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Under linden

Sitte på ein stubbe under linden
I den leikande varme augustvinden
Lye til biene sitt summekor
Der dei strevar og samlar inn vinterfor
Kjenne angen av roser og kaprifol
Og varmande strålar frå seinsommarsol
Nyte selskap med erla og raudstrupen vår
Som tok ferien sin her i hagen i år
Han svinsar og sprett ifrå grein til grein
So syng han ei strofe so klar og so rein
Og erla ho trippar og leitar seg føde
Ho er ferdig for i år med barnestell og møde
Så no skal me nyte vår otium me tre
Her i hagen, under linden, i ro og i fred

Haldis Brenne (1920 – 2011)
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Abstract

In the face of datasets with ever increasing sizes, development of
scalable learning algorithms with high predictive power is at the
forefront of machine learning research. The design of learning schemes
using a positive semi-definite function at the core (a kernel function),
is motivated by a solid theoretical foundation. These schemes have
shown great success on moderately sized datasets. However, kernel-
based methods suffers from scalability issues, due to their inherent
large memory requirements and computational costs. In this thesis
we address this issue by developing kernel-based learning schemes that
are compatible with efficient computational models such as streaming,
paralellization and distribution. We support the proposed algorithms
with theoretical and numerical results.

iii





Samandrag

I møte med store datamengder, er utvikling av skalerbare læringsalgor-
itmar med gode generaliseringseigenskapar eit viktig forskingsområde
i maskinlæring. Konstruksjon av læringsmetoder som utnyttar en pos-
itiv semi-definit funksjon (ein kernelfunksjon), er ein strategi som har
vist stor suksess ved moderate datamengder og er støtta av eit solid
teoretisk grunnlag. Desverre er kernelbaserte metodar avgrensa frå
bruk i møte med store datamengder, på grunn av betydelege minne og
kalkulasjonsbehov. I denne doktorgraden løyser vi dette problemet ved
å utvikle kernelbaserte læringsmetoder som er kompatible med effekt-
ive modeller slik som parallellisering, distribuerte system og strømming
av data.
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Introduction

Recent advances in computational power, memory capabilities, sensor technology,
and the internet have allowed the collection and storage of increasingly large data
sets. The size of these data sets is not only due to a massive growth in the
number of collected samples but also due to a substantial increase in the number
of collected attributes (observable quantities) associated with each sample.

In machine learning and data analysis, we are interested in identifying patterns
in data sets to gain insights that can be used in real-world applications. The
patterns of interest found in data can be highly non-linear. Therefore, these
patterns are often infeasible to model with existing elementary functions containing
few tunable parameters, such as linear functions, polynomials, Gaussians, etc.
Furthermore, with multiple attributes, the data can be difficult to visualize,
preventing insights that could otherwise guide the choice of the model function.
Consequently, parametric modeling with elementary functions is limited in the face
of non-linear patterns.

The limitations of parametric learning have motivated the development of non-
parametric learning schemes that do not rely on strong modeling assumptions
and pre-defined knowledge about the data. Notable examples are kernel-based
methods, decision trees, and neural networks.

In this thesis, we focus on kernel-based methods, meaning all methods that map
non-linear input data to a high-dimensional feature space using the so-called kernel
function. In doing so, non-linear data dependencies are approximately linearized,
allowing the usage of fast and efficient linear models. Kernel-based methods came
to prominence at the end of the 1990s [105] with the introduction of the support
vector machine (SVM) [32] for non-linear classification, kernel principal component
analysis (kernel PCA) [102, 103] for non-linear PCA and kernel ridge regression
(KRR) [99, 104] for non-linear regression.

Another common strategy to capture non-linear patterns, also relying on the
kernel function, are spectral embedding methods based on nearest neighbor graphs
such as ISOMAP [115], locally linear embedding (LLE) [93], Laplacian eigenmaps
(LE) [14, 16], and diffusion maps [31].

The popularity of kernel-based methods stems from their solid and studied
theoretical foundation [14, 31, 92, 101, 105]. However, kernel-based learning
methods generally have large memory and computational requirements due to
their reliance on a kernel matrix that scales with the number of training samples.
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Chapter 1. Introduction

Consequently, in real-world applications, these methods have largely fallen out of
favor in the machine learning community with the rise of alternative methods such
as multi-layer neural networks.

The motivating principle of this thesis is that reducing computational costs
and memory requirements alone, does not unlock the full potential for scalability
of learning methods. Rather, the use of modern computational models, such as
parallelization, distribution, and learning from streaming data, is also a critical
ingredient. In this thesis, we develop techniques and algorithms for the purpose of
scaling up kernel-based learning schemes for big data applications. Our strategy
is two-fold. On one hand, by utilizing ideas and concepts such as tailored sub-
sampling, boosting, multi-resolution, sparsity, and iterative solvers, we develop
learning schemes with low memory requirements and low computational cost. At
the same time, the learning methods developed in this work are designed to be
compatible with modern computational models, such as those mentioned above,
that are essential for large scale applications. In summary, we aim to develop
learning schemes that satisfy the following aspects:

1. Single-pass - learning schemes that can learn from seeing each sample only
once before discarding it.

2. Distributed - learning schemes that can be divided into independent modules
that can learn independently or with minimal communication.

3. Minimize in-memory data - learning schemes with independent modules that
only require access to a fraction of the data.

We consider a setting where data is embedded in a high-dimensional ambient
space, the Euclidean space RD. Furthermore, we assume that the data comes
from a distribution supported on, or concentrated around, a lower-dimensional set
X ∈ RD. We assume that X is a point cloud, a notion we define in more detail
later. In particular, we consider point clouds where the intrinsic structure can be
highly non-linear and vary in dimensionality.

We develop scalable regression algorithms that can learn highly non-linear
functions and develop techniques that reduce the impact of the curse of
dimensionality [122]. Furthermore, we develop scalable algorithms that can learn
the intrinsic structure of data for the purpose of dimensionality reduction and
quantifying similarity between samples in a non-linear space.

The algorithms we develop are verified numerically and supported by
theoretical analysis.

Outline In Section 1 we present an overview of relevant concepts related to
non-parametric learning in a supervised setting. We then discuss the curse of
dimensionality and associated challenges in Section 2. In Section 3 we introduce
the concept of point clouds and discuss challenges and opportunities related
to uncovering their intrinsic structure. Section 4 then discusses methods for
uncovering the structure in point clouds for purposes such as dimensionality
reduction. Section 5 reviews several strategies for scaling learning algorithms to
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1. Supervised nonlinear function learning

big data applications. In Section 6, we present the contributions of the original
manuscripts underlying the research performed in this thesis. Finally, Section 7
concludes with a summary of the findings in the thesis and discusses further work.

Notation We denote matrices with upper case and vectors with lower case. For
a matrix A ∈ Rn×n we let Aij be the i, j-th entries. For a vector a ∈ Rn, we let
ai denote its i-th entry. For Γ, Γ′ ⊆ {1, . . . n} we let A(Γ, Γ′) mean the sub-matrix
constructed from the indices contained in Γ, Γ′. We let A⊤ denote the transpose
of A and A† the Moore-Penrose pseudoinverse. For a vector v ∈ RD we let ∥v∥p

denote the p-norm. For a function f : X → R and a set of samples {xi}n
i=1 we

take f([xn]) to mean f([xn]) = (f(x1), f(x2), . . . , f(xn))⊤.
For a distribution ρ we mean by X ∼ ρ that X is a random variable distributed

according to ρ. We let EX∼ρ[X] be the expectancy of X. For random variables
(X, Y ) ∼ ρ we let E(X,Y )∼ρ[Y |X = x] be the expectancy of Y conditioned on X.
By N (µ, σ), we refer to the normal distribution with mean µ and covariance σ.
We mean by Uni(Ω) the uniform distribution over a set Ω ⊂ RD.

We let L2(X , ρX ) be the space of square integrable functions with norm
∥f∥2

ρ =
∫

X |f(x)|2dρX . For a kernel function k : X × X → R we let Hk denote the
reproducing kernel Hilbert space induced by k. The inner product in Hk is defined
as ⟨f, g⟩k = ∑

ij αi, βjk(xi, xj), for g, f ∈ Hk. The associated norm is ∥·∥2 = ⟨·, ·⟩k.
We denote by (M, d) a metric space with distance metric d.

1 Supervised nonlinear function learning

Consider the problem of learning the relationship between some response y ∈ R
and an input x ∈ X ⊆ RD for the purpose of predicting the response y given a new
input sample x ∈ X . This problem is often addressed in a supervised setting and
is encountered in numerous applications. For example in bio-medicine, knowing
the relationship between ionic membrane currents x and the action potential in
cardiac cells y allows predicting the effects of specific treatments during drug
development [57, 118].

We can formulate this problem in the framework of statistical learning theory
[34, 121]. In this setting, the input-response pair (x, y) is interpreted as the
realization of a random variable (X, Y ) sampled from a probability distribution
ρ = ρ(y|x)ρX . The probability distribution ρ is assumed to be unknown and can
only be accessed through a finite set of training samples Dn = {(xi, yi)}n

i=1.
The relationship between input and response is described by the conditional

distribution ρ(y|x). However, finding an exact description of this distribution
is often infeasible. In regression, the goal is instead to learn a target function
f : X → R, using the available training samples Dn, that gives a suitable
approximation of ρ(y|x).

To learn the target function, it is necessary to define a loss that quantifies
estimation quality and guides the learning process. The L2 error is a popular
choice because it is mathematically easy to work with and often gives optimization
problems that are computationally cheaper to evaluate than, say, other Lp loss
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Chapter 1. Introduction

functions [49]. Function learning can then be formulated as the minimization of
the expected L2 risk

E(f) = E(X,Y )∼ρ[(f(X) − Y )2], (1.1)
for f ∈ L2(X , ρX ), where L2(X , ρX ) is the space of square integrable functions.
For the remainder of the text, we take E to mean E(X,Y )∼ρ unless otherwise stated.

Remark 1 (The regression function) The minimizer of the expected L2 risk
can be shown to be the conditional mean fρ(x) = EY ∼ρ(y|x)[Y |X = x], called the
regression function. However, since ρ is known only through a finite sample, the
regression function fρ cannot be calculated explicitly. Instead, it can be estimated
using the training samples in Dn.

The classical way to estimate fρ is by assuming it can be modeled with an
explicit function class of elementary functions, such as polynomials or Gaussians.
This approach is known as parametric regression, with linear and polynomial
regression as typical examples. The problem with parametric regression is that
prior knowledge of the shape and characteristics of fρ, such as linearity vs. non-
linearity, differentiability, continuity, etc., is rarely known. This is especially
problematic in multi-feature settings where visualization of the data is impractical
or infeasible, which prevents further insights. Since choosing the wrong model can
cause significant errors, parametric learning is limited to simpler learning tasks.

1.1 Non-parametric learning in a hypothesis space

Non-parametric regression, in contrast to parametric regression, does not require
pre-defined knowledge of the target function; see Györfi et al. [49]. Nevertheless,
learning in non-parametric settings still requires a model that, in some way, can
be tuned to the data. The simplest approach is to use estimators that rely on local
averages, such as kNN and kernel smoothers. A well-established alternative is to
introduce a hypothesis space H ⊆ L2(X , ρX ), in which estimators of fρ are pursued.
It is important to note that the regression function fρ need not be contained in H.

The hypothesis space H provides the necessary structure to define a model
that can be fitted to the data. Examples are the spaces of piece-wise polynomials,
splines, or reproducing kernel Hilbert spaces (RKHS). The parameters p defining
these hypothesis spaces, such as the degree of the polynomial or the bandwidth of
the kernel inducing the RKHS, are normally referred to as hyper-parameters and
can be tuned to the data to improve the model. In Section 1.2, we discuss the
selection of these parameters in more detail.

When searching for an optimal estimator f̂n,λ in a hypothesis space H, the
minimizer of the expected L2 risk E[(f(X) − Y )2] is normally estimated using a
penalized version of the empirical risk minimizer

f̂n,λ = argmin
f∈H

1
n

n∑
i=1

(f(xi) − yi)2 + Jλ(f). (1.2)

Here Jλ(f) is a penalty on the complexity of f , and λ is a hyper-parameter that
governs the magnitude of the penalty. We can think of λ as restricting the available
hypothesis space to less complex functions, as illustrated in Figure 1.1.
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1. Supervised nonlinear function learning

To solve the minimization problem in Eq. (1.2), it is necessary to make explicit
choices on the hypothesis space H. In Section 1.4, we discuss a specific choice
relevant to the work in this thesis, namely that of a reproducing kernel Hilbert
space (RKHS) Hk.

1.2 Choosing the hyper-parameters

When estimating a function from finite samples, it is important to consider the
bias-variance trade-off [51] and the danger of overfitting to the training samples.
The empirical mean of the L2-loss, namely

En(f) = 1
n

n∑
i=1

(f(xi) − yi)2,

only penalizes the discrepancy from the available data Dn. Consequently, the
minimization of En(f) prefers an estimator that interpolates the training samples,
but offers no guarantees to predict the response from new samples. To avoid
overfitting, hyper-parameters p are introduced to restrict the complexity of the
estimator f̂n,p. These hyper-parameters can, for example, be a penalty on the
complexity of the estimator, such as λ in the optimization problem defined in Eq.
(1.2). Alternatively, they can be parameters restricting the size of the hypothesis
space directly, such as the bandwidth of a Gaussian kernel inducing an RKHS. In
Györfi et al. [49], the learning goal is stated as finding the hyper-parameters p that
minimize the expected L2 risk

min
p

E(X,Y )∼ρ[f̂n,p(X) − Y |Dn]

conditioned on the training data on which f̂n,p has been trained.
To select the hyper-parameters, it is necessary to evaluate the estimator f̂n,p

on new samples. Since the only available samples are Dn, this is typically done
by splitting Dn into a training set, a validation set, and a test set. The validation
set is then used to tune the hyper-parameters, and the test set to evaluate the
final generalization performance. Tuning the hyper-parameters based on a single
validation set is vulnerable to biased estimation [49]. Techniques such as leave-
one-out [25] and k-fold cross-validation [6] are often used to mitigate this issue.
The central idea is to split the training set into equalized batches. Then in each
iteration, one batch of data is held out during training to evaluate the estimator’s
prediction capabilities. The mean of the loss over all batches is the final score of
a given hyper-parameter. This procedure is repeated for several possible hyper-
parameter choices, and the one with the best score is selected.

A major limitation of cross-validation techniques is the high computational
cost of repeating the training process over several batches. Furthermore, cross-
validation requires the data to be available in memory, but in a streaming setting,
this criterion is not satisfied. In the first paper of this thesis, we address this
issue in the context of finding a minimizer in an RKHS Hk induced by a kernel
function kσ. The bandwidth σ of the kernel is a hyper-parameter that must be
determined, with implications for the generalization properties of the estimator.
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Chapter 1. Introduction

Our strategy is a trade-off between optimizing the hyper-parameter on the one
hand and computational cost and compatibility with streaming on the other.

1.3 A note on min-max rates and excess risk

Although we do not analyze optimal estimation rates in this thesis, for
completeness and later reference, we introduce a short discussion on min-max
rates and excess risk studied in learning theory. The section is based primarily on
the discussions in Cucker and Smale [34] and Györfi et al. [49].

When estimating the regression function fρ that minimizes the expected L2
risk using a finite sample Dn it is of interest to know to what degree the estimator
f̂n,p approximates fρ as n → ∞. The study of these rates is done using the min-
max approach; see Györfi et al. [49], which seeks lower bounds for the fastest
convergence of

inf
f̂n

sup
ρ∈C

E(X,Y )∼ρ[(f̂n(X) − fρ(X))2]. (1.3)

Here the supremum is taken over some class of distributions C of the random
variables (X, Y ), and the infimum is taken over all measurable estimators f̂n

defined on the data Dn [49]. In other words, one finds a lower bound on the
largest excess risk in L2(X , ρX ) over some class of distributions C.

Figure 1.1: Illustration of the hypothesis space H ⊆ L2(X , ρX ), and the corresponding
approximation error E(fH) − E(fρ) and estimation error E(f̂n) − E(fH). It is assumed
that the noise is additive such that Y = fρ(X) + ε, where ε ∼ N (0, σ) and fρ is the
regression function. E(fρ) = σ2 is an irreducible error that can not be improved. The
regularization penalizes the complexity of the functions such that hypothesis space is
restricted to a subset Hλ ⊆ H. Here fHλ

= argminf∈Hλ
E(f). The figure illustrates how

the approximation error in Hλ is larger than in H, while the estimation error is smaller.
The goal is to find λ such that the overall error E(f) in Eq. (1.5) is minimized.

In general, the regression function fρ is not contained in the hypothesis space
H, and the best we can do is fH = inff∈H E(f). This has the consequence of
introducing an error E(fH) − E(fρ), known as the approximation error, that can
not be reduced by the estimator. We illustrate this situation in Figure 1.1.
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1. Supervised nonlinear function learning

Since the approximation error does not depend on the training samples, the
min-max rates for an estimator f̂n,p ∈ H, are usually studied in terms of the excess
risk in H rather than the excess risk in L2(X , ρX ) from Eq. (1.3); See e.g. [24, 34,
95]. We define the excess risk in H as

RH(f̂n,p) = E[(f̂n,p(X) − Y )2] − inf
f∈H

E[(f(X) − Y )2]. (1.4)

Namely, the error introduced by our finite data estimator f̂n,p in excess of the error
for the best estimator in the hypothesis space. In the literature, it is also common
to refer to the excess risk in H as the estimation or sample error.

We can relate the approximation error and the estimation error to E(f) through
the decomposition

E(f) = E(f̂n,λ) − E(fH)︸ ︷︷ ︸
Estimation error

+ E(fH) − E(fρ)︸ ︷︷ ︸
Approximation error

+ E(fρ)︸ ︷︷ ︸
Irreducible error

(1.5)

Here, E(fρ) is normally referred to as the irreducible error. Under the assumption
that the noise is additive Y = fρ(X)+ε with ε ∼ N (0, σ), we have that E(fρ) = σ2.
The decomposition is illustrated in Figure 1.1.

We note that the approximation error is normally thought of as a model bias
introduced by the choice of hypothesis space. Meanwhile, the estimation error
is a variance term arising due to finite training samples. For a fixed sample size
n, reducing the size of H typically increases the approximation error but reduces
the estimation error and vice versa. When tuning the hyper-parameters to avoid
overfitting, as discussed in section 1.2, it is the trade-off between these two errors
we consider. Figure 1.1 illustrates this when the size of the hypothesis space is
controlled by the regularization parameter λ. Note that the size of H can also
be controlled by other hyper-parameters, such as the bandwidth of the Gaussian
kernel.

1.4 Kernel methods

Kernel methods are a category of non-linear learning algorithms that rely on a
kernel function k : X × X → R to create an implicit non-linear embedding of a
point cloud X into a function space equipped with an inner product. The resulting
function space is called a reproducing kernel Hilbert space (RKHS), denoted Hk,
and allows the use of linear learning schemes.

Definition 2 (Kernel function) A kernel function is a symmetric function k :
X × X → R that satisfies the following property∑

i,j

cicjk(xi, xj) ≥ 0 ∀xi, xj ∈ X , ci, cj ∈ R.

Given a dataset Dn = {xi}n
i=1 the kernel function induces a positive semi-definite

(PSD) matrix K ∈ Rn×n with entries Kij = k(xi, xj), called the kernel matrix.
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Chapter 1. Introduction

The RKHS induced by the kernel function k is defined as

Hk =
{
f : X → R|f(·) =

∞∑
i=1

βik(·, xi), βi ∈ R, xi ∈ X , ||f ||k < ∞
}
,

with inner product ⟨f, g⟩k = ∑
ij αiβik(xi, xj) for f(·) = ∑

i αik(·, xi) ∈ Hk and
g(·) = ∑

j βjk(·, xj) ∈ Hk. The corresponding norm is denoted ∥·∥2 = ⟨·, ·⟩k.
Furthermore, the associated feature functions ϕi : X → R, ϕi(·) ∈ Hk can be
evaluated implicitly via the "kernel trick" [2, 19]

ϕi(x) = k(x, xi) = ⟨ϕx, ϕxi
⟩k. (1.6)

The RKHS is a popular hypothesis space, as it can represent large classes
of functions. In fact, for special types of kernels and certain conditions on X ,
the corresponding Hk is universal, meaning it contains all bounded continuous
functions on X [79]. Consequently, working in an RKHS allows for representing
highly non-linear functions. Moreover, these functions can be efficiently evaluated
in the original domain X using the kernel function k.

Learning in RKHS The theory underlying function approximation in RKHS is
well established in machine learning [54] and learning theory [92]. Because of this,
kernel methods are generally considered to be theoretically better understood than
non-linear learning schemes, such as multi-layer neural networks and decision trees.

Optimizing Eq. (1.2) over the expansion coefficients {βi}∞
i=1 is generally

infeasible as Hk is normally infinitely dimensional. Therefore, learning in the
RKHS is normally done by seeking a minimizer of Eq. (1.2) on the form

f(x) =
n∑

i=1
αik(x, xi), (1.7)

provided the optimization problem allows this formulation. Namely, a finite linear
expansion in the kernel functions evaluated on the training points Dn = {xi}n

i=1.
Seeking an estimator on this form corresponds to reducing the hypothesis space
to a finite-dimensional subspace Hn ⊂ Hk defined as

Hn = {f ∈ Hk : f(·) =
∑

xi∈Dn

αik(·, xi), αi ∈ R}. (1.8)

In many settings, it can be shown that the optimal estimator of Eq. (1.2) is
contained in Hn. For example, Schölkopf et al. [101] shows that this is the case for
a certain class of loss functions L, when Jλ,n(f) = g(∥f∥k) and g : [0, ∞] → R is a
monotonically strictly non-increasing function. Here ∥·∥k is the norm in Hk. This
result follows from the representer theorem [101], first introduced by Kimeldorf
and Wahba [59, 60], and later extended to more general loss functions L, and
regularization terms g by Schölkopf et al. [101].

Learning an estimator in an RKHS is, therefore, reduced to optimizing over a
finite set of coefficients {αi}n

i=1. Consequently, the computational complexity does
not depend on the dimension of the feature space but rather on the number of
training samples. This is advantageous when the dimension of the feature space is
significantly larger than n, which is the case for many RKHS settings [101, 126].
However, in many situations, this approach results in poor scaling with the number
of samples n.
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1. Supervised nonlinear function learning

Computational considerations Although kernel methods have provable theor-
etical advantages, they suffer from scalability issues due to high memory require-
ments and computational costs. Kernel methods rely on constructing an n × n
kernel matrix incurring an O(n2D) cost for evaluating the kernel, where D is the
dimension of the ambient space where the point cloud is embedded. Furthermore,
solving for the coefficients typically reduces to solving a linear system that involves
inversion of the kernel matrix, with a cost of O(n3). In addition to this comes the
O(n2) cost of storing the kernel matrix and additional O(nD) operations required
to evaluate the function at a sample point x.

