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AN INTRODUCTORY NOTE

In an expanding financial world it is necessary to analyse and understand the methods
used and the models they rely on. For an investor to stay competitive and safeguard
against failure the need for thorough and careful examination from a mathematical per-
spective is immense. A pure mathematical dissection is of considerable value, but with
more complicated models, which are increasingly involved and technically demanding,
the search for an analytical answer to pricing and hedging problems could be futile and
the only possibility is to resort to numerics.

This thesis is centered around numerical methods applied to problems in mathemat-
ical finance. While being in the same field, the problems differ substantially from each
other. The articles cover many of the big questions in finance: option pricing, hedging,
price sensitivities, Value-at-Risk, implied volatility and risk aversion. The numerical
methods are varying; finite difference methods for partial differential equations, Monte
Carlo and quasi-Monte Carlo, the fast Fourier transform and numerical search methods
are all used where applicable. This is not a thesis where new theory is developed in nu-
merical mathematics and neither in finance, but rather in the borderland in between, in
applied mathematical finance. It adds to the understanding of stock price models with
jump processes, in particular the Barndorff-Nielsen and Shephard stochastic volatility
model.

The purpose of the introductory chapter is to give a brief presentation of the the-
ory behind the material presented in the articles. Even though the aim was to make it
self-contained it requires basic knowledge of finance theory, stochastic analysis and also
some background in mathematical analysis. Numerous references are given for those
interested in the original research in mathematical finance. Interested readers seeking
a way into the subject should consider the following books: Björk [21] Arbitrage theory
in continuous time, Cont and Tankov [35] Financial modelling with jump processes,
Glasserman [64] Monte Carlo methods in financial engineering, Hull [78] Options, fu-
tures and other derivatives and Wilmott, Dewynne and Howison [116] Option pricing,
which together well cover the material needed to indulge in this thesis.

1. Lévy processes

Lévy processes have a central role in this thesis, although the focus is not on the
processes themselves, but as building blocks. The financial models studied are driven
by Lévy processes and to understand how they are used some background material is
needed. This said, the Lévy processes are not studied from a theoretical point; no new
properties are derived, nor are any new insights about Lévy processes brought to the
table. In a sense this thesis is about the use of Lévy processes in mathematical finance,
from a computational and applied view. For the coherence of the introduction, a brief
summary of the theory needed to understand Lévy processes and how they are treated
in the sequels is provided here.

A Lévy process is a stochastic process with stationary independent increments. That
is, pick a series of times with a fixed time step, measure the process at those times and
calculate the change between times, then these numbers will have the same distribution
and be independent of each other. To be formal, a Lévy process {Xt, t > 0} is a càdlàg
process (i.e. right continuous with left limits) with X0 = 0, a.s. having the properties
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• For any choice of n ≥ 1 and 0 ≤ t0 < t1 < · · · < tn, the random variables
Xt0 , Xt1 − Xt0 , Xt2 − Xt1 , . . . , Xtn − Xtn−1 are independent.

• The distribution of Xs+t − Xs does not depend on s.
• Xt is stochastic continuous, i.e. ∀ ε > 0, t ≥ 0, lims→t P(|Xs − Xt| > ε) = 0.

Stochastic continuity is not the same as the sample paths being continuous. A Lévy
process may have jumps in the path but the probability that the process exhibit a
jump at any given time is zero.

If μ is a probability measure on Rd and then μn be the n-fold convolution with itself

μn = μ ∗ · · · ∗ μ.

A probability measure μ is said to be infinitely divisible if for any positive integer n there
is a probability measure μn on Rd such that μ = μn

n. This implies that for any infinitely
divisible distribution μ and any positive integer n there exist n random variables such
that the sum of the variables have distribution μ. This resembles quite a lot the first
point in the definition of a Lévy process and indeed, denoting the distribution of X by
PX the following result holds true

Theorem 1.1 (Theorem 7.10 Sato [110]).

• If {Xt, t ≥ 0} is a Lévy process in law on Rd then, for any t ≥ 0, PXt is infinitely
divisible and, letting PX1 = μ, we have PXt = μt.

• Conversely, if μ is an infinitely divisible distribution on Rd, then there is a Lévy
process in law {Xt, t ≥ 0} such that PX1 = μ.

• If {Xt} and {X ′
t} are Lévy processes in law on Rd such that PXt = PX′

t
then

{Xt} and {X ′
t} are identical in law.

Here a Lévy process in law is defined similar to a Lévy process but without the
càdlàg property. Examples of distributions which are infinitely divisible includes the
Gaussian, Cauchy, Poisson, compound Poisson, exponential, inverse Gaussian, normal
inverse Gaussian and the generalised version of the last two.

Letting 〈x, y〉 denote the inner product on Rd, the characteristic function of a Lévy
process can be written as

E
[
ei〈z,Xt〉] = etφ(z), z ∈ Rd.

The continuous function φ, called the characteristic exponent, is the cumulant gener-
ating function of X1. The dependence on t is linear so the law of Xt is determined
by the knowledge of the law of X1. The form of the characteristic exponent for all
infinitely divisible distributions is given by the Lévy-Khintchine representation, an im-
portant result about Lévy processes. Given a Lévy process Xt on Rd then φ has the
representation

(1.1) φ(z) = −1

2
〈z, Az〉 + i〈γ, z〉 +

∫
Rd

(
ei〈z,x〉 − 1 − i〈z, x〉1|x|≤1(x)

)
ν(dx), z ∈ Rd,

where A is a symmetric nonnegative-definite d × d matrix, γ ∈ Rd a vector and ν is a
measure on Rd satisfying

ν({0}) = 0 and

∫
Rd

(|x| ∧ 1)ν(dx) < ∞.

The three parts (A, ν, γ) are called the generating triplet for Xt and are uniquely
determined by the distribution of X1. A is called the Gaussian covariance matrix and
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ν the Lévy measure. For a subset A ∈ B(Rd) the Lévy measure ν(A) can be interpreted
as the expected number of jumps with jump size in A per unit time. The triplet is
unique, however the representation (1.1) is not. Other functions than 1|x|≤1 can be
used to truncate the larger jumps in the integrand. This effects γ so one should clearly
state the truncating function considered if it differs from the one in (1.1).

The second important result is the Lévy-Itô decomposition which says that a Lévy
process can be expressed as the sum of two independent parts, a continuous part and
a part expressible as a compensated sum of independent jumps. Here the version from
Cont and Tankov [35] is given, which is slightly more accessible than Sato’s version.
To begin with, observe that it is possible to define a measure on [0,∞) × Rd counting
the jumps of Xt in [t1, t2] with jump size B

JX([t1, t2] × B) = #{(t ∈ [t1, t2], Xt − Xt−) ∈ B}
for any measurable set [t1, t2] × B ⊂ [0,∞) × Rd. It will be required that the jump
measure JX of a Lévy process X is a Poisson random measure, see Cont and Tankov
for the definition. The Lévy-Itô decomposition then states

Theorem 1.2 (Prop. 3.7 Cont and Tankov [35]). For a Lévy process {Xt, t ≥ 0} on
Rd, where X1 has the generating triplet (A, ν, γ), the following holds

• ν is a Radon measure on Rd \ {0} and verifies∫
|x|≤1

|x|2ν(dx) < ∞,

∫
|x|≥1

ν(dx) < ∞.

• The jump measure of Xt, denoted by JX , is a Poisson random measure on
[0,∞) × Rd with intensity measure ν(dx)dt.

• There exists a d-dimensional Brownian motion {Bt, t ≥ 0} with covariance
matrix A such that

Xt = γt + Bt + X l
t + lim

ε↓0
X̃ε

t , where

X l
t =

∫
|x|≥1,s∈[0,t]

xJX(ds × dx) and

X̃ε
t =

∫
ε≤|x|<1,s∈[0,t]

x{JX(ds × dx) − ν(dx)ds}.

All parts of the decomposition are independent and the convergence is almost sure and
uniform in t on any bounded interval.

The first two terms of the decomposition together form a Gaussian Lévy process,
which is the continuous part. The two last terms form the discontinuous jump part.
The condition that the Lévy measure has finite mass for |x| ≥ 1 makes X l

t into a
compound Poisson process with almost surely finite number of jumps. The last term
is a compensated jump integral for the small jumps, enabling processes with infinite
jump activity, i.e. processes with infinitely many small jumps. It can be noticed that
without passing to the limit, the last term will also form a compound Poisson process.
An arbitrary Lévy process can therefore be approximated by a jump-diffusion, the sum
of a Brownian motion with drift and a compound Poisson process.

The last concept needed to be defined is a subordinator, a Lévy process with almost
surely nondecreasing sample paths. Hence a subordinator {Xt, t ≥ 0} is increasing
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such that Xt ≥ 0 a.s. for every t > 0. For a Lévy process on R to be increasing the
characteristic triplet needs to satisfy A = 0,∫

(−∞,0)

ν(dx) = 0,

∫
(0,1]

xν(dx) < ∞

and

γ0 := γ −
∫
|x|≤1

xν(dx) ≥ 0.

The variable γ0 is called the drift and the integral in the definition of γ0 is finite,
otherwise there would be infinitely many small jumps with positive jump size at any
time. Hence a subordinator always has finite variation (no Brownian motion and finite
jump activity).

2. Arbitrage pricing and Martingale measures

In order to trade with claims there has to be a way to attribute a price in a manner
excluding possibilities to make money out of nothing. To make a profit without risking
any loss is called arbitrage and in a working theory for financial derivatives it is neces-
sary that there are no arbitrage opportunities. The idea of arbitrage is fundamental in
finance and the quest is to find conditions such that the market model is arbitrage-free.
As will be showed later, absence of arbitrage is closely connected to the existence of
equivalent martingale measures which will make the (discounted) price process of a
claim into a martingale, concepts which will be defined below.

In the Black & Scholes framework martingale pricing comes naturally from arbitrage
considerations but for more complicated models this is not the case. The martingale
approach started with Harrison and Kreps [70] and Harrison and Pliska [71]. They
originally considered trading strategies which only allowed for simple predictable inte-
grands. This constraint ruled out unfavorable trading strategies such as the ”doubling
strategy” but was still too restrictive. Delbaen and Schachermeyer [42] replaced No
arbitrage with the concept of No Free Lunch with Vanishing Risk (NFLVR). The differ-
ence between the concepts is a question of functional analysis definitions, i.e. choosing
space to work in, and is left to the reader to find out from the references. Instead of
considering only simple predictable integrands the NFLVR-concept opened up for the
possibility to include a larger group of strategies, restricted to be admissible.

