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Experiments with a weakly damped monopile, either fixed or free to oscillate, exposed
to irregular waves in deep water, obtain the wave-exciting moment and motion response.
The nonlinearity and peak wave number cover the ranges: ep ~ 0.10 — 0.14 and kpr ~
0.09—0.14 where ep = Hgkp is an estimate of the spectral wave slope, Hg the significant
wave height, kp the peak wave number and r the cylinder radius. The response and its
statistics, expressed in terms of the exceedance probability, are discussed as function of
the resonance frequency, wy in the range wy ~ 3—5 times the spectral peak frequency, wp.
For small wave slope, long waves and wo/wp = 3, the nonlinear response deviates only
very little from its linear counterpart. However, the nonlinearity becomes important for
increasing wave slope, wave number and resonance frequency ratio. The extreme response
events are found in a region where the Keulegan-Carpenter number exceeds KC > 5,
indicating the importance of possible flow separation effects. A similar region is also
covered by a Froude number exceeding F'r > 0.4 pointing to surface gravity wave effects
at the scale of the cylinder diameter. Regarding contributions to the higher harmonic
forces, different wave load mechanisms are identified, including: i) wave-exciting inertia
forces, a function of the fluid acceleration; ii) wave slamming due to both non-breaking
and breaking wave events; iii) a secondary load cycle; and iv) possible drag forces, a
function of the fluid velocity. Also, history effects due to the inertia of the moving pile,
are contributing to the large response events. The ensemble means of the 3rd, 4th and
5th harmonic wave-exciting force components extracted from the irregular wave results
are compared to the FNV-theory (3rd harmonic) as well as other available experiments
and calculations. The present irregular wave measurements generalize results obtained
in deep water regular waves.

1. Introduction

In the offshore industry, there is a growing focus on lower cost and higher efficiency.
This requires improved accuracy of the design conditions and enhanced optimized solu-
tions (Zhen et al. 2015). A widely used offshore structure is the monopile. This is relevant
for both the oil and gas business as well as to the renewable industry. In the development
of new wind farms, the cylindrical structure has become a standard foundation type for
the bottom fixed wind turbines. Typically the diameter is less than 8 m, the first natural
period is 3-5 s and the damping is 1-4% of critical damping (Kallehave et al. 2015).
In harsh wave environment these structures may be prone to high frequency resonant
responses well above the governing wave frequency (Bredmose et al. 2013).

Regarding the high frequency responses, one distinguishes between springing and
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ringing behaviour (Faltinsen 1993, p. 5). The springing motion is characterized by
stationary oscillations, mostly caused by weakly nonlinear forces at the second harmonic
of the governing wave frequency. The transient ringing response is characterized by a short
build-up in time, typically within a wave period, and a longer decay time. The nonlinear
loads causing ringing occur in steep waves, where large inertia forces are present. High
or low pressure zones due to strong orbital velocities and possible flow separation effects
may also contribute to the higher order forces (Grue et al. 1993; Paulsen et al. 2014b;
Kristiansen & Faltinsen 2017). Wave slamming, due to steep and breaking waves, can
lead to impulsive excitation, i.e. high frequency response with no build-up (Bredmose
et al. 2013; Schlger et al. 2016).

Theories of the high frequency wave loads and ringing response in the realistic ocean
environment still have shortcomings. Loading mechanisms, particularly in the strong
waves, are not fully understood. Nor is the probability of the occurrence of an extreme
response event clarified. Remaining challenges include development of methods which are
sufficiently accurate in terms of the hydrodynamic loading. At the same time the short-
and long term statistical variability of the wave conditions should be accounted for.

The hydrodynamic loads and responses, taking into account the short term variability
of the wave conditions, are the focuses of present work. The long term variability, on the
other hand, is not discussed. We note that, regarding the predictions of the long term
variability, a complete long term analysis is required. However, to predict the response
with a prescribed level of probability alternatives are the environmental contour line
method (Haver & Winterstein 2009) or the use of a design wave, such as the NewWave
model (Tromans et al. 1991). To ensure that the predicted response level is correct, it
is vital that the waves driving the extreme response events and the significant loading
mechanisms are both included in the analysis.

1.1. Previous work

Several model tests with monopiles have been carried out investigating the load
mechanisms that excite the high frequency ringing response. Grue et al. (1993), Grue
et al. (1994) and Chaplin et al. (1997) studied the force in focusing waves, Huseby & Grue
(2000) in regular waves, and Grue & Huseby (2002) in the transient part of a regular
wave train , while Stansberg et al. (1995), Marthinsen et al. (1996), Stansberg (1997)
and Bredmose et al. (2013) discussed the ringing response in irregular waves.

The findings from the previous model tests point to nonlinear inertia loading in steep
waves, generating high frequency transient force oscillations around 3 to 4 times the
governing wave frequency. While the first harmonic force is well defined, the higher
harmonic forces deviate from the predictions, particularly for increasing wave slope.
Irrespective of which load mechanisms that exist, the high frequency response occurs
due to significant nonlinearities. There are three possible sources for these nonlinearities
as listed by Tromans et al. (2006): the wave motion, the hydrodynamic loading and the
dynamic response of the structure itself.

The industry has traditionally obtained the wave loads by the Morison’s formula
(Morison et al. 1950) with an empirical adjustment of the wave kinematics such as
the Wheeler stretching incorporated (Wheeler 1970). As the inertia term in Morison’s
formula only includes the force to a first approximation, disregarding possible significant
nonlinear contributions (Lighthill 1979, 1986), a number of theoretical works have
addressed the issue of the high frequency nonlinear loading. Linear and second order
diffraction solutions capture the first and second harmonic forces in regular and irregular
waves, while the solution obtained by Malenica & Molin (1995) capture the third
harmonic force in regular waves. A long wave approximation (with kr < 0.14, k the
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wave number, r the cylinder radius, see figure 7) developed by Faltinsen, Newman and
Vinje (Faltinsen et al. 1995), referred to as FNV, was first obtained for regular waves, and
secondly generalized by Newman (1996) to the case of irregular waves. Later Krokstad
et al. (1998) proposed a modification to the FNV method, where the linear and second
order contributions were replaced by the complete diffraction solutions. The method
was combined with the third order contribution from the long wave approximation.
With an appropriate description of the wave kinematics for realistic wave spectra,
Johannessen (2010, 2012) obtained good agreement between the modified FNV method
and measurements of a monopile exposed to irregular deep water waves .

