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Introduction and Scope

This Thesis is based on the first two sections of the unpublished article “The
4-dimensional Sklyanin Algebra at points of finite order” by S. Paul Smith
[Smith 93a]. Our aim is to demonstrate an approach to the study of the
projective variety associated with a noncommutative algebra.

In commutative algebra, we have the following fundamental result by
Serre: Given an algebra A, the category of finitely generated graded A-
modules modulo torsion is equivalent to the category of coherent sheaves on
X = Proj (A). The noncommutative analogue to Serre’s Theorem (and re-
lated results on the cohomology of sheaves) still holds for a class of algebras
satisfying a certain condition, among them the AS-regular algebras defined
in Chapter 7.

So in the noncommutative case, we are still interested in the structure
of the category of finitely generated graded A-modules modulo torsion. Our
aim is to show that the set P, which in the commutative case corresponds
to the set of closed points in X = Proj (A), can be parametrised by the
set F of finite dimensional simple A-modules, and by the set C of 1-critical
modules that possess such simples as quotients.

We then outline a method of finding the finite dimensional simple quo-
tients of certain 1-critical modules, namely the point modules, and finally
demonstrate how this method works in some explicit examples.
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Chapter 1

Graded Algebras

Let us start by giving the definitions of the objects we want to study, and
the restrictions we put on them:

Let k be a field, not necessarily algebraically closed, and A a k-algebra.
Given a (not necessarily commutative) semigroup (G,+), the algebra A is
G-graded if we have a direct decomposition of the underlying additive group

A =
⊕
n∈G

An,

such that the ring multiplication maps Am ⊗An into Am+n, ∀m,n ∈ G.
A (left) G-graded module is a module M over a G-graded algebra A, that
can be decomposed into

M =
⊕
n∈G

Mn,

such that the action of A on M maps Am ⊗Mn into Mm+n, ∀m,n ∈ G. A
submodule N ⊂M is G-graded if

N =
⊕
n∈G

(N ∩Mn) .

A graded module homomorphism f : M → N of degree m be-
tween two graded A-modules is an A-module homomorphism satisfying
f (Mn) ⊆ Nm+n for all n.

Elements in An and Mn are called homogeneous elements of degree n.

When G = Z≥0 and A0 = k, we say that the graded algebra is con-
nected, and when dimkAn < ∞ ∀n ∈ Z≥0, A is locally finite. For Z≥0-
graded algebras we also define the trivial A-module: It is the 1-dimensional
module A/A+ where A+ =

⊕
n≥1An is the augmentation ideal of A. The

trivial module is simple, as A is connected: A/A+ ∼= A0 = k.
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Assumption 1. We will restrict ourselves to the case when the (noncom-
mutative) algebra A is

1. a Z≥0-graded connected k-algebra;

2. (left and right) Noetherian;

3. finitely presented:
A = k 〈x0, . . . , xr〉 /I, (1.1)

where x0, . . . , xr are of degree 1 and I is a finitely generated graded
left ideal of degree s.

Ideals are right or left.

Remark 1.0.1. As A is graded Noetherian and dimk (A0) = 1 < ∞, A is
locally finite [Stephenson 97b].

Before we state the rest of our assumptions, we need to introduce some
more theory.

1.1 A Little Category Theory

A class is a set of sets (or other mathematical objects) that can be unam-
biguously defined by a property that all its members share. A category C
consists of

- a class of objects ob(C);

- for each ordered pair (A,B) ∈ ob(C) a class of morphisms HomC(A,B)
from A to B, writing Hom(C) for the class of all such morphisms;

- for each ordered triplet (A,B,C) ∈ ob(C), a binary operator

◦ : HomC(A,B)×HomC(B,C) −→ HomC(A,C)

called the composition of morphisms. The operator ◦ is asso-
ciative, and there exists an identity morphism 1A ∈ HomC(A,A),
∀A ∈ ob(C), such that 1B ◦ f = f = f ◦ 1A, ∀f ∈ HomC(A,B);

An abelian category is a category C in which HomC(A,B) is an abelian
group, ∀A,B ∈ ob(C), and where kernels and cokernels exist and have nice
properties. For a more detailed and rigorous definition, see for example
http://en.wikipedia.org/wiki/Abelian_category.

A subcategory S of C is a category whose objects are in C and whose
morphisms are morphisms in C. The subcategory is full if ∀A,B ∈ ob(S),

HomS (A,B) = HomC(A,B).
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1.1 A Little Category Theory

A Serre (or dense) subcategory is a non-empty full subcategory S of
an abelian category C such that for all short exact sequences

0 −→M ′ −→M −→M ′′ −→ 0

in C,
M ∈ S ⇐⇒ M ′,M ′′ ∈ S.

This means that S is closed under subobjects, quotients and extensions.
We can then construct the quotient category C/S = CΦ: the localisation of
C in the class of morphisms

Φ = {ϕ ∈ Hom(C) | Ker(ϕ),Coker(ϕ) ∈ S} .

Note that the morphisms in Φ are isomorphisms in the quotient category,
and the quotient is abelian.

1.1.1 Constructing proj(A)

We write grmod(A) for the abelian category of finitely generated graded A-
modules, with morphisms the graded A-module homomorphisms of degree
zero. A graded module M is bounded above (resp. bounded below) if
Mn = 0 for n� 0 (resp. n� 0). If M is bounded above and below, it has
finite length.
Let tors(A) be the full subcategory of modules of finite length. Then
tors (A) is a Serre subcategory [Smith 97, Proposition 2.2], so we may form
the quotient category proj(A):

proj (A) := grmod (A) / tors (A) ,

writing [M ] for the equivalence class in proj (A) of a moduleM in grmod (A).

By the definition of the quotient, if M,N ∈ grmod (A) and f : M −→ N
is a morphism, then f is an isomorphism in proj (A) if both the kernel
and cokernel of f have finite length.

Two objects M and N in grmod (A) are equivalent, and we write M ∼
N , if they belong to the same equivalence class in proj (A).

Proposition 1.1.1 ([Smith 97, Proposition 3.6]). M and N are equivalent if
and only if they contain submodules M ′ ∼= N ′ (via an isomorphism of degree
0) such that M/M ′ and N/N ′ are torsions, that is, for some n, M≥n

∼= N≥n.

1.1.2 Equivalences

We have established an equivalence relation for graded modules by passing
from proj (A) to grmod (A). Two other equivalences for modules over a

5



Graded Algebras

graded algebra are shift- and twist equivalence:

If M is a graded module, we write M [n] for the shifted module where
M [n]m = Mm+n. Two modules M and N are shift equivalent if M [n] ∼ N
for some n ∈ Z, and we write M∼shN .

Remark 1.1.2. A graded module homomorphism of degree m from M to
N can be identified with a graded module homomorphism of degree 0 from
M to N [d]. This means that graded module homomorphisms between shift
equivalence classes of graded modules always can be assumed to have degree
0.

We have a natural action of λ ∈ k∗ as A-automorphisms on A, since A
is a Z≥0-graded k-algebra:

λ : An −→ An

a 7−→ λna

If M is a (not necessarily graded) A-module, the twisted module Mλ is M
as a k-vector space, but with a new A-action given by

a ∗m = λna.m ∀a ∈ An.

Two modules M and N are twist-equivalent if ∃λ ∈ k∗ such that Mλ ∼= N ,
and we write M∼twN . If M is a graded module, then M ∼= Mλ, ∀λ ∈ k∗.

1.2 Growth of Graded Modules

A useful tool in the study of the objects of proj (A) is the Hilbert series and
two of its properties, the GK-dimension and the multiplicity:

Equivalent modules have the same GK-dimension and, if they are not
finite dimensional, the same multiplicity. This is useful, as it lets us work on
representatives of the equivalence classes in proj (A) instead of the equiva-
lence classes themselves.

Let M be a graded module over a Z≥0-graded algebra A. The Hilbert
function fM of M gives the dimension of each of the graded components:

fM (n) = dimk(Mn), n ∈ Z≥0.

If, for n � 0, fM (n) equals a polynomial hM (n), that polynomial is called
the Hilbert polynomial of M .
The formal power series

HM (t) =
∞∑
i=0

fM (i)ti

is called the Hilbert series (or sometimes the Poincaré series) of M .

6



1.2 Growth of Graded Modules

1.2.1 Dimensions

From the Hilbert series we can define the Gel’fand-Kirillov dimension
d of M : It is the order of the pole of HM (t) in 1 (we usually abbreviate to
GK-dimension). An equivalent definition is

d(M) := lim sup
n→∞

logn

(
n∑

i=0

fM (i)

)
,

so a module of finite GK-dimension has (at most) polynomial growth. With
this definition, it is clearer that the GK-dimension is a measure of how fast
the dimension of the graded components of the module is growing, but as
long as we have a Hilbert series, it is easier to calculate the GK-dimension
directly. It is also possible to define the GK-dimension for a non-graded
module by looking at ascending chains of subspaces, but that is outside the
scope of this paper (see for example [Krause 00] for details).

Remark 1.2.1. An interesting property of the GK-dimension is the Berg-
man Gap: d(A) = 0 if and only if A is a finite dimensional algebra. If not,
d(A) ≥ 1.
Borho and Kraft proved that any real number in the interval [2,∞[ occurs
as a GK-dimension, and Bergman showed that there is no algebra A such
that 1 < d(A) < 2 [Lenagan 00]. In short, if the GK-dimension of an algebra
A is finite, we have

d(A) ∈ {0, 1} ∪ [2,∞[ .

