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Introduction

The background for this thesis is the work on broccoli curves by Gath-
mann, Markwig and Schroeter [GMS11]. In that paper, broccoli curves are
introduced in order to give a tropical proof of the invariance of tropical
Welschinger numbers. As a by-product, the broccoli curves are used by
Gathmann, Markwig and Schroeter to find recursive formulæ sufficient to
compute all Welschinger invariants of the projective plane. In the present
thesis, focus will be on these calculations, generalising the formulæ to P

2

blown up at one or two points.
In Section 1, we take a brief look at the classical background of the

enumerative questions addressed by Welschinger invariants.
Section 2 explains how tropical methods are employed to compute these

invariants. A key result in this respect is Shustin’s theorem (Theorem 2.29)
on the tropical count of the Welschinger invariants when the collection of
points P contains non-real points. In this theorem, Shustin identifies trop-
ical curves with some specific properties, which are then counted with suit-
able multiplicities to find the Welschinger invariants.

Oriented (r, s)-marked curves are introduced in Section 3. A special class
of such curves are the Welschinger curves. They are parametrised versions of
the curves Shustin uses to compute the Welschinger invariants, but proving
the invariance of their count directly is tricky. That is why Gathmann,
Markwig and Schroeter introduce broccoli curves, another kind of oriented
(r, s)-marked curves. The count of these curves equals the corresponding
count for Welschinger curves and is locally invariant in the moduli space.
Gathmann, Markwig and Schroeter then show that the count of broccoli
curves is independent of the collection of points. Hence, the Welschinger
numbers are invariant, see Corollary 3.53 of the present thesis.

With the equivalence of Welschinger and broccoli numbers in mind, Sec-
tion 4 shows how broccoli curves are used by Gathmann, Markwig and
Schroeter to find explicit recursive formulæ which are sufficient to compute
all Welschinger invariants of the projective plane. The output from these
recursions up to degree 5 is presented, the program code is available upon
request.

In Sections 5 and 6, we look at extensions of these recursive formulæ
to P

2 blown up in one and two points, respectively. Formulæ sufficient to
compute the Welschinger invariants of F1, P

2
2 and P

1 × P
1 are presented.

A note on the generality of the results seems to be in order. Until
Section 5, we state our results only for the projective plane. However, all the
underlying results (such as Shustin’s theorem and the equivalence of broccoli
and Welschinger numbers) hold for any tropical degree corresponding to a
real unnodal toric Del Pezzo surface.

I want to use this opportunity to express my gratitude to Kristian Ranes-
tad for being a fantastic supervisor.
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1 Real enumerative geometry

Suppose we are given a set of points P in P
2 and want to know how many

nodal algebraic curves of degree d and genus g pass through the given points.
The space of such curves has dimension 3d − 1 + g, so if P consists of
3d− 1 + g points in general position, the number of curves should be finite.
These numbers, denoted NP2(d, g), are referred to as the Gromov-Witten
invariants of the projective plane.

In the early 1990’s Kontsevich [KM94] gave the elegant recursion formula

NP2(d, 0) =
∑

a+b=d

NP2(a, 0) ·NP2(b, 0) ·

(

a2b2
(
3d− 4

3a− 2

)

− a3b

(
3d− 4

3a− 1

))

,

starting from the observation that there exists a unique line through any two
distinct points. Caporaso and Harris [CH98] settled the question by giving a
recursive formula for the numbersNP2(d, g) of nodal curves through 3d−1+g
points in general position for any genus g.

The situation becomes a lot more complicated when shifting to the count
of real curves; the number of curves may depend on the chosen points.
Hence, the best we can hope for is upper and lower bounds. Does there
exist any such curves at all?

Let RC (d, g,P) denote the space of all real curves of degree d and genus
g through the configuration of points P. Since every real curve is a complex
curve, we immediately see that #(RC(d, g,P)) ≤ NP2(d, g). An important
point to note is that if a real curve goes through P , it necessarily passes
through P . Thus, we must distinguish between real and non-real points of
P.

The question then is:

Problem 1.1. Given r “real” and s “complex” points in general position
in C

2 (satisfying r+2s = 3d− 1+ g), how many real curves of degree d and
genus g pass through the given points?

A rational curve of degree d > 2 is necessarily singular, a typical curve
has

(
d−1
2

)
double points. There are three distinct types of double points for

real curves:

Nodes Two real branches of the curve intersect transversally. Locally, this
looks like the variety given by x2 − y2 = 0.

Solitary points Two complex conjugate branches intersect transversally.
Locally, this looks like the variety given by x2 + y2 = 0.

Complex ordinary double points A pair of complex conjugate double
points.
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The picture below shows these three possibilities (modified from [Sot11]).
Note that the pair of complex conjugate double points will not be visible in
R
2.

A node A solitary double point Invisible double points

Let C be a real algebraic curve. The multiplicity of C, denoted mC , is
its number of solitary double points. Let P be a generic configuration of
3d− 1+ g− s points in P

2, of which there are exactly s non-real points. We
define

W (d, g, s,P) :=
∑

C∈RC(d,g,P)

(−1)mC ,

where the sum runs over all real algebraic curves C of genus g and degree d
passing through P.

Theorem 1.2 (Welschinger, [Wel03, Wel05]). For any d ≥ 1 and s ≥ 0,
the number W (d, 0, s,P) does not depend on the collection P of points in
general position.

Unfortunately, the analogous statement is no longer true if we let g be
non-zero.

Since the number W (d, 0, s,P) does not depend on the choice of P, we
will denote it by WP2(d, 3d − 2s − 1, s). These numbers are referred to as
the Welschinger invariants of the projective plane.

In our case, the main interest of the invariants WP2(d, 3d − 2s − 1, s) is
that they give lower bounds for the cardinality of RC(d, 0,P); for any d ≥ 1
and any generic configuration P of 3d− s− 1 points in general position in
P
2 of which exactly s are non-real,

|WP2(d, 3d − 2s− 1, s)| ≤ #(RC(d, 0,P)).

Although Welschinger showed that the numbers W (d, 0, s,P) do not de-
pend on the choice of conditions in general position, the question of whether
there exist any real rational curves through the given points was still open
(Welschinger only showed that WP2(d, 0, 3d − 1, 0) was nonzero for d ≤ 5).
Welschinger’s theorem does not in itself guarantee the existence of any real
rational curve through P. When P consists only of real points, RC(d, g,P)
is congruent to NP2(d, 0) modulo 2, and the latter is even for d ≥ 3 by the
formula of Kontsevich. Hence, RC(d, g,P) is an even number and could
very well be 0.
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2 Tropical geometry

The roots of tropical geometry date back at least to the work of Bergman
on limits of algebraic sets under the logarithm in the early 1970s [Ber71].
In tropical geometry, algebraic-geometric objects are replaced by piecewise
affine-linear objects. For example, tropical plane curves are graphs in R

2

whose edges are straight with rational slopes. Still, there are some surprising
results connecting tropical curves to the seemingly very different algebraic
curves.

This section gives a quick introduction to the geometry of plane trop-
ical curves before we come to results tying tropical curves to the classical
enumerative problems discussed in the previous section.

2.1 Set-up

One description of tropical plane curves is through “tropical” polynomials.
First, we define two new binary operations on R;

a⊕ b := max {a, b} ,

a⊗ b := a+ b.

We denote a⊗ a⊗ · · · ⊗ a
︸ ︷︷ ︸

n times

by an.

Definition 2.1 (Tropical polynomial). LetA be a finite subset of Z≥0×Z≥0.
A tropical polynomial p in two variables with support A is an expression of

the form p =
⊕

(i,j)∈A

aij ⊗ xi ⊗ yj. We denote the support of p by Ap.

When it is clear from the context that we are referring to a tropical
polynomial, we will use juxtaposition instead of ⊗.

Definition 2.2 (A tropical curve as a set). Let p be a tropical polynomial.
We define the function

fp(x, y) := max
(i,j)∈Ap

{aij + ix+ jy}.

With the arithmetic definitions of ⊕ and ⊗ above, this is just how we would
evaluate a tropical polynomial at (x, y). fp is a convex, piecewise affine-
linear function. The underlying set of the tropical curve corresponding to p
is the corner locus

Tp := {(x, y) ∈ R
2 | fp is not locally affine at (x, y)}.

The set Γp := {(x, y, z) ∈ R
3 |z = fp(x, y)} is a polyhedral surface in R

3.
Tp consists of the projections of the edges of Γp to R

2, i.e. the points in R
2

where more than one monomial assume the maximum.
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Example 2.3 (A tropical line). Let p be given by p = ax ⊕ by ⊕ c. Tp

divides the plane into three regions, a south-western region where the term
c is largest, a north-western region where the term b + y is largest, and a
south-eastern region where a+ x is largest.

a+ x > b+ y, c

b+ y > a+ x, c

c > a+ x, b+ y

In general, Tp will be a graph in R
2. Here Tp consists of three unbounded

edges (half-rays in R
2) emanating from the same vertex. Its unique vertex

is where the three terms are all equal; (c− a, c− b).

Definition 2.4 (Weight of an edge). Let σ be an edge of Tp corresponding
to the edge σ̂ of Γp. Then there are two faces of Γp meeting along σ̂. One
face looks like the graph of the function (x, y) 7→ ai1j1 + i1x+ j1y, the other
looks like the graph of (x, y) 7→ ai2j2 + i2x+ j2y. Then we define the weight
of σ, denoted ω(σ), as the integral lattice length of (i2 − i1, j2 − j1).

Definition 2.5 (The tropical curve corresponding to a tropical polynomial).
Let p be a tropical polynomial. The set Tp with the weights ω(σ) of all edges
is called the plane tropical curve associated to p.

Example 2.6. In Example 2.3 we saw the underlying set of a tropical line.
All of its edges have weight 1.

Definition 2.7 (The Newton polygon Newtp). Let p be a tropical polyno-
mial with support Ap. The Newton polygon corresponding to p is the convex
hull of Ap when viewed as a subset of R2. We denote the Newton polygon
corresponding to p by Newtp.

Definition 2.8 (The subdivision Subdivp). The regular subdivision of Newtp
associated to a tropical polynomial p is constructed in the following manner:
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• Plot the points dij = (xi, yj, aij) ∈ R
3 for (i, j) ∈ Ap.

• Construct the convex hull of the dij ’s.

• Consider the faces of this polytope with an outer normal pointing
upward. Project these faces to the xy-plane by deleting the last co-
ordinate. These polygons are called cells of the regular subdivision of
Newtp.

We denote the regular subdivision of Newtp by Subdivp.

Example 2.9 (A tropical conic). Let p = 5 ⊕ 4x ⊕ 1x2 ⊕ 5xy ⊕ 5y2 (that
is, p = 5⊕ 4⊗ x⊕ 1⊗ x2 ⊕ 5⊗ x⊗ y ⊕ 5⊗ y2). Its curve is shown with its
Newton subdivision below. In each region of R2 \ Tp, the dominating term
is shown.

weight ω = 2

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

The curve consists of two bounded edges and five half-rays. It has one edge
of weight 2, the other six are of weight 1. Tp has three vertices. One is at
(0, 0), this is where the terms 5, 5 ⊗ x ⊗ y and 5 ⊗ x2 are greater than all
other terms. The other vertices are at (1,−1) (where 5 = 4+x = 5+x+ y)
and (3,−1) (where 4 + x = 5 + x+ y = 1 + 2 · x).

For both this tropical curve and the tropical line of Example 2.3, each
monomial of the defining polynomial p corresponded to a unique connected
component of R2 \Tp. This is not true in general; let us see what happens if
we add a monomial a⊗ y to the tropical polynomial p of the last example.

Example 2.10 (A family of tropical conics). We let p be the polynomial
p = 5⊕ 4x⊕ 1x2 ⊕ 5xy ⊕ 5y2 as in the previous example and let pa denote
the tropical polynomial

pa := 5⊕ 4x⊕ ay ⊕ 1x2 ⊕ 5xy ⊕ 5y2.

First, if a ≤ 5, then a + y is never greater than both 5 and 5 + 2y, so
adding the monomial ay to p does not alter fp. Hence, Tpa equals Tp and
we can check that Subdivpa = Subdivp.
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For 5 < a < 6, adding the monomial a⊗y to p does alter fp; there exists
a region (−∞, a− 5) × (5− a, a− 5) where a + y is strictly greater than
all other monomials. Such a curve is shown below with its corresponding
Newton subdivision.

a+ y

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

When a = 6, the curve is reducible; it is the union of two tropical lines:

a+ y

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

As a increases, the next combinatorial type (“shape”) of the tropical curves
in the family is shown below.
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a+ y

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

When a = 8 we get a new example of a reducible curve:

a+ y

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

For a > 8 the curves Tpa are of the same combinatorial type as the curve
shown below:

a+ y

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x
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We called the curves in the last example conics, because their defining
tropical polynomials were of degree 2. In general, we define the degree of a
tropical polynomial as follows.

Definition 2.11 (Degree of a tropical curve). A tropical curve with under-
lying set Tp corresponding to a tropical polynomial p is said to be of degree
d if it has d ends in the western direction, d ends in the southern direction
and d ends in the north-eastern direction (counted with their weights). This
is equivalent to requiring that Newtp (after a suitable translation in Z

2) is
the triangle with vertices (0, 0), (d, 0) and (0, d)

As we did with some of the conics above, we say a tropical curve C is re-
ducible if it is the “union” of two strictly smaller tropical curves. Otherwise,
we say the curve is irreducible.

Example 2.12. An edge of a tropical curve with weight ω may, depending
on circumstances, be viewed as a collection of edges whose weights sum to
ω. Let p be the tropical polynomial given by p = x2 ⊕ y2 ⊕ 1. Its tropical
curve is shown below.

2

2

2

Its underlying set is exactly like that of a tropical line. We will interpret
this curve as the union of two lines with the same underlying set. Hence,
we view this as a reducible conic.

A tropical curve C is reducible if and only if it is the tropical curve
corresponding to the tropical product of two polynomials, none of which is
a single monomial.

Below is a reducible quartic.
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3

2

It is a union of a tropical line and a tropical cubic.

A plane irreducible tropical curve C is said to be nodal if all of its vertices
are either 3-valent or locally the transversal intersection of two (classical)
lines.

Example 2.13. All irreducible curves of Example 2.9 and Example 2.10
are nodal tropical curves of degree 2.

Definition 2.14 (Genus of a nodal curve). The genus g of an irreducible
nodal plane tropical curve with N unbounded rays and δ 3-valent vertices
is given by

g(C) :=
δ −N + 2

2
.

Example 2.15. The tropical curve corresponding to the tropical polynomial

p := 10⊕ 10x⊕ 10y ⊕ 6x2 ⊕ 9xy ⊕ 8y2 ⊕ 1x3 ⊕ 6x2y ⊕ 8xy2 ⊕ 5y3

is a nodal curve of degree 3 and genus 0. It is shown below with its corre-
sponding Newton subdivision.

2

The curve has 7 3-valent vertices, one for each cell of Subdivp. It has
15 edges, each corresponding to an edge of Subdivp. An edge and its dual
edge in Subdivp are perpendicular to each other, and the weight of an edge

12



is the integral lattice length of the dual edge. Each connected component of
R
2 \ Tp corresponds to a vertex of Subdivp.
Note that 9+x+y will never be greater than both 10+x and 8+x+2·y,

so removing the term 9xy from the polynomial would not alter fp or Tp.
We can actually see this directly from Subdivp. Notice that (1, 1) (cor-

responding to the xy-term of p) is not a vertex of the Subdivision. As we
will see in Theorem 2.16 below, this means that removing this term would
not alter the curve. If the coefficient were to be slightly greater, however,
we would get a nodal curve of degree 3 whose genus is 1, such as the curve
below:

Now, (1, 1) is a vertex of the subdivision, so there exists a region where
the xy-term is greatest. The curve has 9 unbounded edges and 9 3-valent
vertices, so its genus is indeed 1.

Although there exist situations in which not all monomials of p con-
tribute to fp, we have seen that a lot of information about Tp can be found
in the corresponding Newton subdivision.

Theorem 2.16 (Duality). Let p be a tropical polynomial.

• There is a bijection between vertices of Subdivp and connected compo-
nents of R2 \ Tp.

• There is a bijection between edges of Subdivp and edges of Tp. Their
direction vectors are perpendicular to each other and the weight of an
edge of Tp is equal to the lattice length of the corresponding edge of
Subdivp. In addition, if E is an edge of Tp connecting two vertices V1

and V2, the edge dual to E is the edge between the cells dual to V1 and
V2 in the subdivision.

• There is a bijection between cells of Subdivp and vertices of Tp.

Definition 2.17 (Tropical curves as weighted graphs). A parametrised
plane tropical curve is a pair (Γ, h) where Γ is a metric graph and h is
a continuous map from Γ to R

2 such that

13



(a) Every vertex of Γ has valence at least 3.

(b) Every edge E is given a positive integer weight ω(E).

(c) On each edge E of Γ, the map h is an embedding. Its image is
contained in a line with rational slope.

(d) Letting v(E,V ) denote the primitive integral direction vector of the
edge E away from V , the balancing condition

∑

E:V ∈∂E

ω(E)v(E,V ) = 0

is satisfied at each vertex V .

Proposition 2.18. For any parametrised plane tropical curve C = (Γ, h)
there exists a tropical polynomial p such that h(Γ) = Tp and such that the
weights of the edges of Tp correspond to those of Γ. Conversely, any tropical
curve corresponding to a tropical polynomial p can be parametrised by some
Γ and h.

Remark 2.19. With this correspondence in mind, we speak of the Newton
polygon (or subdivision) dual to Tp also as the Newton polygon (or subdi-
vision) dual to h(Γ). This polygon (or subdivision) is defined uniquely up
to translations in Z

2.

2.2 Correspondence theorems

Compared to classical curves, the piecewise linear nature of tropical curves
simplifies their count considerably. A theorem of Mikhalkin states that we
can count real or complex curves by counting their tropical counterparts
with suitable multiplicities.

