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Chapter 1

Introduction

In this thesis we analyze the power penalty method for American options
using viscosity solutions.

An option is a contract that is signed between a seller, also called writer,
and a buyer (or holder) of the option. The value of the option depends on
the underlying asset, i.e. stock, interest rate or even some physical com-
modities like gold or crude oil. Such a contract offers the right, but not the
obligation, to buy or sell a certain asset at a specified price, until or at a
certain future date. The right to buy is a call option and the right to sell is
a put option.

There are many styles of options which differ in their payoff methods. For
example, if the holder may exercise his right only at the exercise date, we
call such an option European. If, however, the option can be exercised at
any time before the exercise date, these options are termed American. In
this project we will focus on American put and call options.

As compared to the European case, one can find it more difficult to evaluate
the American option due to the unknown optimal stopping boundary. Such
a boundary separates two regions: the stopping region (where the reward
function g and the optimal reward ĝ are equal) and the continuous region
(where g > ĝ). As a consequence of this lack of information, it is not pos-
sible to predict when it will be optimal to exercise the contract. Therefore,
after the European option problem was solved, the valuation of American
options began to be a prominent problem in the theory of modern finance.

The first approach for determining the price of an American option was
done by McKean [19] in 1965. He transformed the initial problem into a
free boundary problem. This was a starting point for van Moerbeke [22],
who studied properties of the optimal stopping boundary. A few years later,
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2 CHAPTER 1. INTRODUCTION

Bensoussan [3] and Karatzas [16, 17], applied the above theory to show that
the arbitrage free price of the American option is a solution of the optimal
stopping problem.

In 1982, Bensoussan and Lions in [4] developed another important technique,
variational inequalities, which guided Jaillet, Lamberton and Lapeyre [14]
while they were working on the problem. Instead of splitting the region into
a continuous and a stopping one, they proposed to solve a certain system
of inequalities and equalities. In this way one can determine the American
option value and propose the numerical approximation. Although easier to
be discretized, the new method was not as explicit as the first one.

In 2003, Benth, Karlsen and Reikvam [5] used a semilinear Black and
Scholes type of equations to show that the American option value is the
only viscosity solution for the corresponding semilinear Black and Scholes
equation. The term ”Black-Scholes” options pricing model first appeared in
Merton’s paper [20] and has been usually applied when valuing European
options. The notion of the viscosity solution is fundamental for what we un-
derstand by the solution of the semilinear Black and Scholes equation, and it
will also be used later in this thesis. The main advantage of the notion is that
it allows discontinuous functions to be solutions of fully nonlinear equations.

In summary, there is no explicit formula for the value of an American
option and the three approaches mentioned above lead to numerical ap-
proximations. Moreover, they result in different numerical schemes. The
simplest numerical algorithm follows from the third formulation and one
popular strategy for deriving it is based on the penalty method. However,
the classical version of the method has recently (2006) been improved by
Wang, Yang and Teo [23] and termed as the power penalty method. The
improvement implies a replacement of a prominent equation in the classical
model by a slightly more nonlinear one. It turns out that these new approx-
imations are more accurate. Here, by the approximation to the value of an
American option we understand a sequence of solutions which solve (in a
viscosity sense) a penalized equation (equation 3.1, Chapter 2), and which
converge (in a weak sense) to the value of the American option.

In this thesis we provide a detailed analysis of the power penalty method
using the theory of viscosity solutions. A brief introduction to American
call and put options together with the main results for pricing of American
options can be found in Chapter 2. In Chapter 3, using theory of viscosity
solutions for second order partial differential equations, developed by Ishii,
Lions and Crandall in [8], we prove the well-possedness (existence, unique-
ness, stability) of penalized equation (equation 3.1, Chapter 2). Chapter
4 is devoted to analyzing the convergence of approximate solutions to the
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American option value in the space of locally bounded functions. Finally, the
numerical results are presented in Chapter 5. Proposed numerical scheme:
power penalty scheme is set together and compared with two schemes which
have appeared in the literature before. The schemes have been implemented
in Matlab and results are displayed at the end of the chapter. The Appendix
consists of the definitions and theorems omitted in the main text (App. A)
and the Matlab codes (App. B).





Chapter 2

Background

2.1 The American Call and Put Option

Although both the option writer and the option holder sign the contract in
hope of achieving a profit, their strategies differ. The reward is the payoff
of the option. We consider two payoff functions: the call option and the put
option.

The call option represents the holder’s right (but not the requirement) to
buy the underlying asset before the option reaches its expiration date. The
seller is obligated to sell such an asset when the buyer decides. The buyer
pays a fee for this right. A call option is purchased in hopes that the stock
price will rise above the strike price. The seller either expects that it will
not occur, or is willing to lose the profit from a price rise in order to have
an opportunity for making a gain up to the strike price.

On the other hand, the put option represents the writer’s right (but not
the requirement) to sell the underlying asset before the option reaches its
expiration date. The buyer is obligated to purchase such an asset, if the
writer exercises the option. In exchange for having this right, the writer
pays the buyer a fee. The holder believes that it is likely that the price
of the underlying asset will drop significantly below the strike price. The
writer, on the other hand, does not believe it and sells the put to collect the
premium.

Assume we start at time t with a price in the market X(t) = x. Let K
be a strike price. The payoff function denoted by g, becomes

g(x) =

{

(x−K)+, call option,
(K − x)+, put option.

(2.1)

Roughly speaking, it is worthwhile to buy an asset when the stock price is
above the strike price K and, conversely, profitable to sell an asset when the

5



6 CHAPTER 2. BACKGROUND

price drops below the strike price.

2.2 The pricing of the American Option

In this section, we give a brief overview of the American option valuation
theory. The presentation is based on Young and Zhou [24][Section 7.6],
Benth, Karlsen and Reikvam [5] and Myneni [21].

Let (Ω,F , Q) be a complete probability space. We equip this space with
a natural filtration {Ft}t≥0, which we assume to be augmented with all
Q−null measurable sets in F . We consider a market where the price process
of a stock X(s) evolves according to the stochastic differential equation:

{

dX(s) = (r − d)X(s)ds + σX(s)dW (s), s ∈ (t, T ],
X(t) = x.

(2.2)

Here, T is a fixed expiration time (maturity), W (s)s∈[0,T ] is a standard
Brownian motion, d ≥ 0 is the constant dividend yield for the stock, r ≥ 0
is a risk-free interest rate and σ > 0 is a volatility. The second equation
represents an initial condition with t < T as a starting time. The processes
W (s), r, d, σ are assumed to be {Ft}t≥0-adapted. We can equivalently say
that the price process of a stock X(s) is governed by a geometric Brownian
motion.

Starting at the time t with the initial condition given in (2.2), the arbitrage-
free value of an American option with expiration at time T , due to Myneni
[21][Theorem 3.1], is given by

V (t, x) = sup
t≤τ≤T

E
t,x[e−r(τ−t)g(X(τ))], (2.3)

where the supremum is taken over all Ft stopping times τ ∈ [t, T ]. Here,
E

t,x denotes an expectation under the equivalent martingale measure con-
ditioned on X(t) = x and g : R→ R is a payoff function given by (2.1).

Let us motivate the notions used in the result. Since the complexity in
valuation of American options follows from the freedom to exercise (for the
put) or purchase (for the call) it at any point during the life of the contract,
the exercise (or purchase) can be justified only by information up to the
present day and does not depend on future stock prices. In such a situation
one has to deal with stopping times τ ∈ [t, T ] (Appendix A, definition A.1.5)
with respect to filtration {Ft}t≥0. Filtration can give us useful information,
and can be thought of as a history up to the present time. The notion of
arbitrage describes a possibility of riskless profit. A simple example of an
arbitrage opportunity is the situation when one offers to pay, in addition
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to the current price of the option, an amount δ, and the owner of the op-
tion agrees. Then the profit δ is earned without risk. However, our model
excludes arbitrage opportunity and, instead, the notion of martingale (Ap-
pendix A, definition A.1.6) is used to characterize this model. We term the
price to be arbitrage-free, if it does not allow us to make riskless profit.

There is no explicit formula whose solution could tell us when to stop. Be-
low we present three main approaches for determining the optimal stopping
problem. For simplicity of the notation, we use LBS to denote the linear
Black and Scholes differential operator

LBS = ∂t + (r − d)x∂x +
1

2
σ2x2∂2

x. (2.4)

2.2.1 The free boundary problem

In the field of the American pricing problem, McKean [19] is claimed to
be the first who discovered the relationship between the optimal stopping
problem and a certain free boundary problem. In the first formulation we
consider the optimal stopping boundary X∗(t), which separates two regions:
the stopping region (where the reward function g and the optimal reward ĝ
are equal) and the continuous region (where g > ĝ).

The following theorem derives the Riesz decomposition of the American
option value.

Theorem 2.2.1. The value of the American option (2.3), has the following
representation

v(t, x) = p(t, x) + e(t, x),

where

p(t, x) = E
t,x[e−r(T−t)g(X(T ))],

e(t, x) = E
t,x[

∫ T

t
e−r(u−t)rK1X<X∗du],

with X(t) = x.

Proof. For proof see, [21][proof of Corollary 3.1].

The decomposition is termed as the early exercise premium representa-
tion. It consists of the European option value p(t, x) and early exercise
premium e(t, x). The second term describes the possibility of being able to
stop at any time over the period of the option. However, the disadvantage
of the method is that it does not determine the optimal stopping boundary
X∗(t).
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In the new formulation [5], let x(t) denotes the free boundary and we con-
sider the following sets:

C(t) =

{

(0, x(t)), call option,
(x(t),∞), put option,

S(t) =

{

[x(t),∞), call option,
(0, x(t)], put option.

The free boundary formulation consists of a partial differential equation, two
Dirichlet conditions and a Neumann condition. It determines the unknown
free boundary x(t) and a function v(t, x) by solving:















LBSv(t, x)− rv(t, x) = 0, t ∈ [0, T ), x ∈ C(t),
v(T, x) = g(x), x ∈ [0,∞),
v(t, x) = g(x), t ∈ [0, T ], x ∈ S(t),
∂xv(t, x) = ±1, t ∈ [0, T ], x ∈ S(t),

where the sign in the last equation is positive for a call option and negative
for the put. Furthermore, the free boundary x(t) possesses the following
properties for t ∈ [0, T ):






x(t) ≥ max( r
dK,K) (call option,) x(t) ≤ min( r

dK,K) (put option),
x ∈ C(t)⇔ v(t, x) > g(x), LBSv(t, x)− rv(t, x) = 0,
x ∈ S(t)⇔ v(t, x) = g(x), LBSv(t, x)− rv(t, x) < 0.

(2.5)
Observe that if d = 0, the American call option is equal to the European
call option with the same strike price. On the other hand, if r = 0, the
American put option is equal to the European one, analogously, with the
same price. In both cases we do not need to calculate the free boundary.

2.2.2 The quasi-variational inequalities

The formulation in terms of variational inequalities is based on the work of
Bensoussan and Lions [4]. It allows us to treat the domain of the option in
the entire region without use of the stopping boundary X∗(t). The Amer-
ican option value (2.3) can be determined by solving the quasi-variational
inequality:

{

max
(

LBSv(t, x)− rv(t, x), g(x) − v(t, x)
)

= 0, (t, x) ∈ ΩT ,
v(T, x) = g(x), x ∈ [0,∞),

(2.6)

where ΩT denotes the time-space cylinder ΩT = (0, T ) × (0,∞). Equival-
ently, in the view of the article by Jaillet, Lamberton and Lapeyre [14], we
can stated (2.6) as:

LBSv(t, x) − rv(t, x) ≤ 0,

v(t, x) ≥ g(x),

v(T, x) = g(x),

(v(t, x)− g(x))(LBSv(t, x) − rv(t, x)) = 0.

The quasi-variational inequalities might be studied in the sense of viscosity
solutions and we will refer to them in the following chapters.
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2.2.3 The semilinear Black and Scholes equation

The new approach was proposed by Benth, Karlsen and Reikvam [5] and it
made use of the assumption on the American option value v to be
C1,2(ΩT ) ∩ C(ΩT ) regular. For α, β ≥ 0, Cα,β(ΩT ) denotes the space of
functions defined on ΩT which are α-times continuously differentiable in t,
and β-times continuously differentiable in x.

The following relations were proven to hold for the American option:

v ≥ g, LBSv − rv ≤ 0, (v − g)(LBSv − rv) = 0.

From this it follows that:

LBSv(t, x)− rv(t, x) = 0, when v(t, x) > g(x), (2.7)

and
LBSv(t, x)− rv(t, x) ≤ 0, when v(t, x) = g(x). (2.8)

Here, (2.7) corresponds to continuation region and (2.8) to the exercise re-
gion. Since LBSv− rv is nonpositive in the exercise region, the lower bound
is required as well, in addition to the upper bound. It has been derived by
Benth, Karlsen and Reikvam [5] in the following way. Fix a point (t, x) in the
exercise region. From assumption on v to be a function from C1,2(ΩT ), it fol-
lows that v ”touches” g from above at (t, x). This means that v(t, x) = g(x)
and v ≥ g everywhere, and (t, x) is a local minimizer of g − v. Since the
payoff function cannot be touched by a C1,2(ΩT ) function at x = K (a kink
place), the conclusion is that either x < K or x > K.

For the call option, i.e. g(x) = (x−K)+, if x < K, then

∂tv(t, x) = 0, ∂xv(t, x) = 0, ∂2
xv(t, x) ≥ 0,

and therefore
LBSv(t, x) − rv(t, x) ≥ 0. (2.9)

Combining (2.8) and (2.9),

LBSv(t, x)− rv(t, x) = 0 when v(t, x) = g(x) and x < K. (2.10)

On the other hand, assuming x > K we have

∂tv(t, x) = 0, ∂xv(t, x) = 1, ∂2
xv(t, x) ≥ 0,

and therefore
LBSv(t, x) − rv(t, x) ≥ −(dx− rK). (2.11)

In a view of (2.8) and (2.11), (dx−rK) should not be negative and therefore:

LBSv(t, x) − rv(t, x) ≥ −(dx− rK)+ when v(t, x) = g(x) and x > K.
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Summarizing, in the exercise region the American call option value satisfies:

−(dx− rK)+ ≤ LBSv(t, x) − rv(t, x) ≤ 0, when v(t, x) = g(x), (2.12)

and similarly, the American put option value satisfies:

−(rK − dx)+ ≤ LBSv(t, x) − rv(t, x) ≤ 0, when v(t, x) = g(x). (2.13)

In fact the left inequalities in (2.12)-(2.13) become equalities, if we take into
account the properties (2.5) about the free boundary. Below we present the
main result of [5] for determining the value of the American option. Its
proof is based on the dynamic programming principle.