The GK-dimension demonstrates a fundamental difference between com-
mutative and noncommutative algebra:

Proposition 1.2.2 ([McConnell 01, 8.1.15]). If R = k [x1, . . . , xr] is a com-
mutative polynomial ring, then d(R) = r. On the other other hand, if A is
the free associative (noncommutative) algebra k 〈x1, . . . , xr〉 with r ≥ 2, then
d(A) =∞.

This means that when A is commutative, a module M ∈ grmod (A) has
finite GK-dimension by default since it is isomorphic to a quotient of a free
module.

We have the following relationship between the GK-dimension of a mod-
ule and its submodules and quotients:

Proposition 1.2.3 ([McConnell 01, 8.3.2(ii)]). If 0→M ′ →M →M ′′ → 0
is a short exact sequence of A-modules, then

d(M) ≥ max
{
d(M ′), d(M ′′)

}
.

If the sequence splits, equality holds.

7
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Remark 1.2.4. See [McConnell 01, 8.3.4] for an example where the in-
equality is strict.

Corollary 1.2.5. Let N be a proper submodule of the module M . Then

d(M) ≥ max {d(N), d(M/N)} .

Another dimension is the classical Krull dimension which is a gen-
eralisation of the Krull dimension of commutative algebra: Let Spec(A) be
the set of proper prime ideals in the algebra A. Then the classical Krull
dimension of A as a module over itself is defined as

cl.Kdim(A) := sup {h(p) | p ∈ Spec (A)}

where h(p) is the height of the prime ideal p, i.e. the supremum of the
lengths of the chains of prime ideals contained in p. However, if we want to
study simple Noetherian rings, the classical Krull dimension is not of much
use, as these rings all have classical Krull dimension zero.

Proposition 1.2.6 ([Krause 00, Theorem 4.5 (a)]). When A is a finitely
generated commutative algebra, then

d(A) = cl.Kdim(A)

We also define the classical Krull dimension for a module: If M 6= 0 is
an A-module, we define the classical Krull dimension of M as

cl.Kdim(M) := cl.Kdim(A/Ann (M)).

1.2.2 Multiplicity

Another useful concept which can be derived from the Hilbert series of a
module of finite GK-dimension is its multiplicity (or Bernstein degree)
e(M):

e(M) = (1− t)d(M)HM (t) |t=1 .

While the GK-dimension tells us how fast the module grows, the multiplicity
says something about its general size:

Example 1.2.7. Take for example the two modules M and N of GK-
dimension 1 with Hilbert polynomials

hM (n) = dim(Mn) = e(M) = 1
and hN (n) = dim(Nn) = e(M) = e > 1, ∀n ∈ Z≥0.

This confirms the intuition that N is larger than M .

The multiplicity is additive over short exact sequences of modules with
the same GK-dimension:

8



1.2 Growth of Graded Modules

Proposition 1.2.8. If 0→ L→ M → N → 0 is a short exact sequence of
modules with the same GK-dimension, then

e(M) = e(L) + e(N).

Proof. The short exact sequence of graded modules induces short exact se-
quences of their graded components:

0→ Ln →Mn → Nn → 0, ∀n,

and since the dimension is additive over short exact sequences, so is the
Hilbert series:

HM (t) = HL(t) +HN (t).

If d is the GK-dimension of the modules,

(1− t)d ·HM (t)
∣∣∣
t=1

= (1− t)d ·HL(t)
∣∣∣
t=1

+ (1− t)d ·HN (t)
∣∣∣
t=1

,

and consequently e(M) = e(L) + e(N).

1.2.3 Some Explicit Hilbert Series

For certain families of graded modules we can find a general expression for
the Hilbert series. Take for example the family of graded A-modules M
that have a Hilbert polynomial hM . Note that by Hilbert’s Theorem, when
A = k [x0, . . . , xr] and the degree of xi is 1, ∀i, this is true for all modules
in grmod (A).

Proposition 1.2.9. Let M be a Z≥0-graded A-module with Hilbert polyno-
mial

hM (n) =
d−1∑
i=0

ain
i, ad−1 6= 0.

Then the Hilbert series of M is on the form

HM (t) =
Q(t)

(1− t)d

with Q ∈ Z[t], Q(1) 6= 0.

Proof. Consider the Z≥0-graded module M with Hilbert polynomial hM .
Since hM is a numerical polynomial in Q[n], we can find c0, . . . , cd−1 ∈ Z
such that

hM (n) =
d−1∑
i=0

ain
i =

d−1∑
i=0

ci

(
n

i

)

9
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∀n ≥ N � 0 [Hartshorne 77, Proposition 7.3, p.49]. We can now calculate
the Hilbert series of M :
Consider the Hilbert series

HM (t) =
∞∑

n=0

fM (n)ti

where fM is the Hilbert function. We assume that for ∀n ≥ N � 0, it equals
the Hilbert polynomial hM , and write

HM (t) =
N−1∑
n=0

fM (n)tn +
∞∑

n=N

hM (n)tn.

Since Hf
M

(t) =
N−1∑
n=0

fM (n)ti is an easily determined polynomial in Z[t], let

us look at the rest of the formal power series:

Hh
M

(t) = HM (t)−Hf
M

(t) =
∞∑

n=N

hM (n)ti.

To simplify calculations, we may assume that N ≥ d− 1:
Then n ≥ N ≥ d− 1 ≥ i ≥ 0 and

(
n
i

)
is well defined, and so is Hh

M
(t).

We now have

Hh
M

(t) =
∞∑

n=N

hM (n)tn

=
∞∑

n=N

(
d−1∑
i=0

ci

(
n

i

)
tn

)

=
d−1∑
i=0

ci

(
ti

i!

∞∑
n=N

n!
(n− i)!

tn−i

)

=
d−1∑
i=0

ci

(
ti

i!
· d

i

dti

( ∞∑
n=N

tn

))

=
d−1∑
i=0

ci

(
ti

i!
· d

i

dti

(
tN

1− t

))

10



1.2 Growth of Graded Modules

Using the Leibniz Identity:

=
d−1∑
i=0

ci

(
ti

i!
·

i∑
k=0

(
i

k

)
dk

dtk
(
tN
)
· d

k−i

dtk−i

(
1

1− t

))

=
d−1∑
i=0

ci

(
ti

i!
·

i∑
k=0

i!
k! (i− k)!

N !
(N − k)!

tN−k · (i− k)!
(1− t)i−k+1

)

=
tN

(1− t)d
·

d−1∑
i=0

i∑
k=0

ci

(
N

k

)
ti−k (1− t)d−1−(i−k)

=
tN · P (t)

(1− t)d

where

P (t) =
d−1∑
i=0

i∑
k=0

ci

(
N

k

)
ti−k (1− t)d−1−(i−k) .

Since P (t) and Hf
M

(t) are polynomials in Z[t], we can finally write the
Hilbert series of M as

HM (t) = Hf
M

(t) +Hh
M

(t)

=
1

(1− t)d

(
Hf

M
(t) · (1− t)d + tN · P (t)

)
=

Q(t)
(1− t)d

,

with Q(t) = Hf
M

(t) · (1− t)d + tN · P (t) ∈ Z[t].
We have Q(1) 6= 0, as

Q(1) = P (1) = cd−1 = ad−1 · (d− 1)! 6= 0,

which gives the proof of the proposition and of the following corollary.

Corollary 1.2.10. Keeping the assumptions from the proposition, we have

d(M) = d = deg (hM ) + 1.

and
e(M) = Q(1) = ad−1 · (d− 1)! ∈ Z.

This gives us an equivalent definition of the GK-dimension: d(M) is
one more than the degree of the Hilbert polynomial hM . It also gives the
multiplicity as a function of the leading coefficient of the Hilbert polynomial
and the GK-dimension.

Question 1.2.11. Are there any restrictions on the Q(t)s? Or if can we
obtain any polynomial in k[t] that is non-zero in 1?

11
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Another class of algebras where we know the Hilbert series the following:

Theorem 1.2.12 (Hilbert-Serre [Atiyah 69, Theorem 11.1]). Let A be a
commutative Noetherian graded k-algebra, generated by x1, . . . , xr of degrees
d1, . . . , dr > 0, and let M be a finitely generated graded A-module.
Then the Hilbert series of M is on the form

HM (t) =
Q(t)

r∏
i=1

(1− tdi)
,

where Q(t) ∈ Z[t].

1.3 A Technical Assumption

We make a technical assumption on the algebra A, to be able to use the
results from the first two sections of [Smith 93a]:

Assumption 2. If M is a finitely generated graded A-module, then the
Hilbert series of M is on the form

HM (t) =
qM (t)

d∏
i=1

(1− tdi)

where di ∈ N, qM (t) ∈ Z
[
t, t−1

]
satisfies qM (1) 6= 0, and only a finite number

of di’s occur as M varies.

Remark 1.3.1. This might be a stronger restriction than we need for most
of the results, but among other things it enables us to prove the existence
of a critical composition series for Noetherian rings (Proposition 2.2.2).

An immediate consequence of Assumption 2 is that all finitely generated
graded A-modules (including A itself) have finite GK-dimension:

d(M) = d <∞,

and we have a particularly simple expression for the multiplicity:

e(M) =
qM (1)

d∏
i=1

di

.

Corollary 1.3.2. There exists a strictly positive lower bound e0 on the
multiplicity of modules in grmod (A).

