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Abstract
Research on orthographic consistency in English words has selectively identified different sub-syllabic units in isolation
(grapheme, onset, vowel, coda, rime), yet there is no comprehensive assessment of how these measures affect word iden-
tification when taken together. To study which aspects of consistency are more psychologically relevant, we investigated
their independent and composite effects on human reading behavior using large-scale databases. Study 1 found effects on
adults’ naming responses of both feedforward consistency (orthography to phonology) and feedback consistency (phonol-
ogy to orthography). Study 2 found feedback but no feedforward consistency effects on visual and auditory lexical decision
tasks, with the best predictor being a composite measure of consistency across grapheme, rime, OVC, and word-initial
letter-phoneme. In Study 3, we explicitly modeled the reading process with forward and backward flow in a bidirectionally
connected neural network. The model captured latent dimensions of quasi-regular mapping that explain additional variance
in human reading and spelling behavior, compared to the established measures. Together, the results suggest interactive acti-
vation between phonological and orthographic word representations. They also validate the role of computational analyses
of language to better understand how print maps to sound, and what properties of natural language affect reading complexity.

Keywords Spelling-sound consistency · Sound-spelling consistency · Word naming · Lexical decision · Word recognition ·
Computational modelling

Introduction

The ability to recognize written representations of words
is considered foundational for fluent reading acquisition
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and comprehension. As a pivotal process in literacy word
reading has been the focus of an extensive body of
psycholinguistic research. For skilled adult readers, this
research points to the well-specified representations of
words’ phonology, orthography, and meaning within the
mental lexicon (Perfetti, 2007). While there is agreement
that in order to acquire and master such decoding abilities
readers must learn to map between orthography (print) and
phonology (speech) (Verhoeven & Perfetti, 2017), the spe-
cific properties of writing systems that are most cognitively
relevant to the reading brain have not been entirely spelled
out.

Skilled readers of alphabetic languages are able to
‘cipher’ or decode known and unfamiliar words using
acquired orthographic-phonological mappings (Ehri &
Wilce, 1987), otherwise referred to as grapheme–phoneme
correspondences (GPCs), where ‘graphemes’ refer to sin-
gle letters or letter clusters that correspond to a single
‘phoneme’ or speech sound. Readers are also adept spellers,
and so they have also acquired phoneme-grapheme corre-
spondences (PGCs). To establish these mapping systems
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(GPCs and PGCs), beginning readers take into account the
statistical regularities implicit in the written and spoken
language, and the regularities of the correspondences
between them.

Regularities can occur in multiple guises, for example
in the way that phonemes are combined within spoken
words—phonotactic regularities. For instance, the phoneme
/N/ appears only at the end of words in English, but
at the beginning of words in Swahili. Such phonological
regularities often appear reflected in written words—as
orthotactic and graphotactic regularities. For example, the
letter sequence NG also appears at the end of English words
but not at the beginning, and noticing this regularity can help
the learner map onto the phoneme /N/.

However, orthographic systems are often compromise
solutions between print and sound, as they are the histor-
ical product of layered adaptations, idiosyncratic habits
handed down and becoming conventionalized over cen-
turies, and consequences of language contact. For example,
the Roman alphabet script originally containing 23 letter
symbols was progressively adopted by several languages
in Europe and beyond, with fairly different phonemic sys-
tems and inventories. When the Anglo-Saxons, linguistic
ancestors of English speakers, adopted the Roman alphabet
to correspond with the sounds of their own language, they
had to confront the fact that the alphabet contained only
five graphemes to indicate vowels, while today’s English
varieties contain at least 21 phonemic vowels. Because
of multiple historical facts such as these, for any given
natural language the print-sound mappings—and thus the
underlying statistics upon which learning occurs—can be
more or less regular. For instance, the grapheme NG also
occurs in the middle of English words to map to a different
set of phonemes /ndZ/, as in the word ENGINEER. Or the
grapheme CH can map onto three different phonemes: /k/

as in CHAOS, /S/ as in MACHINE, and /tS/ as in CHINA.
More consistent orthographies, like Finnish or Italian,
exhibit fewer and more regular GPC and PGC patterns than
English, and thus an overall more economical mapping
between print and sound. For instance, the grapheme CH
maps onto a single phoneme /k/ in Italian. Less consis-
tent orthographies contain more quasi-regularities, where
one grapheme can match to more than one phoneme, or
phonemes can have inconsistent spellings.

One direct consequence of varying degrees of con-
sistency is that reading is acquired at a comparatively
slower rate for readers of more inconsistent graphophone-
mic systems (Ellis & Yuan, 2004; Georgiou, Parrila, &
Papadopoulos, 2008; Florit & Cain, 2011; Frith, Wimmer,
& Landerl, 1998). Moreover, within any alphabetic lan-
guage, more consistent words are read faster and more
accurately (Jared, 2002), and this principle also applies
to words within more consistent orthographies (Ventura,

Morais, Pattamadilok, & Kolinsky, 2004). Thus, besides
identifying scripts with more opacity and inconsistencies,
it is important to better understand and identify the degree
of consistency/inconsistency of words within a language’s
script, and how it affects word recognition. In the present
study, we examined to what extent the accuracy and
latency of word recognition from a large collection of adult
participant responses is affected by various measures of
print-speech consistency. While our method was applied to
English and native speakers of English, we documented and
share all procedures and computational pipelines, so that
they could be readily applied to other alphabetic systems in
future studies.

The current study

The first goal in this paper was to review several dimensions
of word consistency proposed in the literature, and subse-
quently assess which best accounts empirically for the ease
or difficulty of word reading by experienced adult readers.
We quantified sublexical features that make English words
more or less regular in orthography-to-phonology and
phonology-to-orthography mappings.

Because these measures have been mostly studied indi-
vidually, we asked whether a word-level combined measure
captures more systematic psycholinguistic behavior in word
identification. Mapping print-sound regularities can occur at
different levels of granularity, both from spelling-to-sound
(e.g., Hino & Lupker, 1996; Stanovich & Bauer, 1978;
Waters & Seidenberg, 1985), and in the opposite direction of
sound-to-spelling (e.g., Balota, Cortese, Sergent-marshall,
Spieler, & Yap, 2004; Chee, Chow, Yap, & Goh, 2020;
Ziegler et al., 1997b). We perused the literature for the var-
ious measures proposed and calculated them for thousands
of words in a large and representative corpus of English.

The second goal of this paper was thus to ask whether the
contribution of orthography-to-phonology and phonology-
to-orthography mappings differ depending on the lexical
task at hand, i.e., when it is based on visual processing
(such as naming or recognizing a written word), and when
it is based on auditory processing (such as recognizing a
spoken word). To do so, we directly compared the degree
of fit of orthography-to-phonology and phonology-to-
orthography consistency measures in predicting behavioral
visual response data from the English Lexicon Project (ELP,
Balota et al., 2007; see Study 1) against data from a new
large auditory and production dataset (the Massive Auditory
Lexical Decision, MALD, Tucker et al. (2019); see Study 2).

In particular, in Study 1, we analyzed behavioral data
from the ELP, which contains behavioral naming response
times and accuracy to a naming task of North American
English. Based on previous findings, we hypothesized that
consistency defined at different granularities shows only



Behavior Research Methods

moderate overlap, and that a combined measure of con-
sistency across granularity and mapping direction should
explain more variance in visual word-recognition perfor-
mance than individual components (Siegelman, Kearns, and
Rueckl, 2020). We found that a composite measure of feed-
back consistency best accounted for word naming latencies.

In Study 2, we applied the same corpus-derived measures
of word consistency to predicting word-recognition perfor-
mance on a different word task—lexical decision—in both
the visual and auditory modalities. Following prior stud-
ies, we hypothesized that feedforward consistency should
facilitate visual lexical decision performance (Jared, 2002),
while feedback consistency should facilitate auditory lexi-
cal decision (Grainger & Ziegler, 2011). However, we found
only feedback consistency measures best predicting visual
lexical decision times.

By the end of Study 2, two considerations became
apparent, and we decided to tackle them in Study 3. One
consideration is that several dimensions of statistical quasi-
regularities between orthography and phonology embedded
in the (English) lexicon may be subtle enough to be unac-
counted for by the measures used in Study 1 and 2, as in gen-
eral they may be difficult to identify entirely in researcher-
driven analysis. Such undetected patterns of sub-regularity
may account for unexplained variance in lexical process-
ing. We thus asked whether a data-driven, machine learning
approach implemented in neural networks could contribute
to improved overall measures of GPC and PGC consis-
tencies for English words. Modeling reading processes
with neural networks has an established tradition since the
seminal work of Seidenberg and McClelland (1989), and
dovetails with a growing body of empirical evidence that
characterizes learning to decode printed words as a form of
statistical learning. Because the neural networks we imple-
mented incorporate algorithms of statistical learning and
were not taught orthography-phonology mappings explic-
itly, they represent valid candidate models of what could
be learned implicitly from printed words, and how a data-
driven approach resolves the mapping problem. In Study 3,
we asked whether this data-driven approach to word consis-
tencies provides a better predictor of lexical decision perfor-
mance than the corpus-derived measures of consistency.

A second consideration for modeling consistency using
neural networks is of theoretical relevance and emerged
from Study 1 and 2. We found that processes of word
identification may rely on resonant bidirectional flows of
information relating print to sound and sound to print,
perhaps more than has been acknowledged in the literature.
This was evident in sound-to-print effects in both the
naming word task and the lexical decision tasks, both visual
and auditory.

Neural networks lend themselves naturally to modeling
interactive effects directly, when forward and backward

information flow is implemented explicitly in architec-
tures that are bidirectionally connected. Therefore, we set
to train bidirectional neural networks on orthographic-
to-phonological mappings (thus simulating reading aloud
visually presented words) as well as on phonological-to-
orthographic mappings (thus simulating spelling spoken
words). The ease and accuracy of the models in solving
the mapping problem after training provides a natural
alternative metric of word consistency: that is, the close-
ness to the target phonological word when the network
is prompted with an orthographic word as input, and vice
versa, the closeness to the target orthographic word when
the network is prompted with a phonological input word.
In a final set of regression analyses aimed at predicting
the human behavioral performance in naming and lexical
decision tasks, we compared the fit of our best research-
driven consistency predictors (from Study 1 and 2) with
the data-driven, neural network consistency predictors
obtained in Study 3. To the extent that these networks are
bidirectionally connected, they should maximally extract
latent quasi-regularities while learning to associate print to
sound and vice versa. As a consequence, their performance
on individual words could be used to predict human lex-
ical decision performance to a greater sensitivity than the
corpus-derived measures of consistency obtained in Study
1 and 2. If neural networks indeed provide a better fit to the
human data, we argue that the consistency metrics extracted
from their training should be considered as a valid holistic
measure of individual words’ consistency in psycholinguis-
tic research. The practical value of this approach should not
go unnoticed, as training neural networks has become rea-
sonably fast with modern computers. Therefore, obtaining
word-level consistency measures across different languages
would be conveniently less resource-intensive, at least
compared to the manual hand-picking procedure necessary
to identify and extract hundreds of language-specific GPC
and PGC mappings (as in Study 1 and Study 2).

Finally, a third goal of this paper was to make available
to the scientific community empirical measures of word
consistency that can be adopted as a benchmark for future
research studies, both experimental and computational,
as well as for educational purposes. We share our data
publicly in the hope that it can be incorporated in current
and next generation psycholinguistic datasets. From an
educator’s standpoint, knowing which sets of words may be
problematic to learn would allow one to order instruction in
line with such challenges, and knowing which patterns of
consistent sub-regularities can be capitalized on would like-
wise help reading instruction. Thus, educational researchers
and educators may find useful the ranking of English words
in terms of their statistical consistency using the single
composite metrics we obtained, when selecting words for
experimental tests or to introduce them at different stages
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of the school curriculum. The resource we offer can thus
have both scientific and educational value.

In sum, in the studies that follow we extracted from
language corpora consistency measures defined across (a)
different sublexical units, and (b) different print-sound
direction (feedforward, feedback) and the goal was to find
what measure best predicts human performance in (c)
three word-recognition tasks. The three studies combined
contribute to characterizing the statistical structure of
English words in relation to mapping print to sound and
sound to print.