Kernel ridge regression In the following, we consider a well-known kernel
method for supervised learning, namely kernel ridge regression (KRR) [99, 104].
This learning scheme considers the minimization problem in Eq. (1.2) with a
squared loss combined with the penalization term Jλ(f) = λ ∥f∥2

k,

f̂n,λ = argmin
f∈Hk

n∑
i=1

(yi − f(xi))2 + λ ∥f∥2
k . (1.9)

This has the benefit of giving rise to a convex optimization problem in Hk. It can
be shown that the minimizer of (1.9) is of the form

f̂n,λ(x) =
n∑

i=1
αik(x, xi)

where the coefficients are given by the linear system

(K + λnI)α = y, (1.10)

where α = (α1, . . . , αn) and y = (y1, . . . , yn)⊤.
The statistical accuracy of the KRR estimator f̂n,λ is optimal in a min-max

sense as measured by the excess risk in Hk, with RHk
(f̂n,λ) = O(n−1/2) when

λ = n−1/2 [95]. However, solving the linear system in Eq. (1.10) requires
constructing the kernel matrix K and storing it in memory, with significant costs
as discussed above. Furthermore, direct inversion of K + λnI has a cost of
O(n3 + n2ck,D) operations where ck,D is the cost of evaluating the kernel k in
the input space X ⊆ RD.

In the first paper of this thesis, we develop a novel algorithm that improves the
scalability of KRR. Several studies in the literature have been dedicated to this
purpose, and we cover some of these methods in more detail in Section 5.

1.5 Boosting

Boosting is a framework for building a composite learner from a set of base learners,
with significant generalization improvements over the base learners from which it
is derived. First introduced by Freund and Schapire in [43, 44, 100], the boosting
framework has shown great success in producing efficient learning algorithms.
Following the discussion in Friedman [45, 46] we offer an overview of the boosting
framework with a particular focus on gradient boosting with L2 loss.

9
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Consider the learning setting outlined at the beginning of Section 1. The
objective is to find a function f that minimizes the expected risk E[L(f(X), Y )]
for some loss function L, given a dataset Dn. Boosting is similar to ensemble
learning algorithms that seek to minimize E[L(f(X), Y )] using an estimator of the
form

f̂n,η,γ(x) =
T∑

l=1
ηlh(x, γl),

where h(x, γl) is a set of base learners parameterized by γl. The optimal estimator
is found by fitting the parameters {(ηl, γl)}L

l=1 to the training data.
What sets boosting apart from other ensemble learning algorithms is the way

the parameters are found. With a finite dataset Dn = {(xi, yi)}n
i=1, boosting

proposes the following iterative optimization scheme

(η(l), γ(l)) = argmin
η,γ

n∑
i=1

L(f̂ (l−1)(xi) + ηh(xi, γ), yi) (1.11)

where h(x, γ) ∈ H are base learners chosen from some hypothesis space H.
After each step, the master model f̂ (l)(x) is updated according to f̂ (l)(x) =
f̂ (l−1)(x) + η(l)h(x, γ(l)).

The advantage of this iterative approach is that each new base learner
added to f̂ (l), is exposed to the generalization error of the previous model.
Consequently, new base learners can improve the performance of the estimator
where improvement is most needed [40]. Furthermore, boosting is shown to work
well for weak learners (simple functions that are easy to fit). The advantage is
that less computational resources are required.

Gradient boosting An efficient way to approximate the optimization in Eq.
(1.11), is gradient boosting proposed in Friedman [45]. The underlying idea is
that the increment ηh(x, γ) at iteration l is a step in the hypothesis space H.
Clearly, the increment that minimizes the loss L in Eq. (1.11) the most, is in the
direction best aligned with the negative gradient of L, evaluated at the current
position in H

gl(x) = ∂L(f(x), y)
∂f(x)

∣∣∣∣∣
f(x)=f̂ (l−1)(x)

With finite data Dn, the gradient direction can be estimated as gl =(
gl(x1), . . . , gl(xn)

)⊤
, where xi ∈ Dn. Fitting the base learner h(x, γ) to gl by

solving an optimization over γ gives the step direction in H. To find the step
length ηl, a new procedure can be run over values of η.

Remark 3 We note that for the L2 loss, an explicit expression can be found and
shown to be gl(xi) = yi − f̂ (l−1)(xi). This means that the best base learner at step
l is the learner that gives the best fit to the residual after the previous step.

In the first paper in this thesis, we develop an algorithm that combines KRR,
discussed in Section 1.4, with gradient boosting. The algorithm utilizes the fact
that the boosting framework works well for weak learners, which allows the kernel
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2. The curse of dimensionality

at each step to be selected without too much effort dedicated to finding the optimal
bandwidth. This allows the algorithm to avoid the expensive hyper-parameter
tuning discussed in Section 1.2. The hyper-parameter selection strategy together
with the iterative nature of boosting, allows the algorithms to work efficiently with
streaming data.

1.6 Alternative methods

Learning in the non-parametric setting is not restricted to kernel methods. Other
notable examples are smoothing and multi-variate splines [49], regression trees [69]
and neural networks [80]. A comparison is given in Table 1.1.

Neural networks are particularly interesting due to their widespread use and
great success in practical applications. In many ways, neural networks can be
considered a counterpart of kernel methods; whereas learning from finite data with
kernel methods is well understood in learning theory, neural networks have less
theoretical support. On the other hand, kernel methods are, in their standard form,
prevented from large-scale applications due to their large memory requirements
and computational expenses. At the same time, deep neural networks [113] are
the current go-to method for big data applications.

Model Regression trees Kernel methods Neural networks
Theoretical foundation Medium High Low
Interpretability Medium Medium Low
Scalability High Low High
Predictive power Medium-High High High

Table 1.1: Comparison of different regression models. Comparison partly based on Table
10.1 in Hastie [51]. We note that although regression trees in their standard form are
considered to have poor predictive power [51], boosted regression trees have proven to
be very successful, and can also be combined with parallelization [119].

2 The curse of dimensionality

A fundamental challenge when learning a regression function f from a set of known
training samples Dn, is that the number of samples n needed to achieve a certain
accuracy grows exponentially with the dimension of X . This problem is often
referred to as the curse of dimensionality [17] and occurs in several big data
applications such as medicine [18], neuroscience [5] and time series [122].

We can understand the cause and implications of the curse of dimensionality
from two perspectives. The first perspective is geometrical and relates to how the
volume of space increases with the dimension. The other perspective comes from
statistical learning theory and relates to how optimal estimation rates degrade
with increasing dimensionality.

11



Chapter 1. Introduction

Geometric perspective Consider n samples distributed uniformly in a D-
dimensional unit ball. It can be shown that the median distance from the origin
of this ball to the closest data point has the following dependency on n and D [51]

d(n, D) = (1 − (1/2)1/n)1/D.

In particular, lim
D→∞

d(n, D) = 1. Consequently, the distance between samples
increases exponentially with the dimension (i.e. the density of samples decreases).

The implication when learning a function from a training set Dn is that high
dimensions force extrapolation over large distances; unless we compensate with
exponentially more samples. We should therefore expect function estimation to
suffer in this regime.

Estimation rates perspective The geometrical perspective is useful for gaining
intuition on why the curse of dimensionality occurs. However, to fully appreciate
the consequences, it is useful to consider the min-max estimation rates discussed
in Section 1.3, as these provide lower bounds on how well a regression function can
be estimated from a training set Dn given a specific distribution class; see Györfi
et al. [49] and Novak and Triebel [82] for more details.

For our purposes, it suffices to restate a well-known result that provides a lower
bound for most regression problems in RD. Following Györfi et al. [49] we define
the distribution Cq,C in Definition 4.
Definition 4 Let Cq,C be the class of distributions of the random variables (X, Y ),
where X ∼ Uni([0, 1]D), Y = fρ(X) + η, fρ ∈ F q,C and the noise η ∼ N (0, 1)
is independent of X. Here F (q,C) denote the class of all (q, C)-smooth functions
f : RD → R, such that for α ∈ ND

0 and q = k + β we have |∂αf(x) − ∂αf(z)| ≤
C|x − z|β, for x, z ∈ RD, C ≥ 0, k ∈ N0, |α| ≤ k and 0 < β < 1; see Györfi et
al. [49] for more details.

It can be shown that the min-max rate for the distribution class Cq,C is
inf
fn

sup
(X,Y )∈Dα

E[(f̂(X) − f(X))2] = O(n− 2α
2α+D ) (1.12)

In other words, the number of samples necessary to achieve a mean square error
accuracy of ε grows exponentially with D as ε → ∞.

Avoiding the curse of dimensionality As we have seen, learning in high
dimensions is computationally infeasible due to the large number of samples
required. If data is sampled from a distribution supported in a high dimensional
space RD there is not much we can do. However, data is often supported on lower-
dimensional subsets X . Consequently, if this structure can be captured, significant
improvements can be made. For example, when data lies on a d-dimensional linear
subspace or a d dimensional smooth manifold, the optimal convergence rate from
Eq. (1.12) reduces to n

−2α
2α+d . For d ≪ D this can make a substantial difference.

The benefit of reducing the dimensionality of the representation has motivated
a vast literature on non-linear dimensionality reduction techniques (NLDR). We
discuss some of these schemes in more detail in Section 4.1 with NLDR methods
relevant to the work in this thesis.

12



3. Point clouds and their intrinsic structure

3 Point clouds and their intrinsic structure

A point cloud is a collection of points sampled from a probability measure ρX
supported on a lower dimensional set X ⊂ RD, whose intrinsic structure is
unknown. In practical applications, data is often modeled as point clouds instead
of using more stringent assumptions such as that of a manifold; see Sindhwani et
al. [108] and Little et al. [67] with references therein for examples. Furthermore,
many well-known NLDR algorithms such as Laplacian eigenmaps [14], diffusion
maps [31], and geometric multi-resolution analysis (GMRA) [4] have theoretical
guarantees derived under assumptions of a smooth manifold, but are in practice
often applied to point clouds with less structural assumptions.

It is common to characterize the intrinsic dimension of point clouds in terms of
the covering dimension [84, 123] and the doubling (Assouad) dimension [1, 123].

Definition 5 (The doubling dimension) (Adapted from Abraham et al. [1])
Let (M, d) be a metric space. The doubling dimension of M is defined as
ddim(M) = log2(κ), where κ is the minimal number of balls of radius r/2, required
to cover a ball Br(x) for all x ∈ M and for all r > 0.

Point clouds can have highly involved and non-linear intrinsic structures, which
can impose challenges for algorithms designed to learn patterns in the data. The
non-linear structure implies that the Euclidean distance induced by the ambient
space RD is a poor proxy for measuring distances between samples far apart.
Figure 1.2a illustrates this situation. Consider the distance between the points
labeled A, B, and C. Using the distance of the ambient space, the distance between
A, B is larger than the distance between B, C. However, a more natural distance
would be along the swiss-roll, in which case A, B is closer.

Furthermore, the density of the point cloud, encoded in ρX might vary across
X , and for applications such as clustering, capturing these variations in density is
another aspect of importance. For example, consider the distance between A, B,
and B, C on the dumbbell distribution in Figure 1.2b. When A, B belongs to the
same cluster, it might be more natural that their distance should be smaller than
that between B, C.

x
x

B

A

C
x

(a) Distance on swiss-roll

A

(b) Distances on dumbbell distribution

Figure 1.2: Illustration of how the intrinsic structure of point clouds affects what
constitutes a natural distance.

Moreover, an important aspect to consider is that the intrinsic dimension of
point clouds can vary [33, 67]. Perhaps the most intuitive way that the dimension
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can vary is between different regions of X . Figure 1.3a illustrates this situation
for a dumbbell-shaped point cloud where the spheres are 3-dimensional, and the
connecting bridge is a 2-dimensional plane.

A somewhat less intuitive case is when the intrinsic dimension, as measured
by the doubling dimension, varies with the resolution at which we consider the
problem. Figure 1.3b illustrates this. With a large enough radius r when measuring
the doubling dimension, the point cloud will have the dimension of the ambient
space. However, with an appropriate resolution (radius), we have a more natural
intrinsic dimension, namely a set that is locally approximately 2-dimensional.

The impact of resolution on the perceived dimension has implications for
algorithms relying on the ambient distance metric in local neighborhoods.
Examples are the kernel radius used to construct the nearest neighborhood graph
in spectral graph embeddings [14, 30, 93, 115] and the radius of radial kernels
used in kernel methods [104]. In other words, the radius used in these methods
has implications for the structure that they see.

Another aspect associated with the resolution is the noise; when the radius is
of the same order of magnitude as the noise level, the intrinsic dimension becomes
that of the ambient space, as illustrated in Figure 1.3c. In general, there can be
regions or scales where the dimension is very close to the ambient dimension. In
this case, learning becomes practically infeasible, as discussed in Section 2. In the
first paper in this thesis, we propose a strategy that can identify such regions and
effectively give up when the dimension is too large, focusing instead on learning
in regions where the dimension is lower.

d=2d=3

(a) Intrinsic dimension
changes with location.

ddim=2

ddim=3
ddim=0

ddim=3

(b) Intrinsic dimension
changes with the

resolution.

dim=3

dim=1

dim=3

(c) Noise has high
intrinsic dimension.

Figure 1.3: Three examples of variation in the intrinsic dimension. The coloring of the
point clouds illustrates depth. (a) shows how the intrinsic dimension can change with
the location. (b) shows how the intrinsic dimension can change with the resolution scale.
(c) shows how the intrinsic dimension of noise is high-dimensional.

4 Unsupervised learning of intrinsic structure

As motivated in Section 3, learning the intrinsic structure of point clouds is of
interest for reducing the impact of the curse of dimensionality and defining natural
notions of similarity between samples. In the following, we consider some notable
approaches relevant to the work in this thesis. In particular, this section will focus
on graph-based methods and kernel PCA.
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4.1 Graph methods

In graph theory [127], a graph (Xn, E) is a mathematical structure that models
relationships between objects called nodes (or vertices) Xn = {x1, . . . , xn} by
assigning edges E = {(xi, xj) : xi, xj ∈ Xn, i ̸= j} between pairs of nodes that are
connected. The most rudimentary graph has only these two properties. However,
other properties are often added to model more sophisticated relationships. For
example, edges are often associated with weights Wij to distinguish between
different degrees of similarity. The edge weights are typically represented as a
matrix W ∈ Rn×n, called the weight matrix, resulting in a weighted graph (Xn, W );
see Figure 1.4. Other properties to take into consideration can be the direction
of edges, connectedness etc. In this thesis, we will mainly be concerned with
undirected weighted graphs with symmetric edges. For discussion on other graph
structures, we refer to the literature on graph theory [127].

Figure 1.4: Illustration of a simple weighted graph with nodes Xn = {xi, xj , xk, xl}.

The structure of graphs makes them well-suited for modeling relationships
between entities in complex systems. Examples of use range from social networks
[75], biological systems [86] to computer science in general [91]. By modeling
these systems as graphs, they can be analyzed efficiently and benefit from the vast
literature in graph theory. An important direction in this regard is spectral graph
theory [111], which studies graphs and functions on graphs through eigenvectors
and eigenvalues of graph matrices. The matrices most typically studied for these
purposes are the random walk matrix A = D−1W (also known as the diffusion
matrix) and variations of the graph Laplacian L = W − D. Here D ∈ Rn×n is a
diagonal matrix called the degree matrix where the diagonal entry Dii = ∑

j Wij

is the degree of node xi.
In many situations, data is provided as a point cloud X embedded in some

metric space without an explicit graph structure. Before these data sets can
be analyzed using techniques from graph theory and spectral graph theory, it
is necessary to first represent the point cloud as a graph.

Representing point clouds as graphs Consider a point cloud X ⊂ RD

embedded in some ambient space RD. We can represent X as a graph by
constructing a local neighborhood graph with edge weights Wij = k(xi, xj), for
some function k : X × X → R. Typically, k is a positive semi-definite function (a
kernel function) concentrating in a local neighborhood around each point. Popular
choices are the Gaussian kernel k(xi, xj) = exp(−d(xi, xj)2/σ2) and the radial
kernel kr(xi, xj) = 1(d(xi, xj) ≤ r) where r > 0 is some fixed radius and d(·, ·) is
the metric of the ambient space.
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Definition 6 (Local neighbourhood graph) Let (M, d) be a compact metric
space and let X ⊆ M . Let Xn = {x1, . . . , xn} ∼ ρX be a set of points sampled from
a distribution ρX supported on or concentrated around X . Let k : X × X → R be
a kernel function. The local neighborhood graph is the weighted graph defined by
(Xn, W ) where Xn are the graph nodes and Wij = k(xi, xj) are the edge weights.

The intuition for this construction is that the neighborhood graph is a discrete
approximation of the point cloud under the assumption that the distance induced
by the ambient space is meaningful in small neighborhoods around each point.
This is further supported by results from manifold learning [55], which is concerned
with reconstructing the underlying low-dimensional structure of point clouds that
lie on or close to a lower-dimensional manifold. For example, consider a point
cloud X ⊆ RD supported on a lower-dimensional manifold. It can be shown,
under certain assumptions, that the eigenvectors of the associated graph Laplacian
approximate the Laplace-Beltrami operator on the manifold [13, 52]. Similarly, it
can be shown that the graph geodesic, the shortest path between two nodes in a
graph, converges to the geodesic on the manifold [115].

In the following, we discuss some of the ways graph methods can capture the
intrinsic structure of point clouds.

Random walks and Diffusion maps Perhaps the simplest method used to
capture the structure of graphs is that of the graph random walk [70]. The random
walk on a graph is a process that, at each time step t transitions between graph
nodes with a certain probability. In its simplest form, if at time t we are at node
i, then the random walk transitions to node xj with probability

pij = Wij/Dii

where Wij is the edge weight between nodes xi, xj and Dii is the degree of node
xi. The sequence of steps induced by the random walk is a Markov chain, and
many properties of graph random walks can be derived from the study of Markov
chains.

The random walk matrix A = D−1W encodes the random process, such that
the i, j-th entry of At is the probability that we reach node j after t steps, starting
at i. Let pt ∈ Rn be a distribution on the nodes at step t. The probability of
being at any node x ∈ Xn = {xi, . . . , xn} in the graph can then be encoded by the
equation pt = Atp0, where p0 is the initial distribution. The stationary solution of
this process is pt′+1 = pt′ = p, meaning that p = Ap. The stationary solution p is,
therefore, an eigenvector of A with eigenvalue 1. It is easy to verify that p is the
largest eigenvalue solution [70].

Stationary solutions of the random walk matrix have been utilized in many
applications where the eigenvector entries assign a score to each node. Page rank
[21, 85] uses a stationary solution of a modified Markov process, following a specific
initial distribution p0, to rank web pages. Meanwhile, label propagation [130] uses a
trap or "ground" (i.e., a node with zero escape probability) to generate a stationary
distribution with a decay towards nodes with a different label. For example, with
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two classes A, and B, the nodes with the label A act as a ground for random walks
from the nodes labeled B and vice versa.

In the fourth paper in this thesis, we utilize the stationary solution of a
particular transition matrix on a nearest neighbor graph to uncover the structure
in a point cloud. The transition matrix can be interpreted as a modified random
walk matrix, subject to the effect of a universal ground, that imposes a termination
probability to each step in the walk. This imposes a gradual decay in the
probability of walking away from the source. The decay depends on the intrinsic
graph structure and the "strength" of the ground.

The diffusion maps (DM) algorithm [30] is closely related to the random walk
matrix. Diffusion maps provide an embedding of a point cloud into a k-dimensional
Euclidean space, that allows distance between points to be calculated using the
Euclidean distance in the embedding space. Diffusion maps construct a nearest
neighbor graph on the point cloud in question and define a random walk matrix
on this graph. It then creates an embedding from the first k eigenvectors of the
t-th power of the random walk matrix. The spectral decay determines the number
of eigenvectors used in the embedding. In the next section, we discuss diffusion
maps in relation to spectral embeddings.

Spectral embeddings Using eigenvectors of graph matrices, spectral embed-
dings aim to find a lower dimensional representation of point clouds that preserve
the intrinsic structure. These methods are often referred to as manifold learning
methods as they derive their justification from this perspective. However, they
are often applied successfully to point clouds that do not satisfy strict manifold
assumptions [55].

The main application of these techniques is non-linear dimensionality reduction
(NLDR) [63, 120] where they are used to overcome the curse of dimensionality,
as discussed in Section 2. However, spectral embeddings have also been used
successfully for several other purposes such as spectral clustering [112, 124] and
semi-supervised learning [15].

Notable methods in this category are ISOMAP [115], locally linear embedding
(LLE) [93], Laplacian eigenmaps (LE) [14, 16], and diffusion maps [31]. These
methods all rely on a similar pipeline which involves constructing a local
neighborhood graph using a PSD kernel and then defining an n × n matrix on this
graph. The last step is the spectral embedding step, where the lower dimensional
embedding is found by calculating the eigenvectors of the n × n matrix [55]. As
an example, following Belkin and Niyogi [14] the d-dimensional LE embedding of
the graph nodes Xn can be defined as

xi 7→ (v1(xi), . . . , vd(xi))⊤ (1.13)

where vl : Xn → R is the eigenfunction corresponding to the i-th smallest
eigenvalue of L. Note that the eigenfunction of λ0 = 0 is not included as it is
constant for all nodes.

The main difference between the methods lies in the matrix used for the
spectral embedding. For example, ISOMAP constructs an n × n distance matrix
on the graph by considering the shortest path between the nodes and then finds a
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lower dimensional embedding through multi-dimensional scaling, which involves
calculating the eigenvalues of this distance matrix. Meanwhile, LE relies on
a spectral decomposition of the graph Laplacian, which, similarly to the ER
distance, incorporates all possible paths between points [50]. Due to the instability
of the shortest path distance w.r.t noise, the LE is generally more stable [14].
Furthermore, assuming that the point cloud is sampled from a manifold, the LE
can be shown to converge to the corresponding Laplace-Beltrami operator [13, 52].

The major problem with spectral methods is the computational cost of the
eigenfunction calculations. Furthermore, eigenfunction calculations are typically
difficult to parallelize and often exhibit global behavior, see Definition 7, which
means that all data points must be available. Another drawback of these methods
is that they are incompatible with streaming, as calculating the embeddings for
new data requires the entire procedure to be re-run [55].

Definition 7 (Global and local functions) Let f : Xn → R be a function
defined on the nodes in the graph (Xn, W ). We say f is global if |f(xi)| > η,
|f(xj)| > η for d(xi, xj) > r for some large η. We say f is local if for any nodes
where d(xi, xj) > r we have that |f(xi)| < ζ or |f(xj)| < ζ for some sufficiently
large r and sufficiently small ζ.

In the fourth paper of this thesis, we construct an embedding using localized
functions, which are cheaper to compute than global functions and can be
computed independently, which allows parallelization and distribution. This
scheme is also compatible with streaming data, as the localized functions can
easily be extended to new samples.

Quantifying similarity between samples A fundamental problem when learning
from point clouds is defining a natural notion of distance between samples. As we
have seen, the metric of the ambient space is, in most cases, only suitable locally.
However, this allows using a graph as a discrete approximation of the point cloud in
question and then defining more suitable distances on this graph. In the following,
we discuss two important distance metrics often encountered in the literature.

