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Abstract

We study a mean-reverting model for interest rates. The model is an extension of the
Vasicek model and is a sum of non-Gaussian Ornstein-Uhlenbeck processes with subordina-
tors, i.e. Lévy processes with only positive jumps, giving variation of the interest rate. The
model have the advantage that it gives only positive interest rates, contrary to the Vasicek
model. We calculate explicit results for the characteristic function and the autocorrelation
function of the interest rate for both general subordinators and the case where the subor-
dinators are compound Poisson. We also find prices of zero-coupon bonds and European
options written on these bonds by applying Fourier methods. It seems that the model is
simple enough to allow for analytical pricing of bonds and options in addition to capture
the characteristics of the interest rate. In the end we demonstrate in a simulation how the
model behave with certain values of the variables.
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Chapter 1

Introduction

To model interest rates and price interest rate derivatives on bonds are great and demand-
ing areas in mathematical finance. Interest rate derivatives are instruments whose payoff
depends on the level of the interest rate. The volume of trading in interest rate derivatives
increased in the 1980s and 1990s. The challenge is to find models capturing the character-
istics of the interest rate in a reasonable degree. It’s important that they’re analytically
tractable as well. The Vasicek model is one of the first models of term-structure and is still
an attractive class of models because of its analytical properties. However it has the prop-
erty that the interest rate can be negative. Other models derived are the Cox-Ingersoll-Ross
(CIR) model and the Hull and White model, where the latter has time-dependent coeffi-
cients. The CIR model is an extension of the Vasicek model, but has the advantage that
it only gives positive values. Some important interest rate derivatives are interest rate
caps/floors, swap options and bond options. We will only investigate bond options in this
thesis.

In this thesis we discuss two models of the short-term interest rate. The first one is
the Vasicek model, and the other is an extension of the Vasicek model, proposed in [2] for
modelling spot electricity prices. It’s motivated from [1]. The model is a sum of Ornstein-
Uhlenbeck (OU) processes, each with a pure jump process with only positive jumps. It fits
well for modelling spot electricity prices, because they are often dependent of the season.
Since the process is a sum of OU processes, it seems reasonable to take one of them to
model the seasonality. In our case, with interest rates, it has the advantage that it secure
the interest rate to be positive. The model is also simple enough, such that one can calculate
analytical expressions for common interest rate derivatives.

Both of the models we consider are mean-reverting. That a model is mean-reverting
means that it will eventually pull back to some average level.

The main part of the thesis is to examine the new class of models described above. We
find an autocorrelation function of the interest rate given by a sum of weighted exponentials
of a constant times the time shift. We want to find out how easy it is to obtain results
of zero-coupon bond prices and prices of European options written on these bonds. It
turns out that we can easily derive explicit results for the price of zero-coupon bonds by
looking at the expression for the interest rate directly. To find prices of European options
written on zero-coupon bonds are more complicated than finding prices of European options
written on other securities. That is because interest rates are used for discounting as well
as for defining the payoff from the option. We find the price by applying inverse Fourier
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transform, and one can use fast Fourier transform techniques to compute it further.

The thesis is organized as follows: In chapter 2 we give some well-known definitions
and results from measure and probability theory. We also introduce stochastic processes
like Brownian motion and pure jump processes and state some of their properties. All the
results are given without proof. In chapter 3 we consider the Vasicek model and find prices
of zero-coupon bonds and bond options. We introduce the new model, the extension of the
Vasicek model, in chapter 4. The rest of the thesis is dedicated to the extended Vasicek
model. We find the stationary characteristics, characteristic function and the correlation
function. In chapter 5 and 6 we derive prices of zero-coupon bonds and European options
written on these bonds. We state all our results both in general and for the special case
when the Lévy processes are compound Poisson. In chapter 7 we simulate the interest rate
and prices of zero-coupon bonds with maturity in one year.

Appendix A contains the matlab files used to simulate the interest rate and the prices
of zero-coupon bonds.



Chapter 2

Some Basic Theory

Before we start looking at our problem we need some basic theory. The theory stated in this
chapter is well-known and we skip the proofs. More information and proofs can be found in
any book in stochastic analysis. First we introduce the notion of a g-algebra, a probability
measure and a probability space. We state some well-known and useful theorems from
measure theory. In the end we define a stochastic process and look at Lévy processes and
their properties.

2.1 Measure Theory and Probability Theory

Definition 2.1 If Q is a given set, then a o-algebra F on Q is a family F of subsets of
with

e DeF.
o FeF = F°cF, where F°=Q\ F.

e Fi.Fh,--- e F = F= UEEf
i=1

The pair (2, F) is called a measurable space.

Definition 2.2 A probability measure on (2, F) is a function P : F — [0, 1] such that
o P(0) =0, P(Q) = 1.
o If A1, Ay, -+ € F and {A;}3°, is disjoint, i.e. A;NA; =0,i+# j, then

The triple (Q, F, P) is called a probability space. We also define the notion of a filtration.

Definition 2.3 A filtration on a measurable space (2, F) is an increasing family of o-
algebras {F:} € F such that Fs C Fyi, where s < t.

3
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A filtration is in mathematical finance used to describe the information we got up till today.
As time goes by, we know more and more. So it has to be increasing.
We make the following assumption throughout the thesis:

Assumption 2.1 All our models are modelled directly under the risk-neutral probability
measure Q) and the probability space we’re working in, is (2, F, Q).

The next thorem will be used to put the limit outside expectations when computing char-
acteristic functions.

Theorem 2.1 Bounded Convergence theorem
Let u(Q2) < oo. If there exists a 0 < k < co such that |f,| < k p-a.e. and fr, — [ p-a.e.
then

lim [ fndp = /fdu,
and

lim [ |f, — fldu=0.
Fubini’s theorem allows us to change the order of integrals.

Theorem 2.2 Fubini’s theorem

Let (4, Fi, i), i = 1,2, be o-finite measurable spaces (i.e. there ezist a countable collection
of sets AL, AL ... € F; such that U,>1 AL, = Q and pi(AL) < oo for alln > 1 andi=1,2)
and let f € LY (Qq x Qo, F1 X Fo,pu1 X pa). Then

[ (s = [ ([ )

We now define the notion of a stochastic process.

Definition 2.4 A stochastic process is a parametrized collection of random variables {X:},
t € T defined on a probability space (U, F, P) and assuming values in R™.

2.2 Lévy Processes

The Lévy process is an example of a stochastic process. It’s named after the mathematician
Paul Lévy. A Lévy process L; has the following properties

o Ly=0.

e [, hasstationary increments, i.e. the probability distribution of any increment L;— L,
depends only on the length ¢ — s.

e [, has independent increments, i.e. any two non-overlapping increments are indepen-
dent of each other.

We will use the characteristic function of a Lévy process, given by the Lévy-Khinchin
representation, to obtain several results throughout the thesis.



2.2. LEVY PROCESSES )

Theorem 2.3 Lévy-Khinchin representation
Let (X;) be a Lévy process on R with characteristic triplet (A,v,~). Then the characteristic
function of (X¢) is

E [eizx‘} = ew(z)t, z e R,

where

P(z) = —%Z.AZ +iv.z+ / (e —1 —iza ), <) v(z)dz.
R

A is the covariance matrix of a Brownian motion, v is the Lévy measure and +y is the drift.

2.2.1 Brownian Motion

A Brownian motion B; is an example of a Lévy process. It was first studied by Robert
Brown in 1827. He was studying pollen particles floating in water under the microscope.
Brownian motion is often used because it makes computations simple, not because of its
accuracy. It is a Lévy process, so it satisfies all the properties above, but it also satisfies

(] Bt _BS NN(O,t—S)
For a Brownian motion, the characteristic triplet is (1,0,0), so, from Lévy-Khinchin repre-
sentation, the characteristic function of a Brownian motion B(t) becomes

E |:€izB(t):| — 30 (2.1)

A simple, but useful tool for solving stochastic differential equations (SDE) is the Ito
formula.

Theorem 2.4 The one - dimensional Ité formula.
Let X; be an Ito process where the dynamics is given by

dXt = udt + ’UdBt.

Let f(t,r) € C?([0,00] X R), i.e. f is two times continuously differentiable on [0, 0] x R.
Then
Y: = f(tv Xt)

s again an Ito process, and
1
Yy = fult, Xp)dt + fot, X)dXo + 5 faa(t, Xo)(dX0)?,

where

2

P X0) = DX, Falt X0) = 221X, et X) = 2o (0 X)),

ot D
and (dX;)? is computed according to the rules
dt-dt=dt-dBy =dB;-dt =0, dBy;-dB; =dt.

Proof. For proof, look in @Qksendal [4].
Another useful property, which we will use to find the variance of the Vasicek model, is
the Ito isometry.
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Lemma 2.1 It6 isometry.

T 2 - T
E </S f(t,w)dBt> —E[/S f(t,w)dt],

for all f in the class of functions
g(t,w):[0,00) x 2 =R

such that

o (t,w) — g(t,w) is B x F-measurable, where B is the Borel o-algebra on [0, c0).

e g(t,w) is Fi-adapted, i.e. g(t,w) is Fy-measurable for all t.

e E [fggQ(t,w)dt] < .

In the section discussion the pricing of European bond options we make use of the
Girsanov theorem to change measure.

Theorem 2.5 Girsanov’s theorem
Let B(t) be a standard brownian motion on a probability space (0, F,P). Suppose that 7,
s a measurable process such that

EIP’ GJOT YudB(u _% fOT ‘7“‘2(1“‘:| =1. (22)

Define a probability measure P on (Q, Fr) equivalent to P by means of the Radon-Nikodjm
derivative

B T vaBw=4 [T uldu p

dpP
Then the process B(t) given by the formula

B(t) = B(t) - / Yol

for all t € [0,T], follows a standard Brownian motion on the space (0, F,P).
A sufficient condition for (2.2) to hold is the Novikov condition:

— a.s.

Ep [e%foT Wu‘zd“} < 0.

2.2.2 Lévy Processes with Jumps

To find an explicit representation of r(¢) in the extended Vasicek model we will need the
1t6 formula for scalar Lévy processes.

Proposition 2.1 Ité formula for scalar Lévy processes
Let (X¢)i>0 be a Lévy process and f : R — R a C?-function (i.e. 2 times differentiable
with continuous derivatives). Then

£00) = 10 + [ G s+ [ i,
b [+ AK) - ) - AX ()

0<s<t
AX,Z0
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We are going to use the generalized case where f also depends on time. Let (X;)¢>0 be a
Lévy process and let f:[0,7] x R — R be a C1?-function (i.e 1 time differentiable in the
first variable and 2 times differentiable in the second). Then

- tof trof o2 02 f
rx) = 0.0+ [ i [ |F e+ Gt e x0
+ > {f(s,xs_+AXS)_f(s,XS_)_AXS%(s, S_)]
&%

The Lévy processes in the extended Vasicek model are subordinators. That is, they are
jump processes with only positive jumps. The characteristic triplet is then (0,r,0). From
Lévy-Khinchin representation the characteristic function of such processes is

E [e“L(t)} = e¥(3)t, (2.3)

where (2) = [, ("% — 1 —izaly<1) v(z)de.
An example of a subordinator is the compound Poisson process and is defined as follows

Definition 2.5 A compound Poisson process with intensity A > 0 and jump size distribu-
tion f is a stochastic process X; defined as

N
Xe=) Y,
i=1

where the jump sizes Y; are independent and identical distributed (i.i.d.) with distribution
f, and (Ny) is a Poisson process with intensity X, independent from (Y;)i>1.
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Chapter 3

The Vasicek Model

The model analysed by Vasicek in 1977 is one of the first models of term structure. It has
some qualities that makes it attractive. It is linear and can therefore be solved explicitly. Its
distribution is Gaussian, and zero-coupon bonds and other derivatives are easily obtained.
However, a huge drawback is that it allows the interest rate to be negative.

The Vasicek model takes the form

dr(t) = (u — ar(t))dt + cdB(t). (3.1)

It’s a mean-reverting Ornstein-Uhlenbeck process where B(t) is a Brownian motion and
where u, « and ¢ are strictly positive constants. That the process is mean-reverting means
that it will eventually pull back towards some long-run average level. That is, if the interest-
rate is higher than the expected, it will tend to decrease, and if it is lower, it will tend to
increase.

3.1 Solution and Distribution

The solution of the stochastic differential equation above is given by the following proposi-
tion.

Proposition 3.1 The solution of (3.1) is given by

t
r(t) = r()e ) 4 E (1o emo00) 4 g / e~ dB(u), (3.2)
«

S

where the process starts at time s < t.

Proof. To prove the proposition we have to use the It6 formula (Theorem 2.4). If we use
Ito’s formula on e®'r(t) and insert the dynamics of r(¢) from (3.1) we get

d(e®'r(t)) = ae®r(t)dt + e dr(t) = e [udt + odB(t)].
So,
t t
etr(t) — e®r(s) = u/ e du + 0’/ edB(u).

