction. We first look at some more “special” divisor

classes D, where it is not so obvious that we do not need additional generators. These

will also play the role of base cases for the induction.

D = 3H. Since h0(X,D) = 11 and dimk Sym3(H0(X,H)) = 10, we need one more

section to produce a basis for H0(X,D). Consider the section v · x. We claim that this

cannot be linearly dependent on the previous monomials. This follows since these are

in fact σ−invariant, while σ(vx) = wy 6= vx, since Cox(X) is an UFD. Hence these 11

monomials form a basis for H0(X,D).

D = 4Γ1 + 6Γ2 or D = 6Γ1 + 4Γ2. Note that h0(X, 4Γ1 + 6Γ2) = 22 and that

4Γ1 + 6Γ2 = (4Γ1 + 5Γ2) + Γ2. Consider the divisor D′ = 4Γ1 + 5Γ2. D
′ is nef and big

since D′ = (2Γ1 + 3Γ2) + 2(Γ1 + Γ2) and has h0(X,D′) = 21. Hence by multiplying a

base of H0(X,D′) by y we get 21 linearly independent sections in H0(X,D). Now we

add the section v2, which cannot be a linear combination of the other monomials since
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these are all divisible by y. By switching the roles of Γ1 and Γ2 we also prove it for the

divisor 6Γ1 + 4Γ2.

We now proceed with the induction. Let D = aΓ1 + bΓ2 be an effective divisor class.

As before we may assume D to be nef (and hence big).

Case 1: a = b = n, n ≥ 4. Here D = nH. Note that the arithmetic genus pa(H) =
1
2(H2 + 2) = 2 so the general member C ∈ |H| is a hyperelliptic curve. We now recall

a theorem from classical curve theory:

Lemma 5.10 (Noether’s theorem). Let C be a smooth curve of genus g and let

RC =
⊕

n≥0H
0(C,nKC) be its canonical ring.

1. If C is not hyperelliptic, the RC is generated in degree 1.

2. If g = 2, and C is hyperelliptic, then RC is generated by elements of degree 1, and

by 1 element of degree 3.

3. If g ≥ 3, and C is hyperelliptic, then RC is generated by elements of degree 1, and

by g − 2 elements of degree 2.

Let C be a curve in |H|. Note that we have the exact sequence

0 → H0(X, (n − 1)H) → H0(X,nH) → H0(C,nH|C ) → 0.

Here the right-exactness follows from Kodaira Vanishing and ampleness of H. Also,

H|C = KX(H)|C = KC by adjunction, so H0(C,nH|C) = H0(C,nK|C). Now, since

H0(X, 3H) → H0(C, 3K|C) is surjective, we choose a set of sections from H0(X, 3H)

mapping isomorphically to a basis for H0(C, 3K|C ). By the lemma the elements of

H0(C,nK|H) are polynomials in sections from H0(C, 3K|H). As vector spaces, we have

a splitting

H0(X,nH) ∼= H0(C,nKC) ⊕H0(X, (n − 1)H).

Hence if n ≥ 4, it follows that sections in H0(X,nH) are polynomials in sections of

lower degree.

Case 2: a > b. We now need a lemma where we apply methods from Koszul coho-

mology:

Lemma 5.11. Let H = Γ1 + Γ2, and suppose D is an effective divisor class such that

i) H1(D−2H) = H1(D−H) = 0, ii) D−3H is effective. Then the multiplication map

H0(X,H) ⊗H0(X,D −H) → H0(X,D)

is surjective.

Proof. Let K0,0(X,D,H) denote the homology of the following complex

1∧
H0(X,H) ⊗H0(X,D −H) →

0∧
H0(X,H) ⊗H0(X,D) → 0

Proving the lemma is equivalent to showing that K0,0(X,D,H) = 0. Now, the assump-

tion i) and the base-point freeness of |H| ensures us that we are in position to apply

Green’s Duality theorem of [MG84], which states that in these circumstances,
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K0,0(X,D,H) ∼= Kr−n,n+1(X,KX −D,H)∗

where r = h0(X,H)−1 = 3 and n = dimX = 2. In this case, of course Kr−n,n+1(X,KX−

D,H) ∼= K0,3(X,−D,H) is the homology of the complex

1∧
H0(X,H) ⊗H0(X,−D + 2H) →

0∧
H0(X,H) ⊗H0(X,−D + 3H) → 0.