Definition 2.20 (The complex vertex multiplicity mult(V )). Let V be a 3-
valent vertex of a tropical curve C and let its three adjacent edges E1, E2, E3

have primitive integral direction vectors v1, v2, v3 and weights ω1, ω2, ω3.
Then the complex vertex multiplicity mult(V ) is given by

mult(V ) := ω1 · ω2 · |det(v1, v2)|.

Remark 2.21. By the balancing condition, the multiplicity mult(V ) does not
depend on the numbering E1, E2, E3 of the edges;

ω1 · ω2 · |det(v1, v2)| = ω1 · ω3 · |det(v1, v3)| = ω2 · ω3 · |det(v2, v3)|.

There is an equivalent definition of the vertex multiplicity, looking only at
the corresponding cell of the Newton subdivision corresponding to the curve.
The multiplicity of a 3-valent vertex V is the lattice area of the corresponding
triangle in the Newton subdivision.

14



Definition 2.22 (Complex curve multiplicity). Let C be a nodal plane
tropical curve. The “complex” multiplicity of C is defined as

multC(C) :=
∏

V

mult(V ),

where the product runs over all 3-valent vertices of C.

Theorem 2.23 (Mikhalkin [Mik05]). Let P = (P1, . . . , P3d−1+g) ⊆ R
2 be

a collection of points in general position. Then

NP2(d, g) =
∑

C

multC(C),

where the sum runs over all nodal tropical curves of degree d and genus g
through the points P1, . . . , P3d−1+g.

It turns out that the Welschinger invariants can be computed in a similar
way; one just has to change the multiplicity slightly.

Definition 2.24 (Real curve multiplicity). Let C be a nodal plane tropical
curve. The “real” multiplicity of C is defined as

multR(C) :=







0 if multC(C) is even,

1 if multC(C) ∼= 1 modulo 4,

−1 if multC(C) ∼= 3 modulo 4.

Theorem 2.25 (Mikhalkin [Mik05]). Let P = (P1, . . . , P3d−1) ⊆ R
2 be a

collection of points in general position. Then

WP2(d, 3d − 1, 0) =
∑

C

multR(C),

where the sum runs over all rational nodal tropical curves of degree d through
the points P1, . . . , P3d−1.

Using these tropical methods, Itenberg, Kharlamov and Shustin [IKS04]
computed the Welschinger invariants for small d, see table 1.

Di Francesco and Itszykson [DFI94] had shown that

lim
d→∞

logNP2(0, d)

d ln d
= 3,

and in [IKS04], Itenberg, Kharlamov and Shustin showed that

lim
d→∞

logWP2(d, 3d − 1, 0)

d log d
= lim

d→∞

logNP2(0, d)

d log d
.

So, the number of real curves through a given set of real points grows almost
as fast as the number of complex curves. In particular, they are all non-zero.

15



d WP2(d, 3d − 1, 0) NP2(0, d)

1 1 1
2 1 1
3 8 12
4 240 620
5 18264 67304
6 2845440 26312976

Table 1: The first values of WP2(d, 3d − 1, 0) and NP2(0, d)

When we let P contain non-real points, a more refined method is re-
quired; a small change in the multiplicities is not sufficient. Still, Shustin
found a class of tropical curves and a suitable multiplicity such that their
count equals the Welschinger invariants in this case as well.

Definition 2.26 (Shustin multiplicity). Let C be a nodal tropical curve
corresponding to a Newton subdivision Subdiv. Denote by a the number of
integral points in the interior of triangles in Subdiv, let b be the number of
triangles in Subdiv such that all sides have even lattice lengths, and let c be
the number of triangles of Subdiv whose lattice area is even. The Shustin
multiplicity of C is

multS(C) := (−1)a+b2−c
∏

V

mult(V ),

where the product runs over all vertices V of C such that the dual triangle
has even lattice area.

Example 2.27. Recall the curve of Example 2.9 and its corresponding
Newton subdivision as shown below.

2

There are no integral lattice points in the interiors of any triangles of the
subdivision and no triangles have sides all of whose lenghts are even. The
number of triangles whose lattice area is even is 1. Thus, the Shustin mul-
tipliticy of C is given by

multS(C) = (−1)0+02−1
∏

V

mult(V ) = 1.
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Example 2.28. We will determine multS(C) for the first curve of Example
2.15.

2

There are no integral lattice points in the interiors of any triangles and no
triangles have sides all of whose lenghts are even. The number of triangles
whose lattice area is even is 2. Thus, the Shustin multipliticy of C is given
by

multS(C) = (−1)0+02−2
∏

V

mult(V ) = 1.

Theorem 2.29 (Shustin [Shu06, Theorem 3.1]). Let r + 2s = 3d − 1 and
let P = (P1, . . . , Pr+s) be a collection of points in general position in R

2,
exactly s of which are “complex”. Then

WP2(d, r, s) =
∑

C

multS(C),

where the sum runs over some of the rational nodal tropical curves C of
degree d through the given points; the r “real” points must be at edges of odd
weight and the s “complex” points must be either at trivalent vertices of C
or at edges of even weight. In addition, there is a condition on the collection
of edges of C of even weight which must be satisfied (see Definition 3.26 for
this condition in the setting of (r, s)-marked curves).

By the Welschinger theorem, these numbers do not depend on the choice
of points, but Gathmann, Markwig and Schroeter [GMS11] sought a proof
of this invariance within tropical geometry. This is the content of the next
section.

3 Oriented marked curves

We will change our objects of study again, this time to the combinatorial
objects called oriented (r, s)-marked curves. The curves counted by Shus-
tin in Theorem 2.29 then correspond to a special type of oriented (r, s)-
marked curves. Proving the invariance of their count directly is tricky - the
count is not locally invariant in the moduli space. Gathmann, Markwig and
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Schroeter introduce a similar type of oriented curves, broccoli curves, whose
count is locally invariant in the moduli space. The count of these curves
is then shown to be equivalent to the similar count for Welschinger curves.
This leads to the invariance of Welschinger numbers, Corollary 3.53.

Note. As opposed to the last section, all curves considered from now on
will be connected of genus 0. We therefore include this restriction in the
definition of the curves we consider.

3.1 (r, s)-marked curves

Our (r, s)-marked plane tropical curves will be parametrised plane tropical
curves in the sense of Definition 2.17 with the added data of some “real”
and “complex” markings (marked ends). These markings will be ends of
the underlying graph of our new curves which are sent to a point under the
map to R

2. Instead of looking at curves through a collection of r “real”
and s “complex” given points in the plane, we look at the space of all (r, s)-
marked curves whose marked ends are sent to the given collection of points.
By using this definition, the conditions imposed by Shustin on the curves
counted in Theorem 2.29 become inherent properties of the curve itself.

Definition 3.1 (Metric graphs). Let I1, . . . , In ⊆ R be a finite set of closed
(bounded or half-bounded) real intervals. Pick some (not neccessarily dis-
tinct) boundary points P1, . . . , Pk, Q1, . . . , Qk in the disjoint union of these
intervals, I1

∐
· · ·

∐
In. The topological space Γ obtained by identifying Pi

with Qi in I1
∐

· · ·
∐

In for all i ∈ 1, . . . , k, is called a metric graph.

(a) The boundary points of the intervals I1, . . . , In are called flags, their
image points in Γ are called vertices of Γ. For a vertex V , the number
of flags F such that V is the image point of F is called the valence of
V , denoted val(V ).

(b) The intervals I1, . . . , In are called the edges of Γ. They are all
closed subsets of Γ. An edge will be called bounded if its corresponding
interval is, otherwise it is called unbounded. The unbounded edges will
be referred to as the ends of Γ.

(c) The genus of a connected graph Γ is its first Betti number. If Γ is
connected of genus 0, we say it is rational.

Definition 3.2 (Abstract tropical curve). A (rational, abstract) tropical
curve is a connected, rational metric graph Γ, all of whose vertices have
valence at least 3.

Definition 3.3 (Abstract (r, s)-marked curve). Let r, s be non-negative
integers. An (abstract) (r, s)-marked tropical curve is a tuple of the form
(Γ, x1, . . . , xr+s, y1, . . . , yn) for some n ∈ N, where Γ is a tropical curve and
x1, . . . , xr+s, y1, . . . , yn is a labelling of all distinct unbounded edges of Γ.
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Two abstract (r, s)-marked curves C = (Γ, x1, . . . , xr+s, y1, . . . , yn) and
C ′ = (Γ′, x′1, . . . , x

′
r+s, y

′
1, . . . , y

′
n) will be called isomorphic if there exists an

isometric isomorphism φ : Γ → Γ′ such that φ(xi) = x′i for i = 1, . . . , r + s
and φ(yj) = y′j for all j = 1, . . . , n.

Definition 3.4 (Marked curves). An (r, s)-marked plane tropical curve is a
tuple C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) for some n ∈ N such that:

(a) (Γ, x1, . . . , xr+s, y1, . . . , yn) is an abstract (r, s)-marked tropical
curve.

(b) Affine linear map: h is a continuous map from Γ to R
2. If we

parametrise an edge E of Γ starting at V , h is locally of the form
h|E(t) = a+ t ·v for some a ∈ R

2 and v ∈ Z
2 (“h is integer affine linear

at the edges”). The integral vector v in this equation will be called
the direction vector of E starting at V , and denoted vE,V . When the
edge is an end, we let vE denote vE,V for its unique adjacent vertex
V .

(c) Balancing condition: At every vertex V ,

∑

E:V ∈∂E

vE,V = 0

is satisfied.

(d) Marked and unmarked ends: Each of the marked ends, the un-
bounded edges x1, . . . , xr+s, is mapped to a point in R

2 by h. There-
fore vE,V = 0 for its unique adjacent vertex V . We say that ends
with vE,V = 0 are contracted. The contracted ends x1, . . . , xr will be
referred to as real markings, the contracted ends xr+1, . . . , xr+s will
be called complex markings. The ends y1, . . . , yn are called unmarked
ends.

(e) Degree: The collection ∆ = (v(y1), . . . , v(yn)) is called the degree
of C. In general, we say that a finite, non-empty collection ∆ of vectors
in Z

2 \{(0, 0)} is a tropical degree if there exists a tropical curve whose
degree is ∆, i.e. if the sum of the vectors in ∆ is (0, 0).

We say a curve is of degree d if its degree consists of d times each of the
vectors (0,−1), (−1, 0) and (1, 1). These will be the curves corresponding
to classical curves of degree d in P

2.
We will call two (r, s)-marked curves C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h)

and C ′ = (Γ′, x′1, . . . , x
′
r+s, y

′
1, . . . , y

′
n, h

′) isomorphic if there exists an iso-
morphism φ from (Γ, x1, . . . , xr+s, y1, . . . , yn) to (Γ′, x′1, . . . , x

′
r+s, y

′
1, . . . , y

′
n)

of the underlying abstract (r, s)-marked curves, such that h′ ◦ φ = h. We
will identify isomorphic curves.
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We denote the space of all isomorphism classes of (r, s)-marked curves
of degree ∆ by M(r,s)(∆), but will refer to an isomorphism class by picking
a representative.

Definition 3.5 (Even and odd edges, weights). Let an (r, s)-marked plane
tropical curve C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) be given.

(a) A vector in Z
2 is called even if both coordinates are even, otherwise

it is called odd.

(b) For every edge E of C, vE,V can be written as a non-negative
multiple ω(E) of a primitive integral vector. ω(E) is called the weight
of E. E will be called even if its weight is even and odd otherwise.

Definition 3.6 (Combinatorial type). Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h)
be an (r, s)-marked plane tropical curve. The combinatorial type of C con-
sists of the information of

(
|Γ|, x1, . . . , xr+s, y1, . . . , yn, (vE,V )V ∈∂E

)
, i.e. the

underlying non-metric graph, the labelling of the unbounded edges and the
direction vectors of all edges.

Let α be the combinatorial type of a curve C. We denote by Mα
(r,s)(∆)

the subspace of M(r,s)(∆) consisting of all curves of combinatorial type α.
The curves in Mα

(r,s)(∆) differ only in the lengths of their bounded edges

and the image of a given root vertex in R
2.

Definition 3.7 (Subdivision dual to an (r, s)-marked plane tropical curve
C). Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) be an (r, s)-marked tropical curve.
By Proposition 2.18, h(Γ) is a tropical curve corresponding to some tropical
polynomial p. As in Remark 2.19 we will refer to Subdivp also as the subdivi-
sion dual to C or the subdivision dual to h(Γ), depending on circumstances.

Example 3.8 (Subdivisions may vary within one combinatorial type of
curve). Let ∆ be given by

∆ = ((−1, 0), (−1, 0), (−1, 0), (0,−1), (0,−1), (0,−1), (1, 1), (1, 1), (1, 1)) .

Below are the images in R
2 of two (0, 0)-marked plane tropical curves C =

(Γ, y1, . . . , y9, h) and C ′ = (Γ′, y′1, . . . , y
′
9, h

′) of degree ∆.
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y1

y2

y3

y4 y5

y6

y9

y7

y8

y1
y2

y3

y5y4

y6

y9

y7

y8

h(Γ) h′(Γ′)

The curves C and C ′ are of the same combinatorial type, the difference lies
in the lengths of the bounded edges. We have stretched one edge (the blue)
and shrunk another (the red). Even though these curves are of the same
combinatorial type, they are dual to distinct Newton subdivisions of the
triangle with vertices (0, 0), (3, 0) and (0, 3):

Subdivision corresponding to h(Γ) Subdivision corresponding to h′(Γ′)

The multiplicities (real, complex and Shustin) of h(Γ) and h′(Γ′) of the
curves are equal, though.

Convention 3.9 (Curve drawing). Given an (r, s)-marked plane tropical curve
C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) we will draw the curve as the image
h(Γ) ⊆ R

2 as in the example above. The image points of the marked ends
will be shown as small dots for real markings and big dots for complex mark-
ings. Other edges will be displayed as thin lines if their weight is odd and
thick lines if their weight is even. To ease visualisation, parallel edges will
be shown as distinct edges in our pictures, even though this is a feature of
the abstract graph and would not be visible in R

2.

Example 3.10 (A (2, 1)-marked plane tropical curve). The picture below
shows a (2, 1)-marked plane tropical curve C = (Γ, x1, x2, x3, y1, . . . , y6, h)
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(that is, it has two “real” markings and one “complex” marking) of degree
∆ = ((−1, 0), (−1, 0), (1, 1), (1, 1), (0,−1), (0,−1)). It has five 3-valent ver-
tices and one 4-valent vertex (recall that the markings are themselves edges
of the underlying graph Γ).

y1

y2

x3
x1

y3

y6

y4 x2

y5

y1

y2 x3

x1

y3

y6

y4

x2

y5

Γ h(Γ)

The unmarked ends y1 and y2 are sent to the same line by h, but as explained
in Convention 3.9 they are drawn as distinct edges in our image.

We may think of C as a parametrisation of the curve corresponding to
the polynomial p of Example 2.9 in the following way. Suppose we were
looking at the family of tropical conics of degree 2 through the “real” points
(1,−2.2) and (3.5,−0.5) and the “complex point” (−1, 0). Then the curve
corresponding to p = 5 ⊕ 4x ⊕ 1x2 ⊕ 5xy ⊕ 5y2 would pass through these
points as seen in the picture below.

weight ω = 2

5 + x+ y

5

1 + 2 · x

5 + 2 · y

4 + x

P3

P1

P2

In the setting of (r, s)-marked curves, we do not look at curves through
the given points. Instead, we look at curves such that their marked ends are
sent to the given points. The natural curve to consider as an (r, s)-marked
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analogue to the tropical curve corresponding to p would be the curve C ′

below.

y′1

x′3
x′1

y′2

y′5

y′3 x′2

y′4

y′1
x′3

x′1

y′2

y′5

y′3

x′2

y′4

Γ′ h′(Γ′)

Now, C ′ = (Γ′, x′1, x
′
2, x

′
3, y

′
1, . . . , y

′
5, h

′) is a (1, 2)-marked curve of degree
∆′ = ((−2, 0), (1, 1), (1, 1), (0,−1), (0,−1)) such that h(Γ) = Tp, the weights
of the edges of Γ equal the weights of the corresponding edge of Tp and
h′(x′1) = P1, h

′(x′2) = P2 and h′(x′3) = P3.
We said that an (r, s)-marked curve would be of degree d if its degree

consists of d times each of the vectors (0,−1), (−1, 0) and (1, 1). Hence, we
parametrise the end y′1 of weight 2 as two parallel ends of weight 1 to get
the curve C = (Γ, x1, x2, x3, y1, . . . , y6, h).

y1

y2

x3
x1

y3

y6

y4 x2

y5

y1

y2 x3

x1

y3

y6

y4

x2

y5

Γ h(Γ)

Definition 3.11 (Abstract polyhedral complexes). Let X1, . . . ,Xn be open
convex polyhedra in a real vector space. A polyhedral complex with cells
X1, . . . ,Xn is a topological space X together with continuous inclusion maps
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ik : Xk → X such that X is the disjoint union of the sets ik(Xk).
The dimension of a polyhedral complex X is the maximum of the dimen-

sions of its cells, denoted dimX. X is said to be of pure dimension dimX
if every cell of X is contained in the closure of a cell of dimension dimX.

We will focus on certain spaces of curves and these spaces turn out to be
polyhedral complexes in a natural way. The different cells of these complexes
correspond to different combinatorial types of curves. First, we will explain
how to give the space M(r,s)(∆) the structure of a polyhedral complex. The
first thing to note is that the number of cells is finite:

Proposition 3.12 (Finite number of combinatorial types [GM08, Lemma
2.10]). For all r, s ≥ 0 and tropical degrees ∆, there are only finitely many
combinatorial types α such that Mα

(r,s)(∆) is a subspace of M(r,s)(∆).

Proposition 3.13. A 3-valent (abstract) tropical curve Γ with N unbounded
edges has exactly N − 3 bounded edges.

Every vertex of a tropical curve must (by definition) have valence at
least 3, so if a tropical curve Γ has N unbounded edges, N − 3 is an upper
bound for the number of bounded edges. Any 4-valent vertex of a graph can
be resolved by two 3-valent vertices connected by a bounded edge as in the
figure below.