Corpus-derived estimates of reading
consistency

In this section, we review dimensions of quasi-regularity
that have been advanced in the literature, and empirically
calculate corpus-derived measures of such regularities for
a sizeable portion of English words. A common way of
framing the concept of regularity is to consider alphabetic
reading as involving identifying words that follow typical
spelling-sound patterns, or rules, but also words that do
not adhere to these rules. Therefore, to balance the two
demands of alphabetic reading, the reader must generalize
the rules to ’consistent’ words, and also learn the exceptions
of ‘inconsistent’ words. This has been extensively examined
in the psycholinguistic literature (Fodor & Pylyshyn, 1988;
Glushko, 1979; Taylor, Plunkett, & Nation, 2011). In one
area of research, the distinction is made between categories
of regular words that follow spelling rules (e.g., MIST),
and irregular words that do not (Castles & Coltheart,
1993, YACHT;). One theoretical approach proposes that
each category is handled by two separate cognitive
processes—applying GPC rules to decode regular words,
or using a mental lexical lookup table to identify irregular
words (Coltheart, Rastle, Perry, Langdon, & Ziegler, 2001).

Other theoretical work considers consistency as a
continuum dimension (Jared, 1997), whereby words can
more or less follow similar pronunciations from simi-
lar spellings. For example, in English, the letter N often
denotes the phoneme /n/, but letter combinations con-
taining non-pronounced letters such as KN and GN also
denote this phoneme as in KNOW, KNEE, GNAT, SIGN,
and so on. From the perspective of an implicit learner,
such mappings are informative sub-regularities rather than
random “exceptions” (Arciuli, 2018). Indeed, degrees of
word consistency affect word naming and lexical decision
times for adult readers, with faster responses for consis-
tent words (Andrews, 1982; Jared, 1997; 2002). Children
also show better accuracy for reading and spelling of
consistent words (Alegria & Mousty, 1996; L’et’e, Peere-
man, & Fayol, 2008; Weekes, Castles, & Davies, 2006).

Thus, consistency as a continuum is an important factor
within the language, just as it is between shallow and deep
alphabetic languages (the orthographic depth hypothesis,
Katz and Feldman (1983)).

In the literature, consistency has been configured in
different ways (Borleffs, Maassen, Lyytinen, & Zwarts,
2017). Here, we aim to review them separately and then
consider them jointly to establish a combined measure of
consistency for English words. In some cases, consistency
of words has been computed at the grapheme level (Berndt,
Reggia, & Mitchum, 1987), whereby the various pronunci-
ations of a grapheme are tabulated across a corpus of words.
For example, graphemes often have more than one possible
pronunciation (e.g., E → /E/, E → /i/, E → /@/), and con-
sistency is defined by the variability of the pronunciations
assigned to a particular graphemic unit (a single letter, A,
or cluster of letters, AY). A word’s consistency can then
be taken as an aggregate of a word’s grapheme consistency
levels. Others have defined consistency at the subword level
for rime spelling patterns (Jared, 1997), which is the vowel
nucleus plus any ending consonants. In this case, there are
“friends” which are words with shared rime spellings and
their pronunciations (HINT, MINT, TINT), and “enemies”
which are words that have similar rime spelling but differ-
ent pronunciations (PINT). A word’s consistency is thus
calculated as a ratio between friends and enemies (Jared,
1997). Still, another proposed way to compute consistency
involves all subword components, namely onset (initial
graphemes coming before the vowel), vowel (nucleus),
and the coda (ending graphemes coming after the vowel;
Kessler & Treiman, 2001).

Thus, different psycholinguistic units have been postu-
lated as the basis for determining word consistency: from
grapheme units, to subsyllabic onset-vowel-coda units, to
rime patterns (as shown in Fig. 1). For the beginning reader,

Fig. 1 An illustration of the hierarchy of psycholinguistic units in
printed words, and how they map to phonological units. Adapted from
Ziegler and Goswami (2005)
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the process of decoding words from these print units to
mapped speech units requires first a segmenting process,
which is non-trivial. Delineating subword patterns is com-
plicated by the fact that units corresponding to a single
phoneme also differ in granularity, or the number of letters
that are contained in the graphemic unit. Subword patterns
become unitized for experienced readers, as demonstrated
when adults are slower to identify individual letters within
a multi-letter grapheme (Rey, Ziegler, & Jacobs, 2000). So
another essential part of learning to read involves this pro-
cess of unitization. On the other hand, the mapping process
involves pronunciation variability which may be affected
by word context, such as non-sequential letter patterns,
like the silent vowel E which can affect the pronunciation
of the previous vowel (e.g., PLANE → /pleIn/, instead
of /plæni/). Both granularity and consistency, then, are
important aspects of language structure that impact reading
acquisition and performance.

As defined above, consistency may depend on the level
of the units for which it is evaluated. For example, rime pat-
terns are held to play an important role in the pronunciation
of printed words (Treiman, Mullennix, Bijeljac-babic, &
Richmond-Welty, 1995). Consider the word PINT (/paInt/).
At the rime level, it is an inconsistent word because it is
pronounced differently than other words sharing its rime
spelling pattern, like MINT (/mInt/) and TINT (/tInt/),
and these two mappings have different probabilities (INT
→ /aInt/, p = 0.04, versus INT → /Int/, p = 0.91).
Yet, at the grapheme level PINT (/paInt/) has an overall
predictability across its graphemes of p = 0.87 (P → /p/,
p = 1.00; I → /aI/, p = 0.49; N → /n/, p = 1.00;
T → /t/, p = 1.00), calculated based on the average of
the ratio of each GPC probability and the most probable
correspondence for that combination (Berndt et al., 1987).

Even in cases where the rime pattern is consistently
pronounced across words (such as AND → /2nd/, p =
0.92), its vowel is often inconsistent across words (A
→ /2/, p < 0.01). Siegelman et al. (2020) address
this important issue for operationalizing consistency, and
suggest alternative methods focused on uncertainty using
information theory, as described below. Here, we compare
different methods previously used for deriving consistency.

We first apply these various definitions of consistency
across a word corpus and examine their interrelations, along
with a new integrated measure of consistency. We then
examine how well the different measures of consistency
predict recorded human response times for visual word
processing (from the ELP database, Balota et al. ; 2007) and
then in Study 2 additionally for auditory processing (from
the MALD database, version 1.1, Tucker et al. (2019)).
The ELP contains behavioral data from 1260 participants

across six different universities who responded to 40,000
words in a visual naming task and a visual lexical decision
task, while the MALD database comprises response data
for 26,793 words and 9592 pseudowords in a auditory
lexical decision task from 231 unique monolingual English
listeners.

Method

Corpus

For the present study, we selected only monosyllabic words
from the Massive Auditory Lexical Decision (MALD)
database (Tucker et al., 2019) (N = 4,347) to derive
and compare their consistency. We used the subtitle-
based SUBTLEX-US (Brysbaert, New, & Keuleers, 2012)
frequency measure to compute frequency-weighted consis-
tency measures. Tucker et al. (2019) previously found that
the SUBTLEX-US frequency count best explains frequency
effects on response times when compared to the Corpus of
Contemporary American English (COCA ; Davies, 2009)
and Google Books n-gram corpus.

The MALD database is a freely available auditory data
set for psycholinguistic research, providing time-aligned
stimulus recordings for 26,793 words and 9592 pseu-
dowords, and response data for 227,179 auditory lexical
decisions from 231 unique monolingual English listeners.

Consistency at different granularities

To capture multiple levels of consistency for each word
more holistically, we computed four sub-level consistency
measures proposed by Berndt et al. (1987), Jared (1997),
Kessler and Treiman (2001), Borgwaldt, Hellwig, and De
Groot (2005), and corresponding to the grapheme, rime,
onset-vowel-coda (OVC), and the onset level, respectively
(see Fig. 1).

Grapheme consistency

The first measure captures word consistency at the
grapheme level (referred to as grapheme consistency from
here onwards ; Berndt et al., 1987), which requires the prob-
abilities of grapheme–phoneme associations to first be com-
puted as they occur in the corpus (e.g., the probability of the
grapheme EW being pronounced as /o/ is, p(/o/|EW) =
0.06). Using these probabilities, the overall consistency
of a word’s pronunciation is defined as the average of the
ratio of each probability (e.g., p(/o/|EW) = 0.06) and
the most probable correspondence for that grapheme (e.g.,
pmax(EW) = 0.94). For example, the overall grapheme
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consistency predictability for the word SEW is calculated
by taking the ratio average of the graphemes S (p(/s/|S) =
0.63 / pmax(S) = 0.63) and EW (p(/oU/|EW) = 0.63 /
pmax(EW) = 0.94), resulting in the value 0.83.

Rime consistency

The second measure is at the orthographic rime level
(referred to as the rime consistency from here onwards;
Jared (1997)). It is calculated as the proportion of
friends and enemies amongst words that are similar
orthographically in that they share vowel and coda spellings
(e.g., the neighborhood: PINT, MINT, TINT). For example,
for a word ending in INT, the rime-consistency was defined
as the number of friends relative to the total number of
friends plus enemies—where a friend is a word with the
same orthographic rime unit and the same pronunciation of
that unit, and an enemy is a word with the same orthographic
rime unit and a different pronunciation.

OVC consistency

The third consistency measure considers the grapheme-
to-phoneme consistencies of onset, vowel, and coda of
words (referred to as OVC consistency from here onwards;
Kessler and Treiman (2001)). Kessler and Treiman (2001)
proposed a new measure termed conditional consistencies
that is calculated on one part of the word when we hold
constant some other part of the word. For example, one
could compute the reading consistency of the vowel letter
I when the coda is NT. A total of nine probability values
(three unconditional and six conditional probabilities) were
computed for each word by taking into account the letter
strings of each of the three parts (onset, vowel, coda) and
the combinations of any of the two parts (e.g., onset-vowel,
onset-coda) of the syllable.

Onset consistency

The last measure focuses on the onsets of words and com-
puted the consistency for word-initial letter-to-phoneme
correspondences. Onset-consistency has been found to
influence reaction times in reading tasks (Glushko, 1979;
Treiman et al., 1995) and plays an important role in lexical
access tasks (Marslen-Wilson & Welsh, 1978; Marslen-
Wilson & Zwitserlood, 1989). Here, we considered the
different pronunciations of first letters as in Borgwaldt
et al. (2005) and computed the extent to which words with
the same first letter also have the same first phoneme.
For example, English words that begin with the letter W
may have a different first phoneme: /w/ as in WING,
p(/w/|W) = 0.94; /r/ as in WRAP, p(/r/|W) = 0.05; and
/h/ as in WHOM, p(/r/|W) = 0.06.

From probabilities to information-theoretic
measures

The conditional probabilities described above were later
converted to surprisal, entropy, and information gain (IG)
bits—indices borrowed from information theory (see also
Siegelman et al., 2020).

Surprisal captures the unpredictability of a given
grapheme-to-phoneme correspondence and, unlike proba-
bility, makes fine distinctions between low and very low
probabilities via a non-linear logarithmic transformation:

Si = −log2p(i) (1)

where p(i) is the probability of an event i (e.g.,
p(/o/|EW)). Contrary to probability, higher surprisal
values represent more surprising pronunciations, and it
has been found to predict behavioral indices of language
processing difficulty better than probability (e.g., Smith and
Levy, 2013).

Entropy captures the unpredictability in the distribution
of possible pronunciations of an event (e.g., how unpre-
dictable a grapheme is given all its possible pronunciations)
and is computed summing the surprisal of each event (Si)
multiplied by the probability of the event’s occurrence
[p(i)]:

E = −
∑

i

p(i) ∗ log2p(i) (2)

Entropy was first introduced by Shannon’s information
theory (Shannon, 1948), and earlier psycholinguistic studies
have used entropy to investigate processing difficulty in
human sentence comprehension (e.g., Levy, 2008).

Lastly, IG was computed for each word by finding the
difference between entropy and surprisal (E − S), which
quantifies the predictability of a grapheme-to-phoneme
correspondence given the unpredictability of the grapheme.
All analyses were performed on IG bits from here onwards.

Feedforward and feedback consistency

Typically, the mapping from pronunciation to spelling is less
consistent than the mapping from spelling to pronunciation,
and this may be one reason why spelling tasks are more
difficult than reading tasks. Studies of word identification
reveal that reading times are longer for words containing
a sequence of phonemes that can be spelled in multiple
ways. For example, it has been reported that adults are
slowed when reading a word like HURL because other
words that HURL rhymes with, such as GIRL and PEARL,
have different spellings of the same rhyme (e.g., Lacruz &
Folk, 2004; Stone, Vanhoy, & Van Orden, 1997; Ziegler,
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Montant, & Jacobs, 1997a; Perry, 2003). This form of
inconsistency in the sound-to-letter direction, as opposed to
letter-to-sound direction, is often referred to as the feedback
consistency effect, which was first demonstrated by Stone,
Vanhoy, and Van Orden (1997).