12



1.3 A Technical Assumption

Proof from [Smith 93a]. The fact that there are only a finite number of di’s
means that we may find

m = max

{
d∏

i=1

di

}
,

so

e(M) =
qM (1)

d∏
i=1

di

≥ 1
m

= e0 > 0.

By the Hilbert-Serre Theorem 1.2.12, finitely generated commutative
Noetherian Z≥0-graded k-algebras belong to the family of algebras satisfy-
ing Assumption 2. This means that we limit our field of study to algebras
with modules that have a Hilbert series similar to that of finitely generated
graded modules over commutative Noetherian algebras.

This family also includes all algebras A that admit a Hilbert polynomial
(Proposition 1.2.9). In this case di = 1, ∀i.

It also includes algebras A that are quotients of a Noetherian graded
algebra R of finite global dimension such that

HR(t) =
g(t)

d∏
i=1

(1− tdi)

for some g(t) ∈ Z[t] and di ∈ N.

Remark 1.3.3 ([Lenagan 00]). When A is a Noetherian algebra with finite
GK-dimension, the GK-dimension separates primes: for all distinct prime
ideals P ⊂ Q ⊂ A

d(A/P ) ≥ d(A/Q) + 1.

Note that this fulfills the second technical assumption of [Smith 93a], that
d(A/P ) > d(A/Q).

For algebras such that the GK-dimension separates primes, we have an
immediate relation between the GK-dimension and the classical Krull di-
mension:

Proposition 1.3.4. If A is an algebra such that the GK-dimension separates
primes, then

d(A) + 1 ≥ cl.Kdim(A)

13
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Proof. Consider the chain of prime ideals

A ⊃ P1 ⊃ P2 ⊃ · · · ⊃ Pm−1 ⊃ Pm.

We have

d(A) ≥ d(A/Pm) ≥ d(A/Pm−1) + 1 ≥ · · ·
· · · ≥ d(A/P2) + (m− 2) ≥ d(A/P1) + (m− 1),

and since the Krull dimension is the supremum of the lengths of prime
chains, this proves the proposition.

The fact that the GK-dimension separates primes means we can use it
to distinguish A/P from A/Q when P ⊂ Q are distinct prime ideals, and
use it to establish isomorphisms. It gives us a strong limitation on the
growth of the algebra, and a dimension closer (in terms of properties) to the
dimensions we are used to from commutative algebra.

14



Chapter 2

Critical Modules

We now introduce two concepts that in many ways are similar to that of
simple modules. Recall that a module is simple if it has no non-zero proper
submodules. Alternatively, if we regard M as a representation of the algebra
A, the representation is irreducible if it has no invariant subspace.

2.1 Irreducible Objects

First, we define the irreducible objects in proj (A) to be the equivalence
classes of modules [M ] such that

N ⊆M submodule =⇒ [N ] = [M ] or [N ] = [0] .

The second concept is that of criticality : A module M ∈ grmod (A) is
d-critical if d (M) = d and every proper quotient of M is of strictly smaller
GK-dimension.

Proposition 2.1.1 ([Artin 91, Proposition 2.30(vi)]). The annihilator of a
critical module is a prime ideal, and is also the annihilator of every non-zero
submodule.

As the chapter heading suggests, we are most interested in 1-critical
modules, that is, modules of GK-dimension 1 that have only finite dimen-
sional quotients.

Theorem 2.1.2. The equivalence classes of 1-critical modules are irre-
ducible in proj (A).

Proof. Let N be a proper submodule of the 1-critical module M. Then by
definition d(M/N) = 0, in other words M/N ∼ 0. This means that M ∼ N ,
which is what we wanted to prove.

In some of the examples that have been studied in some detail, the 3-
dimensional Artin-Schelter regular algebras and their central extensions, and
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the 4-dimensional Sklyanin algebra, all the irreducible objects in proj (A) are
equivalence classes of 1-critical modules, namely points and fat points:

A point in proj (A) is an equivalence class of 1-critical modules of mul-
tiplicity 1. The equivalence classes of 1-critical modules of multiplicity > 1
are called fat points.

However, in general an irreducible object needs be neither:

Example 2.1.3. Let A = k [x, y] with x and y of degrees 1 and 2, respec-
tively. The A-module A/Ax is irreducible in proj (A), but e (A/Ax) = 1

2 ,
and is therefore neither a point nor a fat point.

Irreducible objects can also have GK-dimension > 1. Nevertheless,
when A is a PI-algebra (polynomial identity algebra), i.e. when ∃f ∈
A [x1, . . . , xn] such that f(a1, . . . , an) = 0, ∀(a1, . . . , an) ∈ An, all the irre-
ducible objects in proj (A) have GK-dimension 1.

Now let us look at the modules of grmod (A) whose equivalence classes
in proj (A) are points or fat points:

A Z≥0-graded A-module M is a point module if

(i) M is generated in degree zero,

(ii) M0 = k,

(iii) dimMn = 1, for all n ≥ 0.

This means that its Hilbert series is HM (t) = 1
1−t , and we have d(M) =

e(M) = 1. Note that this is the same Hilbert series as the homogeneous
coordinate ring of a projective point, hence the name.

Proposition 2.1.4. If M is a point module, then [M ] is a point in proj (A).

Proof. As M is generated in degree zero by definition, and dim(M0) = 1,
the module is simple and therefore 1-critical.

A truncated point module of length s+1 is a module M that satisfies
(i) and (ii), and whose Hilbert function is

dimMi =

{
1 if 0 ≤ i ≤ s
0 otherwise,

so its Hilbert series is HM (t) =
s∑

i=0
ti, and d(M) = 0 and e(M) = s+ 1.

A point module M can be seen as M =
⊕∞

i=0 k. If we instead look at
M =

⊕∞
i=0 k

e, M is an e-point module, and we keep conditions (i) and
(ii), and replace (iii) with

16
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(iii’) dimMi = e, for all i ≥ 1.

This gives us the Hilbert series HM (t) = e
1−t , and d(M) = 1, e(M) = e.

When e > 1 and M is critical, [M ] is a fat point.

2.2 Properties of Critical Modules

Critical modules, and especially 1-critical ones, have several properties anal-
ogous to those of simple modules. Take for example Schurs Lemma [Farb 93,
Lemma 1.2]. We may formulate a version of the lemma for 1-critical mod-
ules:

Lemma 2.2.1. Any homomorphism between 1-critical modules in grmod (A)
is either an isomorphism or the zero homomorphism. Therefore EndA (M)
is a division ring when M is 1-critical.

Proof. Given a non-zero homomorphism ϕ : M → N , where M,N ∈
grmod (A) are 1-critical A-modules, we want to show that both the ker-
nel and the cokernel of ϕ are in tors (A).
By definition Coker(ϕ) := N/ Im(ϕ), and sinceN is 1-critical and Im(ϕ) 6= 0,
Coker(ϕ) has finite length. On the other hand M/Ker(ϕ) ∼= Im(ϕ) ∼ N , so
d (M/Ker(ϕ)) = d (N) = 1 and as M is 1-critical, Ker(ϕ) = 0.
It is clear that this means that EndA (M) is a division ring when M is
1-critical.

Another illustration of the analogy between critical and simple modules
is the existence of a composition series:

Let M ∈ grmod (A) be a finitely generated graded A-module of finite
GK-dimension. A critical composition series for M is a finite chain of
submodules

M = M0 ⊃M1 ⊃ · · · ⊃M l = 0

(considered as representatives of equivalence classes in proj (A)) such that
each quotient M i/M i+1 is critical, and d

(
M i/M i+1

)
= d

(
M i
)
. The mod-

ules M i/M i+1 are called the critical composition factors associated with
this series. We consider them as objects in proj (A).

Proposition 2.2.2. When an algebra A satisfying Assumption 2 is Noethe-
rian, then ∀M ∈ grmod (A) has a critical composition series.

Proof. Let M = M0 ∈ grmod (A). As A is Noetherian and M finitely
generated, M is Noetherian of finite GK-dimension.
If M is critical,

M = M0 ⊃M1 = 0

17
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is a critical composition series, and the proposition is true.
If not, we can find a submodule M1 ⊂M0 such that d

(
M0/M1

)
= d

(
M0
)
.

Since M is Noetherian we may choose M1 maximal with this property, so
M0/M1 is critical because of the correspondence theorem for modules. If
M1 is critical,

M = M0 ⊃M1 ⊃M2 = 0

is a critical composition series and the proposition is true.
If not, we repeat the process by choosing a maximal submodule M2 of M1

such that d
(
M1/M2

)
= d

(
M1
)

and so on, until we arrive at a critical sub-
module M l. This algorithm lets us construct a (possibly infinite) critical
composition series for M . It remains to show that l <∞:

We divide the composition series into the parts with constant GK-dimen-
sion: Let

· · · ⊃M j ⊃ · · · ⊃Mk ⊃ · · ·

be the part of the composition series with

d
(
M i
)

= d
(
M i/M i+1

)
= d i ∈ [[j, k]]

We then have the short exact sequences

0→M i+1 ↪→M i � M i/M i+1 → 0

of modules with the same GK-dimension, and the multiplicity is additive:

e
(
M j
)

= e
(
M j+1

)
+ e

(
M j/M j+1

)
= e

(
Mk
)

+
k−1∑
i=j

e
(
M i/M i+1

)
.