Similarly, a 5-valent vertex could be resolved by a 3-valent vertex and a 4-
valent vertex connected by a bounded edge and so forth. Hence, if we have
vertices which are not 3-valent, the number of bounded edges of the graph is
diminished by

∑

V (Val V − 3) compared to a “similar” graph, all of whose
vertices are 3-valent.

Proposition 3.14. A plane tropical (r, s)-marked curve C in M(r,s)(∆) has
|∆|+ r + s ends and |∆|+ r + s− 3−

∑

V (Val V − 3) bounded edges.

The curves in Mα
(r,s)(∆) are parametrised by the image of a vertex in R

2

and the lengths of their non-contracted bounded edges, all of which can be
any positive real number.

Proposition 3.15 (Mα
(r,s)(∆) as a polyhedron [GM08, Proposition 2.11

2.10]). Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) be a plane tropical curve of
combinatorial type α. Then the space Mα

(r,s)(∆) is an open convex polyhedron

(possibly unbounded) in a real vector space, its dimension is given by

dimMα
(r,s)(∆) = |∆|+ r + s− 1−

∑

V

(Val V − 3).

24



Elements of the boundary of the cell Mα
(r,s)(∆) correspond to limits of

tropical curves of combinatorial type α where one or more of the lengths
of the bounded edges tend to zero, and every cell of lower dimension is in
the boundary of some cell of maximal dimension in this sense (see Example
3.19). Combining this observation with Propositions 3.12 and 3.14 we get
the following result.

Proposition 3.16 (M(r,s) as a polyhedral complex). M(r,s)(∆) is a polyhe-
dral complex of pure dimension |∆| + r + s − 1. Its cells correspond to the
spaces Mα

(r,s)(∆) for different α.

Proposition 3.17 (Classification of maximal cells of M(r,s)(∆)). Let r, s ≥
0 and let ∆ be a tropical degree. A curve C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h)
is in a cell of maximal dimension in M(r,s)(∆) if and only if every vertex of
Γ is 3-valent.

Example 3.18 (The cell corresponding to a combinatorial type). Recall
the (2, 1) marked plane tropical curve C = (Γ, x1, x2, x3, y1, . . . , y6, h) from
Example 3.10 and denote its combinatorial type by α.

y1

y2

x3
x1

y3

y6

y4 x2

y5

y1

y2 x3

x1

y3

y6

y4

x2

y5

Γ h(Γ)

The distinct curves of this combinatorial type differ in the lengths of their
bounded edges and their position in R2 (a translation of h by a vector in
R
2 would produce a curve of the same combinatorial type). Since C has 4

bounded edges, the space of all curves of the same combinatorial type as C
has dimension 6.

Example 3.19 (The polyhedral complex M(1,0)(∆)). Let us take a look at
M(1,0)(∆), where ∆ = ((−1, 0), (0,−1), (1, 1)). That is, we look at the space
of tropical lines with one real marking. In this case, the corollary states
that M(1,0)(∆) is a polyhedral complex where every cell is contained in the
closure of a cell of dimension |∆|+ r + s− 1 = 3 + 1 + 0− 1 = 3.
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There are three possible combinatorial types α such that the cellMα
(1,0)(∆)

has dimension 3; below is the image of one such curve C = (Γ, x1, y1, y2, y3, h) ∈
Mα1

(1,0)(∆) and a sketch of its underlying abstract (1, 0)-marked curve.

y2

x1

V

y1

y3

y1
V

y3

y2

x1

Γ h(Γ)

Let us see what happens as the length of the single bounded edge of
Γ shrinks towards 0. The limit is a new curve C ′ = (Γ′, x′1, y

′
1, y

′
2, y

′
3, h

′)
of combinatorial type α2 with no unbounded edges. Then C ′ lies in the
boundary of Mα1

(1,0)(∆) and Mα2

(1,0)(∆) is a cell of M(1,0)(∆) of dimension

2 (two parameters describe possible translations in R
2). The curve C ′ is

pictured next to its underlying abstract graph below.

y′2

x′1

y′1

y′3

y′1

y′3

x′1

y′2

Γ′ h′(Γ′)

We are now ready to describe M(1,0)(∆). The isomorphism class of any
curve C = (Γ, x1, y1, y2, y3, h) ∈ M(1,0)(∆) is uniquely determined by h(V )
(where V is the unique vertex not adjacent to x1 if such a vertex exists and
the unique vertex of Γ otherwise) and h(x1). For any choice of P ∈ R

2,
the subspace of M(1,0)(∆) consisting of curves such that h(V ) = P can be
identified with the image of the unique (0, 0)-marked curve of degree ∆ such
that its unique vertex is mapped to P :
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y1

y3

y2

y2

y1

y3

In fact, M(1,0)(∆) is not merely a polyhedral complex, but corresponds
to a tropical variety in a natural way. Let p be the polynomial given by
p(x, y, z, w) = yz⊕ xw⊕xy. Generalising Definition 2.5 to hypersurfaces in
spaces of higher dimension, we let Tp be the set of points in R

4 such that the
maximum is assumed by more than one monomial of p. First, fix a point
P = (a, b) ∈ R

2, and see which points of the form (a, b, z, w) belong to V (f).
This is exactly the line in the zw-plane corresponding to bz⊕aw⊕ab, which
has its unique vertex at ((a+ b)− b, (a+ b)− a) = (a, b).

This observation is true in a more general setting, see [GKM09, Propo-
sition 4.7].

Definition 3.20 (Morphism of polyhedral complexes). A morphism from
a polyhedral complex X to a polyhedral complex Y is a continuous map
f : X → Y such that for each cell Xi of X, its image f(Xi) is contained in
a cell Yj of Y and the restriction of f to Xi is a linear map of polyhedra.

We employ these constructions in order to shift our attention to curves
satisfying some fixed conditions; in particular we want to look at curves
passing through a collection of given points with some of the unmarked
ends sent to fixed lines in R

2.

Definition 3.21 (The evaluation map evF ). Let r, s ≥ 0, let ∆ = (v1, . . . vn)
be a tropical degree, and let F be a subset of {1, . . . , n}.

We define the evaluation map evF to be

evF : M(r,s)(∆) −→ (R2)r+s ×
∏

i∈F

(R2/〈vi〉) ∼= R
2(r+s)+|F |

(Γ, x1, . . . , xr+s, y1, . . . , yn, h) 7−→ ((h(x1), . . . , h(xr+s)) , (h(yi) : i ∈ F )) .

That is, the image of a curve C under evF is the tuple of images of its
contracted ends under h and the lines in R

2 into which the unmarked ends
yi of C with i ∈ F are mapped by h. evF is a morphism of polyhedral
complexes. We call the unmarked ends yi with i ∈ F fixed ends.

In our pictures, we will show that an end is “fixed” by drawing a per-
pendicular bar at its unbounded side, see Example 3.24.
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Definition 3.22 (General and special position of points). Let f : M → R
N

be a map of polyhedral complexes. Then P ∈ R
N is said to be in special

position for f if it is in the image of some cell of M whose image is not of
dimension N . Otherwise, it is said to be in general position.

The locus of points of RN in general position for f is the complement of
a finite union of subsets of RN , each of which is of dimension at most N −1.
Hence, the locus of points in general position is a dense open subset.

Proposition 3.23. Let M ⊆ M(r,s)(∆) be a polyhedral subcomplex and

let F ⊆ (1, . . . , |∆|). Then a collection P ∈ R
2(r+s) ×

∏

i∈F (R
2/〈vi〉) ∼=

R
2(r+s)+|F | is in general position for the morphism evF |M if and only if for

each curve C in M ∩ ev−1
F (P) and every small perturbation P ′ of P it is

possible to find a curve C ′ of the same combinatorial type as C in ev−1
F (P ′).

Example 3.24. Let ∆ = ((−1, 0), (0,−1), (1, 1)), F = {1}. Recall from
Example 3.19 that M(1,0)(∆) has 4 cells, three of which are of dimension
3. These cells correspond to the combinatorial types of the curves shown
below:

y1

y3

y2

x1

y1

y3

y2

x1
y1

y3

y2

x1

As previously promised, we have drawn a perpendicular bar at the end of
each end yi with i ∈ F . Here, evF sends a curve C to the tuple (P,L), where
P is the image of x1 under h and L is the horizontal line into which y1 is
mapped.

The images of the cells corresponding to the first and third combinatorial
types are both 3-dimensional. For any curve of the same combinatorial type
as the middle curve, however, we must have h(x1) ∈ h(y1). Thus, the image
of the cell corresponding to the curve in the middle consists of all P = (P,L)
such that the horizontal line L contains P . The collection of such conditions
is a 2-dimensional space.

The same is true if we look at the cell of M(1,0)(∆) with dimension 2:
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y1

y3

x1

y2

The image of this cell is also the set of P = (P,L) such that the horizontal
line L contains P .

Hence, a collection of conditions P = (P,L) for the evaluation map evF
is in special position if and only if P ∈ L, otherwise P is in general position.

We will now describe the conditions imposed by Shustin on the curves
counted in theorem 2.29 in the setting of (r, s)-marked curves. Curves with
these properties will be called unoriented Welschinger curves.

Definition 3.25 (Γeven, roots). Let r, s ≥ 0 and let ∆ be a tropical degree.
Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ M(r,s)(∆) and let F be a subset of
{1, . . . , |∆|}. Γeven is the subgraph of Γ consisting of

• all even edges,

• all double ends (a pair of unmarked, ends yi and yj of the same weight
and direction adjacent to the same 4-valent vertex such that i, j /∈ F ),

• all marked ends.

Vertices of Γeven ∩ Γ \ Γeven and unmarked non-fixed even ends of Γeven

are called roots of Γeven.

Definition 3.26 (Unoriented Welschinger curves). Let r, s ≥ 0, let ∆ be a
tropical degree and let F be a subset of {1, . . . , |∆|}. We say that a curve
C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ M(r,s)(∆) is an unoriented Welschinger
curve with set of fixed ends F if

• complex markings are adjacent to 4-valent vertices of Γ or non-isolated
in Γeven,

• real markings are adjacent to 3-valent vertices of Γ and isolated in
Γeven, and

• each connected component of Γeven has a unique root.
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Example 3.27 (An unoriented Welschinger curve). Let ∆ be the tropical
degree given by ∆ = ((−1, 0), (−1, 0), (1, 1), (1, 1), (0,−1), (0,−1)) and let
F = {3}. evF is then the map sending a curve C = (Γ, x1, x2, x3, y1, . . . , y6, h)
to the tuple consisting of the points h(x1), h(x2) and h(x3) and the line into
which h maps y3.

Recall our unoriented (2, 1)-marked curve C = (Γ, x1, x2, x3, y1, . . . , y6, h)
of Example 3.10.
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Γ h(Γ)

C has one even edge, one double end (y1 and y2) and three markings.
The subgraph Γeven consisting of even edges, double ends and marked ends
is the unconnected graph with six edges shown below. The roots of Γeven

are shown as blue dots.

y1

y2

x3
x1

x2

y1

y2 x3

x1

x2

Γeven h(Γeven)

Each connected component of Γeven has a unique root, and the unique com-
plex marking of C is non-isolated in Γeven. Hence, the curve C is an unori-
ented Welschinger curve.
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The next result is a cornerstone in the approach taken by Gathmann,
Markwig and Schroeter. It allows us to orientate the edges of a curve C
satisfying certain conditions. With these orientations, being an unoriented
Welschinger curve may be checked locally - it only depends on the specific
types of the curve’s vertices.

Lemma 3.28 ([GMS11, 2.13]). Let M ⊆ M(r,s)(∆) be a polyhedral sub-
complex, and let P be a collection of conditions in general position for
the evaluation map evF : M → R

2(r+s)+|F |. Consider a curve C =
(Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ ev−1

F (P). Then:

(a) Each connected component of Γ \ (x1 ∪ . . . ∪ xr+1) has at least one un-
marked end yi with i /∈ F .

(b) If the combinatorial type of C has dimension 2(r + s) + |F | and every
vertex of C that is not adjacent to a marking is 3-valent, then every
connected component of Γ \ (x1 ∪ . . . ∪ xr+s) as in (a) has exactly one
unmarked end yi with i /∈ F .

3.2 Oriented (r, s)-marked curves

Let C be an (r, s)-marked curve, and let E be an unmarked edge. Then
E is contained in a connected component of Γ \ {x1, . . . , xr+s}. Lemma
3.28 (if applicable) implies that there is a unique way to orientate each
edge E so that it points towards the unique unmarked non-fixed end of the
component, see Example 3.30. We will always refer to this orientation when
we talk about “the oriented version” of an unoriented curve.

Definition 3.29 (Oriented marked curves). An oriented (r, s)-marked curve
C is an (r, s)-marked curve in which each unbounded edge of Γ is equipped
with an orientation. Let ∆ denote the degree of C. The subset F ⊆
{1, . . . , |∆|} of all i such that the unmarked end yi is oriented inwards is
called the set of fixed ends of C.

In our pictures, we will draw orientations as arrows.

Example 3.30 (Orienting an unoriented curve). Recall the (2, 1)-marked
plane tropical curve C = (Γ, x1, x2, x3, y1, . . . , y6, h) of Example 3.10. In
Example 3.27 it was shown that this curve was an unoriented Welschinger
curve when F = {3}.
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y1

y2 x3

x1

y3

y6

y4

x2

y5

The space of all curves of this combinatorial type has dimension 7 (it has
5 bounded edges in addition to possible translations in R

2), i.e. 2(r + s) +
|F |. In addition, P = evF (C) is in general position for evF restricted
to the closure of the space of all unoriented Welschinger curves (this is a
polyhedral subcomplex of M(r,s)(∆)), hence all conditions of Lemma 3.28
(b) are satisfied; the corresponding oriented curve is shown below:

y2

y1

x3

x1

y3

y6

y4

x2

y5

The fixed ends of C will always be oriented inwards, while the non-fixed
ends of C will point outwards.

The space of all oriented (r, s)-marked curves of a given degree ∆ and set
of fixed ends F will be denoted by Mor

(r,s)(∆, F ); it is a polyhedral complex.

If F = ∅ we also write Mor
(r,s)(∆, F ) as Mor

(r,s)(∆). The forgetful map is the

map ft : Mor
(r,s)(∆, F ) → M(r,s)(∆) that ignores the orientations of the edges.

The forgetful map ft is a surjective morphism of polyhedral complexes; it
is injective on each cell of Mor

(r,s)(∆, F ). There are evaluation maps from

Mor
(r,s)(∆, F ) to R

2(r+s)+|F | defined by the composition evF ◦ ft. By abuse of
notation we will refer to this composition as evF as well.
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Definition 3.31. The combinatorial type of an oriented (r, s)-marked curve
is the information of the combinatorial type of the underlying (r, s)-marked
curve together with the data of the orientations of all edges.

In the remainder of this thesis, we will focus on oriented (r, s)-marked
curves satisfying conditions in general position. Assume P is sufficiently
general and look at curves in ev−1

F (P). If C is an unoriented curve satis-
fying these conditions, Lemma 3.28 states that we can orientate its edges
so that the orientation of every fixed end is inward and every non-fixed end
is oriented outwards. The property of being the oriented version of an un-
oriented Welschinger curve turns out to be a local property (in the sense
that it can be checked at the vertices). These oriented curves will be re-
ferred to as oriented Welschinger curves (see Definition 3.36). We will also
look at another type of oriented (r, s)-marked curves similar to the oriented
Welschinger curves, the broccoli curves. The property of being a broccoli
curve is also defined by whether or not the vertices of the curve are of cer-
tain types. Hence, even though there are many possible vertex types for
(r, s)-marked plane tropical curves, only a few of them will be relevant for
our discussion.

Definition 3.32 (Vertex types and multiplicities). Let V be a vertex of
an oriented (r, s)-marked curve. We distinguish such vertices by the parities
and orientations of their adjacent edges. In the rest of this thesis, all vertices
will be only of the 8 types shown below. We give each vertex a multiplicity,
where a denotes the complex vertex multiplicity of Definition 2.20. These
multiplicities are then used in Definition 3.33 to give each (r, s)-marked curve
with only these types of vertices a multiplicity. They turn out to be exactly
what we need in order to tie our count and the count of Shustin together
(Proposition 3.46).
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(1) (2) (3)
mV = 1 mV = ia−1 mV = a · ia−1

(4) (5) (6)
mV = a · ia−1 = a · i−1 mV = a · ia−1 mV = ia−1

(7) (8)
mV = 1 mV = −a

For all vertices, the edges can be in any direction, except in case (8), where
the odd edges are assumed to be non-fixed unmarked ends of the same weight
and direction. We also distinguish between two subtypes of (6). If the two
odd edges adjacent to the vertex are unmarked ends of the same weight and
direction, we say it is a vertex of type (6b). In all other cases, we say it is
a vertex of type (6a) and indicate this by an arc as below:

(6a) (6b)

mV = ia−1 mV = ia−1 = i−1

34



Definition 3.33 (Multiplicity of an (r, s)-marked plane tropical curve). Let
C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) be an oriented (r, s)-marked curve, all of
whose vertices are of the types listed in Definition 3.32. We define the
multiplicity of C by

mC :=
n∏

k=1

iω(yk)−1 ·
∏

V

mV ,

where the last product runs over all vertices of C.

Note that two curves C and D of the same combinatorial α type have
the same multiplicity.

Example 3.34. The oriented (2, 1)-marked curve in Example 3.30 has two
vertices of type (1), two vertices of type (2), one vertex of type (3) and one
vertex of type (6b).

y2

y1

x3

x1

y3

y6

y4

x2

y5

(6b)
(3)

(2) (2)
(1)

(1)

All of its unmarked ends have weight 1. Its multiplicity is given by

mC =
(
i1−1

)6
·
(
1 · 1 · i1−1 · i1−1 · (2 · i2−1) · i−1

)
= 2i · i−1 = 2.

Proposition 3.35. Every oriented (r, s)-marked curve C, all of whose ver-
tices are of the types in Definition 3.32, has a real multiplicity.