The theoretical implication of these findings suggests
that reading words does not depend solely on converting
an orthographic form into a phonological representation,
but the process also involves a feedback mechanism from
phonology to orthography to verify that the phonological
representation can be spelled in that orthographic form.
It is therefore believed that spelling and reading are
intimately related and may influence each other during word
processing. That is, both reading and spelling tasks can be
affected by the combination of feedforward and feedback
consistency.

The procedure used to compute the four-level consis-
tency measures (i.e., grapheme, rime, OVC, onset) in the
GPC direction was repeated using PGCs (for spelling).
Separate GPC and PGC conditional probabilities were cal-
culated using the same sound-letter components in the
corpus. Taking the word PINT for example, its GPC con-
ditional probability (INT → /aInt/, p = .04) and PGC
conditional probability (/aInt/ → INT, p = 1.0) derived
using the rime consistency method were based on the same
rime and phonemes, differing only in the direction of corre-
spondence.

Word-level consistency

Once sub-level consistency measures have been computed,
we further derived three word-level measures using
composite score, principal component, and least consistent
unit by taking all four sub-level measures into account, with
a higher score representing higher overall word consistency.

Composite score

As mapping print-sound regularities can occur at different
levels of granularity, consistency has, too, been defined
differently in the literature, which often resulted in
inconsistent findings. Therefore, it is necessary to combine
the various unit-level measures to obtain a combined index
of word consistency. One method is to use a simple mean
(unweighted) composite score that averages across the four
unit-level measures.

Principal component analysis

Second, we made use of principal component analysis
(PCA) for dimensionality reduction, and extracted the first
principal component (PC1) for a maximal amount of total
variance in the variables. Our results showed that the PC1

of feedforward consistency (FF PC1) has an eigenvalue of
16, where 73% of the variance was extracted, and the PC1
of feedback consistency (FB PC1) accounted for 84% of the
variance (eigenvalue of 76). Therefore, PC1s were sufficient
to account for most variance in the data.

Least consistent unit

The previous two composite and PC1 measures are
susceptible to extreme values. This is especially profound
when a unit (e.g., rime) of a word is highly consistent or
inconsistent, while its consistency measured at other units
are less extreme. As such, it is important to determine if
an observed consistency effect is simply due to the word-
level measure being skewed by its most or least consistent
unit. To verify this possibility, we extracted the lowest value
among all unit-level measures of each word as a word-level
consistency measure of its own.

Corpus analyses

This section contains descriptive statistics of the MALD
corpus (Tucker et al., 2019). To ascertain that these mea-
sures may in fact capture different aspects of consistency,
we plotted a correlation matrix of each measure against the
others (see Fig. 2) with a description of the labels provided
in Table 1 and pre-scaling descriptive statistics presented in
Table 2.

Results show that while all of the consistency mea-
sures were significantly related, there was a wide range of
the correlation coefficients. For example, forward OVC-
and grapheme-level measures were moderately correlated

Fig. 2 Correlation matrix among the feedforward and feedback
consistency measures computed at the unit and word levels. The
darker blue color denotes a stronger positive correlation, and the
darker red color denotes a stronger negative correlation. Numbers
indicate correlation coefficients, and empty cells indicate no significant
correlation was found (p > .05)
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Table 1 Description of the variables used in the present study

Label Description

FF Rime Feedforward rime consistency (IG)

FF Onset Feedforward onset consistency (IG)

FF OVC Feedforward OVC consistency (IG)

FF Graph Feedforward grapheme consistency (IG)

FF Least Lowest score among all four feedforward consistency measures (IG)

FF Composite Composite score of feedforward consistency measures (IG)

FF PC1 First principal component (PC1) of feedforward consistency measures

FB Rime Feedback rime consistency (IG)

FB Onset Feedback onset consistency (IG)

FB OVC Feedback OVC consistency (IG)

FB Graph Feedback grapheme consistency (IG)

FB Least Lowest score among all four feedback consistency measures (IG)

FB Composite Composite score of feedback consistency measures (IG)

FB PC1 First principal component (PC1) of feedback consistency measures

OrthND The number of orthographic neighbors (one glyph edit away)

PhonND The number of phonological neighbors (one phone edit away)

Frequency Word frequency (SUBTLEX-US corpus; Brysbaert, New, & Keuleers, 2012)

[r(4345) = 0.554, p < .001], whereas rime level showed
a weaker correlation with grapheme-level consistency
[r(4345) = 0.119, p < .001], suggesting that consistency
measured at different sub-levels are related but not identical
entirely. Expectedly, many of the feedforward consistency
measures were only weakly to moderately related to the
feedback consistency measures as they were measured at
a different direction [at the rime level, r(4345) = 0.189,
p < .001; OVC level, r(4345) = 0.330, p < .001; and

Table 2 Descriptive statistics before scaling

Mean Median SD Range Skewness

FF Rime − 0.27 0.00 1.24 15.37 − 5.54

FF Onset − 0.23 0.00 1.37 19.57 − 5.68

FF OVC − 1.58 0.00 3.72 39.71 − 2.84

FF Graph − 0.35 0.24 2.09 25.65 − 3.92

FF Least − 2.24 − 0.42 3.70 37.97 − 2.74

FF Composite − 0.00 0.24 0.66 6.31 − 3.28

FF PC1 − 0.00 1.56 3.99 41.60 − 2.96

FB Rime − 1.05 0.00 2.48 19.17 − 2.51

FB Onset − 0.10 0.02 1.13 17.87 − 7.30

FB OVC − 4.95 − 2.41 8.20 108.60 − 3.08

FB Graph − 2.08 − 0.75 3.94 31.00 − 1.72

FB Least − 5.90 − 3.60 7.87 105.04 − 3.23

FB Composite 0.00 0.23 0.73 8.91 − 2.89

FB PC1 0.00 2.64 8.71 105.34 − 2.82

OrthND 17.37 14.00 13.11 77.00 1.16

PhonND 51.32 40.00 40.55 240.00 1.19

Frequency 5.69 5.50 2.21 13.88 0.58

grapheme level, r(4345) = 0.384, p < .001; whereas
only the onset level showed high correspondence between
feedforward and feedback consistency, r(4345) = 0.699,
p < .001;]

Our results indicate that the different approaches to
quantifying consistency are not closely aligned. With regard
to the derived composite scores, all feedforward consis-
tencies were positively correlated with the feedforward
composite score, but to different degrees for the different
levels of consistency. Such correlations were greatest when
measured at the OVC level [r(4345) = 0.817, p < .001],
followed by grapheme level [r(4345) = 0.715, p < .001],
rime level [r(4345) = 0.585, p < .001], and onset level
[r(4345) = 0.536, p < .001]. Interestingly, for the feed-
back composite score, the same ordering was observed
with the strongest correlation found at the OVC level
[r(4345) = 0.880, p < .001], followed by grapheme level
[r(4345) = 0.726, p < .001], rime level [r(4345) = 0.722,
p < .001], and onset level [r(4345) = 0.576, p < .001].

Study 1: Consistency effects on word naming

In order to establish the extent to which different measures
of consistency were differentially predictive of actual
human reading behavior, we turned to a dataset of human
word naming, the English Lexicon Project (ELP, available
at http://elexicon.wustl.edu; see Balota et al. (2007)). From
the ELP, we derived 119,214 unique naming reading times
(RTs) by 457 different subjects, for the subset of 4207 words
shared by the ELP and MALD datasets.

http://elexicon.wustl.edu
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Procedure

Trial-level RT data were obtained from the ELP database,
and trials with an incorrect response were first excluded.
Trials with RTs that deviated three times less than the
median absolute deviation (MAD) were quantified as “too
fast” responses. Likewise, slow outliers were defined as
those with RTs three times greater than the MAD. After
excluding incorrect trials (∼ 3.63% of all trials), “too
fast” responses (∼ 0.76%), and slow outliers (∼ 5.30%),
statistical analyses were performed on the remaining ∼
90.30% of trials.

Item-level regression analyses (LM) were conducted on
the mean RTs for 4207 words for the visual naming task
that were obtained from the ELP. The dependent variables
consisted of z-scored RTs, averaged across participants for
each word. Each participant’s raw response times were first
standardized using a z-score transformation, and the mean
z-score for all participants presented with a particular word
was then computed for that word (Balota et al., 2007).
For the analyses of the ELP database, word frequency
values were logarithmic transformed to correct for skewness
before analysis, similar to that in Balota, Cortese, Sergent-
marshall, Spieler, and Yap (2004).

In addition to the lexical variables (e.g., OrthND,
PhonND) introduced in our corpus analyses, two binary
variables were added to code the initial phoneme of each
word. These variables were based on features found to
affect response times in Balota et al. (2004), but we coded
them into two binary variables to reduce our number of pre-
dictors in the regression models. The variableOnset Coding
denotes the initial phoneme’s presence or absence (1 =
presence, 0 = absence) of any of the following phonological
features: nasal, fricative, stop, affricative, and liquid, to
control for the variance associated with voice key biases in
speeded pronunciation (Balota et al., 2004).

Across age-group and tasks (i.e., naming and lexical
decision), Balota et al. (2004) showed that the effects of the
12 phonemic features of onset on RTs were consistent with
the exception of voicelessness. Specifically, voicelessness
was found to facilitate RTs in naming tasks, but slow RTs
in lexical decision tasks. To avoid introducing noise to the
Onset Coding binary variable, we coded voicelessness as a
separate binary variable (Voice) that denotes if the initial
phoneme is voiced or unvoiced (1 = voiced, 0 = unvoiced).

Analytic approach

First, to compare all the combined and individual measures
of consistency, we constructed 14 different predictive mod-
els with word naming RTs as the dependent variable, and
one of the 14 measures of consistency included as inde-
pendent predictors in each model. All LM models included

seven lexical variables (i.e., Frequency, Num Phones,
OnsetCoding, OrthND, PhonND, Voice, and Word Length)
and one of the derived consistency measures (i.e., feedback
and feedforward consistency measures at the rime, onset,
OVC, grapheme, and combined levels) as predictors. A
baseline model that included only the lexical variables was
also added. All predictor variables were standardized (mean
= 0, SD = 1) prior to modelling.

Second, based on the model comparison results, we
subsequently conducted a two-step hierarchical regression
approach to determine if the best word-level measures
accounted for additional variance in the word naming RTs
over conventional lexical variables. Prior to running the
model, multicollinearity was examined using the Variance
Inflation Factor (VIF) statistics, with lower VIF values
indicating low correlations among variables. In Step 1
of the regression analysis, word frequency, number of
phonemes, onset coding, number of orthographic neighbors,
number of phonological neighbors, onset voicelessness,
and word length (Frequency, Num Phones, OnsetCoding,
OrthND, PhonND, Voice, and Word Length) were entered
into the LM model. Depending on the model comparison
results, either word-level composites (FB Composite and
FF Composite), PC1s (FB PC1 and FF PC1), or least con-
sistent unit (FB Least and FF Least) were entered into the
LM model in Step 2, in addition to the previously entered
variables.

Third, dominance analyses (DA) were utilized to directly
compare the importance and unique contribution of the
individual sub-level consistency measures as predictors
in the same model, while eliminating the issue of mul-
ticollinearity. DA relies on computing R2 estimates for
all possible subset models. Since our models contained
a total of eight sub-level consistency measures (i.e., four
each from the feedforward and feedback directions), we
needed 255 different subset models for all levels of com-
binations: 8 single predictor models, 28 two-predictor
models, 56 three-predictor models, 70 four-predictor mod-
els, 56 five-predictor models, 28 six-predictor models, eight
seven-predictor models, and one eight-predictor models.
A general dominance estimate (Azen & Budescu, 2003)
is achieved if a predictor’s unique contribution is greater
across the average of all subset models as compared with
the competitor predictor.

All statistical analyses were computed with R version
4.0.3 (R Core Team, 2020). The function lm in R was used
to fit the models using ordinary least squares. Simultaneous
information-theoretic model comparison was done using
the model.sel function in the MuMin package (Barton &
Barton, 2015), which provides estimates of the corrected
Akaike information criterion (AIC) that can be used to
determine the best model. Dominance analyses were subse-
quently conducted using the R package dominanceanalysis
(Navarrete & Soares, 2020).
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Results and discussion

The best-fitting model was found to be the one containing
the composite predictor FB Composite, providing the
lowest AIC value (an established information-theoretic
measure of model complexity) (Table 3). This finding
suggests that expert readers utilize phoneme-to-grapheme
consistency information to achieve fluent word reading,
corroborating the feedback consistency effects found in
previous word naming studies (Balota et al., 2004; Yap &
Balota, 2009). Prior to regression analysis, we tested for
multicollinearity in the independent variables with the VIF
statistic and found no issues (Fig. 3). Generally, a VIF larger
than 5 suggests moderate influence, and a value larger than
10 is seen as a strong indicator of multicollinearity (Fox &
Weisberg, 2010).