Consider a market consisting of n traded risky assets whose evolutions are strictly
positive and described by a filtered probability space (Ω,F ,{Ft},P). A real adapted
process {Xt, t ≥ 0} is a martingale if for all t

E[|Xt|] < ∞,

E[Xt|Fs] = Xs ∀ 0 ≤ s ≤ t ≤ ∞.
(2.1)

If there exists a nondecreasing sequence of stopping times {τk} of the filtration {Ft}
such that Xt∧τk

is a martingale for all k, then Xt is called a local martingale.
Let X denote a contingent claim with maturity T , referred to as a T -claim. Assume

that the risky asset prices S(t) = [S0(t) · · ·Sn(t)] develop according to some underlying
stochastics. In the Black & Scholes market the assets follow stochastic differential equa-
tions driven by Wiener processes, but for the general martingale pricing the stochastics
are allowed to be semimartingales, see Protter [105]. S0 is often thought of as the risk-
free asset in the market, a bank account with short rate r. In the general theory the
only assumption is that S0(t) > 0 P − a.s. for all t ≥ 0.
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Instead of looking at the price vector process S(t), consider the normalised market
with price vector process

(2.2) Z(t) = [Z1(t), . . . , Zn(t)] =

[
S1(t)

S0(t)
, . . . ,

Sn(t)

S0(t)

]
.

Here S0 is used as the numeraire and in the Z-economy Z0(t) = 1 is a risk-free asset,
a money account with zero interest rate.

Let θ(t) = [θ0(t), . . . , θn(t)] be a portfolio, where θi(t) represents the number of
units held of the ith asset at time t. Since a trading strategy can only depend on the
information available at the current time it must be assumed that θ(t) is adapted (or
even predictable). The value of the portfolio at any time t is given by the value process

V (t; θ) =
n∑

i=0

θi(t)Si(t).

The value process can equally well be defined using the normalised market, giving the
Z-value process

V Z(t; θ) =
n∑

i=0

θi(t)Zi(t).

It is necessary to narrow down the class of strategies to avoid cases such as the
doubling strategy. One common way is to require the portfolio to be admissible in
the sense that it is limited from below: An adapted process θZ = [θ1, . . . , θn] is called
admissible if there exists a nonnegative real number α such that∫ t

0

θZ(u) dZ(u) ≥ −α for all t ∈ [0, T ].

A process θ(t) = [θ0(t) θZ(t)] is called an admissible portfolio process if θZ is admissible.
The value process should reflect the actual rise and fall of the assets, i.e. there is no
flow of funds in or out of the portfolio. It should be self-financing : An admissible
portfolio is said to be Z-self-financing if

dV Z(t; θ) =
n∑

i=0

θi(t) dZi(t).

The choice of numeraire is not crucial for the concept of self-financing portfolios as it
can be proved that a portfolio θ is S-self-financing if and only if it is Z-self-financing.
Adding to this, a contingent claim X is said to be reachable if there exists a portfolio
θ such that V (T, θ) = X. This extends straightforwardly to definitions of S-reachable
and Z-reachable claims.

Arbitrage is the possibility to make a positive amount of money while starting with
nothing. Such a possibility can not exist over time in a sound market as it will be
exploited by investors making a fortune without taking any risk. A mathematical
definition of arbitrage can be given using the value function: A self-financing trading
strategy θ(t) is called an arbitrage if either

V (0; θ) < 0,

P(V (T ; θ) ≥ 0) = 1,
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or

V (0; θ) = 0,

P(V (T ; θ) ≥ 0) = 1,

P(V (T ; θ) > 0) > 0.

The concept of arbitrage-free markets is closely related to the existence of probability
measures under which asset dynamics of the normalised market are martingales. Two
separate probability measures P and Q on a measurable space (X,F) are said to be
equivalent (∼) if they define the same set of events as impossible, i.e.

P ∼ Q : ∀A ∈ F Q(A) = 0 ⇐⇒ P(A) = 0.

This is important since it will be shown that pricing takes place under measures equiv-
alent to the historical measure. If this is not the case events which are impossible under
the pricing measure could have positive probability under the historical measure, which
could lead to arbitrage.

A probability measure Q on FT is called an equivalent martingale measure for the
market model given by Z(t), the numeraire S0 and the time interval [0, T ] if it has the
following properties:

• Q ∼ P on FT .
• All price processes Z0, Z1, . . . , Zn are martingales under Q on the time interval

[0, T ].

If Z0, Z1, . . . , Zn are local martingales under Q it is called a local martingale measure.

Theorem 2.1 (First fundamental theorem of asset pricing). Consider the market model
S0, S1, . . . , Sn where it is assumed that S0(t) > 0 P-a.s. for all t ≥ 0. Assume fur-
thermore that S0, S1, . . . , Sn are locally bounded. Then the following conditions are
equivalent:

• The model satisfies NFLVR.
• There exists a measure Q ∼ P such that the processes Z0, Z1, . . . , Zn defined in

(2.2) are local martingales under Q.

See Delbaen and Schachermeyer [42] for a proof in the case of bounded price processes.
The second fundamental theorem of asset pricing states that, presuming the market

is free of arbitrage, then the market is complete, i.e. all contingent claims are reachable,
if and only if the equivalent martingale measure is unique. Few of the markets studied
in this thesis will be complete, and it is questioned whether market completeness is a
financially realistic property. Completeness will therefore not play a significant role in
the following.

Having a T -claim X, what is a reasonable price process Λ(t; X)? It is clear from the
first fundamental theorem that the price has to be consistent with the market S(t) and
that including the claim in the market can not give rise to any arbitrage possibilities.
For the extended market {Λ(t; X), S0, . . . , Sn} there must then exist a local martingale
measure Q. Using the definition of a martingale (2.1), the first fundamental theorem
states that the price process divided by the numeraire is a martingale, hence

Λ(t; X)

S0(t)
= EQ

[
Λ(T ; X)

S0(T )

∣∣∣∣Ft

]
= EQ

[
X

S0(T )

∣∣∣∣Ft

]
.

This gives the result:
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Theorem 2.2 (General pricing formula). The arbitrage-free price process for the T -
claim X is given by

Λ(t; X) = S0(t) EQ

[
X

S0(T )

∣∣∣∣Ft

]
,

where Q is a local martingale measure for the a priori given market S0, S1, . . . , Sn with
S0 as the numeraire.

Assuming that there exists a short rate r(t), the price process is given by the risk
neutral pricing formula

(2.3) Λ(t; X) = EQ
[
e−

R T
t r(s) ds X

∣∣∣Ft

]
,

with the money account S0(t) = S0(0) e
R t
0 r(s) ds as the numeraire. Left to determine are

the claim X and the dynamics of the underlying assets, and some way to sample paths
for the assets. Below is discussed different approaches proposed to model the dynamics
of asset prices; models driven by Lévy processes and stochastic volatility models.

This concise exposition of the theory for derivative pricing is on no account a full
treatment of the subject; that is a task left to writers of textbooks such as Benth
[9], Björk [21], Duffie [46] or Musiela and Rutkowski [94]. Those interested in reading
some of the original work in the field of arbitrage pricing or seeking proofs of the
theory should look up the following articles: Black and Scholes [22], Delbaen and
Schachermeyer [42, 43], Harrison and Kreps [70], Harrison and Pliska [71] and Merton
[92].

2.1. Equivalent martingale measures. The first fundamental theorem of asset pric-
ing states that there is a unique correspondence between the existence of an equivalent
martingale measure and the absence of arbitrage. If the market is complete, like the
Black & Scholes market, the martingale measure is unique. In incomplete markets this
is not true, instead there exists a range of different martingale measures which are
all equivalent to the historical measure. To price a contingent claim involves choos-
ing under which of these martingale measures to work. Market incompleteness arises
of several reasons; adding transaction costs, jumps in the asset dynamics or stochas-
tic volatility, all of these make a market incomplete. If the market model contains a
Lévy process with jumps, the class of equivalent martingale measures is surprisingly
large, the precise formulation of equivalence of measures for Lévy processes is found in
Sato [110]. It turns out that there is a large freedom to change the Lévy measure but
unless there is a diffusion component present the drift can not be changed. In general
one also has more freedom to change the distribution of the large jumps than the small
ones.

Presuming the market is incomplete one must decide what equivalent martingale
measure to use, for Lévy processes there exist several different approaches. Raible [106]
considers exponential Lévy models and suggests using the Esscher transform. This is
an analogue to the drift change for the geometric Brownian motion. If X is a Lévy
process, under suitable regularity conditions, the Esscher transform is a change of
measure from the historical measure P to a local equivalent measure Q with transform
density process

Zt =
dQ

dP

∣∣∣∣
Ft

=
eθXt

E [eθXt ]
,
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where θ ∈ R. Let r be the interest rate and assume that the Lévy process is neither
almost surely decreasing nor almost surely increasing. Then there exists a real constant
θ which, through the Esscher transform, ensures the existence of a locally equivalent
measure Q under which the discounted asset price exp(−rt)St = S0 exp(Xt) is a mar-
tingale. Clearly the market will be free of arbitrage since Q is an equivalent martingale
measure.

Another possibility is to choose the equivalent martingale measure Q that is closest
to the historical measure P in some sense. Examples of ways to measure the distance
from P are the quadratic distance

EP

[(
dQ

dP

)2
]

and the relative entropy

(2.4) H(Q, P) =

{
EP
[

dQ

dP
ln dQ

dP

]
Q � P,

+∞ otherwise.

The measure QME which minimise the distance in the entropy sense is called the min-
imal entropy martingale measure (MEMM), i.e.

H(QME, P) = min
Q∈M

H(Q, P)

where M is the set of equivalent martingale measures. Cont and Tankov [35] claim
this can be interpreted in an information theoretic setting: minimising relative en-
tropy corresponds to choosing a martingale measure by adding the least amount of
information to the prior model. Frittelli [62] studies the minimal entropy martingale
measure in a general context of incomplete markets and proves that if there exists an
equivalent martingale measure Q with H(Q, P) < ∞, then QME exists, is unique and
is equivalent to P. A similar result is proved in Grandits and Rheinländer [67], using
the same assumption as Frittelli: If there exists a measure Q ∈ M s.t. H(Q, P) < ∞,
the density of QME can be written as

(2.5)
dQ

dP
= c exp

(∫ T

0

ηt dSt

)
where c is a constant and η is a predictable process such that the integral is a QME-
martingale, i.e.

EQME

[∫ T

0

ηt dSt

]
= 0.

There is not a unique measure with the representation (2.5) so the opposite need not
be true; a measure with this representation is not necessarily QME. To verify that a
measure with this form is indeed the minimal entropy martingale measure an additional
verification result discussed in Rheinländer [107] is needed.

Two different methods to find QME in a stochastic volatility model are presented by
Benth and Karlsen [15] and Rheinländer [107], the first via a solution of a semi-linear
partial differential equation and the second by a duality method. The latter is stated
in a general semimartingale setting with examples using the Stein-Stein model. The
specific form of the MEMM in the Barndorff-Nielsen and Shephard model is discussed
in connection with the introduction of the model in Section 4.3. The minimal entropy
martingale measure is also studied in Fujiwara and Miyahara [63] for exponential Lévy
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processes, Benth and Meyer-Brandis [17] and Hobson [75] for stochastic volatility mod-
els. The minimal entropy measure is closely related to utility indifference pricing in
the risk aversion limit, see Section 3.