But by assumption D−3H is effective, hence H0(X,−D+3H) = 0, and the homology

of the complex is zero. This proves the lemma. ⊓⊔

Note that all nef divisors except the “special divisors” satisfy that D − 3H is effective

(see Figure 5.1).

Now for the induction part. Write for simplicity N = 3Γ1 + 2Γ2, and note that in

this case (where a > b), D can be written uniquely in the from

D = mN + nH m ≥ 1, n ≥ 0

We use induction on n. If n = 0, we choose an irreducible curve C ∈ |N |. Since C has

genus 6, it follows from Lemma 5.10 that the algebra
⊕

r≥0H
0(C,nKC) is generated

in degrees ≤ 2. We proceed as before and use the exact sequence

0 → H0(X, (n − 1)N) → H0(X,nN) → H0(C,nN |C) → 0..

to conclude that sections in H0(X,nN) are polynomials in sections of lower degree, for

all n ≥ 3. Hence the result follows by induction.

If n = 1, then D = mN+H where H = Γ1+Γ2. We check the assumptions of Lemma

5.11 to ensure that we have a surjection H0(X,H)⊗H0(X,D−H) → H0(X,D), then

the result will follow by induction on the degree.

First, H1(X,D −H) = H1(X,mN) = 0 by nef and bigness of N . Now, D − 2H is

not nef (it has Γ1 as a fixed component), but we will verify that H1(X,D − 2H) = 0.

Note that D− 2H = mN − (Γ1 + Γ2) = (m− 1)N + 2Γ1 + Γ2, and that the long exact

sequence of cohomology applied to the sequence

0 → OX(D − 2H − Γ1) → OX(D − 2H − Γ1) → OΓ1(D − 2H − Γ1) → 0

gives H1(X,D− 2H) = 0 by exactness, since deg ((m− 1)N + 2Γ1 + Γ2|Γ1) = −1, and

so H1(Γ1, (m − 1)N + 2Γ1 + Γ2) = H1(P1,O(−1)) = 0 and since D − 2H − Γ1 =

(m− 1)N + Γ1 + Γ2 = (m− 1)N +H is nef.

If n ≥ 2, then both D −H and D − 2H are nef, so the criteria are satisfied.

Case 3: a < b. The argument is completely analogous to that of Case 2, by switching

the roles of Γ1 and Γ2. ⊓⊔

Remark. This approach can with little modification be used in tackling K3 surfaces

with higher d .
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5.3.2 Relations

By using the Reynolds operator and Noether’s theorem, we find that the polynomials

invariant under σ are exactly the polynomials in z1, z2, xy, vx+ wy and vw, i.e

k[x, y, z1, z2, v, w]〈σ〉 = k[z1, z2, xy, vx+ wy, vw].

Consider the the expression xv+ yw. Since it is invariant under σ, we can write it as a

polynomials in pullbacks of sections from H0(P2,O(3)), that is, in terms of z1, z2, xy,

and hence we have a relation of the form

g := xv + yw − β(xy, z1, z2) = 0.

A quick check reveals that there are exactly 12 monomials in k[x, y, z1, z2, v] of degree

D = 3H: 10 of these come from Sym3(H0(X,H)), and we have in addition the sections

xv, yw. Since h0(X,D) = 11, this shows g is the only relation in degree D and so

ID = (g)D.

Similarly, note that vw is an σ-invariant section of degree 5H in Cox(X), and thus

can be written as a linear combination of pullbacks of sections from H0(P2,O(5)). That

means we have a relation of the form

f := vw − α(xy, z1, z2) = 0

where α5 is a degree 5 polynomial.

Now, there are 34 monomials in degree D = 5H, and h0(X, 5H) = 27. Note that

since there are 6 monomials in k[x, y, z1, z2, v]2H , we must have dimk(g)5H = 6 (since

g has degree 3H), and hence there should be exactly 34 − 27 − 6 = 1 new relation of

degree 5H, namely f . This shows that I5H = (f, g)5H :

We denote the ideal generated by f and g by J . Since J has codimension 2, it is

reasonable to expect that Cox(X) ∼= k[x, y, z1, z2, v]/J .