An alternative nonlinear load description, based on energy consideration, was obtained
by Rainey (1989, 1995a,b). The benefit of the Rainey method is that it takes undis-
turbed wave kinematics as input. This allows for both nonlinear wave motion and short-
crestedness to be taken into account. This is in contrast to the FNV method, which is
based on the underlying linear wave assumption in an unidirectional sea.

Computational Fluid Dynamics (CFD) is increasingly being used to calculate the wave
loads on offshore structures, see Paulsen et al. (2014a) and Paulsen et al. (2014b).
Although CFD is capable of capturing the nonlinearities, the downside is that it is
resource demanding. This adds restrictions to the length of the analyses with an irregular
wave input. Recently, the FNV method has been generalized to a finite water depth by
Kristiansen & Faltinsen (2017).

1.2. Focuses of present work

We here investigate the high frequency resonant response of a monopile exposed to
irregular waves in deep water, where the short term statistical variability of the wave
conditions is accounted for. The following subjects are included:

i) We carry out a set of laboratory experiments with a single bottom hinged, rigid
cylinder in two different set-ups (§2). In the first set-up the cylinder is fixed. The response
of an oscillating cylinder is then calculated from the measured wave-exciting moment. The
cylinder in the second set-up is free to oscillate where the motion response is measured
(83.1).

ii) In the single wave events of the irregular waves, we identify local proxies such as the
local trough-to-trough period and crest height. The higher harmonic load contributions
are then investigated, obtaining the third, fourth and fifth harmonic load components in
the irregular waves, comparing to published results in regular waves (FNV, Huseby &
Grue (2000), Paulsen et al. (2014b)) (§3.2).

iii) We identify and investigate several different wave load mechanisms that are present
during the large response events (§3.3).

iv) While previous investigations have typically focused on the wave loads acting on
the structure only, the present work obtains both the force and the resulting motion. We
present the response as function of resonance frequency which is varied in the range 3-5
times the peak wave frequency. We obtain the short term exceedance probability of the
response maxima. The linear and nonlinear contributions to the response statistics are
compared (§3.4).

v) The most extreme response events are discussed in terms of the local wave slope
and nondimensional trough-to-trough period (§3.5).

A conclusion is given in §4.
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Series Hg [cm] Tp [s] Try/g/d kpr kph ep wo/wp
6.45 1.157 14.8 0.09 2.22 0.10 3.3
7.73 1.156 14.8 0.09 2.22 0.12 3.3
6.24 1.044 13.4 0.11 2.68 0.12 2.9
5.20 0.939 12.0 0.14 3.30 0.12 2.6
9.01 1.157 14.8 0.09 2.22 0.14 3.3
6.12 0.939 12.0 0.14 3.30 0.14 2.6

-0 0 T

TABLE 1. Sea state parameters. Significant wave height Hg, peak wave period Tp, normalized
peak wave period Tp+/g/d, normalized wave number kpr, normalized water depth kph, spectral
wave slope ep = 0.5Hgskp and resonance frequency ratio wo/wp as obtained from the oscillating
cylinder.

2. Experiments
2.1. Wave tank

The experiments were carried out in the wave flume in the Hydrodynamic Laboratory
at the University of Oslo. The wave flume is 25 m long, 0.5 m wide and was filled to a water
depth of h = 0.72 m. In one end of the tank there is a hydraulic piston-type wavemaker
with motion controlled by a preset voltage time series based on linear wavemaker theory.
In the opposite end there is a passive absorbing beach. At the location 10.9 m from the
wavemaker, a bottom hinged cylinder, with a diameter d = 6 cm, was placed to obtain
the wave-exciting moment and the motion response.

2.2. Wave conditions

A total of six irregular long-crested wave time series based on the JONSWAP spectrum
(Hasselmann et al. 1973), each 320 seconds long, were used in the experiments. The JON-
SWAP spectrum was chosen to generate an approximately real ocean wave environment.
The spectrum as a function of angular frequency w is given by

. 5
Si(wp) = Ayaw,” exp(fan)%)fyc"p(_za%(“"_l)z), (2.1)

where w,, = w/wp and a = (5/16)wp'HZ. The peak wave frequency is denoted by
wp = 27 /Tp and the significant wave height by Hg = 40,, where Tp is the peak wave
period and o, is the standard deviation of the measured surface elevation. The peak
shape parameter is v = 3.3, the spectral width parameter is ¢ = 0.07 for w < wp and
o0 =0.09 for w > wp. Further, A, =1 —0.2871n(y) is a normalization factor.

To relate the wave-exciting moment and motion response to undisturbed wave param-
eters, the surface elevation was measured with the cylinder removed, using ultra sound
wave sensors (UltraLab ULS Advanced Ultrasound, USS02/HFP with 250 Hz sampling
rate). The waves were measured at the location for the cylinder, in addition to 0.12 m
and 4.9 m upstream, and 4.4 m downstream.

The governing wave parameters of the six time series, given by the Hg and Tp at the
location for the cylinder, are listed in table 1. Here the peak wave number kp is found from
the linear dispersion relation w? = gkp tanh(kph), where g is the acceleration of gravity
and h is the water depth. The normalized water depth, kph, is in the range 2.2—3.3 which
is considered as deep water waves, and the spectral wave slope, ep = 0.5Hgkp, is in the
range 0.10 — 0.14 which is considered as moderately steep waves. The normalized wave
number, kpr, where r is the radius of the cylinder, is in the range 0.09 — 0.14 which is
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FIGURE 1. Wave energy density spectrum. Measured surface elevation and JONSWAP spectrum
with v = 3.3 for (a) all the six time series and (b) time series ¢, where Hg = 6.24 cm and
Tp = 1.044 s, measured at the location for the cylinder, in addition to 4.9 m upstream and 4.4
m downstream.

considered as outside of the diffraction regime. The corresponding nondimensional peak
wave period is Tp+/g/d ~ 12 — 15 where d = 2r.