3. Utility indifference pricing

There is something strikingly intuitive about the concept of arbitrage pricing in the
Black & Scholes market. Taking positions in the option and the underlying asset,
forming a locally riskless portfolio, determines the price if no arbitrage exists in the
market. A short, non-technical argument gives the main idea in a few lines. It is
just as easy to understand why the concept fails. The possibility to make a perfect
replication of the option by trading in the underlying is of fundamental importance in
arbitrage pricing. In the Black & Scholes market there are several conditions to ensure
this is possible, which all are simplifications of the real world. The theory assumes that
there are no transaction costs, continuous trading is possible and that any fraction of
a stock can be bought. Without these assumptions a perfect hedge is not achievable,
and arbitrage pricing fails. It is a bit paradoxical that only the contracts possible
to replicate perfectly are possible to price, something which makes them redundant
in a sense. Market completeness implies that all options are replicable, and hence
redundant. It is argued that the mere fact that options are traded implies that market
completeness is not a financially justified property.

In an incomplete market there is no longer a single arbitrage-free price, neither a
unique perfect hedge of an option, and therefore it is an unavoidable risk associated with
trading. Instead of trying to find the one arbitrage-free price one tries to measure the
risk to hedge and price the claim. Other strategies are needed in incomplete markets,
such as superhedging [54], quadratic hedging, both mean-variance [23] and (local) risk-
minimisation [58], and utility indifference pricing [76]. Superhedging is a conservative
approach that tries to eliminate all risk associated with the option, quadratic hedging
is a strategy minimising some quadratic function of the hedging error while utility
indifference pricing, which is discussed below, builds on the old idea of expected utility
maximisation.

Hodges and Neuberger [76] study a Black & Scholes market with transaction costs.
By removing the assumption that the market is friction-free it is made incomplete,
so instead of arbitrage pricing they suggest an approach based on utility indifference.
Let the market consist of a risky asset St and a bond Rt and let the investor have
the possibility to issue an option on the risky asset. Hodges and Neuberger’s main
idea is that the utility indifference price of a claim is the price at which the investor
is indifferent between entering into the market directly, or to first issue a claim and
then enter into the market with the incremented wealth. Let the investor have an
initial wealth x at time t and a utility function u(x), a concave increasing function
with u(0) = 0 that depends on a risk aversion parameter γ. Assuming that A is the
set of admissible trading strategies then πt ∈ A is the fraction of the wealth invested in
the risky asset at time t. The value function when no claim is issued can be defined as

V 0(t, x, S) = sup
πt∈A

E [u(Xπ
T )]

where Xπ
T is the wealth dynamics at time T given π. The form of the wealth dynamics

depends on the specific model chosen. If the investor issues a claim with payoff function
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f(St) then the value function will be

V c(t, x, S) = sup
πt∈A

E [u(Xπ
T − f(ST ))] .

The utility indifference price defined by Hodges and Neuberger for a given risk aversion
γ is the price Λ(γ) s.t.

V 0(t, x, S) = V c(t, x + Λ(γ), S).

Then Λ(γ) is the price which provides the same utility in both cases: the investor is
indifferent whether to issue a claim or not.

The utility indifference price depends for most choices of the utility function on the
initial wealth. Two investors with the same utility function but different amounts to
invest could therefore disagree on the price of an option. The important exception is
the exponential utility function,

u(x) = 1 − exp(−γx)

leading to a price independent of the initial wealth. The exponential utility has been
extensively studied because of the connection between utility indifference pricing and
certain hedging and pricing strategies. Using exponential utility and letting γ → ∞
the utility indifference price will tend to the superhedging price, which in general is
considered to be too high. More interesting is letting γ → 0. Several authors [6, 41, 55,
113] have noticed that there is a duality between the utility indifference price in the risk
aversion limit and the price under the minimal entropy martingale measure. Assume
the price process St is a semimartingale and Xπ

t the wealth process with self-financing
strategy π and initial wealth x. For a contingent claim with payoff f(ST ) one tries to
maximise the utility over all π in a suitable class Θ

max
π∈Θ

EP [1 − exp(−γ(Xπ
T − f(ST )))] .

In a general semimartingale framework Delbaen et.al.[41] gives different choices of Θ
and shows that there is a dual problem where the relative entropy minus a correction
is minimised

min
Q∈M

1 − exp
(−H(Q, P) − γx + γEQ [f(ST )]

)
over a suitable class M of local martingale measures Q for St. Hence

sup
π∈Θ

E [1 − exp(−γ(Xπ
T − f(ST )))] = 1 − exp

(
inf

Q∈M
(−H(Q, P) − γx + γEQ [f(ST )]

))
for γ > 0. Becherer [6] shows that when taking the risk aversion limit γ → 0, the utility
optimisation problem coincides with pricing under the minimal entropy martingale
measure. That is,

Λ(γ) = sup
Q∈M

{
EQ[f(ST )] − 1

γ

(
H(Q, P) − H(QME, P)

)}
and taking the limit it holds that

lim
γ↓0

Λ(γ) = EQME

[f(ST )].

The measure QME for a general continuous semimartingale is derived through duality
in the method developed by Rheinländer [107], as discussed in Section 2.1. For the
stochastic volatility market proposed by Barndorff-Nielsen and Shephard, see section
4.3, the connection between QME and the risk-aversion limit of the utility indifference
price under exponential utility appears in papers by Benth and Meyer-Brandis [17]
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and Rheinländer and Steiger [108]. In the first paper a representation of the mini-
mal entropy martingale measure is developed for the Barndorff-Nielsen and Shephard
model without leverage, which is generalised in the second paper. For this model the
representation of the utility indifference price as the solution of a semi-linear partial
differential equation is also discussed in Section 4.3.

4. Exponential Lévy and Stochastic volatility models

Even before the Chicago Board Options Exchange opened as the first stock option
exchange there was an interest in modelling the erratical behaviour of the stock move-
ment in order to price derivatives. The pioneer was Louis Bachelier with his thesis
from 1900, followed by Samuelson [109] who introduced the geometric Brownian mo-
tion, and Mandelbrot [89] who preferred ”L-stable” probability laws and multifractals.
Not until Fisher Black and Myron Scholes [22] together with Robert C. Merton [92]
developed the theory nowadays bearing the names of the two first mentioned, there
existed a consistent way to handle options. Black and Scholes built on Samuelson’s
work, where the stock price dynamics is a geometric Brownian motion:

dSt = μSt dt + σSt dBt

adding a risk-free money account with rate of return r. The Black & Scholes frame-
work has been the industry standard, mainly because it is simple, clear and easy to
use. Explicit formulas exist for the price of vanilla contracts and, because of the wide-
spread use, the model is well understood. However, the Black & Scholes model has
some drawbacks noticed by market traders throughout the years. Apart from the sim-
plifications made with regards to transaction costs, short selling and dividends, one
major disadvantage is the Black & Scholes theory’s inability to explain the volatility
smile.

It was well known before the 1987 crash that the implied Black & Scholes volatilities
of market prices gave rise to a smile, i.e. the volatilities implied by the Black & Scholes
formula were higher for in-the-money and out-of-the-money options than options with
strikes around the spot price. Empirical work clearly show that the implied volatilities
of market prices are not constant but vary with strike price and time to maturity. After
the 1987 crash a more frequent appearance of skewness was noticed in the implied
volatilities, resulting in more of a smirk or sneer than a smile, see Dumas et.al.[47].
The common explanation is that investors became more aware of the risk for large
downward movements in the market. Neither the smile nor the smirk are possible
to explain within the Black & Scholes framework, as both indicate that the market
emphasises the risk associated with large stock price movements more than the theory
does. Empirical work also clearly indicates that stock price log-returns on a short
time horizon exhibit a distribution with heavier tails than expected from the Black &
Scholes model, and also jumps in the paths.

A stream of new models have been proposed to replace the Black & Scholes model,
all of them with the intention to model the market prices, and hence the implied
volatilities, in a better way. Depending on the focus of the research different aspects
have been considered important to capture in the modelling: the heavy tails of the
returns, the jumps in the paths of asset prices, volatility clustering and/or dependence
structures. Shortly after Black and Scholes proposed their model Merton [93] suggested
to add a jump term in the stock price dynamics to incorporate jumps with unpriced
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Figure 1. Left: Stock price path from the Black & Scholes model with
mean 6.4 ∗ 10−4 and variance 2.21 ∗ 10−4. The mean and variance are
equal to the mean and variance of the Lévy process used in Benth, Groth
and Kettler [11]. Right: The log-marginal returns from the stock price.
The use of a Brownian motion gives marginal returns being normal dis-
tributed.

risk:

St = S0 exp

[
μt + σBt +

Nt∑
i=0

Yi

]
,

where Nt is a Poisson process with intensity λ independent of the Brownian motion Bt

and Yi ∼ N(α, δ2) are i.i.d. random variables independent from Bt and Nt. The pricing
approach Merton devises assumes that the risk associated with the jumps is possible
to diversify away and that hedging only takes the average effect of jumps into account.
Simple as it is, the assumption that the individual jumps can be ignored because the
investor diversifies leaves the position exposed to the jump risk, which in many cases
is an unwanted situation.

Three decades later two large classes of models can be distinguished from the lit-
erature; Firstly models built on replacing the geometric Brownian motion with some
other exponential model, lately a lot of research has been done on exponential Lévy
models. Secondly stochastic volatility models, where the constant volatility is replaced
by some stochastic process. A third approach exists, the local volatility models, where
the volatility depends on the price and time through a deterministic function

dSt = μSt dt + σ(t, St)St dWt.

Local volatility models and fitting of the local volatility surface will not be discussed
further, the interested reader finds more information in Derman and Kani [45] and
Dupire [49].

4.1. Exponential Lévy models. Adding jumps can be accomplished by replacing
the Brownian motion with a Lévy process, so called exponential Lévy models

St = S0 exp(μt + Lt),

where Lt is a Lévy process with characteristic triplet (σ2, ν, γ). An equivalent approach
is to write down the dynamics directly

dSt = μSt dt + σSt dLt.
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Figure 2. The normal inverse Gaussian density with three different pa-
rameter sets, (1, 0.75,−2, 1), (1, 0, 0, 1) and (1,−0.75, 2, 1). The dashed
line is the standard normal distribution density.

Exponential Lévy models can be built with marginal log-returns in a range of different
distributions, with heavier tails to better fit log-return data. This is actually what
Merton did, with a jump-diffusion process as the driving noise. Models built around
Lévy processes goes back to Mandelbrot in the 1960’s but resurged in the late 1990s.
Madan et.al.[87, 88] used the variance-gamma process, Carr et.al.[27, 28] the CGMY -
process, a subclass of tempered stable processes, Barndorff-Nielsen [3] introduced the
normal inverse Gaussian process while the use of the hyperbolic Lévy process was
proposed by Eberlein and Keller [51]. The latter two are both subclasses of the family
of generalised hyperbolic Lévy processes, for more information about applications to
finance see [50, 52, 53, 104, 106].