The two-step hierarchical analysis revealed that
both feedforward and feedback composite scores were
good predictors of human naming performance, albeit
FB Composite explained more variance in the data than
FF Composite (Table 4). This suggests that both feedfor-
ward and feedback consistency effects are present while
reading words out loud. In the subsequent regression models
we compared the consistency measures across granularity
with the composite measures, because the 14 models were
the same but for one predictor (one of the 14 measures of
consistency we derived from the corpus) allowing us to rank
the models. Further dominance analysis showed that the
consistency measure derived at the OVC and grapheme level

Table 3 Comparison of regression models predicting visual naming
performance

Model beta df AICc Delta AICc

FB Composite − 0.239 10 10005.42 0.00

FB PC1 − 0.221 10 10048.44 43.02

FB Least − 0.216 10 10056.85 51.43

FB OVC − 0.213 10 10058.66 53.24

FB Rime − 0.154 10 10147.08 141.66

FB Onset − 0.128 10 10173.20 167.78

FF Composite − 0.124 10 10178.65 173.23

FB Graph − 0.143 10 10187.92 182.50

FF Graph − 0.109 10 10198.46 193.04

FF Least − 0.108 10 10201.67 196.25

FF PC1 − 0.098 10 10213.21 207.79

FF OVC − 0.085 10 10228.17 222.75

FF Onset − 0.074 10 10240.72 235.30

FF Rime − 0.059 10 10251.23 245.81

Baseline 9 10270.75 265.33

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit

Fig. 3 VIF values of all predictors in the ELP dataset, where the
accepted threshold is set at < 5

contributed the most to both the feedback and feedforward
consistency effects observed, respectively (Fig. 4).

The finding of a feedforward consistency effect is not
surprising as extensive findings have shown that spelling-
to-sound correspondence plays a role in naming task
performance (e.g., Hino & Lupker, 1998; Monsell, Doyle,
& Haggard, 1989; Plaut, McClelland, Seidenberg, & Pat-
terson, 1996; Seidenberg, 1992; Van Orden, Pennington, &
Stone, 1990). It is notable that the composite measure of

Table 4 Results of hierarchical regression analyses for visual naming
task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [0.05, 0.10]

Word Length 0.28** [0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

FB Composite − 0.22** [− 0.25,− 0.19]

FF Composite − 0.03* [− 0.06, − 0.01]

R2 = .372**
95% CI[.35, .39]
� R2 = .042**
95% CI[.03, .05]

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01
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Fig. 4 Average variance accounted for in naming task performance by
all subset models

feedforward consistency explained more variance in word
naming than any of the unit-level feedforward consistency
measures, suggesting that these previously used metrics
each capture human performance only partially. Feedback
consistency effects, on the other hand, have been less sys-
tematically observed across studies. Studies have sometimes
failed to replicate feedback consistency effects on naming
latencies (e.g., Massaro & Jesse, 2005; Peereman, Content,
& Bonin, 1998), which were likely due to uncontrolled vari-
ables. In a more recent megastudy, Cortese, Yates, Schock,
and Vilks (2018), after controlling for surface and lexical
variables, found a feedback consistency effect in naming
but not lexical decision tasks. Their findings suggest that
semantic information has a more critical role in generating
lexical decision outputs than the phonological code. In tasks
that rely on orthographic-to-phonological decoding such
as naming, initial orthographic inputs can trigger a reso-
nance effect from the phonological-to-orthographic levels
as a result of interactive activation, causing interference
at the orthographic level for feedback inconsistent words.
Our results further demonstrated that feedback consistency
has a reliable effect on human naming performance, and
it has the strongest effect when derived at the OVC level,
followed by rime and onset level. In terms of magnitude,
it is worth noting that Cortese et al. (2018) also found a
stronger rime- than onset-consistency effect in the feedback
direction, similar to the one observed in our analyses.

Although many previous studies have found evidence
that reading aloud involves phonological processing, it is
mostly found for low-frequency words, which does not
explain why feedback consistency had a stronger effect
than feedforward consistency in our present study. In line
with the bi-modal interactive activation model (Frost &
Katz, 1989, BIAM;) that was initially designed to account

for automatic involvement of phonological information
during visual word recognition, one explanation would
be that initial orthographic inputs activate phonological
representations, which in turn influence the course of visual
word recognition via their interaction with orthographic
representations.

Study 2: Consistency effects on lexical
decision across modalities

While both word naming and lexical decision involve lexical
access and word recognition, lexical decision tasks (LDT)
do not overtly require phonological articulation. As such,
it is informative to consider whether word consistency
impacts mainly the lexical access phase, or the phonological
output phases of word processing. Thus, in Study 2 the same
consistency measures derived in Study 1 are used here to
predict lexical decision performance. Comparing the results
to that of Study 1 will enlighten the processing that is most
impacted by word consistency.

In fact, while feedforward consistency plays a role
in naming task performance, its role in lexical decision
has been less well-defined, with the majority of findings
suggesting that feedforward consistency has no effect on
lexical decision (e.g., Hino & Lupker, 1996; Stanovich &
Bauer, 1978; Waters & Seidenberg, 1985), except when
phonological processing is emphasized by the task. More
recently, however, when feedforward consistency was mea-
sured at the onset level, its effects were observed in both
naming (e.g., Yap & Balota, 2009; Cortese & Schock, 2013)
and lexical decision (e.g., Yap & Balota, 2009; Balota et al.,
2004), albeit less consistently and more weakly than when
measured at the rime level. These recent results suggest that
consistency operationalized at different granularities can
lead to different prediction outcomes.

Secondly, following many previous findings that the
consistency of printed words holds cross-modal effects,
we also compare lexical decision performance in visual
formats (judgements of printed words and pseudowords)
with auditory formats (judgements of spoken words and
pseudowords). As consistency has been reported to affect
auditory lexical decision (Pattamadilok, Morais, Ventura, &
Kolinsky, 2007; Ventura et al., 2004; Petrova, Gaskell, &
Ferrand, 2011; Ventura, Morais, & Kolinsky, 2007; Ventura
et al., 2004), we further examine whether such effects are
isolated to feedback consistency (sound-to-spelling), which
we expect given the sound-based input of the task.

To compare differential effects of directional consistency
(feedforward vs feedback) on different modalities of
word recognition (visual, auditory) we use our combined
consistency metrics in each direction to predict the ELP
visual lexical decision times on the one hand, and MALD
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auditory lexical decision times on the other. As noted above,
we predicted that our feedforward consistency measure
would explain the most variance in visual LDT, as found
in previous studies (Kessler, Treiman, & Mullennix, 2007),
whereas feedback consistency would explain most variance
in the auditory LDT following reliable effects reported
across studies (e.g., Chng et al., 2019).

Procedure

After excluding incorrect trials (∼ 8.84% of all trials), “too
fast” responses (∼ 0.36%), and slow outliers (∼ 6.70%),
statistical analyses were performed on the remaining ∼
84.09% of trials. Item-level regression analyses were
conducted on the mean z-scored RTs for 4207 monosyllabic
words for the visual lexical decision task that were obtained
from the ELP.

Results and discussion

Entering each consistency measure one-by-one into the
individual regression models, we found a similar pattern
as previous results with FF Composite and FB Composite
models performed the best among models in the same
direction (Table 5). When both feedforward and feedback
composite consistency measures entered the regression
model in a two-step hierarchical analysis, only the feedback
composite score was significant, with feedback consistent

Table 5 Comparison of regression models predicting visual lexical
decision performance

Model beta df AICc Delta AICc

FB Composite − 0.093 10 9950.91 0.00

FB Rime − 0.086 10 9952.08 1.16

FB Least − 0.088 10 9955.90 4.99

FB PC1 − 0.079 10 9963.19 12.28

FB OVC − 0.076 10 9964.74 13.82

FB Onset − 0.045 10 9980.20 29.29

FF Composite − 0.040 10 9983.08 32.17

FF Graph − 0.032 10 9986.36 35.44

FF Rime − 0.032 10 9986.39 35.48

FF Least − 0.031 10 9986.94 36.03

FB Graph − 0.038 10 9986.96 36.05

FF PC1 − 0.031 10 9987.01 36.10

FF OVC − 0.027 10 9988.55 37.63

Baseline 9 9991.33 40.42

FF Onset − 0.012 10 9992.39 41.48

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit

Table 6 Results of hierarchical regression analyses for visual lexical
decision task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency −0.64** [− 0.66, − 0.61]

Voice −0.01 [− 0.04, 0.01]

Onset Coding 0.01 [− 0.02, 0.03]

Word Length 0.07** [ 0.03, 0.11]

Num Phones −0.20** [− 0.24, − 0.16]

OrthND 0.03 [− 0.01, 0.07]

PhonND −0.05* [− 0.09, -0.01]

R2 = .374**
95% CI[.35, .39]

Step 2

FB Composite −0.09** [− 0.12, − 0.06]

FF Composite 0.00 [− 0.03, 0.03]

R2 = .380**
95% CI[.36, .40]
Δ R2 = .006**
95% CI[.00, .01]

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01

items producing faster latencies (beta = −0.09, 95%
CI[−0.12, −0.06]) (Table 6). After controlling for lexical
variables, adding feedback consistency still resulted in a
small but significant increase in the variance accounted for
(Δ R2 = .006**). Finally, unlike in Study 1, our dominance
analysis revealed that FB Rime contributed the most to
the feedback composite score, followed by FB OVC and
FB Onset (Fig. 5).

Fig. 5 Average variance accounted for in visual lexical decision task
performance by all subset models
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Previous equivocal findings have suggested that feedback
consistency influences naming but not lexical decision (e.g.,
Balota et al., 2004; Cortese et al., 2018; Yap & Balota,
2009), while others have found its effects in lexical decision
(e.g., Lacruz & Folk, 2004; Perry, 2003; Stone et al., 1997).
This discrepancy of feedback consistency results may be
due to that studies have used different subsyllabic units to
calculate consistency. The present study compared feedback
consistency measured at different granularity levels and
found supporting evidence that the rime-level consistency
effects are stronger than that measured at the onset level.
When measured at a smaller granularity level, FB Graph
(i.e., feedback grapheme-level consistency) accounted for
much less average variance than FB Onset, as shown in
the results of the dominance analysis. This is perhaps
due to English readers becoming attuned at a young
age to within-word contexts that disambiguate the small-
scale grapheme–phoneme inconsistencies (which abound)
in favor of larger scale spelling-to-sound correspondences
that provide greater consistency (Treiman et al., 1995). Our
results thus suggest that consistency effects have to be
examined by taking grain sizes into account.

Taken together with previous findings of feedback con-
sistency effects in similar tasks (e.g., Lacruz & Folk, 2004;
Perry, 2003; Stone et al., 1997), it is possible that visual
lexical decision relies on both phonological and seman-
tic information. In terms of the triangle model of read-
ing (from parallel distributed processing, PDP, neural net-
work models), the process of making a lexical decision
may involve orthographic-to-semantic and phonological-to
semantic connections. However, because the relationships
between orthography and semantics are more arbitrary than
those between orthography and phonology (see for a dis-
cussion of writing systems ; Frost, 2005), the activated
phonological representations by orthographic input would
also serve as an input to the semantic system, forming
an orthographic-phonological-semantics interaction. Sim-
ilar to when performing a naming task, the activation
of the phonological code would, in turn, either facilitate
or interfere with the orthographic representations depend-
ing the word’s feedback consistency. This orthographic-
phonological-orthographic resonance effect is thought to
be less profound in lexical decision tasks, probably due
to the lexical decision being made on the basis of seman-
tic information unlike a naming response that is driven
by phonological information. This is demonstrated in the
two-step hierarchical regression results of studies 1 (nam-
ing) and 2 (lexical decision) where the composite consis-
tency measures contributed more unique variance in the
former task (i.e., an increased R2 by 0.042 vs. 0.006,
respectively).

Fig. 6 Average variance accounted for in auditory lexical decision task
performance by all subset models

Predicting auditory lexical processing in theMALD
dataset

Procedure

After excluding incorrect trials (∼ 9.18% of all trials), “too
fast” responses (∼ 0.69%), and slow outliers (∼ 6.31%),
statistical analyses were performed on the remaining ∼
83.83% of trials. Item-level regression analyses were
conducted on the mean z-scored RTs for 4341 monosyllabic
words for the auditory lexical decision task that were
obtained from the MALD (Figs. 6 and 7).