We know that e
(
M j
)
≤ e (M) <∞, and by Corollary 1.3.2 e

(
M i/M i+1

)
≥

e0 > 0 unless M i/M i+1 = 0, so the subchain must have finite length. And
since d (M) ∈ N (Assumption 2), we have at most d (M) + 1 such chains, so
the critical composition series has finite length.

We would like to have some sort of uniqueness of composition series:

Conjecture 2.2.3. Two critical composition series have the same length l,
and the composition factors are uniquely determined as objects in proj (A).

Remark 2.2.4. In [Smith 93a] Smith proves this for modules of GK-dimen-
sion 1, and that is all that is needed for the proofs in the next chapter.
However, it seems probable that it is true for any critical module, possi-
bly by using methods similar to those used in [McConnell 01, 6.2.21] and
[Goodearl 04, Theorem 15.9].

18
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Remark 2.2.5. In [McConnell 01, 6.2.19] and [Goodearl 04, p. 261] criti-
cal modules and the critical composition series are defined in terms of the
Krull dimension instead of the GK-dimension. They go on to prove (in
[McConnell 01, 6.2.21] and [Goodearl 04, Theorem 15.9]) that a Noetherian
module M has a critical composition series which is unique in the sense that
two different critical composition series have the same length, and you can
pair the composition factors so that corresponding factors have an isomor-
phic non-zero submodule.
These proofs do not need Assumption 2, as do the proof of Proposition 2.2.2,
because they use the fact that the Krull dimension is, by definition, the
deviation on the lattice of submodules of M which, again by definition,
means that in a descending chain of submodules of M all but a finite num-
ber of submodules have Krull dimension strictly lower than that of M (see
[McConnell 01, 6.1.2]). The GK-dimension does not have this property, so
we must compensate with Assumption 2 to ensure that the composition
series is finite.
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Chapter 3

Finite Dimensional Simples
and 1-critical Modules

In this chapter we will look at the relationship between finite dimensional
simple A-modules and 1-critical modules, which leads us to a description
of a candidate for a noncommutative projective space and noncommutative
projective varieties.

3.1 Modules over Prime Noetherian Algebras

The following results are used in Section 3.3, for proofs see [Smith 93a].

A k-algebra is prime if the product of any two of its ideals is zero if and
only if one of them is the zero ideal.

Proposition 3.1.1 ([Smith 93a, 1.1]). Suppose A prime and Noetherian,
and M and N finitely generated critical graded A-modules with d(M) =
d(N) = d(A).
Then M [−p] embeds in N for some p ∈ Z.

This helps us prove the following proposition:

Proposition 3.1.2 ([Smith 93a, 1.2]). Suppose A Noetherian, M and N
finitely generated critical A-modules, and that

d(A/Ann (M)) = d(A/Ann (N)) = 1.

Then
Ann (M) = Ann (N)⇐⇒M∼shN.

Remark 3.1.3. It is possible for non-isomorphic point modules to be equiv-
alent (i.e. give the same object in proj (A)). However a consequence of
Proposition 3.1.1 is that this does not occur over a Noetherian PI-ring.



Finite Dimensional Simples and 1-critical Modules

More generally, Proposition 3.1.1 gives us the following condition for
when two equivalent point modules are isomorphic:

Proposition 3.1.4 ([Smith 93a]). Let M be a point module over a Noethe-
rian k-algebra A, such that d (A/Ann (M)) = 1.
Then if N is another point module,

[N ] = [M ] =⇒ N ∼= M.

3.2 The Cone of a Non-trivial Finite Dimensional
Module

A useful tool when studying the relationship between non-trivial finite di-
mensional simples and 1-critical modules is the cone:
Starting with a non-trivial finite dimensional simple A-module S, we define
the cone of S:

S̃ := S ⊗ k[t]
with a ∈ An acting by a.(s⊗ ti) = (a.s)⊗ ti+n on S̃.

Proposition 3.2.1. Let S be a non-trivial finite dimensional simple A-
module.
Then S̃ ∈ grmod (A), S̃n = S ⊗ ktn, and we have e(S̃) = dim(S) and
d(S̃) = 1.

Proof. As S is finite dimensional, S̃ is a finitely generated graded A-module,
and it is obvious that S̃n := S ⊗ ktn.
Calculating the Hilbert series of S̃:

hS̃(i) = dim S̃i = dimS

⇒ HS̃(t) =
∞∑
i=0

dimS · ti =
dimS

1− t

which gives us
e(S̃) = dim(S), d(S̃) = 1

At this point, recall that the morphisms of proj (A) are of degree 0, and
that we in Assumption 1 restricted our field of study to Z≥0-graded algebras
(and therefore Z≥0-graded modules).

The passage from a non-trivial finite dimensional simple module to its
cone has a universal property identifying

Hom
A−mod

(M,S) with Hom
grmod(A)

(M, S̃)

for any module M ∈ grmod (A):
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Proposition 3.2.2 ([Smith 93a, Proposition 2.2(b)]). Let π : S̃ → S be the
A-module homomorphism defined by π(s ⊗ tj) = s. If M ∈ grmod (A) and
ψ ∈ Hom

A−mod
(M,S), then there exists a unique A-module homomorphism

ψ̃ ∈ Hom
grmod(A)

(M, S̃) such that the following diagram is commutative:

S̃ S

M

........................................................................................ ............

π

.....................................................................................................................................
...
............

∃!ψ̃
.....................................................................................
...
.........
...

ψ

Moreover ψ̃(m) = ψ(m)⊗ tn, ∀m ∈Mn.

Corollary 3.2.3 ([Smith 93a, Proposition 2.2(c)]). If S is a simple quotient
of a 1-critical module M ∈ grmod (A), then M embeds in S̃.

Proof. We consider the image of ψ̃ when S = M/N is a simple quotient and
M is 1-critical:
S is a simple A-module, so it can be written as A/I where I is a maximal
ideal. Since S is non-trivial, ∃a ∈ A+\(A+∩I) of degree n > 0 which means
that ∃m ∈ M such that a.ψ(m) = ψ(a.m) 6= 0 =⇒ ψ̃(a.m) = a.ψ̃(m) 6= 0.
As a sends Im(ψ̃)i into Im(ψ̃)i+n, we must have d(Im(ψ̃)) ≥ 1. But Im(ψ̃) ∼=
M or a quotient of M , and since M is 1-critical, all its quotients have GK-
dimension < 1, which means that Im(ψ̃) ∼= M , and M is embedded in
S̃.

Combining this with Proposition 3.2.1, we get

Corollary 3.2.4. If M is a 1-critical graded module with quotient S, then
e(M) ≤ dim(S).

The A-module homomorphism π is surjective with kernel the submodule
S̃(t− 1), so

S ∼= S̃/S̃(t− 1).

By considering the quotient modules S̃/S̃(t− λ), λ ∈ k∗, we find that

Corollary 3.2.5 ([Smith 93a, Proposition 2.2(d)]). For each λ ∈ k∗, Sλ is
a quotient of S̃.

We have two useful characterisations of the annihilator of S̃:

Proposition 3.2.6 ([Smith 93a, Proposition 2.2(e)]). Ann(S̃) may be char-
acterised in either of the following ways:

(i) it is the unique prime graded ideal P such that d(A/P ) = 1 and P ⊂
Ann (S);

(ii) it is the largest graded ideal contained in Ann (S).
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Proof. In [Smith 93a, Proposition 2.2], it is shown that Ann(S̃) is the sum
of all the graded two-sided ideals of A contained in Ann (S). This is the
largest graded ideal contained in Ann (S), which together with the second
technical assumption (that d(A/P ) 6= d(A/Q) if P ⊂ Q ⊂ A are distinct
prime ideals) proves the uniqueness in characterisation (i).

3.3 Studying the Geometry of the Algebra

Following the reasoning in [Smith 93a], we now establish bijections between
three different sets associated with the (Noetherian) algebra A. By study-
ing these sets, we have different approaches to studying the geometry of the
algebra.

We start by exploring the connection between finite dimensional simple
modules and 1-critical graded modules:

Theorem 3.3.1 ([Smith 93b, Lemma 4.1]). Let A be a Noetherian graded
k-algebra with d(A) ≥ 1, and let S be a finite dimensional simple A-module.
Then S is a quotient of some 1-critical graded A-module.

Proof. If S is the trivial module, it is a quotient of every point module and
the result is true. Let us now assume S non-trivial. Then S is a quotient
of S̃. By Proposition 2.2.2 S̃ has a critical composition series, and since
d(S̃) = 1, either S̃ is 1-critical, or one or more of its composition factors
is. Clearly, if S̃ is not 1-critical, S is a quotient of one of these composition
factors, so S is a quotient of a 1-critical module.

It is possible that the only simple quotient of a 1-critical module M
is the trivial module, however we have the following criterion for when a
non-trivial simple quotient exists:

Proposition 3.3.2 ([Smith 93a, Proposition 2.4]). Let M be a 1-critical
graded A-module. Then M has a non-trivial (finite dimensional) simple
quotient if and only if d (A/Ann (M)) = 1.

Proof from [Smith 93a]. (⇒) Let S be a non-trivial finite dimensional sim-
ple quotient of M . Then by Corollary 3.2.3 M embeds in S̃, so Ann (S) ⊇
Ann (M) ⊇ Ann(S̃). Ann (M) is a graded ideal, so by the characterisations
of Ann(S̃) in Proposition 3.2.6, Ann (M) = Ann(S̃) and d (A/Ann (M)) =
1.