Let c : R→ [0,∞) be a ”cash flow” function define by

c(x) =

{

(dx− rK)+, call option,
(rK − dx)+, put option.

(2.14)

Define also H : R→ [0,∞) a Heaviside function:

H(ζ) =

{

0, ζ < 0,
1, ζ ≥ 0.

(2.15)

Theorem 2.2.2. The function V defined by (2.3) uniqually solves (in vis-
cosity solutions sense) the following semilinear Black and Scholes equation
set:

LBSv(t, x) − rv(t, x) = −q(x, v), (2.16)

where q : R×R→ [0,∞) is a nonlinear reaction term given by the formula

q(x, v) = c(x)H(g(x) − v), (2.17)

and (t, x) ∈ ΩT . We augment (2.16) with the terminal condition

v(T, x) = g(x). (2.18)

Proof. For proof, see [5][proof of Theorem 3.1].



Chapter 3

Power Penalty Approach

3.1 Power penalty method

Power penalty method provides an approximation to the American option
value, and can be motivated from each of the three approaches described in
the section 2.2.

Let 0 < k ≤ 1 be a parameter and let [a]+ = max{a, 0}.

Definition 3.1.1. We call a sequence {vk}k a power penalty approach, if
the functions vk solve (in a viscosity sense) sequence of nonlinear partial
differential equations

LBSvǫ − rvǫ = −
1

ǫ
[(g(x) − vǫ)

+]1/k, (t, x) ∈ ΩT , (3.1)

where ǫ > 0 is the penalty constant, LBS the same as in (2.4). We augment
(3.1) with the boundary and terminal conditions

vǫ(t, 0) = 0 t ∈ (0, T ) and vǫ(T, x) = g(x) x ∈ [0,∞). (3.2)

When k = 1, (3.1) reduces to the classical penalty method. From the
article of Benth, Karlsen and Reikvam [5] we learn that for k = 1 there
exists an unique viscosity solution vǫ of (3.1)-(3.2) and from their succeed-
ing article [6] we know that as ǫ→ 0, vǫ converges uniformly to the unique
viscosity solution v of (2.16)-(2.18) (i.e. the American option value). On the
other hand, it is known from Wang, Yang and Teo [23] that the classical pen-
alty method is not very accurate and the converges rate is of order O(ǫ1/2).
One can only achieve an intended accuracy of the approximate solution if ǫ
is sufficiently small. It does not have to be the case in computational im-
plementations, where small ǫ leads to numerical errors. The improvement
of the classical method was proposed by Wang, Yang and Teo in [23]. In
Chapter 4 we prove, using the viscosity solution method, that the conver-
gence rate for the power penalty approach (3.1)-(3.2) is of the order O(ǫk/2).

11



12 CHAPTER 3. POWER PENALTY APPROACH

Let us briefly describe the usage of the nonlinear term 1
ǫ [(g(x)− vǫ)

+]1/k on
the right hand side of equation (3.1), namely the penalty term. If g(x) ≤ vǫ,
then (3.1) reduces to

LBS(t, x)− rvǫ(t, x) = 0.

If g(x) > vǫ, then

g(x)− vǫ = ǫk(−LBSv(t, x) + rvǫ(t, x))k.

Thus when ǫ is sufficiently small and (−LBSv(t, x) + rvǫ(t, x)) is bounded,
then [g(x) − vǫ]

+ ≈ 0. This way the positive part of g(x) − vǫ is penalized
in both cases.

3.2 Viscosity solutions

In this section we clarify what we mean by the viscosity solution of the pen-
alized semilinear Black and Scholes equation (3.1). The following review is
based on the presentation in Benth, Karlsen and Reikvam [5, page 288-290]
and Crandall and Lions [8, page 9-11,49].

The notion of viscosity solutions was previously introduced for nonlinear
first-order PDE’s by Crandall and Lions [9] and later extended to a large
class of fully nonlinear second-order PDE’s. The main idea of the notion
is to put derivatives onto a smooth test function, in strength of the max-
imum principle for semicontinuous functions [7, 8]. This method was studied
earlier in Evans’ papers [10, 11]. In view of the work by Benth, Karlsen and
Reikvam [5], one can combine the theory of viscosity solutions for second
order PDE’s [8] together with the dynamic programming principle in the
optimal stopping theory. In this way, the weak solution for the semilinear
Black and Scholes type equation can be interpreted as a viscosity solution.

Let us begin with the notion of the following spaces of semicontinuous func-
tions on ΩT = [0, T ] × [0,∞) :

USC(ΩT ) = {u : ΩT → R ∪ {−∞}| u is upper semicontinuous},

LSC(ΩT ) = {u : ΩT → R ∪ {+∞}| u is lower semicontinuous}.

As on analogue to Benth, Karlsen and Reikvam [5][Section 4] we introduce
the following notions:
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Definition 3.2.1. (i) A locally bounded function uǫ ∈ USC(ΩT ) is a vis-
cosity subsolution of (3.1) if and only if for all φ ∈ C1,2(ΩT ) we have:

{

for each (t, x) ∈ ΩT being a maximizer of uǫ − φ,

LBSφ(t, x) − ruǫ + 1
ǫ [(g(x) − uǫ)

+]1/k ≥ 0.

If, in addition, uǫ(t, x) ≤ 0 for t ∈ [0, T ) and uǫ(T, x) ≤ g(x) for
x ∈ [0,∞), then uǫ is a viscosity subsolution of (3.1)-(3.2).

(ii) A locally bounded function uǫ ∈ LSC(ΩT ) is a viscosity supersolution
of (3.1) if and only if for all φ ∈ C1,2(ΩT ) we have:

{

for each (t, x) ∈ ΩT being a minimizer of uǫ − φ,

LBSvǫφ(t, x)− ruǫ + 1
ǫ [(g(x) − uǫ)

+]1/k ≤ 0.

If, in addition, uǫ(t, x) ≥ 0 for t ∈ [0, T ) and uǫ(T, x) ≥ g(x) for
x ∈ [0,∞), then uǫ is a viscosity supersolution of (3.1)-(3.2).

(iii) A function uǫ ∈ C(ΩT ) is a viscosity solution of (3.1) if, at the same
time, it is a sub- and supersolution. If, in addition, uǫ(t, x) = 0 for
t ∈ [0, T ) and uǫ(T, x) = g(x) for x ∈ [0,∞), then uǫ is a viscosity
solution of (3.1)-(3.2).

In proving the uniqueness result for viscosity solutions of second order
equations, it is convenient to give the equivalent formulations of sub- and
supersolutions based on so-called semijets.

Definition 3.2.2. (i) For the function u ∈ USC(ΩT ), (u ∈ LSC(ΩT )), the
second order superjet (subjet) of u at (t, x) ∈ ΩT , which is denoted by
P2,+u(t, x) (P2,−u(t, x)), is defined as the set of triples (a, p,X) ∈ R3

such that

u(s, y) ≤ (≥)u(t, x) + a(s− t) + p(y − x) +
1

2
X(y − x)2

+ o(|s− t|+ |y − x|2) as 0 ∋ (s, y)→ (t, x).

(ii) The closure P
2,+
u(t, x) (P2,−u(t, x)) is the set of triples (a, p,X) ∈ R3

for which there exists a sequence (tn, xn, pn,Xn) ∈ R4 such that
(xn, pn,Xn) ∈ P2,+u(tn, xn) (P2,−u(tn, xn)) and (tn, xn, pn,Xn) →
(t, x, p,X) as n ↑ ∞.

According to Crandall, Ishii and Lions [8][page 11], the following is true:

P2,+u(t, x) = {(∂tΦ, ∂xΦ, ∂2
xΦ) : Φ ∈ C1,2(ΩT ), u−Φ has a local maximum

at (t, x), and Φ(t, x) = u(t, x), ∂tΦ(t, x) = a, ∂xΦ(t, x) = p,

∂2
xΦ(t, x) = X}, (3.3)
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P2,−u(t, x) = {(∂tΦ, ∂xΦ, ∂2
xΦ) : Φ ∈ C1,2(ΩT ), u−Φ has a local minimum

at (t, x), and Φ(t, x) = u(t, x), ∂tΦ(t, x) = a, ∂xΦ(t, x) = p,

∂2
xΦ(t, x) = X}. (3.4)

In a view of the result we can write the equivalent definitions of sub- and
supersolutions based on semijets:

Definition 3.2.3. (i) A locally bounded function uǫ ∈ USC(ΩT ) is a vis-
cosity subsolution of (3.1), if and only if, for all (t, x) ∈ ΩT and for
all (a, p,X) ∈ P 2,+u(t, x) we have:

a+ (r − d)xp +
1

2
σ2x2X − ruǫ +

1

ǫ
[(g(x) − uǫ)

+]1/k ≥ 0.

If, in addition, uǫ(t, x) ≤ 0 for t ∈ [0, T ) and uǫ(T, x) ≤ g(x) for
x ∈ [0,∞), then u is a viscosity subsolution of (3.1)-(3.2).

(ii) A locally bounded function uǫ ∈ LSC(ΩT ) is a viscosity supersolution
of (3.1), if and only if, for all (t, x) ∈ ΩT and for all (a, p,X) ∈
P 2,−u(t, x) we have:

a+ (r − d)xp +
1

2
σ2x2X − ruǫ +

1

ǫ
[(g(x) − uǫ)

+]1/k ≤ 0.

If, in addition, uǫ(t, x) ≤ 0 for t ∈ [0, T ) and uǫ(T, x) ≤ g(x) for
x ∈ [0,∞), then u is a viscosity supersolution of (3.1)-(3.2).

For the later purpose we recall also a definition of so called semicontinuous
envelopes.

Definition 3.2.4. For any function u : ΩT → R we define u∗ : ΩT →
R ∪ {+∞,−∞} by

u∗(x) = lim
r↓0

sup{u(y) : y ∈ B(x; r) ∩ ΩT } for x ∈ ΩT . (3.5)

and u∗ : ΩT → R ∪ {+∞,−∞} by

u∗(x) = lim
r↓0

inf{u(y) : y ∈ B(x; r) ∩ ΩT} for x ∈ ΩT . (3.6)

Functions u∗ and u∗ are called, respectively, the upper and lower semicon-
tinuous envelopes of u.

Note that u∗ = −(−u)∗ and u∗ ≤ u ≤ u
∗, so if u is uppersemicontinuous

at x ∈ ΩT then u∗(x) = u(x).
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3.3 Comparison principle

The remaining part of this Chapter focuses on establishing the well-possedness
of viscosity solutions for (3.1)-(3.2), in view of the theory developed by Ishii,
Lions and Crandall [8]. Our discussion is divided into two parts. First we
focus on the comparison result which yields uniqueness. The critical step
in its proof relies on the maximum principle for semicontinuous functions
(see, Theorem 3.3.1). Moreover, once the comparison principle is satisfied,
Perron’s Method (see, Theorem 3.5.1) provides the existence of viscosity
solution.

Let us consider a more general case and think of (3.1)-(3.2) as a terminal-
value problem without a boundary condition. Later, for completeness, we
shall assume an additional condition. Consider then:

{

−∂tvǫ(t, x) + Fǫ(t, x, vǫ(t, x), ∂xvǫ(t, x), ∂2
xvǫ(t, x)) = 0, (t, x) ∈ ΩT ,

vǫ(T, x) = g(x), x ∈ (0,∞),
(3.7)

where Fǫ : ΩT × R × R × R → R denotes a second order operator of the
form:

Fǫ(t, x, s, p,X) = −(r − d)xp −
1

2
σ2x2X + rs−

1

ǫ
[(g(x) − s)+]1/k. (3.8)

Corollary 3.3.1. The operator Fǫ is continuous and proper.

Proof. It is clear that Fǫ is continuous. To show the properness property,
let s, z,X, Y ∈ R with s ≤ z and Y ≤ X. Then

Fǫ(t, x, s, p,X) − Fǫ(t, x, z, p, Y ) = 1/2σ2x2(Y −X) + r(s− z)

+ 1/ǫ[(g(x) − z)+]1/k − 1/ǫ[(g(x) − s)+]1/k ≤ 0,

where we have used (g(x) − z)+ ≤ (g(x) − s)+.

We seek to prove the comparison result for (3.7)-(3.8) in a class of viscos-
ity sub- and supersolutions which satisfy a natural growth condition. Let us
first recall the basic concept of maximum principle. We follow the discussion
given in [8, Chapter 3].

In the classical case, where u and v are classical sub- and supersolutions
of (3.7)-(3.8), if the function define in the neighborhood of ŷ = (t̂, x̂) ∈ ΩT

by

w(y) = w(ŷ) +Dw(ŷ)(y − ŷ) + 1/2D2w(ŷ)(y − ŷ)2 + o(|y − ŷ|) y → ŷ,

is twice differentiable at a local maximum ŷ, then ∂xw(ŷ) = 0, ∂tw(ŷ) = 0
and ∂2

xw(ŷ) ≤ 0. Thus, for w = u− v, we would have

∂xu(ŷ) = ∂xv(ŷ), ∂tu(ŷ) = ∂tv(ŷ) and ∂2
xu(ŷ) ≤ ∂2

xv(ŷ).
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Furthermore,

Fǫ(ŷ, u(ŷ), ∂yu(ŷ), ∂2
xu(ŷ)) ≤ 0 ≤ Fǫ(ŷ, v(ŷ), ∂xv(ŷ), ∂2

xv(ŷ))

≤ Fǫ(ŷ, v(ŷ), ∂xu(ŷ), ∂2
xu(ŷ)),

where the first two inequalities follow from the definition of sub- and super-
solution of (3.7)-(3.8), and the last inequality from the degenerate elliplicity
of Fǫ in a last argument. Since Fǫ is nondecreasing in the second variable,
it follows that u ≤ v in ΩT .