Lemma 5.12. The elimination ideal k[x, y, z1, z2, v] ∩ J = (h) where h = yf − vg is

the resultant of f and g with respect to the variable w. Mutatis mutandis for the ideal

k[x, y, z1, z2, w] ∩ J .

Proof. Write R = k[x, y, z1, z2, v]. Note that h ∈ R∩J , while it is not so clear that it is

a generator for the elimination ideal. However, let P = pf − qg be an arbitrary element

in R ∩ J , where p =
∑n

k=0 akw
k, q =

∑n
k=0 bkw

k are considered as elements in R[w].

Claim: We may assume n = 0. Suppose n > 0. Since the terms in P involving wn

must cancel we must have anv = bny, and consequently there is an r ∈ R such that

an = yr and bn = vr. Hence

P = pf − qg = (p− rgwn−1)f − (q − rfwn−1)

Now p−rgwn−1 = (an−1−xvr+βr)w
n−1+ . . ., and q−rfwn−1 = (bn−1−rα)wn−1+ . . .

are polynomials in w of degrees < n, so by iterating this process, we eliminate successive

powers of n.

For n = 0, the problem is trivial, since

P = pf − qg = w(pv − qy) + ”terms not containing w”
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Since pv − qy must vanish, there is an r ∈ R such that p = yr, q = vr, hence

P = yr · f − vr · g = r(yf − vg) ∈ (h).

⊓⊔

Theorem 5.13. Let X be a degree 2 K3 surface with Picard number 2. Then the Cox

ring Cox(X) is isomorphic to a quotient of k[x, y, z1, z2, v, w] by J = (f, g). That is,

Cox(X) ∼= k[x, y, z1, z2, v, w]/J

Proof. Combinatorics galore. Let D = aΓ1 + bΓ2 be a nef divisor class. Then we must

show that

dimk (k[x, y, z1, z2, v, w]/J)D = dimk Cox(X)D = 3ab− a2 − b2 + 2.

Let xi1yi2zi31 z
i4
2 v

i5wi6 a monomial of k[x, y, z1, z2, v, w]. Note that using the relations f

and g we may modulo J remove all terms containing vw and yw, and hence we may

decompose k[x, y, z1, z2, v, w]/J as a vector space

k[x, y, z1, z2, v, w]/J ∼=
⊕

n>0

k[x, z1, z2]w
n ⊕ k[x, y, z1, z2, v]/(h)

where h = yf − vg is the generator for the elimination ideal J ′ = k[x, y, z1, z2, v] ∩ J .

Our job is now to calculate the dimensions of these two vector spaces in degree D

separately. We may assume for the moment that a ≥ b. The case where a ≤ b is

completely analogous, and is obtained by switching the roles of v and w above.

dimk

(⊕
n>0 k[x, z1, z2]w

n
)
D

. Note that we are looking for the number of monomials m

in k[x, z1, z2] such that degmwk = D for some k ∈ N. By looking at these monomials’

degrees, we find that this problem is equivalent to the following counting problem: Find

the number of non-negative integer solutions to the system

a1+ a2 + a3 + 3a4 = a

a2 + a3 + 2a4 = b (5.1)

Write this as

a1+ a2 + a3 = a− 3a4

a2 + a3 = b− 2a4 (5.2)

and note that given a solution to the 2nd equation uniquely determines a1 as a1 =

a − b − a4. Of course, a − b ≥ 0 by assumption, so its clear that we must restrict

ourselves to values of a4 in the range 0 ≤ a4 ≤ a − b to ensure non-negativity of a1.

Note that in this case we have

b− 2a4 ≥ b− 2(a− b) = 3b− 2a = D.Γ1 ≥ 0

where the last inequality is precisely ensured by the nef condition on D (!). Now we

find the number of solutions to (5.2) by counting: for every 0 ≤ a4 ≤ a− b, we seek the
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number of ways of writing b− 2a4 as a sum of two non-negative integers a2, a3, which

is b− 2a4 + 1, hence the total number of solutions to the system is given by

a−b∑

i=1

(b− 2i+ 1) = b(a− b) − (a− b+ 1)(a− b) + (a− b)

= 3ab− 2b2 − a2.