3.3 Oriented Welschinger curves

In Definition 3.32 we introduced several vertex types of oriented (r, s)-
marked curves and their multiplicities after vaguely implying that these
vertex types are the “important” ones for the curves we want to count.
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Recall that Shustin counted plane tropical curves through a given set
of “real” and “complex” points. The complex points had to be at either
3-valent vertices (those will be 4-valent now that the markings are edges) or
at edges of even weight. In Definition 3.26 we described this in the setting
of (r, s)-marked curves. If our conditions are in general position and we
orient a curve through them as described after Lemma 3.28, we get a curve
all of whose vertices are of some specific types. Conversely, any oriented
(r, s)-marked curve through the given points, all of whose vertices are of the
specified types, corresponds precisely to an unoriented Welschinger curve
(just forgetting the orientations gives the bijection).

Definition 3.36 (Oriented Welschinger curves). An oriented (r, s)-marked
curve C, all of whose vertices are of types (1) to (5), (6b), (7) or (8) of
Definition 3.32, is called a Welschinger curve.

Example 3.37. In Example 3.27, we saw an unoriented Welschinger curve
C. Looking at the oriented version of C we found in 3.30, we note that
the oriented curve has two vertices of type (1), two vertices of type (2), one
vertex of type (3) and one vertex of type (6b):

y2

y1

x3

x1

y3

y6

y4

x2

y5

(6b)
(3)

(2) (2)
(1)

(1)

So in this case, the oriented version of an unoriented Welschinger curve was
an oriented Welschinger curve. The wonderful thing is that this is true in
general; when P is in general position, the unoriented Welschinger curves
correspond exactly to the oriented Welschinger curves.

Proposition 3.38 (Equivalence of oriented and unoriented Welschinger
curves [GMS11, Proposition 4.10]). Let r, s ≥ 0, let ∆ be a tropical degree,
and let F be a subset of {1, . . . , |∆|} such that r + 2s + |F | = |∆| − 1. Let
P ∈ R

2(r+s)+|F | be a collection of conditions in general position for the
evaluation map evF : M(r,s)(∆) → R

2(r+s)+|F |. Then the forgetful map ft
that disregards the orientations of the edges gives a bijection between oriented
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and unoriented Welschinger curves of degree ∆, with set of fixed ends F and
which are mapped to P by the evaluation maps.

The proposition allows us to shift our full attention to the oriented case.
From now on, when speaking of a Welschinger curve, we will always refer to
an oriented Welschinger curve.

Let r+2s+ |F | = |∆|−1, denote by MW
(r,s)(∆, F ) the closure of the space

of all Welschinger curves in Mor
(r,s)(∆, F ). MW

(r,s)(∆, F ) is a polyhedral sub-

complex of Mor
(r,s)(∆, F ) of pure dimension 2(r+ s)+ |F |. Its maximal open

cells correspond exactly to the combinatorial types of Welschinger curves in
MW

(r,s)(∆, F ).

Example 3.39. In Example 3.37, we looked at the (2, 1)-marked plane
tropical curve C = (Γ, x1, x2, x3, y1, . . . , y6, h) below.

y2

y1

x3

x1

y3

y6

y4

x2

y5

It has degree ∆ = ((−1, 0), (−1, 0), (1, 1), (1, 1), (0,−1), (0,−1)) and set of
fixed ends F = {3}. If we count (2, 1)-marked plane tropical curves C ′

of this degree such that evF (C
′) = (h(x1), h(x2), h(x3), h(y3)), we will also

count curves such as the one below:

y2

y1

x3

x1

y3

y5

y4

x2

y6
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The curves differ only in the labelling of their unmarked ends. They are of
the same degree and both satisfy the given conditions. In Theorem 2.29,
Shustin counts unparametrised curves without this labelling, so to compen-
sate for the overcounting, we must divide by the number of such relabellings
of the non-fixed ends.

Definition 3.40 (G(∆, F )). Let Sn denote the group of all permutations of
{1, . . . , n}. Then G(∆, F ) is the subgroup of all permutations σ in Sn such
that σ(i) = i for all i ∈ F and vσ(i) = vi for all i = 1, . . . , n. If F = ∅, we
denote evF by ev and G(∆, F ) by G(∆).

Definition 3.41 (Welschinger numbers). Let r, s ≥ 0, let ∆ be a tropical
degree and let F be a subset of {1, . . . , |∆|} satisfying r+2s+ |F | = |∆|−1.
Let P ∈ R

2(r+s)+|F | be in general position for the evaluation map evF
restricted to MW

(r,s)(∆, F ). Then the Welschinger number corresponding to
∆, F and P is

NW
(r,s)(∆, F,P) :=

1

|G(∆, F )|

∑

C

mC ,

where the sum runs over all Welschinger curves C of degree ∆ and set of
fixed ends F such that evF (C) = P.

Remark 3.42. Interchanging the labelling y1 and y2 in Example 3.39 above
produces the same curve, so our discounting factor is slightly too big. Luck-
ily, the missing factor will be exactly the difference between the multiplicity
defined in Definition 3.32 and the Shustin multiplicity of the corresponding
curve (this is Lemma 3.44). This is the summed up in Proposition 3.46
below.

Definition 3.43 (Shustin multiplicity). Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h)
be a Welschinger curve curve such that the Newton subdivision dual to h(Γ)
consists only of triangles and parallellograms. Then the Shustin multiplicity
of C is

multS(C) := (−1)a+b · 2−c ·
∏

V

mult(V ),

where a is the number of lattice points inside triangles of this subdivision,
b is the number of triangles such that all sides have even lattice length, c
is the number of triangles whose lattice area is even, and the product runs
over all triangles with even lattice area or dual to vertices with a complex
marking.

Lemma 3.44 (Multiplicity and Shustin multiplicity [GMS11, Lemma 4.19]).
Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) be a Welschinger-curve of degree ∆
with no fixed ends, such that ω(yi) = 1 for all i = 1, . . . , n and passing
through points in general position. Then the multiplicity mC and the Shustin
multiplicity multS(C) are related by mC = 2k · multS(C), where k is the
number of double ends of C.

38



Example 3.45. Recall the oriented Welschinger curve from Example 3.37.

y2

y1

x3

x1

y3

y6

y4

x2

y5

Now, multS(C) = 1 by Example 2.27 while mC = 2 by Example 3.34. The
curve has one pair of double ends, so this is consistent with Lemma 3.44.

Let ∆ be the tropical degree consisting of d times each of the vectors
(−1, 0), (0,−1) and (1, 1) and let F be empty. Combining Lemma 3.44 with
Remark 3.42, we see that the Welschinger numbers equal the Welschinger
invariants:

Proposition 3.46. Let ∆ be the tropical degree consisting of d times each of
the vectors (−1, 0), (0,−1) and (1, 1). Let r and s be non-negative integers
such that r + 2s = 3d− 1. Then

WP2(d, r, s) = NW
r,s(∆).

Hence, when ∆ consists of d times each of the vectors (0,−1), (−1, 0) and
(1, 1) and F is empty, the Welschinger numbers NW

(r,s)(∆) are independent of

the collection P in general position by Shustin’s theorem (Theorem 2.29).
Proving this invariance directly turns out to be difficult.

There is, however, a type of curve whose count is locally invariant in
the moduli space. Better still, their count equals the count of Welschinger
curves. These curves are the broccoli curves.

3.4 Broccoli curves

Definition 3.47 (Broccoli curves). An oriented plane tropical curve C, all
of whose vertices are of types (1) to (6) of Definition 3.32, is called a broccoli
curve.
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Example 3.48. The oriented Welschinger-curve C we met in Example 3.37
and Example 3.45 is also a broccoli curve.

Example 3.49. Consider the oriented (3, 9)-marked curve C below. It is a
broccoli curve in which all vertex types allowed for broccoli curves appear.

The name stems from the unoriented version of such curves; forget the
orientations of the edges and consider the subgraph of Γ consisting of all
even edges and all marked ends. Its image under h is shown in green below.

Denote by MB
(r,s)(∆, F ) the closure of the space of all broccoli curves in

Mor
(r,s)(∆, F ). It is a polyhedral subcomplex of Mor

(r,s)(∆, F ). MB
(r,s)(∆, F ) is

non-empty if and only if r + 2s+ |F | = |∆| − 1.
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Let r + 2s + |F | = |∆| − 1. Then MB
(r,s)(∆, F ) is of pure dimension

2(r+s)+|F |. Its maximal open cells correspond exactly to the combinatorial
types of broccoli curves in MB

(r,s)(∆, F ).

Definition 3.50 (Broccoli numbers). Let r, s ≥ 0, let ∆ be a tropical degree
and let F be a subset of {1, . . . , |∆|} satisfying r + 2s + |F | = |∆| − 1. Let
P ∈ R

2(r+s)+|F | be in general position for the evaluation map evF restricted
to MB

(r,s)(∆, F ). Then the broccoli number corresponding to ∆, F and P is

NB
(r,s)(∆, F,P) :=

1

|G(∆, F )|

∑

C

mC ,

where the sum runs over all broccoli curves C of degree ∆ and set of fixed
ends F such that evF (C) = P.

The function P 7→ NB
(r,s)(∆, F,P) is locally constant on the open sub-

set of R2(r+s)+|F | of points in general position for broccoli curves and may
vary only at the image under evF of the boundary of cells of MB

(r,s)(∆, F ) of
maximal dimension. The image of these boundaries is a union of polyhedra
in R

2(r+s)+|F | of positive codimension. Gathmann, Markwig and Schroeter
prove that P 7→ NB

(r,s)(∆, F,P) is locally constant around a cell of codimen-

sion 1 (in R
2(r+s)+|F |) in this image. Since any cells of maximal dimension

can be connected through codimension-1 cells, this completes the proof of
the following theorem.

Theorem 3.51 (Invariance of broccoli numbers [GMS11, Theorem 3.6]).
Let r, s ≥ 0, let ∆ be a tropical degree and let F be a subset of {1, . . . , |∆|}
satisfying r+2s+ |F | = |∆|−1. Then NB

(r,s)(∆, F,P) is independent of the
conditions P.

Since the broccoli numbers are independent of P when ∆ is as above,
we write them as NB

(r,s)(∆, F ) (or NB
(r,s)(∆) if F is empty).

Gathmann, Markwig and Schroeter proceed to show the equivalence of
broccoli and Welschinger numbers for some specific degrees ∆:

Theorem 3.52 (Welschinger numbers equal broccoli numbers [GMS11,
Corollary 5.16]). Let r, s ≥ 0, let ∆ be a degree consisting of d times each of
the vectors (−1, 0), (0,−1) and (1, 1), and let F be a subset of {1, . . . , |∆|}
satisfying r+2s+ |F | = |∆|−1. For any configuration P in general position
for Welschinger curves,

NW

(r,s)(∆, F,P) = NB

(r,s)(∆, F,P).

Combining Theorem 3.51 and Theorem 3.52 we get the invariance of the
Welschinger numbers.
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Corollary 3.53 (TheWelschinger numbers do not depend on P). Let r, s ≥
0, let ∆ be a degree consisting of d times each of the vectors (−1, 0), (0,−1)
and (1, 1), and let F be a subset of {1, . . . , |∆|} satisfying r + 2s + |F | =
|∆| − 1. Then NW

(r,s)(∆, F,P) is independent of the conditions P.

Since the Welschinger numbers are independent of P when ∆ is as above,
we write them as NW

(r,s)(∆, F ) (or NW
(r,s)(∆) if F is empty). Even though the

broccoli numbers are independent of P for any tropical degree, the same is
not true for Welschinger curves (see Section 7.2 (Figure 2) of [ABLdM11].
The same example is given with our notation in [GMS11, Example 4.25]).

4 Calculations in P2

By Proposition 3.46, the Welschinger invariants for degree d of the projective
plane equal the Welschinger numbers of degrees consisting of d times each
of the vectors (0,−1), (−1, 0) and (1, 1) with no fixed ends. In turn, the
Welschinger numbers equal the corresponding broccoli numbers by Theorem
3.52.

Gathmann, Markwig and Schroeter found a pair of recursive formulæ
sufficient to compute all broccoli numbers for these degrees and therefore
all Welschinger invariants of the projective plane. The derivation of these
formulæ will be the topic of this section.

In Section 5 and Section 6 we discuss generalisations of the formulæ to
tropical degrees corresponding to some other surfaces.

4.1 Notation

We start by introducing some notation to simplify the discussion.
Let N0 be the set of non-negative integers. The set of sequences in N0

with only finitely many nonzero terms will be denoted by N
∞
0 .

For α in N
∞
0 , we denote its ith coordinate by (α)i. The vector in N

∞
0

whose only nonzero coordinate is (α)i = 1 will be denoted by ei. Given two
sequences α and β in N

∞
0 , we write α ≥ β if (α)i ≥ (β)i for all i. If the

inequality is strict for at least one i, we write α > β.

|α| :=
∞∑

i=1

(α)i.

Iα :=
∞∑

i=1

i(α)i.

To add two sequences, we sum componentwise;

α+ β := ((α)1 + (β)1, (α)2 + (β)2, . . .) .

42



If a and b are two non-negative integers such that a ≥ b,
(
a
b

)
denotes the

binomial coefficient. If a and b1, . . . , bk are non-negative integers such that
a ≥ b1 + . . .+ bk,

(
a

b1,...,bk

)
denotes the multinomial coefficient;

(
a

b1, . . . , bk

)

:=
a!

(a− b1)!(a− b2)! · · · (a− bk)!(a− b1 − b2 − . . .− bk)!
.

For sequences α,α1, α2, . . . , αk ∈ N∞
0 , we define a generalised multino-

mial coefficient;
(

α

α1, α2, . . . , αk

)

:=
∏

i

(
(α)i

(α1)i, (α2)i, . . . , (αk)i

)

.

For a positive integer k, we let

Mk :=

{

k if k is odd,

−1 if k is even,
and M̃k :=

{

k if k is odd,

1 if k is even.

Definition 4.1 (Broccoli curves of type (α, β)). Let d > 0 and let α and β
be sequences such that Iα + Iβ = d. Let ∆(α, β) be a degree consisting of
d times the vector (0,−1), d times the vector (1, 1), and (α)i + (β)i times
(−i, 0) for all i (in any fixed order). Let F (α, β) ⊆ {1, . . . , |∆(α, β)|} be a
fixed subset with |α| elements such that the entries of ∆(α, β) with index in
F are (α)i times (−i, 0) for all i.

A broccoli curve in MB
(r,s) (∆(α, β), F (α, β)) will be called a curve of type

(α, β). Its unmarked ends with directions (−i, 0) will be referred to as left
ends.

Example 4.2 (A broccoli curve of type ((1), (2))). Let ∆ be the tropical
degree given by

∆ = ((0,−1), (0,−1), (0,−1), (−1, 0), (−1, 0), (−1, 0), (1, 1), (1, 1), (1, 1))

and let F = {4}. Then ∆ consists of 3 times the vectors (0,−1), (1, 1) and
(1, 1). F consists of a single element, corresponding to a left end of weight
1. The curves in MB

(r,s)(∆, F ) are curves of type ((1), (2)).
The curve shown below is an example of such a curve with one real and

three complex markings. Note that F could have been {5} or {6} instead
(this would just amount to a relabelling of our unmarked ends). The main
point is that the curve has two non-fixed left ends of weight 1 and one
fixed left end of weight 1 (in addition to three non-fixed unmarked ends
of direction (1, 1) and three non-fixed unmarked ends of direction (0,−1)).
Likewise, the exact ordering of the directions of the ends in ∆ does not
matter; we could just as well have been considering broccoli curves of degree

∆ = ((−1, 0), (1, 1), (1, 1), (1, 1), (0,−1), (0,−1), (−1, 0), (−1, 0), (0,−1))

with F = {8}.
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2

2

y6

y5

y4

y2 y1y3

y7

y9

y8

As in this example, the labelling of the unmarked ends will not be rel-
evant to our discussion, only their directions and orientations. We will
therefore draw curves without the labellings of their unmarked ends.

Definition 4.3 (Relative broccoli invariants). Let ∆(α, β) and F (α, β)
be as in Definition 4.1 and let r, s ≥ 0 such that |∆| − 1 − |F | = 2d +
|β| − 1 = r + 2s. We then use Nd (α, β, s) as a shorthand expression for
NB

(r,s) (∆(α, β), F (α, β)).

Example 4.4. One reason we distinguish between orientations of the curves
is the possibility of “gluing” and decomposing of curves. Suppose we see this
curve:
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2

Its right end is non-fixed, so we can combine this curve with the one from
Example 4.2 to give:

2

2

2

The new curve is a curve of type ((0, 1), (2)) as it has one fixed left end of
weight 2 and two non-fixed left ends of weight 1.

To find recursive relations among the relative broccoli invariants, we
reverse this procedure. Given a collection P (of points and y-coordinates
for the fixed left ends) in general position, we move one of the points, say
P1, to the far left. Then, the curve may be decomposed into two parts:
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Lemma 4.5 (Decomposing a curve into a left and a right part [GM07,
GMS11]). Let ∆ = ∆(α, β) and F = F (α, β) be as in Definition 4.1 and let
2d + |β| − 1 = r + 2s. Fix a small number ǫ and a large number N > 0.
Choose r+ s points P1, . . . , Pr+s and |α| y-coordinates for the fixed left ends
such that these points are in general position and

• the y-coordinates of all Pi and the fixed ends are in the open interval
(−ǫ, ǫ),

• the x-coordinates of P2, . . . , Pr+s are in (−ǫ, ǫ),

• the x-coordinate of P1 is smaller than −N .

Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ MB
(r,s)(∆, F ) be a broccoli curve

satisfying these conditions. Then no vertex of C can have its y-coordinate
below −ǫ or above ǫ, and there exists a rectangle R = [a, b] × [−ǫ, ǫ] (with
a ≥ −N , b ≤ −ǫ depending only on d) such that R ∩ h(Γ) contains only
horizontal edges of C.

Example 4.6 (Splitting on horizontal edges). The decomposition of a con-
crete curve after moving a real point to the far left is depicted in the figure
below (modified from [GMS11]).