On the other hand, in the case where u ∈ USC(ΩT ) and v ∈ LSC(ΩT ), the
pairs (Du(ŷ),D2u(ŷ)) and (Dv(ŷ),D2v(ŷ)) are replaced by the set-valued
functions P 2,+u, P 2,−v. These sets can be empty at many points, also at
the maximum points of u − v. Therefore, to overcome the lack of the reg-
ularity for u and v, we apply the classical ”doubling of variables” device
[8]. Roughly speaking, by subtracting extra term which depends on the
parameter,

Φ(t, x, y) = u(t, x) − v(t, y) − αψ(t, x, y), (3.9)

we ensure existence of the finite maximum point for Φ(t, x, y). We approxim-
ate maximalization of u(t, x)− v(t, x) over [0, T )× [0,∞) by letting α→∞.
To this end, we will apply the following lemma:

Lemma 3.3.1. Let O be a subset of R, Φ ∈ USC(O), Ψ ∈ LSC(O) and

Nα = sup
O

(Φ(x)− αΨ(x)) for α > 0. (3.10)

Let −∞ < limα→∞Nα <∞ and xα ∈ 0 be chosen so that

lim
α→∞

(Nα − (Φ(xα)− αΨ(xα))) = 0. (3.11)

Thus the following holds:







(i) limα→∞αΨ(xα) = 0,
(ii) ψ(x̂) = 0 and limα→∞Nα = Φ(x̂) = sup{Ψ(x)=0} Φ(x)

whenever x̂ ∈ O is a limit point of xα as α→∞.

(3.12)

Proof. For the proof, see [8, proof of Proposition 3.7].

The next theorem, themaximum principle for semicontinuous functions
applies in several settings, and we refer to its parabolic analogue given in
[8, Theorem 8.3]. The theorem is restated here in a form suitable to our
application.
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Theorem 3.3.1. Let u(t, x), −v(t, y) be the upper semicontinuous func-
tions in (0, T ) × R and let φ be defined on (0, T ) × R × R, such that
(t, x, y) → φ(t, x, y) is once continuously differentiable in t and twice con-
tinuously differentiable in (x, y). Suppose that t̂ ∈ (0, T ), x̂, ŷ ∈ R and

ω(t, x, y) ≡ u(t, x)− v(t, y) − φ(t, x, y) ≤ ω(t̂, x̂, ŷ), (3.13)

for 0 < t < T and x, y ∈ R. Assume, moreover, that there is r > 0 such
that for every M > 0 there is C > 0 such that

{

a ≤ C whenever (a, p,X) ∈ P 2,+u(t, x),
|x− x̂|+ |t− t̂| ≤ r and |u(t, x)| + |p|+ |X| ≤M,

{

b ≤ C whenever (b, q, Y ) ∈ P 2,−v(t, y),

|y − ŷ|+ |t− t̂| ≤ r and |v(t, y)| + |q|+ |Y | ≤M.

Then for each k > 0 there are two symmetric 2× 2 matrices X,Y such that



























(i) (a, ∂xφ(t̂, x̂, ŷ),X) ∈ P
2,+
u(t̂, x̂)

(b, ∂yφ(t̂, x̂, ŷ), Y ) ∈ P
2,−
v(t̂, ŷ)

(ii) − ( 1
k + ‖A‖)I ≤

(

X 0
0 −Y

)

≤ A+ kA2,

(iii) a− b = φt(t̂, x̂, ŷ),

(3.14)

where A = (D2
xφ)(t̂, x̂, ŷ) and ‖A‖ = sup{|〈Aζ, ζ〉| : ζ ∈ R2, |ζ| = 1}.

Proof. For the main idea of the proof, we refer to [8, Theorem 3.2].

Theorem 3.3.2 (Comparison principle). Let ǫ ∈ (0, 1) and k ≥ 1 be
fixed. Let u be a subsolution of (3.7)-(3.8) and v be a supersolution of (3.7)-
(3.8) such that

u(t, x),−v(t, x) ≤ L(|x|+ 1) and u(T, x) ≤ v(T, x)

for some constant L > 0. Then u ≤ v in ΩT .

Proof. The proof follows [8, Theorem 8.2] and [5, Theorem 5.3]. Let η > 0
and ũ be a function define by

ũ = u+ η/(T − t) (x ∈ [0,∞), 0 ≤ t < T ).

Observe that by monotonicity of Fǫ, ũ is a subsolution of (3.7)-(3.8) and
satisfies the parabolic equation in (3.7) with a strict inequality. Indeed,
since Fǫ is nondecreasing in ”the third” variable and u is a subsolution of
(3.7) we have that

−ũt+Fǫ(t, x, ũ, ∂xũ, ∂
2
xũ) ≤ −ut−η/(T−t)

2+Fǫ(t, x, u, ∂u, ∂
2
xu) ≤ −η/(T−t)2.
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Note also that as η ↓ 0, ũ ≤ v implies u ≤ v. It therefore suffices to prove
the comparison under the additional assumptions

{

−ut + Fǫ(t, x, u,Du,D
2u) ≤ −η/T 2 < 0, in [0, T ) × [0,∞),

limt↑Tu(t, x) =∞ uniformly on [0,∞).
(3.15)

Let us suppose that comparison does not hold and that for some (t̄, x̄) ∈
[0, T ) × [0,∞)

u(t̄, x̄)− v(t̄, x̄) = 2δ > 0. (3.16)

We employ the classical ”doubling of variables” device [8] to overcome the
lack of regularity of u and v, and we maximize

Φ(t, x, y) = u(t, x)− v(t, y)−
α

2
|x− y|2 −

µ

2
eλ(T−t)(|x|2 + |y|2), (3.17)

over [0, T ) × [0,∞) × [0,∞); µ ∈ (0, 1), α, λ > 1 are parameters. We
approximate maximalization of u(t, x)−v(t, x) over [0, T )× [0,∞) by letting
α→∞ and µ ↓ 0. Let

Mα = sup[0,T )×[0,∞)×[0,∞)Φ(t, x, y). (3.18)

By the assumed linear growth of u and v and from the upper semicontinuity
of Φ it follows that Mα < ∞ and that there exists (tα, xα, yα) ∈ [0, T ) ×
[0,∞)× [0,∞) such that Mα = Φ(tα, xα, yα). Moreover, if µ is small enough
then Mα is a positive number, since

Mα ≥ u(t̄, x̄)− v(t̄, x̄)− µeλ(T−t)x̄2 ≥ δ > 0. (3.19)

This implies:
u(tα, xα)− v(tα, yα) ≥ δ, (3.20)

for any α > 1 and µ sufficiently small. Next, we use Φ(T, 0, 0) ≤ Φ(tα, xα, yα)
and the linear growth of u and v to find that

µ

2
(x2

α+y2
α) ≤ v(T, 0)−v(tα, yα)+u(tα, xα)−u(T, 0) ≤ C+2L(1+xα+yα).

(3.21)

Applying Cauchy’s inequality [Appendix A.2] with µ, we conclude that
there is a finite constant Cµ, which depends on µ, such that xα, yα ≤ Cµ.
Moreover, for each fixed µ there exists a subsequence, denoted by (tα, xα, yα),
which converges to some (t̂, x̂, ŷ) ∈ [0, T ) × [0,∞) × [0,∞) as α ↑ ∞. Let
µ be small and let us apply lemma 3.3.1 via the following correspondence:
(x, y) → x, u(t, x) − v(t, y) → Φ(x), (1/2)|x − y|2 → Ψ(x). Then, for each
fixed µ, the maxima (tα, xα, yα) satisfy

{

xα − yα → 0 as α ↑ ∞,
α|xα − yα|

2 → 0 as α ↑ ∞.
(3.22)
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If t̂ = T , then by (3.19)

0 < δ ≤ Φ(t̄, x̄) ≤Mα ≤ u(tα, xα)− v(tα, yα). (3.23)

Based on the upper semicontinuity of u, −v we let α ↑ ∞, µ ↓ 0 and recall
that (u − v)|t=T ≤ 0 on [0,∞). This contradicts the fact that δ is positive,
and therefore we may assume that t̂ ∈ [0, T ) and tα ∈ [0, T ), if α is large.
We apply Theorem 3.3.1 at (tα, xα, yα), to get numbers aα, bα and Xα, Yα

(if we choose k = 1/α in Theorem 3.3.1) such that

(aα, α(xα − yα) + µeλ(T−tα)xα,Xα) ∈ P
2,+
u(tα, xα),

(bα, α(xα − yα)− µeλ(T−tα)yα, Yα) ∈ P
2,−
v(tα, yα),

and aα − bα = −µ
2λe

λ(T−tα)(x2
α + y2

α). Moreover, the matrix A in Theorem
3.3.1 takes the form:

A =

(

α+ µeλ(T−tα) −α

−α α+ µeλ(T−tα)

)

(3.24)

and thus the following inequalities are satisfied:

(

Xα 0
0 −Yα

)

≤ (3α + 2µeλ(T−t))

(

1 −1
−1 1

)

+ (µeλ(T−tα) +
µ2e2λ(T−tα)

α
)

(

1 0
0 1

)

. (3.25)

By definition of the viscosity sub- and supersolutions,

− aα + Fǫ(tα, xα, u(tα, xα), α(xα − yα) + µeλ(T−tα)xα,Xα) ≤ −η/T 2,

− bα + Fǫ(tα, yα, v(tα, yα), α(xα − yα)− µeλ(T−tα)yα, Yα) ≥ 0. (3.26)

Combining the above inequalities we obtain:

0 < η/T 2 ≤ −
µ

2
λeλ(T−tα)(x2

α + y2
α)

+ Fǫ(tα, yα, v(tα, yα), α(xα − yα)− µeλ(T−tα)yα, Yα)

− Fǫ(tα, xα, u(tα, xα), α(xα − yα) + µeλ(T−tα)xα,Xα)

= −
µ

2
λeλ(T−tα)(x2

α + y2
α) + ∆(α).

We obtain a contradiction to (3.16) if we show that the right-hand remains
negative when α→∞ and µ ↓ 0. Observe that

lim
α↑∞

sup−
µ

2
λeλ(T−tα)(x2

α + y2
α) = −µλeλ(T−t̂)x̂2. (3.27)
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Let us estimate the remainder term ∆(α):

∆(α) = (r − d)
(

α(x2
α − y

2
α) + µeλ(T−tα)(x2

α + y2
α)

)

+ 1/2σ2
(

x2
αXα − y

2
αYα

)

+ r
(

v(tα, yα)− u(tα, xα)
)

+ 1/ǫ
[(

g(xα)− u(tα, xα)
)+]

1

k − 1/ǫ
[(

g(yα)− v(tα, yα)
)+]

1

k

:= ∆1(α) + ∆2(α) + ∆3(α),

where ∆i(α) corresponds to i-raw. It follows by (3.22) that

lim
α↑∞

sup ∆1(α) = (r − d)2µeλ(T−t̂)x̂2. (3.28)

In view of (3.20), r(v(tα, yα) − u(tα, xα)) ≤ −δr and the second term in
∆2(α) can be estimate using the matrix inequality (3.25):

lim
α↑∞

sup
[

(

Xα 0
0 −Yα

)(

xα

yα

)

×

(

xα

yα

)

]1

2
σ2

≤ lim
α↑∞

sup
[

(3α+2µeλ(T−t))|xα−yα|
2+(µeλ(T−tα)+

µ2e2λ(T−tα)

α
)(x2

α+y2
α)

]1

2
σ2

= µeλ(T−t̂)x̂2σ2. (3.29)

It remains to estimate ∆3(α):

∆3(α) =
1

ǫ

[(

g(xα)− u(tα, xα)
)+]

1

k −
1

ǫ

[(

g(xα)− v(tα, yα)
)+]

1

k

+
1

ǫ

[(

g(xα)− v(tα, yα)
)+]

1

k −
1

ǫ

[(

g(yα)− v(tα, yα)
)+]

1

k .

In a view of (3.20) it follows

−u(tα, xα) ≤ −δ − v(tα, yα), (3.30)

and thus

1

ǫ

[(

g(xα)− u(tα, xα)
)+]

1

k −
1

ǫ

[(

g(xα)− v(tα, yα)
)+]

1

k

≤
1

ǫ

[(

g(xα)− v(tα, yα)− δ
)+]

1

k −
1

ǫ

[(

g(xα)− v(tα, yα)
)+]

1

k ≤ 0.

Moreover, in view of (3.22) and by applying a Taylor expansion to the func-

tion x→ 1
ǫ

[(

g(x) − v(t, y)
)+]

1

k we get:

1

ǫ

[(

g(xα)− v(tα, yα)
)+]

1

k −
1

ǫ

[(

g(yα)− v(tα, yα)
)+]

1

k

≤
k

ǫ

[(

g(xα)− v(tα, yα)
)+
−

(

g(yα)− v(tα, yα)
)+]

1

k .

≤
k

ǫ

[(

g(xα)− g(yα)
)+]

1

k ≤ C|xα − yα|
1

k → 0 as α→∞.
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Combining the above estimates we obtain:

0 < η/T 2 ≤ −µλeλ(T−t̂)x̂2 + (r − d)2µeλ(T−t̂)x̂2 + µλeλ(T−t̂)x̂2σ2 − rδ ≤ 0,
(3.31)

if λ is sufficiently large. The contradiction is caused by the assumption
(3.16).

3.4 Comparison with more regularity

More generally, consider a terminal-value problem (3.7) with Fǫ replaced by

Fǫ(t, x, s, p,X) = F (t, x, s, p,X) − hǫ(x, s), (3.32)

where

F (t, x, s, p,X) = −(r − d)xθp−
1

2
σ2x2X + rs, (3.33)

hǫ(x, s) =
1

ǫ
[(g(x) − s)+]1/k. (3.34)

Since the Lipschitz continuous F is weakened to be Hölder continuous with
exponent θ ∈ (0, 1], the proof may need to be modified. Roughly speaking,
one can find it difficult to estimate the ∆1 term in the previous proof since

α(xα − yα)(xθ
α − y

θ
α) ≤

α

θ
(xα − yα)θ+1 (3.35)

will not necessarily converge to zero as α → ∞. Following the advice of
Crandall, Ishii, and Lions [8, Chapter 5.A], we assume more regularity for
u to be Cγ(ΩT ), i.e. a Hölder continuous with exponent γ ∈ (0, 1]. If
γ > 2 − (1 + θ) = 1 − θ, then the proof will remain unchanged. In more
details, with the notation of the previous proof

u(t, x)− v(t, y) −
α

2
|x− y|2 −

µ

2
eλ(T−t)(|x|2 + |y|2)

≤ u(tα, xα)− v(tα, yα)−
α

2
|xα − yα|

2 −
µ

2
eλ(T−tα)(|xα|

2 + |yα|
2),

and by putting x = y = yα and t = tα, we simplified

µ

2
eλ(T−tα)(|xα|

2−|yα|
2)+α|xα−yα|

2 ≤ 2(u(tα, xα)−u(tα, yα)) ≤ C|xα−yα|
γ .