All the six measured wave spectra show good agreement with the JONSWAP spectrum,
as seen in figure la. In figure 1b, the spectrum from series c is shown at the cylinder
location in addition to 4.9 m upstream and 4.4 m downstream, showing only minor
modification in the spectral shape. Between the upstream and downstream location, the
rate of decrease in Hg is found to be, on average of the six time series, 0.01 per peak
wave length A\p = 27 /kp. Measurements from the two wave sensors with a distance of
0.12 m have been used to estimate the reflection from the beach. For the governing wave
frequencies, 0.9 < w/wp < 1.5, the reflection coefficient, in terms of the amplitude, as
outlined by Goda & Suzuki (1976), is found to be less than 0.06.

2.3. Local wave properties and statistics

The surface elevation at a fixed position in the wave tank is a function of time. It is
convenient to define a single wave event by its crest elevation, n¢, and its trough-to-
trough period, T, see figure 2a. All together, the six time series consist of totally 2166
single wave events. A scatter plot of n¢c and T, measured at location for the cylinder
is shown in figure 2b.

The empirical probability of exceedance for the events is given by

Pop(w) =1—P(X <) =1—i/(N +1), (2.2)

where z; for ¢ = 1,2,.., N indicates the events in ascending order, and N is the total
number of events. In figure 3a the exceedance probability P.,(nc/Hs), as found from
series c, is presented and compared to the linear Rayleigh and the second order Forristall
crest distribution (Forristall 2000). It is observed that the measurements contain some-
what larger crest heights than expected based on the second order distribution. This is
further visualized by comparing the largest crest elevations from all of the series with the
corresponding Forristall distribution. If 7z denotes the Forristall crest height estimate,
the largest crest height observed with regards to significant wave height, noe/Hg = 1.5,
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FIGURE 2. Local wave properties. (a) Definition of crest height nc and trough-to-trough wave
period Trr of a wave event and (b) wave scatter plot including all the 2166 measured waves
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FIGURE 3. Crest height exceedance probability for (a) series ¢, Hs = 6.24 cm and Tp = 1.044
s (4), linear Rayleigh (- -) and second order Forristall (—) and (b) measured crest heights,
normalized with Forristall estimate, the 10% largest crest heights from each series, series a (A\),

b (O), ¢ (+), d (), e (x) and f (O).

has n¢/nr = 1.6 (found in series d and seen in figure 2). Except for this extreme crest
event, a plot of ng/nr versus its probability shows 0.97 < ne/nr < 1.28 for the 10%
largest waves, for all of the six series, see figure 3b.

For later purposes (§3.2 and §3.5), following Grue et al. (2003), using a variant of the
Stokes’ third order approximation, the measured nc and Trr are used to define a local
wave number, kpp, and local wave slope, €, of the event by

1 1
Wiy = gkrr(1+€®) and krrne =€+ 562 + 563, (2.3)

where wppr = 27 /Tpr, € = akpr and a is the approximated underlying linear amplitude.



Resonant response of a monopile in deep water waves 7

A

< Lop 1 Ly =

FIGURE 4. Oscillating cylinder set-up with angular rotation 6(¢), cylinder diameter D = 0.06
m, water depth h = 0.72 m, rotation point zp = 0.02 m, distance from tank bottom to load cells
ze = 0.92 m, load cells F1 and F3, distance to wavemaker Ly = 10.90 m and distance to tank
end, Lt = 13.87T m .

This enables a wave parametrisation of each of the single wave events in the irregular
wave time series. From the same approach a maximum horizontal particle velocity below
the crest is estimated by uc = e\/g/krrexp(krrnc). The estimation of €, krr and
uc in irregular waves have been further tested by Stansberg et al. (2008) and Grue &
Jensen (2012), showing good agreement with experimental results.

2.4. Cylinder model

A single cylinder with diameter d = 6 cm, in two different set-ups, was used in the
experiments. The cylinder was located at a location of 10.9 m from the wavemaker and
hinged at a horizontal lateral axis at the level of z = zg = 2 ¢cm above the tank bottom,
with positive rotation in the wave propagation direction. At a distance of z, —2zp = 90 cm
above the rotation axis, the cylinder was connected to two load cells (Hottinger Baldwin
Messtechnik Type Z6C2 with 10 kg = 2mV/V and 400 Hz sampling rate), measuring
the force from which the overturning moment was determined. In the first set-up the
cylinder was fixed, rigidly connected to the load cells, where the wave-exciting force and
moment with respect to zy are measured. In the second set-up the cylinder was free to
oscillate, where springs were used to connect the model and the load cells.

A sketch of the second set-up is shown in figure 4. The vertical cylinder is free to rotate
with an angle 6(t) in the pitch mode of motion. Assuming linear motion, the moment
due to the pressure forces with respect to zg reads: My,ape(t) — a55é — b559 — ¢550, where
Myave(t), ass, bss and cz5 denote the wave exciting moment obtained from the fixed
cylinder set-up, added mass, damping and restoring coefficients in the pitch mode of
motion, respectively. The moment due to the spring forces reads: —(z, — 20)(Fa(t) —
Fi(t)) = —ko(2q — 20)20 where Fy and F, denote the force recorded on the left and right
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transducer, respectively, see figure 4, and k(g the spring constant. Balance of angular
momentum gives

m55é = —a55é — b55é — (Iio(za — 20)2 + 055)9 =+ Mwave(t)7 (24)

where ms5; denotes the moment of inertia of the cylinder.

The resonance frequency of (2.4) is given by w2 = (c55 + ko(2za — 20)?)/(ms5 + ass).
Note that the spring force provides the dominant contribution to the restoring force
where cs5 is 0.005 times kg(z, — 20)? for the actual cylinder. The still water decay tests
as well as the irregular wave experiments determine wy = 17.7 rad/s ~ 3wp (table 1) of
the oscillating cylinder. The damping ratio ¢, determined as the fraction of the critical
damping, is 0.02 for the cylinder. The small damping ratio implies a very lightly damped
oscillating system relevant to offshore wind turbines in extreme conditions (Kallehave
et al. 2015).