9
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And finally we get the solution of r(t):

t
r(t) = r(s)e =) 4 £ (1 - e“’(t_s)) + 0/ e dB(u)

«a s

We can now find the distribution of r(t).
Proposition 3.2 The process r(t), given by (3.2), is Gaussian distributed with expectation

E[r(t)] = r(s)e™=9 4+ & (1 emal=)

and variance
Var [r(t)] = 0—2 (1 - efzo‘(tfs))
T 2a '

And when time goes to infinity we get

~ _F
Jim Efr(t)] =~
and
. o’
tlgglo Var [r(t)] = %

Proof. Since e (=% is deterministic, we get from the properties of Brownian motion and
Ito isometry that o f: e~ (=" dB(u) is Gaussian with expected value zero and variance
given by

Var [a/: e_"(t_“)dB(u)] =E [(0 /:e—““—de(u))?} —E {a/; e_"(t_“)dB(u)r

t 2
— 0_2/ e—2a(t—u)du — ;'_ (1 _ e—Qa(t—s)) ]
s «

It follows that the process r(t) is Gaussian distributed with
E[r(t)] = r(s)e 2t + £ (1 _ efa@fs))
o

and
2

Var [r(t)] = ;—a (1 - e—2a<t—s>) .

Finding the properties of r(t) when time goes to infinity is straight forward,

lim E[r(t)] = lim [r(s)e_o‘(t_s) + g (1 — e_o‘(t_s))} £

t—o0 t—oo le%
and
: : o? —2a(t—s) o’
Jim Varlr (0] = Jim |22 (1 e70=0) | = £

And the proof is complete.
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3.2 The Theoretical Autocorrelation Function of r(¢)

We want to calculate the theoretical autocorrelation function for r(¢). The autocorrelation
function says something about the degree of similarity between r(¢) and a time shifted
version of itself. It can take values in the interval [—1, 1], where 1 means perfect positive
correlation, and —1 means perfect negative correlation.

The correlation function of r(t) is defined by

E((r®) —E[fr®]) (rt +7) —E[r{t +7)])]
/Var [r(t)] Var [r(t + 7)]

_ Elr@®r (t+7)] E[rEr(t +7)]

\/Var [r(t)] Var [r(t + 7)] .

corr (r(t),r(t + 7)) =

We compute the parts seperately. First look at E [r(¢)] E [r(t 4+ 7)]. We use the expectation
derived in the previous section in Proposition (3.2).

Efr)]E[r(t+7)]
— (r(s)efa(tfs) + g(l _ efa(tfs))) (r(s)efa(tJr‘rfs) + g(l o efa(tJr‘rfs)))
= B.

Then we look at E [r(¢)r(¢ + 7)]. To calculate this part, notice that we from the properties
of Brownian motion have that E [f: e*a(t*“)dB(u)} is zero, since e~*(!=%) is deterministic.
Remember that r(t) is given by (3.2).

t
E[r(t)r(t+1)] = E[ <r(s)eo‘(ts) B oeet=9) 4o / eo‘(t“)dB(u)>
@ S
I t+7
X (r(s)e‘a(H'T_S) + a(l — ety 4 0’/ e_o‘(t'”_“)dB(u))}
t t+1 °
B+ o°E [/ e_o‘(t_“)dB(u)/ e_a(H'T_“)dB(u)] .

The expectation in the last term of the above equation can be computed as

t t+1
E [ / e =B (u) / eo‘(”T“)dB(u)]
’ t ° t t+1
=E [/ e~ W dB(u) </ e TV 4B (u) —|—/ e_o‘(t'”_“)dB(u))}
S s t
t 2 t t+7
- E [ear </ ea(tu)dB(u)> +E |:/ ea(tu)dB(u):| E [/ ea(tJrTU)dB(u)]
s s t

t
1
— ¢ TR |:/ 6—2(1(1‘,—u)du:| — 2_6—047-(1 o 6—20&(1:—8)).

(07

Here we used the fact that f e~ =" dB(u) and ft+T —a(t+7=w)dB(u) are independent
of each other, and that the expectation of both of them are zero. We also used It6 isometry.



12 CHAPTER 3. THE VASICEK MODEL

Let’s put it all together. Then we get

2

E[rt)r(t+7)] -E[r@®)]|E[rt+7)] = B+ ;‘_ae—m (1 _ e_za@_s)) B
02 —QaT —2a(t—s
= 35°¢ (1 — e 2 )),

Let’s look at Var [r(t)] Var [r(t + 7)]. We use the variance derived in the previous section in
Proposition 3.2

Var [r(t)] Var [r(t + 7)] = % (1 — e—QQ(t—S)) % (1 _ e—2a(t+‘r—s))
_ % (1 _ 672a(t75)) (1 _ 672a(t+-rfs)) .

Proposition 3.3 The correlation function of r(t) is
e—at (1 _ 672a(tfs))

\/(1 _ e—2a(t—s)) (1 _ e—2a(t+‘r—s)) .

When time goes to infinity the correlation function of r(t) tends to

corr (r(t),r(t + 7)) =

lim corr (r(t),r(t+ 7)) = e 7.

t—o0

3.3 Zero-Coupon Bond Prices
We are interested in finding the prices of zero-coupon bonds, where we assume that r(t) is
modelled directly under the risk-neutral probability measure Q). A zero-coupon bond is a

bond paying 1 currency at a future time 7" with no coupons paid inbetween.

Definition 3.1 The price of a zero-coupon bond at time t < T is

P(t,T) = Eq {e*fg r(s)ds | Ft} .
To find the price we need to evaluate — ftT r(s)ds. Asin (3.2), r(s) is given by

r(6) = r(e 0+ £ (1o eeo0) g [Memeteapga)
« t

where the process starts at time ¢ < s.

T T T
— [ rtos = = [ e as = 2T (1m0 ag
t t

¢ o
T rs
—0/ / e =W dB(u)ds
¢ Jt
= -0 — I, —Is.
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To make it easier, we compute the integrals seperately. We start with I; and I5. It’s easy
to see that

T 1
L = r(t)/t e st gs = r(t)a (1 - e*a(T*t)) (3.3)

po " 1
Iy —/ (1 — e_o‘(s_t)) ds = =

a f, a
Then look at the last integral I3.

T
I = / / —als—uw g B( )ds—a/ ea“/ e~**ds dB(u)

- _ —o/(T u)

o /f ~ (1 )dB( ).

Here we applied Fubini’s theorem to change the order of the integrals. Define now

n(t,T) = é (1 - e_o‘(T_t)) .

Then we get

— /tT r(s)ds = —r({t)n(t,T) — p {é(T —t) — én(t,T)} — a/tT n(u, T)dB(u).

Now calculate

T T
1 1 1
_ - _ —a(T—u) _ - _ o o —a(T-t)
/tn(u,T)du /ta<1 e )du a(T t) 2 (1 e )
1
a

so we get that
T T T
—/f r(s)ds = —r(t)n(t,T) — ,u/t n(u, T)du — O'/t n(u, T)dB(u).

To make the notation easier, let &7 = ft s)ds. n(t,T) is deterministic, so we have that
o ft n(u, T)dB(u) is Gaussian with expectatlon zero and variance o> ftT n?(u, T)du by Itd

isometry, Lemma 2.1. Also notice that ftT n(u, T)dB(u) is independent of F; and that r(t)
is F;-measurable. We therefore have

P(t,T) = Bq [¢7|F] = Eq [¢7]
_ e—r(t)n(t,T)—/L ftT n(u,T)duEQ |:e—aftT n(u,T)dB(u):|

e—r(t)n(t,T)—/L ftT n(u,T)du+30? ftT n?(u,T)du

We state the result in a proposition.
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Proposition 3.4 The zero-coupon bond price, when r(t) is given by (3.2), is
P, T)= em(t,T)—n(t,T)r(t)7
where 1
n(t,T) = — (1 _ efa(Tft))
o

and
1 T T
m(t,T) = 502/ n?(u, T)du — ,u/ n(u, T)du.
t t



Chapter 4

Extension of the Vasicek Model
with Subordinators

In this chapter, and the rest of the thesis, we are going to investigate an extension of the
Vasicek model of the form

r(t) =Y wpXi(t), (4.1)
k=1
where
dXy(t) = —ap Xp(t)dt + dL(t), (4.2)
and
O g =1
Xi(0) = w .
£(0) { 0 ifk>2
Here, Ly(t),k = 1,2,...,n are subordinators. Having several X’s, rather than just one,

gives an opportunity to capture different factors with influence on the interest rate r(t).
The model have the advantage that it always gives positive interest rates, something the
Vasicek model fails to do. It is, as mentioned before, proposed to model spot electricity
prices in [2].

4.1 Solution of dX(t) and r(¢)

To find an explicit solution of (4.2) we use the It6 formula for scalar Lévy processes,
Proposition 2.1. Applying Ito’s formula on f(t, Xx(t)) = e*** X (t) we get

e X (1) — ™5 Xy (5)
t t
:/ eo‘k“’ka(u)—F/ are® " X (u)du

+ Z [e“* (Xp(u—) + AXg(u)) — e Xp(u—) — AXg(u)e* ")

s<u<t

15
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¢ ¢
:/ e** " [—ap Xk (u)du + dLj(u)] —|—/ e Xy (u)du

t
_ / R L ().
S

So an explicit solution of (4.2) becomes
t
Xp(t) = Xp(s)e k(=) 4 / e~ WL (u), (4.3)

where the process starts at a general time s < t. We want r(t) to start today, so set s = 0.
If we put X (t) into the expression for r(¢) we get

t

Zwk [Xk(O)e_o"“t + /Ie_a’“(t_")de(u)
k=1

0

r(t)

0 ” ¢
= wy —Té}l)e_(’”t + Z W / e_o""(t_“)de(u)
k=1 0

t
0

r(0)e™ "+ "y, / e =W aL, (u).
k=1

Proposition 4.1 An ezplicit solution of r(t) starting at time 0, is

r(t) = r(0)e” ! . w te*a’“(t*“) u .
0 =0+ S | ALw(w) (4.4

4.2 The Characteristic Function of ()

We want to find the characteristic function of r(¢). The characteristic function defines
completely the distribution of any random variable. Generally, the characteristic function
of a random variable X is given by

vx(z)=E [eiZX] .
So for r(t) we have to compute E [e**"®)];

E |:€izr(t):| _ eizr(O)e*"‘ltE |:eizz;’::1 wi [§ efak(tfu)de.(u):| ]

First we take a look at E [eizz;;:l w [5 67“’“("“)de(10] To do so, let fi,(u) = e~ x(=),
The Lj’s are independent of each other, so

E [eizzzzlwk Is m(u)dh(u)] - H E [eizwk Js fk(u)de(u)} ,
k=1

Let {u;}72; be any partition of the interval [0,¢] with max; |u;j11 — u;[ < e. Then the
integral can be written as

Amwuwﬂ%;mwmmm
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where ALy (u;) = Li(ujy1) — Li(uj) and, since e9() is a continuous function, we get

H E [eizwk I fk(u)de(u)} _ H E [lim RETTD D fk(uj)ALk(uj):| .
k=1 Pl

The Bounded Convergence Theorem is applied to take the limit outside the expectation.
Notice that AL (u;) are independent of AL (u;11) for all j since the Lévy processes, L (u),
have independent increments. Thus

l lim E {eizuuc it fk(uj)ALk(Uj)}

e—0

H E {hm RN fk(uj)ALk(uj):| _
e—0

k=1 k=1
n

— lim H E |:€izwkfk. (uj)ALk(uj):| )

o1 055
Generally, we have that for a Lévy process L(t), the characteristic function is E [eiZL (t)] =
e¥®? by Lévy-Khinchin representation (Theorem 2.3). It follows that E [e**AL(®)] =
e¥(H)Au where 9(z) = Jg (€7 —1 —izal),<1) v(z)dx, since the processes have charac-
teristic triplet (0, v,0). Finally

n m n .
i izwg fr(uj )ALk (u;) | — i (zw fr(uj))Auy
E%HE[G i ,} H2L0H€ A
k=1 5=l k=1" j=1
n
= lim 62-;11 Y(zwg fr(uj))Auy
e—0

1
_ T oJi bz fi(w) du
k=1
= oS I b fi(w) du

We put it all together in a proposition.
Proposition 4.2 The characteristic function of r(t) is given by

B [¢f57(0)] = eior@ " iy J§ vt )i, (4.5)

where

Wz fi(u) = / (e — 1 — 2w fi(w)e Lz <1 ) viw)da
R
and fr(u) = e~ (t=u),

Next we find the expectation and variance of r(t). We state the result in a proposition
before we prove it.

Proposition 4.3 The expectation and variance of v(t) are given by

=r(0)e”*! ; Wk (1 = gmont x—xlg<1) v(x)de .
Bl (0] = rO)e "+ 30 2 (1) [ a=etua) vz, @)
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and
n

_ w_i 20t 2
Var [r(t)] —Z (1—e )/}Rx v(z)de. (4.7)

2
=1 <%k

When time goes to infinity they become
tim Br()] = - 2 [ (o= atpe) va)da
- R

t—o0 Q
k=1 F

and

lim Var [r(t)] = zn: Wi 2y(wa

Jim Var r(t)] = 2 Sy Rx v(z)dz.

In the proof we will make use of the following corollary. We state it without proof before
proving Proposition 4.3.

Corollary 4.1 If X is a random variable with characteristic function px(z) = E[e**X] one
can find it’s n’th moment by using the formula

d’n

EX") = () "B lex ()] |

Proof of Proposition 4.3. We start with the expectation. Notice that Ly is independent of
L; when k # j. Remember that r(t) is given by (4.4).