P1

Here, C is a curve of type ((3, 1), (3, 1)) with 7 real and 9 complex marked
ends. We cut C at each bounded edge through the rectangle R (in grey),
the cutting points are shown by red, blue and green circles.
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Denote the component passing through P1 (the left part) by C0 and the
union of the other connected components (the right part) by C̃. At each
of the cutting points, the edge is replaced by an end of the same direction
and orientation. The connected components of C̃ correspond exactly to the
right ends of C0, i.e. the ends of direction (ki, 0) for some positive integer
ki.

With this particular curve, all of the cutting points are at edges oriented
towards the left part. Hence, we split up these edges as in the figure below.

C0

C3

C1

C2

Now, C0 has 3 fixed left ends of weight 1 and one fixed left end of weight 2. It
has one end of direction (1, 1) and one end of direction (0,−1). In addition,
C0 has three right ends, all of weight 1 (these are the ones we just created
through the splitting process). These right ends of C0 are all bounded edges
of C passing through the rectangle R. In this case, they are all fixed. Each
right end of C0 corresponds to a unique connected component of C̃. The
blue solid curve, denote it by C1, is a curve of type ((1), (3, 1)) (the edge
connecting C1 to C0 is now an end of C1). The green dotted curve, C2, is
a curve of type ((0), (1)) and the red dashed curve, C3 is a curve of type
((0), (2)).

Thus, when one of the points in P is moved to the far left, the curves
in ev−1(P) may be decomposed into two parts. All we have to do to find
the invariants we seek is to sum the contributions over all possible decom-
positions.

4.2 Examples

In this subsection, we will compute some relative broccoli invariants explic-
itly by looking at the possible decompositions of curves as one of the marked
points is moved to the far left.

For easy reference (we will use this result frequently in this and the
subsequent section), we state a key lemma once more:
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Lemma 3.28 ([GMS11, 2.13]). Let M ⊆ M(r,s)(∆) be a polyhedral sub-
complex, and let P be a collection of conditions in general position for
the evaluation map evF : M → R

2(r+s)+|F |. Consider a curve C =
(Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ ev−1

F (P). Then:

(a) Each connected component of Γ \ (x1 ∪ . . . ∪ xr+1) has at least one un-
marked end yi with i /∈ F .

(b) If the combinatorial type of C has dimension 2(r + s) + |F | and every
vertex of C that is not adjacent to a marking is 3-valent, then every
connected component of Γ \ (x1 ∪ . . . ∪ xr+s) as in (a) has exactly one
unmarked end yi with i /∈ F .

Example 4.7. First we will compute N3 ((0), (0, 0, 1), 1). That is, we will
look at broccoli curves through 4 “real” and 1 “complex” point in the plane
with three non-fixed ends of direction (0,−1), three non-fixed ends of direc-
tion (1, 1), and one non-fixed end of direction (−3, 0). How many curves,
counted with multiplicity, fit in the picture below?

3
C

i) We start by seeing what happens as we move a “real” point to the far
left. By Lemma 4.5, a curve C satisfying the given conditions may be
decomposed into two parts. One such possible decomposition is shown
below:

3

C̃

P1
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Here, C̃ consists of a single component; a curve of type ((0, 0, 1), (0))
(it has exactly one left end, which is a fixed end of weight 3) through
one complex point and three real points.

In fact, this is the only possible decomposition! Recall that a real
marking must be adjacent to a vertex of type (1) for a broccoli curve.
If C0 were to be contained in a horizontal line and have more than
one vertex, the length of the bounded edges would not be fixed by
our conditions (the marking mapped to P1 is the only marked end of
C0). But if C0 is not contained in a horizontal line, the balancing
condition ensures that C0 contains ends of directions (1, 1) and (0,−1).
These are both non-fixed, and so is the left end of weight 3. However,
C0 \ {x1} (where x1 is the marking such that h(x1) = P1) consists of
two connected components, each of which has a unique non-fixed end by
Lemma 3.28. This is a contradiction. Hence, no other decompositions
than the one shown above may exist.

The curves of type ((0), (0, 0, 1)) with one complex marking correspond
exactly to the curves of type ((0, 0, 1), (0)) with one complex marking.
The vertex multiplicity of the unique vertex of C0 is 1. C has one end
which is not an end of C̃ (the left non-fixed end of weight 3), while C̃
has one end which is not an end of C (the edge connecting C0 to C̃ of
weight 3). The contributions to the curve multiplicities (of C and C̃,
respectively) of these ends are both i3−1, so they outweigh each other;
mC = 1 · i3−1 ·

m
C̃

i3−1 . Summing up over all curves of type ((0, 0, 1), (0))
with one complex marking, we see that

N3 ((0), (0, 0, 1), 1) = N3 ((0, 0, 1), (0), 1) .

ii) Now, suppose that we moved a complex point to the left instead. The
marking must then be adjacent to a vertex of type (5) or (6), there are
three possible decompositions of C.

Firstly, C0 could be contained in a horizontal line as depicted below:

3

C1C2

P1 1

2

C1 and C2 must be curves of types ((1), (0)) and ((0, 1), (0)) with 1 and 3
real markings, respectively. There are 4 possible ways to distribute the
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real markings in such a way among C1 and C2. Hence, the contribution
from this sort of decomposition becomes

4 ·N1((1), (0), 0) ·N2((0, 1), (0), 0).

This is the only possible decomposition such that the image of C0 is
contained in a line; the type of the curve C specifies that it has exactly
one non-fixed left end, while the balancing condition ensures that the
right ends of C0 must be of weight 1 and 2.

Secondly, C0 could contain bounded edges. Then, the complex marking
which is sent to P1 must be adjacent to a left end of C0. C̃ could consist
of 2 connected components:

3 C1

C2

1

1

P1

3

C1

C2

1

1
P1

3

C1

C2

1

1
P1

Only one of these decompositions will be possible; which one depends
on the specific configuration P. In the rest of this thesis, we will stick
to one representative for each such group of decompositions, keeping
this in mind.

As a consequence of Lemma 3.28, all right ends of C0 must be fixed.
Both C1 and C2 must therefore be curves of type ((0), (1)). To find
the multiplicity of C we first take the product of mC1

and mC2
. In

addition, we get a factor 3i2 from the vertex adjacent to the complex
marking, and a factor i2 appears since the left end of C is not a left
end of C̃. The four real markings can be distributed in 6 ways among
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the two curves C1 and C2 so that they have 2 each. It is impossible to
distinguish between C1 and C2, so we have overcounted by a factor of
2. Hence, the contribution from this kind of decomposition equals

1

2
· 3 · 6 ·N1 ((0), (1), 0) ·N1 ((0), (1), 0) .

Similarly, C̃ could consist of a single connected component:

3 C̃

2

P1

In this case, we get a factor of 3i2 from the vertex adjacent to the
marking and a factor 2i from the vertex not adjacent to the marking.
In addition, we must multiply by i2 since the left end of C is not a left
end of C̃ and divide by i since the edge of weight 2 is an end of C̃ but not
an end of C. Hence, the contribution from this kind of decomposition
equals

3 · 2 ·N2((0), (0, 1), 0).

One could also ask if the complex marking could not be adjacent to a
right end or not adjacent to an end at all. But in this case, we would
have three non-fixed ends of C0, with only 2 connected components of
C0\{x1} (where x1 is the marked end whose image is P1), contradicting
Lemma 3.28.

Concluding, we see that

N3 ((0), (0, 0, 1), 1) = 4 ·N1((1), (0), 0) ·N2((0, 1), (0), 0)

+ 9 ·N1 ((0), (1), 0) ·N1 ((0), (1), 0)

+ 6 ·N2((0), (0, 1), 0).

Example 4.8. We will compute N3((2), (1), 1).
This is the number of broccoli curves with three non-fixed ends of direc-

tion (1, 1), three non-fixed ends of direction (0,−1), two fixed left ends of
weight 1 and one non-fixed left end of weight 1.

51



C

i) First, the real marking may be adjacent to the unique non-fixed left end
of C as we saw in the case of our computation of N3 ((0), (0, 0, 1), 1):

1

C̃

P1

The curve C̃ is then a curve of type ((3), (0)). The multiplicity of the
vertex adjacent to P1 is 1 and the ends of C have the same weights as
the ends of C̃, so mC = mC̃ . Thus, the contribution to N3((2), (1), 1)
from this sort of decomposition is

N3((3), (0), 1).

Secondly, C0 could contain a bounded edge:
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C̃

P1

1

1

All left and right ends of C0 must be fixed, since Lemma 3.28 guarantees
the existence of a unique non-fixed end of each connected component of
C0 \ {x1} (there are already two such - the ends with directions (0,−1)
and (1, 1)).

The multiplicity of C is given by the multiplicity of C̃. Since we can
choose which of the two non-fixed left ends of C̃ to use as the “connect-
ing edge” between C̃ and C0, we multiply this multiplicity by a factor
of 2. The contribution from this sort of decomposition is then given by

N2 ((0), (2), 1) .

Summing up the two cases, we see that

N3 ((2), (1), 1) = N3 ((3), (0), 1) + 2 ·N2 ((0), (2), 1) .

ii) Now, we move to computing N3((2), (1), 1) by moving a complex mark-
ing to the far left instead.

First, note that the image of C0 can not be contained in a line. This
would require that the complex marking and the unique non-fixed end of
C were adjacent to the same vertex of type (5) or (6). By the balancing
condition, the other two edges would have to be horizontal edges whose
direction vectors (k1, 0) and (k2, 0) sum to (1, 0), which is impossible.

Secondly, the complex marking could still be adjacent to the non-fixed
left end. Then, if only one of the fixed left ends of C is an end of C0,
we get the curve shown below:
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C̃

P1

1

1

We must distinguish between the fixed left end of C which is an end of
C0 and the fixed left end of C which is an end of C̃, so there are two
decompositions of this type. In both cases mC = m

C̃
since all vertices

of C0 have multiplicity 1 and the factors corresponding to the extra ends
of C0 are 1. Hence, the contribution from this kind of decomposition is

2 ·N2((1), (1), 0).

Thirdly, both fixed left ends of C could be left ends of C0. Then C̃
could have one or two components. First, if C̃ has a single connected
component, it must be connected to C0 by an edge of weight 2:

C̃
P1

1

2

C̃ is then a curve of type ((0), (0, 1)). The vertex adjacent to the edge
connecting C and C̃ has multiplicity 2i, while we get a factor i extra
when computing mC̃ instead of mC (the edge connecting C0 and C̃ is

an end of C̃ but not of C), so mC = 2mC̃ .
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The contribution from this kind of decomposition is

2 ·N2 ((0), (0, 1), 0) .

If C̃ consists of two components, the connecting edges must both be of
weight 1:

C1

C2

P1

1

1

1

C1 and C2 are both curves of type ((0), (1)). There are 6 ways to
distribute the 4 real markings among these curves so that each gets 2.
We overcount by a factor of 2 as a result of the labelling of C1 and C2,
so the contribution from this sort of decomposition is

3 ·N1 ((0), (1), 0) ·N1 ((0), (1), 0) .

The marking could also be adjacent to a right end of C0. In this case,
all left ends of C0 must be fixed and both fixed left ends of C must be
left ends of C0 by the balancing condition:

C̃

P1
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C̃ is a curve of type ((1), (1)) with multiplicity equal to that of C. The
contribution from this kind of decomposition is:

N2((1), (1), 0).

Summing up,

N3((2), (1), 1) =2 ·N2((1), (1), 0) + 2 ·N2((0), (0, 1), 0)

+ 3 ·N1((0), (1), 0) ·N1((0), (1), 0) +N2((1), (1), 0).

4.3 The general case

We have seen some possible decompositions in the previous examples, and
these show almost all possible shapes of the left part of a decomposed broc-
coli curve after one point is moved to the far left. In the following, our
pictures will just be sketches of possible decompositions.

We first take a look at the case when P1 is real.

Proposition 4.9 (Possible shapes of C0 when moving a real point to the
left). Assume we have decomposed a curve of type (α, β) after moving a real
point to the left. Below is a list of all possible shapes of its left part C0.

(A): If C0 has no bounded edges, it looks like the picture below.

k

C̃

In this case, the curve C̃ is an irreducible curve of type (α+ek, β−ek), where
k is the weight of the left non-fixed end in the picture. The multiplicity of
C equals the multiplicity of C̃.

(B): If C0 has bounded edges, it is similar to the curve below. C0 has a
number of left ends, all of which are fixed, while C̃ consists of zero or more
connected components. The edge connecting C0 to Cj may have any weight
kj , and is a fixed right end of C0 and a non-fixed left end of Cj . All the
bounded edges of C0 must be odd.
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Cl

...

C1

k1

kl

P1

Each component Cj of C̃ is an irreducible curve of type (αj , βj). We must

have
∑l

j=1 dj = d − 1 and
∑l

j=1 sj = s. The left ends of C0 are fixed ends
of C without being left ends of C1, . . . , Cl, while C0 has at least one fixed
left end, hence

∑
αl < α. The left ends of C̃ which are not connections to

C0 correspond exactly to the left ends of C, so
∑

(βj − ekj) = β.

So how do we compute the multiplicity of C? First, every vertex of C̃
is a vertex of C, so we start by taking the product of mCi

for i from 1 to l.
Now, note that the fixed left ends of C0 are not left ends of C̃, so we must
multiply by a factor ik−1 for every such end of weight k. Every such fixed
end is also adjacent to a vertex of C0. This vertex has multiplicity k · ik−1 if
k is even (vertex type (3)) and ik−1 if k is odd (vertex type (2)). Combining
this factor with the factor from the adjacent end, we have to multiply by
∏

m even(−m)(α
′)m , where α′ := α−

∑
αj .

Similarly, the edge connecting Cj to C0 contributes a factor ikj−1 in
the multiplicity of Cj that we do not need for the multiplicity of C. The
vertex of C0 adjacent to the edge has a multiplicity of kj · i

kj−1 if kj is even
(vertex type 3) and ikj−1 if kj is odd (vertex type 2). Hence, we multiply
by

∏

kj even kj .
The multiplicity of C is thus given by

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj .

Theorem 4.11 summarises these results to give a recursive formula for
relative broccoli invariants in the case when r is non-zero.

Convention 4.10. Given α, β, s, we define r by

r := 2d+ |β| − 2s− 1.
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Similarly, the number of real markings of the component Ci is

ri := 2di + |βi| − 2si − 1.

In later formulæ, Nd(α, β, s) will be interpreted as 0 if

• r < 0,

• s < 0,

• (α)i < 0 for some i,

• (β)i < 0 for some i, or

• Iα+ Iβ 6= d.

The sequence of numbers of fixed left ends of C of weight i which are
not left ends of C̃ is denoted by

(α′)i := (α)i −
l∑

j=1

(αj)i.

Theorem 4.11 (Gathmann, Markwig and Schroeter [GMS11, Theorem 6.10
(a)]). Let r > 0 and Iα + Iβ = d. To find Nd(α, β, s), all we have to do is
sum over all possible decompositions after moving a real point to the left.

Nd(α, β, s) =
∑

k odd

Nd(α+ ek, β − ek, s)

+
∑

I

1

l!

(
s

s1, . . . , sl

)(
r − 1

r1, . . . , rl

)(
α

α1, . . . , αl

)
∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj(αj , βj , sj)

)

,

where the index set I runs over all l ≥ 0 and all αj , βj , kj ≥ 1, sj ≥ 0 for
1 ≤ j ≤ l such that

•
∑l

j=1 α
j < α,

•
∑l

j=1

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s.
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The multinomial coefficients in the last sum are just a way to keep count
of the number of possible distributions of the real and complex markings, as
well as the fixed left ends, among the Cj. For the component Cj, there are
(
βj

)

kj
ways in which to chose which of its non-fixed left ends to use for the

“connection” to C0.

Proposition 4.12 (Possible shapes of C0 when moving a complex point to
the left). Assume we have decomposed a curve of type (α, β) after moving a
complex point to the far left. Then there are two “elevator cases”:

k1

k2
C̃

P1

C2C1

P1 k1

k2

In both cases, at least one of k1 and k2 have to be even by the balancing
condition.

(C): In the first case, C̃ is a curve of type (α + ek1+k2 , β − ek1 − ek2).
When computing mC by taking the product of mC1

and mC1
, we lose factors

of ik1−1 and ik2−1 since the left ends adjacent to the complex marking are
ends of C without being ends of C1 or C2. Instead we have gained an extra
factor ik1+k2−1 for the left end of C̃ which is not an end of C. For the unique
vertex of C0 we get a factor of i−1. Hence,

mC = ik1−1 · ik2−1 · i−1 ·
mC̃

ik1+k2−1
= −mC̃ .

(D): In the second case, C1 is a curve of type (α1 + ek1 , β
1) and C2 is a

curve of type (α2 + ek2 , β
2). Then α1 + α2 = α and β1 + β2 = β.

The left end contributes a factor ik1+k2−1 and the vertex of C0 a factor
i−1. This is compensated by the contributions from the left ends of C̃ which
are not ends of C, contributing ik1−1 and ik2−1 to mC1

·mC2
, so

mC = ik1+k2−1 · i−1 ·
mC1

mC2

ik1−1ik2−1
= mC1

·mC2
.

In addition there are two “floor cases”:
(E): First, the complex marking could be adjacent to a non-fixed left

end of C:
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Cl

...

C1

P1

k1

kl

k

All other left and right ends of C0 must be fixed. Now C̃ consists of l con-
nected components, each of type (αj , βj), where l can be any non-negative
integer. The edge connecting Cj to C0 must be a non-fixed left end of Cj,
but all other non-fixed left ends of C̃ are non-fixed ends of C. The only
non-fixed left end of C0 is the one adjacent to P1. Hence, the condition
∑

(βj − ekj ) = β − k must be satisfied, where k is the weight of the left end

adjacent to P1. Every fixed left end of C̃ is a fixed end of C, so we must
have

∑
αj ≤ α.

The computation of mC is similar to that of case (B) in Proposition 4.9.
We only have to note that the vertex adjacent to the left non-fixed end of
C of weight k has multiplicity ik−1 if k is even (vertex type (6)) and k · ik−1

if k is odd (vertex type (5)). The non-fixed end itself contributes a factor
ik−1, yielding a total contribution of −1 if k is even and k if k is odd. In

combination, these factors contribute Mk =

{

k if k is odd,

−1 if k is even.
The multiplicity of C is thus given by

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj ·Mk.