Fig. 7 VIF values of all predictors in the MALD dataset, where the
accepted threshold is set at < 5
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Predicting visual word recognition from the ELP
dataset: Visual lexical decision task

Results and discussion

Contrary to the equivocal findings with visual lexical
decision tasks discussed earlier, feedback consistency
effects have been consistently reported and replicated in
the auditory modality of the task (e.g., Ch’ereau, Gaskell,
& Dumay, 2007; Miller & Swick, 2003; Pattamadilok
et al., 2007; Perre & Ziegler, 2008; Slowiaczek, Soltano,
Wieting, & Bishop, 2003; Taft, Castles, Davis, Lazendic,
& Nguyen-Hoan, 2008; Ventura et al., 2007; Ziegler et al.,
2004; Ziegler & Muneaux, 2007; Ziegler, Muneaux, &
Grainger, 2003). It is commonly found that adults are faster
and more accurate in auditory lexical decisions tasks for
feedback consistent words. In the present study, we too
found feedback consistency effects with our composite
score (FB Composite; beta = −0.074, Delta AIC = 6.00)
(Table 7). Note that, however, all feedback word-level
models have only a small difference in their AIC values,
and hence there is a lack of evidence to distinguish the
best word-level predictor (FB PC1 vs. FB Composite,
Delta AIC = 4.11). Among all the consistency measures,
FB OVC (beta = −0.083) was found to be the best predic-
tor of auditory lexical processing, which is likely due to the
OVC being the most salient phonological units in English.

Table 7 Comparison of regression models predicting auditory lexical
decision performance

Model beta df AICc Delta AICc

FB OVC − 0.083 10 12192.93 0.00

FB PC1 − 0.081 10 12194.82 1.89

FB Least − 0.078 10 12196.13 3.20

FB Rime − 0.073 10 12196.80 3.87

FB Composite − 0.074 10 12198.93 6.00

FF Rime − 0.042 10 12209.88 16.95

FF Least − 0.038 10 12211.41 18.48

FF OVC − 0.031 10 12213.30 20.37

FF Composite − 0.028 10 12214.12 21.20

FB Onset − 0.029 10 12214.13 21.21

FF PC1 − 0.027 10 12214.47 21.54

Baseline 9 12215.64 22.71

FF Onset − 0.015 10 12216.75 23.83

FF Graph 0.012 10 12216.97 24.04

FB Graph − 0.010 10 12217.37 24.44

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit

In a developmental study by Ziegler and Muneaux
(2007), they showed that auditory lexical decision perfor-
mance was not initially influenced by feedback consistency,
however, as soon as literacy developed, feedback consis-
tency effects were observed with its magnitude predictable
by the reading level of the child. In terms of neural network
models of reading, this implies that the processing of visual
and spoken words is tightly linked through a single network
that connects both the orthographic and phonological lay-
ers. Thus, in order for the network to process a spoken word
via phonological code activation, the corresponding ortho-
graphic code has to be coactivated as well, due to the strong
orthographic-phonological associations.

Perre and Ziegler (2008) explained that the permanent
orthographic-phonological connections are likely formed
during literacy learning, and competition occurs at the
orthographic layer when a word has multiple spellings
(i.e., feedback inconsistent words). However, because the
mapping between orthographic sub-units and semantic
features is less systematic, phonology plays a more
important role in accessing word meaning (e.g., Amenta,
Marelli, & Sulpizio, 2017; Tyler, Voice, & Moss, 2000).
When participants were presented with homophones and
non-homophonic words in a lexical task, it is typically found
that responses for homophones are slower as compared to
non-homophonic words (e.g., Ferrand & Grainger, 2003;
Pexman, Lupker, & Jared, 2001; Besner & Davelaar, 1983;
Coltheart, Davelaar, Jonasson, & Besner, 1977; McCann,

Table 8 Results of hierarchical regression analyses for auditory lexical
decision task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.02 [− 0.05, 0.01]

Voice − 0.11** [− 0.15, − 0.08]

Onset Coding − 0.04* [− 0.07, − 0.01]

Word Length 0.00 [− 0.06, 0.05]

Num Phones 0.14** [ 0.09, 0.19]

OrthND − 0.06* [− 0.12, − 0.01]

PhonND 0.13** [ 0.08, 0.17]

R2 = .027**
95% CI[.02, .04]

Step 2

FB Composite − 0.08** [− 0.11, -0.04]

FF Composite 0.00 [− 0.03, 0.04]

R2 = .032**
95% CI[.02, .04]
Δ R2 = .004**
95% CI[.00, .01]

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01
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Besner, & Davelaar, 1988; Mcquade, 1981; Vanhoy & Van
Orden, 2001; Ziegler, Jacobs, & Kluppel, 2001; Rubenstein,
Lewis, & Rubenstein, 1971), which further suggests that
phonological recoding of a printed word plays an important
role in word recognition.

We also note that across the different datasets that were
modeled, the regression model for auditory lexical decision
accounted for a relatively modest amount of variance even
with the inclusion of the composite consistency measures
(R2 = .032) (Table 8). This could be due to the lack of
semantic variables in the model, as these have been found to
account for more incremental variance in lexical decision,
and which is consistent with lexical decision’s emphasis on
semantic information.

Study 3: Data-drivenmeasures of
consistency

Systematic resonance between orthographic and phonolog-
ical units in reading has been observed and put forward pre-
viously (e.g., Frost & Katz, 1989; McClelland & Rumelhart,
1981; Stone & Van Orden, 1994; Van Orden & Goldinger,
1994), suggesting that information does not flow in only
one direction. In an explicitly interactive model of reading,
words that are consistent in both feedforward and feedback
directions guarantee stabler and faster learning, which also
leads to fast activation due to consistent symmetrical rela-
tions that can be resolved more quickly as compared to
asymmetrical ones—i.e., words that are consistent only in
one direction but not the other (Tuller, Case, Ding, & Kelso,
1994; Van Orden, 2002; Van Orden, Jansen op Haar, &
de Bosman, 1997; Van Orden, Pennington, & Stone, 1990;
Ziegler, Van Orden, & Jacobs, 1997c).

Our findings thus far are consistent with such an inter-
active account. First, in Study 1, we found both feedfor-
ward and feedback consistency effects in a visual naming
task, supporting the notion that phonology is involved in
visual word recognition, and both inconsistent orthography-
phonology and phonology-orthography mappings can slow
the process of visual word recognition. Second, in Study 2,
we found feedback consistency effects in both visual and
auditory lexical decision tasks, implying that feedback con-
sistency plays a role in not only reading but also in spoken
word recognition. Taken together, the role of phonological
computation appears crucial for print processing and lexi-
cal access (see for a review Frost, 1998), and this is likely
due to orthographic-phonological resonance and phonolog-
ical information being the primary mechanism by which we
retrieve meaning. Thus, the findings offer a demonstration
that the orthographic and phonological systems are closely
interconnected and the flow of information is bidirectional,
regardless of whether the input is visual or auditory.

In Study 3, we aimed to further validate the bidirectional
interaction hypothesis between orthographic and phonolog-
ical systems by modelling it explicitly in a computational
neural network that learned to read words. We expected
that consistency effects are detectable in the learning pro-
cess of a reading/writing model, and emerge from statistical
regularities present in the language, in particular, the corre-
spondence between words’ orthographic and phonological
forms. To emulate this process, we employed a machine
learning regime and derived a proxy for the difficulty of
learning each word in our corpus.

A neural network model was trained with either an
orthography-phonology or phonology-orthography map-
ping task, corresponding to reading aloud visually presented
words, and spelling spoken words, respectively. Our focus
is on the PDP framework developed by Rumelhart, Hinton,
and McClelland (1986) that provides natural accounts of
the exploitation of multiple, simultaneous, and often mutual
constraints. To examine the ease with which the model can
generate the target output for a word, we measured the
closeness of the model’s output to the target by calculating
the mean squared error (MSE) that serves as a reflection of
how difficult it was for the model to learn the GPC/PGC
mappings of each word.

Researchers have used also MSE as a measure of
response time in PDP models (e.g., Seidenberg & McClel-
land, 1989; Monaghan & Pollmann, 2003), but this
approach has since been supplemented by response time
measures, such as the amount of continuous time needed for
output unit activations to settle (e.g., Monaghan, Shillcock,
&McDonald, 2004; Zorzi, Houghton, & Butterworth, 1998;
Seidenberg & Plaut, 1998).

MSE is an ideal proxy measure for spelling-sound
consistency because of its link to the concept of cross-
entropy from information theory (Kullback & Leibler,
1951), which measures the similarity of two probability
distributions. Since our goal of modelling is to identify
words with different levels of spelling-sound and sound-
spelling consistency, then the cross-entropy of consistent
words is expected to be lower than that of inconsistent
words, as the model can minimize the cross-entropy of
consistent patterns faster (i.e., in a lesser number of training
epochs) than inconsistent patterns (e.g., Plaut et al., 1996).
Here, we expect relatively fast and stable responses for
consistent compared to inconsistent words, and, therefore,
consistent words should exhibit a lower MSE as compared
to inconsistent words.

At completion of network training, such MSE measures
of individual word consistency were then entered as an
independent variable in linear models predicting ELP visual
LDT and MALD auditory LDT. Finally, we compared the
linear models containing the data-driven neural network
predictors with the linear models containing the corpus-
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derived metrics of consistency, and ascertained which
models fit the human data best.

Model architecture

The model’s architecture is most similar to the connectionist
triangle model of Harm and Seidenberg (2004) with the
addition of an orthographic attractor to encode information
about the orthographic structure of English, as well as
bidirectional connections between layers. A semantic layer,
which is part of the original triangle model, was not
included, as our task was to assess spelling-to-phonology
and phonology-to-spelling consistency.

The model was built using the free software LENS
(Rohde, 1999) and has four types of layers: orthographic,
phonological, hidden, and clean-up/attractor units (see
Fig. 8). The hidden layer mediated the computations
between orthographic and phonological codes, allowing the
network to encode more complex and latent mappings.
In addition, the orthographic and phonological layers
were each connected to clean-up layers, creating attractor
networks that could settle into a stable pattern over training
(Harm & Seidenberg, 1999). All connections between the
connected layers were bidirectional.

An attractor network can repair partial or degraded
patterns of activity by pulling nearby points toward the
stable attractor points, and by turning noisy patterns to
familiar representations (Harm & Seidenberg, 1999). The
purpose of introducing clean-up units to the orthographic
and phonological layers is so that the network can encode
orthographic and phonological regularities. With it, the
connections between orthographic and phonological layers
can be less precise as the model can rely on the attractors
to complete the pattern (Harm & Seidenberg, 2004). Some
connectionist reading models trade off model stability for a
higher sensitivity to new inputs (Hebb, 1949), by foregoing

Fig. 8 Architecture of the reading and spelling connectionist model
implemented in Study 3

the attractor algorithm and clean-up units (e.g., Lambon
Ralph & Ehsan, 2006; Ellis & Lambon Ralph, 2000).
We opted to emphasize model stability, following similar
connectionist models for reading.

We used a position sensitive slot-based vowel-centered
format for both orthographic and phonological representa-
tion (e.g., Harm & Seidenberg, 1999; 2004). The ortho-
graphic layer was composed of 260 units, corresponding to
ten letter position slots × 26 possible letters. Words were
coded as vowel-centered, such that the fourth slot was filled
with the left-most vowel of a word (e.g., mince → m
i n c e , (e.g., Harm & Seidenberg, 2004; Monaghan,
Chang, Welbourne, & Brysbaert, 2017). A word’s phonol-
ogy was represented with nodes coding phoneme features
(eight phoneme position slots × 28 possible phonologi-
cal features = 224 units). Each phoneme was encoded by
a binary vector of 28 phonological features (e.g., anterior,
approximant, back, consonantal, etc.) taken from PHOIBLE
(Moran & McCloy, 2019), an online repository of cross-
lingual phonological data. The value of 1 represented the
presence of that feature and 0 represented its absence. A
list of phonemes and their respective phonological features
used in the present work can be found in the Open Science
Framework (OSF) repository for this project (https://osf.io/
wdzqc). Full documentation of the model architecture and
source code can be found in the GitHub repository (https://
github.com/alfred-lim/BiPDP).

Training procedure

The network was trained to learn the mappings in either
one of the two directions, print-to-sound (reading task) or
sound-to-print (spelling task). Training was done separately
and exclusively in one direction because we wanted to
ensure that the two effects were not confounded, as may
occur with interleaved training. In addition, each of the
reading and spelling models was trained using two measures
of word-frequency: one based on type frequencies and the
other based on token frequency, resulting in a total of
four models being trained. We reasoned that the different
frequency-weighted training approaches would produce
MSEs that are analogous to token and type consistencies
derived from a corpus.