,alt_'_zwk/ e~ (t— u)de( )
0)e~ 2t 4 ZwkE {/ eo"“(t“)de(u)} .
k=1 0

We have to find E [ft em =gl (u )} To do the notation easier, let f(u) = e~ @4,

From the calculatlons leading up to Proposition 4.2, we know that the characteristic

function of fo fr(w)dLg(u), with ¥(zfr(u)) = fR( i f(u)e —1—izfr(u )x1|m|§1) v(z)dz,
is elo v(zfr(w)du  gq by Corollary 4.1

B [ /0 t fk(u)de(u)]

Elr(t)] =

_Zi E |:ez'z jot fk(u)de(u):|
dz

z=0

L (u)du
dz

z=0
d [t t
- |:_/ ¢(ka(U))du:| e-fo Y (zfr(u))d
z=0
B _Z/ _d} ka du e-fotw(sz(u))du
z=0

with ¢(zfi(u)) as above. We have that 1(0) = 0, so elo v(Efi(u)du|, o = 1. Further

o[ o] -

(4.8)

z=0
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We then need to compute %w(sz(u)ﬂzzo.

FUCR)| = [ (a0 ity ) vaas|
- /}R(ifk(u)x—ixfk(u)l‘m‘gl)l/(x)dx.
We get t
Bl [ ftan] = L= [@onpa)oan @9

which is a result of the following computation
t t
E {/ fk(u)de(u)] —i/ (/ (i fe(u)z — iz fe(u)l 5 <1) V(x)dx) du
0

:/fk (/ x—a:1|m|<1)1/(x)dx) du
:/R( — 21, <1) v(z)d / fr(u

= /R(x—ffl\m\g) ()dx/o e~ or(t=1) gy,
= /R(x—ffl\m\g) () — (1 emv).

g

If we put it all together, we get that
— = Wk —
E[rt)] = r(0)e~ >t 4+ —E (1 — ekt / r—xl), v(x)dz.
[r(t)] = r(0) g:lak( )R( jef<1) V()

This proves (4.6). Letting time go to infinity, lim;_, e~%?* = 0 gives

/ (z — 21y<1) v(z)da.
R

215

It remains to show that the variance is given by (4.7). Let fx(u) still be given by e~ (=%
Notice that Ly is independent of L; when k # j. We then find

wVW+imA%wﬂm>
Zwk/ Jr(u)dLy(u Zw Var [/Ot fk(u)de(U)] :

We want to compute Var [ fo fr(w)dLi(u )} Generally, we have that Var[X] = E[X?] —

2
E[X]2. So Var [fo Fiu(w)dLg(u } - {(fo Fu(w)dLi(u ) }—E [fo Fe(w)dLy(u )} . Compute
the parts separately. To compute the first part, notice that we from Corollary 4.1 can find

Var [r(t)] = Var

= Var
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the n’th moment of a random variable X by using the formula E[X"] = (4) ";Z—nn@X (2)|2=0,
where ¢ x (2) is the characteristic function of X. We have already calculated the character-
istic function of fg frx(u)dLy(u), when dealing with the characteristic function of r(t) before

Proposition 4.2. Hence

t 2 d2 .
</o fk(u)de(u)> ] = (i)_sz [eizlo' fk(">de(“)}

d?
= ——e.fol Y (2 fr(u))du
dz?

z=0

z=0

- _i [/t %zp(sz(u))du e.fmsz(u))du}

- K/ 3 v hitu >2e.f&w<sz<u>>du
du o ¥(Efr(w)du
e ]

| ([ dhsteanme) + [ vt

where we used that ¢ = 1. We have that fo (2 fr(u du‘z o =1 E [fo fre(uw)dLy(u )}
from (4.8). Remember that E [fo fre(w)dLy(u )} is given by (4.9). We then get
2

(/Ot dL'lz¢(sz(u))du z_o) _ —aiz (1 cment)? (/R (2 — a111) V(x)dx>2

So it remains to compute fg dd—;w(sz(u))du|zzo. We first compute the expression inside
the integral;

z=0

)
z=0

2 2
%¢(ka(u)) o %/R (eisz(u)m —1- ixsz(u)llmlél) v(w)de 20
- /R diz [(ifk(“)xeisz(u)x - ixfk(u)llmlﬁl) I/(x)} d 20
= — [ fi(wa*v(z)dz.
R

Remember that fy,(u) = e+~ It follows that

» — /Ot (/]R f,?(u)x%dw)dm) du
—/Rx%/(x)dx/ot f2(u)du
S /}R v (x)dx /0 (g,

d2

(2fk(u))du
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1 —Z
= —/Ra:QV(a:)me (1—e 2 )

Ak

2
Going back to our expression for E [(fg I (u)de(u)) ] , and use what we have found, we

</Ot fk(u)de(u)>T = ozii (1- e“"’“t)2 </R (z — 214<1) y(x)dx>2

1
+m (1 — ekt /RxQV(x)dx.

get

E

From (4.9) it follows directly that

E [/Ot fk(u)de(u)r - ai% (1—eont)? (/R (= 21|5<1) y(x)dx>2.

To make the proof of (4.7) complete;

Var [r(#)] = éwi\/ar { /0 t fk(u)de(u)}

_ g:lw,g <E K/Ot fk(u)de(u))Q —E [/Of fk(“)dL’“(“)D

- éwi Oéii (1- efa""t)2 </R (2 — 21j4<1) V(x)dm) :

1
1 —2apt / 2 d
+—204k ( ) Ra: v(z) x]
n w]% ot 9 2
— 5 (1 e k) </ (.23 — a?1|m|§1) l/(.]?)dx)
=1 Yk R
no9
_ Wi —2at / 2
= E — (1 k d
230, ( ) Rx v(z)dx

t—o0

lim Var [r(t)] = Z —k /Rx21/(x)dx.

And our proof is complete.

4.3 Moments of r(t)

We want to find the first two moments of r(¢). As mentioned before, we can do that by
using Corollary 4.1. The first moment is already computed and given by (4.6). We state it
again in a proposition.
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Proposition 4.4 The first moment of r(t) is

_ " Wy _
E[r(t)] = r(0)e ™" + — (1 — et / x—xl, v(z)dz.
() S [ etz
To find the second moment we look at

E[r?(t)] = (i)_zj—;E [ei2®)]

Let fi(u) = e~ (=% as before. First, let us compute =& il o) [e*r®]. We use the expression
for the characteristic function of r(¢) given by Proposmon 4.2. Let b(t) = r(0)e~*" and
remember that

z2=0 2=0

Y(zwy fr(u)) = / (eizw’“f"‘(“)m —1- izwkfk(u)xl‘w‘gl) v(z)dz. (4.10)
R
Then we get
iE |:€izr(t):| _ i |: izb(t) Zk 1 Jo w(zwkfk(u))du:|
dz dz
_ b( zzb(t H 6[0 Y (zwy, fr. (u))du + 6lzb H 6[0 Y(zwy, fr (u))du
k=1 S
and
& {em(t)} — B ()eib® ﬁ i vt | g ish(t) ﬁ o (2w fi () du
dz? Pt dz
_|_ib(t) izb(t H efo P(zwy fr(u))du + ele H efo ¢(zwkfk(u))du
Now, let
Dy — b2 izb(t) JE Y (zwy fr (w))du .
1 (t)e 11" » (4.11)
k=1
d
Do = ib(t izb(t) _“ [Ep(zwp fr(uw))du 4.12
= iblt)e H e B (412)
Dy = &0 0 @ o ) CSE (4.13)
z=0
k=1
Notice that
E [r*(t)] = (§)"? [D1 + 2D2 + D3] (4.14)
We compute the parts separately, but notice first that
elo w(wkfk(u))duL:O =1, (4.15)
since w(zwkfk(u))L:O = 0. We start by evaluating D;. It’s fairly easy to see that
_ _bQ(t)eizb(t) H @fot P (zw fr(u))du — —bQ(t). (416)

k=1 z=0
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Before we can evaluate Dy, we need to find < []}_, elo ¥ (zwrfi(u

n n t n
4 H efcfw(zwkfk(u))du}zzo = [i Z/ w(zwkfk(u))d@t‘| H elo (zwrfi(w)du
e dzi=Jo k=1
-y / Sz fi(w))du
k=170 @*

where the last equality follows from (4.15). From (4.10) we can derive the following for
each k;

Nt |z:0'

z=0

3

z=0

d . izZw (u)x .
%w(zwkfk(u)) = / (zwkfk(u)xe’ wfe(we _ zwkfk(u)x1|m|§1) v(z)dx. (4.17)
R
It the follows that

d + t

- Jo Y(zwp fr (u))du
elo

dz H

z=0 - Z‘/ fk du/lwk (fE—:E]_‘ ‘<1) ( )d
S8 ) [ gt

k=

We are now ready to derive Ds, given by (4.12). From above we get

n

Z _k 7akt) /]R (x—$1|m|§1) v(z)dz, (4.18)

Q
k=1 Ok

g

where we used (4.15). It remains to compute D3.

n

) d? t d? n .
D3 _ zzb(t)_ H ejo P (zwy, fr(w))du _ 7 H 610 P (zwy, fr(u))du

z=0 2=0
d ( d H f P (zwy fr.(u))d )
= — | — elo kfr(u))du
dz \ dz Y
d td
- dz ( d_ P(zwy fr(w))du H efo d’(zwkfk(u))du>
k=1 k=1 2=0
t
= / Zwk‘fk du H ejo w(Z“)kfk (u))du
k= k=1 1e0
2 n
Z/ Y (zw fr(u) u,) H efot Y (2w fr (u))du
k= k=1 z=0
n t d2 n 2
=3 [ gavtuhta (3 / TR
k=1 ’ z=0 k=1 z=0
= D} + DY.

So
D3 = D} + D (4.19)



24 CHAPTER 4. EXTENSION OF THE VASICEK MODEL

To find Dj, notice that we from (4.10) and (4.17) have

— - [ wtr s (4.20)
R

2

& (ewnfew)

z=0

=" / ' fudu / wlav(w)ds

- Wi (l—e*QO"Ct)/]RxQI/(x)dx.

QOzk

and

t g2
/()@w(zwkfk(u))du

It therefore follows directly that

e 2okt 2 : 4.21
Z 2ak )/}Rx v(z)dz (4.21)
It still remains to compute D5. To do so, remember that from (4.17) it follows that
t
/ —d} (zwg fr (w))du = / fk(u)du/iwk (z — 21y <1) v(z)da
0 R
=2k (1—e ") / (z — 21y <1) v(z)da.
R

Qg

z=0

And we can then write

Q
x-

N 2
<Z _ —akt)/R(x_xl‘w‘gl) y(a:)da:) . (4.22)

k
k=1
We can now derive D3 from (4.19), (4.21) and (4.22) and it is given by

Z _ —Q(th)/]RxQU(x)dx
n 2
- (Z — (1= /R (z —2l5<1) V(x)d”f) :

k=1

ww

> |

Finally we have computed all we needed to evaluate the second moment of r(t), and we
state the result in a proposition. From (4.14), (4.16), (4.18) and from above;

Proposition 4.5 The second moment of r(t) is

2 _ 32 n% — ekt T —1x v(z)dx
BE0) = R0+ 203 58 (1) [ (o= atiger) vod
Y w_i e 2ot 2?v(z)dx
+kZ:1 (1 )/]R (x)d
n 2
k —ont r— a1 <) v(x)de |

where

and v(z)dz is the Lévy measure.
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4.4 The Theoretical Autocorrelation Function of r(t)

As mentioned before, the autocorrelation function is defined as

Efr@rit+7)] —E[r@)]|E[r(t+7)] .

corr (r(t), r(t + 7)) = /Var [r(t)] Var [r(t + 7)]

To make the computations and notation simpler, we compute the parts separately. We
start by considering E [r(t)r(t + 7)] — E [r(¢)] E [r(t + 7)]. Remember that r(t) is given by
(4.4).