(⇐) By applying [Smith 93a, Lemma 1.6] to M as an A/Ann (M)-
module, M is a free k[x]-module of finite rank, so if 0 6= ν ∈ k then
M/(x − ν)M is a non-zero finite dimensional quotient of M that must in
turn have a simple quotient.
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Now that we have established that non-trivial finite dimensional simple
modules are quotients of modules M with d(A/Ann (M)) = 1, we ask our-
selves which 1-critical graded modules have non-trivial simple quotients in
common:

Proposition 3.3.3 ([Smith 93a, Proposition 2.3]). Two 1-critical graded
modules have a common non-trivial simple quotient if and only if they are
shift equivalent. In this case they have exactly the same non-trivial simple
quotients.

Elaboration of proof from [Smith 93a]. (⇒) Let S be the common non-trivial
simple quotient of the 1-critical graded modules M and N . Then Ann (S) ⊃
Ann(M) ⊃ Ann(S̃) and Ann (S) ⊃ Ann(N) ⊃ Ann(S̃), and since Ann(M)
and Ann(N) are graded ideals, Proposition 3.2.6(ii) gives us Ann(M) =
Ann(N) = Ann(S̃). By Proposition 3.3.2 d (A/Ann(M)) = 1, so by Propo-
sition 3.1.2 M∼shN .

(⇐) If M and M ′ are two shift equivalent 1-critical graded modules,
there is a 1-critical graded module N such that N [i] embeds in M and N [j]
in M ′, for some i, j ∈ Z. Therefore N [i] and consequently N (respectively
N [j] and consequently N) have the same non-trivial simple quotients as
M (respectively M ′), which means that M and M ′ have exactly the same
non-trivial simple quotients.

We then look at twist-equivalence classes of non-trivial finite dimensional
simple modules. In some cases, all the non-trivial finite dimensional simple
modules are twist-equivalent:

Theorem 3.3.4 ([Smith 93a, Proposition 2.5]). Let k be algebraically closed,
and suppose that A is prime Noetherian with d(A) = 1.
Then A has only one twist-equivalence class of non-trivial finite dimensional
simple modules.

Corollary 3.3.5. Let M be a 1-critical graded module over a Noetherian A
which is an algebra over an algebraically closed field k. If M has a non-trivial
finite dimensional simple quotient, then it has only one twist-equivalence
class of such quotients.

The next theorem summarises the above analysis:

Theorem 3.3.6 ([Smith 93a, Corollary 2.6]). Suppose that A is Noetherian,
and that k is algebraically closed.
Then there is a bijection between the following sets:

- F := { twist-equivalence classes of non-trivial finite dimensional simple
A-modules};
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- C := {shift-equivalence classes of 1-critical graded modules such that
d(A/Ann(M)) = 1};

- P := {P ∈ Spec(A) | P is graded and d(A/P ) = 1}.

Proof (based on proof from [Smith 93a]). Proposition 3.3.3 shows that F is
in bijection with the set of shift-equivalence classes of 1-critical graded mod-
ules that possess a non-trivial simple quotient. By Proposition 3.3.2, this is
actually C.
As the annihilator of a 1-critical module is a prime ideal, and by using
Proposition 3.1.2, an object in C determines a unique prime ideal in P. It
now remains to show that a given prime ideal in P determines a unique shift
equivalence class in C, i.e. that it is the annihilator of a 1-critical module.
The 1-critical module is unique up to shift-equivalence by Proposition 3.1.2.

Consider the critical composition series of A/P , P ∈ P:

A/P = M0 ⊃M1 ⊃ · · · ⊃M l = 0.

As d (A/P ) = 1, either A/P is 1-critical or at least one of its composition
factors is. If A/P is 1-critical, it represents a unique shift-equivalence class
determined by their common annihilator P .

If A/P is not 1-critical, it is clear that P annihilates any 1-critical com-
position factor M i/M i+1:

P ⊆ Ann
(
M i/M i+1

)
.

By Remark 1.3.3, then if the inclusion is strict,

d (A/P ) ≥ d
(
A/Ann

(
M i/M i+1

))
+ 1

The A-module A/P has a non-trivial finite dimensional simple quotient since
Ann (A/P ) = P and d (A/P ) = 1 (Proposition 3.3.2). By the same argu-
ment as in the proof of Theorem 3.3.1 so does a 1-critical composition factor
M i/M i+1, which means that d

(
A/Ann

(
M i/M i+1

))
= 1 and we have

1 = d (A/P ) ≥ d
(
A/Ann

(
M i/M i+1

))
+ 1 = 2

This contradiction confirms that

P = Ann
(
M i/M i+1

)
,

and P is the annihilator of a 1-critical module. This concludes the proof of
the theorem.

Remark 3.3.7. If in addition to the conditions in Theorem 3.3.6 the algebra
A is a PI-algebra, then C consists of all shift-equivalence classes of 1-critical
modules.
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We may now use properties of the two first sets to gain information about
P:

Proposition 3.3.8 ([Smith 93a, Proposition 2.7]). Suppose that⋂
Ann(S) = 0

where the intersection is taken over all the finite dimensional simple A-
modules S. Then

(a)
⋂
Ann(C) =

⋂
P∈P P = 0 where this intersection is taken over all

1-critical graded modules C;

(b) if d(A) ≥ 2, then P is infinite;

(c) if d(A) ≥ 2, then A has infinitely many shift-inequivalent graded 1-
critical modules.

Remark 3.3.9. Two cases where the hypothesis in Proposition 3.3.8 is
satisfied, is when A is semiprime and satisfies a polynomial identity, and
when d(A) = 2 and A is a prime Noetherian algebra of countable dimension
over an uncountable field.

In the next chapter we will explore a method to determine F or C in
order to describe P.

27



Finite Dimensional Simples and 1-critical Modules

28



Chapter 4

Finite Dimensional Simple
Modules

In this chapter we will describe a method for finding the simple quotients
of point modules of an algebra A: multilinearisation. Note that this only
describes part of the set F in Theorem 3.3.6, as F may include quotients of
1-critical modules of multiplicities 6= 1.

The first section is based on the section on multilinearisation in [Artin 90].
As this is included mainly to use in the examples, we only state the results
needed for AS-regular algebras of dimension 3. For more general results on
the multilinearisation, see the original article.

4.1 Multilinearisation

Let T = k 〈x0, . . . , xr〉 be the free associative k-algebra in r + 1 variables of
degree 1, and write V = T ∗1

∼= kr+1 for the dual space of T1. A homogeneous
element f ∈ Tn = T⊗n

1 defines a linear map

f̃ : V ⊗ · · · ⊗ V = V ⊗n → k,

or equivalently a multilinear form f̃∗ : V × · · · × V = V n → k. We call f̃
the multilinearisation of the polynomial f . As f̃ is homogeneous, its set
of zeros Z(f) is in (Pr)n.

Remark 4.1.1. For two homogeneous polynomials f and g, we have

f̃ · g = f̃ · g̃.

We may now do the same for a graded ideal: Given a graded ideal I, we
define the multilinearised ideal

Ĩ :=
∞⊕

n=0

In, Ĩn :=
{
f̃ | f ∈ In

}
.
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If we now consider the graded algebra

A = k 〈x0, . . . , xr〉 /I

defined in (1.1), its multilinearisation is the family {In}. Let

Γn := Z(Ĩn) ⊆ (Pr)n

be the zeros of Ĩn, and let Γ denote the inverse limit of the sets Γn.

Proposition 4.1.2 ([Artin 90, Proposition 3.9]). There is a one-to-one cor-
respondence between points in Γn and truncated point modules of length n+1.

Corollary 4.1.3 ([Artin 90, Corollary 3.13]). The points of Γ are in one-
to-one correspondence with point modules.

Proposition 4.1.4. Let A be an AS-regular algebra of dimension 3, on the
form of (1.1). Then

Γ ∼= Γs.

This means that the point modules of A are parametrised by Γs =
Z(Ĩs) ⊆ (Pr)s. To ease notation, we denote a point P of Γs ⊆ (Pr)s as
a matrix:

P = (ai,j) ∈Mr+1×s (k) .

We note the row vectors Pi = [ai,1, . . . , ai,s], i ∈ [[0, r]], and the column vec-
tors P j = [a0,j , . . . , ar,j ]

t, j ∈ [[1, s]]. As noted earlier, the column vectors
correspond to points in Pr.

In general, we cannot be sure that Γ is finite dimensional, and a point
module is given by an “infinite matrix”

P∞ =
[
P 1, P 2, . . .

]
= (ai,j) , i ∈ [[0, r]], j ∈ Z+.

The fact that the point modules are parametrised by P ∈ Γs means that we
have a map

σ : Γs −→ Γs(
P 1, . . . , P s

)
7−→

(
P 2, . . . , P s, P s+1

)
determining P s+1 in terms of

{
P 1, . . . , P s

}
.

Proposition 4.1.5. The n-dimensional quotients of point modules are given
by fix points of σn, i.e. they correspond to point modules such that P∞ is
periodic.

Remark 4.1.6. This is true for point modules of arbitrary algebras, as long
as such a σ exists.
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4.2 Solving the Multilinear Equations

We start by fixing the notation we will use later in the examples:
Let A be an algebra satisfying Assumption 1 and 2, and {fi|i ∈ [[1,m]]} the
homogeneous polynomials of degree s generating the ideal I in (1.1). We
write

f = [f1, . . . , fm]t .

Consider the matrix M ∈Mm,r+1(A) such that

f = M · [x0, . . . , xr]
t .