It follows that if we choose µ to be sufficiently small, α|xα − yα|
σ → 0

provided by σ > 2− γ, in particular σ = 1 + θ.

However, the above argumentation fails while estimating α|xα−yα|, and we
need to adapt the strategy to obtain the result. The new idea [8, Chapter
5.A], relies on upgrowth of regularity for u to become Hölder continuously
differentiable, i.e. Du ∈ Cγ(ΩT ). When γ = 0, Du is continuous and when
γ = 1, Du is Lipschitz continuous. By upgrading the regularity for u, the
following lemma applies.
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Lemma 3.4.1. Let K ⊂ ΩT be a compact subset ΩT . If Du ∈ Cγ(ΩT ) then
there exists a sequence ψn in C(ΩT ) ∩ C2(K) with the properties

(i) u− ψn → 0 and ∂xu− ∂xψn → 0 uniformly on K,

(ii) |∂tψn(t, x)− ∂tψn(t, y)| ≤ C|x− y|γ on K,

(iii) |∂xψn(t, x)− ∂xψn(t, y)| ≤ C|x− y|γ on K,

Proof. The ψn can be constructed by mollification of u near K and then
extended. Let η ∈ C∞

0 (R) be a nonnegative function satisfying

η(z) = η(−z), η(z) ≡ 0 for |z| ≥ 1,

∫

R

η(z)dz = 1.

For each n > 0, let ηn(z) = 1
nη( z

n) and In(t, x) = ηn(t)ηn(x). We define an
approximation

ψn(t, x) = (In ∗ u)(t, x) =

∫

[0,T ]

∫

R

In(s, z)u(t− s, x− z)dzds.

(i) Let VT ⊂⊂ WT ⊂⊂ ΩT , u ∈ C(ΩT ). Then u is uniformly continuous
on WT . Let x ∈ VT , x = (t, y). For each n > 0 define an open ball
VT ⊇ B(x, n) = {(s, z) ∈ VT : |t− s| < n, |z − y| < n}.

|u(x) − ψn(x)| ≤
1

n2

∫

B(x,n)
|I(
x1

n
)||u(x) − u(x− x1)|dx1

≤ max
x2∈B(x,n)

|u(x)− u(x− x2)|1/n2

∫

B(x,n)
|I(
x1

n
)|dx1.

The right-hand side converges to zero uniformly as n ↓ 0. Therefore ψn → u
uniformly on VT . Let us now calculate the partial derivative of the ψn.

ψn(x+ hei)− ψn(x)

h
=

1

n2

∫

VT

1

h
[I(
x+ hei − z

n
)− I(

x− z

n
)]u(z)dz

=
1

n2

∫

VT

1

h
[u(x+ hei − z)− u(x− z)]I(

z

n
)dz,

where VT ⊂⊂ ΩT . Since

1

h
[u(x+ hei − z)− u(x− z)]→

∂u

∂xi
(x− z)

1

h
[I(
x+ hei − z

n
)− I(

x− z

n
)]→

∂I

∂xi
(
x− z

n
)

uniformly on VT , we calculate the partial derivative of ψn as

∂ψn

∂xi
(x) =

∫

VT

∂u

∂xi
(x− z)In(z)dz =

∫

VT

∂In
∂xi

(x− z)u(z)dz. (3.36)



3.4. COMPARISON WITH MORE REGULARITY 23

Let us take x ∈ VT , x = (t, y),

|∂yu(x)− ∂yψn(x)| ≤ 1/n2

∫

B(x,n)
|∂yu(x)− ∂yu(x− z)||I(

z

n
)|dz

≤ max
z1∈B(x,n)

|∂yu(x)− ∂yu(x− z1)|1/n2

∫

B(x,n)
|I(

z

n
)|dz.

The right-hand side converges to zero uniformly as n ↓ 0. Therefore ∂yψn →
∂yu uniformly on VT .
(ii) Let z1, z2 ∈ ΩT ,

|∂tψ(t, z1)− ∂tψ(t, z2)| ≤

∫

R

|In(z)||∂tu(z1 − z)− ∂tu(z2 − z)|dz

≤ C|z1 − z2|
γ

∫

R

|In(z)|dz ≤ C|z1 − z2|
γ .

(iii)Let z1, z2 ∈ ΩT ,

|∂xψ(t, z1)− ∂xψ(t, z2)| ≤

∫

R

|In(z)||∂xu(z1 − z)− ∂xu(z2 − z)|dz

≤ C|z1 − z2|
γ

∫

R

|In(z)|dz ≤ C|z1 − z2|
γ .

Let us briefly discuss the modification in the comparison proof under
an additional assumption: u is Hölder continuously differentiable. Let
(tα, xα, yα) be a maximum point of the function

Φ(t, x, y) = (u(t, x) − ψn(t, x))− (v(t, y) − ψn(t, y))− α/2|x − y|2

−
µ

2
eλ(T−t)(x2 + y2), (3.37)

defined in [0, T )× [0,∞)× [0,∞); µ ∈ (0, 1), α > 1 are parameters. As in the
proof of Theorem 3.3.2, for each fixed µ, there exists a subsequence, denoted
by (tα, xα, yα), which converges to some (t̂, x̂, ŷ) ∈ [0, T )× [0,∞)× [0,∞) as
α ↑ ∞. For small µ, we apply Lemma 3.3.1 via the following correspondence:
(x, y)→ x, (u(t, x)−ψn(t, x))− (v(t, y)−ψn(t, y))→ Φ(x), (1/2)|x− y|2 →
Ψ(x). Then, for each fixed µ, the maxima (tα, xα, yα) satisfies

{

xα − yα → 0 as α ↑ ∞,
α|xα − yα|

2 → 0 as α ↑ ∞.
(3.38)

Moreover, applying Lemma 3.4.1(iii), it follows that

α(xα − yα) = ∂xu(tα, xα)− ∂xψn(tα, xα)→ 0 as α ↑ ∞. (3.39)
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3.5 Existence of unique solution

Theorem 3.5.1 (Perron’s Method). Suppose that the comparison holds
for (3.7)-(3.8), u is a subsolution and u is a supersolution of (3.7)-(3.8).
Then

W (x) = sup{w(x) : u ≤ w ≤ u and w is a subsolution of (3.7)-(3.8)}

is a solution of (3.7)-(3.8).

Proof. By Theorem 3.3.2 the comparison holds for (3.7)-(3.8) for any fixed
k. The result follows from [8, Theorem 4.1].

Lemma 3.5.1. The value of an European call/put option is a subsolution
of (3.7)-(3.8).

Let us recall that in Black and Scholes environment, the European option
price is given by

p(t, x) = E
t,x[e−r(T−t)g(X(T ))].

For finding the price of European option we can equivalently solve a certain
partial differential equation. More precisely the following theorem applies:

Theorem 3.5.2. Let u be a C1,2(ΩT ) function with a bounded derivative
with respect to x. If u satisfies

−LBSu(t, x) + ru(t, x) = 0 for (t, x) ∈ ΩT , (3.40)

u(T, x) = g(x) for x ∈ [0,∞), (3.41)

then ∀(t, x) ∈ ΩT u(t, x) = E
t,x

(

e−
R T

t
r(s,X(s))dsg(X(T ))

)

, where X(s) is a
solutions of (2.2).

Proof. For proof see, [18][proof of Theorem 5.1.7.].

Proof of Lemma 3.5.1. By plugging the function p(t, x) into (3.7)-(3.8) we
get

−LBSp(t, x)+rp(t, x)−
1

ǫ
[(g(x)−p(t, x))+]1/k = −

1

ǫ
[(g(x)−p(t, x))+]1/k ≤ 0.

(3.42)
Moreover, the terminal condition is satisfied by (3.41).

Lemma 3.5.2. Let û be a function defined by

û =

{

x+, call option,
K, put option.

(3.43)

Then û is a supersolution of (3.7)-(3.8).
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Proof. Let us first prove lemma for the call option g(x) = (x − K)+. By
plugging û into (3.7)-(3.8) we get

−LBS û+ rû−
1

ǫ
[(g(x) − û)+]1/k = −(r − d)x+ rx = dx > 0. (3.44)

Moreover,
û(T, x) = x ≥ g(x).

Now, let us prove the lemma for the put option g(x) = (K − x)+. By
plugging û into (3.7)-(3.8) we get

−LBSû+ rû−
1

ǫ
[(g(x) − û)+]1/k = rK > 0. (3.45)

Moreover,
û(T, x) = K ≥ g(x).

We conclude the chapter with the main theorem which provides the well-
possedness for (3.7)-(3.8).

Theorem 3.5.3. For fixed values ǫ and k, there exists at most one viscosity
solution vǫ : ΩT → R of the terminal value problem (3.7)-(3.8), that satisfies

0 ≤ vǫ(t, x) ≤ C1 + C2x (t, x) ∈ ΩT ,

where C1 = 0 and C2 = 1 for the call option, and C1 = K and C2 = 0 for
the put option.

Proof. Existence. Put u = p(t, x) and u = û. By lemma 3.5.1, p(t, x) is
a subsolution of (3.7)-(3.8) and by lemma 3.5.2 û is a supersolution
of (3.7)-(3.8). The existence of the solution of (3.7)-(3.8) follows from
Theorem 3.5.1.

Uniqueness. Let us suppose that v1 and v2 are two viscosity solutions
satisfying (3.7)-(3.8), i.e. v1 and v2 are simultaneously viscosity sub-
and supersolutions. By Theorem 3.3.2 v1 ≤ v2 and v1 ≥ v2. Hence
v1 ≡ v2.

In the next chapter we will show that the sequence of approximate solu-
tions vǫ converge to the American option value.





Chapter 4

Convergence of approximate

solutions

4.1 Half-relaxed weak limit method

The aim of this section is to prove, using the so called half-relaxed (weak)
limit method of Crandall, Ishii and Lions [8], that for fixed k > 0 the power
penalty approximations (vǫ)ǫ converge uniformly to the American option
value, as ǫ → 0. In the literature one can find many examples where the
weak limit method is a tool for showing the convergence of approximate solu-
tions of fully nonlinear second order partial differential equations [2, 8, 13].
For inspiration to our work we have chosen Benth, Karlsen and Reikvam
[6], where approximations solve (3.7)-(3.8) with k = 1 (classical penalty
method).

Let us recall the definitions and basic properties of the upper and lower
weak limits.

Definition 4.1.1. Suppose vǫ is locally uniformly bounded.

The upper weak limit of vǫ, denoted by v, is defined as

v(t, x) = limǫ↓0supΩT ∋(s,y)→(t,x)vǫ(s, y)

= limδ↓0sup{vǫ(s, y)| (s, y) ∈ ΩT , |t− s|, |x− y| ≤ δ, 0 < ǫ ≤ δ}.

The lower weak limit of vǫ, denoted by v, is defined as

v(t, x) = limǫ↓0infΩT ∋(s,y)→(t,x)vǫ(s, y)

= limδ↓0inf{vǫ(s, y)| (s, y) ∈ ΩT , |t− s|, |x− y| ≤ δ, 0 < ǫ ≤ δ}.

Since vǫ is locally uniformly bounded, the weak limits v and v are finite.

27
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Lemma 4.1.1. (i) The upper weak limit v belongs to USC(ΩT ) and the
lower weak limit v belongs to LSC(ΩT ).

(ii) If v = v = v on compact subsets of ΩT , then v is continuous and vǫ → v
in L∞ (i.e., uniformly) on this set as ǫ→ 0.

(iii) Let vǫ ∈ USC(ΩT )(resp. LSC(ΩT )) be locally uniformly (in ǫ) bounded.
Let (t, x) ∈ ΩT be a strict local maximizer of v− φ(resp. minimizer of
v− φ), φ ∈ C1,2(ΩT ). Then there exists the subsequence, which we do
not relabel, (tǫ, xǫ) → (t, x) and vǫ(tǫ, xǫ) → v(t, x)( resp. v(t, x)) as
ǫ ↓ 0 such that (tǫ, xǫ) is a local maximizer (resp. minimizer) of vǫ−φ
for each ǫ > 0.

Proof. (i) Using the definition of weak limits we observe that

v(t, x) = limǫ↓0 sup ΩT∋(s,y)→(t,x)vǫ(s, y) ≥ limΩT ∋(s,y)→(t,x)v(s, y),

v(t, x) = limǫ↓0 inf ΩT ∋(s,y)→(t,x)vǫ(s, y) ≤ limΩT ∋(s,y)→(t,x)v(s, y).

(ii) As being both upper and lower semicontinuous, the function v is con-
tinuous. Moreover, for all ǫ > 0, vǫ are continuous:

∀η>0∀(t,x),(t,y)∈ΩT
∃δ(ǫ,η)>0 such that |x− y| < δ(ǫ, η)

⇒ |vǫ(t, x)− vǫ(t, y)| < η. (4.1)

Following the lines of [8, Remark 6.4], we claim that on compact sub-
sets the sequence vǫ converges uniformly to v as ǫ ↓ 0. If this is not
the case and the uniform convergence fails on some compact subset K,
then there is an η > 0 and a sequence ǫj → 0, (tj,xj) ∈ K such that

vǫj
(tj,xj)− v(tj,xj) ≥ η or vǫj

(tj,xj)− v(tj,xj) ≤ −η. (4.2)

Let us assume that (tj , xj) → (t, x) and recall that v is continuous.
Then by (4.2)

|v(t, x) − v(t, x)| ≥ η,

which is a contradiction. Therefore, vǫ → v uniformly on compact
subsets of ΩT as ǫ ↓ 0.