The class of hyperbolic Lévy processes, especially the normal inverse Gaussian Lévy
process, requires some special attention. Beginning with the inverse Gaussian process
IG(δ, γ), a subordinator, having probability density

pIG(x; δ, γ) =
δ√
2π

x−3/2 exp

{
−γ2

2x

(
x +

δ

γ

)2
}

, x > 0.

One way to interpret pIG(x; δ, γ) is as the distribution of the time it takes for a Brownian
motion to reach a fixed distance. The mean and variance of an IG(δ, γ)-distribution
are δ/γ and δ/γ3. The distribution in itself is interesting because it is one possible
choice for the stationary distribution of the volatility process in the Barndorff-Nielsen
and Shephard model below. The IG-Lévy process is a subordinator, a process with
nondecreasing paths. As a such it can be used to stochastically time change other
processes, i.e. subordinate other processes. Consider the probability space (Ω,F , P)
and a Lévy process {Xt, t ≥ 0} with cumulant generating function φ(u). If {St, t ≥ 0}
is a subordinator with Laplace exponent l(u) then the process {Yt, t ≥ 0} defined by
Y (t, ω) = X(S(t, ω), ω) for each ω ∈ Ω is a Lévy process with characteristic function

E
[
eiuYt

]
= etl(φ(u)).

The process Yt is said to be subordinate to Xt and in effect St is used to change the
clock of Xt.
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Figure 3. Left: Stock price path from an exponential Lévy model
with the normal inverse Gaussian Lévy process having parameters α =
136.29, β = −15.197, δ = 0.0295, μ = 0.00395. The parameter set is used
in Benth, Groth and Kettler [11]. Right: The log-marginal returns from
the stock price. The use of the normal inverse Gaussian Lévy process
gives marginal returns with a more peaked look than expected from the
normal distribution due to the heavier tails.

Using the inverse Gaussian subordinator to time change a Brownian motion results
in the normal inverse Gaussian (NIG) process. The NIG distribution was proposed by
Barndorff-Nielsen [2] in the context of wind-borne sand and is a normal variance-mean
mixture distribution. If σ2 ∼ IG(δ, γ) and ε ∼ N(0, 1) then x = μ + βσ2 + σε have a
NIG(α, β, μ, δ) distribution with density function

pNIG(x; α, β, μ, δ) =
δα

π
exp

(
δ
√

α2 − β2 + β(x − μ)
) K1(αq(x − μ))

q(x − μ)

where

q(x) =
√

δ2 + x2

and

x ∈ R, μ ∈ R, δ > 0, 0 ≤ |β| ≤ α.

K1 is the modified Bessel function of third kind with index 1 and α is given as α =√
γ2 + β2. The parameters of the distribution have interpretations with the shape of

the density: increasing α gives a steeper density, increasing β gives an increasingly
asymmetric distribution, δ scales the distribution and μ translates it, see Figure 2.
The density will be asymmetric unless β = 0. The moments κi of the distribution are
easily calculated from the moment generating function with mean and variance given
as

κ1 = μ +
δβ√

α2 − β2
,

κ2 =
δα2(√

α2 − β2
)3 .

The asymptotic behaviour of the distribution is

g(x; α, β, μ, δ) ∼ c|x|−3/2 exp(−α|x| + βx) as x → ±∞
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giving the distribution semi-heavy tails. The inverse Gaussian distribution can be
generalised by adding a parameter λ, resulting in the generalised inverse Gaussian
(GIG). A normal mean-variance mixture with GIG gives the family of generalised
hyperbolic (GH) distributions, of which NIG is a special case. GH distributions are
studied by Eberlein and Keller [51] in relation to financial modelling. Figure 3 shows
an example path of an exponential NIG-Lévy model and its log-marginal returns, using
parameters relevant for daily observed stock prices.

Exponential Lévy models share a considerable part of the quantitative properties
observed in asset returns. They make it possible to model heavy or semiheavy (expo-
nential) tails, the increments are independent, there are jumps in the paths and the
distributions can be modeled to be asymmetric to capture differences in the behaviour
of upward and downward movements. For a model to exhibit marginal returns with
these stylised facts it needs to have a distribution of the returns with four parameters:
a location parameter, a scale (volatility) parameter, a parameter describing the decay
of the tails and an asymmetry parameter for the right and left tail to differ. The
family of generalised hyberbolic distributions, including the normal inverse Gaussian
distribution, is fulfilling this requirement as shown above. The choice of distribution
becomes not a question of one fitting better than another but which one is the easiest
to handle for the purpose and in the circumstances considered.

Not all quantitative features of returns are possible to capture with an exponential
Lévy model. Volatility clustering and correlation in volatility are observed in the
market but not exhibited by exponential Lévy models. It is possible to include these
features in a stochastic volatility model as discussed below. However, the presence
of heavy tails makes the realised volatility have ”stochastic volatility”-like behaviour,
with high variability. Nor are exponential Lévy models able to handle leverage effects,
an observed correlation between negative price movements and increasing volatility.

As for the Black & Scholes model there is a partial differential equation governing the
price of an option in an exponential Lévy model. Let St be given by a stock price model
of the exponential Lévy type, driven by Lévy process Lt having characteristic triplet
(A, ν, γ) under Q. Consider an option with payoff function f(St), and assume that the
option price can be expressed as a function of the log forward price Xt = ln

(
er(T−t)St

)
.

The price of the option under the martingale measure Q is then

Λ(x, t) = e−r(T−t)EQ
[
f
(
ex+LT−t

)]
.

Assuming sufficient differentiability conditions of the payoff function and regularity
of the Lévy measure the option price satisfies the following integro-partial differential
equation

(4.1)
∂Λ

∂t
+ γ

∂Λ

∂x
+

A

2

∂2Λ

∂x2
− rΛ +

∫
R

(
Λ(x + z, t) − Λ(x, t) − z1|z|<1

∂Λ

∂x

)
ν(dz) = 0

with x ∈ R, t ∈ (0, T ) and terminal condition Λ(x, T ) = f(ex). The introduction of
the non-local integral term makes the pde harder to solve than the Black & Scholes
equation, both analytically and numerically. One can especially notice that if restrict-
ing (4.1) to a finite grid the integral term needs to be extended beyond the boundary
to make sense. Integro-partial differential equations and other aspects of exponential
Lévy models in finance are discussed extensively in Cant and Tankov [35].

4.2. Stochastic volatility models. Instead of replacing the Brownian motion as the
driving source one could instead add another random process, making the volatility
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non-constant:

dSt = μSt dt + σ(Yt)St dBt

where Bt is a Brownian motion but σ now is function depending on another stochastic
process Yt, modelling the random volatility. Common driving processes for the volatility
are the geometric Brownian motion, the Ornstein-Uhlenbeck process

dYt = α(η − Yt) dt + β dWt

and the Cox-Ingerson-Ross (CIR) process

dYt = κ(η − Yt) dt + v
√

Yt dWt.

The process Wt is another Brownian motion, correlated or uncorrelated to the Brownian
motion in the stock price dynamics. However for the Ornstein-Uhlenbeck process there
are also models where the second process is a Lévy process, as shown in the next
section.

Introducing stochastic volatility makes it possible to capture volatility clustering and
dependence structures, at the same time as the models can replicate implied volatility
smiles. Adding a jump term to the price dynamics also make the models realistic on
a short-term scale when it comes to jumps in the paths. The drawback is the extra
dimension that is added which has the effect that the stock price is no longer a Markov
process. Instead it is necessary to consider a two-dimensional process. The complica-
tions it means for numerical methods to have a second dimension accounts for a lot of
the hesitation shown towards the use of stochastic volatility models. Though, in recent
years there has been an increasing interest from practitioners in these models, mainly
in the model suggested by Heston [72]. The volatility process in the Heston model is a
Cox-Ingersoll-Ross process with a Brownian motion correlated to the Brownian motion
driving the stock price, i.e.

dSt = μSt dt +
√

YtSt dBt,

dYt = κ(η − Yt) dt + v
√

Yt dWt,

with the correlation between the two Brownian motions given as

dBt dWt = ρ dt.

A common feature for many of the suggested models is that the volatility process is
mean reverting, like the mentioned Cox-Ingersoll-Ross process and Ornstein-Uhlenbeck
process. This is thought to be a realistic feature observed in market data, new infor-
mation perceived by the traders makes the activity jump up suddenly and then revert
back towards a steady state.

Assuming that the stochastic volatility model is of the Ornstein-Uhlenbeck class with
dynamics

dSt = μSt dt + σ(Yt)St dBt,

dYt = α(m − Yt) dt + β dWt,

for some function σ(y), Fouque et.al.[59] derive a pricing partial differential equation
similar to the Black & Scholes pde. Denoting the instantaneous correlation coefficient
between the two Brownian motions by ρ, the price of an European derivative with
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payoff function f(x) is given by

∂Λ

∂t
+

1

2
σ2(y)s2∂2Λ

∂s2
+ ρβsσ(y)

∂2Λ

∂s∂y
+

1

2
β2∂2Λ

∂y2

+ r

(
s
∂Λ

∂s
− Λ

)
+

(
α(m − y) − β

(
ρ
μ − r

σ(y)
+ γ(t, x, y)

√
1 − ρ2

))
∂Λ

∂y
= 0

(4.2)

with the condition Λ(T, x, y) = f(x). Here r is the interest rate and γ(t, x, y) is an
arbitrary function representing the risk premium factor from Wt. In the perfectly
correlated case this factor does not appear. Otherwise it is the market price of risk
which needs to be selected, an issue of great debate, see [59].

Models where the second random process is another Brownian motion also include
the models by Hull-White [79] and Stein-Stein [114]. Scott [111] uses a Gaussian
Ornstein-Uhlenbeck process but adds normal distributed jumps with exponential dis-
tributed arrival times, while Bates [5] adds a compound Poisson process to the stock
price dynamics in the Heston model. The next chapter will contain a more detailed
examination of a model where the second added process is not a Brownian motion
but a Lévy process. Several books contain sections about stochastic volatility models
and their usage. Nice overviews of the different stochastic volatility models and their
properties can be found in Cont and Tankov [35], while Fouque, Papanicolaou and
Sircar [59] and Lewis [85] concentrate around models without jumps.

4.3. The Barndorff-Nielsen - Shephard model. The returns predicted by most
models suggested will by a central limit theorem tend towards a Gaussian distribution
if sampled with low frequency. For long time horizons the Black & Scholes model
could therefore seem like a reasonable choice, while on a short or moderate time scale
the observed returns are typically heavy tailed, with volatility clustering and skewness.
Barndorff-Nielsen and Shephard suggested in an inspiring paper [4] a model constructed
to handle the short term aspects. The stock price dynamics is driven by a Brownian
motion with drift

(4.3) dSt = (μ + βσ2(t))St dt + σ(t)St dBt,

but the volatility is assumed to be a stochastic process. Instead of a Brownian motion
driving the volatility process a Lévy process with only positive jumps, a subordinator,
is the driving source in a process of Ornstein-Uhlenbeck type

(4.4) dσ2(t) = −λσ2(t) dt + dL(λt).