Multilinearising gives us m linear equations in {x0,s, . . . , xr,s}:

f̃ =
[
f̃1, . . . , f̃m

]t
= M̃ · [x0,s, . . . , xr,s]

t = 0.

We want to determine the zeros P ∈ Γs ⊂ (Pr)s of f . As P s is a point in
Pr, Γs 6= ∅ unless the rank of M̃ is strictly less than s.
So determining Γs comes down to finding the points P = (ai,j) ∈ (Pr)s such
that

rk
(
M̃ (P )

)
< r + 1 and f̃(P ) = 0.

4.3 Simple Quotients of 1-critical Modules

Let ρ be the representation corresponding to the quotient given by P ∈ Γ.
Then ρ is a s-dimensional representation on the form

ρ : xi 7−→ ρi =



0 · · · · · · 0 ai,s

ai,1
. . . . . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 ai,s−1 0


,

where ρi correspond to the row vector Pi.

We now want to determine when ρ is irreducible, i.e. when ks has no
invariant subspaces for the action of ρ. In the case where the relations of the
algebra are of degree s = 2, this means that none of the ρi have eigenvectors
in common. This can in fact be checked directly on the matrix P :

Proposition 4.3.1. Let A be an algebra on the form (1.1) with I a graded
left ideal of degree 2, such that Γ ∼= Γ2 ⊆ (Pr)2 parametrise the point mod-
ules. Let P be a point in Γ corresponding to a quotient of a point module.
Then the quotient associated with P is simple if and only if the rank of P is
2.
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Proof. Let

P =

a0,1 a0,2
...

...
ar,1 ar,2

 ∈Mr+1,2(k)

be the point in Γ associated with the representation ρ of A:

ρi =
[

0 ai,2

ai,1 0

]
.

The only subspaces of k2 stable for each of the ρis are the eigenspaces,
so we need to check whether there exists an eigenspace in common for all
the ρis. Because of the shape of the matrices ρi none of the coefficients of
the eigenvectors are zero, so we can choose to calculate eigenvectors with
first coefficients 1. This means that we can compare eigenvectors instead of
eigenspaces, and since the eigenvectors are of dimension 2, we only have to
compare the last coefficient. The matrix ρi has eigenvalues

λi = ±√ai,1 · ai,2,

and eigenvectors [1, yi]
t:[

0 ai,2

ai,1 0

] [
1
yi

]
=
[
ai,2 · yi

ai,1

]
=
[
±√ai,1 · ai,2

±√ai,1 · ai,2 · yi

]
which gives us

yi = ±
√
ai,1

ai,2
.

So we need to check if we can find j 6= i such that

ai,1

ai,2
6= aj,1

aj,2

that is, whether

det
[
ai,1 ai,2

aj,1 aj,2

]
= 0 ∀j 6= i

which is in fact checking if the rank of P is 2.
This proves the proposition.

In the general case, the comparison is a little more complicated. We
now need to compare linear combinations of eigenvectors, and this makes
the coefficients we compare more complex, even though we still can make
the assumption that the first coefficient of the eigenvectors is 1 to simplify
the calculations. However, we can still find a criterion for the simplicity of
a module.
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Remark 4.3.2. For a straightforward calculation of the invariant subspaces
for the representation, we depend upon a comparison of the eigenspaces of
each of the ρi. However, if we can find an ai,j = 0, the only eigenvalue of ρi is
zero and we cannot use eigenspaces to calculate the invariant subspaces. A
solution could be to find the invariant subspaces in common for the ρi such
that none of the ai,j are zero, and then check directly if they are invariant
for the rest. In the following, we assume that the point P ∈ Γ is such that
ai,j 6= 0, ∀i, j.

Let us first calculate the eigenvalues of the representation:
When ai,j 6= 0, ∀i, j, then ρi is diagonalisable, with characteristic polynomial

Xs −
s∏

j=1

ai,j

which gives us the eigenvalues

λα = ξα

 s∏
j=1

ai,j

1/s

= ξα · gi, α ∈ [[1, s]]

where ξ is a primitive s’th root of unity. Note that

gi =

 s∏
j=1

ai,j

1/s

is the geometric mean of Pi.

Remark 4.3.3. We choose the same s’th root of unity ξ for all the ρi.

We obtain a criterion for the simplicity of a quotient of a point module
by considering the following set S:

S :=
{
Sm,β =

(
ξα−αj · ãm,j − ξβ−αj · ãi,j

)
α,j

}
m∈[[0,r]], m6=i

β∈[[1,s]]

⊂Ms(k)

Proposition 4.3.4. A quotient of a point module is simple if and only if for
∀I ( [[1, s]], when we remove the rows with numbers in I from the matrices
Sm,β ∈ S, ∃ at least #I+1 βs for each m such that the rank of the remainder
of the matrix Sm,β is s−#I.

Proof. We start by calculating the eigenvector vα = [1, vα,2, . . . , vα,s] of ρi

corresponding to the eigenvalue λl:

0 · · · · · · 0 ai,s

ai,1
. . . . . . . . . 0

0
. . . . . . . . .

...
...

. . . . . . . . .
...

0 · · · 0 ai,s−1 0


·


1
vα,2

...

...
vα,s

 =


ai,svα,s

ai,1

ai,2vα,2
...

ai,s−1vα,s−1

 = λα ·


1
vα,2

...

...
vα,s


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which gives us the relations

vα,k =

k−1∏
j=1

ai,j

λk−1
α

, k ∈ [[2, s]]

The representation ρ is reducible if there exists a subspace of V = ks that is
stable for ρ, that is, if we can find a linear combination of the eigenspaces in
common for all the ρi. Since ρi is diagonalisable ∀i, it suffices to show that
we can choose N < s eigenvectors of ρi such that for ∀m 6= i, there exists
N eigenvectors wβ of ρm that can be written as linear combinations of the
N eigenvectors of ρi.

Let us start by writing the eigenvector wβ of ρm with eigenvalue µβ =
ξβ · gm as a linear combination of less than s eigenvectors {vα} of ρi with
eigenvalues λα = ξα · gi, that is:(

s∑
α=1

Xα

)
· wβ =

s∑
α=1

(Xα · vα)

with at least one Xα equal to zero (since all the sets of eigenvectors generate
V , wβ is a linear combination of all the vα’s). Note that we still choose
wβ,1 = vα,1 = 1, ∀α.
For each coefficient this means(

s∑
α=1

Xα

)
· wβ,k =

s∑
α=1

(Xα · vα,k)

⇐⇒

(
s∑

α=1

Xα

)
k−1∏
j=1

am,j

µβ
=

(
s∑

α=1

Xα

λk−1
α

)
k−1∏
j=1

ai,j

By recursion on k, we find that(
s∑

α=1

Xα

λj−1
α

)
am,j

µβ
=

(
s∑

α=1

Xα

λj
α

)
ai,j ,

which gives us s linear polynomials in {Xα}:
s∑

α=1

Xα ·
λα · am,j − µβ · ai,j

λj
α

= 0.

Whether or not we can find [X1, . . . , Xs] 6= 0 (with at least one Xα = 0)
satisfying these polynomials depends on the rank of the matrix(

λα · am,j − µβ · ai,j

λj
α

)
α,j

∈Ms(k)
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when one or more rows are removed, corresponding to the eigenvectors not
used. If the rank is maximal, i.e. if when removing N rows, the rank is
s−N , then [X1, . . . , Xs] = 0 is the only possible solution, and the eigenvec-
tor wβ of ρm is not a linear combination of the selected s−N eigenvectors
of ρi.
For each selection of s−N eigenvectors of ρi, we need to verify that for at
least one of the other ρms, at least N + 1 of the eigenvectors are not linear
combinations of the original vectors. If this is true for all selections of s−N ,
1 ≤ N < s, eigenvectors of ρi, then the representation ρ is simple.

To simplify the comparison, we start by normalising the row vectors Pi:

P̃i = [ãi,1, . . . , ãi,s] , where ãi,j =
ai,j

gi

where gi is the geometric mean of Pi. Recall that λα = ξα·gi and µβ = ξβ ·gm.
This gives us (

ξα · gi · gm · ãm,j − ξβ · gm · gi · ãi,j

(ξα · gi)
j

)
α,j

.

The rank of the matrix does not change if we multiply each row j with

gj−1
i

gm
,

so we arrive, finally, at the matrix

Sm,β =
(
ξα−αj · ãm,j − ξβ−αj · ãi,j

)
α,j
∈Ms(k), m 6= i, β ∈ [[1, s]].

This comparison process is rather cumbersome to do by hand (we are
calculating the ranks of up to 2s − s submatrices of each of the s · r matri-
ces), but it should be straightforward to write a program to check if a given
representation ρ is reducible or not.

It is worth noting that the simplicity of the module depends only on the
normalised row vectors, P̃i. This makes sense if we think of multiplying by
xi as a rate of change from An to An+1. Then the geometric mean gi is the
average rate of change, and the nature of the representation is determined
by how large each individual rate of change is compared to this average.

Remark 4.3.5. If P ∈ Γs corresponds to the representation ρ, then λP =
(λ · ai,j) ∈ Γs corresponds with the twisted representation ρλ =

{
ρλ

i = λ · ρi

}
.