(iii) Let us assume that vǫ ∈ USC(ΩT ). In view of (3.3)-(3.4) we can
equivalently prove the following result:

Proposition 4.1.1. Let vǫ ∈ USC(ΩT ) be locally uniformly (in ǫ)
bounded. If (p,X) ∈ J2,+v(t, x), then there exist sequences, which we
do not relabel

(tǫ, xǫ) ∈ ΩT , (pǫ,Xǫ) ∈ J
2,+vǫ(tǫ, xǫ), (4.3)
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such that

(tǫ, xǫ, vǫ(tǫ, xǫ), pǫ,Xǫ)→ (t, x, v(t, x), p,X) as ǫ ↓ 0. (4.4)

Proof of proposition 4.1.1. We are following the lines of [8][proof of
Lemma 6.1]. Without a loss of generality we can assume that t = x =
0. By the definition of the weak limit, there exist sequences such that

(sǫ, zǫ)→ (0, 0) and vǫ(sǫ, zǫ)→ v(0, 0). (4.5)

Since vǫ ≤ v and v ∈ USC(ΩT ), for any sequence (t′ǫ, x
′
ǫ) which con-

verges to (0, 0) the following is true

lim supǫ↓0uǫ(t
′
ǫ, x

′
ǫ) ≤ lim supǫ↓0v(t′ǫ, x

′
ǫ) ≤ v(0, 0). (4.6)

Moreover, ΩT is locally compact and therefore for every δ > 0 there
is r > 0 such that a closed ball Br ⊂ ΩT with the center in the point
(0, 0) is a compact set and

v(s, z) ≤ v(0, 0) + 〈p, (s, z)〉 + 1/2〈X(s, z), (s, z)〉 + δ|(s, z)|, (4.7)

for (s, z) ∈ Br. Let (tǫ, xǫ) ∈ Br be a maximum point of the function

vǫ(s, z)−(〈p, (s, z)〉+1/2〈X(s, z), (s, z)〉+2δ|(s, z)|2 ) over the ball Br,

so that

vǫ(s, z) ≤ vǫ(tǫ, xǫ) + 〈p, (s− tǫ, z − xǫ)〉

+1/2(〈X(s, z), (s, z)〉−〈X(tǫ , xǫ), (tǫ, xǫ)〉)+2δ(|(s, z)|2−|(tǫ, xǫ)|
2).
(4.8)

Suppose that (tǫ, xǫ)→ (t̂, x̂) as ǫ ↓ 0. By putting (s, z) = (sǫ, zǫ) and
taking a limit inferior as ǫ ↓ 0 in (4.8), we get

v(0, 0) ≤ lim inf
ǫ↓0

vǫ(tǫ, xǫ)− 〈p, (t̂, x̂)〉 − 〈X(t̂, x̂), (t̂, x̂)〉

− 2δ|(t̂, x̂)|2. (4.9)

By uppersemicontinuity of v it follows that lim infǫ↓0 vǫ(tǫ, xǫ) ≤ v(t̂, x̂)
and by (4.7) it follows that

v(t̂, x̂)− 〈p, (t̂, x̂)〉 − 〈X(t̂, x̂), (t̂, x̂)〉 − 2δ|(t̂, x̂)|2 ≤ v(0, 0)

− δ|(t̂, x̂)|2. (4.10)
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We combine (4.9) and (4.10) to get

v(0, 0) ≤ v(t̂, x̂)− 〈p, (t̂, x̂)〉 − 〈X(t̂, x̂), (t̂, x̂)〉 − 2δ|(t̂, x̂)|2

≤ v(0, 0) − δ|(t̂, x̂)|2. (4.11)

This proves that t̂ = x̂ = 0, and therefore

(tǫ, xǫ)→ (0, 0) and v(0, 0) = limǫ↓0vǫ(tǫ, xǫ). (4.12)

Next we observe that

vǫ(s, z) ≤ vǫ(tǫ, xǫ) + 〈p, (s− tǫ, z − xǫ)〉+ 1/2(〈X(s, z), (s, z)〉

− 〈X(tǫ, xǫ), (tǫ, xǫ)〉) + 2δ(|(s, z)|2 − |(tǫ, xǫ)|
2)

= vǫ(tǫ, xǫ) + 〈p+ 4δ(tǫ, xǫ) +X(tǫ, xǫ), (s − tǫ, z − xǫ)〉

+1/2〈X(s−tǫ, z−xǫ), (s−tǫ, z−xǫ)〉+〈2δI(s−tǫ, z−xǫ), (s−tǫ, z−xǫ)〉,

so
(p+ 4δ(tǫ, xǫ) +X(tǫ, xǫ),X + 4δI) ∈ J2,+vǫ(tǫ, xǫ)

for ǫ small enough. We conclude that the set of (q, Y ), such that there
exists (sǫ, zǫ) ∈ ΩT and (pǫ,Xǫ) ∈ J

2,+vǫ(sǫ, zǫ)

(sǫ, zǫ, vǫ(sǫ, zǫ), pǫ,Xǫ)→ (0, 0, v(0, 0), q, Y ),

is closed and contains (p,X + 4δI) for δ > 0.

The case when vǫ ∈ LSC(ΩT ) and (t, x) ∈ ΩT is a strict local minimizer
of v − φ), can be proved similarly.

The next theorem provides a uniform convergence of the power penalty
approximations to the American option value.

Theorem 4.1.1. Let v be the unique viscosity solution of (2.6) (Appendix
A, definition A.3.1). For each ǫ > 0, let vǫ be the unique viscosity solution
of (3.7)-(3.8). Then vǫ → v in L∞

loc(ΩT ) as ǫ→ 0.

Proof. We are following the lines of [6, proof of Theorem 3.1] Let v and v
be the upper and lower limits of vǫ. Then 0 ≤ v, v ≤ C(1 + x) on ΩT and
by lemma 4.1.1(i) v ∈ USC(ΩT ) and v ∈ LSC(ΩT ).

It suffices to show that v is a viscosity supersolution and v is a viscosity
subsolution of (2.6). Once it is done, Theorem 3.3.2 (Comparison Principle)
implies v ≤ v and hence v = v = v. The conclusion of the proof will follow
from Lemma 4.1.1(ii).

Let us first show that v is a viscosity supersolution of (2.6). We will work
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towards a contradiction and suppose that v fails to satisfy the terminal
condition, at some point (T, y), y ∈ [0,∞). Then there exists δ > 0 such
that

v(T, y) ≤ g(y)− δ. (4.13)

Let us pick sequences

(tǫ, xǫ)→ (T, y) and vǫ(tǫ, xǫ)→ v(T, y) as ǫ ↓ 0.

In view of the terminal condition in (3.7)-(3.8), there exists ǫ0 > 0 such that
tǫ < T for all ǫ ≤ ǫ0. Next, choose a function ĝ ∈ C2([0,∞)) such that







ĝ ≤ g on [0,∞),
ĝ(y) = g(y) − δ/2,

ĝ = const on [K̂,∞) whenever K̂ > y.

(4.14)

We use ĝ to define a function

G = −C(T − t) + ĝ,

where C > 0 is a constant to be chosen later. By (4.14) and definition of G
it follows that G < g on ΩT . Moreover,

∂tG(t, x)+(r−d)x∂xG(t, x)+
1

2
σ2x2∂2

xG(t, x)−rG(t, x)+
1

ǫ
[(g(x)−G(t, x))+]1/k

≥ C + (r − d)x∂xĝ(x) +
1

2
σ2x2∂2

xĝ(x) − rĝ(x),

so G is a subsolution if we choose

C ≥ − min
x∈[0,∞)

{(r − d)x∂xĝ(x) +
1

2
σ2x2∂2

xĝ(x)− rĝ(x)}.

The minimum is finite since ĝ is constant on [K̂,∞) and therefore the min-
imum is achieved on the compact set [0, K̂]. By Theorem 3.3.2 (Comparison
Principle) subsolution G and the supersolution vǫ satisfy G ≤ vǫ on ΩT for
any ǫ ∈ (0, ǫ0]. By letting ǫ ↓ 0, we get G ≤ v on ΩT . In particular,

v(T, y) ≥ G(T, y) = ĝ(y) = g(y)− δ/2.

Hence v(T, y) > g(y) − δ which is a contradiction to (4.13). Therefore, v
satisfies the terminal condition v|t=T ≥ g on [0,∞).

Let us now show that v is a supersolution for t ∈ [0, T ). Choose φ ∈ C1,2(ΩT )
as a test function and let (t, x) ∈ ΩT be a strict local minimizer of v − φ.
We claim that

v(t, x) ≥ g(x). (4.15)
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Suppose that there exists δ > 0 such that v(t, x) ≤ g(x)− δ. By
lemma 4.1.1(iii), there exist sequences such that

(tǫ, xǫ)→ (t, x) and vǫ(tǫ, xǫ)→ v(t, x) as ǫ ↓ 0.

Moreover, (tǫ, xǫ) is a local minimizer of v−φ for each ǫ. In the neighborhood
of (t, x), we have:

∃ǫ(δ)>0∀ǫ≤ǫ(δ)
δ

2
≤ g(xǫ)− vǫ(tǫ, xǫ).

In view of this and since vǫ is a supersolution of (3.7)-(3.8), we have

∂tφ(tǫ, xǫ) + (r − d)xǫ∂xφ(tǫ, xǫ) +
1

2
σ2x2

ǫ∂
2
xφ(tǫ, xǫ)− rvǫ(tǫ, xǫ)

≤ −
1

ǫ
[(g(xǫ)− vǫ(tǫ, xǫ))

+]1/k = −
1

ǫ
[g(xǫ)− vǫ(tǫ, xǫ)]

1/k ≤ −
1

ǫ

(δ

2

)1/k
,

for ǫ ≤ ǫ(δ). Letting ǫ ↓ 0 in this inequality we get a contradiction since
the left-hand side converges to a finite number while the right-hand side
converges to −∞. The property (4.15) has just been proved and, with this
information in hand, we let ǫ ↓ 0 in the inequality

∂tφ(tǫ, xǫ) + (r − d)xǫ∂xφ(tǫ, xǫ) +
1

2
σ2x2

ǫ∂
2
xφ(tǫ, xǫ)− rvǫ(tǫ, xǫ)

≤ −
1

ǫ
[(g(xǫ)− vǫ(tǫ, xǫ))

+]1/k ≤ 0.

Therefore,

max
(

LBSφ(t, x)− rv(t, x), g(x) − v(t, x)
)

≤ 0.

This concludes the proof of the supersolution property of v at (t, x).

Let us now show that v is a viscosity subsolution of (2.6). We will work
towards a contradiction and suppose that v fails to satisfy the terminal con-
dition at some point (T, y), y ∈ [0,∞). Then there exists δ > 0 such that

v(T, y) ≥ g(y) + δ. (4.16)

Let us pick sequences

(tǫ, xǫ)→ (T, y) and vǫ(tǫ, xǫ)→ v(T, y) as ǫ ↓ 0.

In view of the terminal condition in (3.7)-(3.8), there exists ǫ0 > 0 such that
tǫ < T for all ǫ ≤ ǫ0. Choose a function ĝ ∈ C2([0,∞)) such that







ĝ ≥ g on [0,∞),
ĝ(y) = g(y) + δ/2,

ĝ = g on [K̂,∞) with K̂ > max(y,K).

(4.17)
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We use ĝ to define a function

G = C(T − t) + ĝ,

and C > 0 is a constant to be chosen later. By (4.17) and the definition of
G it follows that G ≥ g on ΩT . Moreover,

∂tG(t, x)+(r−d)x∂xG(t, x)+
1

2
σ2x2∂2

xG(t, x)−rG(t, x)+
1

ǫ
[(g(x)−G(t, x))+]1/k

= −C + (r − d)x∂xĝ(x) +
1

2
σ2x2∂2

xĝ(x) − rĝ(x),

so G is a subsolution if we choose

C ≥ max
x∈[0,∞)

{(r − d)x∂xĝ(x) +
1

2
σ2x2∂2

xĝ(x)− rĝ(x)}. (4.18)

We claim that the maximum is a finite number. Indeed, for a compact subset
[0, K̂ ] the maximum is finite. For x > K̂ we have that g = ĝ. Let us treat
the call and the put case separately. For the call option, ĝ = x − K when
x > K̂ ≥ K. The expression inside the curly brackets in (4.18) is bounded
by

(r − d)x− r(x−K) = rK − dx ≤ rK − dK̂ <∞.

For the put option ĝ = 0 when x > K̂.

By Theorem 3.3.2 (Comparison Principle) supersolution G and a subso-
lution vǫ satisfy vǫ ≤ G on ΩT for any ǫ ∈ (0, ǫ0]. By letting ǫ ↓ 0, we get
v ≤ G on ΩT . In particular,

v(T, y) ≤ G(T, y) = ĝ(y) = g(y) + δ/2.

Hence v(T, y) < g(y) + δ which is a contradiction to (4.1). Therefore v sat-
isfies the terminal condition v|t=T ≤ g on [0,∞).

It remains to show that v is a subsolution for t ∈ [0, T ). Let us choose
φ ∈ C1,2(ΩT ) as a test function and let (t, x) ∈ ΩT be a strict local max-
imizer of v − φ. Similarly like in the supersolution case, Lemma 4.1.1 (iii)
implies the existence of a sequence such that

(tǫ, xǫ)→ (t, x) and vǫ(tǫ, xǫ)→ v(t, x) as ǫ→ 0.

Moreover, (tǫ, xǫ) is a local maximizer of v − φ for each ǫ. Observe that the
maximum between zero and any number will be nonnegative. This explains
why g is a subsolution of (2.6). By (4.15) and Theorem 3.3.2 (Comparison
Principle) we can conclude that

g(x) ≤ v(t, x) ≤ v(t, x). (4.19)



34 CHAPTER 4. CONVERGENCE OF APPROXIMATE SOLUTIONS

If v(t, x) = g(x), then g − φ has a local maximum at (t,x). Since g is
a subsolution of (2.6), v is a subsolution as well. On the other hand, if
v(t, x) > g(x), then vǫ(tǫ, xǫ) > g(xǫ) for any ǫ small enough. In the view of
this and since vǫ is a subsolution of (3.7)-(3.8), we have

∂tφ(tǫ, xǫ) + (r − d)xǫ∂xφ(tǫ, xǫ) +
1

2
σ2x2

ǫ∂
2
xφ(tǫ, xǫ)− rvǫ(tǫ, xǫ)

≥ −
1

ǫ
[(g(xǫ)− vǫ(tǫ, xǫ))

+]1/k = 0.

Let ǫ ↓ 0 in this inequality and observe that

max
(

LBSφ(t, x)− rv(t, x), g(x) − v(t, x)
)

≥ 0.

This concludes the proof of the subsolution property of v at (t, x).