Perhaps the most natural distance is the graph geodesic [22], which corresponds
to finding the shortest path between two nodes in a graph. The geodesic can be
found using efficient algorithms such as Dijkstra’s algorithm and can be shown
to converge to the geodesic on the manifold as the number of samples grows to
infinity [115]. However, the shortest path distance is unstable, especially when the
data is not on a manifold, and small amounts of noise can dramatically affect the
result [12].

An alternative to the graph geodesic is the effective resistance distance (ER)
[61]. The ER between two graph nodes xi, xj ∈ Xn is normally defined as

Rn(xi, xj) = (ei − ej)⊤L†(ei − ej), (1.14)

where L† is the pseudoinverse of the graph Laplacian and ei ∈ Rn is the basis
vector for node xi, with 1 at the i-th entry and zero otherwise.
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The ER distance differs from the graph geodesic by considering all possible
paths between two points instead of only the shortest path. This makes ER more
stable to noise and enables capturing cluster structures; namely, tightly connected
regions of the graph have a smaller ER distance than loosely connected regions.
The problem with ER is that it has been shown to converge to a trivial limit in
the large graph limit [71, 125], which means it does not scale very well to big data
applications. In the third paper in this thesis, we look into ways to overcome this
issue in order to extend ER to large graphs.

4.2 Graphs as resistor networks

A resistor network (or resistor graph) is a conceptual framework that allows
working with graphs using analogies to electrical circuits. A graph (Xn, W ) can
be thought of as an electrical network where the nodes are connected by resistors
Rij = 1/Wij. It follows that a function on the graph nodes v : Xn → R can be
interpreted as a voltage v(xi), which induces a current through Ohm’s law such
that

v(xi) − v(xj) = Ri,jJi,j, or alternatively Ji,j = Wij(v(xi) − v(xj)). (1.15)

Combining this with Kirchoff’s current law, which states that the sum of currents
entering a node i must be zero, one can define the energy of the voltage

E(v) :=
∑

xi,xj∈Xn

Wi,j(v(xi) − v(xj))2 = vT Lv. (1.16)

The voltage function that minimizes the energy can be used to uncover
information about the graph. However, in an unconstrained system, the minimizer
is trivial as zero energy can be obtained for any voltage function for which all
entries are equal, namely v(xi) = v for all xi ∈ Xn. Consequently, it is necessary to
introduce constraints on the system. This is normally done by imposing conditions
on the voltage or the current flow in the system. Several graph embeddings can
be shown to correspond to minimizers of the energy under different constraints.
As examples, we consider Laplacian eigenmaps and effective resistance.

Laplacian eigenmaps Following Belkin and Niyogi [14], the coordinate functions
{vl}d

l=1 of the d-dimensional LE embedding in Eq. (1.13) can be shown to be the
solutions of the energy minimization problem

min
vl:Xn→R

n∑
xi,xj=1

Wij(vl(xi) − vl(xj))2

subject to vl ⊥ vl′ and vl ⊥ 1.

(1.17)

for l = 1, . . . , d. The constraint vl ⊥ 1 is introduced to avoid the trivial
solution while vl ⊥ vl′ ensures that the voltage solutions are orthogonal. Here
1 ∈ Rn is the vector of all ones. Meanwhile, it is worth noting that there are no
constraints imposing any locality of the voltage functions. This explains why the
eigenfunctions of LE can often be global, as discussed in Section 4.1. Furthermore,
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the orthogonality condition prevents calculating the eigenfunctions independently.
Consequently, this limits the use of distribution and parallelization to solve the
minimization problems.

In the fourth paper in this thesis, we address this by introducing constraints
that force the voltage function to be local, in the sense of Definition 7.
Furthermore, we do not require individual voltage functions to be orthogonal,
which allows them to be solved for independently.

Effective resistance Similarly to LE, effective resistance can also be formulated
as an energy minimization problem. Following Jørgensen et al. [58] the ER between
two graph nodes xi, xj ∈ Xn can be defined as in Proposition 8.

Proposition 8 The effective resistance between nodes xi, xj corresponds to
Rn(xi, xj) = 1/Jtot, where

Jtot :=
∑

j∈{1,...n}
Wij(v∗(xi) − v∗(xj))

and v∗ is the function that minimizes the Dirichlet energy

min
v:Xn→R

∑
xi,xj∈Xn

Wi,j(v(xi) − v(xj))2,

subject to v(xi) = 1, v(xj) = 0

Proof See Theorem 4.2, in Jørgensen and Pearse [58].
In Proposition 8, the solution is constrained using Dirichlet conditions on the
voltage. However, several equivalent formulations exist, as shown in Jørgensen
and Pearse [58]. Solving a minimization problem with constraints on the current,
it is easy to show that the solution corresponds to the ER defined in Eq. (1.14).

4.3 Kernel methods revisited

Kernel methods and learning in RKHSs are not restricted to regression and
supervised learning. Since Hk is a linear space equipped with an inner product,
the distance between features ϕi ∈ Hk is straightforward to compute. At the
same time, from Eq. (1.6) it follows that the kernel function can be thought of
as a non-linear similarity measure on the original set X . Consequently, the kernel
embedding allows samples xi, xj ∈ X to be compared implicitly through the inner
product in Hk, without knowing a natural notion of distance in the original space
X . In the following, we discuss a method that utilizes these observations to extend
traditional PCA to non-linear structures.

Kernel principal component analysis A notable kernel method for unsupervised
learning is kernel principal component analysis (kernel PCA) [102, 103]. Kernel
PCA generalizes standard PCA to point clouds with non-linear intrinsic structures.
The intuition is that the linear structure of Hk allows standard PCA to be applied.
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After centering the data in the feature space, it can be shown that the p-th
principal component is given as

vp(x) = 1√
λp

n∑
i=1

αp,ik(x, xi),

where (λp, αp) is the p-th eigenvalue-eigenvector pair of the kernel matrix Kji =
k(xi, xj), and

Kα = mλα.

We see that kernel PCA, similarly to KRR, is reduced to solving a linear system,
and the solution is expressed as a linear expansion in the kernel evaluated at the
training samples. We note that, as stated by Schölkopf et al. [101], kernel PCA
can also be thought of as a minimization problem on the form (1.2).

It is clear that kernel PCA suffers from the same scalability issues as KRR.
Solving the linear system requires calculating the eigenvalues of the kernel matrix,
which in general, requires O(n3) operations. Furthermore, kernel PCA requires
O(n2) memory to store the kernel matrix and needs O(nD) operations to project
new samples x onto the principal components.

We mention that kernel PCA gives an elegant connection between kernel
methods and the spectral embedding methods discussed in Section 4.1. In
particular, it is shown by Ham et al. [50] that ISOMAP, LLE, and the Laplacian
eigenmaps can all be interpreted as kernel PCA for a particular choice of kernel.
For example, Laplacian eigenmaps can be considered as performing kernel PCA
with the pseudoinverse of the graph Laplacian, which is closely connected to
commute times and the ER distance on graphs.

4.4 Alternative methods

The task of learning intrinsic structures in point clouds has been addressed in
several other works in the literature, beyond kernel methods and graph-based
methods. A notable approach is the geometric multi-resolution analysis (GMRA)
developed in a series of works [4, 64, 65, 72]. Another notable example is local
tangent space alignment [131].

5 Scaling kernel-based learning for big data

For most real-world applications, it is necessary to use algorithms that can handle
large amounts of data in a resource-efficient manner. Furthermore, the scale
of modern data sets has motivated the development of powerful computational
models such as streaming, parallelization, and distributed systems. To fully utilize
the potential of these computational models, it is essential to develop algorithms
that can operate and work with data in the way the computational models demand.

As we have seen in Section 1.4 and 4.1, graph-based methods such as spectral
embeddings and kernel methods such as KRR and kernel PCA are, in their basic
form, prevented from large-scale applications due to their considerable memory
requirements and computational costs. In particular, we have seen that these
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methods rely on the construction of large n × n kernel matrices and on expensive
inversions and spectral decompositions of these matrices. Furthermore, these
methods are not optimized for powerful computational models such as streaming,
parallelization, and distribution.

In the following, we start by reviewing the requirements on data handling
imposed by computational models such as streaming, parallelization, and
distribution. We then review several techniques rooted in randomized numerical
linear algebra [76] used to reduce the size of kernel matrices for the purpose
of improving time and memory usage. We also review iterative approaches for
efficiently solving eigenvalue problems and matrix inversion problems.

5.1 Computational models

Modern data sets are often prevented from loading into memory in their
entirety due to their sheer size or because they are provided only through a
continuous stream of examples. Furthermore, computational models such as the
streaming model of computation, parallelization, and distribution enforce their
own requirements on how data can be managed. To fully utilize the potential
of parallelization and distribution and to enable learning from data streams, it is
necessary to be aware of the requirements of these computational models when
designing learning algorithms.

In the following, we will give a brief overview of these computational models
and their requirements.

Streaming model of computation A streaming model of computation [81] is
necessary for data prevented from being made available in memory in its entirety.
This could be because the data is too large to be kept in memory and, therefore,
must be loaded incrementally or in batches. Alternatively, it could be because the
data is recorded and made available continuously. The development of learning
algorithms to handle streaming data is of great interest in machine learning, as
shown by recent reviews by Gomes et al. [47] and Bahri et al. [10], due to the rapid
increase of data exhibiting such requirements in big data applications.

Streaming algorithms read data as a single sample or a mini-batch at a time and
incorporate it into the learning model. After processing a sample, the algorithm
discards it to limit the data kept in-memory. Because of the large data size,
possibly infinite, the computational complexity of operations performed in-memory
can not scale with the data size. In general, this is handled by storing only a sketch
of the data in-memory. The size of the sketch is usually significantly smaller or
even independent of the size of the data itself. Updates to the learning models
either happen incrementally with each new sample, or batch-incrementally with a
batch of new samples [10].

In the first paper of this thesis, we develop a learning scheme for KRR that is
designed for the streaming setting.

Parallelization and distributed computations Parallelization and distributed
computations are closely linked computational concepts but differ in some
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vital aspects [11]. The fundamental difference between the two is that
parallel computing utilizes several processors typically sharing memory on the
same computer. Meanwhile, distribution refers to computations performed at
independent computers often provided through cloud services that do not have
access to the same memory. Parallelization can be used to greatly increase the
utilization of computer resources, while distribution allows the use of clusters to
significantly scale the available resources beyond one computer.

In the fourth paper in this thesis, we develop an embedding scheme based on
localized functions that can be calculated independently and do not require access
to all data simultaneously, therefore allowing parallelization and distribution.

5.2 Matrix approximation techniques

When dealing with large positive semi-definite matrices, a common strategy for
reducing the computational expense is to find a low-rank approximation that
can replace the original matrix. This is part of a more general question, closely
studied in numerical linear algebra [76], on how to find a good spanning subset
of rows or columns for a given matrix. The motivation is that many matrices
have singular values that decay fast. Therefore, in principle, it should be possible
to approximate such matrices by a subset of basis vectors. The best rank-one
approximation is clearly the leading singular vector, but as the main goal is to
speed up computations, using the singular vectors is often not an option.

In numerical linear algebra, there are several methods designed for low-rank
approximations of matrices. A discussion on some of these techniques can be
found in Mahoney et al. [74] and in Bach [9] with particular emphasis on
kernel methods. However, we will concentrate on two specific approximation
techniques, namely Nyström sub-sampling [128] and random features [90], which
have been particularly successful in the context of kernel methods. We mention
that several other matrix approximation strategies exist. An example is block
kernel approximation, which utilizes the clustering structure of kernel matrices
to approximate the matrix. Another notable example is memory-efficient kernel
approximation, which utilizes low-rank structures in the matrix in addition to the
cluster structure to enhance the approximation further [107].

Nyström sub-sampling The main idea of the Nyström sub-sampling is to
create an approximation of a PSD matrix A ∈ Rn×n using a subset Γ̃ ⊂ Γ =
{1, . . . n} of the matrix column indices. The Nyström approximation was proposed
simultaneously by Williams and Seeger [128] and Smola [109], the main difference
being the column selection strategy. In its fundamental form, the Nyström
approximation can be written as

Ãnn = AnmA†
mmAmn,

where Anm = A(Γ, Γ̃) ∈ Rn×m, and similarly Amm = A(Γ̃, Γ̃) ∈ Rm×m, are
constructed on the selected subset of columns. We note that the error in the
approximation is elegantly connected to the Schur complement as Ann/Amm =
Ann − AnmA†

mmAmn.
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The use of the Nyström approximation is useful in many applications involving
spectral decompositions and inversion of A. A typical application is where the
inversion of A + λI is necessary. For example, KRR requires solving a linear
system of the form (K + λI)α = y, where K ∈ Rn×n is the kernel matrix and
y ∈ Rn is the labeled training samples. Using the Nyström approximation and the
Woodbury formula we get

α = 1
λ

(
y − Knm(λKmm + K⊤

mn)Knm)Kmny
)
,

which can be solved with O(m2n) computations and O(nm) memory [128]. Other
more advanced solution techniques have also been used, the most notable in terms
of KRR is FALKON developed by Rudi et al. [95], which combines sub-sampling
with an iterative solver and a sub-sampled preconditioner.

In the context of kernel methods, each column corresponds to a feature vector
ϕi = k(Γ, xi). The column sub-sampling can therefore be thought of as selecting
a smaller hypothesis space Hm ⊆ Hn ⊆ Hk, spanned by the features associated
with the selected columns. This is similar to the restriction introduced by Hn in
Eq. (1.8). Furthermore, since each column is associated with a specific sample in
the original domain X , the column sub-sampling can be thought of as selecting
a subset of the training samples Γ̃ = {x̃i}m

i=1 ⊂ Dn, often referred to as Nyström
centers. The estimator is expressed as a linear expansion in the kernels centered
at these Nyström centers

f̂ =
∑

x̃i∈Γ̃

α̃ik(·, x̃i) ∈ Hm.

Algorithms based on the Nyström approach differ in the way they select the
subset of columns. In the following, we review some popular selection schemes.

Randomized sub-sampling: The approach normally associated with Nyström
approximation is random sub-sampling, where sub-samples are selected uniformly
at random without replacement. This is the original strategy proposed by Williams
and Seeger [128]. Despite its simple nature, it has proven to provide good
approximations and is especially attractive as it requires no extra computations
and is easy to analyze theoretically [9, 94, 95]. We note that random sub-sampling
is often referred to as Nyström sub-sampling, although the Nyström approximation
is not restricted to the random sub-sampling choice.

A problem with random sub-sampling is that important columns can be missed.
For example in regions with few available samples, random sub-sampling might
miss out on sampling columns from these regions entirely. Meanwhile, regions
with a high density of samples can have too much influence.

Leverage scores sub-sampling: Mahoney and Drineas [73] introduced the
concept of leverage scores as a way to ensure that important columns are sampled,
whereby important we mean columns that have a proportionally large effect on
the low-rank fit. The fundamental idea is to create a probability distribution that
reflects the importance of columns and then sample the columns according to
this distribution. Alaoui and Mahoney [3] extended this concept to kernel ridge
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regression, introducing leverage scores tailored to this setting. In this formulation,
each training sample xi ∈ Dn is associated with a leverage score

l(xi) = (K(K + tnI)−1)ii and probability pi = l(xi)/
n∑

i=1
l(xi).

The columns are sampled with probability p = (p1, . . . , pn). The challenge with
leverage scores is that they are expensive to compute, therefore approximations
are typically used instead [29, 38, 94–96]. An efficient algorithm for approximating
leverage scores can be found in Rudi et al. [96].

Non-probabilistic sub-sampling: The sub-sampling schemes reviewed above rely
on a probabilistic approach to sub-sampling. However, sub-sampling strategies
for low-rank matrix approximation are not limited to this setting. In particular,
Smola [109] proposed a greedy strategy, relying on the pivoted Cholesky method,
which iteratively searches for optimal columns. Meanwhile, Fine and Scheinberg
[41] proposed a method based on incomplete Cholesky factorization. These
non-probabilistic techniques give better approximations than their probabilistic
counterparts but have in general larger computational expenses and are harder to
analyze [9, 76].

Random features The idea behind random feature approximation of kernel
matrices is rooted in the empirical approximation method found in approximation
theory and randomized linear algebra [36, 37, 76]. The main idea is as
follows, assume that we have a low-rank random matrix Z ∼ ρZ sampled from
some distribution ρZ such that its expectation equals the matrix we want to
approximate, namely A = E[Z]. It follows that the empirical mean is a good
estimator of A

Z̃m = 1
m

m∑
i=1

Zi,

where each Zi is sampled i.i.d from ρZ .
In Rahimi and Recht [90], this approximation strategy was introduced for kernel

matrices along with the concept of random features. Let k : X × X → R be a
kernel function, and let K ∈ Rn×n with Kij = k(xi, xj) be the associated kernel
matrix constructed on the data set Dn = {xi}n

i=1. The random feature approach is
concerned with finding a bounded function z(x, w) : X × W → {z ∈ C, ∥z∥ ≤ ∞},
sampled according to some distribution ρW defined on W , such that

k(xi, xj) =
∫

z(xi, w)z(xj, w)∗dρW = E[z(xi, w)z(xj, w)∗].

If z(x, w) is known, the kernel matrix can be approximated by forming the
random matrix Z(w) = z(w)z(w)∗, whose expectation is K = E[Z]. Here
z(w) =

(
z(x1, w), . . . , z(x1, w)

)
is called a random feature. The existence of a

function z(x, w) that satisfies this property is the case for several PSD kernels.
For example, for the Gaussian kernel, we have z(x, w) = exp (i⟨x, w⟩) where
w ∼ N (0, σ−2) [76]. The cost of this approximation is O(nmd) where d is the
dimension of X .
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Computational remarks When using the approximation techniques described
above, in the context of KRR, it is of interest to characterize the number of sub-
samples m necessary to maintain the statistical accuracy of standard KRR.

Consider a hypothesis space H and the optimal statistical accuracy measured
in terms of the excess risk in H, namely RH(f) as defined in Eq. (1.4). The
standard KRR estimator f̂n from Eq. (1.9), achieves the rate RH(f̂n) = O(n−1/2)
when λ = n−1/2, which is optimal statistical accuracy in a min-max sense according
to Rudi et al. [95]. Table 1.2 (adapted from Rudi et al. [95]) compares this to
alternative implementations of KRR for parameter choices that give the same
optimal statistical accuracy.

KRR solver Training time Kernel evaluations Memory Test time
Standard KRR n3 n2 n2 n

Random features [90] n2 n
√

n n
√

n

Nyström [109, 128] n2 n
√

n n
√

n

Nyström iterative [24] n2 n
√

n n
√

n

FALKON [95] n
√

n n
√

n n
√

n

Table 1.2: Table adapted from Table 1 in Rudi et al. [95]. Computational and memory
requirements to achieve optimal learning rates for KRR

We note that further computational improvements to KRR can be achieved
by introducing iterative methods, such as gradient descent with early stopping,
to approximate the solution of (K + λnI)α = y from Eq. (1.10) [24].
FALKON proposed in Rudi et al. [95], takes this a step further by introducing a
preconditioner also subject to Nyström-based sub-sampling, which further reduces
computational and memory requirements while maintaining the same optimal
statistical accuracy.

Utilizing GPU acceleration and parallelization, Meanti et al. [78] demonstrate
that FALKON can be applied efficiently to large-scale datasets with billions of
points. However, despite its success in application to large-scale data sets, FALKON
still requires the selection of an optimal bandwidth and does not incorporate an
efficient way to select this bandwidth in a streaming framework, where cross-
validation techniques are inapplicable. The same can be said about Nyström sub-
sampling techniques based on probabilistic schemes such as random sub-sampling
and leverage scores, which require access to the available data to determine the
optimal number of sub-samples m, which again might depend on the bandwidth.
FALKON does not address the issue of selecting these samples in a streaming
environment.

In the first paper in this thesis, we develop a novel algorithm utilizing a
modified version of FALKON as the core solver. The algorithm introduces a novel
sub-sampling and bandwidth selection scheme to extend the KRR approach to
streaming data. Another notable effort to extend KRR to the streaming setting
is the multi-kernel online learning scheme proposed by Shen et al. [106]. This
algorithm utilizes a random feature-based approach for matrix approximation and
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combines this with an iterative gradient descent-based update of the expansion
weights.

5.3 Sparse eigensolvers

Finding the eigenvalues and eigenvectors of large matrices is an expensive
operation. For n × n matrices, the cost is O(n3). However, when additional
information is known about the matrix, this cost can be significantly reduced. For
example, utilizing sparsity in a matrix can reduce both memory and computational
requirements. In this section, we discuss how sparsity can reduce expenses involved
with finding the eigenvector of the leading eigenvalue, in terms of the power
method.

Sparse matrices An m × n matrix is said to be sparse if it has O(min(m, n))
non-zero elements [116]. Meanwhile, a matrix that has very few non-zero elements
is referred to as dense. In the modern era, sparse representation of matrices is
available in most programming languages, and the advantage of working with
these representations is as follows:

• Memory: Large matrices can be stored in a compressed form where only the
non-zero elements with their associated indices are stored.

• Computational: Time is saved if only operations with non-zero elements are
performed.

An important application of sparse representations is the power method and
finding the largest eigenvector of sparse matrices.

Power method The power method [76], also known as power iteration, is an
iterative method in the family of Krylov subspace methods, for finding the leading
eigenvalue λmax or eigenvector of a positive semi-definite matrix. Let A ∈ Rn×n be
a PSD matrix. Starting with an initial guess v0 ∈ Rn the power method generates
a sequence of eigenvector estimates

vt = Avt−1

∥Avt−1∥2
, with associated eigenvalue estimates ηt = v⊤

t Avt,

for t ≥ 1. We note that this is similar to the procedure of finding the stationary
solution of the random walk matrix, discussed in Section 4.1.

For each iteration t, the power method calculates the matrix-vector product
Avt, if the matrices are sparse, the computational cost of these operations can be
significantly reduced. Further improvements can be made if the vector vt is also
sparse [8]. However, despite this, there is still the need to construct and index a
large Rn×n sparse matrix.

In the fourth paper in this thesis, we suggest a scheme that ensures that
the vector vt is spatially localized in the underlying graph, see Definition 7.
Consequently, it is possible to work with only a sub-matrix of A. For large sample
sizes n, this can have significant improvements as one only needs to construct the
matrix on a subset of the data.
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6 Manuscript contributions

In this section, we present four original manuscripts developed in this thesis. The
first two manuscripts are concerned with regression in a supervised setting. The
last two manuscripts are concerned with uncovering the intrinsic structure of point
clouds in an unsupervised setting. The first paper presents a novel KRR solver
StreaMRAK. The second paper demonstrates StreaMRAK as a tool for predicting
ionic membrane currents from cardiac action potential traces. The third paper
proposes a new definition of effective resistance to alleviate the convergence issues
encountered by the standard definition. The fourth paper demonstrates a new
embedding strategy for point clouds.

6.1 Paper I: StreaMRAK

Kernel ridge regression allows the learning of highly non-linear functions. The
success of this method has been demonstrated in many applications and is
supported by a well-established theoretical foundation [54, 92, 101, 104]. However,
KRR, like other kernel-based learning algorithms, suffers from large memory
requirements and high computational costs. These costs arise because learning
with KRR involves solving a linear system (K + λnI)α = y for the coefficients
α ∈ Rn, where the kernel matrix K ∈ Rn×n grows with the number of samples.