Efr@rit+7)] —E[r@)]|E[r(t+7)]

n t
<r(0)eo‘1t + Z Wy, / eo"“(t“)de(u)>
k=1 0
n t+71
X (r(O)e‘o‘l(HT) + Z wi / e_“’“(HT_“)de(u)) ]
k=1 0
n t
= <r(0)e‘°‘1t + ZwkE [/ e_o""(t_“)de(u)]>
k=1 0
n t+1
X <r(0)ea1(t+7) + Z wiE [/ eo"“(tJrT“)de(u)})
0

k=1

n + n t+T
< Z wy, / e—ak(t—u)de(U,)> ( Z wk/ e_ak(t+T—1L)de(u)>‘|
k=1 0 k=1 0

=E

We examine the expressions further, starting with B;. We split the two sums into those
with equal indexes and those with unequal indexes. Then we get

n t n t+7
E [( kZ_lwk/o eak(tu)de(u)> ( kz_:lwk/o eak(t+ru)de(u)>1

n t t+1
E lz w,%/ efa"’(tfu)de(u)/ e T (1)
] 0 0

B,

n t t+7
+E Z wkwj/ e*a’“(t*“)de(u)/ e TV ()
. 0 0

g t t+7
+E WEW / e*a’“(t*“)de(u)/ eaﬂ'(”T“)dLj(u)]
; 0 0
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k=1
n—1 n t t+7

+ Z wew; B [/ oot “)de(u)] E {/ —a(t+T—u) g1, ( )]
k=1 j=k+1 0
n k-1 t t+T

+Z wpw; E [/ —ax(t-u) gy, (U,)] E [/ —a;(t+7—u) g1, ( )]
k=2 j=1 0 0

where the last equality follows from the fact that the Lévy processes Lj and L; are inde-
pendent of each other when k # j. Notice also that if we divide the sums in B like we did
with By, we obtain

n t T
By = wiE U e~ =L (u } ZwkE U O"“(”T“)de(u)}
k=1 0
n t t+7
= ZwZE {/ ea"’(t“)de(u)} E [/ eo"“(tJrT“)de(u)}
0

t+1

+ Z Z wrw; B [/ _"""(t_“)de(u)] E {/ e_“-f(t"’T_“)dLj(u)]
0

k=1 j=k+1
n k—1

+ 2 wkwE [ / t e‘”"(“‘)de(u)] E { /O o e~ HHT=wg L (u)] :

k=2 j=1
Considering By and By, the expression for E [r(t)r(t + 7)) — E [r(¢)] E [r(¢t + 7)] becomes

E[r@)r@t+71)—E[r@)]E[r({t+7)] =B — B

n t t+7
= Zw,ﬁE {/ e*a’“(t*“)de(u)/ ea""(t*T“)de(u)]
P 0 0
t t+r
=D ik [/ e‘“’““‘“’de]EU e‘“"'“*”"’de<u>]
0 0

k=1
n + 2
— sze_akTE l(/ —Olk(f—u)de(u)> ]
k=1
n t+r
+Zw,%e*a"’TE /0 e ok(t-u de( )/ eo"“(t“)de(u)}
k=1 t

2

n t
—Zwie*a"‘TE / e~ WAL, (u )]
k=1 0
n t t+1
—Zw,%e_o‘”E / e~ =L, (u )] E {/ e_a’“(t_")de(u)}
t

k=1 0
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n + 2
_ sze_akTE [(/ e—ak(t—u)de(u)) ‘|
k=1 0

n t 7 t+1

+ Z wie TR e~k t=wqr, (u)| E {/ eo"“(t“)de(u)}
P J t

t -2

=1
e~k t=wqr, (u)

s—

n
wie TR
1

s—

k

3

t 7 t+1
w,%e_m“TE e—ak(t—u)de(u) E {/ e—(lk(t—u)de(u):|
_ t

. _
e =L, (u)| .

s—

>
Il
—

n
= E wie” " Var
k=1

S—

This is almost the same as Var [r(t)] which we have evalutated earlier. It is given by (4.7)
and is as follows

n

Var [r Zwk\/ar {/ =Ly (u )] = Z % (1—e ") /}RxQV(x)dx.

k=1

Since
E[r)rt+7)] —E[rt)]Ert+7)] Z wie” “*7Var [/ O"“(t“)de(u)} (4.23)
it follows that

Efr@®rit+7)]—-E[r@)|E[r(t+71)] = Z e*a“2—’C (1—e o) /RxQV(x)dx.

Q
k=1 k

We need to examine Var [r(t)] Var [r(¢t + 7)] to complete the computation of the theoretical
autocorrelation function of r(t)

Var [r()] Var [r(t + 7)] = ( >k (1o [ x%(x)dx)

X ( z": %ik (1 — 6_2“’“(”7)) /}RxQV(x)dx> .

Then we are ready to state the result in a proposition.

Proposition 4.6 The theoretical autocorrelation function of r(t) is given by
2
S e (1
w w? . .
\/(Z? - L (] —e2 f)) (Z?:l a_j (1 _e 2a_7(t+r)))

And when time goes to infinity we get

corr (r(t),r(t + 7)) =

t—o0

lim corr (r(t),r(t + 7)) = Z — T,
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4.5 Explicit Results when L;(t) is Compound Poisson

In this section we consider Lévy processes which are compound Poisson. We want to find
explicit results for the characteristic function, the stationary characteristics, the two first
moments and the theoretical autocorrelation function of r(¢). Let N (t) be a Poisson process
with intensity Mg, and let J; be independent and identically exponential distributed with
rate parameter 0y, independent of Ny (). Then we know from Definition (2.5) that

N (t)

- Z J;
=1

is compound Poisson for each k.

4.5.1 Characteristic Function of ()

To find the characteristic function of r(¢) we need to compute the characteristic function
of both J; and Lg(t). For each k, every J; has density function

O e 0x , x>0
f(x’e’“):{ 0 z <0

So the characteristic function of J; is

E[eiz‘]j] :/ eimﬁke_ek“”dx:/ Oe~ Ok —i2) g
0 0

Let u = z(0 — iz), then

E [einj} — 91@/ e~ U du _ 9]9 : / e~ Uy — 91@
0 0

O —iz O —iz O — iz’

So the characteristic function of J; becomes

O

E [e"7] = —

(4.24)

Now we can derive the characteristic function of Ly (t). Remember that J; is independent
of Ni(t). For each k we have

A AG N
E |:€lsz(t):| - E |: zzz k J_:| — EN;‘-,(t) |:E |:elZZj=IC1 J7|Nk(t):|:|

_ ENk(f) [E [eiZJleiZJz et }Nk (tm

J 0, Ne(t)
= En, ) H E[e = En, (1) <9k —iz)

= O\ )\t()‘kt At (gix,g)k
() M

k=0

Op it
— e MtpE, iz ,
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since Ng(t) is a Poisson process for each k. So we find that the characteristic function of
Lk (t) is
B [o# ] = Mmtn), (4.25)

Finally we are ready to derive the characteristic function of r(¢t). First, let b(t) = r(0)e™ "
and fi(u) = e~ Remember that r(t) is given by (4.4). Then

E {eizr(t)} — pirb(OR {eizzgzl wy, [ fk(u)de(u)} .

First we compute E [671222;1 wi fg fr (“)dL’C(“)] Let {uj};” 1 be a partition of the interval

[0,t], with max; |uj+1 — u;] < €. Then the integral fo fe(w)dLg(u) can be written as
lime—o 327" fr(uj) ALk (u ). It follows from (4.25) that

E[eizzgzlwk Ji fk(U)de(U} - H im HE[ zzwkﬁ(u,)ALk(uJ)}

—0

-t 0
ejO Ak ( kaizwkkfk(u) _1) du.

We have applied the Bounded Convergence Theorem to take the limit outside the expecta-
tion. Notice also that the two products can be taken outside the expectation because Ly, is
independent of L;, when k # j and that Lj has independent increments for each k. Look
further at the integral above.

t t
Ok 1
A —1)du=X du — \gt.
/0 ; (9k — izwpe~ ok (t=w) ) " k/o 1 —izgkeorteant U A

It is possible to calculate the integral above explicitly;

Proposition 4.7

1 T
/mdx:E—aln(b—Fae )+C, b;«éO

Proof. We show the Proposition above by finding the derivative of ¥ — % In (b + ae”) +C
with respect to x. It becomes

d |z 1 ae®
@{z‘aln(““@ D+ = T BBt aon
b+ ae ae’®
T b(b+aer) b (b+ aed®)
_ 1
= (e
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From Proposition 4.7 above we see that

t 1 1 w t
)\k/ t du Ak |:U ——1In <]_ — iz_ke—(!k(t—u))]
0 1—iz% 05, Eeo—Qplearu o Hk i

Il
>~

>
~

I
|2
=3
/N
=

|

~.

N
|S
=
"
+
|>/
>~

=
7 N
—

|

~.

N

m

|

Q

=

-
"

From the preceding computations;

. k —apt Ak iy Wk
E {ezzr(t):| _ zzb (t) He ln 1— 7z—e Yk )e—rkln(l—zzs—k)

Ag

2k Y
7zb(f)H <1—ZZ —O/kt) k (1_12’;}_:) k
’\k
Wi ,—apt \ o
”b(f)H 1—iz "e k
1—229

We state the result in a proposition.

Proposition 4.8 The characteristic function of r(t) is given by

. Ak
n R AN
E izr(t) zzb(t 1 Lz €
€ — jz ¥ ’
0

where
b(t) = r(0)e" L.

We are also interested in the expectation and the variance of r(t) when L (t) is compound
Poisson.

Proposition 4.9 r(t) has expectation

Ak wk -
Blr(t)] = b() + Z oo L) (426)
and variance
~ /\k ’LU2 —2a
Var [r(t)] = Z 9_204_k (1— ety (4.27)
k=1 k <k

. "\ wy
Jim Br()] = Z o (4.28)
=1k Ok
and
n )\k 2
lim Var[r(t)] = 2k 4.29
Jim Ve ()] = 3 5 (4.29)
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Proof.
We know from Corollary 4.1 that E[X"] = (i)™ dd;, @X(z)|z:0 for a stochastic variable X
with characteristic function ¢x(z). Then

Blr()] = () B[]

z:O.

We already know that the characteristic function of r(t) is given by Proposition 4.8, so

d | . 1 — Gz ¥k e—art
_ (12 1zb(t) Ok
elro] = '3t |0 T (5255

k=1 z=0
) mo(1- iz%e*akt o
_ b t eizb t
®) H 1—iz% 9
k=1 z=0
>\k
n w t\ ap
+( lzzb(tiH 1—12 ke o
dz 1—iz%k 9
k=1 z=0
= D1+ Do,
where b(t) = r(0)e”*" as usual. We compute the parts separately. We start with D;. First
‘ b —apt
notice that e’**®|__y = 1 and that % =1, so
(2 z=0
mo (1 —izgE skt o
k:l 0 z2=0
Then consider D.
n 1 F L, W, —agt :_i
Dy — (Z‘)*li H —izgte
2 dz 1 —izgk
k=1 k 2=0
gd (11— zz%e““t o1 D1 —izigkem okt |
=0 '—| —— X
Q dz 1 —izg? s 1-— zz%”‘ o
LS8 Ak
(1 iz%e‘“lt a4 1—izg™ k o=kt \ ok
i _ X — e —
+ () 1—4z%1 dz 1— 2%k
01 k=2 Ok z=0
A AL
d (1—iz¥re ! T d 1— zz%”‘ ekt Sk
O 1] i R | f i
dz 1—iz32 dz 1—iz%k
01 k=2 9 2=0
M
_ (Z)_l n i 1 _ iz%e—akt oy
dz 1—1iz Z”‘
k=1 z=0
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A
a Qg 1—@29 dz 1_220

k=1 2=0
_ Wk p—agt
—py e (—1 _—
oy, dz 1—iz%
=1k Ok 2=0
Above we have used that
2k
(1 —dzgheT kb ok
_ =1
1—iz%e ’
Ox z=0
’ . . d 1- izzk‘e_akt .
for all k. Let’s make an inbetween computation of - ——Fwg— |- First let
O
— 1 Wk ,—agt dm _ _ swg —at
m=1 zzg)e , Cfiz_ Zf}ke
— _ Wk an _ _ ;Wg
n=1—iz%" o = = g

1—iz 1;" dz n n?
_ swg —ogt Wi _ Wk ,—opt _ s wg
( igoe )(1 129) (1 zzee )( Z_ek)
2
_ W
(1 zz0 )

— jp Wk ot dm, . dn
d <1 ZZ@ € > d@ VT My,

ig (1 — e—axt)

1 _ ZZ W 2
O

We then obtain

_—2
=1 Y (1 —zz0 )

We use the results for D; and D, given by (4.30) and (4.31) respectively, to find that
E[r(t)] is given by

- zn: N Wk () _ ekt (4.31)

B N )\k Wi _e*akt
E[r(t)] = D1+ Dy = b(t) + ];Hkak (1 )

Which is what we wanted. Now, if we let the time go to infinity we get

)\k wk
lim E[r
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We still have to prove that the variance is given by (4.27) and see what happens to it when
time goes to infinity. Let fi(u) = e~ It follows directly from (4.4) that

kzn:_lwk /Ot fk(u)de(u)l = kﬁ:ﬂwi\/ar [/Ot fk(“)de(U)]

= ;wi (E (/Ot fk(u)de(u)>2 .0 [/Ot fk(u)de(u)r> .