dimk (k[y, z1, z2, v]/(h))D. Write S = k[y, z1, z2, v] and let χ(a, b) be the number of

monomials in SaΓ1+bΓ2 . Note that h has degree 5Γ1 + 6f2. By the exact sequence

0 → S(−5Γ1 − 6Γ2) → S → S/(h) → 0

we get dimk (S/(h))D = χ(a, b)−χ(a−5, b−6). As before the dimension count reduces

to the combinatorial problem of finding the number of solutions χ(a, b), to

a1+ a3 + a4 + 2a5 = a

a2+ a3 + a4 + 3a5 = b (5.3)

and our goal is to get an expression for χ(a, b)−χ(a− 5, b− 6). Note that any solution

to the last equation gives a1 uniquely determined as a1 = a− b+a2 +a5, hence as long

as a ≥ b, we need only find the number of solutions to the 2nd equation. Of course,

the number of non-negative integer solutions to a2 + a3 + a4 + 3a5 = b appears as the

coefficient of xb in the expression (1 + x+ x2 + . . .)3 · (1 + x3 + x6 + . . .) = 1
(1−x)3(1−x3) .

Hence χ(a, b)−χ(a−5, b−6) is equal to the coefficient of xb in the following expression:

1

(1 − x)3(1 − x3)
−

x6

(1 − x)3(1 − x3)
=

1 − x6

(1 − x)3(1 − x3)

=
1 + x3

(1 − x)3

= 1 +
∞∑

n=1

((
n+ 2

2

)
+

(
n− 1

2

))
xn

= 1 +

∞∑

n=1

(n2 + 2)xn

This shows that χ(a, b) − χ(a− 5, b− 6) = b2 + 2

In all we have that

dimk (k[x, y, z1, z2, v, w]/J)D = (3ab− 2b2 − a2) + (b2 + 2)

= 3ab− a2 − b2 + 2 = h0(X,aΓ1 + bΓ2).

This finishes the proof. ⊓⊔

Cox(X) is always singular when X is such a special rank 2 K3 surface. For example,

by looking at the jacobian of f, g we find that the singular locus of Cox(X) contains

the codimension 1 subvariety Z(x = z1 = z2 = w = 0). This differs of course from

the generic K3 surface, since in this case the Cox ring is isomorphic to the (smooth)

coordinate ring of X.
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5.4 K3 surfaces with a rational curve and a elliptic curve

In this section we consider the case where N1(X) is generated by the classes of two

curves, say, Γ1 and Γ2, where Γ 2
1 = −2 and Γ 2

2 = 0. Let d = Γ1.Γ2 be the number of

points they intersect taken with multiplicity. The intersection matrix is then given by
(
−2 d

d 0

)

Lemma 5.14. The effective cone NE1(X) is generated by Γ1 and Γ2. Also, these gen-

erate the monoid of effective divisor classes NE1(X,Z).

If d = 2n the nef monoid is generated by the classes aΓ1 +Γ2 for a = 1, . . . , n and if

d = 2n + 1 we need also the divisor class dΓ1 + 2Γ2.

Theorem 5.15. The Cox ring of X is finitely generated, and any generating set of

sections contains at least d2

4 +3 elements if d is even and d2−1
4 +4 elements if d is odd.

The proofs of these results are similar to those of Lemma 5.6 and 5.7. We end this

section with an example calculation.

5.4.1 A Quartic Surface with a line

In this section we investigate the Cox ring of a certain smooth quartic surface X in

P3, which is a classical example of a K3 surface. This surface was studied thoroughly

in [GM00], where the authors refer to it as the Mori quartic.

The surface X contains a line Γ1 and a very ample divisor H, such that H2 = 4. The

divisor class H − Γ1 is effective and its linear system contains an irreducible elliptic

curve Γ2. The intersection matrix here given by

(
−2 3

3 0

)
. By the above theorem, the

effective cone is generated by Γ1, Γ2 and Cox(X) needs generators in degrees Γ1, Γ2, Γ1+

Γ2, 3Γ1 + 2Γ2. It turns out that this example is similar to the double cover example:

there are two minimal relations in degree 3H.

Theorem 5.16. Let X be a quartic K3 surface with a line. Then the Cox ring of X is

isomorphic to

k[l, s1, s2, t1, t2, u]/I

where deg(l) = Γ1,deg si = Γ2,deg ti = Γ1+Γ2,deg u = Γ1+2Γ2. The ideal is generated

by two relations of degree 3Γ1 + 3Γ2.