When a phonological word was presented to the
network’s phonological layer (e.g., to simulate a word
spelling task), its activation would spread to the hidden
layer, followed by the orthographic layer. Conversely, in
the reading task, an orthographic word would be input
to the orthographic layer, and its activation cascaded
to the phonological layer via the same hidden units.
Bidirectional connections between orthographic-hidden-
phonological layers provide an opportunity for the output
layer to influence the rise of activation of units in the input

https://osf.io/wdzqc
https://osf.io/wdzqc
https://github.com/alfred-lim/BiPDP
https://github.com/alfred-lim/BiPDP
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layer. For example, when the word PINT is presented to
the network in the reading task, the orthographic nodes
for PINT will spread its activity to the corresponding
hidden nodes, and then to the phonological nodes through
feedforward activation. However, the orthographic nodes for
PINT will also receive activation from phonological nodes
via the hidden layer as a result of feedback connections,
simulating the resonance effect described in the previous
studies.

All models were trained with a learning rate of 0.05 using
a back-propagation through time (BPTT) algorithm (Harm
& Seidenberg, 1999; Plaut, McClelland, Seidenberg, &
Patterson, 1996) with input integration and a time constant
of 0.5. The weight connections were updated based on
cross-entropy error computed between the target and the
actual activation of the output units.

The input pattern of each word in the corpus was clamped
and presented for six time samples, then in an additional six
time samples the model was required to reproduce the target
pattern of the word. Both the orthography-to-phonology and
phonology-to-orthography target mappings were taken from
the MALD corpus. A node was considered activated if its
output was greater than 0.75 and deactivated if less than
0.25, while intermediate values were considered incorrect.
In other words, an output was scored as correct when
the target nodes were active with a value >= 0.75, and
concurrently the other nodes were inactive (<= 0.25).

Results and discussion

The goal of modeling was to inspect the relevance of using
the model’s MSEs as a measure of consistency, which we
referred to as data-driven consistency (in contrast to the
corpus-derived measures of Study 1 and 2). As we are
interested in capturing the relative ’ease of learning’ for
each word in terms of MSE, the models were trained until
performance reached a reasonable plateau for all tasks and
training regimes to avoid over-fitting. Further, we used a
cut-off point of 100,000 epochs as a stopping criteria instead
of an accuracy criteria, in order to prevent lower accuracy
models from having more exposure to the stimuli.

Accuracy over the course of the training is depicted in
Fig. 9. Both the reading and spelling models trained using
type frequency showed higher levels of accuracy at the end
of training (98.9 and 74.3% correct words, respectively)
as compared to those trained using token frequency (89.1
and 65.9% correct words). This is likely due to all words
having the same chance of being presented to the model
in type-frequency training wherein the network was able
to better capture regularities among inputs as compared to
the token-frequency training. Also, the models were able
to learn the orthography-to-phonology mappings better than
phonology-to-orthography, likely as a result of there being

Fig. 9 Network accuracy scores on the reading (orthographic-to-
phonology) and spelling (phonology-to-orthographic) tasks that were
trained using either type or token word frequency

many more ways to spell a given phoneme in English
than there are different ways of pronouncing a particular
grapheme (e.g., Goswami & Bryant, 1990).

To examine the impact of word consistency on token-
weighted MSEs in the two tasks, we divided the words into
two equal-sized groups based upon either their feedforward
or feedback composite scores using median as a cut-off
value: inconsistent (N = 2173) and consistent (N =
2173). When compared using MSEs derived from the same
direction as the nature of the task, reading (i.e., feedforward)
MSEs were higher for words that are feedforward-
inconsistent [M = .0039, SD = .0082] than feedforward-
consistent [M = .0019, SD = .0043; t (4344) = 9.75, p <

.001], and spelling (i.e., feedback) MSEs were worse for
feedback-inconsistent [M = .0047, SD = .0048] than
feedback-consistent words [M = .0015, SD = .0025;
t (4344) = 27.47, p < .001], indicating that the models
were able to capture consistency effects in both directions.

To further validate if the computed data-driven MSE is
appropriate as a proxy measure of print-speech consistency,
we conducted a new set of regression analyses on the
three sets of human performance data with the addition of
feedforward (FF MSE) and feedback MSE (FB MSE). To
include a parsimonious set of predictors in these models,
only the previous best individual consistency measures
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(i.e., OVC) and the composite consistency measures
(FF Composite and FB Composite) were compared.

Predicting visual naming latencies in the ELP dataset

After controlling for lexical variables, model selection
analysis based on AIC revealed that all single-predictor
models performed better than the baseline (Table 9). Even
though the models trained with type frequency resulted in
higher accuracy of neural network performance than token
frequency training overall, the obtained MSE-consistency
measures from the token frequency training arose as better
predictors of human word naming (FF MSE, AIC = 10117;
FB MSE, AIC = 10130) as compared to type frequency-
training (FF Type MSE, AIC = 10155; FB Type MSE,
AIC = 10211). This dovetails with previous findings
whereby consistency weighted by token frequency is more
predictive of human performance in naming tasks as
compared to type frequency (Jared, McRae, & Seidenberg,
1990; Lee, Tsai, Su, Tzeng, & Hung, 2005). Furthermore,
similar to the composite consistency effects observed in
Study 1, the feedback MSE model had a lower AIC
than its feedforward counterpart. However, the previous
FB Composite model from Study 1 still performed better
than the MSE model in predicting visual word naming.

To determine if the new data-driven consistency mea-
sures accounted for additional variance in the word naming
RTs over conventional lexical variables and the corpus-
derived composite measures, we conducted a three-step
regression analysis where lexical variables were entered
into the regression model in Step 1, followed by compos-
ite consistency measures (FB Composite, FF Composite)
in Step 2, and finally the data-driven consistency measures
(FB MSE, FF MSE) in Step 3. The final model significantly
predicted naming latencies, accounting for 39% of the vari-
ance (R2 = .387, 95% CI[.36, .41]). As seen in Table 10,
apart from the control variables, the final model contained

Table 9 Comparison of regression models predicting visual naming
performance

Model beta df AICc Delta AICc

FB Composite − 0.239 10 10005.42 0.00

FF MSE 0.163 10 10116.76 111.34

FB MSE 0.177 10 10130.47 125.05

FF Type MSE 0.137 10 10155.46 150.04

FF Composite − 0.124 10 10178.65 173.23

FB Type MSE 0.115 10 10211.03 205.60

Baseline 9 10270.75 265.33

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit

Table 10 Results of hierarchical regression analyses for visual naming
task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [ 0.05, 0.10]

Word Length 0.28** [ 0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

FB Composite − 0.22** [− 0.25, − 0.19]

FF Composite − 0.03* [− 0.06, − 0.01]

R2 = .372**
95% CI[.35, .39]
Δ R2 = .042**
95% CI[.03, .05]

Step 3

FB MSE 0.07** [0.04, 0.10]

FF MSE 0.11** [0.08, 0.13]

R2 = .387**
95% CI[.36, .41]
ΔR2 = .015**
95% CI[.01, .02]

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01

three statistically significant predictors: feedback compos-
ite, feedback MSE, and feedforward MSE. The addition
of MSEs contributed significant improvement in the model
(ΔR2 = .015, 95% CI[.01, .02]).

Predicting visual lexical processing in the ELP dataset

Similar to the regression models above for visual word
naming latency, all single-predictor models performed
better than the baseline for visual lexical decision latency
(Table 11). Further, MSEs derived from token frequency
weighted training were better predictors (FF MSE, AIC
= 9957; FB MSE, AIC = 9928) than from type
frequency weighted training (FF Type MSE, AIC = 9964;
FB Type MSE, AIC = 9982). In each case, feedback
MSE also yielded a better model than feedforward MSE.
Compared to the corpus-derived consistency measures, the
data-driven MSE measures outperformed these in both
feedforward and feedback directions. This differs from the
prediction of visual word naming reported above, where the
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Table 11 Comparison of regression models predicting visual lexical
decision performance

Model beta df AICc Delta AICc

FB MSE 0.116 10 9928.41 0.00

FB Composite − 0.093 10 9950.91 22.50

FF MSE 0.076 10 9957.40 28.99

FF Type MSE 0.067 10 9963.82 35.41

FB Type MSE 0.047 10 9982.16 53.75

FF Composite − 0.040 10 9983.08 54.67

Baseline 9 9991.33 62.92

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit

corpus-derived feedback consistency measures showed best
fit (Fig. 7).

For the three-step regression analysis of visual lexical
decision RTs, the final model accounted for 39% of the
variance (R2 = .387, 95% CI[.36, .41]), and the addition

Table 12 Results of hierarchical regression analyses for visual lexical
decision task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.64** [−0.66, −0.61]

Voice − 0.01 [−0.04, 0.01]

Onset Coding 0.01 [−0.02, 0.03]

Word Length 0.07** [ 0.03, 0.11]

Num Phones − 0.20** [− 0.24,− 0.16]

OrthND 0.03 [− 0.01, 0.07]

PhonND − 0.05* [− 0.09,− 0.01]

R2 = .374**
95% CI[.35, .39]

Step 2

FB Composite − 0.09** [− 0.12,− 0.06]

FF Composite − 0.00 [− 0.03, 0.03]

R2 = .380**
95% CI[.36, .40]
Δ R2 = .006**
95% CI[.00, .01]

Step 3

FB MSE 0.08** [ 0.05, 0.11]

FF MSE 0.05** [ 0.02, 0.07]

R2 = .387**
95% CI[.36, .41]
ΔR2 = .007**
95% CI[.00, .01

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01

of MSEs contributed significant improvement in the model
(ΔR2 = .007, 95% CI[.00, .01]) (Table 12).

Predicting auditory lexical processing in the MALD dataset

Minor differences were observed when comparing the
results between auditory and visual lexical decision tasks.
First, both the type-weighted MSE models performed worse
than their token-weighted counterparts, further supporting
that consistency should take token frequency into account
(Table 13). Second, FB MSE (AIC = 12131) is ranked
higher than FB OVC (AIC = 12193, Delta AIC = 61.65)
that was found to be the best performing model in Study
2. Lastly, despite that the final three-step model accounting
for only a modest 5% of the variance (R2 = .048, 95%
CI[.01, .02]), the addition of MSEs still improved the model
significantly (�R2 = .016, 95% CI[.01, .02]) (Table 14).
We note that at the second step where composite scores
were added to the models, improvement was negligible at a
modest 0.4% for auditory lexical decision, lower than that
when MSEs were added at the final step.

In sum, across all three data sets, token-weighted
consistency measures continued to demonstrate better
predictive modeling results as opposed to those that were
type-weighted. This is an expected outcome as consistency
effects should reflect the influence of statistical patterns
across many similar parts of words and, therefore, the most
difficult items both in acquisition and processing are those
with rare print-sound correspondences that are encountered
infrequently (Jared, 2002; Lee et al., 2005). Through the
token frequency weighted training using the subtitle-based
corpus counts, the connections came to be weighted in such
a way that reflects the appropriate relationships between
orthography and phonology while taking into account how

Table 13 Comparison of regression models predicting auditory lexical
decision performance

Model beta df AICc Delta AICc

FB MSE 0.150 10 12131.28 0.00

FF MSE 0.084 10 12186.75 55.47

FB OVC − 0.083 10 12192.93 61.65

FB Composite − 0.074 10 12198.93 67.65

FF OVC − 0.031 10 12213.30 82.02

FF Composite − 0.028 10 12214.12 82.84

FB Type MSE 0.028 10 12215.14 83.86

FF Type MSE 0.024 10 12215.22 83.94

Baseline 9 12215.64 84.36

Note—Models are ranked by AICc. For each model, the number of
parameter (df) and the Delta AICc are shown. Models with lower AICc
values provide better fit
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Table 14 Results of hierarchical regression analyses for auditory
lexical decision task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.29** [− 0.33, − 0.26]

Voice − 0.13** [− 0.16, − 0.09]

Onset Coding − 0.05** [− 0.08, − 0.02]

Word Length − 0.02 [− 0.08, 0.03]

Num Phones 0.08** [0.03, 0.13]

OrthND − 0.01 [− 0.06, 0.04]

PhonND 0.13** [0.08, 0.18]

R2 = .099**
95% CI[.08, .11]

Step 2

FB Composite − 0.08** [− 0.11, − 0.04]

FF Composite 0.00 [− 0.03, 0.04]

R2 = .032**
95% CI[.02, .04]
Δ R2 = .004**
95% CI[.00, .01]

Step 3

FB MSE 0.14** [0.10, 0.17]

FF MSE 0.04* [0.01, 0.07]

R2 = .048**
95% CI[.03, .06]
ΔR2 = .016**
95% CI[.01, .02]

Note—beta indicates the standardized regression weights. CI indi-
cates the lower and upper limits of a confidence interval, respectively.
* indicates p < .05. ** indicates p < .01

often readers and listeners encounter a particular type when
using the language.