The process L(λt) is termed the background driving Lévy process (BDLP) and the
volatility process is said to be a non-Gaussian Ornstein-Uhlenbeck process. Like the
Gaussian Ornstein-Uhlenbeck process it is a mean-revering process, however, because
the subordinator only has positive jumps the volatility jumps up and reverts down.
The subordinator will assure the positivity of the process σ2(t), something which is
required from the squared volatility. The unusual timing L(λt) is to decouple the
modelling of the marginal distribution of the stock’s log-returns and the autocorrelation
structure. Whatever value of λ the marginal distribution of σ2(t) will be unchanged.
A generalised model is achieved by adding a leverage term ρ dL(λt) to the stock price
dynamics, which accounts for empirical studies showing that large downward moves in
prices are associated with upward moves in volatility. The generalised model will not
be considered here.
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Figure 4. Left: Stock price path from the Barndorff-Nielsen and Shep-
hard model without leverage simulated with parameters δ = 0.0116, γ =
54.2, μ = 0.000621, β = 0.5 and λ = 0.83. Right: The log-marginal
returns from the stock price. The peaked structure is clearly visible
together with a pattern of volatility clustering.

Barndorff-Nielsen and Shephard [4] proposed to use a superposition of Ornstein-
Uhlenbeck processes Yk(t), with different speed of mean-reversion λk, to obtain a
more general correlation pattern in the volatility structure. Let the volatility follow a
weighted sum, with positive weights wk adding up to one,

σ2(t) =
m∑

k=1

wkYk(t)

where

(4.5) dYk(t) = −λkYk(t) dt + dLk(λkt)

and Lk(λkt) are assumed to be independent but not necessarily identically distributed
subordinators with Lévy measures �k(dz). The autocorrelation function for the sta-
tionary σ2(t) then becomes

r(u) =
m∑

k=1

w̃k exp(−λk|u|)

where the weights w̃k are proportional to wkVar(Lk). Letting some of the components
represent short term and others long term movements both long-range and quasi-long-
range dependence in the logreturns can be modeled. Below we will sometimes use the
notation α(y) = (μ + βy), σ(y) =

√
y for the parameter functions in (4.3), assuming

the volatility is given by one function Y (t) of the form in (4.5).
The choice of Ornstein-Uhlenbeck processes driving the volatility lead to some in-

teresting aspects for the model. From a modelling perspective one can choose any
self-decomposable distribution D and find a stationary process of Ornstein-Uhlenbeck
type which has one-dimensional marginal law D. A self-decomposable distribution
has the property that for any ζ ∈ R and c ∈ (0, 1) the characteristic function of the
distribution can be written as

φ(ζ) = φ(cζ)φc(ζ)
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where φc is another characteristic function. Two ways to approach the modelling of the
Ornstein-Uhlenbeck process exist. Either write down the specific parametric form of
the distribution D and calculate the implied behaviour of the BDLP. Otherwise, instead
of starting out with the distribution, pick L(λt) and construct the Ornstein-Uhlenbeck
process based on it. Some restrictions apply to what Lévy process can be used to get
a self-decomposable distribution, more specifically, a necessary and sufficient condition
for (4.4) to have a stationary solution is that

E [log(1 + |L(1)|)] < ∞.

From the point of option pricing it is essential that the model is arbitrage-free.
Barndorff-Nielsen and Shephard [4] use Esscher transforms to show that this is the case.
Hence, there exist equivalent martingale measures under which exp(St) is a martingale.
Since the model is a stochastic volatility model, including a jump process, the model is
incomplete and more than one equivalent martingale measure exist. Pricing becomes
a question under which measure to work, for which there are several strategies as
mentioned in Section 3. Nicolato and Venardos [96] investigate option pricing under
structure preserving measures, i.e. measure under which the price dynamics remains of
the Barndorff-Nielsen and Shephard type (4.3)-(4.4). The tractability makes it possible
to price derivatives in closed form under structure preserving measures, especially the
Laplace transform of log-prices has a simple form. The cumulant function of the
log-price at time t, ln[ψ(θ)] = ln[EQ[exp(iθST )], under structure preserving measures,
assuming the stationary law of σ2

t is inverse Gaussian IG(δ, γ), is given as

ln[ψ(θ)] =iθ(St + r(T − t)) − θ2 + iθ

2λ
[1 − exp{−λ(T − t)}]σ2(t) +

δ
√

f1

λ

− δγ

λ
− δ(θ2 + iθ)

λ2
√

f2

[
tan−1

(
γ√
f2

)
− tan−1

(√
f1√
f2

)]
where

f1 = γ2 +
θ2 + iθ

λ
[1 − exp{−λ(T − t)}],

f2 = −γ2 − θ2 + iθ

λ
.

Given the characteristic function it is feasible to use numerical inversion techniques to
price options in the Barndorff-Nielsen and Shephard model under structure preserving
measures, see Groth [68] and also Nicolato and Venardos contribution to the discussion
in Barndorff-Nielsen and Shephard [4].

Another choice is to use the measure which minimises the relative entropy (2.4),
the minimal entropy martingale measure QME. Benth and Meyer-Brandis [17] studies
the minimal entropy martingale measure in the Barndorff-Nielsen and Shephard model
and derives the density function. Commencing with the utility maximisation problem
as described above and going to the risk aversion limit, using verification theorems
from Grandits and Rheinländer [67], they can identify the density. With the stochastic
exponents

Z ′
t = exp

(
−
∫ t

0

α(Ys)

σ(Ys)
dBs −

∫ t

0

1

2

α2(Ys)

σ2(Ys)
ds

)
Z ′′

t = exp

(∫ t

0

∫ ∞

0

ln δ(s, Ys, z)N(dz, ds) +

∫ t

0

∫ ∞

0

(1 − δ(s, Ys, z)) ν(dz) ds

)
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the density process of QME will, under sufficient conditions, be given as

Zt := Z ′
tZ

′′
t .

Here δ(t, y, z) is the function

δ(t, y, z) =
H(t, y + z)

H(t, y)

and H(t, y) is a function associated with the utility optimisation problem in the case
when the investor is not issuing a claim. H can be represented as

H(t, y) = E

[
exp

(
−1

2

∫ T

t

α2(Ys)

σ2(Ys)
ds

) ∣∣∣∣Yt = y

]
, (t, y) ∈ [0, T ] × R+,

and it was devised by Benth and Meyer-Brandis that H(t, y) is governed by the partial
differential equation

∂H

∂t
− α2(y)

2σ2(y)
H − λy

∂H

∂y
+ λ

∫ ∞

0

(H(t, y + z) − H(t, y)) ν(dz) = 0,

given that H(T, y) = 1, (t, y) ∈ [0, T ) × R+. The minimal entropy martingale measure
for the generalised Barndorff-Nielsen and Shephard model, including the leverage term,
is studied in Steiger [113].

The minimal entropy martingale measure is, as mentioned in Section 2.1, equiva-
lent to the historical measure which makes it suitable for option pricing. The utility
indifference pricing setting considered when the density Zt is identified also leads to
an integro-pde governing the price Λ of the option the investor can issue. Using a dy-
namic programming approach Benth and Meyer-Brandis derives the Hamilton-Jacobi-
Bellman (HJB) equation associated with the value process of the investor under QME:

∂Λ

∂t
+ rs

∂Λ

∂s
+

1

2
σ2(y)s2∂2Λ

∂s2
− λy

∂Λ

∂y

+ λ

∫ ∞

0

(Λ(t, y + z, s) − Λ(t, y, s))
H(t, y + z)

H(t, y)
ν(dz) = rΛ

(4.6)

with (t, y, s) ∈ [0, T )×R2
+ and terminal condition Λ(T, y, s) = f(s). Under the minimal

entropy martingale measure the subordinator L(λt) is changed into a pure jump Markov

process L̃(λt) with jump measure

(4.7) ν̃(ω, dz, dt) =
H(t, Ỹt(ω) + z)

H(t, Ỹt(ω))
ν(dz) dt

where the stochastic process Ỹt is given as

dỸt = −λỸt dt + dL̃(λt).

An equation similar to (4.6), with only some sign changes, can be derived for the buyer
of the claim, illustrating the problem of pricing in an incomplete market. It is known
that the price under the minimal entropy martingale measure is the highest price the
buyer can accept at the same time as it is the lowest price the seller will agree to.
If the market prices deviate from this then the market will be in favour of one part.
Notice that the function δ(s, y, z) appears as a measure change in (4.7) and also in the
partial differential equation (4.6). The time and state-dependent ratio re-distribute
the jump measure under the QME, rescaling the jumps. The integro-PDE (4.6) is
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studied numerically in Benth and Groth [10], Paper II, using finite difference methods
to calculate option prices in the Barndorff-Nielsen and Shephard model.

A related equation, for a general risk aversion parameter γ, is derived in Benth and
Meyer-Brandis [16], giving again a pde governing the option price Λ(γ) for the issuer of
the claim

∂Λ(γ)

∂t
+ rs

∂Λ(γ)

∂s
+

1

2
σ2(y)s2∂2Λ(γ)

∂s2
− λy

∂Λ(γ)

∂y

+ λ

∫ ∞

0

1

γ

{
exp(γ(Λ(γ)(t, y + z, s) − Λ(γ)(t, y, s))) − 1

} H(t, y + z)

H(t, y)
ν(dz) = rΛ(γ)

with Λ(γ)(T, y, s) = f(s), for (t, y, s) ∈ [0, T ) × R2
+. Using the change of variable

Λ(γ)(t, y, s) =
1

γ
ln h(γ)(t, y, s)

removes the exponential term in the integrand but instead introduces a non-linearity
in the pde

∂h(γ)

∂t
+ rs

∂h(γ)

∂s
+

1

2
σ2(y)s2∂2h(γ)

∂s2
− 1

2
ys2 1

h(γ)

(
∂h(γ)

∂s

)2

− λy
∂h(γ)

∂y

+ λ

∫ ∞

0

(h(γ)(t, y + z, s) − h(γ)(t, y, s))
H(t, y + z)

H(t, y)
ν(dz) = rh(γ).

(4.8)

After the change of variable the terminal condition is h(γ)(T, y, s) = exp(γf(s)). The
numerical solution of (4.8) is used in Benth, Groth and Lindberg [13], Paper IV, to-
gether with a root-finding algorithm to find the investors’ implied risk aversion from
actual traded options, assuming the underlying model is the stochastic volatility model
by Barndorff-Nielsen and Shephard.