Efforts to overcome computational expenses and large memory requirements
have focused on reducing the size of the kernel matrix with sub-sampling techniques
such as Nyström approximations and random features. Furthermore, using scalable
iterative methods to solve the linear system (K + λnI)α = y have been shown to
significantly cut down the computational costs. These efforts have led to many
capable KRR solvers, as summarized in Table 1.2. A prominent example is
FALKON, developed by Rudi et al. [95], which has been demonstrated to work
efficiently with massive datasets [78].

Manuscript contribution We develop a novel kernel-based learning algorithm
called StreaMRAK, for the purpose of extending KRR to the streaming
computational model. The contributions of this algorithm can be summarized
as

1. Efficient use of samples.

2. Efficient selection of hyper-parameters.

3. Compatibility with streaming.

4. A novel way to mitigate the curse of dimensionality.

The motivation for the algorithm is that in a streaming computational model,
we expect large amounts of data to arrive sequentially or in batches. However,
computational resources and memory are limited. In light of this, StreaMRAK has
been designed to make efficient use of samples, only storing samples as long as
they are needed and then discarding them.
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Furthermore, the use of cross-validation to optimize the kernel bandwidth is
cumbersome in a streaming setting. Therefore, StreaMRAK implements a multi-
resolution approach to learning that consists of two parts, a novel sub-sampling
scheme combined with an efficient bandwidth selection strategy. Together, these
methods adapt the bandwidth and sub-sample density to the resolution level
in a data-driven manner. The benefit is that expensive optimization over the
bandwidth hyper-parameter is avoided, although at the cost of not finding the best
possible bandwidth at each level. The sub-sampling part of the multi-resolution
approach is formulated as a pyramid, starting at a low-resolution level l, with few
sub-samples from the data, it gradually increases the resolution and number of
sub-samples for growing l.

The multi-resolution scheme also includes a boosting formulation of KRR,
where the estimator at level l is defined as

f̂
(l)
n,λ(x) = f̂

(l−1)
n,λ (x) + ŝ

(l)
n,λ(x).

and ŝ
(l)
n,λ is the estimator obtained after regression on the residual d(l)([xn]) = y −

f̂
(l−1)
n,λ ([xn]), where d(0) = y. FALKON is employed as a base solver to solve the KRR

at each level. Here we take f([xn]) to mean f([xn]) = (f(x1), f(x2), . . . , f(xn))⊤.
This procedure corresponds to gradient boosting with L2 loss from Section 1.5,

where the step length is β(1) = 1 at each step. Specific to StreaMRAK is that the
samples [xn] used to calculate the residual at each level, are sampled independently
from the samples used to train the model at the previous level.

We note that the multi-resolution scheme developed in StreaMRAK is inspired
by a specific multi-resolution scheme used in image analysis, known as the
Laplacian pyramid (LP) [23]. Moreover, during a further literature review, after
finalizing the paper, we were able to establish a connection between the LP and a
particular version of gradient boosting. In fact, Shao et al. [66] proposed a boosted
version of KRR similar to StreaMRAK. However, we note that the boosted KRR
developed in Shao et al. [66] does not correspond to a multi-resolution scheme.
This is because the bandwidth is kept fixed at each level and the sub-sampling
density is not adapted to the bandwidth. Regardless, the boosting perspective
provides a useful foundation for interpreting the performance of StreaMRAK, and
is, therefore, the perspective we have chosen to take in this discussion.

Boosting achieves two things. First, it is known to generate a composite
estimator with better generalization properties than its base learners, even when
these are weak learners. This justifies the adaptive bandwidth-selection approach
discussed earlier. Since weak learners are acceptable, kernels can be defined with
a bandwidth that is adequate without too much effort dedicated to finding the
optimal one. Secondly, since StreaMRAK uses new samples at each level to evaluate
the residuals d(l)([xn]), the estimator at the next level sees the generalization error
of the previous and can compensate for it.

Finally, learning in high dimensions is known to be infeasible due to the large
number of samples required; see Section 2. This problem is especially problematic
in a multi-resolution scheme since high resolution, i.e. small kernel bandwidth,
requires a high density of samples. Furthermore, as discussed in Section 3, the
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Figure 1.5: Demonstration of how StreaMRAK adapts the sub-sampling density to the
kernel bandwidth. The upper row shows the distribution of sub-samples on the dumbbell.
The lower row shows the average distance to the 7-nn samples. The sub-samples selected
by StreaMRAK are marked in blue, while the samples selected by random Nyström sub-
sampling are marked in red. The grey dotted line in the lower row is the bandwidth.
(Here LP-KRR refers to sub-sampling using random Nyström sub-sampling)

intrinsic dimension of point clouds can change based on location and resolution.
In particular, if the noise level is reached, the intrinsic dimension becomes that of
the ambient space. Because of this, StreaMRAK implements a scheme to identify
regions of high dimensionality. The strategy is then to dedicate fewer resources
to these regions and focus instead on lower-dimensional regions where learning is
feasible.

To better understand the adaptive bandwidth- and sub-sampling strategy, we
refer to Figure 1.5, which illustrates the method on a dumbbell-shaped point
cloud. In the dumbbell, the spheres are 5-dimensional, and the connecting plane
is 2-dimensional. In the figure, the upper row shows how the sub-samples are
distributed on the dumbbell for levels l = {4, 5, 6}. The blue marks refer to sub-
sampling with StreaMRAK, while the red marks (labeled LP-KRR) refer to random
Nyström sub-sampling. The lower row in the figure shows, for levels l = {4, 5, 6},
the average distance between each sub-sample and its 7-nearest neighbors in the
set of sub-samples. These distances are compared with the kernel bandwidth rl

at the corresponding level, shown by the grey dotted line. At each level, the
kernel bandwidth is reduced by rl = 2−lr0 from some initial bandwidth r0 > 0.
It is desirable that the average distance between sub-samples is comparable in
magnitude with the kernel bandwidth. It is apparent that the sub-sampling used
in StreaMRAK, adapts better to the bandwidth. In addition, from Figure 1.5f,
we can see how StreaMRAK gives up in high dimensions by no longer selecting
samples from the spherical regions when the bandwidth becomes too small.
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6.2 Paper II: Improving inversion of model parameters from
action potential recordings with kernel methods

An important aspect of developing anti-arrhythmic cardiac drugs is the
measurement of ionic membrane currents p = (p1, . . . , pd) in cardiomyocytes.
These ionic currents are responsible for the electrical properties and dynamics
of cardiomyocytes, which in turn are essential to the contractions generated by
these cells; see Remark 9. Furthermore, most anti-arrhythmic drug agents interact
with ionic channels in the cellular and sub-cellular membranes to modulate ionic
currents. Consequently, the measurement of ionic membrane currents can be used
to guide the development of drugs that target these channels and give valuable
insights into heart disease and electrical properties of the heart.

Remark 9 "Cardiomyocytes are the cells responsible for generating contractile
force in the intact heart."[129]

Direct measurements of ionic membrane currents require expensive equipment
and specialized practitioners [26, 62]. Meanwhile, the dynamics of these currents
are responsible for generating the cardiac transmembrane potential v, known as
the action potential (AP). We denote this relationship as v = f(p). The AP can
be measured at significantly lower cost and expertise, using techniques such as live
cell fluorescence microscopy and microelectrode arrays [28, 53, 77]. Furthermore,
several mathematical models f̃ are developed to approximate the function f [39,
42, 48, 83, 87, 89, 97, 98, 114, 117]. Because of this, AP measurements, together
with AP models, are a promising gateway to efficiently quantifying ionic membrane
currents.

Problem 10 Given an experimentally measured AP trace wi = (wi1, . . . , wiT ) ∈
VT ⊂ RT where T is the number of recorded time steps. Characterize the
corresponding ionic membrane currents p = (p1, . . . , pd) ∈ P ⊂ Rd with the help
of an AP model f̃ : P → VT .

Problem 10 is an inverse problem. Namely, given a set of observations we want
to find the parameters that caused them. This problem is, therefore, often referred
to as the problem of AP trace inversion. What makes Problem 10 challenging is
that the relationship between ionic membrane currents and the cardiac action
potential is highly non-linear and stochastic in nature [88]. Furthermore, the AP
is determined by substantial amounts of distinct ionic currents, many of which are
of interest to identify in clinical applications. The AP models, designed to capture
these dynamics, inevitably consist of complex systems of equations, typically large
systems of ODEs that are expensive to compute; see e.g. Qu et al. [88] for a review
on AP models and their construction.

Moreover, in many AP models, several ionic currents that are of interest to
identify suffer from sensitivity and identifiability issues [56]. Meaning that their
effect on the AP is hard to detect or the effects from different currents cancel
each other out in certain regions of the parameter domain. Consequently, when
designing algorithms for AP trace inversion, these are challenges that need to be
taken into account.
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In the literature on AP trace inversion, Problem 10 is normally addressed by
defining a loss function L(ϕAP (w), ϕAP (v)) over a set of AP features ϕAP (v) =
(ϕAP

1 (v), . . . , ϕAP
m (v)), ϕi : VT → R constructed on the AP traces. The strategy is

to search in parameter space P for a parameter vector p whose corresponding AP
trace v = f̃(p) minimize the loss function. To find the minimizer, the common
strategy is to use gradient-free iterative optimization schemes such as Nealder-
Mead and Particle swarm [27, 57, 68]. However, the challenge with these iterative
optimization schemes is that they must solve the AP model at each iteration. Since
existing AP models are large systems of ODEs that are expensive to solve, this
makes iterative optimization schemes slow in the face of large datasets.

In Tveito et al. [118], this scalability issue is addressed by first sampling a
large quantity of ionic current parameters {pi}n

i=1 from P , either uniformly or
from a grid. The system of ODEs is then solved on these parameters to generate
a dataset Dn = {(vi, pi)}n

i=1 consisting of AP traces and the corresponding current
parameters. We refer to this dataset as a "pre-computed" dataset. For a given
measured AP trace w, one can then search for the closest AP trace within Dn,
namely vopt = argminv∈Dn

L(v, w), where L is some loss function. If n is small,
vopt can be found by brute force, computing the distance between all sample pairs.
However, for sufficiently large n, this is not computationally viable. In Tveito et
al. [118], an iterative scheme, searching in bounding boxes defined in P , was used
instead. Thereby reducing the number of samples to compare.

The advantage of using a pre-computed dataset is that it moves the
computational expense to a pre-computation step, making the algorithm
significantly faster in the prediction phase; where one wish to find the ionic
membrane currents corresponding to AP traces w measured in the lab. However,
this comes at the cost of introducing large memory requirements in storing the pre-
computed data, as well as requiring advanced methods for reading and accessing
the data.

Manuscript contribution In this paper, we propose solving Problem 10 by
learning an estimator f̂n of the inverse map f̃−1 using a pre-computed dataset
Dn = {(vi, pi)}n

i=1. The benefit of learning a model instead of using iterative
optimization is that once the model is trained, prediction can be performed without
the ODE system or the extensive pre-computed dataset.

Furthermore, we propose to use a kernel function k : VT ×VT → R to implicitly
map the AP traces into a high dimensional feature space, namely an RKHS Hk.
The features {ϕi(v)}∞

i=1 of the RKHS give a much richer representation of the AP
traces than the AP features {ϕAP

i (v)}m
i=1. Here ϕi = k(·, vi). Moreover, efficient

comparison of AP traces is made possible by the kernel trick, k(vi, vj) = ⟨ϕi, ϕj⟩k,
which circumvents the need to calculate the features explicitly.

To find the best estimator in the RKHS we use kernel regularized ridge
regression as this gives rise to a convex optimization problem in Hk, thereby
avoiding the issue of local minima. In the manuscript, we compare the KRR
solvers StreaMRAK and FALKON, where StreaMRAK is the algorithm developed in
the first paper in this thesis; see Section 6.1.
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For a measured AP trace w, the performance of StreaMRAK and FALKON is
compared to finding the best fit in the dataset, namely vopt = argminvi∈Dn

L(vi, w).
For this purpose, the L2 loss directly in VT ⊂ RT and the L2 loss in the AP-feature
space are used. Since we are interested in comparing accuracy, it is natural to
compare with vopt as this is the solution that is searched for iteratively in Tveito
et al. [118].

The contribution of this manuscript is to demonstrate that kernel methods
are a viable modeling strategy for the problem of estimating ionic current
parameters from AP trace measurements. The manuscript demonstrates that
the kernel methods StreaMRAK and FALKON have significantly higher accuracy
and reliability than the optimization scheme used in Tveito et al. [118]. This
is important as high accuracy and reliability in predictions are essential in
drug development, where errors can have severe consequences. In particular,
StreaMRAK is shown to outperform FALKON both in terms of accuracy and
reliability across different regions of the parameter domain.

Figure 1.6: Predictions of parameters from AP traces corresponding to parameters on
the circle C = {p ∈ P : ∥p − p0∥2 = 0.2}, where p0 = (1, 1). For StreaMRAK and FALKON
the predicted parameters are very close to the circle C.

Figure 1.6 compares StreaMRAK and FALKON with four alternative parameter
prediction schemes. Here Eucl-1-nn refers to vopt = argminvi∈Dn

L(vi, w) with the
L2 loss in VT and Eucl-10-nn refers to the average over the 10 nearest neighbours
as measured by this loss. Similarly, Apf-1-nn refers to vopt with the L2 loss in AP-
feature space, and Apf-10-nn refers to the average over the 10 nearest neighbours.
The algorithms are given AP traces corresponding to parameters sampled from
the circle C = {p ∈ P : ∥p − p0∥2 = 0.2}, where p0 = (1, 1). The goal is to
predict the parameters that generated the given AP traces. From the figure, it is
clear that the prediction accuracy of StreaMRAK and FALKON is higher and also
more consistent in every direction in the parameter domain than the alternative
schemes.

6.3 Paper III: Effective resistance in metric spaces

Effective resistance (ER) is a distance metric on graphs. An important application
of this distance metric is to uncover the intrinsic structure of point clouds.
However, ER suffers from a major limitation. Namely, as the graph size increases,
the ER between nodes in a graph converges to a trivial limit. The latest
demonstration of this problem is due to Von-Luxburg et al. [71, 125] following
several other works on this issue [7, 20, 70]. This problem is commonly referred to
as the Von-Luxburg limit, which we define in Proposition 11.
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Proposition 11 (Von-Luxburg limit [71]) Let Gn = (Xn, W ) be a graph, with
nodes Xn = {x1, . . . , xn}, edge weights Wij and let Di = ∑n

j=1 Wij be the degree
of node xi. Let Rn(xi, xj) denote the effective resistance between node xi, xj ∈ Xn

defined in Proposition 8. It then follows that

lim
n→∞

Rn(xi, xj) ∝ 1/Di + 1/Dj

The consequence of Proposition 11 is that in the asymptotic limit, the distance
between two graph nodes xi, xj ∈ Xn is only determined by their respective degrees
Di, Dj. Consequently, the ER is effectively meaningless as a distance metric.
Furthermore, Von-Luxburg et al. [125] show that this problem occurs already for
relatively small graphs with n ≈ 1000 nodes.

Manuscript contribution The contribution of this manuscript is to introduce the
concept of region-based ER and to demonstrate that this definition does not suffer
from the trivial limit described in Proposition 11. Let Gn = (Xn, W ) be a graph
with nodes Xn = {x1, . . . , xn} and let Xs, Xg ⊂ Xn be two non-empty disjoint
subsets. We define the region-based ER as Rn(Xs, Xg) = 1/Jtot where

Jtot =
∑

xi∈Xs

∑
xj∈Xn

Wij(v∗
n(xi) − v∗

n(xj))

is the total current between Xs and Xg induced by the energy-minimizing voltage
v∗

n. This voltage is defined as the solution to the energy minimization problem

min
v:Xn→R

∑
xi,xj∈Xn

Wi,j(v(xi) − v(xj))2

Subject to v(xi) = 1 ∀xi ∈ Xs, v(xi) = 0, ∀xi ∈ Xg.

The region-based ER can be contrasted with the classical definition of ER from
Proposition 8.

The region-based ER is based on the definition of ER between sets from Song
et al. [110]. In the manuscript, we extend this to the setting where Xn are
sampled from a distribution µ defined over some metric space (M, d). We let
Xs = {x ∈ Xn : x ∈ Ms} and Xg = {x ∈ Xn : x ∈ Mg} where Ms, Mg ⊂ M are
disjoint measurable subsets of M .

Using a kernel function k : M × M → R, combined with appropriate scaling
of the edge weights, a local neighborhood graph Gn is constructed as described in
Definition 6. Under certain technical conditions on M, k, and µ, the region-based
ER defined on Gn is shown to converge in probability to a limit object Rµ(Ms, Mg)
as n → ∞. The contributions of the manuscript can be summarized as:

1. Existence: We prove the existence and uniqueness of Rµ(Ms, Mg)

2. Convergence: We prove that Rn(Xs, Xg) converges to Rµ(Ms, Mg) in
probability as n → ∞
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Figure 1.7: Convergence of region-based ER to a meaningful limit. (a) The pink half-
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3. Distance metric: We prove that region-based ER is a distance metric

4. Meaningful: We demonstrate numerically that region-based ER converges to
a meaningful limit

For a numerical example, consider the distance along the arch of the half-moon
illustrated in Figure 1.7a. Let d(·, ·) denote the true distance along the arch and
define the ratios

Γijp := d(xi, xj)/d(xi, xp) = 0.25 and Γikp := d(xi, xk)/d(xi, xp) = 0.5 (1.18)

Let Rij := Rn(Xi, Xj). As seen from Figure 1.7, when n increases, the ratios of
the region-based ER, namely Rij/Rip and Rik/Rip, converges to values close to the
ratios Γijp and Γikp respectively. Note that since the ER incorporates all possible
paths between the two nodes, we do not expect the region-based ER to converge
exactly to Γijp and Γikp. However, since the density of the half-moon is significantly
higher than that of the background, we expect the limits to be close. On the other
hand, with the limit in Proposition 11, the ratios are 1. This is because the density
on the half-moon is uniform, which means the respective degrees of the nodes are
the same.

6.4 Paper IV: Structure from voltage

Non-linear dimensionality reduction (NLDR) is the discipline of finding lower-
dimensional representations of non-linear data to reduce the impact of the curse of
dimensionality. As datasets are rapidly growing in size, developing scalable NLDR
algorithms is becoming increasingly important.

A powerful strategy to achieve scalability is to utilize powerful computational
models such as parallelization, distribution, and streaming. However, existing
NLDR techniques based on eigenfunction calculations, such as Laplacian
eigenmaps [14], are generally incompatible with these computational models. From
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the discussion in Section 4.2, we know that part of the problem with LE is that it
does not provide guarantees for the functions to be localized. Whereby localized,
we mean in the sense defined in Definition 7. Furthermore, demanding the
eigenfunctions to be orthogonal means they can not be computed independently.
Moreover, once the eigenfunctions are calculated, they can not be extended to new
samples without repeating the process.

Manuscript contributions In this manuscript, we propose a novel embedding
scheme based on localized voltage functions that can be calculated independently,
thereby allowing them to be computed using parallelization and distributed
schemes. The voltage functions we define can also be easily extended to new
samples, which makes them compatible with a streaming model of computation.
We refer to these voltage functions as grounded metric voltage functions (GMVs)
denoted vn,si

. The proposed embedding is

xi 7→ (vn,s1(xi), . . . vn,sm(xi))⊤. (1.19)

Consider a setting where Xn = {x1, . . . , xn} is sampled from a distribution µ
over some metric space (M, d). Let k : M × M → [0, 1] be a kernel function and
let (Xn, W ) be a graph with edge weights Wij = k(xi, xj)/n2. Furthermore, let rs

be some radius and g : R → [0, r] with r > 0 be a monotonic strictly decreasing
function. Define Xs = {x ∈ Xn : x ∈ Ms}, where Ms = {x ∈ M : g(d(x, xs)) ≤
rs}. Here xs ∈ M is what we call a source center. For a given source xs, we
define the associated GMV function vn,s : Xn → [0, 1] as the solution to the energy
minimization problem

min
v:X→[0,1]

∑
xi,xj∈Xn

Wij(v(xi) − v(xj))2 +
∑

xi∈Xn

ρv2(xi)

Subject to v(xi) = 1 for all xi ∈ Xs.

The term ∑
xi

ρv2(xi) incorporates the effect of an universal ground xg /∈ Xn,
with voltage v(xg) = 0, that connects to all nodes in Xn with edge weight
ρ = ρg/n for ρg > 0. This can easily be seen by considering Xn ∪ {xg}
and adding an extra row and column to Wij with the weight ρ. The term∑

xi∈Xn∪{xg} ρ(v(xi) − v(xg))2 = ∑
xi∈Xn∪{xg} ρv2(xi) can then be extracted from

the sum. Since the voltage of the ground is anyway v(xg) = 0, we drop the sum
over xg and ignore the ground in constructing Wij.

We note that in a random walk perspective, the ground can be interpreted as
a trap node with zero escape probability.

The idea of the source and ground constraints is that together, they create a
voltage function localized around xs. The contributions of the manuscript can be
summarized as follows:

1. Existence: We prove the existence and uniqueness of a limit object v∗
s .

2. Convergence: We prove that vn,s converges to v∗
s in probability as n → ∞.
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3. Locality: We provide bounds on the shape of v∗
s on the unit sphere Sd−1,

proving that v∗
s(xi) decays exponentially with increasing dS(xi, xs), with

decay governed by the magnitude of ρ. Here dS is the geodesic on Sd−1.

4. Embedding: We show analytically and numerically how the GMV can provide
an embedding of the unit sphere.

(a) Sphere segment 3
sources

(b) Sphere segment 5
sources

(c) Sphere segment 7
sources

(d) Sphere segment 9
sources

(e) Embedding 3
sources

(f) Embedding 5 sources (g) Embedding 7
sources

(h) Embedding 9
sources

Figure 1.8: Embedding of the two first quadrants of the unit sphere. The yellow and red
circles are source regions. The upper row shows the two first quadrants of the unit sphere,
and the lower row is the embedding xi 7→ (vn,s1(xi), . . . , vn,sm(xi)) for m ∈ {3, 5, 7, 9}.

It can be shown that vn,si
satisfies

vn,si
= D̃−1W̃ (si)vn,si

where W̃ (si) is referred to as the grounded weight matrix. This means that
vn,si

can be found by power iteration where D̃−1W̃ (si) is applied iteratively until
convergence. Due to the locality of vn,si

, it follows that only a sub-matrix
is necessary, which greatly reduces the computational expense of the iterative
procedure.

In Figure 1.8, an embedding xi 7→ (vn,s1(xi), . . . , vn,sm(xi)) of the 2-dimensional
unit sphere embedded in RD is demonstrated for m ∈ {3, 5, 7, 9}. Here
m ≪ D. For visualization, multidimensional scaling [35] is used to project the
representation into R3.

7 Summary and outlook

Learning algorithms based on a kernel function are theoretically well understood
in statistical learning theory and machine learning, which makes them attractive
learning algorithms in terms of reliability and interpretability. However, in
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their basic form, they suffer from large memory requirements and computational
costs, preventing their utility in real-world applications where datasets are huge.
Therefore, to allow the extension of these algorithms to big data, the development
of scalable kernel-based learning schemes is of interest.