By integration, the pitch angle 0(t) is obtained as function of time. For convenience,
the response is multiplied by xo(2z, — 20)? obtaining the moment of the sum spring force
with respect to zp. We denote this quantity by R(wg,t) where

2t
R(wo,t) = ko(za — 20)20(t) = %/ Mypaue(T)e™ 0 sin(wq(t — 7))dr, (2.5)
d Jo

and wg = wp4y/1 — ¢2. A derivation of (2.5), commonly known as the Duhamel’s integral,
is given in appendix A. Using (2.5) to obtain the motion response R(wy,t), this is fully
described by the wave-exciting moment, the resonance frequency and the damping ratio.
Use of (2.5) makes possible a response analysis given Myq..(t) on the fixed cylinder
varying the resonance frequency wg to investigate the response dependency on the ratio
wo/wp. We shall find a good correspondence between the measured and calculated
response maxima, see §3.1

For the calculations of the response, a low pass filter has been applied above the
significant wave frequencies at the frequency w = 60 rad/s > 9wp. This is considered as
well above the significant wave and load frequencies of interest.

3. Wave loads and responses

The surface elevation, wave-exciting moment and motion response for a large event,
occurring between two subsequent zero up-crossings of the moment history, are shown
in figure 5. The various plots in the figure illustrate different effects observed in the
run; these different effects are discussed in §3.1, §3.2 and §3.3. The zero up-crossing
period of the moment, T4/ is illustrated in figure 5b. The periods Trr and T occur
approximately in the same time window, but they are not exactly equal. The period Tpr
is used in combination with the measured wave elevation to define the wave proxies, € and
kpr in eq. (2.3), for presentation of the higher harmonic forces in §3.2 and the extreme
response events in §3.3 and §3.5. The T2 is used in combination with the wave-exciting
moment time series obtaining the load and response statistics, using (2.2), with results
presented in §3.1 and §3.4.

The wave event occurs in time series ¢ where Tp = 1.044 s and wp = 27/Tp, giving a
frequency ratio of wg/wp = 2.9 where wy = 17.7 rad/s. The surface elevation in figure ba
is normalized by the significant wave height Hg, and the load and responses in figures
5b-5g are normalized by the standard deviation of the wave-exciting moment, op;. Three
repetitions of the time series are included in the figure and we note that the repeatability
is good with only very small differences at the wave crest.
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FIGURE 5. Series ¢ (t = 155.7 s), Hg = 6.24 cm, Tp = 1.044 s.(a) Surface elevation, (b)
wave-exciting moment, (¢) higher harmonic wave force components, (h — zo)FG“TT) (--.),
(h — 20) FA*TT) (= ), (h — 20) F®“TT) (=), (d) measured (—) and calculated (- -) response
for wo/wp = 2.9, (e) measured (—) and calculated (- —) dynamic contribution for wo/wp = 2.9,
(f) calculated response (—) and measured wave-exciting moment (- =) for wo/wp = 2.0 and (g)
calculated response (—) and measured wave-exciting moment (- —) for wo/wp = 4.0.
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FIGURE 6. All of the six time series with 2166 events (+) where 2.6 < wo/wp < 3.3.
Comparing response maxima by (a) direct comparison and (b) quantiles (sorted values).

The different types of high frequency response may be categorized either as springing or
ringing. In figure 5f and 5g calculations have been carried out for two different resonance
frequencies, of wy/wp = 2 and wy/wp = 4, respectively, using the measured wave-exciting
moment and the transfer function. The results illustrate a response of the springing type
(wo/wp = 2) and of the ringing type (wo/wp = 4). The springing behaviour is global in
time, while ringing is local in time.

3.1. Single response mazxima

The response maxima, obtained from the measured wave-exciting moment on the fixed
cylinder, with the resonance calculated by the transfer function eq. (2.5), denoted by

mer = max(R(wo,t)), are compared to the measured response, denoted by R%% .
The data from all of the six time series give a total of 2166 events with a frequency ratio
in the range 2.6 < wp/wp < 3.3. The two quantities show good agreement for the largest
response events , R /gy, > 7, where a deviation is up to approximately 5 %, see figure
6a. Good agreement is also found when looking at the calculated and measured maxima,
sorted according to their magnitude, denoted by the so-called quantiles, see figure 6b.
This justifies the use of the measured wave-exciting moment in combination with the
transfer function, both for estimating the probability levels and for the identification
of the extreme events. In what follows, we obtain only the calculated response maxima

using the notation R™* = R797, for the extended frequency range wo/wp = 3,4 and
5.

3.2. Higher harmonic wave forces

The high frequency response is driven by higher harmonic wave force components. We
investigate the 3rd, 4th and 5th harmonic forces with regards to the local wave period
Trr. The forces are obtained from the wave-exciting moment assuming that they are
acting at the still water level. The high frequency forces are considered to act close to
the surface (Rainey 1989, 1995a,b; Faltinsen et al. 1995; Newman 1996), which indicates
an error less than (nc/h) when using the moment to obtain the forces. For each of the
single events, where an event is defined in figures 5a and 5b, a window function of 20 s has
been applied, from which the high frequency harmonic force components are extracted,
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FIGURE 7. Higher harmonic wave force components. Individual events (+), ensemble average
(—M) and standard deviation (- -m), Fﬁ)w (---), H&G (@), and Paulsen et al. (2014b) for
finite water depth (A). (a) F®*77) for 0.10 < krrr < 0.14, (b) FG<T1) for 0.14 < krrr < 0.18,
(¢) FG“11) for 0.18 < kprr < 0.22, (d) FUTT) for 0.14 < kprr < 0.18, (e) FU“TT) for
0.18 < krrr < 0.22, and (f) F®“T7) for 0.18 < krrr < 0.22.

see figure 5¢. The maximum amplitude found within the event, is defined as the local
high frequency harmonic force contribution.