Proof. Since the method of proof is similar to that of the K3 surface in Section 5.3, we

provide only a sketch of the proof. As before we find generators of Cox(X) by looking

in low degree nef classes. Note that Γ2 is an extremal ray in both the nef cone and

the effective cone. We need a section l ∈ H0(X,Γ1), and two basis elements s1, s2
from H0(X,Γ2). Also we find that we need two sections t1, t2 from H0(X,H) and one

additional element u from H0(X,Γ1 + 2Γ2), giving the generators above.
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The rest is a direct checking using the fact that Γ2 moves in a pencil and the base-

point free pencil trick, and Koszul cohomology for the remaining divisors.

The relations arise by noting there are exactly 22 monomials of degree 3H: 20 forming

a basis for Sym3(H0(X,H)) plus the monomials us1, us2. Hence we have two relations

of the form

usi = fi(l, s1, s2, t1, t2)

The argument to show that these relations generate the ideal is done by a (slightly

shorter) combinatorial argument as in Theorem 5.13. ⊓⊔

5.5 K3 Surfaces with two elliptic curves

Consider the case where the Picard group Pic(X) is generated by classes of elliptic

curves Γ1 and Γ2. By the adjunction formula we have Γ 2 = 0. Let d be the number

of intersection points taken with multiplicity. This means that X has the following

intersection matrix: (
0 d

d 0

)

The divisor classes of Γ1, Γ2 form a Z-basis for NE1(X) and since Γi.Γj ≥ 0 for 1 ≤

i, j ≤ 2, this shows that also the effective cone is generated by these curves and equals

the nef cone in this basis. This means that every effective divisor aΓ1 + bΓ2 is nef for

a, b ≥ 0, and ample as long as a, b ≥ 1, by the Nakai-Moishezon criterion. In this case

the Riemann-Roch theorem gives the following formula:

h0(X,aΓ1 + bΓ2) =
1

2
(aΓ1 + bΓ2)

2 + 2 = abd+ 2.

In particular, this implies that the linear systems |Γi| are pencils.

Write for simplicity H = Γ1 + Γ2. Note that H is an ample divisor on X, and that

H2 = 2d.

Note that since Γ1 moves in a pencil, we need two generators x1, x2 for H0(X,Γ1),

and similarly two generators y1, y2 for H0(X,Γ2).

Proposition 5.17. Let Xd be a K3 surface with intersection matrix

(
0 d

d 0

)
.

• If d = 2, Cox(X) is generated by x1, x2, y1, y2, z where deg z = 2H.

• If d ≥ 3, Cox(X) is generated by x1, x2, y1, y2, z1, . . . , zd−2, where deg zi = H.

Proof. We have that h0(X,H) = d + 2, so we need d− 2 new generators in degree H.

Let D = aΓ1 + bΓ2 be an effective (hence nef) divisor class. We may suppose a ≥ b.

Note that -conveniently- the Γi are base-point free pencils, so the base-point free pencil

trick gives us a surjection

H0(X,D − Γ1) ⊗H0(X,Γ1) → H0(X,D)

provided that H1(D − 2Γ1) = 0, which is the case for all divisors D = aΓ1 + bΓ2 with

a > 2 or (a, b) = (2, 1), (1, 2). The remaining divisor classes give the sections above. It
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follows that we reduce to checking degree 2H. We apply the trick from before by using

Noether’s theorem

0 → H0(X,H) → H0(X, 2H) → H0(C, 2K|C ) → 0

This follows by Lemma 5.10 since H is non-hyperelliptic for d ≥ 3 (by Lemma 5.3) and

hyperelliptic for d = 2, since pa(H) = d by the genus formula. ⊓⊔

Remark. For d = 2, X can be realized as a double cover of P1 × P1 ramified over a

curve of bidegree (4, 4).

5.5.1 Relations

It is remarkable the we are able to describe the Cox ring in this case. This is much

owed to the facts that Γ1, Γ2 are pencils, and the Koszul sequence from the proof of

the base-point free pencil trick, that is,

0 → H0(X,D − 2Γ1)
a
−→ H0(X,D − Γ1) ⊗H0(X,Γ1)

b
−→ H0(X,D) → 0.