In this thesis, we made several contributions that improve the scalability of
kernel-based learning. The novel KRR solver StreaMRAK developed in paper I
and further demonstrated in paper II, has shown promise as an efficient KRR
solver with improvements over the existing KRR solver FALKON.

Future work should focus on studying the generalization properties of
StreaMRAK. In particular, in the asymptotic limit, FALKON has estimation rates
that are optimal in a min-max sense [95]. As such StreaMRAK can not achieve
better in this limit. However, our numerical experiments suggest that StreaMRAK
can reach high predictive accuracy with significantly fewer samples than FALKON.
The characterization of the generalization properties of StreaMRAK is therefore
of great interest to gain insights on how the boosting and adaptive sub-sampling
impact the learning.

In the second paper of this thesis, StreaMRAK was demonstrated as a reliable
algorithm for estimating ionic membrane currents from cardiac AP traces. This is
an important problem within cardiac anti-arrhythmic research and cardiac drug
development. Therefore, a further demonstration of StreaMRAK in this field is
of great interest. In particular, the important aspects of AP trace inversion are
scalability, reliability, and the ability to handle parameters with identifiability and
sensitivity issues. The study in paper II focuses on demonstrating StreaMRAK in
terms of its reliability and its ability to detect low-sensitivity parameters. The
study is performed in a controlled setting with a limited number of parameters.
Future work should focus on identifiability issues and, finally, on applying
StreaMRAK to modern AP models with hundreds of parameters.

The third paper in this thesis has demonstrated how the region-based ER avoids
the convergence issues of standard ER. Future work should focus on characterizing
the dependency between source radius, kernel bandwidth, the weight-to-ground,
and graph size. The consequences of decreasing the source radius are of particular
interest.

The theoretical and numerical results from paper IV lay the foundations for
an embedding scheme utilizing grounded metric voltage functions. For future
work, there are in particular two directions of interest. We are currently working
towards extending the embedding scheme to more general manifolds and real-world
data. Furthermore, the computational and algorithmic aspects of the embedding
scheme require further development. In particular, our results show that the
GMVs are localized and can be computed independently in an iterative manner,
indicating compatibility with distribution and streaming. Current efforts are
therefore dedicated to algorithmic developments that can utilize these properties.
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a b s t r a c t 

Kernel ridge regression (KRR) is a popular scheme for non-linear non-parametric learning.

However, existing implementations of KRR require that all the data is stored in the main

memory, which severely limits the use of KRR in contexts where data size far exceeds

the memory size. Such applications are increasingly common in data mining, bioinformat- 

ics, and control. A powerful paradigm for computing on data sets that are too large for

memory is the streaming model of computation , where we process one data sample at a

time, discarding each sample before moving on to the next one. In this paper, we pro- 

pose StreaMRAK - a streaming version of KRR. StreaMRAK improves on existing KRR 

schemes by dividing the problem into several levels of resolution, which allows continual

refinement to the predictions. The algorithm reduces the memory requirement by con- 

tinuously and efficiently integrating new samples into the training model. With a novel

sub-sampling scheme, StreaMRAK reduces memory and computational complexities by 

creating a sketch of the original data, where the sub-sampling density is adapted to the

bandwidth of the kernel and the local dimensionality of the data. We present a showcase

study on two synthetic problems and the prediction of the trajectory of a double pendu- 

lum. The results show that the proposed algorithm is fast and accurate.

© 2022 The Author(s). Published by Elsevier Inc.

This is an open access article under the CC BY license

( http://creativecommons.org/licenses/by/4.0/ )

1. Introduction

Machine learning algorithms based on kernel ridge regression (KRR) [1] is an active field of research [2–6] , with applica- 

tions ranging from time series prediction in finance [7] , parameter inference in dynamical systems [8] , to pairwise learning 

� Code is found at: https://github.com/AndOslandsbotn/StreaMRAK.git
�� Abbreviations: KRR (kernel regularized ridge regression), LP (Laplacian pyramid), CT (Cover-tree), DCT (Damped CT).
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[9] , face recognition [10] and drug estimation and gene analysis in biomedicine [11,12] . This paper develops a streaming vari- 

ation of KRR using a radial kernel, a new sub-sampling scheme, and a multi-resolution formulation of the learning model. 

Many popular data analysis software packages, such as Matlab TM require loading the entire dataset into memory. While 

computer memory is growing fast, the size of available data sets is growing much faster, limiting the applicability of in- 

memory methods. 1 

Streaming [13] is a computational model where the input size is much larger than the memory size. Streaming algorithms 

read one item at a time, update their memory, and discard the item. The computer memory is used to store a model or 

a sketch of the overall data distribution, which is orders of magnitude smaller than the data itself. The development of 

streaming algorithms is experiencing increased popularity in the face of big data applications such as data mining [14] and 

bioinformatics [15] , where data sets are typically too large to be kept in-memory . Many big data applications call for non- 

linear and involved models, and thus, the development of non-parametric and non-linear models is critical for successful 

learning. 

Among the most popular non-parametric learning algorithms are kernel methods, which include well-known learning 

schemes such as the support vector machine (SVM) and KRR, to name a few. The appeal of kernel methods lies in their 

strong theoretical foundation [1,16] , as well as their ability to map complex problems to a linear space without requiring an 

explicit mapping. A common class of kernels are radial kernels k ( x , ̃  x ) = �(‖ x − ˜ x ‖ /r) for x , ̃  x ∈ X ⊆ R 

D and bandwidth r > 0 

[17] . These kernels are universal (with a few exceptions [18] ), meaning that they can approximate any bounded continuous 

function on X arbitrarily well. However, in high dimensions, kernel methods suffer from the ”curse of dimensionality” and 

require large amounts of training data to converge. Furthermore, the computational complexity, memory requirement, and 

the number of parameters to learn grow unbounded with the number of training samples, a drawback known as the ”curse 

of kernelization” [19] . In the context of streaming, the prospect of unbounded data streams makes this shortcoming even 

more detrimental. 

Although kernel-based learning schemes are typically formulated as convex optimization problems, which do not require 

tuning hyper-parameters such as learning rate etc., there is still a need to determine the optimal kernel. For the Gaussian 

kernel, this amounts to selecting the bandwidth. Classically, an optimal kernel is chosen through batch techniques such as 

leave-one-out and k-fold cross-validation [20–22] . However, these approaches are inefficient as they spend significant time 

evaluating bad kernel hypotheses and often use multiple runs over the data, which is impossible in a streaming setting. 

To meet a need for non-linear non-parametric algorithms for streaming data, we propose the streaming multi-resolution 

adaptive kernel algorithm ( StreaMRAK ) - a computationally and memory-efficient streaming variation of KRR. StreaMRAK 

address the kernel selection problem with a multi-resolution kernel selection strategy that adapts the sub-sample density 

to the kernel bandwidth over several levels of resolution. Furthermore, StreaMRAK addresses the curse of dimensionality 

and kernelization in a novel way, through the sub-sampling scheme. 

1.1. Setting 

We consider a finite sample data-cloud X , |X | = n , that is sampled i.i.d. according to a fixed but unknown distribution 

P over R 

D . The target is a bounded and continuous function f : R 

D → R . We assume that the points in X are placed in a 

sequence and that their order is random. 2 Each instance x i ∈ X , for i ∈ [ n ] , paired with a label y i where y i = f ( x i ) + ε i and 

ε i ∼ N (0 , σ ) represents noise. The task of learning is to train a model ̂ f that is a good approximation of the target function 

f . 

In this work, we think about the intrinsic dimension of X as a local quantity, meaning it depends on the region A ⊆
X and the radius r at which we consider the point cloud. To estimate the local intrinsic dimension in a ”location and 

resolution sensitive” manner, we use the concept of the doubling dimension of a set, defined in Def. 1.2 . See [23,24] for 

related definitions. 

Definition 1.1 (Covering number) . Consider a set A and a ball B( x , r) , with r > 0 and x ∈ A . We say that a finite set S ⊂
B( x , r) is a covering of B( x , r) in A if A ∩ B( x , r) ⊂ ∪ x i ∈S B( x i , r/ 2) . We define the covering number κ(A , x , r) as the minimum 

cardinality of any covering of B( x , r) in A . 

Definition 1.2 (Doubling dimension) . The doubling dimension ddim (A , r) of a set A is defined as ddim (A , r) = 

� log κ(A , x , r) � . For an interval I ⊂ R > 0 we define the doubling dimension as the least upper bound over r ∈ I , that is 

ddim (A , I) = max r∈I ddim (A , r) . 

We say that the intrinsic dimension of X changes with the location if there exist A 1 , A 2 ⊂ X such that ddim (A 1 , r)  = 

ddim (A 2 , r) for r > 0 . Similarly, we say that the intrinsic dimensionality of X changes with the resolution, if there exist 

r 1  = r 2 such that the doubling dimension ddim (A , r 1 )  = ddim (A , r 2 ) for A ⊂ X . 

In Fig. 1 we consider three examples to provide further insight on the doubling dimension. In Fig. 1 a we see a do- 

main shaped like a dumbbell, where the spheres are high dimensional, and the bar connecting them is lower-dimensional, 

1 Simulink 
TM 

, a companion software to Matlab 
TM 

supports streaming but has a much more limited computational model, targeted at signal processing 

applications. 
2 The assumption that the sequence is randomly ordered allows us to draw statistical conclusions from prefixes. 
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Fig. 1. Three examples of variation in the intrinsic dimension. The coloring of the point clouds illustrates depth. 

Fig. 2. (a) Illustration of a double pendulum. Here l and m are the length and mass of the pendulum rods, and θ1 , θ2 are the angles. Furthermore, (x 1 , y 1 ) 

and (x 2 , y 2 ) are the positions of the point masses of the two pendulums. (b) Phase diagram of four double pendulums P 0 , P 1 , P 2 , P 3 , iterated for T = 500 

time steps. The bifurcation point at step T = 300 is indicated with a black solid circle. (c) and (d) includes the ω 1 axis and zoom in on respectively the 

blue and red circles in (b). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

showing how the dimension can change with the location. Meanwhile, Fig. 1 b illustrates a lower-dimensional manifold, em- 

bedded in R 

3 , with manifold noise ζm 

. We see that when the resolution is sufficiently small, so that r ≈ ζm 

, the doubling 

dimensionality increases towards the dimension of the ambient space R 

D . Furthermore, Fig. 1 c shows a point cloud that is 

locally 2-dimensional, but is embedded in a 3-dimensional space. By reducing r we can resolve this lower dimensionality, 

but if it is reduced further, we would eventually resolve the noise level, and the doubling dimension increases again. 

As an example of how the intrinsic dimension might change with respect to regions and resolutions, we consider a dou- 

ble pendulum system, a well-known chaotic system that depends heavily on its initial conditions [25] . Systems with multiple 

pendulum elements are well known in engineering applications such as mechanical and robotic systems with several joints 

and are studied for their chaotic properties [26] . 

In Fig. 2 b we visualize the trajectory of four pendulums P 0 , P 1 , P 2 , P 3 , for which the trajectories are indistinguishable until 

a bifurcation occurs around T = 300 time steps, and the trajectories start to diverge. In Fig. 2 c and Fig. 2 d we zoom in on 

the trajectory of all 500 pendulums in regions before and after the bifurcation. These two regions, A 1 and A 2 , are indicated 

by a blue and red circle, respectively, in Fig. 2 b. From the figures, it is clear that learning the trajectory in A 1 is significantly 

easier than in A 2 , where learning the trajectory is more affected by the curse of dimensionality. 

1.2. Contribution and comparison to related work 

Contributions of this work can be divided into three components. 

(C1) A multi-resolution variation of the state-of-the-art KRR solver FALKON [2] , using the LP, which refines the predictions 

at each level of resolution by regressing on the errors from the previous level. 

(C2) A novel sub-sampling scheme for kernel methods, tailored for use in combination with the LP, that can handle the curse 

of dimensionality and does not require the data to be in-memory . 

(C3) Development of a streaming variation of FALKON , where the time and memory requirements depend on the doubling 

dimensionality and the level of resolution, instead of the number of training points. see Props. 5.3 –5.5 . 

In the following, we give further details on these contributions and compare them to related work. The computational 

backbone of StreaMRAK is based on the state-of-the-art KRR solver FALKON [2] , which among other things combines 

sub-sampling and preconditioning to process large data sets efficiently. However, FALKON relies on selecting an optimal 

kernel bandwidth, which can be inefficient in streaming. 

Our first contribution (C1) addresses the issue of selecting an optimal bandwidth by introducing a multi-resolution re- 

formulation of FALKON using a changing bandwidth variation of the LP [27–29] . This strategy is inspired by the success of 

existing multi-resolution approaches [4,30–36] and, for online learning, adaptive bandwidth approaches [37–39] . Our scheme 

combines the LP with a localized kernel, which gives a frequency and location-based discretization, similar to wavelet anal- 
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ysis that have shown great success in numerous applications. However, typical wavelet architectures [40–46] require upfront 

construction of a wavelet basis, which is not compatible with a data-adaptive kernel. 

In this work, we aim to show that the LP is a viable multi-resolution scheme and can be modified to the streaming 

setting. Furthermore, we provide convergence bounds for the LP in the context of radial kernels and KRR, and show experi- 

mentally that it improves the estimation accuracy. 

Let us now discuss our second contribution (C2). FALKON addresses the curse of kernelization by combining Nyström 

sub-sampling, conjugate gradient, and preconditioning, and achieves time and memory requirements of O(n 
√ 

n ) and O(n ) 

respectively, where n is the number of samples. In recent years there have been several effort s to address the curse of 

kernelization in similar ways through sub-sampling techniques such as sketching [3,5] , randomized features [47–50] and 

Nyström sub-sampling [51–55] . However, despite their successes, these techniques are in principle in-memory type algo- 

rithms since they require access to the training data in advance of the training and are not optimized for streaming. 

Furthermore, FALKON selects the sub-samples uniformly over the input domain X . However, when learning with a 

radial kernel, the density of samples should be related to the bandwidth of the kernel. Otherwise, a too-small bandwidth 

will lead to bad interpolation properties, while a too-large bandwidth gives an ill-conditioned system [34] . Since the LP 

scheme reduces the kernel bandwidth at each level of resolution, it would be problematic to use the same sub-sample 

density. Furthermore, due to the curse of dimensionality, the covering number increases exponentially with the doubling 

dimension. Therefore, if doubling dimensionality varies across different regions of the domain X , as illustrated by Fig. 1 a, 

then the number of sub-samples necessary to maintain the density for a given bandwidth will also vary. 

Our second contribution (C2) provides an alternative sub-sampling strategy, adapting the sub-sampling density to the 

kernel bandwidth. This strategy is based on a damped cover-tree (DCT), which is a modified version of the cover-tree (CT) 

[24] , a tree-based data structure with O(n ) memory and O(c 6 n log n ) time. 

A problem with an adaptive sub-sampling strategy is its vulnerability to the curse of dimensionality. In regions of high 

doubling dimensions, the number of samples to achieve a certain density increases exponentially, as quantified by Def. 1.2 . 

This means that the number of sub-samples from the CT will quickly grow too large for efficient computing. The danger is 

to waste resources on samples from subsets and levels where the doubling dimension is so large that good interpolation 

cannot be achieved for any viable sample sizes. This would only serve to slow down the computation and not increase the 

precision. 

Due to this, the DCT introduces a damping property, which gradually suppresses the selection of sub-samples where 

the doubling dimensionality is large. This has the additional advantage of allowing to choose more sub-samples from re- 

gions where the doubling dimensionality is small. Thus, the DCT can diminish the impact of the curse of dimensionality. 

Furthermore, the DCT can be built continuously as new samples come in, making it ideal for a streaming computational 

model. 

Our third contribution (C3), is the streaming capabilities of StreaMRAK . In particular, the sub-sampling and kernel con- 

struction allows for continuous integration of new training points. Furthermore, the DCT, the multi-resolution construction, 

and the KRR solver can all be multi-threaded and parallelized. 

1.3. Organization of the paper 

The paper is organized as follows. Section 2 introduces kernel methods and the FALKON algorithm, as well as the LP. 

Section 3 introduces the adaptive sub-sampling scheme and the DCT. StreaMRAK is described in Section 4 and an analysis 

of the algorithm is given in Section 5 . Finally, Section 6 presents several numerical experiments and Section 7 gives an 

outlook for further work. The Appendix includes further mathematical background and the proofs. 

1.4. Notation 

We denote vectors a ∈ R 

D with boldface and matrices A ∈ R 

n ×m with bold uppercase, and A 

� denotes the matrix trans- 

pose. We use K nm 

for kernel matrices, where the dimensionality is indicated by the subscripts. We reserve n for the number 

of training samples and m for the number of sub-samples. The i j-th element of a kernel matrix is denoted [ K nm 

] i j , while 

for other matrices we use A i j . The notation a i indicates i -th element of a vector a . Furthermore, we use f ([ x n ]) to denote 

( f ( x 1 ) , . . . , f ( x n )) 
� ∈ R 

n , and [ m ] to denote { i } m 

i =1 
. The notation x i indicates the i -th training example. We use a (l) and A 

(l) , 

where l refers to a specific level in the LP and the DCT. We take ‖ · ‖ to be the L 2 norm and ‖ · ‖ H 

to be the RKHS norm. 

We denote the intrinsic dimension of a manifold with d and the dimension of the embedding with D . By 1 S ( x ) we denote 

the indicator function, which evaluates to 1 if x ∈ S and 0 otherwise, of a set S ⊂ R 

D . 

2. Kernel methods 

Consider a positive definite kernel k : X × X → R , defined on an input space X ⊂ R 

D . Given data { ( x i , y i ) : i ∈ [ n ] } of 

samples from X × R 

D , kernel ridge regression computes an estimator by minimising 

̂ f n,λ = argmin 

f∈ ̃  H 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ 

f ‖ 

2 
H 

, 
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where H is the Hilbert space induced by the kernel. This allows to reduce the problem to a linear system 

(K nn + λn I n ) α = y , for [ K nn ] i j = k ( x i , x j ) , and y = (y 1 , . . . , y n ) 
� . (2.1) 

Coefficients α = (α1 , . . . , αn ) � define the estimator by f ( x ) = 

∑ n 
i =1 αi k ( x , x i ) . However, solving (2.1) using traditional meth- 

ods has a time complexity of O(n 2 ) , which can be costly for large n [2] . 

FALKON [2] addresses this issue by sub-sampling the columns of K nn , which reduces the effective com plexity while 

maintaining accuracy. Namely, denote �n = { x 1 , . . . , x n } and for m � n let ˜ �m 

= { ̃ x 1 , . . . , ̃  x m 

} be Nyström centers (i.e. a ran- 

domly selected subset of �n ). Minimizing 

̂ f n,m,λ = argmin 

f∈ ̃  H M 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ 

f ‖ 

2 
H 

, (2.2) 

where ˜ H m 

= span 

{
k (·, ̃  x j ) : j ∈ [ m ] 

}
, leads to a linear system 

H ̃

 α = z , for H = K 

� 
nm 

K nm 

+ λn K mm 

, and z = K nm 

y . 

Here [ K nm 

] i j = k ( x i , ̃  x j ) ∈ R 

n ×m is the column-subsampled matrix and the estimator is given by ̂ f n,m,λ( x ) = 

∑ m 

j=1 ̃
 α j k ( x , ̃  x j ) . 

To further reduce the time complexity FALKON uses a suitable preconditioner to reduce the condition number. The pre- 

conditioner is defined as BB 

� = (n/m K 

2 
mm 

+ λn K mm 

) −1 , which is a natural (lower complexity) approximation of the ideal 

preconditioner AA 

� = (K 

� 
nm 

K nm 

+ λn K mm 

) −1 . We now solve for ˜ α from the system of equations 

B 

� HB β = B 

� z , for H = K 

� 
nm 

K nm 

+ λn K mm 

, z = K nm 

y , and 

˜ α = B β. (2.3) 

This is solved iteratively, using the conjugate gradients with early stopping. Choosing m = O( 
√ 

n ) still ensures optimal gen- 

eralisation (i.e. same as KRR), while reducing the computational complexity to O(n 
√ 

n ) . 

2.1. Streaming adaptation of FALKON 

Matrices and vectors involved in the linear system in (2.3) can be separated into two classes: those that depend only 

on sub-samples in 

˜ �m 

; and those ( K 

� 
nm 

K nm 

and z ) that also depend on all the training points �n . Critically, terms in both 

groups are all of size m , which allows to reduce the complexity. Consider now the set of sub-samples ˜ �m 

to be fixed, and 

assume new training points, in the form { ( x q , y q ) : q = n + 1 , . . . , n + t) } , are coming in a stream. We can then update the 

second class of terms according to 

[
(K (n + t) m 

) � K (n + t) m 

]
i j = 

[
(K nm 

) � K nm 

]
i j + 

n + t ∑ 

q = n +1 

k ( x q , ̃  x i ) k ( x q , ̃  x j ) , (2.4) 

[
(K (n + t) m 

) � y 
]

i = z i + 

n + t ∑ 

q = n +1 

k ( x q , ̃  x i ) y q . (2.5) 

Thus, only sub-samples ˜ �m 

, matrices 
(
K nm 

)� K nm 

, K mm 

and z , need to be stored. However, in order to continuously incor- 

porate new training points into Eqs. (2.4) and (2.5) , sub-samples ˜ �m 

must be determined in advance. Whereas this works if 

all the data is provided beforehand, it cannot be done if the data arrives sequentially. In this work, we address this through 

a multi-resolution framework. The overall estimator is composed of a sequence of estimators defined at different resolution 

levels of the domain. Correspondingly, the set of sub-samples ˜ �m 

consists of smaller sets ˜ �(l) 

m 

(l) 
that correspond to individual 

levels of resolution. The sets ˜ �(l) 

m 

(l) 
are filled as the data streams in, and once a set for a given level is deemed complete, we 

proceed with updating (2.4) and (2.5) . 

Further details of how the sets ˜ �(l) 

m 

(l) 
are constructed, and the corresponding criteria, are provided in Sections 3 and 4 . 

We begin by describing the multi-resolution framework of estimators. 

2.2. The laplacian pyramid 

The LP [27,29] is a multi-resolution regression method for extending a model ̂ f to out-of-sample data points x ∈ X / �n . 