The 3rd harmonic force F3“77) is found using a filter covering 2.5 < w/wrr < 3.5.
Likewise, the 4th harmonic force FUwrT) g found for 3.5 < w/wrr < 4.5, and the
5th harmonic force F(®wrT) using 4.5 < w/wrr < 5.5. The forces are expressed for the
proxies; the normalized wave number kppr and the wave slope ¢ = akpp, where both
are defined in (2.3) and r is the cylinder radius. The obtained results from the irregular
waves are compared to previous works with a regular wave input; the leading-order third
harmonic FNV solution, F' 1(5,312,‘/ /pga® = 2n(krrr)?, the measurements from Huseby &
Grue (2000), denoted by H&G, and the CFD computations on finite depth by Paulsen
et al. (2014b).

For the longest waves, with 0.10 < kppr < 0.14 (14.1 > T9-+/g/d > 11.9, where T2
is the linear estimate) we observe that F(3977) is tending towards a constant level close
to the FNV result, with the average of the irregular results approximately 11% below the
theory (figure 7a). The FNV force is evaluated for the middle value of kppr in each of the
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krrr F® @& pG)
0.12+0.02 0.08 0.03 0.01
0.16 £0.02 0.11 0.05 0.03
0.20£0.02 0.13 0.09 0.03

TABLE 2. The ensemble average of the higher harmonic wave force components
F® = F<3“JTT>/pga3, F& = F<4“’TT>/pga46f1 and FO® = F(s“’TT)/,oga‘r’Lf2 for local wave
number 0.10 < krra < 0.22 and wave slope € = akrr = 0.25.

krrr-ranges. In the range 0.14 < kprr < 0.18 (11.9 > T9.1+/g/d > 10.5), the results from
H&G are lower, but within the standard deviation of the present irregular wave results.
The average of the irregular wave results are approximately 29% below the FNV theory,
when the waves are steep (figure 7b). For the shorter waves, with 0.18 < kpprr < 0.22
(10.5 > T9\/g/d > 9.5), the results from H&G are close to the irregular wave results,
tending towards the same level, which is ~ 44% below the theory (figure 7c). Compared
to the results on finite depth by Paulsen et al. (2014b) for krrr = 0.1, a deviation
is observed. However, Kristiansen & Faltinsen (2017) points at a substantial difference
between the forces in deep water and finite depth.

For the 4th harmonic force, F*«77) the results show good agreement with H&G
(figures 7d and 7e). The results for the 5th harmonic force, F®~77) are similar to those
of H&G for kprpr = 0.245, where the present results are obtained for the wider range of
0.18 < kprr < 0.22 (figure 7f). A comparison between the normalized forces for e = 0.25
is provided in table 2.

The present extracted higher harmonic force components in the irregular waves, for
0.1 < kppr < 0.22 and 0.1 < € < 0.32, provide a quite strong generalization of the higher
harmonic forces measured by H&G in the regular waves with 0.1 < € < 0.24. This in
spite of the present results being obtained from the wave-exciting moment, assuming a
moment arm equal to the still water level. We note that the present irregular wave results
have a significant standard deviation not observed in the regular wave measurements.

As expected for the 3rd harmonic forces, the FNV approximation is found to best
fit the longest waves (0.1 < kprr < 0.14). In general we observe that the force
components are tending towards a constant level for the steep waves. The compliance
with the previous results in periodic waves, indicates that the high frequency contribution
originates from nonlinearities and not from shorter linear free waves, since regular waves
do not contain energy from linear free waves. Moreover, it illustrates that the local wave
slope and the wave number defined in (2.3) are useful proxies of the local wave events.

3.3. Wave load mechanisms

In this section we discuss the following different wave load mechanisms driving the

response:
i) wave-exciting inertia forces, a function of the fluid acceleration;

ii) wave slamming, due to both non-breaking and breaking wave events;

iii) the secondary load cycle; and

iv) possible drag forces a function of the fluid velocity.

Consider the wave-exciting moment in figure 5b where the maximum occurs for ¢t/Tp =
0. This is simultaneous to the maximum wave crest and means that the orbital velocity
is approximately horizontal and at maximum. The force at this instant is associated
with wave breaking, slamming and possible viscous drag forces (Paulsen et al. 2014b;
Kristiansen & Faltinsen 2017) and are included in the categories ii) and iv) above.
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Consider then the negative response maximum in figure 5d, of absolute value R™%* =
8o occurring at t/Tp =~ 0.25. This is approximately at the same time as the wave
elevation has a zero down-crossing, corresponding to a maximum horizontal particle
acceleration at the surface. The acceleration is associated with an inertia force and is in
accordance with category i). Returning to the load history in figure 5b, the secondary
load cycle (Grue et al. 1993) occurs slightly before the time of the negative response
extreme.

The dynamic part of the response, R(t) — M(t), further highlights the effects of the
different load mechanisms i)-iv). In figure 5e we observe that the large wave crest produces
a significant change of the response amplitude and its phase for t/Tp > 0. Between the
two local response peaks at ¢/Tp ~ —0.1 and t/Tp ~ 0.1 the dynamic part experiences
a local oscillation of the duration of half of the resonance period. The modification of
the response is due to a strongly nonlinear impulse type of loading, originating from the
slamming event. As a result, the dynamic contribution attains a value of R(t) — M (¢) ~
4oy at t/Tp ~ 0.1. The response is further increased to R(t) — M(t) ~ 5o around
the wave zero down-crossing, at t/Tp ~ 0.25, with load contributions from the large
inertia force and the secondary load cycle. Another effect that adds to the large negative
response peak is the restoring force of the cylinder. Even with no wave-exciting forces,
this would cause a negative response peak after the positive build-up. The timing of this,
relative to the wave forces, is governed by wp, the natural frequency. A result of the
different load contributions working together, is that the maximum response occurs after
and in the opposite direction of the maximum wave-exciting moment, approximately at
the same time as the wave elevation has a zero down-crossing.