The maps here are as follows: a(s) = sx1 ⊗ x2 − sx2 ⊗ x1 and b(t ⊗ xi) = txi is

the contraction. The main observation is that all monomials of degree nΓ1 + nΓ2 are

divisible by x1 or x2 except the ones that are products of zi’s. This easy observation

will be sufficient in proving that the ideal of relations is generated in degree (2, 2).

Theorem 5.18. Let X be a a K3 surface with intersection matrix

(
0 d

d 0

)
and let H =

Γ1 + Γ2. If d = 2, the Cox ring is isomorphic to a quotient k[x1, x2, y1, y2, z]/(z
2 − F ),

where F is a polynomial of degree 4H.

If d ≥ 3, the Cox ring is a quotient

k[x1, x2, y1, y2, z1, . . . , zd−2]/Id,

where the ideal is generated by
(d−1

2

)
− 1 relations of degree 2H.

Proof. Suppose first that d ≥ 3. First we claim that there are
(
d−1
2

)
−1 quadrics in I2H .

Riemann-Roch gives h0(X, 2H) = 4d+2. Now the monomials zizj give
(d−1

2

)
monomials

in degree 2H, and we need 4 · (d − 2) monomials of the form xiyjzj and xixjykyl give

9 monomials. In all

dimk I2H =

(
d− 1

2

)
+ 4 · (d− 2) + 9 − (4d+ 2) =

(
d− 1

2

)
− 1.

Note that any relation f ∈ Id in degree 2H must involve some zizj terms, since otherwise

we may write f = x1P + xQx2 = 0, and by the UFD property we have that x1 divides

Q and x2 divides P . f is then a product of x1x2 and terms of degree 2Γ2. But there are

no relations in H0(X, 2Γ2) = 〈y2
1, y1y2, y

2
2〉. Note that the number of monomials zizj is

exactly one more than the number of relations. By Gaussian elimination, it follows we

have minimal relations of the form

zizj = Pijx1 + x2Qij + cijzmzn Pij , Qij , cij ∈ k[xi, yi, zi], for all i 6= j (5.4)



64 5 K3 Surfaces with ρ = 2

for some fixed 1 ≤ m,n ≤ d− 2. Denote their ideal by J .

Note that when d = 3, we have a single relation of the form z2 = Px1 +Qx2 where

P,Q ∈ k[x1, x2, y1, y2, z].

Suppose D = aΓ1 + bΓ2, a ≥ b is the class of an effective divisor. Let A = R/J and

consider the diagram

0 ker p

0 kerψ AD−Γ1 ⊗AΓ1

ψ
AD

p

0

0 H0(X,D − 2Γ1) H0(X,D − Γ1) ⊗H0(X,Γ1) H0(X,D) 0

where the middle vertical map is an isomorphism by induction on the degree H.D ≥ 0,

and the bottom sequence is exact by the base-point free pencil trick. We claim that the

middle sequence is also exact, i.e

Claim: The map ψ : AD−Γ1 ⊗AΓ1 → AD is surjective.

To see why this implies the result, note that AD−2Γ1 ⊆ kerψ maps surjectively to

H0(X,D − 2Γ1). By the snake lemma and exactness we have that ker p = 0, and so

AD ∼= H0(X,D).

Proof of Claim: We show that we may modulo the relations (5.4) write any monomial

as a sum of terms divisible by either x1 or x2. For d = 3, this is immediate since

we may use the relation z2 − F to reduce the monomial xi11 x
i2
1 y

j1
1 y

j2
1 z

n to a linear

combination of terms with lower exponents in z, and by the multigrading these terms

must be divisible by either x1 or x2. For d ≥ 4, the same argument and the equations

(5.4) are almost enough to ensure the surjection. We need more information about the

relations. We first use Proposition 5.4 to conclude the ideal of a K3 surface is generated

by quadrics if d ≥ 4. In particular, there are no minimal relations in degree 3H, and

A3H = H0(X, 3H). Consider then the diagram

0 A3H−2Γ1 A3H−Γ1 ⊗AΓ1

ψ
A3H 0

0 H0(X, 3H − 2Γ1) H0(X, 3H − Γ1) ⊗H0(X,Γ1) H0(X, 3H) 0

Since the bottom right map is surjective and zizjzk ∈ A3H we have that zizjzk ∈

x1R3H−Γ1 + x2R3H−Γ1 modulo J for all 1 ≤ i, j, k ≤ d − 2. Note that this gives
(d
3