4.2 The rate of convergence of penalty approach

In this section we will derive error bounds for the convergence of the power
penalty approach vk, i.e. solution of (3.1)-(3.2), and a solution of the quasi-
variational inequality formulation (2.6), i.e. American option value u. We
will use comparison arguments to derive such a bound. We are following the
presentation given in [15][Section 2].

Let us rewrite the equations (3.1)-(3.2) and (2.6) in a form suitable for
the application of this section. Consider therefore the problem (2.6) with
the opposite signs and with the maximum replaced by the minimum:

{

min{−∂tu+ F (t, x, u, ∂xu, ∂
2
xu), u− g} = 0 (t, x) ∈ ΩT ,

u(T, x) = g(x) x ∈ [0,∞).
(4.20)

The second order operator F : ΩT ×R×R×R→ R is defined by

F (t, x, s, p,X) = −(r − d)xp −
1

2
σ2x2X + rs. (4.21)

The natural definition of viscosity sub- and supersolution of the equation
(4.20) is given in the Appendix (Definition A.3.1). Similarly, we change the
signs in (3.1)-(3.2) to get:

{

−∂tvǫ + F (t, x, vǫ, ∂xvǫ, ∂
2
xvǫ) = 1

ǫ [(g(x) − vǫ)
+]1/k, (t, x) ∈ ΩT ,

vǫ(T, x) = g(x), x ∈ [0,∞).
(4.22)

Theorem 4.2.1. Let u be a subsolution of (4.20) and v be a supersolution
of (4.20) such that

u(t, x),−v(t, x) ≤ L(|x|+ 1) and u(T, x) ≤ v(T, x)

for some constant L > 0. Then u ≤ v in ΩT .



4.2. THE RATE OF CONVERGENCE OF PENALTY APPROACH 35

Proof. The proof is given in the Appendix A.

In the previous section we have proven that the power penalty approx-
imations (vǫ)ǫ converge uniformly to the American option value, as ǫ → 0.
The convergence takes place in the space of locally bounded functions with
supremum norm. Preceding towards error estimates, we observe that:

(A1)(Comparison) By Theorem 3.3.2 and Theorem 4.2.1, (4.20) and (4.22)
satisfy the comparison principle in the class of viscosity solutions.

(A2)(Monotonicity) If z ≤ s and X ≤ Y then

F (t, x, z, p,X) ≤ F (t, x, s, p, Y ).

This follows by simple calculations

|F (t, x, z, p,X) − F (t, x, s, p, Y )| ≤ 1/2σ2x2(Y −X) + r(z − s) ≤ 0.

(A3)(Regularity) For all (t, x) ∈ B(0, R) ⊂ ΩT and Φ ∈ C2(R2)

|Φ|+ |∂xΦ|+ |∂2
xΦ| ≤ R⇒ F (t, x,Φ, ∂xΦ, ∂2

xΦ) ≤ CR.

Indeed, fix (t, x) ∈ B(0, R) and let Φ ∈ C2(R2).Then

F (t, x,Φ, ∂xΦ, ∂2
xΦ) = −(r − d)x∂xΦ−

1

2
σ2x2∂2

xΦ + rΦ

≤ C(|Φ|+ |∂xΦ|+ |∂2
xΦ|) ≤ CR =: CR.

The main result in this section gives the rate of convergence for the penal-
ization problem.

Theorem 4.2.2. Assume (A1)-(A2) hold and u and vǫ are solutions of
(4.20) and (4.22). Then ‖u− vǫ‖L∞ ≤ Cǫk/2, where the constant C depends
only on g.

Proof. We are following Jakobsen [15][proof of Theorem 2.1]. We will gradu-
ally prove a series of lemmas to obtain the main result. We begin with the
preliminary estimate:

Lemma 4.2.1. Assume (A1) and (A2) hold. Let u and vǫ be a solution of
(4.20) and (4.22) respectively. Then

|u− vǫ| ≤ |(g − vǫ)
+| in ΩT .
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Proof. By monotonicity (A2), vǫ + |(g− vǫ)
+| is a viscosity supersolution of

(4.20). Let (a, p,X) ∈ P2,−(vǫ + |(g − vǫ)
+|), then

min{−a+ F (t, x, vǫ + |(g − vǫ)
+|, p,X), vǫ + |(g − vǫ)

+| − g}

≥ min{−a+ F (t, x, vǫ, p,X), (vǫ − g) + |(g − vǫ)
+|}

≥ min{
1

ǫ
[(g − vǫ)

+]1/k, (vǫ − g) + |(g − vǫ)
+|} = 0.

The comparison principle for (4.20) implies

u ≤ vǫ + |(g − vǫ)
+|. (4.23)

Similarly, we observe that by monotonicity (A2), vǫ−|(g−vǫ)
+| is a viscosity

subsolution of (4.20). Let (a, p,X) ∈ P2,+(vǫ − |(g − vǫ)
+|), then

min{−a+ F (t, x, vǫ − |(g − vǫ)
+|, p,X), vǫ − |(g − vǫ)

+| − g}

≤ min{−a+ F (t, x, vǫ, p,X), (vǫ − g) − |(g − vǫ)
+|}

≤ min{
1

ǫ
[(g − vǫ)

+]1/k, vǫ − g} ≤ 0.

The comparison principle for (4.20) implies

vǫ − |(g − vǫ)
+| ≤ u. (4.24)

The Lemma 4.2.1 follows from (4.23) and (4.24).

Let us now estimate the right-most term |(g − vǫ)
+| in Lemma 4.2.1.

Lemma 4.2.2. Assume (A1)-(A2) hold. Let vǫ be the solution of (4.22).
K1 = CR and R = |g|+ 1. Then

g − vǫ ≤ ǫ
kKk

1 .

Proof. Observe that g − ǫkKk
1 is a viscosity subsolution of (4.22). Let

(a, p,X) ∈ P2,+(g − ǫkKk
1 ), then

− a+ F (t, x, g − ǫkKk
1 , p,X) −

1

ǫ
[ǫkKk

1 ]1/k

≤ −a+ F (t, x, g, p,X) −K1 ≤ −a+ CR − CR ≤ 0. (4.25)

Comparison principle for (4.22) implies that g − u ≤ ǫkKk
1 .

Since g is not a smooth function, we shall approximate the result. Con-
sider therefore ηδ, a standard mollifier:

ηδ(x) = 1/δη(x/δ),
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where η ∈ C∞
0 (R) a nonnegative function satisfying:

η(z) = η(−z), η(z) ≡ 0 for |z| ≥ 1,

∫

R

η(z)dz = 1.

We define an approximation gδ = (η ⋆ g). Denote by uδ and vδ
ǫ the solutions

of (4.20) and (4.21) when g is replaced by gδ, i.e.

{

min{−∂tu
δ + F (t, x, uδ , ∂xu

δ, ∂2
xu

δ);uδ − gδ} = 0 (t, x) ∈ ΩT ,
uδ(T, x) = gδ(x) x ∈ [0,∞),

(4.26)

{

−∂tv
δ
ǫ + F (t, x, vδ

ǫ , ∂xv
δ
ǫ , ∂

2
xv

δ
ǫ ) = 1

ǫ [(gδ − vδ
ǫ )+]1/k, (t, x) ∈ ΩT ,

vδ
ǫ (T, x) = gδ(x), x ∈ [0,∞).

(4.27)

Let us prove the following bounds on u− uδ and v − vδ :

Lemma 4.2.3. Assume (A1)-(A3), and let u, uδ , vǫ and vδ
ǫ be solutions of

(4.20), (4.22), (4.26), and (4.27). Then

|u− uδ|+ |vǫ − v
δ
ǫ | ≤ 2|g − gδ |.

Proof. Since vǫ → u in L∞(ΩT ), it is sufficient to prove the lemma for vǫ

and vδ
ǫ . The result for u and uδ can be obtained by going to the limit in the

vǫ and vδ
ǫ - result. Let L := |g − gδ| and define

w± = vδ
ǫ ± L.

Observe that w+ is a supersolution of (4.27) and w− is a subsolution of
(4.27):

− ∂tv
δ
ǫ + Fǫ(t, x, v

δ
ǫ + L, ∂xv

δ
ǫ , ∂

2
xv

δ
ǫ )−

1

ǫ
[(g − vδ

ǫ − L)+]1/k

≥ −∂tv
δ
ǫ + Fǫ(t, x, v

δ
ǫ , ∂xv

δ
ǫ , ∂

2
xv

δ
ǫ )−

1

ǫ
[(g − vδ

ǫ )+]1/k ≥ 0. (4.28)

− ∂tv
δ
ǫ + Fǫ(t, x, v

δ
ǫ − L, ∂xv

δ
ǫ , ∂

2
xv

δ
ǫ )−

1

ǫ
[(g − vδ

ǫ + L)+]1/k

≤ −∂tv
δ
ǫ + Fǫ(t, x, v

δ
ǫ , ∂xv

δ
ǫ , ∂

2
xv

δ
ǫ )−

1

ǫ
[(g − vδ

ǫ )+]1/k ≤ 0. (4.29)

The comparison principle implies that |vǫ − v
δ
ǫ | ≤ |g − g

δ |.

Now we are ready to give the proof of the Theorem 4.2.2. Let uδ and vδ
ǫ

be solutions of (4.26) and (4.27). By Lemmas 4.2.1 and 4.2.2 we have

|uδ − vδ
ǫ | ≤ |(g − v

δ
ǫ )+| ≤ Kk

1 ǫ
k, (4.30)
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where K1 is defined in Lemma 4.2.2. Note that u − vǫ = (u − uδ) + (uδ −
vδ
ǫ )+(vδ

ǫ −vǫ). By the triangle inequality, (4.30), Lemma 4.2.3 and Lipschitz
continuity of g we get the estimates:

|u− vǫ| ≤ |u− u
δ|+ |vδ

ǫ − vǫ|+Kk
1 ǫ

k ≤ 2|g− gδ|+Kk
1 ǫ

k ≤ 2|g|δ+Kk
1 ǫ

k.

Put K1 = Cδ−1/k and minimize

f(δ) = 2|g|δ +Kk
1 ǫ

k,

with respect to δ. Since f ′(δ) = 0 if δ = ǫk/2, we obtain the following
estimate:

|u− vǫ| ≤ 2|g|ǫk/2 + Cǫkǫ−k/2 = Cǫk/2,

and the following rate of convergence:

‖u− vǫ‖L∞(ΩT ) = ess sup
(t,x)∈ΩT

|u− vǫ| ≤ Cǫ
k/2.

To achieve a given accuracy, we do not need ǫ to be very small, when k
is large. The order of convergence rate is the same as the one calculated by
Wang, Yang and Teo [23], but in the different norm. Due to their work

‖u− vǫ‖L∞(0,T ;L2((0,∞))) + ‖u− vǫ‖L2(0,T ;H1

0,ω((0,∞))) ≤ Cǫ
k/2,

where Lp(0, T ;H1
0,ω((0,∞)) denotes the space defined by

Lp(0, T ;H1
0,ω((0,∞)) = {v(·, t) ∈ H((0,∞)) a.e. in (0, T );

‖v(·, t)‖H ∈ L
2((0, T ))},

with the norm

‖v‖L2(0,T ;H1

0,ω((0,∞)) = (

∫ T

0
‖v(·, t)‖pHdt)

1/p.

Moreover, H is a Hilbert space, 1 ≤ p ≤ ∞, H1
0,ω((0,∞))) is a weighted

Sobolev space defined by:

H1
0,ω((0,∞))) = {v : v ∈ L2((0,∞)), v′ ∈ L2

ω((0,∞)) and v(X) = 0}.

Here L2
ω((0,∞)) is a space of all weighted square-integrable functions. In

the next chapter we will present numerical results to confirm the theory
developed so far.



Chapter 5

Numerical schemes

In this chapter we compare three numerical schemes: a power-penalty scheme,
a predictor-corrector scheme and the Brennan and Schwartz algorithm. The
numerical results and the payoff function g defined by (2.1), are set together
and compared. The aim of this section is to show that by choosing reas-
onable parameters ǫ and k in the power-penalty scheme, we will obtain the
most accurate numerical approximation.

5.1 Power-penalty scheme

The following scheme discretizes the power penalty equation (3.1). Let us
start with the truncation of the infinite domain [0,∞), to a finite domain
[0, L) where 0 < L < ∞ is fixed. Later, we will also provide a suitable
boundary condition at x = L (see (5.7)). The advantage of the truncation
technique [1], is that the choice of the boundary condition at x = L, does
not affect the theoretical analysis of convergence. This can be achieved by
sending L ↑ ∞ and ∆x ↓ 0.

Below we discretizate the spatial and temporal domains. Let ∆x > 0
be a spatial discretization parameter and choose an integer J , such that
J∆x = L. We divide [0, L] into grid cells:

Ij = [xj , xj+1), j = 0, 1, ..., J − 2, (5.1)

where xl = l∆x for l = 0, 1, ..., J , and we set IJ−1 = [xJ−1, xJ ]. Similarly,
let ∆t > 0 be a temporal discretization parameter and let N be an integer
such that N∆t = T . We divide the time interval [0, T ], into time strips

In = [tn, tn+1) n = 0, 1, ..., N − 2, (5.2)

where tn = n∆t, n = 0, ..., N . Furthermore, set IN−1 = [tN−1, tN ]. Denote
by ΩL

T a rectangle [0, T ]× [0, L] which, by the aforementioned discretization

39
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procedure, is divided to N × J rectangles Rn
j = In × Ij . By vn

j , denote
an approximation associated with the point (tn, xj), for j = 0, 1, ..., J and
n = 0, 1, ..., N . Let us introduce a simple difference scheme for the penalized
equation (3.1). For simplicity, set λ = ∆t/∆x and µ = ∆t/(∆x)2. Denote
by ∆+ and ∆− the difference operators in x direction:

∆+v
n
j = vn

j+1 − v
n
j , ∆−v

n
j = vn

j − v
n
j−1.

Define the upwind numerical f lux function [6] F : R× R→ R by:

F (a, b) =

{

b when r − d > 0,
a when r − d < 0.