The LP can be formulated for radial kernels in the form 

k ( x i , x j ) = �
(‖ x i − x j ‖ 

r 

)
, (2.6) 

where r > 0 is a shape parameter that determines the decay of � with respect to ‖ x i − x j ‖ , see [17] . The idea underpinning 

the LP is to approximate the target function sequentially, where at each stage we regress on the errors from the previous 

stage. In other words, we begin with a rough approximation using a large shape parameter for which � decays slowly and 
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then improve the approximation by fitting the resulting error and reducing the shape parameter. In the LP, the estimator at 

level L ∈ N is defined recursively as 

̂ f (L ) ( x ) = 

L ∑ 

l=0 

s (l) ( x ) = s (L ) ( x ) + ̂

 f (L −1) ( x ) , (2.7) 

where ˆ f (0) = s (0) , and s (l) ( x ) is a correction term defined by 

s (l) ( x ) = 

n ∑ 

i =1 

α(l) 
i 

k (l) ( x , x i ) . (2.8) 

The coefficients α(l) = (α(l) 
1 

, . . . , α(l) 
n ) � are computed by conducting KRR on the residuals, i.e. errors, from the estimator at 

the previous level. Namely, α(l) = (K 

(l) 
nn + λn I ) −1 d (l) , where 

d (l) = 

{
y , if l = 0 

y − ̂ f (l−1) ([ x n ]) , otherwise 
. (2.9) 

For a FALKON adaption of this scheme, we only need to modify how per-level coefficients are computed. Following 

(2.3) we iteratively solve 

(B 

(l) ) � H 

(l) B 

(l) β(l) = (B 

(l) ) � 
(
K 

(l) 
nm 

)� d (l) , (2.10) 

where B 

(l) is the corresponding preconditioner, and H 

(l) = (K 

(l) 
nm 

) � K 

(l) 
nm 

+ λn K 

(l) 
mm 

, and set ˜ α(l) = B 

(l) β(l) . 

Remark 2.1. In this paper, we construct the kernel matrices K 

(l) on a particular class of radial kernels, namely the Gaussian 

kernel 

k (l) ( x , ̃  x i ) = exp 

(
− ‖ x − ˜ x i ‖ 

2 

2 r 2 
l 

)
, 

where r l > 0 is the shape parameter (the kernel bandwidth) at level l. 

3. The damped cover tree 

This work introduces a data-driven sub-sampling method that we call the damped cover-tree (DCT). The DCT is a mod- 

ification of the cover-tree (CT) [24] , a data structure based on partitioning a metric space, initially designed to facilitate 

nearest neighbor search. The goal of the DCT is to modify and simplify the CT to allow a viable sub-sampling scheme. 

Let (X , ‖ · ‖ ) be a normed space where the input domain X ⊂ R 

D is bounded, such that the diameter r 0 = diam (X ) is 

finite. The DCT is a tree structure where each node p of the tree is associated with a point x p ∈ X , and which is built 

sequentially as data points arrive. Furthermore, let Q l be a set (herein called a cover-set) containing all the nodes at a level 

l ≥ 0 in the given tree. A level is associated with an integer l and a radius r l = 2 −l r 0 , where l = 0 denotes the root level 

containing only one node and l increases as we descend deeper into the tree. DCT has three invariants, of which the first 

two are also invariants of the CT. 

(I1) ( Covering invariant ) For all p ∈ Q l+1 there exists q ∈ Q l such that ‖ x q − x p ‖ < r l . 

(I2) ( Separation invariant ) For all q, p ∈ Q l where x q  = x p , we have ‖ x q − x p ‖ > r l . 

We add that the standard CT includes a third invariant, the so-called nesting invariant, which requires Q l ⊆ Q l+1 , but this 

is not desired for our purpose. 

To introduce the last invariant of the DCT, we first need the following definition. 

Definition 3.1 (The covering fraction) . Let p ∈ Q l be a node, and x p the associated point in X . Furthermore, let ˜ C p = { c i } k i =1 
be the children of p, and x c i the corresponding points in X . The covering fraction of a node p is defined as 

cf (p) = 

Vol 

(
X ∩ B( x p , r l ) ∩ 

⋃ 

c i ∈ ̃  C p 

B( x c i , r l+1 ) 
)

Vol 
(
X ∩ B( x p , r l ) 

) . 

The covering fraction is the proportion of the volume of B( x p , r l ) that is covered by balls around its children of half the 

radius. This quantity is directly related to (I2), which enforces the radius r l to reduce by a factor of 2 for each new level, 

starting from an initial radius r 0 > 0 . The covering fraction allows us to capture the vulnerability of the standard CT to the 

curse of dimensionality. 

For example, consider two regions A 1 , A 2 ⊆ X , for which the doubling dimension at radius r l is ddim (A 1 , r l ) > 

ddim (A 2 , r l ) . A node p ∈ A 1 at level l will then need exponentially more children to be covered, than a node q ∈ A 2 at 

the same level l. This exacerbates the deeper we go into the tree. Therefore, the CT would have significantly more nodes 

from regions where the doubling dimension is large. 
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We recall now that sub-sampling is in kernel methods intended to reduce the computational complexity. For this pur- 

pose, it is desirable to keep the number of sub-samples from each level within a budget of reasonable size. On the other 

hand, a too low sub-sample density will lead to poor interpolation performance. Due to the exponential growth of the num- 

ber of nodes with respect to the doubling dimension, it would be desirable to avoid wasting our budget on sub-samples 

from regions and radii with a large doubling dimension, as this would require dedicating an (exponentially) large number 

of points to achieve good interpolation, which is not feasible. Moreover, in high dimensional regions, we likely cannot learn 

anything more than a simple function, for which a lower sampling density would suffice. 

To reduce the number of sub-samples from regions of large doubling dimensionality, we introduce the following damping 

invariant as the third invariant of the DCT. 

(I3) ( Damping invariant ) Let D cf ∈ (0 , 1) be some threshold and let ˜ C p and cf (p) be as in Def. 3.1 . Then any node q whose 

parent node p does not satisfy cf (p) ≥ D cf does not have children of its own. 

The damping invariant forces the tree to devote more resources to regions of lower doubling dimension by making it 

harder for nodes in regions with higher doubling dimensions to have children. In other words, the practical effect of the 

damping invariant is to stop the vertical growth of the DCT if the doubling dimension becomes large. This is because the 

covering number grows exponentially with the dimensionality, ensuring cf (p) ≥ D cf gets correspondingly harder to achieve. 

Remark 3.2. In Section 5.1 , we analyze the damping invariant in more detail and show how the damping suppresses vertical 

growth of the DCT more for regions of high doubling dimension than for regions of lower doubling dimensionality. 

3.1. Construction of the DCT 

We now discuss how the DCT is constructed and updated as the data streams in. First, it is important to restate that we 

use the DCT to replace the Nyström sampling, which was in FALKON used to reduce the complexity of the ridge regressor. 

Consequently, not all of the streamed data (that is, not every training point) will be added to the tree, but only those whose 

inclusion into the tree would not violate the invariants (I1)-(I3). In other words, the tree consists of only those training 

points that help resolve the data space at the relevant resolution level. Thus, each node p in the DCT is associated with a 

unique training sample x p , but not every training sample will be represented by a node in the tree. Note that this is different 

from the standard CT, which aims to organize all of the training data into a geometrical leveled data structure. 

The construction of the DCT consists of a series of checks which examine whether adding a given data point to the DCT 

would, or would not, violate invariants (I1)- (I3). When a new point x q arrives from the data stream the goal is to identify 

the deepest level l for which there exists a node p such that ‖ x q − x p ‖ ≤ r l . This corresponds to finding the nearest node in 

the tree that could serve as a parent. 

We achieve this in the following way. The first training point is identified as the root node to which we associate the 

radius r 0 . For each new point, we proceed in a top-down manner, starting from the root node 3 . We then check whether x q 
would violate the separation invariant at the next level. In other words, if there exists a node p such that ‖ x q − x p ‖ < r l . If 

such a node does not exist, then x q is added to the set of children of the root node, and we update the covering fraction 

estimate for the root node. Otherwise, if such a node does exist, we repeat the process, checking the separation invariant 

among the children of the corresponding node, and proceed further down the tree. 

Assume we arrived to a node p at level l ≥ 1 , and we have ‖ x q − x p ‖ ≤ r l . We then check if p is allowed to have children, 

that is if the damping invariant is satisfied. If it is not satisfied, the point x q is dismissed (it is not added to the tree). On the 

other hand, if p is allowed to have children, we check whether the separation invariant holds, i.e., if there exists a child c of 

the node p such that ‖ x q − x c ‖ < r l+1 . If that were the case, the separation invariant would be violated, and the recursion is 

applied again by considering c as the potential parent node. However, if such a child does not exist, that is, if the separation 

invariant is not violated, then x q is added to the set of children of the node p. More details are given in Alg. A.1 . 

Some comments are needed to elucidate how are the steps described above applied in practice. First, note that the 

covering fraction from Def. 3.1 cannot be calculated explicitly, since the volume terms require knowing the intrinsic dimen- 

sionality. Therefore, it is necessary to use an estimator instead. For this purpose, we interpret cf (p) as the probability that a 

sample x ∼ Uni (B( x p , r)) will be within B c := 

⋃ 

c i ∈ ̃  C p 
B( x c i , r/ 2) , where ˜ C p are the children of p. This probability can be esti- 

mated by considering the checks of the separation invariant (I2), conducted on the last N points that were inside B( x p , r) , 

as a series of independent random trials. We use the following running average as an estimator of the covering fraction 

(cf (p)) t = (1 − α)(cf (p)) t−1 + α1 B c ( x t ) , (3.1) 

where 1 B c ( x t ) is the indicator function, and α > 0 is a weighting parameter. This approximates a weighted average of the 

outcome of the N last draws (cf. Appendix B ). Note that this reduces the memory requirements, since instead of storing N

trial outcomes for each node in the tree, as required had we used an average of the last N trials, we store only a single 

value for each node in the tree. 

Second, the separation invariant is in practice too strict since it results in too few points added to the tree, and thus a 

worse kernel estimator. Moreover, checking the separation invariant adds to the computational complexity. Therefore, we 

3 We assume that all new points x q are within a ball of radius r 0 around this node, which holds for a large enough r 0 
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introduce the following relaxation. Assume we have a new point x q and arrived at a node p at level l. We then first conduct 

a random Bernoulli trial, with the failure probability 

q x = 

1 

1 + exp 

[
h tan 

(
π(‖ x q − x p ‖ /r l − 1 

2 
) 
)] , (3.2) 

where h is the hardness of the threshold. In other words, the probability of failure is proportional to the distance between 

x q and x p - the larger the distance, the more likely the failure. If the trial’s outcome is a failure, then the check for the 

separation invariant is ignored, and the algorithm continues. If it is a success, we proceed by first checking the separation 

invariant. This means that the probability to ignore the separation invariant increases as x q gets farther from x p . 

3.2. Sub-sampling from the DCT 

We now discuss how the DCT is used for sub-sampling the training points. By organizing the training points into cover- 

sets Q l the DCT allows a hierarchical sub-sampling. Even though cover-sets Q l significantly reduce the number of training 

points, they are for practical purposes still too large for efficient sub-sampling. Due to this, we restrict ourselves to a subset ˜ �(l) ⊆ Q l of candidate sub-samples called landmarks. 

Definition 3.3 (Landmarks) . Let Q l be the cover-set at level l in a DCT. We define the set of candidate landmarks at level l

as ˜ �(l) = { x p | p ∈ Q l and cf (p) ≥ D cf } , and the set of landmarks (of size m ) as any subset ˜ �(l) 
m 

= { ̃ x (l) 
1 

, . . . , ̃  x (l) 
m 

} ⊂ ˜ �(l) of size 

m . 

Some remarks are in order. First, by Def. 3.3 , candidates for landmarks at level l are only those nodes allowed to have 

children (according to the damping invariant (I3)). This design choice implies that the set of candidate landmarks will con- 

tain more points from regions with a lower doubling dimension than points from regions with a higher doubling dimension. 

This is because the larger the doubling dimension is, the more children nodes are needed to cover a given parent node. 

Second, Def. 3.3 suggests using only a subset of candidate landmarks as sub-samples. We refer to a result from [2] which 

states that good statistical accuracy of the estimator is achieved if the number of sub-samples is proportional to the square 

root of the number of samples. At level l we therefore use a set of landmarks which is of size m 

(l) = δ0 

√ | Q l | , where δ0 > 0 

is a constant. 

The third point that requires attention concerns the question of when the landmarks should be selected. To that end, 

we use the covering fraction of a level, which, with a slight abuse of notation, we denote as cf (Q l ) . Moreover, we compute 

cf (Q l ) as 

(cf (Q l )) t = (1 − α)(cf (Q l )) t−1 + α1 B level 
( x t ) , (3.3) 

where B le v el = 

⋃ 

p∈ Q l 
B( x (l) 

p , r l ) . Moreover, analogously to the damping invariant, let D le v el ∈ (0 , 1) be some threshold. We then 

say that a level l is sufficiently covered when cf (Q l ) ≥ D le v el . 

Remark 3.4. We note that as the level increases, our estimate of cf (Q l ) through Eq. (3.3) will be increasingly more sensitive 

to subsets A ⊂ X of low doubling dimension than to subsets of large doubling dimension. This is because the damping 

invariant (I3) makes it harder for nodes in high dimensions to have children. Consequently, we will have fewer points in 

deeper levels that belong to high dimensional regions. Because of this, the estimator in Eq. (3.3) is biased towards using 

more sub-samples from lower dimensional regions. 

Sub-sampling from a level l goes as follows. As training points arrive, we build the tree and continuously update the cov- 

ering fraction of a level. Once that level is sufficiently covered, that is, once cf (Q l ) ≥ D le v el , we extract the set of landmarks 

by sub-sampling m 

(l) points from the pool of candidate landmarks ˜ �(l) . 

4. StreaMRAK 

In this section, we present StreaMRAK and clarify how it synthesizes concepts from Sections 2 and 3 , and utilizes them 

in a streaming context. The workflow of StreaMRAK can be divided into three threads that can run in parallel, subject to 

some inter-dependencies. These are the sub-sampling thread, the training thread, and the prediction thread. Overviews of 

these threads are given next, and the reader is referred to Algorithm A.2 in the Appendix for further details. 

4.1. Sub-sampling thread 

In the sub-sampling thread StreaMRAK collects and organizes the training data into a DCT. Namely, as new training 

pairs are collected, the covering (I1) and separation (I2) are checked, and the covering fraction is updated as described in 

Section 3.1 . Moreover, the set of landmarks for each level is updated, as described in Section 3.2 . Once the set of landmarks 

for a given level ̃  �(l) 
m 

is completed, the landmarks and the estimator for the corresponding level can be used in the remaining 

two threads. 
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4.2. Training thread 

The model is trained at level l when two conditions are met. First, coefficients of the previous level l − 1 in the LP must 

have been calculated, i.e. previous training thread must finish. Second, landmarks ˜ �(l) 

m 

(l) 
at level l must be ready. 

In the first step, we define the kernel matrix on the landmarks by 

[ K 

(l) 
mm 

] i j = k (l) ( ̃ x i , ̃  x j ) , for ˜ x i ∈ ̃

 �(l) . (4.1) 

In the second step we consider 
(
K 

(l) 
nm 

)� K 

(l) 
nm 

∈ R 

m 

(l) ×m 

(l) 
and 

(
K 

(l) 
nm 

)� d (l) 
n ∈ R 

m 

(l) 
which in addition to landmarks depend on 

the training points. They are updated continuously as new training points come in, according to Eq. (2.4) and Eq. (2.5) . 

However, they are not updated indefinitely, but only until new training points do not significantly alter the matrices accord- 

ing to the following criterion. 

Definition 4.1. (Sufficient training points) Let A n := (K 

(l) 
nm 

) � K 

(l) 
nm 

, and b n := 

(
K 

(l) 
nm 

)� d (l) 
n . Let δ1 , δ2 , δ3 > 0 be three constants. 

We consider the number of training points at a level l sufficient when either n ≥ δ3 or ∥∥∥A n 

n 

− A n +1 

n + 1 

∥∥∥
∞ 

≤ δ1 and 

∥∥∥b n 

n 

− b n +1 

n + 1 

∥∥∥ ≤ δ2 . 

After enough training samples are collected according to Def. 4.1 , the correction term s (l) is obtained by solving for the 

coefficients ˜ α(l) 
1 

, . . . , ̃  α(l) 

m 

(l) 
using Eq. (2.10) . The new prediction model ̂ f (L ) is obtained by adding s (l) to the previous model, 

according to Eq. (2.7) . 

4.3. Prediction thread 

In this thread StreaMRAK makes provides the latest version of the trained LP model in Eq. (2.7) . This means that if L 

is currently the highest level that has been trained, the prediction for new points x is made using the model ̂ f (L ) ( x ) . 

5. Analysis 

In this section, we first analyze the damping invariant of the DCT. We then offer theoretical results on the convergence 

properties of the LP in the context of KRR. Finally, we offer estimates of the time and memory requirements of StreaMRAK . 

We introduce two auxiliary results. 

Lemma 5.1. Consider a ball B( x , r) ∈ R 

D and let δ > 0 . The number of points in any (discrete) set of points within B( x , r) that 

are at least δ apart, S = { x i ∈ B( x , r) | d( x i , x j ) ≥ δ for i  = j} , is bounded by | S| ≤ (
2 r 
δ

+ 1 
)

D . 

Proof. Since the points in S are at least δ apart, it follows that the balls B( x i , δ/ 2) are disjoint. Consider now the ball 

B( x , r + δ/ 2) . All of the balls B( x i , δ/ 2) are entirely contained within B( x , r + δ/ 2) . Since the balls B( x i , δ/ 2) are disjoint, it 

follows that 

| S| ≤ Vol 

(
B( x , r + δ/ 2) 

)
/ Vol 

(
B( x i , δ/ 2) 

)
= 

(
2 r 

δ
+ 1 

)
D . 

�

Lemma 5.2. Consider a domain X ∈ R 

D , a ball B( x p , r) ⊂ X and let S = { x i , x j ∈ B( x p , r) |‖ x i − x j ‖ ≥ δ for i  = j} . Furthermore, 

let the doubling dimension of the set S be ddim := ddim (S, r) . We let c d := | S| when cf (p) = 1 . We then have 2 ddim −1 ≤ c d ≤ 5 ddim . 

Proof. The upper bound on c d follows from Lemma 5.1 with r = r 0 and δ = r 0 / 2 . The lower bound follows from the defini- 

tion of the doubling dimension 1.2 . �

5.1. Analysis of the DCT 

As discussed in Section 3 , the DCT adds a given training point to the set of nodes of the tree if conditions (I2) and (I3) 

are satisfied, and the points are otherwise discarded. In particular, the damping invariant (I3) makes it harder for a node to 

have children. The guiding idea is that damping should reduce the impact of the curse of dimensionality by making it harder 

for nodes in regions of higher doubling dimension to have children, and in doing so it should effectively stop the vertical 

growth of the tree in corresponding regions. Therefore, it is critical to understand how and to what degree the damping 

affects high dimensional regions more than low dimensional ones. 

In a statistical sense, the damping should treat all nodes in regions of the same doubling dimension equally. Therefore, 

to gain insight into the damping, it suffices to analyze its effects concerning the doubling dimension on a single node p. In 

this case, the effect of damping can be measured by analyzing how many training points must pass through p, in the sense 

of Alg. A.1 , before children of p are allowed to have children of their own. This can be modeled by considering the expected 

number of training points x i ∼ Uni 
(
B( x p , r) 

)
necessary to cover B( x p , r) with balls of radius r/ 2 around points x i . 
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Consider x i ∼ Uni 
(
B( x p , r) 

)
, and let a set S p be built in a succession of trials i = 1 , . . . , N t so that 

x i ∈ S p if ‖ x i − x ‖ ≥ r 

2 

for all x ∈ S p . 

In other words, a newly sampled point x i will only be added to the set S p if it its pairwise distances from all the points that 

are already in S p are at least r/ 2 . 

Problem 1. Let ˜ C p denote the set of children of the node p, constructed from the above-described trials. What is the ex- 

pected number of trials N t needed to ensure cf (p) = 1 ? 

Since there is no unique set S p such that the corresponding set of children 

˜ C p ensures cf (p) = 1 , the sample space for 

Problem 1 corresponds to all admissible sets S p , which vary in both the number and the location of points they contain. 

Characterizing all such sets corresponds to a disordered sphere packing problem [56] , which is an NP-hard combinatorial 

problem [57] . For a theoretical analysis of this problem, defining a probability measure over the sample space is necessary. 

However, in this level of generality, neither the sample space nor the probability measure admit a workable definition, with 

currently available mathematical tools [56] . Although some theoretical insights are possible under simplifications on the 

sample space, this analysis is restrained to a limited number of spheres and configurations. 

Due to these difficulties, we consider a simplified setting where we instead consider an average case. If the set S p is such 

that B( x i , r) ⊂
⋃ 

x i ∈S p B( x i , r/ 2) , which corresponds to cf (p) = 1 , then each of the balls B( x i , r/ 2) occupies on average 1 
|S p | of 

the total volume of B( x p , r) , assuming none of the balls are covered by a union of other balls. Therefore, as S p is being built, 

adding a point to S p will, on average, reduce the unoccupied volume of B( x p , r) by 1 
|S p | . Moreover, it can be shown that the 

number of elements in such a set satisfies 2 ddim −1 ≤ |S p | ≤ 5 ddim , see Lemma 5.2 , where ddim := ddim (S p , r) is the doubling 

dimension of S p . Based on these considerations we introduce a simplified setting for the average case of Problem 1 . 

Assumption 1. Problem 1 can be approximated by dividing the ball B( x p , r) into a union of c d fixed (and known) disjoint 

bins B i of size (1 /c d ) Vol 
(
B( x p , r) 

)
. 

Note that the bins referred to in Assumption 1 correspond to regions around the children of the node p. Assumption 

1 reduces the average case of Problem 1 to a form of the classical coupons collector’s problem [58] , which considers n 

coupons with the same probability of being drawn. Through a series of randomized trials with replacement, the goal is to 

obtain a copy of each coupon. Relevant for Problem 1 is estimating the stopping time T , which counts the number of trials 

before all coupons are collected, and which satisfies E [ T ] = nH n , where n denotes the number of coupons and H n is the n -th 

harmonic number [58] . 

In terms of Problem 1 , and under Assumption 1 , we can therefore identify T = N t , n = |S p | and E [ N t | Node p] = |S p | H |S p | . 
Combining the bound ln (n ) + 

1 
2 ≤ H n ≤ ln (n ) + 1 (from [59] ), with the bound on |S p | from Lemma 5.2 we have 

2 

ddim −1 (( ddim − 1) ln 2 + 1 / 2) ≤ E [ N t | Node p] ≤ 5 

ddim ( ddim ln 5 + 1) . (5.1) 

With the same strategy, we can bound the number of trials until the cover-fraction of a level reaches 1, as 

2 

l( ddim −1) ( l( ddim − 1) ln 2 + 1 / 2) ≤ E [ N t | Level l] ≤ 5 

l ddim (l ddim ln 5 + 1) . (5.2) 

From Eq. (5.1) we see that the number of training points E [ N t | node p] grows exponentially with the doubling dimen- 

sionallity d. In other words, significantly more trials are needed to achieve cf (p) = D cf for nodes in regions with a large 

doubling dimension than it is for nodes in regions with a lower doubling dimension. Consequently, through the damping 

invariant, the DCT restricts the vertical growth of the tree comparatively more the higher the doubling dimension of the 

local region. 

5.2. Time and memory requirements 

This section analyzes the memory requirements of StreaMRAK , which involve storing the DCT and the linear system 

components used to update the coefficients. Furthermore, we consider the computational requirements, which consist in 

solving the coefficient equations. Both the memory and computational requirements need to be analyzed per level l of the 

tree due to the multi-resolution nature of the estimator and the tree organization of the data. 

For the analysis, we consider a simplified setting where we assume that the doubling dimension is constant for all levels 

and all subsets of X , and that the number of children c d is the same for all nodes. At the end of the section we describe a 

more general setting. 