(F): The complex marking could also be adjacent to a non-fixed right
end of C0:

60



Cl

...

C1

k1

kl

P1

All other left and right ends of C0 must be fixed. C̃ consists of a number
of connected components C1, . . . , Cl. One of them, C1 is connected to C0

by an edge which is a non-fixed right end of C0 of weight k1. With the
exception of the edge connecting C0 to C1, all right and left ends of C0 are
fixed. We let αj and βj be sequences such that Cj is a curve of type (αj , βj)
for j = 2, . . . , l, and C1 is a curve of type (α1 + ek, β). Then, the condition
on the fixed left ends will be

∑l
j=1 α

j < α since C0 must have at least one
fixed left end.

Computing the multiplicity of C, we first take the product of the mCj
’s.

The vertex adjacent to P1 has multiplicity ik1−1 if k1 is even (vertex type
(6)) or k1 · i

k1−1 if k1 is odd (vertex type (5)). The edge connecting C0 to C1

contributes a factor ik1−1 to mC1
which is not a factor of mC . Combined,

we must multiply by a factor of M̃k1 =

{

k1 if k1 is odd,

1 if k1 is even.
We then look at the components Cj for j ≥ 2. The vertex of C0 adjacent

to the edge connecting C0 to Cj has multiplicity kj ·i
kj−1 if kj is even (vertex

type 3) and ikj−1 if kj is odd (vertex type (2)). The connecting edge is an
end of Cj, so the contribution ikj−1 has already been accounted for. The
factor from these vertices is then given by the product of all even kj as j
ranges from 2 to l.

Each vertex adjacent to a fixed left end of C0 of weight ω contributes a
factor ω · iω−1 if ω is even (vertex type (3)) and iω−1 if ω is odd (vertex type
(2)), while the end itself contributes a factor iω−1. Combined, these give a
factor

∏

m even(−m)(α
′)m .
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Summing up,

mC =
l∏

j=1

mCj
· M̃k1 ·

l∏

j = 2
kj even

kj ·
∏

m even

(−m)(α
′)m .

These observations are summarised in the following theorem.

Theorem 4.13 (Gathmann, Markwig and Schroeter [GMS11, Theorem 6.10
(b)]). Let s > 0 and Iα + Iβ = d. To find Nd(α, β, s), all we have to do
is sum over all possible decompositions after moving a complex point to the
left.

Nd(α, β, s) =
∑

I1

−
1

2
Nd(α+ ek1+k2 , β − ek1 − ek2 , s− 1)

+
∑

I2

1

2

(
s− 1

s1, s2

)(
r

r1, r2

)(
α

α1, α2

) 2∏

j=1

Ndj(αj + ekj , β
j , sj)

+
∑

I3

1

l!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

Mk

∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj (αj , βj , sj)

)

+
∑

I4

1

(l − 1)!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

M̃k1

∏

m even

(−m)(α
′)m

·
l∏

j = 2
kj even

kj ·N
d1(α1 + ek, β

1, s1)

l∏

j=2

(

(βj)kjN
dj (αj , βj , sj)

)

.

I1 consists of k1, k2 ≥ 1 such that at least one of them is odd.
I2 consists of all α1, α2, β1, β2, k1 ≥ 1, k2 ≥ 1, s1 ≥ 0, s2 ≥ 0 such that

• at least one of k1, k2 is odd,

• α1 + α2 = α,

• β1 + β2 = β − ek1+k2,

• d1 + d2 = d,

• s1 + s2 = s− 1.
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I3 consists of all l ≥ 0 and all αj , βj , k ≥ 1, kj ≥ 1, sj ≥ 0 for 1 ≤ j ≤ l
such that

•
∑l

j=1 α
j ≤ α,

•
∑l

j=1

(
βj − ekj

)
= β − ek,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1.

I4 consists of all l > 0 and all αj , βj , kj ≥ 1, sj ≥ 0 for 1 ≤ j ≤ l such
that

•
∑l

j=1 α
j < α,

• β1 +
∑l

j=2

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1.

As in the corresponding real formula, the multinomial coefficients in
the last three sums are just a way to keep count of the number of possible
distributions of the real and complex markings, as well as the fixed left ends,
among the Cj. The factors

(
βj

)

kj
are there to enumerate the ways in which

we can choose a non-fixed left end of Cj to use as a “connection edge” to
C0.

Note that in the case of N1 ((0), (1), 1), the index sets I1, I2 and I4
are all empty, while I3 consists of a single element; l = 0, k = 1. Hence,
N1 ((0), (1), 1) = 1. Similarly, when computing N1 ((0), (1), 0) by the for-
mula in Theorem 4.11, the first index set is empty, while the second consists
of a single element; l = 0. Thus,N1 ((0), (1), 0) is also equal to 1. Combining
these observations, we get the following corollary.

Corollary 4.14. The formulæ of Theorems 4.11 and 4.13 are sufficient to
compute all relative broccoli invariants of the projective plane (and therefore
all Welschinger invariants of the projective plane).

The two distinct ways of computing the numbers when r and s are both
non-zero may be quite useful. The expressions for a given invariant from
the two formulæ may differ quite substantially.

As an example, we saw in the first part of Example 4.8 that

N3 ((2), (1), 1) = N3 ((3), (0), 1) + 2 ·N2 ((0), (2), 1) .
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In the second part of the same example, we noted that

N3((2), (1), 1) =2 ·N2((1), (1), 0) + 2 ·N2((0), (0, 1), 0)

+ 3 ·N1((0), (1), 0) ·N1((0), (1), 0) +N2((1), (1), 0).

Combining these observations, we see that

N3 ((3), (0), 1) + 2 ·N2 ((0), (2), 1) =2 ·N2((1), (1), 0)

+ 2 ·N2((0), (0, 1), 0)

+ 3 ·N1((0), (1), 0) ·N1((0), (1), 0)

+N2((1), (1), 0),

which is not at all obvious at a first glance.

4.4 Computed values

Tables 2, 3, 4, 5 and 6 show the computed relative broccoli invariants for
degrees 1 to 5. The program code used for the computation is available
upon request.

Table 2: Relative broccoli invariants for degree 1.
α, β s = 0 s = 1

(0), (1) 1 1
(1), (0) 1

Table 3: Relative broccoli invariants for degree 2.
α, β s = 0 s = 1 s = 2

(0), (0, 1) 0 0 −1
(0), (2) 1 1 1

(0, 1), (0) −2 −2
(1), (1) 1 1 1
(2), (0) 1 1

We find our beloved Welschinger invariants in the rows with α = (0) and
β = (d). These rows are also shown in table 7. The computed invariants are
consistent with the ones computed by means of floor diagrams by Arroyo,
Brugallé and López de Medrano in [ABLdM11].
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Table 4: Relative broccoli invariants for degree 3.
α, β s = 0 s = 1 s = 2 s = 3 s = 4

(0), (0, 0, 1) 3 1 −1 −3
(0), (1, 1) 0 0 0 0
(0), (3) 8 6 4 2 0

(0, 0, 1), (0) 3 1 −1
(0, 1), (1) −12 −8 −4 0
(1), (0, 1) 0 0 0 0
(1), (2) 8 6 4 2

(1, 1), (0) −8 −4 0
(2), (1) 8 6 4 2
(3), (0) 6 4 2

Table 5: Relative broccoli invariants for degree 4.
α, β s = 0 s = 1 s = 2 s = 3 s = 4 s = 5

(0), (0, 0, 0, 1) 0 0 0 0 8
(0), (0, 2) 0 0 0 0 0

(0), (1, 0, 1) 108 44 12 −4 −20
(0), (2, 1) 0 0 0 0 0 16
(0), (4) 240 144 80 40 16 0

(0, 0, 0, 1), (0) −72 −16 8 32
(0, 0, 1), (1) 75 33 11 1 −5
(0, 1), (0, 1) 0 0 0 0 −16
(0, 1), (2) −288 −160 −80 −32 0
(0, 2), (0) 120 48 8 −32

(1), (0, 0, 1) 33 11 1 −5 −15
(1), (1, 1) 0 0 0 0 0
(1), (3) 240 144 80 40 16 0

(1, 0, 1), (0) 33 11 1 −5
(1, 1), (1) −240 −124 −56 −20 0
(2), (0, 1) 0 0 0 0 0
(2), (2) 240 144 80 40 16

(2, 1), (0) −124 −56 −20 0
(3), (1) 216 126 68 34 16
(4), (0) 126 68 34 16

5 Calculations in F1

Although we have only discussed the projective plane so far, nothing in our
tropical set-up prevents us from doing the same for other toric surfaces; all
we have to change is the tropical degrees we consider. Welschinger’s theo-
rem (Theorem 1.2) holds in much greater generality and Shustin’s Theorem
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Table 6: Relative broccoli invariants for degree 5.

α, β s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7

(0), (0, 0, 0, 0, 1) 189 33 −7 −11 21 105
(0), (0, 1, 1) 0 0 0 0 0 −32

(0), (1, 0, 0, 1) 0 0 0 0 0 0
(0), (1, 2) 0 0 0 0 0 0 0

(0), (2, 0, 1) 8208 3156 1056 252 −16 −28 192
(0), (3, 1) 0 0 0 0 0 0 0
(0), (5) 18264 9096 4272 1872 744 248 64 64

(0, 0, 0, 0, 1), (0) 189 33 −7 −11 21
(0, 0, 0, 1), (1) −5184 −1600 −352 32 128 0
(0, 0, 1), (0, 1) 0 0 0 0 0 −32
(0, 0, 1), (2) 4320 1764 640 188 32 20

(0, 1), (0, 0, 1) −1080 −352 −72 16 −24 −192
(0, 1), (1, 1) 0 0 0 0 0 0
(0, 1), (3) −18192 −8544 −3744 −1488 −496 −128 −128

(0, 1, 1), (0) −864 −264 −48 8 −64
(0, 2), (1) 9792 3904 1376 352 0 128

(1), (0, 0, 0, 1) 0 0 0 0 0 0
(1), (0, 2) 0 0 0 0 0 0

(1), (1, 0, 1) 3888 1392 416 64 −48 −48
(1), (2, 1) 0 0 0 0 0 0 0
(1), (4) 18264 9096 4272 1872 744 248 64

(1, 0, 0, 1), (0) −1728 −416 −32 64 0
(1, 0, 1), (1) 2736 1012 320 68 −16 −12
(1, 1), (0, 1) 0 0 0 0 0 64
(1, 1), (2) −16272 −7392 −3104 −1168 −368 −128
(1, 2), (0) 4032 1440 416 64 128

(2), (0, 0, 1) 1152 380 96 −4 −32 −36
(2), (1, 1) 0 0 0 0 0 0
(2), (3) 18264 9096 4272 1872 744 248 64

(2, 0, 1), (0) 1044 336 84 0 −12
(2, 1), (1) −11664 −5024 −1984 −688 −176 −64
(3), (0, 1) 0 0 0 0 0 −32
(3), (2) 17304 8520 3952 1712 680 248

(3, 1), (0) −5088 −2016 −720 −208 −64
(4), (1) 13560 6472 2912 1232 488 216
(5), (0) 6504 2928 1248 504 216

(Theorem 2.29), connecting these numbers to a tropical count, is stated
for any real toric unnodal Del Pezzo Surface. Gathmann, Markwig and
Schroeter state Theorem 3.52 and Corollary 3.53 for any “toric Del Pezzo
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Table 7: Welschinger invariants of the projective plane.

d s = 0 s = 1 s = 2 s = 3 s = 4 s = 5 s = 6 s = 7 s = 8

1 1 1
2 1 1 1
3 8 6 4 2 0
4 240 144 80 40 16 0
5 18264 9096 4272 1872 744 248 64 64

degree”.
In this section we discuss a possible generalisation of the formulæ of

Theorem 4.11 and Theorem 4.13 to F1 (P2 blown up at a point) and how
this could be done for other real unnodal toric Del Pezzo surfaces.

We begin by making what we mean by a “toric Del Pezzo degree” precise.

Definition 5.1 (Toric Del Pezzo degrees). A tropical degree ∆ is said to be
a toric Del Pezzo degree if it consists of the primitive normal directions of
the edges of one of the polygons shown below, where each direction appears
d times if d is the lattice length of the corresponding edge.

P
2

P
1 × P

1 F1 P
2
2 P

2
3

Here, P2
k denotes P2 blown up in k points.

• In the first case, the polygon is a triangle with vertices (0, 0), (0, d)
and (d, 0) for some d. These degrees correspond to curves in P

2.

• In the second case, the polygon is a rectangle with vertices (0, 0),
(d1, 0), (0, d2) and (d1, d2) for positive integers d1 and d2. These de-
grees correspond to curves in P

1 × P
1.

• In the third case, the polygon is a trapezoid with vertices (0, 0), (d, 0),
(0, d − q) and (q, d − q) for positive integers d and q such that d > q.
These degrees correspond to curves in F1 (P2 blown up at a point).

• In the fourth case, the polygon is a pentagon with vertices (0, p), (p, 0),
(0, d− q), (q, d− q) and (d, 0) for positive integers d, q and p such that
d > q + p. These degrees correspond to curves in P

2
2 (P2 blown up in

two points).
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• In the fifth case, the polygon is a hexagon with vertices (0, d2), (d2, 0),
(0, d− d1), (d1, d− d1), (d− d3, d3) and (d− d3, 0) for positive integers
d, d1, d2 and d3 such that d > d1 + d2 + d3. These degrees correspond
to curves in P

2
3 (P2 blown up in three points).

When we want to use our (r, s)-marked curves to compute Welschinger
invariants of these surfaces, an important point to note is that every toric
Del Pezzo degree consists only of directions of weight one, so we can apply
Lemma 3.44. Hence, Remark 3.42 and Proposition 3.46 can be stated for any
toric del Pezzo degree and its corresponding surface. Thus, the multiplicities
of the curves are exactly what we need to compute the Welschinger invariants
of these surfaces too.

5.1 Notation

We will look at curves in F1. They are the curves dual to trapezoidal Newton
polygons as the one below.

Just as in the previous section, our idea is to decompose a curve into a left
and right part.

Definition 5.2 (Broccoli curves of type (q, α, β)). Let d > q ≥ 0, and let α
and β be sequences such that Iα + Iβ = d − q. Let ∆(q, α, β) be a degree
consisting of d times the vector (0,−1), d− q times the vector (1, 1), q times
the vector (0, 1) and (α)i + (β)i times (−i, 0) for all i (in any fixed order).
Let F (q, α, β) ⊆ {1, . . . , |∆(q, α, β)|} be a fixed subset with |α| elements
such that the entries of ∆(q, α, β) with index in F are (α)i times (−i, 0) for
all i.

A broccoli curve in MB
(r,s) (∆(q, α, β), F (q, α, β)) will be called a curve

of type (q, α, β). Its unmarked ends with directions (−i, 0) will be referred
to as left ends. Unmarked ends with direction (0, 1) will be referred to as
upper ends.

A curve of type (0, α, β) is precisely a curve of type (α, β) in the sense
of Definition 4.1.

Example 5.3 (A curve of type (1, (0) , (1))). The curve below is a curve
of type (1, (0) , (1)) with one complex and two real markings. It has one
non-fixed left end of weight 1 and one non-fixed upper end of weight 1.
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Again, the dimension condition |∆| − 1− |F | = r+2s must be satisfied.
For a curve of type (q, α, β), |∆| = 2d + |α|+ |β|, and |F | = |α|. Hence, we
must have

r = 2d+ |β| − 2s− 1.

Definition 5.4 (Relative broccoli numbers). Let ∆ = ∆(q, α, β) and F =
F (q, α, β) be as in Definition 5.2 and let r, s ≥ 0 such that |∆| − 1 − |F | =
2d + |β| − 1 = r + 2s. We then use Nd

q (α, β, s) as a shorthand expression

for NB
(r,s) (∆(q, α, β), F (q, α, β)).

In the proof of Lemma 4.5 by Gathmann and Markwig (see the proof of
Theorem 4.3 in [GM07]), nothing would be changed when allowing direction
vectors (0, 1), (−1,−1) and (1, 0) in the degree ∆.

Lemma 5.5 (Decomposing a curve into a left and a right part). Let ∆ be
a tropical degree consisting only of the direction vectors (−i, 0) for positive
integers i, (1, 0), ±(0, 1) and ±(1, 1) (each of these vectors may appear any
finite number of times). Let F ⊆ {1, . . . , |∆|} be a subset such that the
entries of ∆ with index in F consist only of vectors of the form (−i, 0).

Let r, s be non-negative integers such that ∆ − |F | − 1 = r + 2s. Fix a
small number ǫ and a large number N > 0. Choose r+s points P1, . . . , Pr+s

and |α| y-coordinates for the fixed left ends such that these points are in
general position and

• the y-coordinates of all Pi and the fixed ends are in the open interval
(−ǫ, ǫ),

• the x-coordinates of P2, . . . , Pr+s are in (−ǫ, ǫ),

• the x-coordinate of P1 is smaller than −N .

Let C = (Γ, x1, . . . , xr+s, y1, . . . , yn, h) ∈ MB
(r,s)(∆, F ) be a broccoli curve

satisfying these conditions. Then no vertex of C can have its y-coordinate
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below −ǫ or above ǫ, and there exists a rectangle R = [a, b] × [−ǫ, ǫ] (with
a ≥ −N , b ≤ −ǫ depending only on ∆) such that R ∩ h(Γ) contains only
horizontal edges of C.

Lemma 5.5 implies that when one of the points is moved to the far left,
the broccoli curves of degree ∆ and fixed ends F such that evF (C) = P

may be decomposed by a cutting procedure just as in Example 4.6. This
means that we can count the curves by looking at possible shapes of the
decomposition.

5.2 Examples

As in the last section, we start by looking at some concrete decompositions
of curves before moving on to the general case.

Example 5.6. We will compute N2
1 ((0), (1), 1), i.e. the number of broccoli

curves (with multiplicity) C with 2 real and 1 complex markings fitting in
the picture below.