Token-weighted MSEs from both feedforward and feed-
back directions improved all three-step regression mod-
els, albeit to different extents, even when the corpus-
derived composite consistency measures have already been
included. The most marked improvement was observed in
predicting auditory lexical decision performance (1.6%),
followed by visual naming (1.5%), and visual lexical deci-
sion (0.7%). Although the model improvements contributed
by MSEs were the lowest in visual lexical decision among
all three tasks, it still contributed explained variance over
and above the corpus-derived composite measures. Similar
patterns of results were observed across all three tasks, indi-
cating that MSE is a better measure of consistency than the
conventional ones in capturing consistency effects in lexical
decision tasks.

The auditory lexical decision task is somewhat novel in
the word-recognition literature, and findings suggest that
the visual and auditory lexical decision tasks are based
on different processes (e.g., Rodd, Gaskell, & Marslen-
Wilson, 2002; Ernestus & Cutler, 2015; Brysbaert, Stevens,

Mandera, & Keuleers, 2016; Segui, 1994; Ferrand et al.,
2018). Indeed, our findings of word frequency and length
effects in visual lexical decision task are consistent with the
results of previous studies. Specifically, faster responses are
elicited in visual lexical decision by high-frequency words
(e.g., Balota et al., 2007; Brysbaert et al., 2016; Cortese &
Khanna, 2007; Keuleers, Lacey, Rastle, & Brysbaert, 2012;
Yap & Balota, 2009) and longer words (e.g., New, Ferrand,
Pallier, & Brysbaert, 2006; Ferrand et al., 2010; Balota
et al., 2007; Brysbaert et al., 2016; Keuleers, Diepen-
daele, & Brysbaert, 2010). These lexical variables do not
contribute to response speed in auditory modality lexical
decision tasks, however, as seen in our stepwise regression
analyses. This same pattern was found by Ferrand et al.
(2018) who compared visual and auditory lexical decision
times in a megastudy and found that the proportion of vari-
ance explained by word frequency is lower in the auditory
(11%) than visual (45%) modality. The effect size of word
length was also lesser in the auditory as compared to visual
modality in their megastudy. Our finding of not only lesser
but absent word frequency and length effects on the audi-
tory lexical decision task, we reason, is likely due to the
exclusion of multisyllabic words that led to lower statistical
power (larger confidence intervals). This is indeed a limi-
tation of the present study, but was necessary as there is no
reliable way to compute the different sub-level consistency
measures for multisyllabic words without degrading the
amount of information that the composite scores provide.

General discussion

For reading science, the definition of consistency in terms
of print-speech mappings is central to theorizing about
reading across scripts (the orthographic depth hypothesis;
Katz and Feldman, 1983) and reading acquisition (the
psycholinguistic grain size theory; Ziegler & Goswami,
2005). In this paper, we defined consistency across
different levels or unit sizes (granularity) for the quasi-
regular orthography of English, and we compared these
different unit-measures in terms of their interrelations,
their combination, as well as the ability to predict human
oral and silent reading, in addition to auditory word
recognition that does not overtly require accessing print
information. Specifically, we investigated the role of print-
to-speech (feedforward) and speech-to-print (feedback)
word consistency, derived across levels of granularity,
in tasks of word naming, and visual and auditory
lexical decision. We further contrasted these corpus-based
measures of consistency with the implicit learning of these
statistical regularities by neural network models to unveil
which approach better accounts for human performance.
Notably, the measures of consistency across various unit
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sizes were only moderately correlated with each other,
while a composite of these measures accounted for variance
in task performance over and above traditional word
characteristics, like frequency and length. The main results
can be summarized as follows: (1) robust feedforward and
feedback consistency effects were obtained in word naming;
(2) feedback consistency (but no feedforward consistency)
effects were found in both visual and auditory lexical
decision; (3) using a metric derived from neural network
models (MSEs) as a proxy to consistency, both feedforward
and feedback consistency effects were found across all three
human tasks.

With regard to the first finding from Study 1 on word
naming, the present results align with previous studies
of quasi-regular orthographies such as English, where the
rime’s consistency has been found to be a salient unit in
reading monosyllabic words (De Cara & Goswami, 2002;
Treiman & Kessler, 1995; Ziegler & Goswami, 2005), and
onset consistency has been reported as a reliable predictor of
word recognition (Balota et al., 2004; Treiman et al., 1995;
Yap & Balota, 2009). While these sublexical units of onset-
rime structure are important in early reading development,
being accessible to children prior to their ability to reliably
access phonemes (Goswami & Bryant, 1990; Treiman,
1992), the present results show that other sublexical units
contribute more to adult word reading. Specifically, the
onset-vowel-coda structure’s consistency was shown in
the dominance analysis to account for more variance in
adult naming times, and this was particularly the case for
feedback consistency. Consistency measured at the rime and
onset level had thus far led to disagreement regarding the
effects of feedback consistency on word naming and visual
recognition. For example, Balota et al. (2004) reported that
feedback consistency of both the onset and rime affected
naming latencies with results being more robust for naming
than for lexical decision, while the opposite pattern was
observed by Ziegler, Montant, and Jacobs (1997a). Later
studies of visual lexical decision reported no feedback
consistency effects (Kessler, Treiman, & Mullennix, 2008;
Peereman, Content, & Bonin, 1998; Ziegler, Petrova, &
Ferrand, 2008). One possible factor that may account for
such conflicting results is how feedback consistency was
defined or measured, as most of these previous studies
have treated feedback consistency as a binary measure: If
the rhyme spelling of a word is pronounced differently in
other words, then the word is considered as inconsistent
(e.g., Balota et al., 2004; Lacruz & Folk, 2004; Peereman
et al., 1998; Stone et al., 1997; Ziegler et al., 1997a).
Another concern is that the rime may not be the only
unit that is relevant to pronunciation (Jared et al., 1990),
as previous studies have shown that the pronunciation of
vowels can vary systematically with the identity of the
preceding consonant (Treiman, Kessler, & Bick, 2003;

Treiman, Kessler, Zevin, Bick, & Davis, 2006). By taking
all unit sizes into account here, the current studies show
that feedback consistency reliably predicted word naming
performance, as well as lexical decision seen in study 2,
albeit with smaller effects. Considering the issues with
defining consistency narrowly at one level of granularity,
it is important for future studies to examine consistency at
various grain sizes and treat it as a continuous variable with
graded effects (e.g., Treiman et al., 1995; Jared et al., 1990).

With regard to the second main finding from Study 2,
feedforward consistency did not impact lexical decision
times as it did word reading times. This contradicts
our initial prediction that visual lexical decision, but
not auditory lexical decision, would depend in part
on orthography-to-phonology consistency, with slower
responses to printed words that could be pronounced
in different ways, even though the task only requires
lexical confirmation and not articulation of the word.
While some investigators had previously argued that lexical
decision should not show feedforward consistency effects
since the task requires no pronunciation or reliance on
phonology (Jared et al., 1990), this reasoning opposes
the dynamic systems framework that suggests there
are interactive connections between orthographic and
phonological units (e.g., Stone & Van Orden, 1994; Van
Orden & Goldinger, 1994). Further, studies have provided
evidence of feedforward consistency effects in lexical
decision tasks (e.g., Yap & Balota, 2009; Balota et al., 2004;
Stone et al., 1997; Ziegler et al., 1997a). If information
flows not only from spelling to sound but also from
sound back to spelling, one would expect to find not
only feedback but also feedforward consistency effects
in lexical decision tasks. However, neither the composite
measure of feedforward consistency (in the hierarchical
regression models) nor any of the feedforward measures
across different grain sizes (from the dominance analysis)
showed significant contribution to lexical decision response
times. On the other hand, our prediction that feedback
consistency would contribute to auditory lexical decision
exclusively was partially supported. Only the feedback
composite and not the feedforward composite contributed
to auditory lexical decision times, similar to the results
for visual lexical decision. Thus, phonology-to-orthography
feedback consistency comes into play when adult readers
either hear or see a stimulus word/pseudoword. In contrast
to these composite consistency measures derived from the
corpus, a consistency metric derived from the PDP neural
network model in Study 3 revealed both feedforward and
feedback consistency effects in both lexical decision tasks,
regardless of modality.

Regarding the third finding from Study 3, MSE-derived
estimates of feedforward word consistency accounted
for more variance than the corpus-derived measures of
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feedforward consistency in all three tasks. In particular,
the effect of feedforward composite consistency that was
observed in the naming task disappeared when MSEs were
added to the final regression model, suggesting that the
print-sound information that visual word naming relied
upon was not fully captured in the composite consistency
measure. In comparing feedback consistency effects, the
corpus-derived composite main effect on auditory lexical
decision times disappeared when MSEs were added to the
final model. Whereas this was not observed in the two
visual modality tasks, naming and lexical decision, where
the corpus-based feedback consistency effects remained
significant, though weaker, when MSEs were added. This
suggests that the data-driven MSEs can fully account for
the conventional consistency measures computed based
on parts of words, at least for auditory lexical decision.
Together, the present study demonstrates that the data-
driven MSE obtained from a bidirectional PDP model could
be a more reliable estimator of print-sound and sound-print
consistency than that based on the properties of a word’s
neighborhood. Moreover, token-based MSE estimates best
predict performance of adult readers. This is likely due to
accounting for the frequency that readers come across a
given word, thus indicating that consistency should take
token frequency into account.

To summarize, the present work demonstrated how con-
sistency can be computed over different parts of the word
as a continuous composite measure, and can show sta-
ble feedback consistency effects across naming, visual and
auditory lexical decision tasks. The robust feedforward
and feedback consistency effects observed across the three
tasks in Study 3 indicate interactivity between a word’s
phonology and orthography in word-recognition tasks, con-
sistent with the hypotheses made in some previous stud-
ies (e.g., Coltheart et al., 2001; Van Orden & Goldinger,
1994; Van Orden et al., 1990). These findings support sev-
eral predictions made based on interactive networks (e.g.,
Interactive Activation model, (McClelland & Rumelhart,
1981); Parallel-Distributed Processing model, Seidenberg
and McClelland (1989)). First, feedback consistency effects
can be found across naming and lexical decision tasks
(e.g., Lacruz & Folk, 2004; Pecher, 2001), indicating that
phonology is involved in the process of word recogni-
tion. Second, consistency matters in both orthography-to-
phonology and phonology-to-orthography directions, sup-
porting the cross-code consistency account proposed by
Grainger et al. (2005). Third, feedback consistency effects
can occur in both visual (e.g., Stone et al., 1997; Ziegler
et al., 1997a) and spoken word recognition (e.g., Ziegler
and Ferrand, 1998; Ventura et al., 2004; Miller & Swick,
2003).

Implications for models of reading

The present results are novel with regard to quantifying
quasi-regularity in the orthography and phonology map-
ping for English words through the implicit learning process
of a neural network. Moreover, mechanisms involved in
word recognition may be better elucidated by the current
neural network models, which include fully bi-directional
links amongst units in the three layers: orthographic, hid-
den, and phonemic. This contrasts with previous recur-
rent networks (e.g., Plaut et al., 1996) which simulated
the reading direction flow of information (orthography to
phonology) where feedback connections were restricted to
phonology-to-hidden units. Our models encapsulate a func-
tional ’reader’ who is not only versed in reading but also
spelling and writing—thus bidirectional information flows
in the reading direction, but also the spelling direction for
our models. We assume a close relation between reading and
spelling processes which mutually affect each other, such
that naming a word using orthography-to-phonology links
also involves feedback of the retrieved phonological repre-
sentation to verify the word’s orthographic form, or spelling.

Specifically, we utilized one of the two main classes
of computational reading models—the PDP model (Harm
& Seidenberg, 2004), which makes no distinction between
lexical and sublexical processing, instead instantiating
phonology-orthography mappings through largely emergent
co-activated patterns across granularities. We used back-
propagation through time (BPTT; ; Werbos, 1990) algorithm
for training our recurrent network where the states of units
in the network change smoothly over time in response to
influences from other units. When the activity in the input
layer at time t − 1 is feedforwarded, all hidden units receive
the corresponding input at time t through the feedforward
orthography-hidden connections. In a similar fashion, when
hidden layer activity at time t − 1 is feedforwarded through
connections between the hidden and output layers, all
output units at time t are affected. Even when a model is
trained only on a reading task, the existence of feedback
connections would cause the activity in the output layer at
time t −1 to influence the hidden activity at time t . Once all
timesteps have passed, a single backward pass through all
of the ticks is performed and error derivatives are injected
to update the connection weights.