(5.3)

The power-penalty scheme takes the following form for j = 0, ..., J − 1 and
n = N − 1, ..., 0:

vn
j = vn+1

j + λ(r− d)xj∆−F (vn+1
j , vn+1

j+1 ) + µ
1

2
σ2x2

j∆−∆+v
n+1
j − r∆tvn+1

j

+
1

ǫ
∆t[(g(xj)− v

n+1
j )+]1/k. (5.4)

For simplicity, let us assume that r − d > 0, and therefore (5.4) becomes:

vn
j = vn+1

j + (r − d)xjλ(vn+1
j+1 − v

n+1
j ) +

1

2
σ2x2

jµ(vn+1
j+1 − 2vn+1

j + vn+1
j−1 )

− r∆tvn+1
j +

1

ǫ
∆t[(g(xj)− v

n+1
j )+]1/k. (5.5)

We begin a backward iteration (5.5), by setting terminal conditions:

vN
j = g(xj), j = 0, .., J, (5.6)

and boundary conditions at x = 0 and x = L:

vn
0 = g(0), vn

J = g(L), n = N − 1, ..., 0. (5.7)

5.1.1 Stability of the power-penalty scheme

Numerical examples shows that the power-penalty scheme is not stable,
unless we ensure that the approximate solution lies above the payoff function
g. The improvement turns the scheme (5.5) into:











v
n+1/2
j = vn+1

j + (r − d)xjλ(vn+1
j+1 − v

n+1
j ) + 1

2σ
2x2

jµ(vn+1
j+1 − 2vn+1

j + vn+1
j−1 )

−r∆tvn+1
j + 1

ǫ ∆t[(g(xj)− vn+1
j )+]1/k,

vn
j = max(g(xj), v

n+1/2
j ).

(5.8)
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Let us assume that the following parabolic CFL condition hold:

λ|r − d|L+ µσ2L2 + ∆tr +
1

ǫk
max{K,L}1/k−1 ≤ 1. (5.9)

Note that when ∆x ↓ 0 and ǫ ↓ 0, then also ∆t ↓ 0 by the above condition.
The following lemma shows that the power-penalty approximation vn

j lies
above g and has at most linear growth as x ↑ ∞. This implies that the the
power-penalty scheme (5.8) is L∞

loc stable.

Lemma 5.1.1. Suppose the parabolic CFL condition (5.9) hold. Then the
power-penalty solution vn

j defined by (5.8) satisfies

vn
j ≥ g(xj), j = 0, ..., L, n = N,N − 1, ..., 0. (5.10)

Furthermore, there exist finite constants C1 and C2, such that

vn
j ≤ C1 + C2xj , j = 0, ..., L, n = N,N − 1, ..., 0. (5.11)

For the call option, C1 = 0 and C2 = 1. For the put option, C1 = K and
C2 = 0.

Proof. We are following [6][proof of Lemma 4.1]. By additional conditions
we trivially have that vn

j ≥ g(j) for all j and n. The proof of (5.11) is
inductive. By boundary and terminal conditions (5.6)-(5.7), the statement
holds for (j = 0, ..., J, n = N,N − 1, ..., 0), (j = J, n = N,N − 1, ..., 0), and
(j = 0, ..., J, n = N).

Let us start with a put option and assume that (5.11) holds at time level
n + 1 and we seek to prove that it holds at time level n. To this end, we
introduce a function S defined by:

S(xj , v
n+1
j−1 , v

n+1
j , vn+1

j+1 ) = vn+1
j + (r − d)xjλ(vn+1

j+1 − v
n+1
j )

+
1

2
σ2x2

jµ(vn+1
j+1 − 2vn+1

j + vn+1
j−1 )− r∆tvn+1

j +
1

ǫ
∆t[(g(xj)− vn+1

j )+]1/k.

(5.12)

We can therefore rewrite (5.5) as

S(xj, v
n+1
j−1 , v

n+1
j , vn+1

j+1 )− vn
j = 0. (5.13)

Observe that

∂S/∂vn+1
j−1 = 1/2σ2x2

j ≥ 0, ∂S/∂vn+1
j+1 = (r−d)xjλ+1/2σ2x2

jµ ≥ 0. (5.14)

In a view of the parabolic CFL condition (5.9):

∂S/∂vn+1
j = 1− (r − d)xjλ− σ

2x2
jµ− r∆t−∆t

1

ǫk
[(g(xj)− vn+1

j )+]1/k−1

≥ 1− (r − d)Lλ− σ2L2µ− r∆t−∆t
1

ǫk
[max(L,K)]1/k−1 ≥ 0. (5.15)
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This implies that the scheme is monotone. It follows from the monotonicity
of S that for a put option

v
n+1/2
j ≤ K(1− r∆t) + ∆t

1

ǫ
[(g(xj)−K)+]1/k = K(1− r∆t). (5.16)

Hence,

vn
j = max(g(xj), v

n+1/2
j ) ≤ K for all j. (5.17)

For the call, we similarly assume that (5.11) holds at time level n + 1 and
we seek to prove that it holds at time level n. By monotonicity of S, we get

v
n+1/2
j ≤ xj(1− d∆t) + ∆t

1

ǫ
[(g(xj)− xj)

+]1/k = xj(1− d∆t). (5.18)

Hence,

vn
j = max(g(xj), v

n+1/2
j ) ≤ xj for all j. (5.19)

5.1.2 Numerical implementation

The main algorithm for the put option.

1. Denote by x, gput vectors with coordinates corresponding, respectively,
to discrete points xl, values of payoff function g(xl) in this points,
l = 0, ..., J .

2. Denote by wput and vput vectors with coordinates corresponding to
approximate solutions in n + 1 and n time step, respectively, n =
N − 1, ..., 0.

3. wput← gput. %terminal conditions

4. for n = 1 : N
vput← PDEput(wput).
wput← vput.
end.

Function PDEput(u)

1. Denote by temp the return vector.

2. temp(0)← gput(0). %boundary conditions
temp(j)← gput(L).
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3.for n = 2 : J

y ← u(j)+λ(r−d)x(j)(u(j+1)−u(j))+µ0.5σ2x2(j)(u(j+1)−2u(j)

+ u(j − 1)) − r∆tu(j) + ∆t(1/ǫ)[(gput(j) − u(j))+]1/k.

temp(j)← max(gput(j), y).
end.

Moreover, by replacing ”put” with ”call” in the above algorithm, one can
obtain the main algorithm for the call option and a function PDEcall(u).

5.2 The predictor-corrector scheme

The following scheme discretizes the Black and Scholes equation (2.16). The
discretization of the spatial and temporal domains is similar to the one in
the power-penalty scheme, and we will be rather brief here. Let ∆x > 0
be a spatial discretization parameter and we choose an integer J , such that
J∆x = L. We divide [0, L] into grid cells:

Ij = [xj−1/2, xj+1/2), j = 1, ..., J − 1, (5.20)

where xl = l∆x for l = 0, 1/2, 1, ..., J − 1, J − 1/2. We set I0 = [0, x1/2) and
IJ = [xJ−1/2, xJ ]. Let ∆t > 0 be a temporal discretization parameter, N be
an integer such that N∆t = T . We divide the time interval [0, T ], into time
strips

In = [tn, tn+1) n = 0, 1, ..., N − 2, (5.21)

where tn = n∆t, n = 0, ..., N . Moreover, set IN−1 = [tN−1, tN ]. With the
same notation as before: ΩL

T is divided into rectangles Rn
j = In × Ij , v

n
j

denotes an approximation associated with the point (tn, xj), λ = ∆t/∆x
and µ = ∆t/(∆x)2. The predictor-corrector scheme [6] for the semilinear
Black and Scholes equation (2.15)-(2.16), takes the following form for j =
0, ..., J − 1 and n = N − 1, ..., 0:

Predictor step:

v
n+1/2
j = vn+1

j + λ(r − d)xj∆−F (vn+1
j , vn+1

j+1 ) + µ
1

2
σ2x2

j∆−∆+v
n+1
j

− r∆tvn+1
j . (5.22)

Corrector step:

vn
j = v

n+1/2
j + ∆tc(xj)H(g(xj)− v

n+1/2
j ). (5.23)
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Assume for simplicity r − d ≥ 0. Observe that v
n+1/2
j ≤ g(xj), then (5.22)-

(5.23) reduces to

vn
j = vn+1

j + (r − d)xjλ(vn+1
j+1 − v

n+1
j ) +

1

2
σ2x2

jµ(vn+1
j+1 − 2vn+1

j + vn+1
j−1 )

− r∆tvn+1
j + ∆tc(xj). (5.24)

Otherwise, (5.22)-(5.23) reduces to

vn
j = vn+1

j +(r−d)xjλ(vn+1
j+1−v

n+1
j )+

1

2
σ2x2

jµ(vn+1
j+1−2vn+1

j +vn+1
j−1 )−r∆tvn+1

j .

(5.25)
We recall, that

c(xj) =

{

(dxj − rK)+ call option,
(rK − dxj)

+, put option.
(5.26)

We begin a backward iteration (5.24)-(5.25), by setting terminal conditions:

vN
j = g(xj), j = 0, .., J, (5.27)

and boundary conditions at x = 0 and x = L:

v
n+1/2
0 = vn

0 = g(0), v
n+1/2
J = vn

J = g(L), n = N − 1, ..., 0. (5.28)

5.2.1 Stability of the predictor-corrector scheme

The following lemma shows that the predictor-corrector approximation vn
j

lies above g and has at most linear growth as x ↑ ∞. This implies that the
the predictor-corrector scheme (5.24)-(5.25) is L∞

loc stable.

Lemma 5.2.1. Let us assume that the following parabolic CFL′ condition
holds:

λ|r − d|L + µσ2L2 + r∆t ≤ 1. (5.29)

Then the predictor-corrector solution vn
j defined by (5.24)-(5.25) satisfies

vn
j ≥ g(xj), j = 0, ..., L, n = N,N − 1, ..., 0.

Furthermore, there exist finite constants C1 and C2, such that

vn
j ≤ C1 + C2xj, j = 0, ..., L, n = N,N − 1, ..., 0.

For the call option, C1 = 0 and C2 = 1. For the put option, C1 = K and
C2 = 0.

Proof. For the proof, see [6][proof of Lemma 4.1].
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5.2.2 Numerical implementation

The main algorithm for the put option.

1. Denote by x, gput vectors with coordinates corresponding, respectively,
to discrete points xl, values of payoff function g(xl) in this points,
l = 0, ..., J .

2. Denote by Pwput and Pvput vectors with coordinates corresponding
to approximate solutions in n + 1 and n time step, respectively, n =
N − 1, ..., 0.

3. Pwput← gput. %terminal conditions

4. for n = 1 : N
Pvput← PDEput(Pwput).
Pwput← Pvput.
end.

Function PDEput(u)

1. Denote by temp the return vector.

2. temp(0)← gput(0). %boundary conditions
temp(j)← gput(L).

3. for n = 2 : J

y ← u(j)+λ(r−d)x(j)(u(j+1)−u(j))+µ0.5σ2x2(j)(u(j+1)−2u(j)

+ u(j − 1))− r∆tu(j).

if gput(j) > y then
temp(j)← y + ∆t(max(rK − dx(j), 0)).

else
temp(j)← y.
end.
end.

Moreover, by replacing ”put” with ”call” in the above algorithm, one can ob-
tain the main algorithm for the call option. Additionally, inside the function
PDEcall(u), exchange also max(rK − dx(j), 0) with max(dx(j) − rK, 0).
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5.3 The Brennan and Schwartz algorithm

By applying a predictor-corrector discretization to the penalized equation
(3.1), we obtain a numerical scheme that is similar to (5.22)-(5.23), but with
the following corrector step:

vn
j = v

n+1/2
j +

∆t

ǫ
[(g(xj)− v

n+1/2
j )+]1/k. (5.30)

Put k = 1 and ǫ = ∆t. This results in the following scheme:











v
n+1/2
j = vn+1

j + (r − d)xjλ(vn+1
j+1 − v

n+1
j ) + 1

2σ
2x2

jµ(vn+1
j+1 − 2vn+1

j + vn+1
j−1 )

−r∆tvn+1
j ,

vn
j = max(v

n+1/2
j , g(xj)).

(5.31)

We begin the backward iteration (5.31), by setting terminal conditions:

vN
j = g(xj), j = 0, .., J, (5.32)

and boundary conditions at x = 0 and x = L:

v
n+1/2
0 = vn

0 = g(0), v
n+1/2
J = vn

J = g(L), n = N − 1, ..., 0. (5.33)

5.3.1 Stability of the Brennan and Schwartz algorithm

The following lemma shows that the Brennan and Schwartz approximation
vn
j lies above g and has at most linear growth as x ↑ ∞. This implies that

the the Brennan and Schwartz scheme (5.31) is L∞
loc stable.

Lemma 5.3.1. Assume that the parabolic CFL′ condition (5.29) hold.
Then the Brennan and Schwartz solution vn

j defined by (5.31) satisfies

vn
j ≥ g(xj), j = 0, ..., L, n = N,N − 1, ..., 0.

Furthermore, there exist finite constants C1 and C2, such that

vn
j ≤ C1 + C2xj, j = 0, ..., L, n = N,N − 1, ..., 0.

For the call option, C1 = 0 and C2 = 1. For the put option, C1 = K and
C2 = 0.

Proof. For the proof, see [6][proof of Theorem 5.1].

5.3.2 Numerical implementation

The main algorithm for the put option.
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1. Denote by x, gput vectors with coordinates corresponding, respectively,
to discrete points xl, values of payoff function g(xl) in this points,
l = 0, ..., J .

2. Denote by Bwput and Bvput vectors with coordinates corresponding
to approximate solutions in n + 1 and n time step, respectively, n =
N − 1, ..., 0.

3. Bwput← gput. %terminal conditions

4. for n = 1 : N
Bvput← PDEput(Bwput).
Bwput← Bvput.
end.

Function PDEput(u)

1. Denote by temp the return vector.

2. temp(0)← gput(0). %boundary conditions
temp(j)← gput(L).

3. for n = 2 : J

y ← u(j)+λ(r−d)x(j)(u(j+1)−u(j))+µ0.5σ2x2(j)(u(j+1)−2u(j)

+ u(j − 1))− r∆tu(j).

temp(j)← max(gput, y).
end.
end.

Moreover, by replacing ”put” with ”call” in the above algorithm, one can
obtain the main algorithm for the call option and a function PDEcall(u).

5.4 A numerical experiment

In this section we test schemes defines by (5.8), (5.24)-(5.25) and (5.31). All
schemes has been implemented in Matlab. We have chosen the following
parameters:

r = 0.1, d = 0 σ = 0.2, K = 1, L = 4, T = 1, J = 76 L = 650.