First we need to compute E {eiz Jo fk(“)de(“)}. Let {u;}7-, be a partition of the inter-

Var [r(t)] = Var

val [0,¢], with max;|u;y1 — uj| < € as before. We can now write fof fre(uw)dLi(u) =
lime—o Y70, fr(uj)ALg(uy), where ALk(u;) = Li(uj1) — Li(uz). So from (4.25) we
get for each k

B [eiz Io f’c(“)dl‘k(“)} = lim H E [eisz(u_j)ALk(1L_j):|
e—0
j=1
hm e)\k(ek%’;k(“j)il) Auj

e—0
j=1

_ M IS (i 1) du
Again we have used Bounded Convergence Theorem to take the limit outside the expecta-

tion. The independence of increments of Ly is used to do the same with the product. To
compute the integral in the last term we use Proposition 4.7 again;

Ly
" Jo \ Ok —izfi(u) A 1 — iz eouteocu k

1 1 —ayg (t—u) '
/\k u——In|1—iz—e ¥\ —/\kt
(6777 91@ 0

1 N 1 —apt _ o i
Ak Lé_k [ln <1 — zzae ) In (1 zzak)H

So
o Ak .1 —at Ak S
E [eiz s fk.(u)de(u):| _ ea—kln<1—zzs—ke oy, )_Wln(l—zzs—k)
2k
<1 —izLeo"ct> “k
_ O
= L .
1 iZg,
Now, let
— 1 iyl o—agt dm _ _ ;1 —ayt
m=1 zzelke , dz = zelke
1 _ i L dn _ _ ;1
n=1 129, = = g

t 2k
Since E [eiz Jo f’c(“)de(“)} =(Z) = , we can write

Ak

E [(/Ot fk(u)de(u)) 2] ) (Z.)_Qj_; (%)T

4.32
z:O, ( )



34 CHAPTER 4. EXTENSION OF THE VASICEK MODEL

and

el t fk<u>de<u>r = (()di () |Z_0>2. (433)

to evaluate the expressions in both (4.32) and (4.33).

dm (—ieike*akt) (1 - izeik) - (1 - izeike*akt) (—ié)

dzn 12
(1—@29—k)

z% (1 — emawt)
(1-is)
—129—k

Letting z = 0, it becomes

We need

dzn

dmi Loy (4.34)

dz n 0 0

m

Before we start computing (4.32) and (4.33), look at j—;; as well;

@m0 | i 0o (i)
dz2n dz ( (%) o (1 - iz(%k)4
_mloe™

. 1 4 ’
(1 - zze—k)
and letting z = 0 yields

& m
dz? n

1
_2@(

1—e oty (4.35)

z=0

Notice also that = |Z:0 = 1. Now we are ready to compute (4.32) and (4.33), starting with
(4.33).

o[ stmazaa] = 0713 ()| =02 ()* 2]
- 2]; 5 L=

2
where the last equality follows from (4.34). [ fo fre(uw)dLg(u )} now becomes

B [ /0 t fk(u)de(u)} T 2_3912 (1— emest)?, (4.36)
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Let’s compute (4.32) as well;

z=0

: )
- < (%) <—><>—<>—
(

N o e 1 .
ag <Oék ) - kt) +2__2(1_6 kt).

2
We use the expression for E {(fo fe(w)dLg(u )) } derived above and (4.36) to evaluate

Var [fg fx (u)de(U)} ;

t t 2 t 2
ar { /0 fk(u)de(u)} _ ( /0 fk(u)de(u)> B [ /0 fk(u)de(u)}
221 L2 A o
e [ s
)\k —ait )\2 —ap 2
+2ak92(1—e )—a—’%@(l—e t)
/\ t —at
=a’;92<1—e—%>[2—<1—e )
A
- a: 7 (1 — e2axt)

Remember that Var [r(t)] = >, _, w?Var [fo fr(w)dLi(u )} So

A ’LU e~ 2ok
Var [r Zglﬁa: - 2”)

and

||
HE

MI

n
lim Var [r E
t—o0 P

And our proof is complete.

4.5.2 The Theoretical Autocorrelation Function of r(t)

We also want the theoretical autocorrelation function of r(¢) when L(t) is compound
Poisson. It is as before given by
E[r(t)rt +T)] Efr@]E[r(+7)]

\/Var [r(t)] Var [r(t + 7)]

corr (r(t),r(t + 7)) =
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From (4.23) we know that

n

Efr@r+7)])—EFr@|E[rEt+r7)] Z e~ *"Var [/0 e~ =W AL, (u)

k=

and from the preceding page we see

t e 1
—ak(t—u) L — _k_ 1— —2apt .
Var [/0 e d k(u)} ar 2 ( e )

Putting these two equations together we get
)\k wl% —QiT —2ayt
Efr@)rt+7)]—-E[r@)|EFriEt+r)]= Z 5 —EeT T (1 — e
From (4.27) we obtain
A 2
Var [r(t)] = Z 2k Wi (1 - 6_2“’“t)

Var [r(t+7)] = Z ﬁw_i (1 _ e—2ak(t+7—)) 7

k=1

such that the autocorrelation function becomes
Ar ﬂ —QT _ o 2ayt
Zk 1 92 ag (1 € )

A Wi —2ay, A Wi e (t4))
R )

corr (r(t),r(t + 7)) =

The result can be formulated in a proposition.

Proposition 4.10 The autocorrelation function of r(t) when Li(t) is compound Poisson
18

Sy e (1 - e

corr (r{2), (¢ + 7)) = |
w? n w2
\/Z:-l 2\_%(1_;: (]‘ - eiQth) Zk:l g_]ga_;: (]_ — 672ak(t+7—))

and when time goes to infinity we get

2
lim corr (r(t),r(t + 7)) = —h e T,
t—o0 no ;W
k=12 i1 5% oy



Chapter 5

Zero-Coupon Bond Prices

We are interested in finding the price of a zero-coupon bond for general L (t), and when
Ly (t) is compound Poisson. We start with the general Lj(t) and use some of the computa-
tions derived there to find the price when L (t) is compound Poisson. In the next chapter

we will evaluate the prices of European options written on these bonds.

5.1 Zero-Coupon Bond Prices for General L(t)

The price of a zero-coupon bond at time ¢ < T is given by Definition 3.1, and is as follows

P(t,T) =Eq [e—ff“s)d‘@\ft} ,

where F; is the o- algebra generated by Li(s), s < t. We are interested in finding an

expression for — ft s)ds. Remember that the process r(s) is given by

s) = Z w X (s)
k=1

where
dXk(s) = —apXk(s)ds + dLi(s).

We have found that the solution of Xj(s) is
Xu(s) = Xp(t)e—x (=0 1 / e~k (=0 gL, (1),
¢

where the process starts at time ¢ < s. 7(s) then becomes

5) = Zkak(t)e_a’“(s_t) + Z wk/ e WAL, (u).
k=1 k=1 ¢

Now we can find an expression for — ftT r(s)ds.

T :
—/ r(s)ds = / Zkak —ok(s—t)gg / Zwk/ _a’“(s_"’)de(u)ds
t

= —_[1

37
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Compute the parts separately. It’s easy to see that

n T "
1

I, = Zkak(t)/ e on(s—t) Jg — Zkak(t)_ (1 _ efak(Tft)) .
k=1 t g

k=1

We now find I5.

n T s n T T
I, = Zwk/ / efa""(s*“)de(u)ds = Zwk/ / e’ak(s*“)ddek(u)
k=1 t t t u

k=1
n T

where we have used Fubini’s Theorem to change the order of the integrals. Let ny(¢,T) =
L (1 — e*a""(T’t)). Then we can write I; and I as

= > wpXp(t)n(t, T), (5.2)
k=1
and
Zwk/ (. T) AL (). (5.3)
So we get

T
—/ r(s)ds Zkak ng(t,T) Zwk/ ng(u, T)dLi(u). (5.4)
t k=1

Now, call &7 = — ft s)ds. Notice that X (t) is Fi-measurable for all k. And that ny(t,T)

and wy, are determlmstlc. Notice also that ft ng(u, T)dLi(u) is independent of F;, since
Li(u) has independent increments for every k, by the properties of Lévy processes. It
follows that

P(t,T) = Eq [¢7 70| £ | = Bq ¢ | 7] = Eq [¢]
— 6—22:1 U)ka(t)nk(t7T)EQ [e_ZZ:1 W ftT nk(u,T)de(u):| .

So
P(t,T) = e~ Zizr wsXrOni(t )R [e— Shwe nk(u,T)de(u)} . (5.5)

We see that we need to find Eq {e‘ Theawe f "k("’T)de(“)]. Let {u;}7.; be any partition

of the interval [¢,T], with max; |uj11 — u;| < €. Then we already know that we can write

ftT ng(u, T)dLi(u) = lime_q Z ~ 1k (uy, T)ALg(uj), where ALy (uj) = Li(ujt1) — Li(uy)
as usual. Therefore we have

Eq {e—zgzlwk T nk(u,T)de.(u)] _ {efz;ﬁwk 1imﬁoz;"=1n,c(u,-,T)AL,c(uj)}

H { —umn’k(u_?»T)ALk(u_f)} ,

J:1

H::: IS
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The Bounded Convergence Theorem is applied to take the limit outside the expectation
above. The two products can be taken outside as well because of independence between L
and L;, when k # j, and because of independent increments of the Lévy processes. The
characteristic function of a Lévy process L(t) is in general

E |:ez'zL(t):| — b

where ¥ (z) is as in Lévy-Khinchin Representation Theorem (Theorem 2.3). The Lévy
process we are studying has characteristic triplet (0, v, 0), so in our case we see that ¥ (z) =
Jg (€7 =1 —izaly,<1) v(x)de. We see that

Eq [67 Sy we [, m(u,T)de(u)] -

=
.:g

hm EQ |:67wknk(u]-,T)ALk(uJ'):|
e—0

£
I

A
<
I

-

eV (twini (uz, 1)) Au,

=
.:g

lim
e—0

E
Il
—

j=1

e-ftT Y(iwgng (u,T))du
)

|
=

E
Il
—

where ¥ (iwpny(u,T)) = [, (e7w*m+ DT — 1 4 wpny(u, T)xl),<1) v(z)dz. We are ready
to state the result in a proposition.

Proposition 5.1 The price of a zero-coupon bond at time t < T is

P(t7 T) _ ez n_ UtT P(iwgng (u,T))du—w, Xk (t)n (t,T)] ’ (56)
where

1
n(t,T) = — (1—eenm=)

Y(iwgng(u, T)) = /

(efwknk(u,T)m — 1 4+ wrng(u, T)x-l\m\gl) v(z)dz.
R

When we find option prices later we are only interested in the special case when n = 1. So
we state the result for n =1 as well.

Corollary 5.1 When n =1 the price of a zero-coupon bond at time t < T is
P(t,T) _ em,(t,T)fn(t,T)r(t)7 (57)
where
T
m(t,T) = / Y(in(u,T))du
t
1
n(t,T) = — (1 e T0)

Y(in(u,T)) = /}R (e*n(U,T)m -1+ n(u, T)xlmgl) v(z)dx.
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Proof. When n =1 we get that r(s) becomes
r(s) = w1 X1(s), (5.8)

where s
Xi(s) = Xy (t)e =) +/ e~ (=W gL (u),

t
where ¢t < s. We set w; = 1. We then have that r(¢t) = X;(¢). From Proposition 5.1 we
then get with n = 1;
P(t, T) _ eftT P (ing (w,T))du—r(t)ny (t,T).

Letting n(t,T) = n1(¢t,T) and m(¢,T) ft (in(u,T))du in P(t,T) above, we have com-
pleted the proof.

O

5.2 Zero-Coupon Bond Price when L;(t) is Compound
Poisson

We want to find the explicit result of a zero-coupon bond price when Lg(¢) is compound
Poisson. As before, the zero-coupon bond price at time ¢t < T' is given by

P(t’ T) — EQ |:e_ ftT T(S)ds|ft:| .
From (5.5) we have that P(¢,T) can be written as
P(t,T) = e~ Zim wsXsOmt D) [e— Sz [ m(u,T)de(u)} ,

In this case we know how the characteristic function of Ly (t) looks like, since we know it’s
compound Poisson. The characteristic function of Ly(t) is then for each k;

Eg {eiZLk(t)} = )\kf(%—w_l).

Let {u;}2, be any partion of the interval [¢,T] with max;[u;4+1 —u;| < e. Then we can
write ftT ng(u, T)dLi(u) = hrneHOZ ~ 1 nie(uy, T)ALk(uj). So again

EQ [ — > h_1 Wk ft ng(u,T)dLy( u):| H E [ —wy, lime_, o Z;’;l nk.(uj,T)ALk(uj):|

n

_ lim H Eq [efwknk,(uj,T)ALk(uj)}
e—0
k=1 j*l
= lim H e ek Fwg nk(u Ty )Auj

64)0

T Ok
= H e)‘k ft O Twgnp (u,T) *1) du

k=1

n
— H e)\k-lk—Ak(T—t),
k=1
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where I, = ftT Wmdu. Bounded Convergence theorem is applied to take the limit
outside the expectation above. As noted before the products can be taken outside as well
because of independence between Lj; and L;, and independence of increments of a Lévy
process. Earlier we have seen an almost similar integral which we solved using Proposition

4.7. So

T 1 T )
Ik = / ) du:/ ” = du
T
1 1
= Z)k 1 In <]- + %0— (]. — ecu-,(Tu)))
PR (rmd)ac L t
1 1 1
=(T'-1) T —1In(1+ Wk (1 *ak(Tft))
L+ 5rge ot gy ag O
ar Uk k
With nk(t,T) = aL (]_ e_o‘k(T_t));
1 1 Wi
Iy =T -t + I (14 25ng(t,7) ). 5.9
k= M—I—%% Oék+%:n( Hknk( )) (5:9)

We get,
Eqo [efz;f:lwk Jr nk(u,T)de(u)} _ H A=Ak (T 1),
k=1

where Ij, is given by (5.9). We have finally found the price of a zero-coupon bond when
L(t) is compound Poisson.