)

relations, one for each monomial zizjzk
Now the surjection AD−Γ1 ⊕ AD−Γ1 → AD is clear. Indeed, if D 6= nH, then any

monomial of degree D must be divisible by x1 or x2 (since the zi all have degree H) and

the map is surjective. Now, if D = nH, and n ≥ 3, then a monomial zn1
1 · · · z

nd−2

d−2 may,

by chopping off three zi’s in an arbitrary manner, be written as a linear combinations

of terms divisible by x1 or x2 modulo the relations above. This proves the theorem for

d ≥ 3.
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If d = 2, By Riemann-Roch, h0(X, 4H) = 34, while there are 35 monomials of degree

4H: z2 and 34 monomials from Sym2H0(X, 2H). This means that we have a relation

in degree 4H z2 − F where F ∈ R is a polynomial of degree 4H. Notice that all the

terms of the polynomial F must have xi’s in them (z2 is the only term of degree 4H

without x1 or x2). This means that F = x1f +x2g and we may use the relation z2 −F

and the argument above to get a surjection AD−Γ1 ⊗AΓ1 → AD. ⊓⊔

Note that some of the cases above may be tackled relatively easily by combinatorics.

For example, if d = 2, we find that

dimkAaΓ1+bΓ2 = dimk k[x1, x2, y1, y2, z]/z
2

= dim k[x1, x2, y1, y2]aΓ1+bΓ2 ⊕ k[x1, x2, y1, y2](a−2)Γ1+(b−2)Γ2
z.

Hence the dimension in degree aΓ1 + bΓ2 is (a + 1)(b + 1) + (a − 1)(b − 1) = 2ab + 2,

which is exactly what Riemann Roch gives for H0(X,aΓ1 + bΓ2).





References

[AL94] W. Adams and P. Loustaunau An Introduction to Gröbner Bases. Providence, RI: Amer.
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pages 85–103. Birkhäuser Boston, Boston, MA, 2004.

[BPV84] W. Barth, C. Peters and A. Van de Ven, Compact complex surfaces, Ergeb. Math.

Grenzgeb. (3) 4, Springer-Verlag, Berlin, 1984.

[Cas07] A. Castravet, The Cox ring of M0,6. arXiv:math/0705.0070, 2007.

[CT06] A. Castravet, J. Tevelev. Hilbert’s 14th problem and Cox rings. Compos. Math., 142(6),

pages 1479-1498, 2006.

[Cox95] D. Cox, The homogeneous coordinate ring of a toric variety, J. Algebraic Geom. 4(1),

pages 17-50, 1995.

[Deb01] O. Debarre,Higher-Dimensional Algebraic Geometry, Springer 2001.

[Der06] U. Derenthal, Singular Del Pezzo surfaces whose universal torsors are hypersur-

faces.preprint arXiv:math.AG/0604194, 2006.

[Dol03] I. Dolgachev, Lectures on invariant theory, London Mathematical Society Lecture Note

Series 296, Cambridge University Press, 2003.

[Eis95] D. Eisenbud, Commutative Algebra With a View Towards Algebraic Geometry, Gradu-

ate Texts in Mathematics 150, Springer, 1995.

[EKW04] E.J. Elizondo, K. Kurano, K. Watanabe: The total coordinate ring of a normal pro-

jective variety. J. Algebra 276, pages 625-637, 2004.

[Ful84] W. Fulton. Intersection Theory.Ergebnisse der Mathematik und ihrer Grenzgebiete. 3.

Folge. A Series of Modern Surveys in Mathematics, volume 2, Berlin, New York: Springer-

Verlag, 1984.

[Ful93] W. Fulton. Introduction to Toric Varieties. Princeton University Press, 1993.

[GH78] P. Griffiths and J. Harris, Principles of Algebraic Geometry, John Wiley and Sons, New

York, 1978.

[GM00] S. Giuffrida and R. Maggioni, The global ring of a smooth projective surface, Matem-

atiche (Catania) 55, 133159, 2000.

67



68 References

[GM05] C. Galindo and F. Monserrat, The total coordinate ring of a smooth projective surface,

J. Algebra 284 pages 91-101, 2005.

[Har77] R. Hartshorne, Algebraic Geometry, GTM volume 52. Springer-Verlag, 1977.