In the following, we assume that the growth of the DCT stops at a level L . In other words, level L is the last level at 

which there are nodes. In practice, the growth of the DCT slows down exponentially fast with the product of the doubling 

dimension ddim := ddim (X , r L ) and the level l. This can be seen from Eq. (5.2) , which shows that the number of training 

points necessary to fill up a level grows exponentially with l ddim . Therefore, in practice, no new levels will be added to 

the DCT when l ddim is large enough, which effectively makes the last level L independent of the number of training points. 
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Furthermore, from Lemma 5.2 we know that c d is bounded by 2 ddim −1 ≤ c d ≤ 5 ddim , which shows that also c d is independent 

of the number of training points. 

Proposition 5.3. The memory requirement of StreaMRAK is O 

(∑ L 
l=0 c 

l 
d 

)
. 

Proof. The memory requirement of the DCT is determined by the number of nodes in the tree. Given that the number of 

children is the same for all nodes. If the number of children per node is c d , then the total number of nodes at level l is c l 
d 
. 

Thus, the memory needed to store the DCT with L levels is O( 
∑ L 

l=0 c 
l 
d 
) . 

To store the linear system on level l we need the matrices 
(
K nm 

(l) 

)� K nm 

(l) , K m 

(l) m 

(l) ∈ R 

m 

(l) ×m 

(l) 
and the vector z ∈ R 

m 

(l) 
. 

The number of landmarks m 

(l) at level l is chosen as m 

(l) = δ0 

√ | Q l | , where | Q l | is the number of nodes at level l. Since | Q l | 
is O(c l 

d 
) , it follows that m 

(l) × m 

(l) is also O(c l 
d 
) per level, and the desired conclusion follows. �

Note that with a fixed L and n larger than O 

(∑ L 
l=0 c 

l 
d 

)
, then the memory requirement is independent of n . We also note 

that if the deepest level satisfies L → ∞ , then the number of nodes is determined by the number of training points, and the 

memory requirement would thus, in the worst case, become O(n ) , the same as for the standard cover-tree. 

Next, we discuss the construction of the DCT, where adding a new point to the set of nodes requires a search through 

the tree. 

Proposition 5.4. Inserting a new point into the DCT, cf. Algorithm A.1 , requires O(c d L ) operations. 

Proof. For a point x q ∈ X to be analyzed at level L , we need to have analyzed it at the previous l < L levels. At each level, we 

must, in the worst case, check the separation invariant with all children of the current potential parent p (l) , before finding 

a node c such that ‖ x q − x c ‖ ≤ 2 −l r 0 , that would serve as the next potential parent. This requires at most c d operations per 

level, giving Lc d total operations over the L levels. The same number of operations is necessary if a node is discarded at 

level L . �

Lastly, we analyze the computational requirements for solving the linear system. 

Proposition 5.5. The time requirement for solving the linear system in Eq. (2.3) is O 

(
δ3 m 

(l) + 

(
m 

(l) 
)

3 
)

per level, where δ3 is 

given in Def. 4.1 , 

Proof. The time requirement of FALKON is O(nmt + m 

3 ) where n is the number of training points, m the number of 

landmarks and t the number of iterations of the conjugate gradient (which has an upper bound). By Def. 4.1 , StreaMRAK 

uses at most δ3 training samples at each level. Since m 

(l) is the number of landmarks at level l, the result follows. �

Assume that the domain X can be divided into disjoint subsets A 1 , . . . , A t ⊂ X for which the doubling dimension 

ddim (A i , r l ) differs based on A i and radius r l . Let the number of children of a node x p ∈ A i at level l be c d,i,l . In this scenario, 

the growth of the DCT will stop at different levels L i for different subsets A i . The final time and memory requirements would 

therefore be the sum of the contribution from each subset A i . In other words, the memory would be O( 
∑ t 

i =1 

∑ L i 
l=0 

c l 
d,i,l 

) , 

and similarly the time requirement per point insertion would be O( 
∑ t 

i =1 

∑ L i 
l=0 

c d,i,l ) . We note that c d,i,l and L i depend on 

the dimensionality of the data, but are independent of n . Therefore, so are the time and memory requirements. 

5.3. Convergence of the LP formulation of the KRR 

This section analyzes the conditions for which the LP approximates the training data y i = f ( x i ) , with respect to the 

number of levels. A similar analysis was previously done for the LP in the context of kernel smoothers [28] . However, to the 

best of our knowledge, this is the first time the LP formulation of KRR has been analyzed in this way. 

Theorem 5.6. Let ̂ f (l) be the LP estimator defined in Eq. (2.7) and let λ be a regularization parameter. Furthermore, let 0 < 

σl,n ≤ · · · ≤ σl, 1 be the eigenvalues of K 

(l) 
nn . For L > 0 we then have 

‖ ̂

 f (L +1) ([ x n ]) − f ([ x n ]) ‖ ≤
L ∏ 

l=0 

(1 − ε(l)) ‖ ̂

 f (0) ([ x n ]) − f ([ x n ]) ‖ , where ε(l) = 

σl,n 

nλ + σl,n 

. 

Proof. From the recurrence relationship for the residuals d (l) in Eq. (2.9) it follows by induction that 

̂ f (l+1) ([ x n ]) − f ([ x n ]) = (I − P 

(l) 
nn )( ̂

 f (l) ([ x n ]) − f ([ x n ]) , (5.3) 

where P 

(l) 
nn := K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 , cf. Lemma C.1 . It follows that 

‖ ̂

 f (l+1) ([ x n ]) − f ([ x n ]) ‖ ≤ ‖ I − P 

(l) 
nn ‖‖ ̂

 f (l) ([ x n ]) − f ([ x n ]) ‖ . (5.4) 
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Consider the SVD K 

(l) 
nn = U�U 

� where � = diag (σl,i ) and σl,n ≤ · · · ≤ σl, 1 . We then have 

‖ I − P 

(l) 
nn ‖ = 

∥∥∥U diag 

(
nλ

nλ + σl,i 

)
U 

� 
∥∥∥ = 

∥∥∥ diag 

(
nλ

nλ + σl,i 

)∥∥∥ = 

nλ

nλ + σl,n 

:= 1 − ε(l) , (5.5) 

and Thm. 5.6 follows recursively from Eq. (5.4) and Eq. (5.5) . �

From Thm. 5.6 it follows that the LP estimator will converge as l → ∞ , since σl,n > 0 and therefore 1 − ε(l) ∈ (0 , 1) for 

all l. In Thm. 5.7 we characterise how ε(l) depends on the level l to give insight on the nature of this convergence. 

Theorem 5.7. The LP estimator ̂ f (l) from Eq. (2.7) converges with increasing level L to the training data f ( x i ) , cf. Thm. 5.6 , with 

the rate 
∏ L 

l=0 (1 − ε(l)) , where 

1 − ε(l) ≤
(
1 + C 1 ,D 2 

−Dl exp 

(
− C 2 ,D 4 

−l 
)
/nλ

)−1 , (5.6) 

for 

C 1 ,D = 

1 

2 

(6 

√ 

2 ) D �(D/ 2 + 1) 
D −1 
D +1 

(
π

9 

)
D 

D +1 

(
r 0 
δ

)
D and C 2 ,D = 1152 

(
π�2 (D/ 2 + 1) 

9 

)
2 

D +1 

(
r 0 
δ

)
2 , 

where � is the gamma function. 

Furthermore, for l > log 2 ( 
√ 

D/ 2 (r 0 /δ)) we have the tighter bound 

1 − ε(l) < 

(
1 + 

(
1 − 2 

1+ 1 
ln 2 

(C 3 D −g(l)) 
)
/nλ

)
−1 , (5.7) 

where g(l) = 4 l−log 2 r 0 /δ and C 3 = ( ln (1 + 1 / 4) + 2 ln 2) . 

Proof. ( Eq. (5.6) ) We bound 1 − ε(l) := nλ/ (nλ + σl,n ) by bounding the smallest eigenvalue of the kernel matrix [ K 

(l) 
nn ] i j = 

�(‖ x i − x j ‖ ) , namely σl,n . To do so we assume that there exists a lower bound on the minimal distance between any two 

points x i , x j ∈ X , defined as δ := min 

i  = j∈X 
‖ x i − x j ‖ > 0 . 

Consider the Gaussian �( x ) = exp (−β‖ x ‖ 2 
2 
) , β > 0 , with the Fourier transform 

̂ �(ω) = (π/β) D/ 2 exp (−‖ ω‖ 2 
2 
/ 4 β) . From 

[60, Corollary 12.4] we have the bound 

σl,n ≥ C D 2 

D (2 β) −D/ 2 δ−D exp (−4 M 

2 
D / (δ

2 β)) , 

where 

M D = 12 

(
π�2 (D/ 2 + 1) 

9 

)
1 / (D +1) and C D = 

1 

2�(D/ 2 + 1) 

(
M D 

2 

3 / 2 

)
D . 

With β = ( 
√ 

2 2 −l r 0 ) 
−2 and inserting for M D and C D we then have 

σl,n ≥ C D 2 

D 2 

−Dl 

(
r 0 
δ

)
D exp 

(
− (2 

√ 

2 M D ) 
2 (r 0 /δ) 2 4 

−l 
)

= 

1 
2 
(6 

√ 

2 ) D �(D/ 2 + 1) 
D −1 
D +1 

(
π
9 

)
D 

D +1 

(
r 0 
δ

)
D 2 

−Dl 

· exp 

(
− 1152 

(
π�2 (D/ 2+1) 

9 

)
2 

D +1 

(
r 0 
δ

)
2 4 

−l 

)
:= B (l) , 

(5.8) 

The bound in Eq. (5.6) follows from this result. �

Proof. ( Eq. (5.7) ) When the level l becomes sufficiently large, the kernel matrix K 

(l) 
nn becomes diagonally dominant, and we 

can therefore bound the eigenvalues using Garschgorins Theorem [ 61 , Thm. 1.1], which gives 

| σl,i − [ K 

(l) 
nn ] j j | = | σl,i − 1 | < 

n ∑ 

q =1 , 
q  = j 

| [ K 

(l) 
nn ] jq | for i, j ∈ [ n ] . (5.9) 

To find a more explicit bound, we analyze the sum on the right-hand side. Consider a family of annuli { R t } ∞ 

t=0 
where 

R t = B ( x j , 2 
t+1 δ) \B ( x j , 2 

t δ) . Inspired by [28] , we can interpret the right hand side of Eq. (5.9) as a sum over { R t } ∞ 

t=0 . The 

entries of K 

(l) 
nn are defined as 

[ K 

(l) 
nn ] i j = exp 

(
−

∥∥x i − x j 
∥∥2 

2 r 2 
l 

)
, ∀ i, j ∈ [ n ] , 

where r l = 2 −l r 0 for r 0 > 0 . It follows 

n ∑ 

q =1 , 
q  = j 

| [ K 

(l) 
nn ] jq | = 

∞ ∑ 

t=0 

∑ 

x q ∈ R t 
k (l) ( x j , x q ) ≤

∞ ∑ 

t=0 

(
2 t+2 δ

δ
+ 1 

)
D exp 

(
− (2 

t δ2 

−1 / 2 r −1 
l 

) 2 
)
, 
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where in the first term on the right-hand side we bound the number of summands using Lemma 5.1 , and in the second 

we use ‖ x q − x j ‖ ≥ 2 t δ for x q ∈ R t . Note now that for all T ≥ 1 there exists C T > 0 such that exp (−r 2 ) ≤ C T r 
−T holds for 

all r > 0 . Such a constant is given by the Lambert W function and satisfies C T = 

(
T 
2e 

)T / 2 
. Moreover, 2 t+2 + 1 ≤ 2 t+2+ α , for 

α ≥ ln (1 + 1 / 4) / ln (2) . Thus, 

n ∑ 

q =1 , 
q  = j 

| [ K 

(l) 
nn ] jq | ≤ C T 

(
r l 
δ

)T 

2 

(2+ α) D + T/ 2 
∞ ∑ 

t=0 

2 

t(D −T ) ≤ 2 · 2 

D (2+ α) −T/ 2(1+1 / ln (2)) T T/ 2 
(

r l 
δ

)T 

, 

where in the last step we have used exp (1) ≥ 2 1+1 / ln (2) along with 

∑ ∞ 

t=0 2 
t(D −T ) ≤ 2 , which holds for D − T < 0 . We let 

r l = r 0 2 
−l and define F (T ) := 2 −T / 2(1+1 / ln (2)) T T / 2 2 −lT 

(
r 0 
δ

)T 
. From Lemma C.4 we have the minimum of F (T ) , which together 

with the choice α = ln (1 + 1 / 4) / ln 2 , gives 

σl,n > 1 −
n ∑ 

q = 1 , 

q  = j 

∣∣∣∣[ K 

( l ) 
nn 

] 
jq 

∣∣∣∣ ≥ 1 − 2 

1+ 1 
ln 2 ( ( ln ( 1+1 / 4 ) +2 ln 2 ) D −g ( l ) ) , g ( l ) = 4 

l−log 2 r 0 /δ. 

By defining C 3 = ( ln (1 + 1 / 4) + 2 ln 2) and using that 1 − ε(l) := nλ/ (nλ + σl,n ) this leads to the bound in Eq. (5.7) . We 

note that this bound holds for T ∗ > D which means that l > log 2 ( 
√ 

D/ 2 r 0 /δ) . �

We note that the bound in Eq. (5.6) underestimates the rate of convergence for lower levels but improves as the 

levels increase. Furthermore, Thm. 5.7 shows that the convergence rate increases with the level l. In fact, the bound 

in Eq. (5.6) can be simplified with an a fortiori bound of the same form, where C 1 ,D = 

1 
2 

(
12 . 76 
2 3 / 2 

)
D 
(

D D 

�(D/ 2+1) 

)(
r 0 
δ

)
D and 

C 2 ,D = (12 . 76 
√ 

2 D ) 2 (r 0 /δ) 2 , which ensures that 1 − ε(l) decreases monotonically for l < log 2 ( 
√ 

D/ 2 (r 0 /δ)) + log 2 (25 . 52 
√ 

2 ) . 

see Remark C.2 and Corollary C.3 . 

On the other hand, when l > log 2 ( 
√ 

D/ 2 (r 0 /δ)) the tighter bound from Eq. (5.7) ensures that 1 − ε(l) continues to de- 

creases monotonically. Moreover, as l → ∞ each new level reduces the residual error by (1 + 1 /nλ) −1 . We can also observe 

that the convergence rate is reduced by the number of training points n , but this effect can be mitigated by reducing the 

regularization parameter λ. We also note that Thm. 5.6 and Thm. 5.7 are derived for a vector of numbers on the training 

data �n ⊂ X , without assumptions on the target function. In other words, the LP estimator can approximate the training 

data for any function f : �n → R , to arbitrary precision, by including sufficiently many levels. 

Corollary 5.8. If the residual d (l) = ( ̂  f (l) ([ x n ]) − f ([ x n ])) at level l only projects non-trivially onto the eigenvectors with eigen- 

value σl,n ≥ σcut-off, then we say the residual is spectrally band-limited with respect to the kernel. If the residual d (l) is spectrally 

band-limited, then 1 − ε(l) < nλ/ (nλ + σcut-off) . 

Proof. Follows from Eq. (5.3) - (5.5) with P (l) 
nn = P (l) 

nn,k 
+ 

(
P (l) 

nn,k 

)⊥ , where P (l) 
nn,k 

is the projection on the eigenvectors associated 

with the k largest eigenvalues and 

(
P (l) 

nn,k 

)⊥ ( ̂  f (l) ([ x n ]) − f ([ x n ])) = 0 . �

6. Experiments 

This section presents comparative numerical experiments of the proposed estimator on three problems. In Section 6.1 we 

consider a one-dimensional regression problem, and in Section 6.2 we consider a dumbbell-shaped domain that consists of 

two 5-dimensional spheres connected by a 2-dimensional plane. Lastly, in Section 6.3 , we forecast the trajectory of a double 

pendulum, which is a well-known chaotic system [25] . 

We compare StreaMRAK with FALKON [2] and an LP modification of KRR ( LP-KRR ). Both FALKON and LP-KRR rely 

on the standard Nyström sub-sampling [51,52] . Furthermore, FALKON does not rely on a multi-resolution scheme but uses 

instead a single bandwidth, found by cross-validation. 

Throughout the experiments, we set the threshold for the number of sub-samples (landmarks) in StreaMRAK to be 

10 
√ | Q l | , where Q l is the set of nodes at level l in the DCT. We note that to choose the sub-sample size, FALKON and 

LP-KRR require n to be known beforehand. For FALKON we let the number of Nyström landmarks be 10 
√ 

n , where n is 

the number of training samples. Meanwhile, for LP-KRR we sub-sample 
√ 

n Nyström landmarks, which are then used for 

all levels. 

We also need to pre-select the number of training points for LP-KRR and FALKON . For FALKON we use the entire 

training set, as in [2] . Similarly, it is also common for the LP to use the entire training set at each level [27,28] . However, for 

large data sets, it might be better to include fewer data points. Therefore, we also use a version of the LP-KRR where we 

divide the total training data equally between the levels. 

Throughout the experiments, we measure the performance of StreaMRAK , FALKON , and LP-KRR by estimating the 

mean square error 

MSE(y, y pred ) = 

1 

ϒ�

ϒ∑ 

k =1 

1 

n k 

|| y k − y 
pred 

k 
|| 2 , with � = max 

k ∈ [ϒ] 
i ∈ [ n k ] 

[ y k ] i − min 

k ∈ [ϒ] 
i ∈ [ n k ] 

[ y k ] i , (6.1) 
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Table 1 

Comparison of StreaMRAK , LP-KRR and FALKON for the target in Eq. (6.2) . For each level l we 

show the number of landmarks, the mean square error (MSE), and the accumulated time to train 

the prediction model (Time). In parenthesis, in the time column of the FALKON row, is the time 

to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE Time 

StreaMRAK 

5 47 2.55 ×10 −1 77 s 

10 392 3.69 ×10 −2 116 s 

15 1525 8.63 ×10 −6 497 s 

16 2302 6.18 ×10 −6 1194 s 

LP-KRR (1) n l = 1 . 1 × 10 5 
5 1483 2.56 ×10 −1 143 s 

10 1483 3.65 ×10 −2 413 s 

15 1483 8.72 ×10 −6 825 s 

16 1483 6.85 ×10 −6 922 s 

18 1483 6.55 ×10 −6 1136 s 

LP-KRR (2) n l = 2 . 2 × 10 6 
5 1483 2.56 ×10 −1 2963 s 

10 1483 3.64 ×10 −2 8704 s 

18 1483 8.91 ×10 −6 23113 s 

StreaMRAK – 14830 5.7 ×10 −3 4642 s + (27930 s) 

Fig. 3. (a)-(d) shows the target function f (x ) from Eq. (6.2) as a grey dotted line. The light-blue circles indicates the predicted values made by StreaM- 

RAK . Similarly the red triangles indicates the predictions made by LP-KRR and the dark blue squares the predictions made by FALKON . (For interpretation 

of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

where ϒ is the number of test runs we average over, n k is the number of test points at test run k , and y k , y 
pred 

k 
∈ R 

n t are 

the target values and predictions respectively, and � is the normalisation factor. 

6.1. Multi-resolution benchmark 

We consider the function, 

f (x ) = sin 

(
1 

x + 0 . 01 

)
, for x ∈ 

[ 
0 , 

π

4 

] 
. (6.2) 

In the experiment we use a training set of n = 2 . 2 × 10 6 samples and a test set of 1 . 3 × 10 5 samples. We use the non- 

uniform gamma distribution �(α, β) with α = 1 , β = 2 to sample the training data. 

The number of training points used at each level in StreaMRAK is determined by setting δ1 and δ2 from Def. 4.1 to 10 −3 . 

With this choice, StreaMRAK selects between 30244 and 40100 training points for each level. For comparison, FALKON 

uses all the 2 . 2 × 10 6 training points. Furthermore, for LP-KRR we run two experiments: LP-KRR (1) using 1 . 1 × 10 5 training 

points at each level and LP-KRR (2) using 2 . 2 × 10 6 training points at each level. 

Results are presented in Table 1 , and the prediction results are illustrated in Fig. 3 a- 3 d. The results show that StreaM- 

RAK and both LP-KRR schemes perform much better than FALKON . The reason is that FALKON uses only one bandwidth 

r, while the multi-resolution schemes StreaMRAK and LP-KRR , utilize a bandwidth regime r l = 2 −l r 0 that varies with the 

level l. The consequence is that StreaMRAK and LP-KRR approximate the low-frequency components of f when the band- 

width is large, and then target the high-frequency components of f (x ) gradually as the bandwidth decreases. These results 

illustrate the benefits of a multi-resolution scheme over a single bandwidth scheme. 

From Table 1 , we also observe that LP-KRR (2) is significantly slower than StreaMRAK and LP-KRR (1). This is because 

it uses the entire training set at each level. Therefore, since LP-KRR (1) and LP-KRR (2) achieve comparable precision, we 

see that including all training points at each level is not always necessary. 

A closer comparison of StreaMRAK and LP-KRR is given in Fig. 4 . In particular, in Fig. 4 a we see that the two algorithms 

achieve very similar precision. However, comparing the training times in Fig. 4 b, we see that StreaMRAK trains each level 

faster and therefore achieves better precision earlier than LP-KRR (1). 
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Fig. 4. Comparison of StreaMRAK and LP-KRR . (a) shows the mean square error calculated according to Eq. (6.1) with the target function from Eq. (6.2) . 

Along the x-axis is the number of levels included in the model. (b) The x-axis shows the accumulated training time until a level in the LP is completed. 

The y-axis shows the MSE of the prediction using the currently available model. The blue circles indicate the prediction error of StreaMRAK and the red 

triangles indicate the prediction error of LP-KRR (1). (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 5. (a)-(c) shows the landmarks with their position along the x 1 axis and the average distance to their 2 nearest neighbors along the y-axis. Here the 

red triangles are the Nyström landmarks of LP-KRR and the light-blue circles the landmarks of StreaMRAK . The grey dotted line is the bandwidth at the 

given level. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

In Fig. 5 we show the average distance of each landmark to their 2 nearest neighbors (2-NN distance). Two aspects 

of the selection require attention. As opposed to LP-KRR , StreaMRAK selects landmarks such that the 2-NN distance is 

comparable to the bandwidth used at a specific level. In addition, StreaMRAK saves computational power by not choosing 

landmarks in regions where the 2-NN distance is too low compared to the bandwidth. In Fig. 5 c this can be observed for 

level l = 16 for landmarks with x ≥ 0 . 2 . Due to the non-uniform sample distribution with a higher density around x = 0 , the 

adaptive sub-sampling is able to select more landmarks in the region close to x = 0 , where f oscillates with high frequency. 

Furthermore, StreaMRAK stops predicting at level 16 because level 17 is not yet covered with a high enough density of 

landmarks. Meanwhile, LP-KRR continues, but as seen from Fig. 4 a the improvements after level 15 are not significant 

because the density of Nyström samples is too low compared to the bandwidth. 