5. Numerical methods

5.1. Monte Carlo and quasi-Monte Carlo methods. Monte Carlo methods have
over the years become indispensable tools in many areas, including financial engineer-
ing, and are perhaps the most flexible and applicable numerical methods available.
Based on random sampling the elementary application is numerical integration, but
there is a broad field of problems where Monte Carlo methods can be used. Assume
that your problem can be cast as an integration over some measure, for which you
know how to generate suitable random numbers. Then Monte Carlo integration is the
easy task of sampling sequences of random numbers and using these to evaluate the
integrand. The sample mean gives a probabilistic approximation of the integral and,
when it is not possible to get an analytic solution, this probabilistic approach may
prove to be very useful. But Monte Carlo methods have several drawbacks, the main
thing being the slow convergence which makes them reliant on computational power
and time.

The commonly used introduction problem is Monte Carlo integration: Let f(x) be
a function integrated over the unit interval∫ 1

0

f(x) dx.

Assuming the integration is over the Lebesgue measure the evaluation of the integral
can be represented as the approximative calculation of an expectation E[f(U)] over
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the interval U ∼ Unif[0, 1]. This expectation can be estimated by sampling points
uniformly from the interval, resulting in the sequence a1, . . . , an, and then taking the
sample mean over these points

E[f(U)] ≈ 1

n

n∑
i=1

f(ai).

The strong law of large numbers guarantees that this estimate converges almost surely.
One of the disadvantages with Monte Carlo is that the error introduced by replacing

the expectation with the sample mean is only a probabilistic measure. If f is square
integrable then the standard error in the Monte Carlo estimate is approximately normal
distributed with mean zero and standard deviation σ(f)/

√
n. Hence, the Monte Carlo

integration yields a probabilistic error bound of order O(n−1/2). This error is not
depending on the dimension, which makes Monte Carlo integration more attractive in
higher dimensions. Conducting Monte Carlo integration also depends on the ability to
sample from the underlying distribution, which could be difficult. Together with the
probabilistic error bounds these are the main drawbacks of Monte Carlo integration
according to Niederreiter [98].

For complicated financial derivatives, or models with other types of driving noise than
Brownian motion, where no analytic answer can be obtained, a numerical method may
be the only choice. A Monte Carlo method is an instrument which is incredibly flexible
and usable under such premises. If it is known how to generate random numbers from
the desired distribution, then it requires, in its basic form, little extra analytic work to
get started. In the limit it will, due to the law of large numbers, give a correct answer.
The key to use Monte Carlo simulation in finance is that one may write the price of
an option as the expectation of the payoff depending on the stochastic development of
the asset price. For many financial problems Monte Carlo simulations are especially
suitable since the dimension turns out to be high or even infinite, for example when
valuing a large portfolio consisting of several different types of assets. Other numerical
approaches, such as solving partial differential equations, become hard to handle when
the problem has more than a few dimensions. Monte Carlo methods, on the contrary,
are not significantly harder to work with in higher dimensions than in a few. One
of the Achilles tendons for the use in finance has otherwise been American options.
For a long time Monte Carlo methods were considered incapable of handling pricing
problems involving options with American exercise but since then both Broadie and
Glasserman [26] and Tilley [115] have proposed methods to handle American options.

Since Monte Carlo methods sample randomly, the points can in the short run be
concentrated in a small part of the interval sampled from. If instead the interval
is divided according to a Cartesian grid with n points and the points are sampled
randomly in any order the convergence can be increased. This procedure is disregarded
on the basis that it requires the number of points to be known in advance to form
the grid. Using a Cartesian grid rules out the possibility to sample until a terminal
condition is met, for example some convergence requirement.

The concept behind quasi-Monte Carlo methods and Low-discrepancy sequences is
a formalisation of the idea of how to be able to sample a sequence of deterministic
numbers which fill the interval or space in an evenly distributed way. In contrast to
a Cartesian grid, if sampling repeatedly from a low-discrepancy sequence the points
retain an even distribution in the sense of discrepancy, a notion of uniformity described
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below. Because these sequences do not try to mimic randomness, as the pseudo-
random sequences used in Monte Carlo methods, the error when using low-discrepancy
sequences in numerical integration is deterministic. The notion of low-discrepancy is
reserved for sequences with a convergence rate of order O(log(n)dn−1) in d-dimensions
and with sufficiently regular integrands. In low dimensions this is clearly better than the
Monte Carlo error bound, and it has the extra benefit that the bound is deterministic.
In higher dimensions the advantage over Monte Carlo methods is not as prominent since
the error bound is depending on the dimension. But, as pointed out by Glasserman [64],
for some problems in finance these methods are still more effective even in dimensions
up to 150.

Discrepancy is the measure used to describe how our point set is distributed com-
pared to a uniform distribution and hence, it is a measure of deviation from unifor-
mity. Given a nonempty family of Lebesgue-measurable subsets B ∈ Id and a point
set P = {x1, . . . , xn}, the discrepancy of P is given as

D(P ;B) = sup
B∈B

∣∣∣∣∑n
i=1 χ(xi; B)

n
− λd(B)

∣∣∣∣
where λd denotes the d-dimensional Lebesgue-measure and χ the characteristic func-
tion. It is clear that 0 ≤ D(P ;B) ≤ 1 always. There are a few different notions of
discrepancy where the star discrepancy D∗(P ) and the extreme discrepancy D(P ) are
the most important. The difference is the choice of subsets B considered, see Niederre-
iter [98]. It is, according to Niederreiter [98] widely believed that the star discrepancy
of any d-dimensional point set P consisting of n points satisfies

D∗(P ) ≥ cd
log(n)d−1

n

for some constant cd. It is therefore usual to refer to sequences as low-discrepancy
sequences if they have star discrepancy in order of O(log(n)d/n). Although the log(n)d

becomes insignificant to the n−1 term as the number of points increases this might not
be relevant for manageable point sets if d is large. Quasi-Monte Carlo has therefore
traditionally been considered inferior to Monte Carlo in higher dimensions. Sequences
used for financial applications include Faure [57], Halton [69], Niederreiter [97] and
Sobol [112] sequences. The construction of low-discrepancy sequences is out of the
scope of this text, see Glasserman [64] and the references in there for more information.

Discrepancy plays a vital role in the Koksma-Hlawka inequality. This explains much
of the great interest put into finding low-discrepancy sequences, while discrepancy
itself is a rather theoretical concept. The Koksma-Hlawka inequality is a classic result
providing a bound on the error introduced when substituting the integral with a sum
and evaluating the integrand over a low-discrepancy sequence. The result builds on a
one-dimensional result by Jürjen Koksma from 1942 which was extended by Edmund
Hlawka in 1961.

Theorem 5.1 (The Koksma-Hlawka inequality). If f has bounded variation V (f) in
the sense of Hardy-Krause on the closed hypercube Īd = [0, 1]d, then for any set of
points x1, . . . , xn ∈ Id it holds that

(5.1)

∣∣∣∣∣ 1n
n∑

i=1

f(xi) −
∫

Id

f(u) du

∣∣∣∣∣ ≤ V (f)D∗(x1, . . . , xn)

where D∗(x1, . . . , xn) is the star discrepancy.
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This error bound provides a strict deterministic bound on the integration error but
is merely of theoretical value since it often grossly overestimates the error and both the
Hardy-Krause variation and the star discrepancy are difficult to compute. The Koksma-
Hlawka bound (5.1) is stated only for the unit hypercube and the Lebesgue measure
but using slightly different definitions Kainhofer [81] provides a Koksma-Hlawka bound
for general measures and domains. Kainhofer also studies problems on unbounded
domains, which appears frequently in finance, and uses the Hlawka-Mück method [74]
for option pricing. The method enables generation of low-discrepancy sequences from
arbitrary distributions, provided the distribution function is known. This is discussed
in Benth, Groth and Kettler [11], Paper I, for the normal inverse Gaussian distribution.

Starting with Boyle [24] in 1977, the research on Monte Carlo methods in finance
has increased rapidly. Boyle et.al.[25] contains references to some of the applications
of Monte Carlo in finance during the eighties and nineties including variance reduc-
tion techniques and low-discrepancy sequences. A short and comprehensive summary
can also be found in Lehoczky [83]. The use of low-discrepancy sequences in finance
started surprisingly late, with the first articles on the subject not appearing until the
mid-nineties. Joy et.al.[80] use Faure sequences to price a variety of options including
vanilla calls and Asian options. Faure sequences is also the choice of low-discrepancy
sequence when Papageorgiou and Paskov [100] estimates Value-at-Risk for portfolios
of stocks and mortgage obligations. The results from quasi-Monte Carlo in their study
are superior compared to Monte Carlo, see also Papageorgiou and Traube [101], Paskov
[102] and Paskov and Traube [103]. Glasserman [64] is an excellent source for informa-
tion on Monte Carlo and quasi-Monte Carlo methods in finance, including a long list
of the most important references.

5.2. Fast Fourier transform. The fast Fourier transform (FFT) is a computationally
very fast and reliable method to calculate the discrete Fourier transform of a function
gn = g(nΔu) for a range of parameter values xk = kΔx, k = 0, . . . , N − 1 simultane-
ously. Here Δx = 2π/NΔu and for the FFT to be most efficient N has to be an integer
power of 2. The algorithm takes N complex numbers as input and returns N complex
numbers

Gk =
N−1∑
n=0

e−2πink
N gn, k = −N/2, . . . , N/2.

In the nineties research surfaced where Fourier analysis and Laplace analysis were
used for transform-based methods to price options in extensions of the Black & Scholes
model, see Bakshi and Chen [1], Bates [5], Chen and Scott [34], Heston [72] and Scott
[111]. The models include stochastic volatility elements and jumps to give better
correspondence to observed asset prices as well as interest rate options. However,
the approaches of these authors could not utilise the computational power of the fast
Fourier transform.

Carr and Madan [32] propose a method able to price options when the characteristic
function of the return is known analytically. The foundation for Carr and Madan’s
use of the fast Fourier transform is the following: Assume one wants to know the price
of an European option with maturity T . The payoff depends on the terminal spot
price ST of the underlying asset. Denoting the logarithm of the spot price by sT , it is
necessary to know analytically the characteristic function of sT , defined as

φT (u) = E[exp(iusT )].
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Denote the logarithm of the strike price by k, and let CT (k) be the value of a call
option with strike exp(k). If qT (s) is the risk-neutral density of the log-price then the
characteristic function of qT is

φT (u) =

∫ ∞

−∞
eiusqT (s) ds.

The value of the call can be described as an integral over this density, i.e.

CT (k) = E[f(sT , k)] =

∫ ∞

k

e−rT (es − ek)qT (s) ds.

To kill out the option price as k → −∞, and get a square integrable function, Carr
and Madan consider the modified call price cT (k)

cT (k) = exp(αk)CT (k), α > 0

and give suggestions for appropriate choices of the parameter α, the damping param-
eter. Now, the Fourier transform of cT (k) is defined as

ψT (v) =

∫ ∞

−∞
eivkcT (k) dk,

and Carr and Madan’s idea is to get an analytical value of ψT in terms of φT and then
use the inverse Fourier transform to obtain option prices. The option price is given by
the equation

(5.2) CT (k) =
exp(−αk)

π

∫ ∞

0

e−ivkψT (v) dv

since CT (k) is real. The analytic expression for ψT (v) is determined as

ψT (v) =

∫ ∞

−∞
eivk

∫ ∞

k

eαke−rT (es − ek)qT (s) ds dk

=

∫ ∞

−∞
e−rT qT (s)

∫ s

−∞
(es+αk − e(1+α)k)eivk dk ds

=

∫ ∞

−∞
e−rT qT (s)

(
e(α+1+iv)s

α + iv
− e(α+1+iv)s

α + 1 + iv

)
ds

=
e−rT φT (v − (α + 1)i)

α2 + α − v2 + i(2α + 1)v
.