We have now discussed the load event in figure 5. Further, we consider the load
histories of the 21 largest response events which are listed in table 3. More specifically,
these events are obtained with regards to R™% /g for wy/wp = 3. We observe that
different wave load and response mechanisms contribute to the response level, including;:

e a large nonlinear inertia force before the wave crest has passed, Fy front, which is
observed for 15 of the 21 events. The inertia force is characterized by the front of the
wave being steep with An/At > 5Hg/Tp;

e a large nonlinear inertia force after the wave crest has passed, F7 pqck, observed
for 16 of 21 events. This is characterized by the back of the wave being steep with
A’l]/At < —5H5/Tp;

e wave slamming, Fjyjum,, observed for 8 of 21 events, including the 4 largest events.
Here slamming is characterized by a coinciding wave crest and a maximum wave-exciting
moment; and

e the secondary load cycle, Fjy, observed for 17 of 21 events. The Fj;s are found to
coincide with a steep crest back and occur close to the wave zero down-crossing.
Further we note:

e an opposite direction of the maximum response, Ry, characterized by the maximum
response occurring after and in the opposite direction of the maximum wave-exciting
moment and simultaneous to the wave zero down-crossing. This is observed for 16 of 21
events;

e an effect of a preceding wave, Aprc., where the response is affected by the inertia of
the moving pile. The oscillations are significant before the wave event appears. This is
observed for 7 of 21 events, where 3 among the 7 events are strongly dominated by the
effect.

We observe that slamming plays a dominant role for the largest response events. Apart
from one of the preceding wave cases, large nonlinear inertia forces are present for all
of the events, where either the front or back of the wave, or both, are observed to be
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Event Series t[S] TTT V g/D kTTnC Fl,front FI,back Fslam FII R

S
S|
>
bS]
S
o
Q

(1) b 1548 155 0.21 N Y Y Y Y Y
(2) d 2501 107 0.41 Y Y Y Y Y N
(3) ¢ 155.7 108 0.38 Y Y Y Y Y N
(4) e 2296 150 0.30 Y Y Y Y Y Y
(5) e 101.8 110 044 Y Y N Y Y N
6) ¢ 1565 122 0.21 N N N N N Y(S
(7) e 1180 98 044 Y Y N Y Y N
(8) e 1513 132 0.25 N Y Y Y Y N
(9) d 1467 115 024 N Y N Y Y N
(10) e 1122 118 0.35 Y Y N Y Y N
(11) e 2654 118 0.36 Y Y Y Y Y N
(12) e 223 126 0.28 Y N N Y N Y(S
(13) e 942 126 0.32 Y Y N Y Y N
(14) £ 2743 108 0.34 N Y Y Y Y Y
(15) f 305 106 037 Y Y N Y Y N
(16) ¢ 265.7 117 0.25 Y N N N N N
(17) £ 693 104 034 N Y N Y Y N
(18) e 240 138 024 Y N N N N Y(S
(19) b 1056 108 0.31 Y Y Y Y Y Y
(200 f 1281 88 044 Y Y N Y Y N
21) b 1700 127 026 Y N N N N N

TABLE 3. Wave parameters and observed wave load and response characteristics, for the 21
largest response events when wo/wp = 3, listed in decreasing order with respect to ™" /or.
The characteristics are confirmed with Y = Yes, N = No or Y(S) = Yes, strongly dominated.
Parameters in the table: event number, series index, time of occurrence and the rest of the
parameters are defined in the text.

steep. However, the large inertia force and the resulting response rather occurs for a large
elevation gradient in the back of the wave while what happens in the wave front is less
important. Apart from one preceding wave case, the secondary load cycle is found to
coincide with the steep wave gradient in the back of the wave.

3.4. Nonlinear vs. linear exceedance probability

The empirical exceedance probabilities of the nonlinear wave-exciting moment and
motion response are found using (2.2). Each of the series are considered separately,
where the frequency ratio is varied with wg/wp = 3,4 or 5. The load and responses are
presented for increasing nonlinearity (0.10 < ep < 0.14) and for long and moderately
long waves (0.09 < kpr < 0.14).

Estimates for the linear wave-exciting moment and motion response were carried out
for reference purposes. In order to estimate the underlying linear wave spectrum, the
measured surface elevation was linearised as proposed by Johannessen (2010, 2012). The
second order contribution was calculated from the measured wave time series, using the
total surface elevation. Subsequently, the linear surface elevation was found by subtract-
ing the second order contribution from the measured surface elevation. Further, irregular
waves were created from each of the estimated linear wave spectra. The MacCamy &
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Fuchs solution (1954) was used to obtain the wave-exciting moment for a fixed cylinder.
More details are found in appendix B.

As expected, the linear and nonlinear analyses agree well for wyo/wp = 3 when the
waves are long and have small amplitude (ep = 0.10 and kpr = 0.09, figure 8a). The
same is true when the wave slope is moderate and the waves are long (ep = 0.12 and
kpr = 0.09, figure 8b). In these cases the estimated linear response provides a good
representation of the nonlinear probability.

For moderate wave slope and moderately long waves (ep = 0.12 and kpr = 0.11, figure
8c) the linear estimate gives a good representation of the distribution of the response for
P..(R™** /o) > 0.06. However, for P.,(R™** /o) < 0.06 the nonlinear contribution
becomes significant, showing a deviation of ~ 50% for the largest nonlinear response
events (marked by circles) when compared to the corresponding linear estimate. For
steeper and shorter waves, we observe that the deviation appears at an earlier stage: for
ep =0.12 and kpr = 0.14 P, (R™** /o)) ~ 0.1 (figure 8d), for ep = 0.14 and kpr = 0.09
P, (R™* /gpr) ~ 0.2 (figure 8e¢) and for ep = 0.14 and kpr = 0.14 P, (R™** /op) ~ 0.3
(figure 8f). For the steepest waves (ep = 0.14) the nonlinear force deviates earlier from
the linear force for longer waves (compare figures 8e and 8f). We note that while the
wave-exciting moment is dominated by the energy around the governing wave frequency,
the response is governed by the nonlinear high frequency forces.

For wg/wp = 4 the response for small wave slope and long waves (ep = 0.10 and
kpr = 0.09, figure 9a) follows the linear results, but shows a deviating trend for small
exceedance probability. For moderate wave slope and long waves (ep = 0.12 and kpr =
0.09, figure 9a) the deviation between the nonlinear and linear results becomes evident for
P., ~ 0.1. In moderate and steep waves (ep > 0.12, figures 9b — 9f) a significant deviation
between the nonlinear and linear results is found for P., < 0.2. For wg/wp = 5 the same
tendencies as for wg/wp = 4 are observed. When the frequency is increased, the response
tends towards the wave-exciting moment, which is equivalent with the quasi-static level.