6.2. Adaptive sub-sampling benchmark 

We consider a dumbbell-shaped domain embedded in R 

5 , consisting of two 5-dimensional spheres connected by a 2- 

dimensional plane. A projection of the input domain in R 

3 is shown in Fig. 7 (a)-(c). Furthermore, as target we consider the 

following function, 

f ( x ) = 

{
A sin (Bx 1 + φ) + (x 1 + 2) , 1 < x 1 < 3 

1 , otherwise 
, for x ∈ [ −1 , 5] × [ −1 , 1] 4 , (6.3) 

where A, B and φ are chosen so that f ∈ C 1 ([ −1 , 5] × [ −1 , 1] 4 , R 

5 ) . For the experiments, we consider a training set of 

1 . 9 × 10 6 samples and a test set of 6 × 10 5 samples, all sampled uniformly at random from the input domain. We note that 
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Table 2 

Comparison of StreaMRAK , LP-KRR , and FALKON predictions of the target function in Eq. (6.3) . 

For each level l we show the number of landmarks, the mean square error (MSE), and the ac- 

cumulated time to train the prediction model (Time). In parenthesis, in the time column of the 

FALKON row, is the time to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE Time 

StreaMRAK 

4 352 1.29 ×10 −3 64 s 

5 2667 1.27 ×10 −3 1398 s 

6 1858 8.31 ×10 −4 1462 s 

8 1329 2.75 ×10 −5 2307 s 

LP-KRR (1) n l = 1 . 8 × 10 5 
4 1375 1.28 ×10 −3 386 s 

5 1375 1.26 ×10 −3 520 s 

6 1375 9.10 ×10 −4 671 s 

8 1375 3.30 ×10 −4 1064 s 

9 1375 3.10 ×10 −4 1287 s 

LP-KRR (2) n l = 1 . 9 × 10 6 
4 1375 1.34 ×10 −3 4160 s 

5 1375 1.30 ×10 −3 5570 s 

6 1375 9.44 ×10 −4 7168 s 

8 1375 3.16 ×10 −4 11125 s 

9 1375 3.01 ×10 −4 13334 s 

FALKON – 14830 6.8 ×10 −4 6590 s + (37561 s) 

we purposefully chose a simple function in the high dimensional regions because complicated functions in high dimensions 

require far too many points to be satisfactorily learned. 

To determine the number of training points for StreaMRAK , we let δ1 = 1 × 10 −3 and δ2 = 1 × 10 −4 , cf. Def. 4.1 . With 

this choice StreaMRAK selects between 30100 and 40100 training points for each level. FALKON again uses all the 

1 . 9 × 10 6 training points and for LP-KRR we consider two settings: LP-KRR (1) using 1 . 8 × 10 5 training points at each 

level, and LP-KRR (2) using 1 . 9 × 10 6 training points at each level. 

The results for StreaMRAK , LP-KRR , and FALKON are presented in Table 2 . We observe that StreaMRAK achieves a 

better prediction than both FALKON and LP-KRR because it adapts the sub-sampling density to the level of resolution. 

To understand the improvement in prediction accuracy, we need to discuss the effects of landmark selection. In Fig. 7 a- 7 

c we show the projections of landmarks for StreaMRAK and LP-KRR on R 

3 , and in Fig. 7 d- 7 f the average distance of each 

landmark to its 7 nearest neighbors. These distances are compared with the bandwidth r l selected for the given level l. We 

see that StreaMRAK selects landmarks in regions where the average distance to nearest neighbors is comparable to the 

bandwidth. This means that in high dimensional regions, which correspond to x 1 ∈ [ −1 , 1] ∪ [3 , 5] , the algorithm effectively 

stops collecting landmarks since it cannot maintain high enough density. On the other hand, LP-KRR uses Nystrom sub- 

sampling, which imposes a uniform selection of landmarks. Consequently, a significant number of landmarks come from 

high-dimensional regions. 

Moreover, Fig. 7 shows that in the case of LP-KRR , the average distance between the landmarks in high dimensional 

regions is larger than the bandwidth r l when l ≥ 5 . As a knock-on effect, LP-KRR makes only small improvements in high 

dimensional regions for l ≥ 5 , as seen from Fig. 6 b. Analogous behavior can be observed for StreaMRAK . However, since 

StreaMRAK devotes fewer resources to high dimensional regions, it sub-samples more from the low dimensional region, as 

illustrated in Fig. 6 a. The consequence is that StreaMRAK makes bigger improvements in the low dimensional region than 

LP-KRR , as seen from Fig. 6 b. Note that this was not the case in Section 6.1 , where the two methods had similar behavior, 

but unlike here, the input domain in Section 6.1 did not consist of regions with different dimensionalities. 

6.3. Forecasting the trajectory of a double pendulum 

We consider the double pendulum, illustrated in Fig. 2 a, which we model by the Lagrangian system 

L = ml 2 (ω 

2 
1 + 

1 

2 

ω 

2 
2 ) + ml 2 ω 1 ω 2 cos (θ1 − θ2 ) + mgl(2 cos θ1 + cos θ2 ) , (6.4) 

under the assumption that the pendulums are massless rods of length l 1 = l 2 = l with masses m 1 = m 2 = m centered at the 

end of each rod. Here g is the standard gravity, ω 1 := 

˙ θ1 , ω 2 := 

˙ θ2 are the angular velocities, and the angles θ1 , θ2 are as 

indicated in Fig. 2 a. For the experiments we let m = 1 , l = 1 and g = 10 . 

The learning task is to forecast the trajectory of the pendulum, given only its initial conditions. We let s t = 

[ θ1 (t) , θ2 (t) , ω 1 (t) , ω 2 (t)] ∈ R 

4 be the state of the system at step t ∈ N and train StreaMRAK , LP-KRR and FALKON to 

learn how s t maps to a later state s t+�, for � ∈ N . The trained model ̂ f is used to forecast the state s T for T >> 0 by 

recursively predicting s t+� = ̂

 f ( s t ) from the initial state s 0 until t = T . 

For the experiments we consider two settings: a low energy system s low 

0 
= [ −20 ◦, −20 ◦, 0 ◦, 0 ◦] and a high energy system 

s high 
0 

= [ −120 ◦, −20 ◦, −7 . 57 ◦, 7 . 68 ◦] . For these systems, we initialize 80 0 0 pendulums as s 0 ∼ N ( s , σ ( s )) for s = s low 

0 
, s high 

0 
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Fig. 6. Comparison of StreaMRAK and LP-KRR (1) in the 2-dim and 5-dim regions of the Dumbbell domain. The solid blue line is StreaMRAK for 

dimension d = 2 while the solid red line is LP-KRR (1) for dimension d = 2 . The grey dotted line is StreaMRAK for dimension d = 5 and the dark-grey 

dashed line is LP-KRR (1) for dimension d = 5 (a) shows the mean square error calculated according to Eq. (6.1) . (b) shows the number of landmarks in 

the 2-dimensional and the 5- dimensional regions. (For interpretation of the references to colour in this figure legend, the reader is referred to the web 

version of this article.) 

Fig. 7. In the figure, red triangles correspond to LP-KRR and light-blue circles to StreaMRAK . (a)-(c) shows the landmark distributions projected on R 3 
at level l = 4 , 5 , 6 respectively. (d)-(f) shows the average distance between the 7 nearest neighbors; bandwidth r l is indicated with a dotted line. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

respectively, where σ ( s ) = [0 . 025 | θ1 | , 0 . 15 | θ2 | , 0 . 3 | ω 1 | , 0 . 3 | ω 2 | ] . Each pendulum is iterated for 500 steps, which results in 

5 × 10 6 training points distributed in R 

4 . Furthermore, for the test data we consider 100 pendulums s 0 ∼ N ( s , 0 . 01 | s | ) for 

s = s low 

0 
, s high 

0 
, iterated for 500 steps. 

To determine the number of training points for StreaMRAK , we let δ1 , δ2 = 10 −4 , cf. Def. 4.1 . With this choice StreaM- 

RAK selects between 30219 and 70282 training points for each level for the low energy system, and between 36300 and 

130200 for the high energy system. Meanwhile, FALKON uses all 5 . 0 × 10 6 training points and LP-KRR use 3 . 9 × 10 5 train- 

ing points at each level. 

Results are presented in Table 3 and Table 4 . Furthermore, to illustrate the prediction results we consider the center of 

mass M x ( s t ) = 

1 
2 (x 1 (t) + x 2 (t)) ∈ R at state s t , where x 1 , x 2 ∈ R are the positions of the two pendulum masses as seen in 
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Table 3 

Comparison of StreaMRAK , LP-KRR , and FALKON for the low energy system. For 

each level l we show the number of landmarks, the MSE at step T = 50, and the ac- 

cumulated time to train the prediction model (Time). In parenthesis, in the time col- 

umn of the FALKON row, is the time to find the optimal bandwidth through cross- 

validation. 

Level # Landmarks MSE(T = 50) Time 

StreaMRAK 

2 1 1.12 ×10 −1 31 s 

5 66 3.39 ×10 −5 498 s 

7 659 1.44 ×10 −6 534 s 

9 4085 3.01 ×10 −7 812 s 

LP-KRR 

2 1979 5.93 ×10 −2 490 s 

5 1979 2.73 ×10 −5 1463 s 

7 1979 2.16 ×10 −7 2395 s 

9 1979 1.16 ×10 −8 3550 s 

FALKON – 19790 5 ×10 6 2934 s + (1498 s) 

Table 4 

Comparison of the StreaMRAK , LP-KRR , and FALKON for the high energy system. For 

each level l we show the number of landmarks, the MSE at step T = 50, and the accumu- 

lated time to train the prediction model (Time). In parenthesis, in the time column of 

the FALKON row, is the time to find the optimal bandwidth through cross-validation. 

Level # Landmarks MSE(T = 50) Time 

StreaMRAK 

2 1 2.70 ×10 −1 49 s 

5 1106 8.53 ×10 −3 915 s 

7 6376 2.16 ×10 −4 1999 s 

LP-KRR 

2 1979 1.72 ×10 −2 522 s 

5 1979 5.09 ×10 −3 1474 s 

7 1979 1.39 ×10 −4 2431 s 

FALKON – 19790 5 ×10 6 23830 s + (11050 s) 

Fig. 8. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares) for 

the low energy pendulum. (a) Shows the mean square error of the center of mass M x ( s t ) for the level 7 prediction, with step T along the x-axis. (b) shows 

the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK , LP-KRR , and FALKON at level 9. (c) The x-axis shows the 

accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. We note that 

StreaMRAK includes 7 levels, while LP-KRR includes 9. (For interpretation of the references to colour in this figure legend, the reader is referred to the 

web version of this article.) 

Fig. 2 a. The prediction results are illustrated in Fig. 8 and Fig 9 for the low and high energy pendulums respectively. We 

calculate the MSE at each step t separately, such that for a given t we use Eq. 6.1 with y k = M x ( s t ) , y 
pred 

k 
= M x ( s 

pred 
t ) and 

ϒ = 100 . 

For the low energy system, we see from Fig. 8 c how StreaMRAK is trained significantly faster than LP-KRR , although 

at a cost of reduced precision. The reduced training time of StreaMRAK is a consequence of the low doubling dimension 

of the training data, which allows the selection of far fewer landmarks for StreaMRAK than what is used at each level in 

LP-KRR . 

For the high-energy pendulum, we see from Fig. 9 c that StreaMRAK is again able to achieve good precision faster than 

LP-KRR . Furthermore, we see that the number of landmarks selected for StreaMRAK increases abruptly with the levels, 

reflecting the high doubling dimension of the training data. Due to this StreaMRAK stops the training after level 7, as 
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Fig. 9. Comparison of StreaMRAK (light blue lines and circles), LP-KRR (red lines and triangles), and FALKON (dark blue dotted lines and squares) 

for the high-energy pendulum. (a) Shows the mean square error of the center of mass M x ( s t ) for the level 7 prediction, with step T along the x-axis. 

(b) shows the true center of mass trajectory as a grey dotted line and the predictions of StreaMRAK , LP-KRR , and FALKON at level 9. (c) The x-axis 

shows the accumulated training time until a level in the LP is completed. The y-axis shows the MSE of the predicted system state after T = 50 steps. (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. (a) Pendulum positions at T = 200 and (c) The positions at T = 210 . In (a) and (c), P M is the main pendulum with initial conditions s high 
0 

, while 

P F is the StreaMRAK forecast of the pendulum position. Similarly, P 0 − P 3 are four training pendulums with a perturbation of 0 . 5% on the initial angles 

θ1 and θ2 of the main pendulum. (b) Projection of the training data on the θ1 θ2 -plane. The thick red line is the main pendulum corresponding to P M and 

the four grey dotted lines are the test pendulums P 0 − P 3 , where the X indicates the time T = 205 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 

the next levels require too many landmarks. By continuing for 2 more levels LP-KRR is able to achieve marginally better 

precision but at increased computational cost. 

As seen in Fig. 9 b, the forecasting of StreaMRAK and LP-KRR breaks down after T ≈ 200 steps. In Fig. 10 b we observe 

the trajectory of a pendulum with initial condition s high 
0 

, as well as four pendulums with a 0 . 5% perturbation on the angles 

θ1 and θ2 in s high 
0 

. We observe that after roughly T = 205 time steps the trajectory of the five pendulums diverge signifi- 

cantly from each other. Therefore, it seems that a bifurcation point occurs around this time, which may explain why all the 

algorithms are unable to make good forecasting beyond this point. 

7. Outlook 

Further development of StreaMRAK is intended with focus on four objectives. 

(O1) Augmentation of the DCT to track the error at each node 

(O2) Improve the estimator in Def. 4.1 and Eq. 3.1 . 

(O3) Refinement of previously fitted levels in the LP as new data arrives. 

(O4) Further theoretical analysis of the LP. 

Considering objective (O1) we intend to develop the DCT to track the error at each node. This way the growth can be 

restricted in regions where the error is small, which allows for more focus on regions where the error is large. The intention 

is that this will reduce the problem complexity even further, while also increasing the precision. Regarding objective (O2), a 

drawback with the estimator in Eq. 3.1 was already mentioned in Remark B.1 in Appendix B . Furthermore, for the estimator 

in Def. 4.1 , we intend to implement and evaluate alternative ways to estimate the convergence of the matrices. Another focus 

area will be objective (O3), as we believe new information may be revealed as new training data arrive, and refinement of 

previously fitted levels can therefore be beneficial. Finally, the theoretical analysis in objective (O4) will focus on analyzing 

the generalization error for the LP, particularly in combination with the adaptive sub-sampling scheme. 
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Appendix A. Algorithms 

We here denote nodes by p, q, c and x p , x q , x c ∈ X ⊂ R 

D are the corresponding points. 

Algorithm A.1 Insert (point q , node p, level l). 

1: We assume q already satisfies ‖ x q − x p ‖ ≤ 2 −l r 0 . 

2: if ‖ x q − x c ‖ > 2 −(l+1) r 0 for all c ∈ Children (p) then 

3: Insert q into Children (c) . 

4: Update_CoverFraction ( Parent( Q l ), “No parent found”) 

5: Break 

6: else if ‖ x q − x c ‖ < 2 −(l+1) r 0 for some c ∈ Children (p) then 

7: Consider all children of c, namely Children (c) 

8: if Children (c) is empty then 

9: if Covering fraction of p, Def. 3.1, satisfy cf (p) ≥ D cf for some threshold D cf then 

10: Insert q into Children (c) 

11: Break 

12: else 

13: Update_CoverFraction (p, “parent found”){c is found to be a potential parent. However, since cf (p) < D cf we can 

not add q to Children(c) } 

14: end if 

15: else 

16: Insert ( q , c, l + 1 ) 

17: end if 

18: end if 

Algorithm A.2 StreaMRAK (point x , target y ). 

1: Let l be the level. Let p (0) be the root node, r 0 the radius of the root node. 

2: Sub-sampling thread 

3: Insert x into the cover tree with Insert ( x , p (0) , l = 0) . {See Alg. A.1} 

4: if a new level has cf (Q l ) ≥ D le v el . then 

5: Extract the landmarks at level l as sub-samples, namely �(l) 

m 

(l) 
. 

6: end if 

7: Training thread 

8: Consider level l and assume that the landmarks �(l) 

m 

(l) 
are extracted. 

9: while l is not sufficiently covered with training points according to Def. 4.1. do 

10: Update 
[
(K 

(l) 
nm 

) � K 

(l) 
nm 

]
i j and z (l) 

i 
according to Eq. 2.4 and Eq. 2.5 as new samples ( x , y ) arrive, using the landmarks in ˜ �(l) 

m 

from Def. 3.3. 

11: Continuously check if matrices have converged. 

12: if Matrices converge according to Def. 4.1 then 

13: Update the StreaMRAK regression model ˜ f (L ) , by including the correction term s (l) into the Laplacian pyramid, as 

described in Section 2.2. Let L = l and update l = l + 1 . 

14: end if 

15: end while 
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Algorithm A.3 Update_CoverFraction (node p, string s). 

1: if s=“No parent found” then 

2: Update covering fraction of p with cf (p) = (1 − α) cf (p) 

3: else if s= “parent found” then 

4: Update covering fraction of p with cf (p) = (1 − α) cf (p) + α
5: end if 

Appendix B. Preparatory material 

We offer preparatory material on the damped cover-tree and kernel methods. 

B1. Preparatory material on the damped cover-tree 

This section shows how the recursive formula in Eq. 3.1 approximates the weighted average of the outcome of the last N

random trails. Where the trails are as described in Section 3.1 . By expanding Eq. 3.1 we have (cf (p)) t = (1 − α) t (cf (p)) 1 + 

α
∑ t−1 

i =1 (1 − α) i 1 B c ( x t−i ) . Since (1 − 1 
N ) 

N ≈ 1 /e , the first term becomes negligible when t � N. Similarly, all terms i > N in 

the sum becomes negligible. This leaves, 

(cf (p)) t ≈ 1 

N 

N ∑ 

i =1 

(
1 − 1 

N 

)
i 1 B c ( x t−i ) 

which is a weighted average of the outcome of the N last draws as claimed. 

Remark B.1. We mention a weakness of the estimator in Eq. (3.1) . As follows from Algorithm A.1 , every time a new point 

x is not covered by the existing children, a new child is added. This consequently updates B c , leading to the posterior 

distribution Prob (1 B c ( x ) = 0 | x ) to changed every time 1 B c ( x ) = 0 . 

B2. Preparatory material on Kernel methods 

Kernel methods in the context of reproducing kernel Hilbert spaces (RKHS) offer a powerful approach to machine learn- 

ing with a well-established mathematical foundation [1,62] . In this paper we consider an input space X ⊂ R 

D , a corre- 

sponding target space Y ⊂ R and let ρ be the probability distribution on X × Y . Furthermore, we assume an RKHS H k 

generated by a positive definite kernel k : X × X → R . In other words, the eigenvalues σi , . . . , σn of the corresponding ker- 

nel matrix K nn = (k ( x i , x j )) 
n 
i, j=1 

satisfies σi > 0 for all i ∈ n . In this setting the inner product between two feature vectors 

φ( x ) , φ( x ′ ) ∈ H k satisfies the property that < φ( x ) , φ( x ′ ) > H k 
= k ( x , x ′ ) . This relation, known as the ”kernel trick” [63,64] , 

effectively circumvents the need for explicit construction of non-linear mappings φ. 

Given a training set { ( x i , y i ) : i ∈ [ n ] } sampled according to ρ with �n = { x i : i ∈ [ n ] } , we formulate the kernel ridge re- 

gression (KRR) problem as 

̂ f n,λ = argmin 

f∈ ̂  H n 

1 

n 

n ∑ 

i =1 

( f ( x i ) − y i ) 
2 + λ‖ 

f ‖ 

2 
H 

, (B.1) 

where λ > 0 is a regularisation parameter and 

̂ H n = span { k (·, x i ) : i ∈ [ n ] } is a finite-dimensional subspace of H k . What is 

more, for all f ∈ 

̂ H n the Representer theorem [65,66] guarantees that there exists coefficients α1 , . . . , αn such that the solu- 

tion to Eq. (B.1) is on the form 

f ( x ) = 

n ∑ 

i =1 

αi k ( x , x i ) . 

Computing the KRR estimator is therefore reduced to solving the linear system 

(K nn + λI n ) α = y , 

where y = (y 1 , . . . , y n ) 
� , α = (α1 , . . . , αn ) 

� , and [ K nn ] i j = k ( x i , x j ) . 

Appendix C. Auxiliary results 

Lemma C.1. Let d (l) be the residual at level l as defined in Eq. (2.9) . We then have, 

d (l+1) = (I − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 ) d (l) 
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Proof. Denote s (l) = s (l) ([ x n ]) , and note that s (l) = K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 d (l) . For l = 1 , we have 

d (1) = y − s (0) = y − K 

(l) 
nn α

(0) = (I − K 

(0) 
nn )(K 

(0) 
nn + λn I ) −1 y . 

We proceed by induction. Assume the statement holds for an l ≥ 2 . We now have 

d (l+1) = y −
l ∑ 

j=0 

s ( j) = d (l) − s (l) = d (l) − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 d (l) = (I − K 

(l) 
nn (K 

(l) 
nn + λn I ) −1 ) d (l) . 

�

Remark C.2. In [60, Thm. 12.3] they also offer an a fortiori bound corresponding to M D = 6 . 38 D , C 1 ,D = 

1 
2 

(
12 . 76 
2 3 / 2 

)
D 
(

D D 

�(D/ 2+1) 

)(
r 0 
δ

)
D and C 2 ,D = (12 . 76 

√ 

2 D ) 2 (r 0 /δ) 2 . 

Corollary C.3. We note that B (l) from Eq. (5.8) has a maximum at 

l ∗ = 

1 
2 

log 2 

(
C 2 ,D log 4 

D log 2 

)
= log 2 

(√ 

D 
2 

(
r 0 
δ

))
+ log 2 

(
4 M D 

D 

√ 

2 

)
and is monotonically increasing with l on the interval l ∈ (0 , l ∗) . Furthermore, with the a fortiori expression for M D from Remark 

C.2 we have 

l ∗ = log 2 

(√ 

D 

2 

(
r 0 
δ

))
+ log 2 

(
25 . 52 

√ 

2 

)
. 

Lemma C.4. The function 

F (T ) := 2 

− T 
2 (1+1 / ln 2) 2 

−lT T 
T 
2 

(
r 0 
δ

)
T 

has minimum 

F (T ∗) = 2 

− 1 
ln 2 

4 l−log 2 (r 0 /δ) 

. 

Proof. We can write F (T ) as 

F (T ) = 2 

− T 
2 (1+1 / ln 2) 2 

−lT 2 

T/ 2 log 2 T 2 

T log 2 (r 0 /δ) = 2 

−T/ 2(B −log 2 T ) = 2 

f (T ) , 

where B = 1 + 

1 
ln 2 

+ 2 l − 2 log 2 
(

r 0 
δ

)
and f (T ) = −T / 2(B − log 2 T ) . F (T ) is therefore minimized when f (T ) is minimized. 

Namely when 

T ∗ = 2 

B −1 / ln 2 = 2 

1+1 / ln 2+2 l−2 log 2 (r 0 /δ) −1 / ln 2 = 2 · 4 

l−log 2 (r 0 /δ) . 

Inserting this back into the expression for F (T ) gives the desired result. �
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