Proposition 5.2 The price of a zero-coupon bond at time t < T with Li(t) compound

Poisson is
P(t,T) — ezZ'=1[)\kfk7)\)@(Tft)fkak(t)nk(t,T)]7 (510)

where

1
n(tT) = (1 . e_a’“(T_t))

1+wel o gy Y k

I, = (T-1) L + ! In <1+%nk(t,T)> .
[

ay O

As in the general case, we will need the result for n = 1 when finding prices of European
bond options. So let’s state the result for the case n = 1:

Corollary 5.2 When n =1, the price of a zero-coupon bond at time t <T is
P(t,T)= em(t,T)fr(t)n(t’t)’

where
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Chapter 6

European Bond Options

Our goal in this chapter is to find prices of European call and put options written on
zero-coupon bonds. First we find prices when r(¢) is given by the Vasicek model, (3.1),

namely
dr(t) = (u — ar(t)) dt + odB(t),

and then we find prices when 7(t) is given by the extended Vasicek model given by (4.1),
namely

r(t) = r(0) + Y wi Xi(t),
k=1

where
ka(t) = —Oszk(t)dt + de(t).

In both cases we only consider n = 1.

Definition 6.1 The price at time t < T of an European option written on a zero-coupon
bond with price P(T, S), T < S, is

plt) = Bq [e= 1100 p(P(T, )| 7] (6.1)

where f(x) is the payoff function. For an European call, f(x) = max(zx — K,0) and an
European put has payoff function f(x) = max(K — x,0). K is the strike price.

6.1 Bond Option Prices with the Vasicek Model

From Proposition 3.4 we already have that the price of a zero-coupon bond is

P(t,T) — eTrL()‘,,T)—TL()‘,,T)T()‘,)7 (62)
where
1
- - _ —a(T—t)
n(t,T) = — (1 e ) (6.3)
1 T T
m(t,T) = 502/ nz(u,T)du—u/ n(u, T)du. (6.4)
t t

43
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When n(t,T) is as in (6.3), m(t,T) becomes

1, ("1 1
m(t,T) = 202/ — (1—67Q(T u) du— / — 1—67Q(T “)) du
. o et
-

T
_ 10,2/ (1 o Qe—a(T—u) + e—2a(T—u / (1 _ e—a(T—u)) du
t

2
_ 0—2(T—t)—0—2 <l_efa(T7t)) +_ (1_672a(T t))

2a2 a3 as

_HEep H (gm0

Er—1+4 (1 e )
2 2

_(E_o (T -~ L2
— (4~ %) o1 - (- - T,

Let’s take a look at (6.1). We would like to find a way to take e~ Ji T(9)ds outside the
expectation. It turns out that if we change measure, we could do so. Define

Bt _ 6'[5 r(s)ds.
Then the price of the option becomes

p(t) = Eq [e= 17 "% {(P(T, 9))| 7| = Bq [BiBT [(P(T, $))| 7]

P(0,T)
PO, 7)
B,P(0,T)Eq [nrf(P(T,9))|F] .

_ BEg [B 1 P, S>>|ft] — BEo [P0, T)nrf(P(T. )| ]

where we have used that B; is F;-measurable, and that ny = B;lp (O T)= dPT . Notice
that P(0,T) = Eq [Br], so it can be taken outside the expectation without problems We
are going to use Bayes’s rule. We state it in a lemma.

Lemma 6.1 Let Pr and Q be two probability measures on a measurable space (0, F) with
dPr = npdQ. Let X be a random variable on (Q,F), then

Eq [nrX|Fi] = Eq [nr|F:] B, [X]F].

Proof. The proof can be found in Musiela and Rutkowski [5].
Applying this lemma, we get

p(t) = B.P(0,T)Eq [nr f(P(T,S))|F:] = B.P(0,T)Ep, [f(P(T,S))|F] Eq [nr|F]
P(0,T)

= B, [f(P(T, 9))| 7] Eq [m

}ft] = P(t,T)Ep, [f(P(T,S))|F] .

We used that B,B;' = e~/ )% and that P(t,T) = Eq [B;B7'|F] = BiEq [Br!|F].
So the price can be written as

p(t) = P(t,T)Ep, [f(P(T,S5))|F] - (6.5)

Since we already have P(t,T), we only need to compute Ep,, [f(P(T, S))‘}'t}. To do so we
need the dynamics of P(T,S) under Pr. Let’s first find dP(¢,T). Observe that P(¢,T) is
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given by (6.2), where n(t,T) and m(t,T) are as in (6.3) and (6.4). Call Ln(t,T) = ny(t,T)
and Lm(t,T) = my(t,T). Then

nt(t T) 7a(T t)
£ T — lo*> 0® _roy 10° o—20(T—t) | F P —a(T—t)
mi(tT) = =5+ 5e " 302 T at :

so by It6’s formula, Theorem 2.4, we get
dP(t,T)
= (m(t,T) — ne(t, T)r(t)) P(t,T)dt — n(t,T)P(t, T)dr(t) + %nQ(t, T)P(t,T) (dr(t))2

1o* 0® ooy 10° onreny (BB _a(m—t) , —a(T—
:P(@T)[-§§+§e T t)—§?e2(T t)—i—a—ae (T=1) 4 =TV (1) | dt

P, T)é (1-e=T9) [(u — ar(t)) di + 0dB(1)]

107 —a(T—t) —2a(T—t)
+P(t,T)§?(l—26 ) 4 o2 )dt

=P, T)[r(t)dt — on(t,T)dB(t)] .
This is the dynamics under Q. Now let 7, = e —o Jg n(uD)dBw)=30® [gn*(wD)du  Fyom
Girsanov Theorem (Theorem 2.5) we know that the process BT (t) defined as BT (t) =
B(t)+ o fg n(u,T)du is again a Brownian Motion under Pp. To get the dynamics of
P(t,T) under Pr, insert dB(t) = dBT (t) — on(t, T)dt into the dynamics for P(t,T).
dpP(t,T) = P(t,T) [r(t)dt — on(t, T)dB(t)]
= P(t,T) [r(t)dt — on(t,T) (dBT( —on(t,T)dt)]
= Pt T)[(r(t) + o*n’(t, ))dt—antTdBT )] .
To get an expression with just a dB” (t)-term, we consider Fp(t,S,T) = ggt_’;g. This makes
sense because Fp(T,S,T) = P(T,S). We first find the dynamics of Fp(T,S,T) under Q.
Remember that dP(t,T) = P(t,T) (r(t) — on(t,T)dB(t)) under Q.
d P(t,S)\ _ dP(t,S) P(t,S)dPtT) P(t.S) (dP(t,T))*  dP(t,S)dP(t,T)
Pt,T))  P(tT) P2(t,T) P3(t,T) P2(t,T)

_ P.S) P(t,8)

= PeT) [r(t)dt — on(t,S)dB(t)] — PLT) [r(t)dt — on(t, T)dB(t)]
P(t, 5) P(t,S)
P(t,T) o*n(t, T)dt — PLT) o?n(t, S)n(t, T)dt

_ P, 5) ,

= P4,T) [0 (n(t,T) = n(t,S))dB(t) + o°n(t,T) (n(t, T) — n(t, S)) dt] .

And under Pr, we get

d (I}ZEZ 5’%) - P(iyg) [U (n(t,T) — n(t,S)) (dB" (t) — on(t,T)dt)

+o2n(t,T) (n(t, T) — n(t, S)) dt}

= o (n(t,T) — n(t,S)) dBT (t).
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The dynamics of Fp(t,S,T) under Pz becomes
dFp(t,S,T) = Fp(t,S,T)o (n(t,T) — n(t,S)) dBT (t), (6.6)

and the solution of the above equation is

Fp(T,S,T) = Fp(t, S, T)es D=5 (t.1), (6.7)
The solution of (6.6) is found by applying Ito’s formula on In Fp(t,S,T). Here we have
£, T) = ftTa(n(u,T) —n(u,S))dBT (u), with expectation equal zero and v*(¢t,T) =
Varp,. [£(t,T)] = ftT o2 (n(u,T) — n(u, 5))* du. Now we are ready to find the price at time
t < T of an European option written on P(T,S). The price is given by (6.5), so we need to

compute Ep,. [f(P(T,S))|F:]. We first find the European call option. The payoff function
is then f(P(T,S)) = max (P(T,S) — K,0). Define D = {P(T,S) > K}, such that

pe(t) = P(t,T)Ep, [f(P(T,S))|F]
P(t,T)Ep, [P(T,S)1p — K1p|F]
= P(t,T)Ep, [P(T,S)1p|F:] — P(t,T)Ep, [K1p|F]
= P(t,T)Ep, [P(T,S)1p|F:] — P(t,T)KPr (D|F)
= A, — A,.

We compute the parts separately, starting with A,. First, look at the set D;

D = {P(S,T) > K} = {Fp(T,S,T) > K}
= {FP(t, S, T)eE(t’T)*%VQ(t,T) > K}

- {g(t,T) > In (ﬁ) + %vz(t,T)} :

Notice that £(t,T) is independent of F; since B” () has independent increments, and that
v2(t,T) is deterministic. Notice also that Fp(t,S,T) is Fi-measurable and that &(¢,T) ~
N(0,%(t,T)). Then v(t,T)e, with € ~ N(0,1), have the same distribution. As becomes

Ao

P(t,T)KPr (D|F,) = P(t,T)KPr (D)

K 1
In (r5emy) + $°(6 )
v(t,T)
o (2425) o
v(t,T) 7

= P(t,T)KPr | ¢ >

= P(t,T)KPr | e <

since the standard normal distribution is symmetric around zero. We get

In (L’(?{S’T)) - %VQ(t, T)
v(t,T)

Ay = KP(t,T)N
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We want to evaluate A; as well. To do so, we change measure again. Let
M = elo (D) =n(w.$))dBT ()=} [§ o (n(uT)=n(u,5))*du
and 7jr = :ﬁ%. Then, from Girsanov’s Theorem (Theorem 2.5), dBT(t) = dB”(t) —
o(n(t,T)—n(t,S))dt is again a Brownian Motion under Pr. So
dFp(t,S,T) = Fp(t,S,T)o (n(t,T) — n(t,S)) dBT (t)
= Fp(t,S,T)o (n(t,T) —n(t,S)) dBT(t)
+Fp(t,S,T)o* (n(t,T) —n(t,S)) dt
and the solution of Fp (T, S,T) under Pr becomes
Fp(T,S,T) = Fp(t, S, T)eft T+  (0T)
where £(t,T) ff n(u,T) — n(u, S)) dBT (u), with Es_ [é(t,T)} = 0 and V3(t,T) =
Varg (€ { t, T } = j; o2 (n(u,T) — n(u, S))* du. Let’s look at A;. Notice that Fp(t,S,T)

is F,-measurable and that 77, ' = St =37*(tT) | We will apply Bayes rule (Lemma 6.1).
It says that
Ep, [lDﬁT‘}—t}

B o5 = T, T

= B, [1pari; |7
since 7; = Ep,. [f]T‘ft]. Moreover

Ay = P(t,T)Ep, [Fp(T,S,T)1p|F]
P T)Ez, [Fp(1, 8, T)eSt D=3 (1| 7]

TR
S
0
5
25
i~}
3

If we look at the set D, with the expression for Fp(T, S, T') under Pr instead of Py, we get
D = {P(T,S) > K} ={Fp(T,S,T) > K}
= {Fpe. 8.1yl e 5 k)

— {g(t,T) > In <%> ; v, T)}

Notice that we have £(¢,T) ~ N (0,12(t,T)) and that it is independent of ;. As before
we have that v(t, T)e, where € ~ N (0, 1), have the same distribution as £(¢,T). So

Ay = P(t,8)Pr (D|F;) = P(t,S)Pr (D)
K 1,
= P(t,95) T< >1n<Fp(tST)) 5 (t,T))

Pt S]P’T( Fp(tST)) )é v3(t, T))

v(t, T




48 CHAPTER 6. EUROPEAN BOND OPTIONS

In (%) + 312(t,T)

= P(t,S)]P)T €< l/(t,T)

In (7FP(§’<S’T)) + %Z/Q(t,T)
v(t,T) ’

= P(t,S)N

where we used that the standard normal distribution is symmetric around zero. Finally
we are ready to derive the price of an European call option. Remember that the price was
pe(t) = Ay — Ag, where A; is as above, and A, is given by (6.8).

Proposition 6.1 The price at time t < T of an European call option written on a zero-
coupon bond is

pe(t) = P(t, S)N (ur) = KP(t,T)N (u2), (6.9)
where
n (£2G2D) & 12, T)
2= v(t, T) !
and

T
ﬂujuz/na%m%Ty—m%S»%m
t
We find the price of an European put option by using the Put-Call parity.

Lemma 6.2 Let Cy and P; be prices of an European call option and an European put option
respectively written on an asset Z; with strike K. Then the following relationship holds

C,— P, =2, — KP(t,T), (6.10)

for all t in the interval [0,T]. P(t,T) is the price of a zero-coupon bond. This relationship
is called the Put-Call parity.

We now find the price of an European put option. In our case Z; = P(t, S), so

pp(t) = pc( ) — P(t,8)+ KP(t,T)
@5)(u) KP(t,T)N (us) — P(t,S) + KP(t,T)
= KP(t,T)(1 = N(uz)) — P(¢,5) (1 — N(u1))
= KP(t,T)N(—uz2) — P(t, S)N(—w).