Since the normalised row vectors λ̃Pi and P̃i are equal, we confirm that twists
of finite dimensional simple modules are simple.
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Chapter 5

Conclusion

In conclusion let us give a summary of the results in this Thesis:

We have shown that the set P, which can be considered the noncommu-
tative equivalent of the set of closed points in the projective variety associ-
ated with an algebra A, is in bijection with the set F of shift-equivalence
classes of 1-critical graded modules such that d(A/Ann(M)) = 1, and with
the set C of twist-equivalence classes of non-trivial finite dimensional simple
A-modules (Theorem 3.3.6). This means that we can use either of these sets
to describe P. We then outlined how multilinearisation of an algebra can
be used to parametrise its point modules, which are objects in C.

In the second part of the Thesis, we will consider some examples to
illustrate how the theory can be used.



Conclusion
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Chapter 6

Commutative Algebras

The noncommutative theory we have developed has been constructed as an
extension of the well known properties of commutative algebras. As such, it
should coincide with these properties when applied to the commutative case.

Recall that when A is finitely generated and commutative, by Proposi-
tion 1.2.6 we have d(A) = cl.Kdim(A), so if M is a 1-critical module with
annihilator P , then by definition

d(M) = cl.Kdim(M) = cl.Kdim(A/P ) = d(A/P ) = 1.

This means that in the commutative case the set C in Theorem 3.3.6 includes
all shift-equivalence classes of 1-critical modules, and there are no fat points,
so using the equivalent sets of Theorem 3.3.6 we have a bijection

P ←→ {shift-equivalence classes of point modules} .

When A is commutative, we define the set Proj (A) to be the set of all
homogeneous prime ideals p in A that do not contain all of the augmentation
ideal A+. Then P ⊂ Proj (A) is the subset of prime ideals of dimension 1.
Proj (A) is a scheme whose subscheme of closed points is naturally homeo-
morphic to the projective variety determined by A, in other words, a graded
prime ideal p ∈ P corresponds to the irreducible subvariety Y = Proj (A/p)
of dimension 0 of X = Proj (A):

P ∼= {Irreducible subvarieties of X of dimension 0} = {Closed points in X} .

So in the commutative case, P and C clearly gives us information about
the geometry of the algebra. As we will see later in this chapter, P is either
Pr or a subvariety.

When the algebra is noncommutative, we see P as an analogue to Pr and
projective varieties, which in turn are parametrised by the finite dimensional
simples or the 1-critical modules of the algebra.



Commutative Algebras

6.1 The Commutative Polynomial Ring

Let us study the commutative polynomial ring A in r + 1 variables:

A = k[x0, . . . , xr].

It is isomorphic to the (noncommutative) algebra

k 〈x0, . . . , xr〉 / (f) , f = {xixj − xjxi | ∀i, j ∈ [[0, r]]} ,

and multilinearising gives us

(xi,1 : xi,2) = (xj,1 : xj,2) , ∀i, j ∈ [[0, r]],

which means that σ is the identity, and the point P has P j = P 1, ∀j ∈ [[1, s]].
This gives us a bijective correspondence between the point modules and

Γ ∼= Pr.

By Theorem 3.3.6, this gives us

P ∼= Pr.

In the commutative case, we can also find this directly: A point module
of A is given by a point (a0 : . . . : ar) ∈ Pr:

ρ : A � k [t]
xi 7→ ait

This surjection induces an injective map

ρ∗ : Spec (k [t]) ∼= A1 ↪→ Ar+1 ∼= Spec (A) .

The maximal ideals of k [t] that do not contain all of A+ are

{(t− c) , c ∈ k∗} ,

and

ρ−1(t− c) = (x0 − a0c, . . . , xr − arc).

So the maximal ideals of A corresponds bijectively to lines (a0, . . . , ar) ·
c ∈ Ar+1 ∼= Spec (A), or equivalently to points (a0 : . . . : ar) ∈ Pr ∼=
Spec (A) /k∗. Figure 6.1 shows this graphically for r = 1.
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6.2 Quotients of the Commutative Polynomial Ring

Figure 6.1: Point modules of k[x, y] parametrised by the lines in A2
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6.2 Quotients of the Commutative Polynomial Ring

When we want to study a quotient of the commutative polynomial ring, we
still have the multilinearised relations

(xi,1 : xi,2) = (xj,1 : xj,2) , ∀i, j ∈ [[0, r]],

so P j = P 1, ∀j ∈ [[1, s]], and σ is the identity. However the additional rela-
tions of A puts restrictions on the set Γ:

If the quotient is given by

A = k[x0, . . . , xr]/I

where I is a graded ideal, then

Γ = Z (I)

parametrises the point modules of A.

This means that for quotients of the commutative polynomial ring, we
have

P ∼= Z (I) ⊂ Pr.
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Chapter 7

Artin-Schelter Regular
Algebras

An algebra
A = k 〈x0, . . . , xr〉 /I

is Artin-Schelter regular (or AS-regular) of dimension dg if the following
conditions are satisfied:

(i) A has finite global dimension dg:
The projective dimension p.dim(M) is the length m of the shortest
projective resolution

0→ Pm → · · · → P1 → P0 →M → 0

of M . We can then define the global dimension of an algebra A as

gl.dim(A) := sup {p.dim(M) |M A-module} .

(ii) A has finite GK-dimension;

(iii) A is Gorenstein:
Extq

A(k,A) = 0 if q 6= d, and Extd
A(k,A) ∼= k.

These are algebras with the same Hilbert series as the commutative
polynomial rings, and the projective varieties associated with these algebras
can therefore be seen as candidates for the noncommutative analogues of
Pr.

7.1 AS-regular Algebras of Dimension 2

Let us first cover the AS-regular algebras of dimension 2. Then either

A = k 〈x, y〉 /
(
yx− xy − x2

)



Artin-Schelter Regular Algebras

or A is a quantum plane.

Multilinearising the first algebra gives us

yixi+1 − xiyi+1 − xixi+1 = 0 ⇐⇒ (xi+1 : yi+1) = (xi : yi − xi) ∈ P1,

and the automorphism

σ =
[

1 0
−1 1

]
on P1, that sends (xi : yi) to (xi+1 : yi+1). Its only fix point is (0 : 1), and
since

σn =
[

1 0
−n 1

]
.

there are no other fix points corresponding to quotients of point modules.

Now for the quantum planes:

7.1.1 Quantum Planes

A quantum plane is an algebra

A := k 〈x, y〉 / (f) , f (x, y) = yx− qxy, q ∈ k∗.

Multilinearising the algebra:

f̃ (xi, yi;xi+1, yi+1) = yixi+1 − qxiyi+1 = 0

⇐⇒ (xi+1 : yi+1) = (q · xi : yi) ∈ P1

gives us a automorphism

σ =
[
q 0
0 1

]
on P1, that sends (xi : yi) to (xi+1 : yi+1).
This means that Γ1 and σ completely determines Γn, n > 1, and

Γ ∼= P1

parametrises the point modules of A. The finite dimensional quotients of
the point modules then correspond to fix points for σn in P1.

- If q = 1, all points in P1 are fixed for σ, so the quotients of the point
modules are in one-to-one correspondence with P1 and

P ⊇ P1.
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- If q2 6= 1, the only fix points of

σn =
[
qn 0
0 1

]

in P1 are (1 : 0) and (0 : 1), ∀n, so

P ⊇ {(1 : 0) , (0 : 1)} .

Remark 7.1.1. Even if qn = 1 for some n 6= 2, solving the equation
yx − qxy = 0 for the representation gives us that q2 = 1, which we
have assumed not to be the case.

- If q = −1, the fix points of

σ =
[
−1 0
0 1

]
.

are (1 : 0) and (0 : 1).

The fix points of σ2, corresponding with the 2-dimensional quotients,
are P1 \ {(1 : 0) , (0 : 1)}.

Which of these quotients are simple? We have the set of zeros of f̃ :

Γ2 =
{
P =

[
a −a
b b

]}
⊂ P1 × P1.

By Proposition 4.3.1, the representation associated with P is simple if
and only if det (P ) 6= 0:

det (P ) = 2ab 6= 0.

Since (1 : 0) and (0 : 1) are the fix points of σ, all the 2-dimensional
quotients are simple, and

P ⊇ P1.

We summarise this in Figure 7.1, identifying the lines containing the
two points (a : b) and σ (a : b). The axis 0 and ∞ corresponds with
the points (1 : 0) and (0 : 1) representing the 1-dimensional simples.
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Figure 7.1: The finite dimensional simple quotients of point modules of
A = k 〈x, y〉 / (xy + yx), i.e. when q = −1, parametrised by pairs of lines in
A2.
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7.2 AS-Regular Algebras of Dimension 3

AS-regular algebras of dimension 3 were introduced and partially classi-
fied by Artin and Schelter in [Artin 87]. Artin, Tate and Van den Bergh
completed the classification for algebras generated by elements of degree 1
in [Artin 90] and [Artin 91], and in [Stephenson 96] and [Stephenson 97a],
Stephenson completed the classification for algebras generated by elements
of arbitrary degree.

A consequence of these articles is that AS-regular algebras of dimension
3 are Noetherian domains of GK-dimension 3, generated by 2 or 3 elements
([Stephenson 00]).

Let us look at two AS-regular algebras of dimension 3, the enveloping
algebra of the Heisenberg algebra, and the 3-dimensional Sklyanin algebra:

7.2.1 The Enveloping Algebra of the Heisenberg Algebra

We define the enveloping algebra of the Heisenberg algebra:

A := k 〈x, y〉 / (f) , f (x, y) =
[
yx2 − 2xyx+ x2y
y2x− 2yxy + xy2

]
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Multilinearising the algebra gives us:

f̃ (xi, yi;xi+1, yi+1;xi+2, yi+2) =
[
yixi+1xi+2 − 2xiyi+1xi+2 + xixi+1yi+2

yiyi+1xi+2 − 2yixi+1yi+2 + xiyi+1yi+2

]
= M̃ ·

[
xi+2

yi+2

]
= 0

with

M̃ =
[
yixi+1 − 2xiyi+1 xixi+1

yiyi+1 −2yixi+1 + xiyi+1

]
.