Without advocating for one or the other main classes of
computational reading models (PDP or DRC, dual-route
cascaded model, Coltheart, Curtis, Atkins, and Haller, 1993;
Coltheart et al., 2001)—we draw distinctions between these
architectures based on the granularity at which orthographic
and phonological representations are mapped. In contrast
to PDP, DRC models do distinguish lexical from sublexical
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processing, by instantiating a set of pre-determined print-
to-speech correspondence rules at the sublexical level and
interconnected lexicons (for orthographic and phonological
representations) at the lexical level. This accounts for
reading of both irregular and regularly spelled words. To
account for the feedforward consistency effect on naming,
an architecture combining the DRC with a PDP network for
sublexical processing was developed as the Connectionist
Dual Process model (CDP++, Perry et al., 2007; 2010).
The sublexical network involves two layers that are trained
to associate graphemes with phonemes through exposure to
real words, just as in PDP, however the mapping process is
feedforward, and there are conflicting results as to whether
the mechanism accounts for feedback effects (Ziegler et al.,
2008; Yap & Balota, 2009). This challenges the idea of a
bidirectional coupling as necessarily involving a feedback
mechanism in the sublexical route for feedback consistency
effects to manifest.

Our PDP model was inspired by the resonance theory
of word perception put forward by Van Orden and
Goldinger (1994), whereby orthographic representations
communicate bidirectionally with both phonological and
semantic representations as the initial activation spreads
across the network following presentation of a printed word
stimulus. In such an interactive model, both feedforward and
feedback consistency of an input determine how fast and
stable activation propagates through the network (see also
the cross-code consistency account proposed by Grainger
et al. (2005)).

When our PDP model explicitly implemented bidirec-
tional connections between orthography and phonology, the
network’s error during reading aloud (i.e., orthography-
to-phonology) was higher for more feedback-inconsistent
words. This feat suggests a resonance effect such that word
naming reorganizes both feedforward and feedback connec-
tions in a way that optimizes the subregularities between
the orthographic and phonological layers in both ways.
Such optimization still has to consider the quasi-regular
nature of mappings. When a feedback inconsistent word is
presented to the bidirectional reading model in a naming
task during the training phase, the activated phonological
representations will, via feedback connections, re-activate
orthographic representations for several word bodies. These
orthographic representations will constrain each other and
the competition will slow the learning process for feedback
inconsistent words, resulting in a higher reading MSE. In
the context of a lexical decision task where semantic knowl-
edge is necessary, the activated phonological and seman-
tic representations in a triangle model (e.g., Plaut et al.,
1996) will similarly re-activate the orthographic representa-
tions via feedback connections. Although our current model
lacked a semantic layer to capture such interactions between
orthography-semantic and phonology-semantic levels, the

present results indicate that the resonance between ortho-
graphic and phonological units plays a role in word recogni-
tion and, across tasks, this bidirectional activation between
orthography and phonology is likely captured in several
different grain sizes of representation that are difficult to
measure as one composite variable.

Implications for theories of reading and reading
development

Our general finding of word consistency effects on adult
word recognition suggests that these emerge over different
levels of granularity, and they are bidirectional, from print
to sound and vice versa. This has several implications for
developing readers. First, because consistency effects are
present in skilled adult readers, it is important to identify the
degree of consistency for words that are part of early literacy
instruction. As young children have to acquire print-sound
correspondences, in many cases on an implicit learning
basis, their exposure to printed words must facilitate this
learning process. In the interest of ranking words by their
degree of consistency, the extant literature has focused on
different definitions of consistency—from rime patterns,
to single graphemes. Thus, an accounting of consistency
across granularities would be a more useful resource.

Secondly, in spite of a general consensus that reading
and writing skills tend to co-develop in young children,
only a few theories of reading development directly address
this dynamic, interactive process (Frith, 1985; Bosman and
Van Orden, 1997; Lerkkanen, Rasku-puttonen, Aunola, &
Nurmi, 2004; Kim, Petscher, Wanzek, & Al Otaiba, 2018).
There are more recent calls for an integrated science of
reading and writing (Graham, 2020). A better understanding
of the joint development of these literacy skills may
contribute directly to how teachers can plan lessons in
spelling such that both letter(s)-sound and sound-letter(s)
patterns can be reinforced, along with higher level literacy
skills (Graham, 2020). Educators could avail themselves of
the consistency measures obtained in the current studies for
the purpose of identifying specific sets of words that are
more challenging to learn to read and spell, or to rank words
according to their consistency metrics and use this as a basis
for when to introduce words into the literacy curriculum.
Reading experts have long recognized that teaching spelling
to early readers helps them develop more robust mental
representations (Moats, 2005; Snow& Juel, 2005; Andrews,
Veldre, & Clarke, 2020).

While the current study examined effects of feedback and
feedforward consistency and bidirectional orthographic-
phonological resonance on adult reading performance,
future research could take a similar approach to examine
developmental trajectories according to these effects. Using
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a neural network modelling approach would be fruitful
in understanding related phenomena of consistency, word
frequency and age of acquisition effects in a development
model where lexical representations and neighborhood
effects would be dynamic. Capturing these effects in a
development model could flesh out print exposure mech-
anisms such as lexical tuning (Castles, Davis, Cavalot,
& Forster, 2007), or lexical restructuring with increased
vocabulary (Goswami, 2000; Walley, Metsala, & Garlock,
2003). This work would have interdisciplinary relevance to
various fields at the intersection of cognitive science and
education.

Supplementary information

Uni- vs. bi-directional models

We tested two sets of models to determine if bidirectional
connections are needed in order to capture orthography-

to-phonology (O2P) or phonology-to-orthography (P2O)
mapping consistency when trained on a unidirectional
task (i.e., reading or spelling). All models had the same
architecture so that their results are comparable, and
differed only in whether the task-irrelevant weights were
frozen at its initial value during training (Fig. 10). In the
first sets of unidirectional models, both the reading and
spelling models had their task-irrelevant P2O and O2P’s
weights frozen, respectively, to simulate the dynamic of a
unidirectional network. In the second sets of bidirectional
models, however, none of the weights were frozen and
models were allowed to change the weights in both O2P and
P2O directions during training.

Across all three data sets, results showed that MSEs
extracted from bi-directional models yield a lower AIC and
thus a better fit for human RTs than that from uni-directional
models, when compared in the same direction (i.e., feedback
vs. feedback and feedforward vs. feedforward MSEs)
(Tables 15, 16, and 17). This shows that bi-directional

Fig. 10 Architecture of the reading and spelling connectionist models implemented. The top and bottom panels depict unidirectional and
bidirectional models, respectively. Red solid lines indicate trainable weights; and blue dashed lines indicate frozen weights
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Table 15 Comparison of using uni- and bi-directional models’ MSEs
to predict visual naming performance

Model beta df AICc Delta AICc

FF Bi MSE 0.163 10 10116.76 0.00

FB Bi MSE 0.177 10 10130.47 13.72

FB Uni MSE 0.175 10 10134.66 17.90

FF Uni MSE 0.140 10 10156.20 39.45

Baseline 9 10270.75 154.00

Table 16 Comparison of using uni- and bi-directional models’ MSEs
to predict visual lexical decision performance

Model beta df AICc Delta AICc

FB Bi MSE 0.116 10 9928.41 0.00

FB Uni MSE 0.113 10 9932.16 3.75

FF Bi MSE 0.076 10 9957.40 28.99

FF Uni MSE 0.068 10 9964.36 35.95

Baseline 9 9991.33 62.92

Table 17 Comparison of using uni- and bi-directional models’ MSEs
to predict auditory lexical decision performance

Model beta df AICc Delta AICc

FB Uni MSE 0.056 10 11876.09 0.00

FB Bi MSE 0.040 10 11881.22 5.13

FF Bi MSE 0.028 10 11883.15 7.06

FF Uni MSE 0.026 10 11883.74 7.65

Baseline 9 11884.73 8.64

connections are necessary for PDP models to maximally
extract latent quasi-regularities in spelling–sound and
sound–spelling mappings.

Individual hierarchical regression analyses for visual
naming task

In Table 10, the regression analyses indicate that both
FF MSE and FB MSE contribute similarly in terms of mag-
nitude to human naming performance. However, in the
previous regression analyses of composite measures (refer
to Table 4), FB Composite accounted for a greater propor-

tion of the variance compared to the FF Composite score.
To investigate the reason for this disparity betweenMSE and
composite measures, we conducted four additional hierar-
chical regression analyses for the visual naming task. These
analyses followed an identical regression model in step 1
and included one of the four measures of interest (i.e.,
FF MSE, FB MSE, FF Composite, FB Composite) in step
2.

Interestingly, when FB Composite was included in the
model, the previously significant OrthND effect became
nonsignificant in step 2 (Table 18). This change in
the OrthND effect, however, was not observed when
FF Composite, FB MSE, or FF MSE were added to the
same step-1 model (Tables 19, 20, 21). These findings
suggest that FB Composite is associated with OrthND
and reflects the combined influence of OrthND and its
own effect in the step-2 model. When FB Composite was
excluded in step 1, OrthND captured the partial effect of
FB Composite and therefore remained significant.

Table 18 Complete hierarchical regression of FB Composite predict-
ing visual naming task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [0.05, 0.10]

Word Length 0.28** [0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

Frequency − 0.25** [− 0.27, − 0.22]

Voice − 0.26** [− 0.29, − 0.24]

Onset Coding 0.08** [0.05, 0.11]

Word Length 0.22** [0.17, 0.26]

Num Phones − 0.07** [− 0.12, − 0.03]

OrthND − 0.01 [− 0.05, 0.03]

PhonND − 0.05* [− 0.09, − 0.01]

FB Composite − 0.24** [− 0.27, − 0.21]

R2 = .371**
95% CI[.35, .39]
Δ R2 = .041**
95% CI[.03, .05]
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Table 19 Complete hierarchical regression of FF Composite predicting visual naming task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [0.05, 0.10]

Word Length 0.28** [0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

Frequency − 0.28** [− 0.31, − 0.26]

Voice − 0.26** [− 0.28, − 0.23]

Onset Coding 0.08** [0.06, 0.11]

Word Length 0.27** [0.23, 0.32]

Num Phones − 0.13** [− 0.18, − 0.09]

OrthND − 0.10** [− 0.15, − 0.06]

PhonND 0.04 [− 0.00, 0.08]

FF Composite − 0.12** [− 0.15, − 0.10]

R2 = .345**
95% CI[.32, .36]
Δ R2 = .015**
95% CI[.01, .02]

Table 20 Complete hierarchical regression of FB MSE predicting visual naming task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [0.05, 0.10]

Word Length 0.28** [0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

Frequency − 0.23** [− 0.26, − 0.20]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.09** [0.06, 0.11]

Word Length 0.23** [0.19, 0.28]

Num Phones − 0.12** [− 0.16, − 0.07]

OrthND − 0.07** [− 0.11, − 0.03]

PhonND − 0.03 [− 0.07, 0.01]

FB MSE 0.18** [0.15, 0.21]

R2 = .352**
95% CI[.33, .37]
Δ R2 = .022**
95% CI[.02, .03]
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Table 21 Complete hierarchical regression of FF MSE predicting
visual naming task performance

Predictor beta beta 95% CI Fit

Step 1

Frequency − 0.30** [− 0.33, − 0.28]

Voice − 0.26** [− 0.29, − 0.23]

Onset Coding 0.08** [0.05, 0.10]

Word Length 0.28** [0.24, 0.33]

Num Phones − 0.16** [− 0.20, − 0.12]

OrthND − 0.11** [− 0.15, − 0.06]

PhonND 0.04 [− 0.01, 0.08]

R2 = .330**
95% CI[.31, .35]

Step 2

Frequency − 0.26** [− 0.29, − 0.24]

Voice − 0.26** [− 0.28, − 0.23]

Onset Coding 0.09** [0.06, 0.11]

Word Length 0.29** [0.25, 0.34]

Num Phones − 0.16** [− 0.21, − 0.12]

OrthND − 0.08** [− 0.13, − 0.04]

PhonND 0.03 [− 0.01, 0.07]

FF MSE 0.16** [0.14, 0.19]

R2 = .354**
95% CI[.33, .37]
Δ R2 = .024**
95% CI[.02, .03]
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