C

i) Assume we have moved a real point to the left. Then this marked end
must be adjacent to a vertex of type (1).

C0 could be contained in a horizontal line as in the curve below.

C̃

P1
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Then C̃ consists of one component; a curve of type (1, (1), (0)) through
one real and one complex point. The multiplicity of the unique vertex
of C0 is 1, while the contribution from the left end of C0 is outweighed
by the contribution from the left end of C̃ which is not an end of C (in
this case, they are both 1 anyway). The multiplicity of C is therefore
equal to the multiplicity of C̃. Hence, the contribution from this kind
of decomposition is given by

N2
1 ((1), (0), 1) .

As in part i) of Example 4.7, Lemma 3.28 implies that this is the only
possible decomposition. Thus,

N2
1 ((0), (1), 1) = N2

1 ((1), (0), 1) .

ii) Assume we moved a complex point to the left instead. Then the complex
marking must be adjacent to a vertex of type (5) or (6).

Firstly, C0 cannot be contained in a horizontal line. C0 has exactly one
left end, the non-fixed end of weight 1. Hence, if C0 consisted of a single
vertex of type (5) or (6), the two right ends of C0 would have weights
summing to 1, which is impossible.

Secondly, the left end of C0 may be adjacent to the complex marking.

C̃

P1

In this case, C̃ consists of a single component, a curve of type (0, (0), (1)).

The multiplicity of the unique vertex of C0 is 1, while the contribution
from the left end of C0 is outweighed by the contribution from the left
end of C̃ which is not an end of C (in this case, they are both 1 anyway).
The multiplicity of C is therefore equal to the multiplicity of C̃.

No other decomposition exists. To see why, note that Lemma 3.28 im-
plies that the complex marking must be adjacent to the left end. Other-
wise, the non-fixed left end would be in the same connected component
of C0 \{x1} as one of the two other ends. They are both non-fixed, con-
tradicting the lemma. The balancing condition ensures that the only
possible decomposition is the one above.
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Hence,
N2

1 ((0), (1), 1) = N1
0 ((0), (1), 0) .

In fact, we have already computed this last term in Section 4;

N1
0 ((0), (1), 0) = N1 ((0), (1), 0) = 1.

Example 5.7. We will compute N4
2 ((1), (1), 1). Which curves C with 6

real and 1 complex markings fit in the picture below?

C

i) Assume we moved a real point to the left.

Firstly, C0 could be contained in a horizontal line. Then P1 must be
adjacent to the non-fixed left end of C.

C̃

P1

C̃ consists of one component; a curve of type (2, (2), (0)) through five
real and one complex point. The multiplicity of the unique vertex of
C0 is 1, while the contribution from the left end of C0 is outweighed by
the contribution from the left end of C̃ which is not an end of C (in
this case, they are both 1 anyway). The multiplicity of C is therefore
equal to the multiplicity of C̃. Hence, the contribution from this kind
of decomposition is given by

N4
2 ((2), (0), 1) .
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Secondly, C0 could contain bounded edges. Then, by Lemma 3.28,
only the fixed left end of C can be a left end of C0. By the balancing
condition, we cannot have any end of C0 with direction (1, 1), so C0 is
as in the picture below.

C̃

P1

Now, C̃ is a curve of type (1, (0), (2)). That is, it has one upper end,
no fixed left ends and two non-fixed left ends of weight 1.

The multiplicity of the vertex adjacent to the marking is 1, while the
contribution from the ends of C0 which are ends of C are all 1. The left
end of C̃ which is not an end of C is also of weight 1. The multiplicity
of C is therefore equal to the multiplicity of C̃. Hence, the contribution
from this kind of decomposition is given by

N3
1 ((0), (2), 1) .

Summing over the possible contributions, we see that

N4
2 ((1), (1), 1) = N4

2 ((2), (0), 1) +N3
1 ((0), (2), 1) .

ii) Now, assume we moved a complex point to the left instead.

Note that C0 can not be contained in a horizontal line. If it were, the
complex marking would have to be adjacent to three non-fixed ends,
and only one of the left ends of C is non-fixed. Now, the balancing
condition makes sure that two right ends and one left end of weight 1
from the same vertex is impossible. Therefore, we only have to consider
“floor cases” in which C0 has bounded edges.

First, we take a look at the case when P1 is adjacent to the non-fixed
left end of C, and the fixed left end of C is not an end of C0. As in the
real case, the balancing condition ensures that there is only one such
shape of C0.
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C̃

P1

Here, C̃ is a curve of type (1, (1), (1)). That is, it has one upper end, one
fixed left end and one non-fixed left end of weight 1. The multiplicity
of C is equal to the multiplicity of C̃, so the contribution from this kind
of decomposition is given by

N3
1 ((1), (1), 0) .

Secondly, we look at the case when P1 is adjacent to the non-fixed left
end of C, C0 has an upper end and the fixed left end of C is an end of
C0. Now C̃ could consist of one or two components. When C̃ consists
of a single component, this is a curve of type (1, (0), (0, 1)):

2

C̃

P1

The vertex adjacent to P1 has multiplicity 1, while the vertex adjacent
to the connecting edge has multiplicity 2i. The multiplicity of the vertex
adjacent to the fixed left end of C0 is 1. All ends of C0 which are ends
of C contribute a factor 1 to the multiplicity, while the left end of C̃
contributes a factor i to the multiplicity of C̃ which is not a factor of
mC . Hence, the multiplicity of C is given by

mC = 2mC̃

and the contribution from this kind of decomposition is

2 ·N3
1 ((0), (0, 1), 0) .
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When C̃ consists of two components, C0 looks like the curve below.

C2

C1

P1

The components C1 and C2 are curves of type
(
q1, α

1, β1
)
and

(
q2, α

2, β2
)
,

respectively.

Then we must have q1 + q2 = 1, α1 = α2 = (0) and β1 = β2 = 1, so C1

and C2 are curves of types (1, (0), (1)) and (0, (0), (1)).

Letting C1 be the curve with an upper end, it must have 4 real markings,
while C2 has 2 real markings.

The multiplicity of C is given by

mC = mC1
·mC2

,

and the number of ways to distribute the real markings among the Ci’s
is given by

( 6
4,2

)
= 15.

Hence, the contribution from this kind of decomposition is given by

15 ·N2
1 ((0), (1), 0) ·N

1
0 ((0), (1), 0) .

Thirdly, there exists a shape where P1 is adjacent to the non-fixed left
end of C, C0 has no upper end and the fixed left end of C is an end of
C0.
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C̃

P1

C̃ consists of a single component. It is a curve of type (2, (0), (1)).

The multiplicity of C is equal to the multiplicity of C̃ by arguments
similar to those of the other cases. Hence, the contribution from this
sort of decomposition is

N3
2 ((0), (1), 0) .

Fourthly, P1 could be adjacent to a right end of C0. Then the non-
fixed left end of C can not be an end of C0, otherwise we would violate
Lemma 3.28. Hence, there is only one such possibility:

C̃

P1

In this case, C̃ consists of a single component, it is a curve of type
(1, (1), (1)). The multiplicity of C is equal to the multiplicity of C̃, so
the contribution from this sort of decomposition is

N3
2 ((1), (1), 0) .

Summing up over all possible decompositions, we see that

N4
2 ((1), (1), 1) =N3

1 ((1), (1), 0) + 2 ·N3
1 ((0), (0, 1), 0)

+ 15 ·N2
1 ((0), (1), 0) ·N

1
0 ((0), (1), 0)

+N3
2 ((0), (1), 0) +N3

2 ((1), (1), 0) .

76



Now we could continue by computing the different terms in the sums of
cases i) and ii) to find the number we seek. Without doing this, we may
already note the identity

N4
2 ((2), (0), 1) +N3

1 ((0), (2), 1) =N3
1 ((1), (1), 0)

+ 2 ·N3
1 ((0), (0, 1), 0)

+ 15 ·N2
1 ((0), (1), 0) ·N

1
0 ((0), (1), 0)

+N3
2 ((0), (1), 0) +N3

2 ((1), (1), 0) .

This is one of the features of our formulæ. Just as in the previous section,
the formulæ may yield quite distinct expressions for the invariant.

5.3 The general case

The possible shapes of C0 when decomposing a curve are very similar to
those in Section 4. Before we start, we note that C0 can not have both an
upper end and an end of direction (1, 1), for in this case C0 must have two
ends of direction (0,−1) by the balancing condition, violating Lemma 3.28.

Proposition 5.8 (Possible shapes of C0 when moving a real point to the
left). Assume we have decomposed a curve of type (q, α, β) after moving a
real point to the left. Below is a list of all possible shapes of its left part C0.

(A): If C0 has no bounded edges, it looks like the picture below.

k

C̃

In this case, the curve C̃ is a curve of type (q, α+ ek, β− ek), where k is the
weight of the left non-fixed end in the picture. The multiplicity of C equals
the multiplicity of C̃.

(B1): If C0 has bounded edges and no upper end, it is similar to the
curve below. C0 has a number of left ends, all of which are fixed, while C̃
consists of zero or more connected components. The edge connecting C0 to
Cj may have any weight kj , and is a fixed right end of C0 and a non-fixed
left end of Cj . All the bounded edges of C0 must be odd.
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Cl

...

C1

k1

kl

P1

Each of the connected components of C̃ is a curve of type (qj , α
j , βj). We

must have
∑l

j=1 qj = q,
∑l

j=1 dj = d − 1 and
∑l

j=1 sj = s. The left
ends of C0 are fixed ends of C without being left ends of C1, . . . , Cl, while
C0 has at least one fixed left end, hence

∑
αl < α. The left ends of C̃

which are not connections to C0 correspond exactly to the left ends of C, so
∑

(βj − ekj ) = β.
The multiplicity of C is computed just as in case (B) of Proposition 4.9;

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj .

(B2): If C0 has bounded edges and an upper end, it is similar to the
curve below. C0 has a number of left ends, all of which are fixed, while C̃
consists of zero or more connected components. The edge connecting C0 to
Cj may have any weight kj , and is a fixed right end of C0 and a non-fixed
left end of Cj . All the bounded edges of C0 must be odd.

Cl

...

C1

k1

kl

P1
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The components C1, . . . , Cl are irreducible curves of types (qj , α
j , βj). We

must have
∑l

j=1 qj = q − 1,
∑l

j=1 dj = d − 1 and
∑l

j=1 sj = s. The left
ends of C0 are fixed ends of C without being left ends of C1, . . . , Cl, while
C0 has at least one fixed left end, hence

∑
αl < α. The left ends of C̃

which are not connections to C0 correspond exactly to the left ends of C, so
∑

(βj − ekj ) = β.
The multiplicity of C is computed just as in case (B) of Proposition 4.9;

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj .

Theorem 5.10 summarises these results to give a recursive formula for
relative broccoli invariants of F1 in the case when r is non-zero.

Convention 5.9. Given α, β, s, we define r by

r := 2d+ |β| − 2s− 1.

Similarly, the number of real markings of the component Ci is

ri := 2di + |βi| − 2si − 1.

Nd
q (α, β, s) will be interpreted as 0 if

• r < 0,

• s < 0,

• q < 0,

• q ≥ d,

• (α)i < 0 for some i,

• (β)i < 0 for some i, or

• Iα+ Iβ 6= d− q.

The sequence of numbers of fixed left ends of C of weight i which are
not left ends of C̃ is given by

(α′)i := (α)i −
l∑

j=1

(αj)i.
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Theorem 5.10 (Computing Nd
q (α, β, s) when r is non-zero). Let r > 0, let

d > q ≥ 0 such that Iα+ Iβ = d− q. To find Nd
q (α, β, s), all we have to do

is sum over all possible decompositions after a real point is moved to the far
left.

Nd
q (α, β, s) =

∑

k odd

Nd
q (α+ ek, β − ek, s)

+
∑

I1

1

l!

(
s

s1, . . . , sl

)(
r − 1

r1, . . . , rl

)(
α

α1, . . . , αl

)
∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

+
∑

I2

1

l!

(
s

s1, . . . , sl

)(
r − 1

r1, . . . , rl

)(
α

α1, . . . , αl

)
∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

,

where the index set I1 runs over all l ≥ 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0
for 1 ≤ j ≤ l such that

•
∑l

j=1 α
j < α,

•
∑l

j=1

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s,

•
∑l

j=1 qj = q,

and I2 runs over all l ≥ 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0 for 1 ≤ j ≤ l
such that

•
∑l

j=1 α
j < α,

•
∑l

j=1

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s,
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•
∑l

j=1 qj = q − 1,

Proposition 5.11 (Possible shapes of a curve of type (q, α, β) when mov-
ing a complex point to the left). Assume we have decomposed a curve of
type (q, α, β) after moving a complex point to the left. Then there are two
“elevator cases”:

k1

k2
C̃

P1

C2C1

P1 k1

k2

In both cases, at least one of k1 and k2 have to be even by the balancing
condition.

(C): In the first case, C̃ is a curve of type (q, α+ ek1+k2 , β − ek1 − ek2).
As in case (C) of Proposion 4.12, the multiplicity of C is given by

mC = −mC̃ .

(D): In the second case, C1 is a curve of type (q1, α
1 + ek1 , β

1) and C2

is a curve of type (q2, α
2 + ek2 , β

2). Then q1 + q2 = q, α1 + α2 = α and
β1 + β2 = β.

As in case (D) of Proposion 4.12, the multiplicity of C is given by

mC = mC1
·mC2

.

In addition there are four “floor cases”:
(E1): The complex marking could be adjacent to a non-fixed left end

of C. We must distinguish between two cases. First, we consider the case
when C0 has no upper end:

Cl

...

C1

P1

k1

kl

k
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With the exception of the non-fixed left end of C0, all left and right ends of
C0 must be fixed. Now C̃ consists of l ≥ 0 connected components, each of
type (qj, α

j , βj), where
∑l

j=1 qj = q. The edge connecting Cj to C0 must

be a non-fixed left end of Cj , but all other non-fixed left ends of C̃ are non-
fixed ends of C. The only non-fixed left end of C0 is the one adjacent to P1.
Hence, the condition

∑
(βj − ekj ) = β − k must be satisfied, where k is the

weight of the left end adjacent to P1. Every fixed left end of C̃ is a fixed
end of C, so we must have

∑
αj ≤ α.

The computation of mC is just like the one in case (E) of 4.9;

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj ·Mk.

(E2): There exists a similar decomposition where C0 has an upper end:

Cl

...

C1

P1

k1

kl

k

With the exception of the non-fixed left end of C0, all left and right ends
of C0 must be fixed. Now C̃ consists of l ≥ 0 connected components, each
of type (qj, α

j , βj), where
∑l

j=1 qj = q − 1. The edge connecting Cj to C0

must be a non-fixed left end of Cj, but all other non-fixed left ends of C̃ are
non-fixed ends of C. The only non-fixed left end of C0 is the one adjacent
to P1. Hence, the condition

∑
(βj − ekj ) = β − k must be satisfied, where k

is the weight of the left end adjacent to P1. Every fixed left end of C̃ is a
fixed end of C, so we must have

∑
αj ≤ α.

The computation of mC is just like the one in case (E) of 4.9;

mC =

l∏

j=1

mCj
·

∏

m even

(−m)(α
′)m ·

∏

kj even

kj ·Mk.
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(F1): The complex marking could be adjacent to a non-fixed right end
of C0. Again, there are two such cases. First, we consider the case when C0

has no upper ends:

Cl

...

C1

k1

kl

P1

With the exception of the non-fixed right end of C0, all left and right ends
of C0 must be fixed. C̃ consists of a number of connected components
C1, . . . , Cl. One of them, C1 is connected to C0 through a non-fixed end of
weight k1. With the exception of the edge connecting C0 to C1, all right
and left ends of C0 are fixed. We let qj, αj and βj be sequences such
that Cj is a curve of type (qj , α

j , βj) for j = 2, . . . , l, and C1 is a curve
of type

(
q1, α

1 + ek, β
)
. Then, the condition on the fixed left ends will be

∑l
j=1 α

j < α, while the qj must sum to q. The computation of mC is just
like the one in case (F) of 4.9;

mC =
l∏

j=1

mCj
· M̃k1 ·

l∏

j = 2
kj even

kj ·
∏

m even

(−m)(α
′)m .

(F2): There is a similar decomposition with an upper end for C0:
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Cl

...

C1

k1

kl

P1

With the exception of the non-fixed right end of C0, all left and right ends
of C0 must be fixed. C̃ consists of a number of connected components
C1, . . . , Cl. One of them, C1 is connected to C0 through a non-fixed end of
weight k1. With the exception of the edge connecting C0 to C1, all right
and left ends of C0 are fixed. We let qj, αj and βj be sequences such
that Cj is a curve of type (qj , α

j , βj) for j = 2, . . . , l, and C1 is a curve
of type

(
q1, α

1 + ek, β
)
. Then, the condition on the fixed left ends will be

∑l
j=1 α

j < α, while the qj must sum to q − 1. The computation of mC is
just like the one in case (F) of 4.9;

mC =
l∏

j=1

mCj
· M̃k1 ·

l∏

j = 2
kj even

kj ·
∏

m even

(−m)(α
′)m .

Theorem 5.12 (Computing Nd
q (α, β, s) when s is non-zero). Let s > 0, let

d > q ≥ 0 such that Iα+ Iβ = d− q. To find Nd
q (α, β, s), all we have to do

is sum over all possible decompositions after a real point is moved to the far
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left.

Nd
q (α, β, s) =

∑

I1

−
1

2
Nd

q (α+ ek1+k2 , β − ek1 − ek2 , s− 1)

+
∑

I2

1

2

(
s− 1

s1, s2

)(
r

r1, r2

)(
α

α1, α2

) 2∏

j=1

N
dj
qj (α

j + ekj , β
j , sj)

2∏

j = 1
kj even

kj

+
∑

I3

1

l!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

Mk

∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

+
∑

I4

1

l!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

Mk

∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

+
∑

I5

1

(l − 1)!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

M̃k1

∏

m even

(−m)(α
′)m

·
l∏

j = 2
kj even

kj ·N
d1
q1
(α1 + ek, β

1, s1)

l∏

j=2

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

+
∑

I6

1

(l − 1)!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

M̃k1

∏

m even

(−m)(α
′)m

·
l∏

j = 2
kj even

kj ·N
d1
q1
(α1 + ek, β

1, s1)

l∏

j=2

(

(βj)kjN
dj
qj (α

j , βj , sj)
)

.