[Har97] B. Harbourne. Anticanonical rational surfaces, Trans. Amer. Math. Soc. 349, 1997.

[Har98] B. Harbourne, Free Resolutions of Fat Point Ideals on P2. Journal of Pure and Applied

Algebra, 215, pages 213–234, 1998.

[HK00] Y. Hu, S. Keel. Mori Dream Spaces and GIT. Michigan Math. J. Volume 48, Issue 1,

pages 331-348, 2000.

[HT04] B. Hassett, Y. Tschinkel, Universal Torsors and Cox rings, in Arithmetic of higher-

dimensional algeraic varieties Palo Alto, CA, 2002, Progress in Mathematics, volume 226.

Birkhauser, 2004.

[Kap93] M. Kapranov, Chow quotients of Grassmannians, I. Adv. Sov. Math. 16 no. 2, 29110,

1993.

[Kov94] S. Kovacs, The cone of curves of a K3 surface, Math. Ann. 300, pages 681 - 692, 1994.

[Laz05] R. Lazarsfeld, Positivity in algebraic geometry I & II, Ergebnisse der Mathematik und

ihrer Gren- zgebiete, vol. 48 & 49, Springer-Verlag, Berlin, 2005.

[LV07] A. Laface, M. Velasco. Picard-graded Betti Numbers and the Defining Ideals of Cox

Rings. arXiv:math/0700206.

[LV09] A. Laface, M. Velasco, A survey on Cox rings, Geometriae Dedicata 139, no.1, 269287,

2009.

[Man86] Y. I. Manin. Cubic Forms, volume 4 of North-Holland Mathematical Library. 2nd ed.

1986.

[MG84] M. L. Green, Koszul cohomology and the geometry of projective varieties, J. Differential

Geometry 19 (1984) 125-171.

[MFK94] D. Mumford, J. Forgarty, F. Kirwan. Geometric Invariant Theory, volume 34 of Ergeb-

nisse der Mathematik und ihrer Grenzebiete. Springer-Verlag, 1994.

[Mor79] S. Mori. Projective Manifolds with Ample Tangent Bundles. Ann. of Math. 110, pages

593-606, 1979.

[Muk01] S. Mukai. Counterexample to Hilbert’s Fourteenth Problem for the 3-dimensional ad-

ditive group, RIMS preprint 1343, 2001.

[Ott09] J. C. Ottem, On the Cox ring of P2 blown up in n points on a line. arXiv:0901.4277.

[Pop05] O. Popov The Cox ring of a Del Pezzo surface has rational singularities.

arXiv:math/0402154, 2005.

[RS90] L. Robbiano, M. Sweedler, Subalgebra bases, in Commutative Algebra (Salvador, 1988),

(W. Bruns and A. Simis, Eds.), pages 61-87, Lecture Notes in Mathematics 1430, Springer-

Verlag, 1990.

[Nag60] On rational surfaces I, II, Mem. Coll. Sci. Kyoto (A) 32 (1960) and 33, 1960.

[Sko93] A. N. Skorobogatov. On a theorem of Enriques - Swinnerton-Dyer. Annales de la facult

des sciences de Toulouse, Sr. 6, 2 no. 3, pages 429-440, 1993.

[SD74] B. Saint-Donat. Projective models of K-3 surfaces. Amer. J. Math. 96, 1974.

[ST05] M. Stillman: Tools for computing primary decompositions and applications to ideals

associated to Bayesian networks, A. Dickenstein and I. Emiris (eds.): Solving Polynomial

Equations. Foundations, Algorithms and Applications, Springer Verlag, Heidelberg, 2005,

203239.

[STV06] M Stillman, D Testa, and M Velasco. Groebner bases, monomial group actions, and

the Cox rings of Del Pezzo surfaces. arXiv:math/0610261, 2006.

[SX08] B. Sturmfels, Z. Xu. Sagbi Bases of Cox-Nagata Rings. arXiv:0803.0892.

[TVV08] D. Testa, A. Várilly-Alvarado, M. Velasco, Cox rings of Degree one Del Pezzo surfaces.

arXiv:0803.0353, 2008.

[TVV09] D. Testa, A. Várilly-Alvarado, M. Velasco, Big rational surfaces. arXiv:0901.1094v1