Call 111 = —U1 and 112 = —Us3. Then

S,
In (*FP(IEK T)) + %I/Z(t,T) B In <7FP(§S7T)) — %VQ(t,T)

“e T (¢, 1) - v(t.T)
(B 120 T) () + A T)
w2 = (¢, 1) - vt T)

We state the result in a proposition.
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Proposition 6.2 The price at time t < T of an European put option written on a zero-
coupon bond is

pp(t) = KP(t,T)N (u2) — P(t,S)N (u1), (6.11)
where
) In (%) F %VQ(t,T)
“,2 = v(t, T) ’
and

T
VA, T) = /t o2 (n(u, T) — n(u, S))? du.

6.2 Bond Option Prices with Extended Vasicek Model

The price of an European option written on a zero-coupon bond is given by (6.1). First we
are going to derive the price of an European put option and later use the Put-Call parity to
find the price of an European call. In the end we are going to state explicit result of prices
when Ly (t) is compound Poisson. In both cases we only consider n = 1. This gives us

r(s) = Xa(s), (6.12)
where we have set w; = 1. X;(s) is given as before

Xi(s) = Xa(B)e=™1 G0 ¢ / T el gL (u), (6.13)

t
where ¢t < s. And .
r(s) = r(t)e =8 +/ =T dL (u). (6.14)
t

6.2.1 Bond Option Prices with Extended Vasicek Model with Gen-
eral L (t)

From earlier computations we have that the price at time 1" < S of a zero-coupon bond is

(T S) — ™ m(T,S)—n(T,S)r(T)

)

with m(T, S) fT (in(u, S))du and n(T,S) = 4= L (1— e 5-D), where ¢(in(u, S)) is
given as always It follows from (5.4), with n =1, w; =1 and X;(¢) = r(t), that

T T
- /t r(s)ds = —r()n(t, T) — /t n(u, TYdLy (1),

From all this we can derive the following

polt) = Eq [e” 1T f(P(T, 9))| 7]

= Bq [ D=1 w0 f (7)) | 7]

where f(z) = max (K —,0) and f(z) = max (K — e™™9)=T:52) It follows that
f(P(T,S)) = f(r(T)). As we will see later, we want to apply inverse Fourier transform,
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Theorem 6.1, to find the price of the option. It is important that the function f is inte-
grable on R™. A European put option has payoff function as f(z) above and is therefore
integrable, but that is not the case for an European call option. We therefore derive the
price of an European put option first, and apply the Put-Call parity to obtain results for
an European call option as well. From (6.14) we have

T
(1) = (e 00 4 [ e T AL ),

t
Now let

y = /tTn(u,T)dLl(u)Z/tTi(1—e—a1<T—">)dL1(u) (6.15)

aq
T

Z = / e~ T=dL, (u). (6.16)
t

Notice that r(¢) is Fy-measurable and that n(¢, T') is deterministic. Y and Z is independent
of F; since L;(t) has independent increments. So

polt) = B [ @D F sy 4 7) | 7]
_ efr(t)n(t,T)EQ [eng(Z)] ’

where g(r) = max (K — em(T7S)_"(T’S)[T(t)"ial(T%)+"7],0). It follows now that f(r(T))) =

9(Z).
pp(t) = e "M DR, [e7Y g(2)] . (6.17)

We want to apply inverse Fourier transform to compute Eq [e™Y g(Z)]. First we define the
Fourier transform of a function f.

Definition 6.2 The Fourier transform of f € L'(R™) is

f(y) = - f(z)e v dz. (6.18)

One can then recover the function f from it’s Fourier transform in the following way.

Theorem 6.1 The Fourier Inversion Theorem
Let f € LY(R"), with Fourier transform defined by (6.18). Then

1 i iy-x
f(x):W Rnf(y)e dy. (6.19)

Now define o) it
| e7Yg(2) ify,z>0
h(y,z)—{o ify<Oorz<0’
Notice that Eq [h(Y, Z)] = Eq [ g(Z)]. If we can find Eq [h(Y, Z)], we can also find the
price p,(t) = e "ONEDE, [e7Yg(Z)]. Remember that Y and Z is given by (6.15) and
(6.16) respectively. We can define h the way we do, because Lq(t) is a subordinator and
therefore have only positive jumps. This implies that Y and Z is always positive. Thus

h(u,v)) = [ h(y,z)e”™"*dydz,
]R2



6.2. BOND OPTION PRICES WITH EXTENDED VASICEK MODEL 51

and
Y. Z) = 1 i?, iuYJrind d
(v, )_W - (u,v)e uav.
It follows from above that
1 7 iu iv
Eq [h(Y, Z)]:W/u@ h(u,v)Eq [e™YT"7] dudv. (6.20)

It remains only to compute the characteristic function of (Y, Z). It is defined to be
Eg [ei“Y“”Z]. First consider iuY +ivZ. Remember that Y and Z are given by (6.15) and
(6.16) respectively.

T 4 T
zu/ — (1 - e*al(T’S)) dL1(s) + iv/ e (T=9dL, (s)
t

a1 t

T
; u _ —a1(T—s) —a1(T—s)
z/t Lél (1 e ) + ve } dL1(s)

T
Z/ |:e—oz1(T—S) ('U _ i) + &:| dLl(S)
t aq aq

Let {s;}jL; be any partition of the interval [¢,T] with max; [s;+1 — s;| < €. Let k(s,T) =
emon(T=3) (v . a—) + 2. We then have [, k(s, T)dL1(s) = lim—o Y7, k(s;, T)AL1(s)).

Also remember that the characteristic function of a Lévy process L(t) is E [e?*L(D)] = V(=)
It follows directly that

wY +iwZ

m

Eo [eiuYJrin} — lim Eo [ez‘k(s;-,T)ALl(sj')}
j=1

e—0

= lim eV (k(s;,T))As;

€—0 -
J=1
_ T wks s
where ¢ (k(s, 7)) = [ (e*(T)® —1 —ik(s, T)x1 ;<) v(z)dz. The characteristic function
of (Y, Z) becomes
EQ [eiuYJrin} _ e-ftT w(k(S’T))dS. (621)

Remember that the price p.(t) is given by (6.17), where e =Y g(Z) = h(Y, Z). Remember
also that Eq [h(Y, Z)] is given by (6.20). So from above we get the following result:

Proposition 6.3 The price at time t < T of an FEuropean put option written on a zero-
coupon bond is

1 ~ .
pp(t) = e_n(th)T(t) W h(u, U)ejtT w(k(svT))dsdudv, (622)
T R2

where

1
n(t,T) = — (1= e @0,

aq
k(s,T) = em*1(T=%) (v - i) +
(5] a1
W(k(s,T)) = / (HT 1 k(s D)ty ) vla)da
R
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and h(u,v) is the Fourier transform of h(Y, Z).

One can compute h(Y,Z) by using fast Fourier transform algorithm. It’s an efficient
algorithm to compute the discrete Fourier transform. However, we will not do it in this
thesis.

But can we say something more about the Fourier transform of h(Y, Z), h(u,v)? Yes,
indeed

h(u,v) = h(y, 2)e” Y= dydz

R2

— / e—yg(z)e—iuy—ivzdydz
[0,00) % [0,00)

— / g(z)efivz (/ ey(lJriu)dy) dz
0 0

oo , 1 Rk
/0 g(z)e [ T iu® ] z

1 > ) ’
= / g(2)e”"*dz,
0

1+9u

with 1 > iu. We defined ¢g(z) = max (K — em(T’S)_n(T’S)[T(t)eial(Tit)"'z]’O)’ so we need
K to be bigger than e™TS)—nTS)[r(t)e™ 177 +2]
when

for the integral to be nonzero. That is,

m(T,S) —In K — n(T, S)r(t)e” (T

i (T, 3)

=a(t,T,5).

It follows that

h(u,v) = L / g(z)e % dz
0

1+9u
1

— : /OO (K _ em(T,S)—n(T,S)[r(t)ef"‘l(Tft)-l—z]) e—ivzdz
L+iu Jow 1,9

K. > efivzdz o 1 : /DO em(T,S)fn(T,S)[r(t)e_al(T_”Jrz]fivzdz
L+iu Joi,r,5) 1+iu Jou,1,5)

=1 —D.

We compute the parts separately. It’s easy to see that

I = K 1 iaers) _ K ivaers) (6.23)
(1 +iu) (iv) i — uv
It remains to compute Is.
I, = 1 : /OO em(T,S)fn(T,S)[r(t)e_al(T_f‘)Jrz]fivde
L+iu Jou,1,9)
— L om@ms)—nms)rmeer @y / o~ (n(T.8) +iv) g,
1+idu a(t,T,S)
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1 em(T,S)—n(T,S)r(t)e7a1(Tft) 1 e—z(n(T,S)—Hv)

1+ TL(T, S) + v a(t,T,S)

L m(@.8)-n(.s)r@)e o179 1 o~ a(t.T.8)(n(T.S) +iv)
1+ iu n(T,S) +iv

2 (T, 8)=n(T,8) [r(t)e™ 1T =D 4a(t,1,5)] ,~iva(t,T.S)

— K efiva(t,T,S)

T,S)—In K —n(T,S)r(t)e” 21 (Tt

o (T5) : . It follows directly that

Here we have used that a(t, T, S) = ™

h(U,,U) = Il — IQ
K efiva(t,T,S) o K efiva(t,T,S)
1w — uv (1+iu) (n(T,S) + iv)

, 1 1
_ —iva(t,T,S) _
Ke (iv—uv (1 +iu) (n(T, S)—i—iv)) '

6.2.2 Bond Option Prices with Extended Vasicek Model when L (t)
is Compound Poisson

From Corollary 5.2 we have that the price of a zero-coupon bond is given by

P(t,T) = em&D—n(tT)r(®)

where

910(

1 A 1

and

n(t,T) = L (1 - e‘“l(T_t)) .
aq

It follows from (5.4), with n = 1, wy; = 1 and X1 (¢) = r(t), that

T T
- /t r(s)ds = —r(t)n(t, T) — /f n(u, TYdLy (1),

The price of an European option is defined by (6.1), so by using what we found in the
general case, we can derive the following

po(t) = Eq [e™ i 7 p(P(T, 5))| 7]
_ EQ [e—r(t)n,(t,T)_ftT n(u,T)dLl(u)f(r(T)”]:t}
_ efr(t)n(t,T)EQ [eng(Z)] ’

where f(P(T,S)) = f(r(T)) = g(Z) as before. Y and Z are the same as in (6.15) and
(6.16). We are going to use Fourier transform, so we need to find the characteristic function
of (Y, Z). It is defined by

QPY,Z(U;'U) _ EQ [eiuY-i—in} )



54 CHAPTER 6. EUROPEAN BOND OPTIONS

Once again we start by finding iuY + wZ.

T T
1
wY +ivZ = ZU,/ il (1 _efm(Tfs)) dL1(s) —l—iv/ efm(Tfs)dLl(S)
t

a1 t

T
z/ {e_o‘l(T_s) (v - i) + &} dL(s)
t aq a1

T
z/t k(s,T)dL1(s),

where k(s,T) = e=1(T=9) (v = ;—Ll) + o-- Remember that the characteristic function of

Ly(t), when Ly(t) is compound Poisson, is given by Eq [e*F1 ()] = ’\“‘/( et ) . Now, as
before, let {u;}72,; be any partition of the interval [¢t,T] with max; [u;1 — u;| < e. Then

Eo [eiuYJrin} —Eole [ i T k(s,T)dLa ( s):| — lim HEQ [ ik(s;, T ALl(sJ):|

e—>0

m
T
im TT M (=t —1) s _ A7 (i 1) ds
e—0
j=1

e)\lll A1 (T*t) .

Bounded Convergence Theorem is used to take the limit outside the expectation, and
because L has independent increments, we can take the product outside as well. Define

_feYg(z)ify,z2>0
h(y’z)_{o ify<Oorz<O0’

Let h(u,v) be the Fourier transform of h(Y,Z) defined by (6.18). Then we can find the
inverse Fourier transform from (6.19). So

I —
_ e_r(t)n(t,T)EQ [h(Y, Z)]
_r(t)ﬂ(t T) / h U, U 71LY+iUZ] dudv

e—rOnET) _L (QW) h(u, 0)e M =2 T =D gy,

The integral I; in the characteristic function of (Y, Z), can be solved. Remember that
k(s,T) = e 1 (T=9) (U - l) + L.

a1 ('S}

r 1
I ——ds = _
T / 01 — Zk (s,T) /f 1- i%k(s,T)

s —
1
z/ ds
t 11—t gt (v——)e aTears

01 aq ZE aq
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~ 19y ag 1 Q1 1 aq
T—1 1 1w 1 u
= 0 —n(l—i———i—|v——
1—7,0——L 0&1—19— 01 a1 01 a1
1 Q1 1

1 1 1
+7,uln <]_ — Z—ﬂ — i (U _ ﬂ) eal(Tt))
a1 =iy, bhor b1 o

T - 1 1 1
= 1t - —In (1 —i ) +———1n (1 — i (ve_(“(T_t) + un(t,T)))
1—i/~2 OCI_ZE 91 OCI_ZE 91

01 a1

t

where n(t,T) = a% (1 — e (T=1)) as usual.