As expected, the linear and nonlinear analyses agree well when the waves are long
and have small amplitude. The nonlinearity of the wave-exciting moment becomes
more important in the steeper and shorter waves. The nonlinearity also becomes more
prominent when the frequency ratio wg/wp is increased from 3 to 4.

3.5. FExtreme response events

The most extreme responses are critical for design. It is of interest to further in-
vestigate the wave effects driving these responses. The 1% largest events (satisfying
P..(R™® /o)) < 1072) are presented in scatter diagrams according to the wave proxies
TTT\/W and krrne. The resonance frequencies are wg/wp = 3,4 and 5. The majority
of these events occur for waves with period Trr+/g/d between 9 and 16 and wave slope
krrne larger than 0.2 (figures 10a, 10c and 10e).

In order to discuss the history effect in the response, i.e the contribution from the
inertia of the moving pile due to successive large wave events, we present calculations
with a damping of both ¢ = 0.02 and { = 0.06, where in the latter the effect of preceding
waves, for the local response, is smaller compared to the former. The extreme response
events obtained with ¢ = 0.06 all gather in a common region (figures 10b, 10d and 10f).

The nonlinear high frequency forces driving the response originates either from flow
separation, free surface gravity waves, or a combination. Flow separation is governed
by the Keulegan-Carpenter number KC' = ucTpr/d, while gravity wave effects are
governed by the Froude number Fr = uc/y/gd. We have in figure 10 indicated the line
corresponding to KC = 5. Almost all of the extreme events are found for KC > 5 and
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FIGURE 8. The empirical exceedance probability for linear wave-exciting moment (- —), nonlinear
wave-exciting moment (+), linear motion response (—) and nonlinear motion response (o) where
wo/wp = 3 for (a) series a, (ep,kpr) = (0.10,0.09), (b) b, (0.12,0.09), (¢) ¢, (0.12,0.11), (d) d,
(0.12,0.14), (e) e, (0.14,0.09) and (f) f, (0.14,0.14),

krrnc > 0.15. Note that a K C-number larger than 2 is commonly associated with flow
separation (Sarpkaya 1986).

The contribution of flow separation to the higher harmonic wave forces has recently
been suggested by Paulsen et al. (2014b); Kristiansen & Faltinsen (2017). We remark
that the details of the flow separation depends on the Reynolds number (Re) and are
different in the model scale compared to the large scale, where Re is approximately 1000
times larger. The possible flow separation may contain more three dimensional effects in
the large scale compared to the model scale.

We have also indicated the line Fr = 0.4, where Fr = uc/+/gd. The extreme response
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FIGURE 9. The empirical exceedance probability for linear wave-exciting moment (- —), nonlinear
wave-exciting moment (+), linear motion response (—) and nonlinear motion response (o) where
wo/wp = 4 for (a) series a, (ep,kpr) = (0.10,0.09), (b) b, (0.12,0.09), (¢) c, (0.12,0.11), (d) d,
(0.12,0.14), (e) e, (0.14,0.09) and (f) f, (0.14,0.14),

events found for waves with F'r < 0.4 are all affected by preceding waves. The Froude
number indicates a gravity wave effect at the scale of the cylinder diameter, where Fr =
0.4 corresponds to a local wavelength Ao = 2mu2 /g of the local crest velocity uc with
A¢ =~ d contributing to a particular wave-body interaction, as proposed by Grue et al.
(1993, 1994).

The present data of the obtained responses show that the extreme events occur for
KC > 5. The regime KC > 5, is significantly above the separation limit (KC > 2,
Sarpkaya 1986), indicating a flow separation effect and contribution from possible drag
forces, even though the flow separation itself has not been measured. The findings
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FIGURE 10. Wave scatter plot including all the 2166 events (4), events with
P (R™% [opr) < 0.01 (@), Fr = 0.4 (—) and KC =5 (- -) for (a) (wo/wp,() = (3,0.02),
(b) (3,0.06), (c¢) (4,0.02), (d) (4,0.06), (e) (5,0.02) and (f) (5,0.06).

supports KC and flow separation as a more relevant criterion for the extreme response
events. However, we choose to include the Froude criterion, as the results are not
considered sufficient in order to exclude the surface gravity wave effects. The more
visible local free surface wave, suggested at the cylinder diameter scale, is for comparison
governed by Fr > 0.4. The free surface effect is very clear in the experiments. The wave
may co-interact with the flow separation effects, suggesting that both effects and criteria
are relevant.
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4. Conclusions

The high frequency resonant responses of a weakly damped monopile exposed to
irregular deep water waves have been investigated. The response events were obtained
accounting for the short term wave statistics. Experiments were carried out with a single
bottom hinged cylinder in two different set-ups. In the first set-up the cylinder was fixed,
while in the other it was free to oscillate, obtaining both the wave-exciting moment
and the motion response. The nonlinearity, peak wave number and peak period of the
six different wave series were in the ranges: €, ~ 0.10 — 0.14, kpr ~ 0.09 — 0.14 and
Tpy/g/d ~ 12.0 — 14.8, respectively, where all quantities are defined in §2.2.

By use of a transfer function, the response was calculated from the measured wave-
exciting moment on the fixed cylinder. The calculations of the extreme response maxima
compares very well with the measured ones. The accuracy is approximately 5%. The
overall agreement is even better when comparing the sorted maxima (the so-called
quantiles). This justifies the use of the measured wave-exciting moment in combination
with the transfer function, both for estimating the probability distributions and for
calculating the response level of the extreme events. The response is then discussed as
function of the resonance frequency wg, which is varied in the range where wg/wp ~ 3—5.