I1 consists of k1, k2 ≥ 1 such that at least one of them is odd.
I2 consists of all α1, α2, β1, β2, k1 ≥ 1, k2 ≥ 1, s1 ≥ 0, s2 ≥ 0, q1 ≥ 0, q2 ≥

0 such that

• at least one of k1, k2 is odd,

• α1 + α2 = α,
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• β1 + β2 = β − ek1+k2,

• d1 + d2 = d,

• s1 + s2 = s− 1,

• q1 + q2 = q.

I3 consists of all l ≥ 0 and all αj , βj , k ≥ 1, kj ≥ 1, sj ≥ 0 for 1 ≤ j ≤ l
such that

•
∑l

j=1 α
j ≤ α,

•
∑l

j=1

(
βj − ekj

)
= β − ek,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q.

I4 consists of all l ≥ 0 and all αj , βj , k ≥ 1, kj ≥ 1, sj ≥ 0 for 1 ≤ j ≤ l
such that

•
∑l

j=1 α
j ≤ α,

•
∑l

j=1

(
βj − ekj

)
= β − ek,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q − 1.

I5 consists of all l > 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0 for 1 ≤ j ≤ l
such that

•
∑l

j=1 α
j < α,

• β1 +
∑l

j=2

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q.

I6 consists of all l > 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0 for 1 ≤ j ≤ l
such that
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•
∑l

j=1 α
j < α,

• β1 +
∑l

j=2

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q − 1.

In the case of N1
0 ((0), (1), 1), the index sets I1, I2, I4, I5 and I6 are all

empty, while I3 consists of a single element; l = 0, k = 1. When computing
N1

0 ((0), (1), 0) by formula 5.10, the first and third index sets are empty, while
I2 consists of a single element, l = 0. Both N1

0 ((0), (1), 0) andN1
0 ((0), (1), 1)

are 1 and these numbers are sufficient initial conditions to get our recursion
starting:

Corollary 5.13. The formulæ of Theorems 5.10 and 5.12 are sufficient to
compute all relative broccoli invariants of F1 (and therefore all Welschinger
invariants of F1).

Note that when q = 0, the formulæ of Theorems 5.10 and 5.12 reduce to
those of Theorems 4.11 and 4.13.

6 Calculations in P
2
2 and P

1 × P
1

Extending the formulæ of the previous two sections to the other degrees
described in Definition 5.1 is similar. In this section, we will look at the case
of degrees corresponding to P

2
2, the projective plane blown up in two points.

The recursive formulæ presented to compute the Welschinger invariants of
P
2
2 also compute all Welschinger invariants of P1 × P

1.
Using Lemma 5.5, we just have to consider all possible shapes of the left

part after we decompose the curve. In principle, the method is exactly the
same as in the cases of P2 and F1. The only difference is that the number
of possible shapes for the left part after the decomposition is larger.

Let us move on to a concrete example of how this is done. Curves in P
2
2

correspond to tropical curves with Newton polygons of the shape below.
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6.1 Notation

Definition 6.1 (Broccoli curves of type (q, p, α, β)). Let d, p and q be non-
negative integers such that d ≥ q + p, d > q and d > p. Let α and β be
sequences such that Iα + Iβ = d − q − p. Let ∆(q, p, α, β) be a degree
consisting of d − p times the vector (0,−1), p times the vector (−1,−1),
d− q times the vector (1, 1), q times the vector (0, 1) and (α)i + (β)i times
(−i, 0) for all i (in any fixed order). Let F (q, p, α, β) ⊆ {1, . . . , |∆(α, β)|} be
a fixed subset with |α| elements such that the entries of ∆(α, β) with index
in F are (α)i times (−i, 0) for all i.

A broccoli curve in MB
(r,s) (∆(q, p, α, β), F (q, p, α, β)) will be called a

curve of type (q, p, α, β). Its unmarked ends with directions (−i, 0) will be
referred to as left ends. Unmarked ends with direction (0, 1) will be referred
to as upper ends. Unmarked ends with direction (−1,−1) will be referred
to as south-western ends.

A curve of type (q, 0, α, β) is precisely a curve of type (q, α, β) in the
sense of Definition 5.2, so a curve of type (0, 0, α, β) is a curve of type (α, β)
(Definition 4.1).

Again, the dimension condition |∆| − 1− |F | = r+2s must be satisfied.
Since |∆| = 2d+ |α|+ |β|, and |F | = |α|, we must have

r = 2d+ |β| − 2s− 1

for a curve of type (q, p, α, β).

Definition 6.2 (Relative broccoli numbers). Let ∆ = ∆(q, p, α, β) and
F = F (q, p, α, β) be as in Definition 6.1 and let r, s ≥ 0 such that |∆| −
1 − |F | = 2d + |β| − 1 = r + 2s. We then use Nd

q,p (α, β, s) as a shorthand

expression for NB
(r,s) (∆, F ).

6.2 An example

Example 6.3. We will compute N3
1,1 ((0), (1), 1). Which curves with 1

complex and 4 real markings fit in the figure below?

C
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i) Assume we moved a real point to the left.

First, there is one “elevator case”.

C̃

P1

Here, C̃ consists of a single component, a curve of type (1, 1, (1), (0)).
The multiplicity of C is equal to the multiplicity of C̃, so the contribu-
tion from this kind of decomposition is given by

N3
1,1 ((1), (0), 1) .

Secondly, the non-fixed south-western end of C could be an end of C0:

C̃

P1

In this case, the upper end of C must be an end of C0 by the balancing
condition. Hence, C̃ is a curve of type (0, 0, (0), (2)). The multiplicity
of C is equal to the multiplicity of C̃, so the contribution from this kind
of decomposition is given by

N2
0,0 ((0), (2), 1)

which is 1 (look up N2 ((0), (2), 1) in Table 3).

No other decompositions are possible. To see why, note that either the
left or the south-western end of C must be an end of C0. By Lemma
3.28 and the balancing condition they can not both be ends of C0.

Summarising, we see that

N3
1,1 ((0), (1), 1) = N3

1,1 ((1), (0), 1) +N2
0,0 ((0), (2), 1) .

ii) Assume we moved a complex point to the left.

Note that C0 cannot be contained in a horizontal line. If it were, the
complex marking would have to be adjacent to three non-fixed ends,
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and C0 can have at most one non-fixed left end. Now, the balancing
condition makes sure that two right ends and one left end of weight 1
from the same vertex is impossible. Therefore, we only have to consider
“floor cases” in which C0 has bounded edges.

Firstly, the left end of C could be an end of C0 without the south-
western end of C being an end of C0.

C̃

P1

Here, C̃ is a curve of type (0, 1, (0), (1)). That is, it has no upper ends,
one south-western end, no fixed left ends and one non-fixed left end of
weight 1. The multiplicity of C is equal to the multiplicity of C̃, so the
contribution from this sort of decomposition is

N2
0,1 ((0), (1), 0) .

Secondly, the south-western end of C could be an end of C0 without
the left end being an end of C0.

C̃

P1

Here, C̃ consists of a single component, it is a curve of type (0, 0, (1), (1)).
The multiplicity of C is equal to the multiplicity of C̃, so the contribu-
tion from this sort of decomposition is

N2
0,0 ((1), (1), 0) ,

which is 1 (see Table 3).

Thirdly, we get three possibilities where both the left end and the south-
western end of C are ends of C0. In all of these shapes, the complex
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marking must be adjacent to the left or the south-western end. Below
we see such a shape with an upper end.

C2

C1

P1

C̃ consists of two components. C1 and C2 are curves of type
(
q1, p1, α

1, β1
)

and
(
q2, p2, α

2, β2
)
, where q1 + q2 = 0, p1 + p2 = 0, α1 = α2 = (0),

β1 = β2 = (1). So the curves are both of type (0, 0, (0), (1)).

The multiplicity of C is equal to the product of the multiplicities of
C1 and C2. There are 6 ways in which to distribute the 4 real points
among C1 and C2 such that they have 2 each. Now we have overcounted
by a factor 2 as the labelling of C1 and C2 is irrelevant. Hence, the
contribution from this kind of decomposition is

3 ·N1
0,0 ((0), (1), 0) ·N

1
0,0 ((0), (1), 0) ,

which is equal to 3 (look up N1 ((0), (1), 0) in Table 2).

We have a similar case in which C̃ consists of a single component:

2

C̃

P1

C̃ is a curve of type (0, 0, (0), (0, 1)). The vertex adjacent to the right
end of C0 has multiplicity 2i, while the left end of C̃ contributes a
factor i which is not a factor of mC . All other vertices and ends of C̃
are vertices and ends of C, while the other ends and vertices of C0 all
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contribute a factor 1 to mC . Hence, the contribution from this kind of
decomposition is given by

2N2
0,0 ((0), (0, 1), 0) ,

which is equal to 0 (see Table 3).

Lastly, we have the case below:

C̃

P1

Here, C̃ is a curve of type (1, 0, (0), (1)). Its multiplicity is equal to the
multiplicity of C, so the contribution from this kind of decomposition
is

N2
1,0 ((0), (1), 0) .

Noting that the complex marking can not be adjacent to a right end
of C0 (as in (F1) and (F2) of Theorem 5.11), since this would require
a fixed left or south-western end of C0, we have exhausted the possible
decompositions.

Summing all up,

N3
1,1 ((0), (1), 1) =N2

0,1 ((0), (1), 0) +N2
0,0 ((1), (1), 0)

+ 6 ·N1
0,0 ((0), (1), 0) ·N

1
0,0 ((0), (1), 0)

+ 2 ·N2
0,0 ((0), (0, 1), 0)

=N2
0,1 ((0), (1), 0) + 1 + 6 + 0

6.3 The general case

We move on to the general case.

Proposition 6.4 (Possible shapes of the left part of a curve of type (q, p, α, β)
when moving a real point to the left). Assume we have decomposed a curve
of type (q, p, α, β) after moving a real point to the left.

We have an “elevator case” similar to case (A) of Proposition 4.9. There
are four different versions of case (B) from Proposition 4.9; C0 could have
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one or zero upper ends and one or zero south-western ends. In all of these
cases the multiplicity is as described in the two previous sections.

We also have a new kind of shape:

C̃

P1

C̃ consists of a single component, it is a curve of type (q − 1, p − 1, α, β + e1).

Convention 6.5. Given α, β, s, we define r by

r := 2d+ |β| − 2s− 1.

Similarly, the number of real markings of the component Ci is

ri := 2di + |βi| − 2si − 1.

Nd
q,p(α, β, s) will be interpreted as 0 if

• r < 0,

• s < 0,

• q < 0,

• p < 0,

• q ≥ d,

• p ≥ d,

• (α)i < 0 for some i,

• (β)i < 0 for some i, or

• Iα+ Iβ 6= d− p− q.

The sequence of numbers of fixed left ends of C of weight i which are
not left ends of C̃ is given by

(α′)i := (α)i −
l∑

j=1

(αj)i.
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Theorem 6.6 (Computing Nd
q,p(α, β, s) when r is non-zero). Let r > 0,

and let d, p and q be non-negative integers such that d ≥ q + p, d > q and
d > p. Let α and β be sequences such that Iα + Iβ = d − q − p. To find
Nd

q,p(α, β, s), all we have to do is sum over all possible decompositions after
a real point is moved to the far left.

Nd
q,p(α, β, s) =Nd−1

q−1,p−1(α, β + e1, s)

+
∑

k odd

Nd
q,p(α+ ek, β − ek, s)

+
∑

I

1

l!

(
s

s1, . . . , sl

)(
r − 1

r1, . . . , rl

)(
α

α1, . . . , αl

)
∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj ,pj(α

j , βj , sj)
)

,

where I runs over all l ≥ 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0, pj ≥ 0 for
1 ≤ j ≤ l such that

•
∑l

j=1 α
j < α,

•
∑l

j=1

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s,

•
∑l

j=1 qj = q or
∑l

j=1 qj = q − 1,

•
∑l

j=1 pj = p or
∑l

j=1 pj = p− 1.

Proposition 6.7 (Possible shapes of the left part of a curve of type (q, p, α, β)
when moving a complex point to the left). Assume we have decomposed a
curve of type (q, p, α, β) after moving a real point to the left.

We have elevator cases similar to cases (C) and (D) of Proposition 4.12.
There are four different versions of cases (E) and (F) from Proposition 4.12;
C0 could have one or zero upper ends and one or zero south-western ends. In
all of these cases the multiplicity is as described in the two previous sections.

We also have a new kind of shape:

C̃

P1
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Here, C̃ consists of a single component. It is a curve of type (q − 1, p − 1, α+ e1, β).
Its multiplicity is equal to the multiplicity of C.

Summing up, we get the following theorem:

Theorem 6.8 (Computing Nd
q,p(α, β, s) when s is non-zero). Let s > 0,

and let d, p and q be non-negative integers such that d ≥ q + p, d > q and
d > p. Let α and β be sequences such that Iα + Iβ = d − q − p. To find
Nd

q,p(α, β, s), all we have to do is sum over all possible decompositions after
a complex point is moved to the far left.

Nd
q,p(α, β, s) =Nd−1

q−1,p−1(α + e1, β, s − 1)

+
∑

I1

−
1

2
Nd

q,p(α+ ek1+k2 , β − ek1 − ek2 , s − 1)

+
∑

I2

1

2

(
s− 1

s1, s2

)(
r

r1, r2

)(
α

α1, α2

) 2∏

j=1

N
dj
qj ,pj(α

j + ekj , β
j , sj)

2∏

j = 1
kj even

kj

+
∑

I3

1

l!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

Mk

∏

m even

(−m)(α
′)m

·
l∏

j = 1
kj even

kj ·
l∏

j=1

(

(βj)kjN
dj
qj ,pj(α

j , βj , sj)
)

+
∑

I4

1

(l − 1)!

(
s− 1

s1, . . . sl

)(
r

r1, . . . , rl

)(
α

α1, . . . , αl

)

M̃k1

∏

m even

(−m)(α
′)m

·
l∏

j = 2
kj even

kj ·N
d1
q1,p1

(α1 + ek, β
1, s1)

l∏

j=2

(

(βj)kjN
dj
qj ,pj(α

j , βj , sj)
)

.

I1 consists of k1, k2 ≥ 1 such that at least one of them is odd.
I2 consists of all α1, α2, β1, β2, k1 ≥ 1, k2 ≥ 1, s1 ≥ 0, s2 ≥ 0, q1 ≥ 0, q2 ≥

0, p1 ≥ 0, p2 ≥ 0 such that

• at least one of k1, k2 is odd,

• α1 + α2 = α,

• β1 + β2 = β − ek1+k2,
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• d1 + d2 = d,

• s1 + s2 = s− 1,

• q1 + q2 = q,

• p1 + p2 = p,

I3 consists of all l ≥ 0 and all αj , βj , k ≥ 1, kj ≥ 1, sj ≥ 0, q1j ≥ 0, q2j ≥
0 for 1 ≤ j ≤ l such that

•
∑l

j=1 α
j ≤ α,

•
∑l

j=1

(
βj − ekj

)
= β − ek,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q or
∑l

j=1 qj = q − 1,

•
∑l

j=1 pj = p or
∑l

j=1 pj = p− 1.

I4 consists of all l > 0 and all αj , βj , kj ≥ 1, sj ≥ 0, qj ≥ 0, q1j ≥ 0, q2j ≥
0 for 1 ≤ j ≤ l such that

•
∑l

j=1 α
j < α,

• β1 +
∑l

j=2

(
βj − ekj

)
= β,

•
∑l

j=1 dj = d− 1,

•
∑l

j=1 sj = s− 1,

•
∑l

j=1 qj = q,

•
∑l

j=1 qj = q or
∑l

j=1 qj = q − 1,

•
∑l

j=1 pj = p or
∑l

j=1 pj = p− 1.

In particular, we note that when p = 0, the formulæ of Theorems 6.6
and 6.8 reduce to those of Theorem 5.10 and Theorem 5.12. When both
p and q are zero, the formulæ are equivalent to the formulæ of Gathmann,
Markwig and Schroeter (Theorem 4.11 and Theorem 4.13).

In the case of N1
0,0 ((0), (1), 1), the index sets I1, I2, I4, are all empty,

while I3 consists of a single element; l = 0, k = 1. When computing
N1

0,0 ((0), (1), 0) by formula 6.6, the first and third index sets are empty, while

I2 consists of a single element, l = 0. Both N1
0 ((0), (1), 0) andN1

0 ((0), (1), 1)
are 1 and these numbers are sufficient initial conditions to get our recursion
starting:
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Corollary 6.9. The formulæ of Theorems 6.6 and 6.8 are sufficient to
compute all relative broccoli invariants of P2

2 (and therefore all Welschinger
invariants of P2

2).

Say we wanted to compute the Welschinger invariants of P1 × P
1. Let

∆ be the degree consisting of p times the vectors (0, 1) and (0,−1) and q
times the vectors (1, 0) and (0, 1), i.e. curves corresponding to P

1 × P
1.

We can identify the curves in MB
(r,s)(∆) with the curves of type (q, p, (0), (0))

with r real and s complex markings, i.e. the curves with degrees correspond-
ing to Newton polygons shaped as the parallelogram below.

Hence, NW
(r,s)(∆) = NB

(r,s)(∆) = Nd
q,p ((0), (0), s), where d = q + p.

Corollary 6.10. The formulæ of Theorems 6.6 and 6.8 are sufficient to
compute all Welschinger invariants of P1 × P

1.

6.4 Extensions to P2
3

To complete the picture, we could define curves of type (d1, d2, d3, α, β) and
look at possible decompositions of curves of degrees corresponding to the
final hexagonal Newton polygon.

In principle, the computation of the Welschinger numbers of degrees dual
to the hexagon could follow exactly the same path as in the cases we have
looked at.
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