After discretisation and introduction of Simpson’s rule weights the option prices can
be represented as

(5.3) C(ku) =
exp(−αku)

π

N∑
j=1

e−i 2π
N

(j−1)(u−1)eibvjψ(vj)
η

3
[3 + (−1)j − δj−1]

where δn is the Kronecker delta function which is one for n = 0 and zero otherwise.
Carr and Madan use this approach for the variance gamma model, which assumes
that the log-price obeys a one-dimensional pure jump Markov process with stationary
independent increments.

The Carr-Madan method is both fast and reliable but has its limitations. One is that
it requires the analytical form of the characteristic function, but the probably severest
is that the method is quite restricted in what kind of option types it can handle. In
specific, it is unable to handle path dependent options, such as Asian options. The
method was generalised to include other options by Raible [106] who uses Fourier and
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bilateral Laplace transforms and Lewis [86] who uses generalised Fourier transforms
consistently. Carr and Madan consider a Fourier transformation in the strike price but
as showed in Groth [68] it is equivalent and natural to Fourier transform using the spot
price.

5.3. PDE-methods: Finite differences and Finite elements. If the asset price is
driven by a geometric Brownian motion there is a direct connection between solving the
risk neutral pricing problem and solving a bounded value problem formulated with a
parabolic partial differential equation. Following the original Black & Scholes analysis
one can derive the Black & Scholes partial differential equation from Itô’s formula.
Assume sufficient regularity and that the asset S is given by the stochastic differential
equation

dSt = μSt dt + σSt dBt.

From the Feynman-Kac formula it follows that the derivative Λ, written on the under-
lying asset S, solves the partial differential equation

∂Λ

∂t
+ rs

∂Λ

∂s
+

1

2
σ2s2∂2Λ

∂s2
− rΛ = 0

Λ(T, s) = f(s),
(5.4)

where f(s) is the payoff function and r is the interest rate.
For all models discussed above the price of an option has a representation as the

solution to a partial differential equation. The price in the Black & Scholes model
solves the one-dimensional pde in equation (5.4). If the stochastic volatility is driven
by a Brownian motion the equation is the two-dimensional linear pde (4.2). As shown in
Section 4 it is possible to derive an integro-pde representing the price of a contingent
claim, in both exponential Lévy and stochastic volatility models including a Lévy
process.

Solving an integro-pde numerically is naturally a more involved task than solving
an ordinary pde. The integral term is non-local, depending on the whole solution and
not only on the variables in a small neighbourhood. The use of standard techniques
to solve the equation includes finding a suitable way to represent the integral on the
possibly infinite domain, either with the information at hand or by approximation. This
can prove to be cumbersome and introduce severe numerical problems if not treated
carefully. If the Lévy process driving the model has infinite activity the measure
is singular at zero, causing additional problems in the implementation. Benth and
Groth [10], Paper II, discuss how to solve the integro-pde in equation (4.6) using the
finite difference method, while Benth, Groth and Lindberg [13], Paper IV, consider
equation (4.8).

The standard techniques for solving partial differential equations are the finite dif-
ference and the finite element methods. The foundation of these methods will not be
discussed here, as the methods are used only as tools. The interested reader is referred
to standard textbooks on numerical solutions of partial differential equations. The main
reference for pde-methods in finance is Wilmott, Dewynne and Howison [116], but com-
ing to age the book lacks any treatment of models with jumps or stochastic volatility
and focuses mainly on finite difference methods. Cont and Tankov [35] includes a
chapter, with numerous references, about integro-pdes in exponential Lévy markets
based partly on Cont, Tankov and Voltchkova [36] and Cont and Voltchkova [37, 38].
Important research on finite element methods in finance is done by the group around
Schwab [73, 90, 91].
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6. Option sensitivities

Numerous research articles focus on the question of how to price options and other
derivatives. Equally many, if not more, instead ask the related question on how to
hedge the positions. Financial institutions need to know how to manage the risk
their portfolios face from changes in the market. The classic Black & Scholes analysis
depends on the possibility to set up a risk-free portfolio, with the rate of return equal
to the interest rate, consisting of a short position in the option and a long position in
Δ shares of the underlying. This quantity Δ is the sensitivity of the options to changes
in the price of the underlying asset, i.e.

Δ =
∂Λ

∂s
.

This is called the delta of the option and it is one of the option sensitivities often
grouped together under the name the Greeks. They are all measures of how sensitive
the option price is to changes in one parameter in the model of the underlying asset.
Common ones are rho ρ, theta Θ, vega V and gamma Γ, which measure in order the
sensitivity to the interest rate, the passage of time, the volatility and the second de-
rivative with respect to the price of the underlying. The primary one is clearly delta
because of the connection with the Black & Scholes analysis and the concept of delta-
hedging. Holding the portfolio described above the option owner is instantaneously
secured against any changes in the price of the asset as the gain (loss) in the price of
the option is offset by a similar fall (rise) in the price of the position in the stock. Main-
taining a delta-neutral portfolio enables traders to manage the risk from asset price
changes. This holds true in theory only though, since delta-hedging is a dynamic hedg-
ing strategy that needs continuously rebalancing of the portfolio, incurring prohibiting
large transaction costs. Similarly, investors can aim to keep a portfolio gamma-neutral
to reduce the risk from the curvature of the option price which is not covered by the
delta-hedge. See Hull [78] for a more extensive introduction.

While the price of liquid options are observable in the market the sensitivities are not
and need to be calculated, which in reality means estimating a derivative. For certain
models and simple option types, for example European options in the Black & Scholes
model, it is possible to derive analytical expressions and there is no need to involve
in simulations. For more complicated contracts in advance models this is not feasible
and one needs to resort to numerical approximations. This section is concentrated
solely on Monte Carlo simulations of the sensitivities, with a brief covering of three
different methods, these being the finite difference, the pathwise differentiation and the
likelihood ratio methods, and finally a more in depth cover of the Malliavin method.

Suppose the price of the option is represented as a discounted expectation similar to
(2.3), with payoff function f and asset price St depending on a parameter θ. Assume
for clarity that the interest rate is constant. The sensitivity of the price with respect
to θ is then the derivative

α(θ) =
∂

∂θ
E
[
e−rT f(ST (θ))

]
.

The obvious approach to simulate α is to use a finite difference approximation of
the derivative. Simulate n independent replications of ST (θ) and ST (θ + h), take the

averages f̂ over the two sets of paths and let the estimate α̂ be

α̂(θ, h) = e−rT f̂(ST (θ + h)) − f̂(ST (θ))

h
.
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There are some obvious drawbacks with the finite difference approach. To begin with
it has a bias dependent on the value of h but the variance is proportional to h−2.
While the bias is reduced by taking a smaller h this has to be weighted against the
effect on the variance. Using a forward difference and independent random numbers
for the two sequences the best convergence rate is typically O(n−1/4). The convergence
rate can be improved to O(n−1/2) by taking central differences and by using common
random numbers, as suggested by Glasserman and Yao [65], which is the best that can
be expected from Monte Carlo simulations. Then however, the convergence rate can
be sensitive to the smoothness of the payoff function, leading to poor performance for
options with discontinuous payoffs like binary options.

To achieve a better convergence rate than with the finite difference method Broadie
and Glasserman [26] investigate two different methods, the pathwise method and the
likelihood ratio method. Instead of taking the derivative of the expectation the path-
wise method assumes α can be represented as

α(θ) =
∂

∂θ
E
[
e−rT f(ST (θ))

]
= E

[
e−rT ∂

∂θ
f(ST (θ))

]
.

The last part can be considered as a pathwise derivative of the payoff function and
sufficient regularity of the payoff function is assumed to be able to interchange dif-
ferentiation and expectation. According to Glasserman [64] this method has usually
much less variance than the finite difference and the likelihood ratio method. To yield
an unbiased estimator the pathwise method requires that the differentiation can be
moved inside the expectation, which in general demands that the payoff is pathwise
continuous with respect to θ. Binary options are not continuous with respect to the
price of the underlying so the pathwise method is not applicable for the Greeks of
a binary option. Neither are barrier options and for the same reasons the pathwise
method is unable to handle the gamma of an ordinary call option.

The likelihood ratio method assumes that the distribution of the underlying asset
St has a density p(St) with θ being a parameter of the density. Again assume there
is enough regularity to change the order of expectation and differentiation. Using the
density, the sensitivity can be written as

α(θ) = E

[
e−rT ∂

∂θ
f(ST (θ))

]
=

∫
R

f(x)
∂

∂θ
p(x) dx.

Since smoothness is rarely a problem for densities the likelihood ratio method is appli-
cable for a wider range of options than the pathwise method. Dividing with p(x) and
rewriting the integrand leaves

α(θ) = E

[
e−rT f(ST )

∂ log p(ST )

∂θ

]
.

Here ∂ log p(ST )/∂θ works as a weight function multiplying the payoff function. The
product is an unbiased estimator of the derivative when applicable but the weight
often produces large variance, limiting the use of the method. The main limitation
is nevertheless the need for explicit knowledge of the density, which in turn needs
to depend on the parameter θ. An example where the density of the marginal log-
returns is not explicitly known is the Barndorff-Nielsen and Shephard model when the
stationary distribution of the volatility process is inverse Gaussian.

The likelihood ratio method is interesting because the derivation is not applied to the
expectation or the payoff function, instead the payoff is multiplied by a weight function.
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In a sense this can be viewed as a derivative-free calculation of the Greeks. The
derivative is in the weight function which can cause high variance of the simulations.
Taking this idea further Fournié et.al.[61] used in an inspiring paper Malliavin calculus
to derive weight functions.

6.1. Malliavin calculus and Greeks. The drawbacks of the pathwise and the likeli-
hood ratio methods make it hard to estimate option sensitivities for more complicated
contracts and in markets where the option price density is unknown. At the same time
the finite difference method is prone to large bias and large variance, especially for
options with discontinuous payoff functions.

A method capable of handling the contracts the pathwise and likelihood methods
struggle with, while still producing unbiased results with low variance, is the Malliavin
method proposed by Fournié et.al.[61]. The idea is to use variational stochastic calculus
to derive a derivative-free method of calculating the Greeks in the Black & Scholes
market. The method relies on the theory called Malliavin calculus, especially the
integration-by-parts formula, to devise weights multiplying the payoff. In this way it
is possible to avoid taking the derivative of the payoff function, similar to the way it
is avoided in the likelihood ratio method. What follows is a short primer to Malliavin
calculus, for a full account of the theory see Nualart [99].