A spatial parameter ∆x has been calculated to be equal to 0.057. We have
chosen ∆t = 0.00154 according to CFL’ conditions (5.29), i.e.

∆t ≤
(∆x)2

∆x|r − d|L+ σ2L2 + (∆x)2r
. (5.34)
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Fixing k to be equal to 103 we have specified ǫ = 6 · 10−4 in view of CFL
condition (5.9). The same set of discretization parameters has been used for
all schemes. Additionally, the ”exact solution” was computed by the power-
penalty scheme on a very fine grid. The ”exact” and approximate solutions,
for the power-penalty, predictor-corrector and Brennan and Schwartz al-
gorithms are displayed, respectively, in the Figures: 5.1, 5.2 and 5.3. We
are presenting the results for the American put option, the results for the
call option are analogies.

In the ”visual norm” the schemes produce solutions of more or less the
same quality. The difference is hardly visible. To confirm that the power-
penalty scheme produce better results, we compare the power-penalty and
predictor-corrector schemes. The ”zoom in plots” can be viewed on the Fig-
ures 5.4-5.5. According to them, the power-penalty scheme gives a slightly
better result than the corrector-predictor scheme, and hence, in view of
Benth, Karlsen and Reikvam [6][Section 6], better then the Brennan and
Schwartz algorithm.

5.5 Conclusions

The numerical examples have confirmed that by improving the classical pen-
alty method to power-penalty method, one can obtain better results. The
numerical experiments concludes also the theoretical analysis of convergence
done in the previous chapters and illustrates the effectiveness and usefulness
of the method. It remains to show that under CFL conditions (5.9) and in a
view of the Lemma 4.1.1, the solution of the power penalty scheme converge
in L∞

loc(ΩT ) to a unique viscosity solution of (2.6), i.e. American option
value, as ∆x ↓ 0.
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Figure 5.1: The price of the American put option with expiration time T=1:
the exact solution with the payoff function (solid line) and the power-penalty
solution (dashed line).
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Figure 5.2: The price of the American put option with expiration time T=1:
the exact solution with the payoff function (solid line) and the predictor-
corrector solution (dashed line).
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Figure 5.3: The price of the American put option with expiration time T=1:
the exact solution with the payoff function (solid line) and the Brennan and
Schwartz solution (dashed line).
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Figure 5.4: ”Zoom-in plots” of the power-penalty solution and the predictor
corrector solution (solid upper line) with the exact solution (solid lower line).
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Figure 5.5: ”Zoom-in plots” of the power-penalty solution (dotted line) and
the predictor corrector solution (solid line).





Appendix A

Definitions and Theorems

A.1 Chapter 1

Definition A.1.1. A probability space is a triple (Ω,F , P ), where Ω is a
set, F is a σ-field of subsets of Ω and P is a non-negative measure with total
mass 1.

Definition A.1.2. A filtration with time index T is (an increasing) family
(Ft, t ∈ T ) of σ-algebras of F such that Fs ⊂ Ft for all s < t in T .

Definition A.1.3. Let (Ω,F , P ) be a probability space, and let (E, E) be
a measurable space. A mapping X : T × Ω → E, where T is a subset of
the extended positive real line R

+
, is called a stochastic process if for every

t ∈ T , Xt is an E-valued measurable function.

Definition A.1.4. A stochastic process (Xt)t∈T is called Ft-adapted if for
every t ∈ T , the mapping ω → Xt(ω) is Ft-measurable.

Definition A.1.5. A T -valued random variable τ is a stopping time with
respect to Ft if for every t ∈ T the set {τ ≤ t} belongs to Ft. It can be
interpreted that the process knows whether τ has happened by time t from
the information available in Ft.

Definition A.1.6. A real valued stochastic process (Xt)t∈T , is said to be a
supermartingale, (resp. a submartingale), on (Ω,F , P ) with respect to the
filtration (Ft, t ∈ T ) if each Xt is integrable, Ft-measurable and

E[Xt|Fs] ≤ (≥)Xs P − a.s. for s ≤ t in T.

If the process X is both a supermartingale and a submartingale than it is
said to be martingale.

Definition A.1.7. A Brownian motion is a real-valued, continuous stochastic
process (Xt)t≥0, with independent and stationary increments. In other words:

53
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(i) continuity: P-almost surely the map s→ Xs(ω) is continuous.

(ii) independent increments: if s ≤ t, Xt −Xs is independent of Fs.

(iii) stationary increments: if s ≤ t, Xt−Xs and Xt−s−X0 have the same
probability law.

A.2 Chapter 3

Cauchy’s inequality with ǫ

ab ≤ ǫa2 +
b2

4ǫ
(a, b > 0, ǫ > 0).

Proof. For proof, see [12].

A.3 Chapter 4

Theorem A.3.1 (Arzeli-Ascoli compactness criterion for uniform
convergence). Suppose that {fk}

∞
k=1 is a sequence of real-valued functions

defined on Rn, such that

1. The sequence {fk}
∞
k=1 is uniformly bounded by some constant M > 0,

2. {fk}
∞
k=1 are uniformly equicontinuous, meaning

∀ǫ>0∃δ>0 such that |x− y| < δ ⇒ |fk(x)− fk(y)| < ǫ,

for x, y ∈ Rn, k = 1, 2, ...

Then there exists a subsequence {fkj
}∞j=1 ⊆ {fk}

∞
k=1 and a continuous func-

tion f , such that

fkj
→ f uniformly on compact subsets of Rn.

Proof. For proof, see for example [12].

Definition A.3.1. A locally bounded function u ∈ USC(ΩT ) (LSC(ΩT ))
is a viscosity subsolution (supersolution) of (4.20), if and only if, for all
(t, x) ∈ ΩT and for all (a, p,X) ∈ P 2,+u(t, x) (P 2,−u(t, x)) we have:

{

min{−a+ (r − d)xp + 1
2σ

2x2X − ruǫ, uǫ − g} ≤ (≥)0,
uǫ(T, x) ≤ (≥)g(x) for x ∈ [0,∞).
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Theorem A.3.2 (Theorem 4.2.1). Let u be a subsolution of (4.20) and
v be a supersolution of (4.20) such that

u(t, x),−v(t, x) ≤ L(|x|+ 1) and u(T, x) ≤ v(T, x)

for some constant L > 0. Then u ≤ v in ΩT .

Proof of Theorem 4.2.1 . The proof follows the proof of Theorem 3.3.2 and
we will be rather brief here. With the same notations as before it is suffices
to prove the comparison under additional assumption

{

min{−∂tu+ F (t, x, u, ∂xu, ∂
2
xu), u− g} < −η/T 2, in [0, T )× [0,∞)

limt↑Tu(t, x) =∞, uniformly on [0,∞).

Let us suppose that comparison does not hold and that for some (t̄, x̄) ∈
[0, T ) × [0,∞)

u(t̄, x̄)− v(t̄, x̄) = 2δ > 0. (A.1)

With the notation of the previous proof, (A.1) implies:

u(tα, xα)− v(tα, yα) ≥ δ. (A.2)

The proof remains unchanged including the matrix inequalities (3.25). Let
us explain how to get the contradiction to (A.1). By definition of the vis-
cosity sub- and supersolutions,

min{−a+ F (tα, xα, u(tα, xα), α(xα − yα) + µeλ(T−tα)xα,Xα),

u(tα, xα)− g(xα)} ≤ −η/T 2,

min{−b+F (tα, yα, v(tα, yα), α(xα−yα)−µeλ(T−tα)yα, Yα), v(tα, yα)−g(yα)} ≥ 0.

Combining the above inequalities we obtain:

min{−a+F (tα, xα, u(tα, xα), α(xα−yα)+µeλ(T−tα)xα,Xα), u(tα, xα)−g(xα)}

−min{−b+F (tα, yα, v(tα, yα), α(xα−yα)−µeλ(T−tα)yα, Yα), v(tα, yα)−g(yα)}

≤ −η/T 2 < 0.

Since min{a, b} − min{c, d} < 0 implies either a − c < 0 or b − d < 0, we
have that either

∆α := b− a+ F (tα, xα, u(tα, xα), α(xα − yα) + µeλ(T−tα)xα,Xα)

− F (tα, yα, v(tα, yα), α(xα − yα)− µeλ(T−tα)yα, Yα) < 0, (A.3)

or

u(tα, xα)− g(xα)− v(tα, yα) + g(yα) < 0. (A.4)
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Choose α so large that |xα − yα| ≤
δ
2 . In a view of (A.2)

g(yα)− v(tα, yα) = g(xα)− v(tα, yα) + (g(yα)− g(xα))

≥ g(xα)− v(tα, yα)−
δ

2
≥ g(xα)− u(tα, xα) +

δ

2
.

This implies

u(tα, xα)− g(xα)− v(tα, yα) + g(yα) ≥
δ

2
> 0,

which is a contradiction to (A.4).
On the other hand,

∆α =
µ

2
λeλ(T−tα)(x2

α + y2
α)− (r − d)

(

α(x2
α − y

2
α) + µeλ(T−tα)(x2

α + y2
α)

)

− 1/2σ2
(

x2
αXα − y

2
αYα

)

+ r
(

u(tα, xα)− v(tα, yα)
)

.

Similarly to the previous proof, by sending α → ∞ and in a view of (A.3)
we obtain

0 < − lim
α↑∞

sup ∆α = −µλeλ(T−t̂)x̂2 + (r − d)2µeλ(T−t̂)x̂2 + µλeλ(T−t̂)x̂2σ2

− rδ ≤ 0, (A.5)

if λ is sufficiently large. This is also a contradiction and the proof of the
comparison is finished.
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Numerical code

B.1 The power-penalty scheme

function [gcall, gput, x, wcall, wput] = PowerPenalty(r,d,sigma,epsilon,

k,K,L,T,J,N)

deltax = L/J;

deltat = T/N;

x=zeros(J+1);

gcall=zeros(J+1);

gput=zeros(J+1);

for j=1:(J+1)

x(j)=(j-1)*deltax;

gput(j)= max(K-x(j),0);

gcall(j)= max(x(j)-K,0);

end

wcall=gcall;

wput =gput;

%algorithm

for n=1:N

vcall = PDEcall(wcall,gcall,r,d,sigma,epsilon,k,K,L,J,deltat);

wcall = vcall;

end

for n=1:N

vput = PDEput(wput,gput,r,d,sigma,epsilon,k,K,L,J,deltat);

wput = vput;

end

57
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end

%Functions

function y=max(x1, x2)

if x1>x2

y=x1;

else

y=x2;

end

end

function temp = PDEcall(u,gcall,r,d,sigma,epsilon,k,K,L,J,deltat)

temp(1)=0;

temp(J+1)=max(L-K,0);

for j=2:J

m=max(gcall(j)-u(j), 0);

y= u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j)+deltat*(1 / epsilon)*(m^(1/k));

temp(j)=max(gcall(j),y);

end

end

function temp = PDEput(u,gput,r,d,sigma,epsilon,k,K,L,J,deltat)

temp(1)=K;

temp(J+1)=max(K-L,0);

for j=2:J

m=max(gput(j)-u(j), 0);

y = u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j)+deltat*(1 / epsilon)*(m^(1/k));

temp(j)=max(gput(j),y);

end

end

B.2 The predictor-corrector scheme

function [gcall,gput, x, Pwcall, Pwput] = predictorCorrector(r,d,sigma,K,L,T,J,N)

deltax = L/J;

deltat = T/N;

x=zeros(J+1);

gcall=zeros(J+1);
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gput=zeros(J+1);

for j=1:(J+1)

x(j)=(j-1)*deltax;

gput(j)= max(K-x(j),0);

gcall(j)= max(x(j)-K,0);

end

Pwcall=gcall;

Pwput =gput;

%algorithm

for n=1:N

vcall = PDEcall(Pwcall,gcall,x,r,d,sigma,K,L,J,deltat);

Pwcall = vcall;

end

for n=1:N

vput = PDEput(Pwput,gput,x,r,d,sigma,K,L,J,deltat);

Pwput = vput;

end

end

%Functions

function y=max(x1, x2)

if x1>x2

y=x1;

else

y=x2;

end

end

function temp = PDEcall(u,gcall,x,r,d,sigma,K,L,J,deltat)

temp(1)=0;

temp(J+1)=max(L-K,0);

for j=2:J

y= u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j);

if gcall(j)>y

temp(j)= y+deltat*(max(d*x(j)-r*K,0));

else

temp(j)= y;

end
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end

end

function temp = PDEput(u,gput,x,r,d,sigma,K,L,J,deltat)

temp(1)=K;

temp(J+1)=max(K-L,0);

for j=2:J

y= u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j);

if gput(j)>y

temp(j)= y+deltat*(max(r*K-d*x(j),0));

else

temp(j)= y;

end

end

end

B.3 The Brennan and Schwartz algorithm

function [gcall,gput,x,Bwcall,Bwput] = BrennanSchwartz(r,d,sigma,K,L,T,J,N)

deltax = L/J;

deltat = T/N;

x=zeros(J+1);

gcall=zeros(J+1);

gput=zeros(J+1);

for j=1:(J+1)

x(j)=(j-1)*deltax;

gput(j)= max(K-x(j),0);

gcall(j)= max(x(j)-K,0);

end

Bwcall=gcall;

Bwput =gput;

%algorithm

for n=1:N

Bvcall = PDEcall(Bwcall,gcall,r,d,sigma,deltat,J);

Bwcall = Bvcall;

end
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for n=1:N

Bvput = PDEput(Bwput,gput,r,d,sigma,deltat,J);

Bwput = Bvput;

end

end

%Functions

function y=max(x1, x2)

if x1>x2

y=x1;

else

y=x2;

end

end

function temp = PDEcall(u,gcall,r,d,sigma,deltat,J)

temp(1)=gcall(1);

temp(J+1)=gcall(J+1);

for j=2:J

y = u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j);

temp(j) = max(gcall(j),y);

end

end

function temp = PDEput(u,gput,r,d,sigma,deltat,J)

temp(1)=gput(1);

temp(J+1)=gput(J+1);

for j=2:J

y = u(j)+(r-d)*(j-1)*deltat*(u(j+1)-u(j))+0.5*sigma*sigma*(j-1)*(j-1)

*deltat*(u(j+1)-2*u(j)+u(j-1))-r*deltat*u(j);

temp(j) = max(gput(j),y);

end

end
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