The empirical short term exceedance probability distributions of the nonlinear wave-
exciting moment and motion response, obtained for each of the six series, show: for
small wave slope (ep = 0.10), long waves (kpr = 0.09) and a resonance frequency of
wo/wp = 3, the nonlinear response analyses agree, and is in fact very well represented
by its linear counterpart. The same is true for a moderate wave slope (ep = 0.12) and
long waves (kpr = 0.09). By increasing the ratio wo/wp to 4 or 5, the importance of the
nonlinearities becomes apparent, where the deviation between the nonlinear and linear
calculations occurs for an exceedance probability of P..(R™%" /o) < 0.1. For moderate
to strong waves (ep ~ 0.12—0.14) and long to moderately long waves (kpr ~ 0.09—0.14),
the deviation between the nonlinear and linear results are clear in all cases. The deviation
starts earlier for wo/wp = 4,5 compared to wy/wp = 3, as well as for an increasing wave
slope, and for a decreasing wavelength.

The most extreme response events, moreover are obtained according to the local wave
proxies: the local trough-to-trough period Trr+/g/d and the local wave slope estimate
krrnc. The events are found in a region where the Keulegan-Carpenter number exceeds
KC > 5, indicating that possible flow separation effects contribute to the extreme
responses. The contribution of flow separation to the higher harmonic wave forces has
been recently suggested by Paulsen et al. (2014b); Kristiansen & Faltinsen (2017). A
similar region is also covered by a Froude number exceeding F'r > 0.4 pointing to surface
gravity wave effects at the scale of the cylinder diameter as suggested by Grue et al.
(1993, 1994). It is still an open research question if either of the effects are dominating
or of equal importance.

From a number of large response events, different wave load mechanisms are discussed:
i) wave-exciting inertia forces, a function of the fluid acceleration; ii) wave slamming
due to both non-breaking and breaking wave events; iii) the secondary load cycle; and
iv) possible drag forces, a function of the fluid velocity.

The 3rd, 4th and 5th harmonic wave-exciting force components are extracted by their
ensemble average and standard deviation in the irregular waves. They are expressed by
the local wave proxies. The present results, for a wave slope up to 0.3, fit well to and
generalize the results in regular waves for a wave slope up to 0.24 of Huseby & Grue
(2000). The 3rd harmonic force in the longer waves shows good agreement with the
FNV-method.
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The JONSWAP spectrum was chosen to approximate real ocean environment. In
general, the findings are expected to apply for a broader range of storm conditions, i.e
other spectral shapes. However, one should be careful when there are possibilities for
linear induced high frequency response, such as in combined wind and swell sea, i.e. two
peak spectra.

The study has been carried out with financial support from Stiftelsen Det Norske
Veritas, DNV GL and The Research Council of Norway. The technical assistance during
the experimental work by Head Engineer Olav Gundersen is gratefully acknowledged.

Appendix A

The vertical cylinder may rotate with an angle 6(¢) in the pitch mode of motion about
a hinge at the bottom, located at z = zy = 2 cm above the tank floor. Assuming linear
motion, the moment due to the pressure forces with respect to zg reads: My, qpe(t) —a55é—
bs50 — 550, where Myyae(t), ass, bss and cs; denote the wave exciting moment, added
mass, damping and restoring coefficients in the pitch mode of motion, respectively. The
moment due to the spring forces reads: —(zq — 20)(Fa(t) — Fi(t)) = —ko(2a — 20)%0 where
zq denotes the height of the force transducers, Fi(t) and Fx(t) denote the force recorded
on the left and right transducer, respectively, see figure 4, and kg the spring constant.
Balance of angular momentum gives

m55é = —a55é — b55é - (fio(Za - ZO)2 + 055)‘9 + Mwave(t)v (A 1)
where mss denotes the moment of inertia of the water filled cylinder. This obtains
0+ 2Cwof + w20 = Myave(t)/(mss + ass), (A2)

where the resonance frequency is given by w3 = (c55 + £o(24 — 20)?)/(ms5 + ass). Note
that the spring force provides the dominant contribution to the restoring force where css
is 0.005 times ko(2z, — 20)? for the actual cylinder. The still water decay tests as well
as the irregular wave experiments determine wy = 17.7 rad/s of the oscillating cylinder.
The damping ratio ¢, determined as the fraction of the critical damping, is 0.02 for the
cylinder. In the experiments with the fixed cylinder set-up, small vibrations are measured
at frequencies w > 88 rad/s. These are driven by the wave maker and transferred through
the tank frame to the cylinder set-up.

Eq. (A2) may be expressed on matrix form: (d/dt)(e*Y) = e**[0, Myave (t)/((mss +

ass)we]?T where Y = [0,y]7, []T denotes the transpose, 6 + Cwof = wey, and we =
9 ¢ ¢
woy/1 — 2. The matrix A and its variant e are expressed by
A Cwo  —we At _ gCwot [ €OS wet —sinwet (A3)
we Cwo ’ sinwet coswet '

By integration, the pitch angle 6(¢) is obtained as function of time. For convenience this
is multiplied by #o(z, — 20)? obtaining the moment of the sum spring force with respect
to zg. We denote this quantity by R(wo,t) where

2 it
R(wo,t) = ko(za — 20)20(t) = % / Mwm,e(r)e{”‘)(t*") sin(w¢ (t — 7))dr. (A4)
¢ Jo
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Appendix B

In order to estimate the underlying linear wave spectrum the measured surface el-
evation, 7, is linearised as proposed by Johannessen (2010, 2012). The second order
contribution, 77/(2), is calculated using finite depth theory (Sharma & Dean 1981), where
only nearby wave components are allowed to interact. This is implemented by a maximum
bandwidth between the interacting wave components dw = 0.8wp. The prime denotes
the use of the total surface elevation for the calculations of the second order contribution.
Then the resulting linear surface elevation, 7!, is found by

n—n®=nM 1y )—n'®4+0®)=ym 400G (B1)

being accurate to and including second order effects. Subsequently, theoretical realiza-
tions of irregular waves were created from each of the linear wave spectra, with random
phase. The MacCamy & Fuchs solution (1954) was used to obtain the linear wave-exciting
moment for a fixed cylinder. The standard deviation of the linear part is, on average for
the six series, 1% smaller than the measured and fully nonlinear wave-exciting moment.
Finally, the response transfer function (A 4) was used to calculate the linear motion
response.
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