Let Wt, t ∈ R+ be a d-dimensional Brownian motion, and let C denote the space of
random variables F of the form

F = f

(∫ ∞

0

h1(t) dWt, . . . ,

∫ ∞

0

hn(t) dWt

)
, f ∈ S(Rn),

h1, . . . , hn ∈ L2(R+), where S(Rn) is the space of rapidly decreasing C∞ functions on
Rn. For a given F ∈ C the Malliavin derivative DtF of F is the process DtF, t ∈ R+

in L2(Ω × R+) defined by

DtF =
n∑

i=1

∂f

∂xi

(∫ ∞

0

h1(t) dWt, . . . ,

∫ ∞

0

hn(t) dWt

)
hi(t), t ∈ R+, a.s.

Define the norm on C by

‖F‖1,2 = (E[F 2])
1/2 +

(
E

[∫ ∞

0

|DtF |2 dt

])1/2

, F ∈ C.

Let D1,2 denote the Banach space which is the completion of C with respect to the
norm ‖ ·‖1,2. The derivative operator D is a closed linear mapping defined on D1,2 with
values in L2(Ω × R+).

The derivative operator has a chain-rule for derivation, i.e. if ψ : Rn → R is contin-
uously differentiable with bounded partial derivatives and F = (F1, . . . , Fn) a random
vector whose components belong to D1,2, then ψ(F ) ∈ D1,2 and

Dtψ(F ) =
n∑

i=1

∂ψ

∂xi

(F )DtFi, t ∈ R+, a.s.

The divergence operator δ, also called the Skorohod integral, exists and is the adjoint
of D. Assuming u is a stochastic process in L2(Ω × R+) then u ∈ Dom(δ) if and only
if for all F ∈ D1,2 it holds that

E[〈DF, u〉L2(R+)] := E

[∫ ∞

0

DtFu(t) dt

]
≤ K(u)‖F‖1,2 ,
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where K(u) is a constant independent of F . If u ∈ Dom(δ), then δ(u) is defined by
the following integration-by-parts formula

E[Fδ(u)] = E[〈DF, u〉L2(R+)] , ∀F ∈ D1,2.

The domain of δ contains all adapted processes which belong to L2(Ω × R+), and for
such processes the Skorohod integral coincides with the Itô integral. That is, for an
adapted process u ∈ L2(Ω × R+)

δ(u) =

∫ ∞

0

u(t) dWt.

Also, if F ∈ D1,2 then for all u ∈ Dom(δ) such that Fδ(u) − ∫ T

0
DtFu(t) dt ∈ L2(Ω) it

holds that

δ(Fu) = Fδ(u) −
∫ T

0

DtFu(t) dt.

The main result for computation of sensitivities with Malliavin calculus is the follow-
ing: Let (Fα)α be a family of random variables, continuously differentiable in Dom(D)
with respect to the parameter α and let u(t), t ∈ [0, T ] be a process in L2(Ω × R+).
Assuming that 〈DFα, u〉L2(R+) �= 0, a.s. then

(6.1)
∂

∂α
E [f(Fα)] = E

[
f(Fα)δ

(
u

∂F α/∂α

〈DFα, u〉L2(R+)

)]
for all functions f such that f(Fα) ∈ L2(Ω). Using (6.1) one can compute Malliavin
weights assuming it is allowed to interchange differentiation and expectation. u is
a weighting function which can be chosen to get an optimal tuning for specific con-
tracts. The Malliavin weights produce unbiased estimates and do not rely on an explicit
knowledge of the stock price density, as the likelihood ratio method does. The result
in Fournié et.al. [61] suggests that the method gives significantly lower variance for
options with discontinuous payoffs.

The research literally exploded after the first article, with the same analysis done for
other type of contracts, with other weighting functions and in other models, see [7, 8,
18, 19, 20, 60, 66]. As noticed in Kohatsu-Higa and Montero [82] the likelihood ratio
method is similar to the Malliavin method if the density is known. It was also shown by
Chen and Glasserman [33] that taking a time-step approximation using Euler schemes,
applying the likelihood ratio method and then passing to the continuous-time limit
results in the same weights as in the Malliavin method for several important cases, i.e.
delta, rho and vega.

The Malliavin method sprung the interest in doing similar research on methods in-
cluding jumps. Except the pure-jump setting examined by El-Khatib and Privault [56]
the main idea has been to consider the derivative in the direction of the Wiener pro-
cess. León et.al.[84] was first to consider simple Lévy processes, a linear combination
of a Brownian motion and several Poisson processes with fixed jump size. Developing
a Malliavin calculus for simple Lévy processes they showed that the analysis can be
made on the Wiener space and the formulas from the pure Wiener case can be used.
A similar approach is considered by Davis and Johansson [39] while Debelley and Pri-
vault [40] extend the idea to cover general jump-diffusions. The directional derivative
approach is also applied on the Barndorff-Nielsen and Shephard model in Benth, Groth
and Wallin [14], Paper V.
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7. Volatility derivatives

The volatility is the easiest measure of the uncertainty attached to a financial asset.
It was considered as a constant quantity in the Black & Scholes theory, something
which has been disputed because the volatility is known to change over time. How
it changes and how it can be modeled are discussed in Section 4. Given a stochastic
model for the dynamics of the volatility it is a short leap to the idea of constructing
contracts written on realised volatility, and trade these contracts to hedge against the
changes.

Calculating the Greeks of an option can tell investors about the exposure they face
from changes in underlying parameters in the models, but not how to hedge it away.
Trading in the underlying asset can help the investor reduce the risk associated with
changes in the price, the delta-exposure. In the Black & Scholes market this is the
only risk perceived since it is assumed that all other parameters are constant under
the time horizon considered. The inability of the Black & Scholes model to capture
the implied volatility rises the question about the risk associated with changes in the
volatility of the underlying asset. A change in the volatility will influence the price
of the option, possibly without changing the price of the underlying asset, but this
change is not possible to hedge by the usual delta-hedging approach. The exposure to
volatility is measured in vega (V), the sensitivity to changes in the volatility parameter
in the Black & Scholes model. An investor managing a large portfolio might find that
his vega-exposure is high and wish to hedge away this risk. The market has met this
demand by offering derivatives written on realised variance and volatility. In 1993 the
Chicago Board Option Exchange (CBOE) introduced a volatility index (VIX) which
became the benchmark for stock market volatility. It measures the market expectation
on the 30-day volatility based on S&P 500 index option prices with a range of strike
prices. Accompanying the VIX there exists a family of derivative products written
with the VIX as the underlying, including futures and options.

The structure of a volatility contract is in principle not different from contracts on
other underlying assets. Let the realised volatility σR(T ) over a period [0, T ] be defined
as

σR(T ) =

√
1

T

∫ T

0

σ2(s) ds.

The process σ2(s) depends on the model, from constant in the Black & Scholes model
to a non-Gaussian Ornstein-Uhlenbeck process in the Barndorff-Nielsen and Shephard
model. A volatility swap is the simplest contract, paying at time T the amount

N(σR(T ) − Σ)

where Σ is the strike, a predefined level of volatility, and N is a notional, turning the
volatility difference into money. The strike Σ is chosen such that the swap is entered
into at zero cost. A variance swap is similarly defined as

N(σ2
R(T ) − Σ2).

The extension to options on realised volatility or variance is obvious. In effect the
buyer swaps a fixed volatility against the actual realised volatility. Under the risk-
neutral probability measure Q the fixed level of volatility, sometimes referred to as the
price of the swap, can be expressed as

Σ(t, T ) = EQ[σR(T )|Ft]
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and the price of the variance swap as

Σ2(t, T ) = EQ[σ2
R(T )|Ft].

The fair price of variance can be calculated directly by calculating the risk neutral
expectation of a variance swap, something that would enforce to specify a model for
the variance, see for example Benth, Groth and Kufakunesu [12], Paper III, who price
swaps in the Barndorff-Nielsen and Shephard model. Much of the interest has rather
been focused on how to replicate swaps on realised variance and volatility. Early work
by Derman et.al.[44], Dupire [48] and Neuberger [95] shows that a continuously sampled
variance swap in a diffusive market is possible to replicate by trading in the asset and
its options. Assume that the price St of the asset has dynamics

(7.1) dSt = μ(t)St dt + σ(t)St dWt

where the drift μ(t) and the continuously sampled volatility σ(t) are arbitrary functions
of time and other parameters. Applying Itô’s lemma to log St and subtracting from
(7.1) then

dSt − St d(log St) =
1

2
σ2(t) dt

and hence

σ2
R =

2

T

[∫ T

0

dSt

St

− log
ST

S0

]
.

Taking the conditional expectation gives the price of the variance swap. For replication
one can notice that the first part inside the brackets can be considered as the contin-
uously rebalanced position of being long 1/St shares. The second term represents the
static short position in a claim on log ST /S0. The problem of trading on the logarith-
mic contract can be solved by synthesizing it with liquid options on the asset. If an
arbitrary put-call separator κ > 0 is picked then the log-payoff can be decomposed
such that

− log
ST

St

= −ST − κ

κ
+

∫ κ

0

1

K2
(K − ST , 0)+ dK +

∫ ∞

κ

1

K2
(ST − K, 0)+ dK.

This suggests that in addition to the 1/St shares held one should hold a short position
in 1/κ forward contracts struck at κ, a long position in 1/K2 put options at K for all
strikes from 0 to κ and a similar position in call options for all strikes from κ to ∞,
all contracts expiring at T . The fair price of the swap follows from the initial value of
each part.

Swaps and options written on volatility are known to be more difficult to price and
hedge than their variance counterparts. Naively, the price of a volatility swap could be
thought to be the square root of the variance swap. By Jensen’s inequality it is easy
to see that this might not be the case, i.e.

E[σR(T )|Ft] ≤
√

E [σ2
R(T )|Ft].

The common knowledge was that the replication strategy for volatility swaps was
highly model-dependent, something which was challenged in recent papers by Carr
and Lee [30, 31]. Trading dynamically in the underlying together with positions in
European options, call, puts and straddles, Carr and Lee generate a synthetic volatility
swap, without specifying a model for the volatility. The replication strategy is more
involved than for variance derivatives but holds under a general assumption about
correlation between the stock and volatility. For pricing of volatility options Carr and
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Lee assume the time-t conditional distribution of the volatility is a displaced lognormal,
and derive explicit formulas. Trading variance and volatility swaps they show how to
hedge options, however the formulas are rather complex.

The market interest in volatility derivative contracts pushes the academic research
interest. Except from the references mentioned work is done by Windcliff, Forsyth
and Vetzal [117] for a model with jumps in the asset price dynamics while Howison,
Rafailidis and Rasmussen [77] study a stochastic volatility model with a mean-reverting
lognormal volatility dynamics. Also notable in the field is the paper by Carr et.al.[29]
which studies properties of the volatility in a model driven by pure jump processes,
preferably the class of CGMY processes.
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