Proposition 6.4 The price at time t < T of an European put option written on a zero-
coupon bond is

pp(t) — e—r(t)n(t,T) (21)2 B(u, U)eAlIl_)\l(T_t)dudv,
v R2

where I is as above and h(u,v) is the Fourier transform of h(Y, Z) defined by (6.18). The
Lévy process used is compound Poisson.

An European call option can be found by applying the Put-Call parity relationship
(6.10)
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Chapter 7

Simulation

In this chapter we simulate the interest rate r(¢) and zero-coupon bond prices P(¢,T) in
both the Vasicek model and the extension of it. The simulation gives us an idea on how
accurate the model is. A great deal of the challenge is to give realistic values to all the
variables in the model.

7.1 Simulation of the Interest Rate r(¢)

We start by simulating r(¢). We use results obtained earlier in this thesis.

7.1.1 Simulation of r(¢) in the Vasicek Model

Remember that the interest rate r(t) in the Vasicek model has dynamics
dr(t) = (u — ar(t))dt + ocdB(t),

where p, @ and o are positive constants and B(t) is a Brownian motion. To simulate ()
we use the Euler method, i.e. make an Euler scheme. We make r(t) discrete instead of
continuous, and get

r(t+ At) — r(t) = (p — ar(t)) At + o(B(t + At) — B(t)).

Since Brownian motion has stationary increments and is normally distributed, we can write
B(t+ At) — B(t) = B(At) and 0 B(At) ~ oV Ate, e ~ N(0,1).

r(t+ At) = () + (u — ar(t)) At + oV Ate,

where € ~ N(0,1). To make the simulating easier, we set At = 1. The values of the
variables is as in Table 7.1. See the result of the simulations in Figure 7.1 and Figure 7.2

7.1.2 Simulation of r(¢) in the Extended Vasicek Model

Remember that the interest rate r(¢) in the extended Vasicek model is
r(t) =Y wp Xi(t), (7.1)
k=1

o7
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Table 7.1: The values of the variables in the Vasicek model

" o o
0.004 | 0.0693 | 0.001

Simulation of r(t)

—0.02

—0.04 L L L L L " "
o 50 100 150 200 250 300 350 400

time in days

Figure 7.1: Simulation with the Vasicek model

Simulation of r(t)

o 50 100 150 200 250 300 350 400
time in days

Figure 7.2: Simulation with the Vasicek model
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Table 7.2: The values of the variables

k Qe )\k ok
1] 0.0231 0.1 100
2 | 0.198 | 0.0111 | 40

Simulation of r(t)

0.11

0.1

0.09

0.08

0.07

0.06

interest rate

0.05

0.04

0.03

0.02

0.01 " " " " h " "
[e] 50 100 150 200 250 300 350 400

time in days

Figure 7.3: Simulation with the extended Vasicek model

where
dXp(t) = —a X (t)dt + dLg(t). (7.2)

Here are the Lévy processes Ly (t) subordinators. We assume n = 2, and let L;(¢) and Lo(t)
be compound Poisson. We apply the Euler method again and make Xy (¢) discrete. Then
we get
Xp(t 4+ At) = Xp(t) — ap Xi(t)At + Li(t + At) — Ly (t),

where

Ny, (t+At)

Li(t+At) — Li(t) = Y Y;,
J=Nk(t)

and Y; ~ exp(fy) for k =1,2. Ni(t) have intensity Ay, and can have at most one jump in
the interval [t,t + At]. To determine if there is a jump in the interval, we let u € [0, 1] and
if u < A\pAt there is a jump!. The variables are valued as in Table 7.2. Here we let 7(t)
be a composition of X;(t) and X2(t). In our case we let X;(¢) have small jumps and high
jump intensity and let X5 (¢) have larger jumps, but lower jump intensity. By increasing
the jump intensity in X;(¢) we would get a more noisy graph of r(t), i.e. we would get an
interest rate with a higher jump intensity. Then we would have to decrease the size of the
jumps as well in order for the interest rate not to increase.
We give two simulations of the interest rate r(t), in Figure 7.3 and Figure 7.4.

1To see details of the simulation, see Appendix A.
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Simulation of r(t)
0.12 T T

0.11

0.1

0.09

0.08

0.07

interest rate

0.06

0.05

0.04

0.03

0.02

o 50 100 150 200 250 300 350 400
time in days

Figure 7.4: Simulation with the extended Vasicek model

7.2 Simulation of Zero-Coupon Bond Prices

We remind the reader that a zero-coupon bond is a bond paying one currency at the time
of maturity with no coupons paid inbetween. We will simulate the prices from time 0 to
T of such bonds, where T is the time of maturity. We simulate the prices in both the
Vasicek model and the extended Vasicek model. Starting with the Vasicek model. We use
the interest rates found above, when simulating r(t¢), since the prices depend on them.

7.2.1 Simulation of Zero-Coupon Bond Prices in the Vasicek
Model

Remember that the price at time ¢t < T of a zero-coupon bond is

P(t,T) = em&D)=n(tT)r(®),

where )
n(t,T) = ~ (1 - e_“(T_t))
e
and with n(¢,T) as above;
2 2
B_ 0 g 2
t,T)=|(——— t,T)— (T —t)) — —n*t,T).
mie 1) = (4= &) e )~ (T - ) - L(eT)
We find the price at all times ¢ = 0,1,2,...,365 to see how the price changes as we come

closer to the maturity time T = 365.2 We used the values in Table 7.1 for the variables.
We did two simulations with the same variables, see Figure 7.5 and Figure 7.6.

7.2.2 Simulation of Zero-Coupon Bond Prices in the Extended Va-
sicek Model

Remember that the price at time ¢ < T of a zero-coupon bond in the extended Vasicek

model is
P(t,T) = eZ2’:1P\kfk*Ak(T*t)*Wka(t)nk(t’T)]’

2To see details, take a look at Appendix A
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Price of zero—coupon bond with maturity in 1 year
1 T T T T T T T

0.8

0.6

price
o
a
T

0.4

0.3

0.2

0.1

0 . . . .
[0} 50 100 150 200 250 300 350 400

time in days

Figure 7.5: Simulation of zero-coupon bond prices with the Vasicek model

Price of zero—coupon bond with maturity in 1 year
1 T T T T T T

0.9

0.7

05

price

o . . . . . A
(0] 50 100 150 200 250 300 350 400

time in days

Figure 7.6: Simulation of zero-coupon bond prices with the Vasicek model
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Price of zero—coupon bond with maturity in 1 year
T T T T T
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time in days

Figure 7.7: Simulation of zero-coupon bond prices with the extended Vasicek model

Price of zero—coupon bond with maturity in 1 year

price
o
4]
.

o n n n P . .
(e} 50 100 150 200 250 300 350 400
time in days

Figure 7.8: Simulation of zero-coupon bond prices with the extended Vasicek model

where

1
m(t,T) = — (1—eu)

and

1 1 Wi
I, =(T—t In| 14+ —ng(t,T)|.
k ( )1+%L + X Wi n( + 0k nk(v ))

ag O
We simplify it a bit, and look only at the case when n = 2. We use the same values for the
variables as we did when simulating r(¢). The prices can be seen in Figure 7.7 and Figure
7.8. If we compare Figure 7.3 with Figure 7.7 we recognise the jumps in r(¢) in the price of
the zero-coupon bond P(¢,T). And we see the same when comparing Figure 7.4 and Figure
7.8.

Generally, we could obtain even more flexibility in the interest rate r(t) by setting
it equal to Y ,_, wiXy(t), with n > 2. We then get that the interest rate r(¢) can be
dependent of other factors as well.



Appendix A

MATLAB Files

simulations.m

T
r_

%Variables used to simulate the Vasicek model:
alpha = log(2)/10;

mu = 0.004;

sigma = 0.01;

%Variables used to simulate the extended Vasicek model:

w_1l=1;

w_2=1;

alpha_1 = log(2)/30;
alpha_2 = log(2)/3.5;
lambda_1 = 1/10;

lambda_2 = 1/90;
theta_1 = 100;

theta_2 = 40;
r_t_Vas = simulate_r_Vas(T, r_0, mu, alpha, sigma);
p_t_Vas = price_Vas(T, r_t_Vas, mu, alpha, sigma);

[r_t, X_1, X_2] = simulate_r(T, w_1, w_2, r_0O, alpha_1, alpha_2, lambda_1,
lambda_2, theta_1, theta_2);
p_t = price(T, w_1, w_2, X_1, X_2, alpha_1, alpha_2, lambda_1, lambda_2,
theta_1, theta_2);

#Plotting the figures:
figure(1)

plot(r_t_Vas)

xlabel(’time in days’);
ylabel(’interest rate’);
title(’Simulation of r(t)’);
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figure(2)

plot(p_t_Vas)

xlabel(’time in days’);

ylabel(’price’);

title(’Price of zero-coupon bond with maturity in 1 year’);

figure(3)

plot(r_t)

xlabel(’time in days’);
ylabel(’interest rate’);
title(’Simulation of r(t)?);

figure(4)

plot(p_t)

xlabel(’time in days’);

ylabel(’price’);

title(’Price of zero-coupon bond with maturity in 1 year’);

simulate r Vas.m

%Simulates the Vasicek model

function[r_t_Vas] = simulate_r_Vas(T, r_O, mu, alpha, sigma)
delta = 1;

r_t_Vas = zeros(1, T + 1);

r_t_Vas(l) = r_0;

for t=1:T
eps = normrnd(0, 1);
r_t_Vas(t + 1) = r_t_Vas(t) + (mu - alpha*r_t_Vas(t))*delta
+ sigma*sqrt (delta)*eps;
end

price_ Vas.m

%Simulates the price of a zero-coupon bond in the Vasicek model
function[p_t_Vas] = price_Vas(T, r_t_Vas, mu, alpha, sigma)
p_t_Vas = zeros(1, T + 1);

n_t = zeros(1, T + 1);

m_t = zeros(1, T + 1);

for t=1:T+1
tt=t - 1;
n_t(t) = (1/alpha)*(1 - exp(-alpha*(T - t_t)));



m_t(t) = ((mu/alpha) - (sigma~2)/(2x(alpha~2)))*(n_t(t) - (T - t_t))
- ((sigma~2)/(4*alpha))*n_t(t);
p_t_Vas(t) = exp(m_t(t) - n_t(t)*r_t_Vas(t));
end
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simulate r.m

#Simulating r(t) from the extended Vasicek model with Euler

Jmethod, when L_1 and L_2 are compound Poisson.

function[r_t, X_1, X_2] = simulate_r(T, w_1, w_2, r_0, alpha_1, alpha_ 2,
lambda_1, lambda_2, theta_1, theta_2)

delta = 1;

X_1 = zeros(1, T + 1);

X_2 = zeros(1, T + 1);

r_t = zeros(1, T + 1);

X_1(1) = r_0/w_1;

X_2(1) = 0;

for t=1:T
u_l rand;
u_2 = rand;
if u_1 > lambda_lx*delta %If not jump in X_1
X_1(t + delta) = X_1(t)*(1 - alpha_1)*delta;
else %If jump in X_1
Y_1 = exprnd(1/theta_1);
X_1(t + delta) = X_1(t)*(1 - alpha_1)*delta + Y_1;

end
if u_2 > lambda_2xdelta %If not jump in X_2
X_2(t + delta) = X_2(t)*(1 - alpha_2)*delta;
else %If jump in X_2
Y_2 = exprnd(1/theta_2);
X_2(t + delta) = X_2(t)*(1 - alpha_2)*delta + Y_2;
end
end

for t=1:T+1
r_t(t) = w_1*X_1(t) + w_2*X_2(t);
end

price.m

%Pricing of zero-coupon bonds of the extended Vasicek model,
%with L_1 and L_2 compound Poisson.
function[p_t] = price(T, w_1, w_2, X_1, X_2, alpha_1, alpha_2,
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lambda_1, lambda_2, theta_1, theta_2)

p_t = zeros(1, T + 1);
n_1 = zeros(1, T + 1);
n_2 = zeros(1, T + 1);
I_1 =zeros(1, T + 1);
I_2 = zeros(1, T + 1);
for t=0:T
n_1(t + 1) = (1/alpha_1)*(1 - exp(-alpha_1*(T - t)));
n_2(t + 1) = (1/alpha_2)*(1 - exp(-alpha_2*(T - t)));
I_1(t +1) = (T - t)/(1 + (w_1/alpha_1)*(1/theta_1))
+ (1/(alpha_1 + (w_1/theta_1)))
*log(l + (w_1/theta_1)*n_1(t + 1));
I 2(t +1) = (T - t)/(1 + (w_2/alpha_2)*(1/theta_2))
+ (1/(alpha_2 + (w_2/theta_2)))
*log(1 + (w_2/theta_2)*n_2(t + 1));
end
for t=0:T

p_t(t + 1) = exp(- w_1xX_1(t + 1)*n_1(t + 1)
+ lambda_1*I_1(t + 1)
lambda_1%(T - t)
w_2*X_2(t + 1)*n_2(t + 1)
lambda_2*I_2(t + 1)
lambda_2*(T - t));

+

end
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