If

P =
[
ai ai+1

bi bi+1

]
∈ Γ,

then the rank of M̃(P ) is less than 2 if det(M̃(P )) = 0:

det(M̃) =− 2 (biai+1 − aibi+1)
2 = 0

⇐⇒ (ai+1 : bi+1) = (ai : bi) ∈ P1,

which means that the automorphism σ is the identity, and we have

Γ ∼= P1.

This gives us
P ⊇ P1.

7.2.2 The 3-dimensional Sklyanin Algebra

The 3-dimensional Sklyanin algebra is defined as follows:

Skl3 (α, β, γ) := k 〈x, y, z〉 / (f) , f =

αxy + βyx+ γz2

αyz + βzy + γx2

αzx+ βxz + γy2


where (α, β, γ) ∈ P2 \ F , for a (known) finite set F .

Multilinearising gives us

f̃ (xi, yi, zi;xi+1, yi+1, zi+1) = M̃ ·

xi+1

yi+1

zi+1

 = 0,

M̃ =

βyi αxi γzi
γxi βzi αyi

αzi γyi βxi


The determinant of M̃ gives us the elliptic curve

E :
(
α3 + β3 + γ3

)
xiyizi − αβγ

(
x3

i + y3
i + z3

i

)
= 0

49



Artin-Schelter Regular Algebras

that parametrises the point modules, and the automorphism

σ (x, y, z) =
(
αγy2 − β2xz : βγx2 − α2yz : αβz2 − γ2xy

)
on E [Verschoren 97].

Choosing (1,−1, 0) ∈ E as the origin for the group law on the elliptic
curve,

σ (1,−1, 0) = (α, β, γ) ,

and σ is actually the translation by the point (α, β, γ) of the points on the
elliptic curve E.

This means that
P ⊇ E ∼= Γ.
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pages 129–147. Birkhäuser, Basel, 2000. http://www.
maths.ed.ac.uk/~tom/WriteUpBielefeld.ps.

[Levasseur 93] Thierry Levasseur & S. Paul Smith. Modules over the 4-
dimensional Sklyanin algebra. Bull. Soc. Math. France,
vol. 121, no. 1, pages 35–90, 1993. http://archive.
numdam.org/article/BSMF_1993__121_1_35_0.pdf.

[Mahanta 06] Snigdhayan Mahanta. On some approaches towards non-
commutative algebraic geometry. 2006. http://arxiv.
org/pdf/math.QA/0501166.

[Matsumura 80] Hideyuki Matsumura. Commutative algebra, volume 56 of
Mathematics Lecture Note Series. Benjamin/Cummings
Publishing Co., Inc., Reading, Mass., second edition,
1980.

[McConnell 01] J. C. McConnell & J. C. Robson. Noncommutative
Noetherian rings, volume 30 of Graduate Studies in Math-
ematics. American Mathematical Society, Providence, RI,
revised edition, 2001. With the cooperation of L. W.
Small.

[Smith 93a] S. Paul Smith. The 4-dimensional Sklyanin algebra at
points of finite order. Unpublished, 11/1/1993.

[Smith 93b] S. Paul Smith & J. M. Staniszkis. Irreducible represen-
tations of the 4-dimensional Sklyanin algebra at points
of infinite order. J. Algebra, vol. 160, no. 1, pages 57–
86, 1993. http://www.math.washington.edu/~smith/
Research/smstan.pdf.

[Smith 97] S. Paul Smith. Non-commutative Algebraic Geometry, Au-
gust 1997. http://www.math.washington.edu/~smith/
Research/spain.pdf.

[Stafford 94] J. T. Stafford & James J. Zhang. Examples in non-
commutative projective geometry. Math. Proc. Cambridge
Philos. Soc., vol. 116, no. 3, pages 415–433, 1994.

[Stafford 01] J. T. Stafford & M. van den Bergh. Noncommuta-
tive curves and noncommutative surfaces. Bull. Amer.
Math. Soc. (N.S.), vol. 38, no. 2, pages 171–216 (elec-
tronic), 2001. http://www.ams.org/journal-getitem?
pii=S0273-0979-01-00894-1.

54

http://www.maths.ed.ac.uk/~tom/WriteUpBielefeld.ps
http://www.maths.ed.ac.uk/~tom/WriteUpBielefeld.ps
http://archive.numdam.org/article/BSMF_1993__121_1_35_0.pdf
http://archive.numdam.org/article/BSMF_1993__121_1_35_0.pdf
http://arxiv.org/pdf/math.QA/0501166
http://arxiv.org/pdf/math.QA/0501166
http://www.math.washington.edu/~smith/Research/smstan.pdf
http://www.math.washington.edu/~smith/Research/smstan.pdf
http://www.math.washington.edu/~smith/Research/spain.pdf
http://www.math.washington.edu/~smith/Research/spain.pdf
http://www.ams.org/journal-getitem?pii=S0273-0979-01-00894-1
http://www.ams.org/journal-getitem?pii=S0273-0979-01-00894-1


BIBLIOGRAPHY

[Stafford 02] J. T. Stafford. Noncommutative projective geometry. In
Proceedings of the International Congress of Mathemati-
cians, Vol. II, pages 93–103, Beijing, 2002. Higher Ed.
Press. http://arxiv.org/pdf/math.RA/0304210.pdf.

[Stephenson 96] Darin R. Stephenson. Artin-Schelter regular algebras of
global dimension three. J. Algebra, vol. 183, no. 1, pages
55–73, 1996. http://dx.doi.org/10.1006/jabr.1996.
0207.

[Stephenson 97a] Darin R. Stephenson. Algebras associated to ellip-
tic curves. Trans. Amer. Math. Soc., vol. 349,
no. 6, pages 2317–2340, 1997. http://www.ams.org/
journal-getitem?pii=S0002994797017698.

[Stephenson 97b] Darin R. Stephenson & James J. Zhang. Growth of graded
Noetherian rings. Proc. Amer. Math. Soc., vol. 125,
no. 6, pages 1593–1605, 1997. http://www.ams.org/
journal-getitem?pii=S0002993997037520.

[Stephenson 00] Darin R. Stephenson & James J. Zhang. Noetherian con-
nected graded algebras of global dimension 3. J. Algebra,
vol. 230, no. 2, pages 474–495, 2000. http://dx.doi.
org/10.1006/jabr.2000.8323.

[Verschoren 97] A. Verschoren & L. Willaert. Noncommutative algebraic
geometry: from pi-algebras to quantum groups. Bull. Belg.
Math. Soc. Simon Stevin, vol. 4, no. 5, pages 557–588,
1997. http://projecteuclid.org:80/Dienst/UI/1.0/
Summarize/euclid.bbms/1105737761.

General References

Serge Lang. Algebra. Addison Wesley, 3. edition, 1999.

PlanetMath. http://planetmath.org.

Eric W. Weisstein. MathWorld. http://mathworld.wolfram.com/.

Wikipedia. http://en.wikipedia.org/.

55

http://arxiv.org/pdf/math.RA/0304210.pdf
http://dx.doi.org/10.1006/jabr.1996.0207
http://dx.doi.org/10.1006/jabr.1996.0207
http://www.ams.org/journal-getitem?pii=S0002994797017698
http://www.ams.org/journal-getitem?pii=S0002994797017698
http://www.ams.org/journal-getitem?pii=S0002993997037520
http://www.ams.org/journal-getitem?pii=S0002993997037520
http://dx.doi.org/10.1006/jabr.2000.8323
http://dx.doi.org/10.1006/jabr.2000.8323
http://projecteuclid.org:80/Dienst/UI/1.0/Summarize/euclid.bbms/1105737761
http://projecteuclid.org:80/Dienst/UI/1.0/Summarize/euclid.bbms/1105737761
http://planetmath.org
http://mathworld.wolfram.com/
http://en.wikipedia.org/


Index

algebra
Artin-Schelter regular, 45
classical Krull dimension, 8
connected graded, 3
global dimension, 45
Gorenstein, 45
graded, 3
locally finite, 3
prime, 21

augmentation ideal, 3

Bergman Gap, 7
Bernstein degree, see multiplicity

category, 4
abelian, 4
morphism, 4

composition, 4
identity, 4

object, 4
subcategory, 4

dense, see Serre –
full, 4
Serre –, 5

class, 4
critical composition factors, 17

degree, 3
dimension

separates primes, 13

e-point module, 16

Gel’fand-Kirillov dimension, 7
grmod (A), 5

equivalent objects, 5

Hilbert function, 6
Hilbert polynomial, 6
Hilbert series, 6

module
bounded above, 5
bounded below, 5
classical Krull dimension, 8
cone of a –, 22
critical, 15
critical composition series, 17
finite length, 5
graded, 3
graded homomorphism, 3
graded submodule, 3
projective dimension, 45
shift equivalent, 6
shifted, 6
simple, 15
twist equivalent, 6
twisted, 6

multilinearisation
algebra, 30
ideal, 29
polynomial, 29

multiplicity, 8

PI-algebra, 16
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