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Abstract

The theme of this thesis is duality methods in mathematical �nance.
This is a hot topic in the �eld of mathematical �nance, and there is
currently a lot of research activity regarding this subject. However,
since it is a fairly new �eld of study, a lot of the material available
is technical and di�cult to read. This thesis aims to connect the
duality methods used in mathematical �nance to the general theory
of duality methods in optimization and convexity, and hence clarify
the subject. This requires the use of stochastic, real and functional
analysis, as well as measure and integration theory.

The thesis begins with a presentation of convexity and conjugate
duality theory. Then, this theory is applied to convex risk measures.
The �nancial market is introduced, and various duality methods,
including linear programming duality, Lagrange duality and conju-
gate duality, are applied to solve utility maximization, pricing and
arbitrage problems. This leads to both alternative proofs of known
results, as well as some (to my knowledge) new results.
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Chapter 1
Introduction

1.1 The theme of the thesis and some related

work

The topic of this thesis is duality methods and their connection to mathematical
�nance. The term duality method is used in many di�erent meanings in mathe-
matical �nance (see e.g. Kramkov and Schachermayer [22], Pennanen [29] and
Rogers [37]). This thesis illustrates some of these meanings, and attempts to
place the duality methods of mathematical �nance into a more general convexity
framework. This provides a better understanding of the methods, and connects
mathematical �nance to convexity theory. In order to connect duality meth-
ods and mathematical �nance, theory from stochastic analysis, real analysis,
and functional analysis is applied. Di�erent perspectives of duality theory are
considered, and applied to �nancial models. For example:

� Convex duality, also called conjugate duality (see for example Sections 2.5,
3.2 and 5.5, as well as Chapters 6 and 7). This is a �eld pioneered by
Rockafellar [34], who is also a prominent researcher within the �eld of
convex analysis (see [33]).

� Linear programming duality (see e.g. Sections 4.3, 6.1 and 6.3). This is a
well-developed �eld with a strong duality theorem and e�cient computa-
tional methods, such as the simplex algorithm and interior point methods.
Pliska [32] provides a good introduction to this theory.

� Lagrange duality (see for example Sections 5.4, 5.5 and 5.6 as well as
Chapter 6). This �eld is somewhat less known than linear programming
(which is a special case), but also provides duality theorems (under certain
assumptions). An introduction can be found in Bertsekas et al. [2].

That duality methods can be used to solve problems in mathematical �nance
has been known for some time. For example, Pliska [32] applies linear program-
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2 CHAPTER 1. INTRODUCTION

ming duality to show that there exits a linear pricing measure if and only if there
are no dominant trading strategies. Variations of duality methods are used by
Kartzas and Shreve [17] to derive solutions to utility maximization and pricing
problems. However, it seems like convexity theory, such as conjugate duality
theory, has not been utilized in this context until recently. Over the last ten
years, several researchers have applied duality methods to problems in mathe-
matical �nance. Examples of such researchers, and papers, are Henclova [15],
King [18], Kramkov and Schachermayer [22], [21], Pennanen [29], Pennanen and
Perkkiö [30], and Schachermayer [40].

Since active use of duality methods in mathematical �nance is a fairly new
�eld, there are few books on the topic. This has made this thesis extra chal-
lenging, as I have worked mainly with research papers. On the other hand, it
has been very interesting to be guided into such an active �eld, where there is
a lot happening, and a lot to be done.

The theoretical background for the thesis is stochastic analysis, measure-
and integration theory, convexity theory, real analysis, and functional analysis.
Throughout the thesis, these mathematical �elds are combined to study duality
theory and its applications to mathematical �nance.

1.2 My work and challenges

The work resulting in this thesis has been of the following form:

1. My supervisor, Professor Bernt Øksendal, suggested a topic to guide my
work in a natural direction. Sometimes he would give me a relevant article
to read for inspiration, otherwise I would �nd articles regarding the topic
myself.

2. After reading the article(s) on the topic, I would �ll in the missing details
or look up de�nitions I did not understand. This often took a lot of time,
as I am not used to reading research papers, which are at a much more
advanced level than the text books I have read previously in my studies.

3. Finally, I would write my own presentation of the topic, based on the
article(s) I had read. Sometimes (especially during the �nal semester of
my work), I derived some new results inspired by what I had read.

I have enjoyed this kind of work. It has been challenging to work so in-
dependently, but I have learned a lot from it. Reading research material has
also been di�cult (as I had never done this prior to the work on my master
thesis), but after a while it became easier (though still di�cult!), and I now
feel like I can �nd and read relevant research material on my own. Another
obstacle was that the term "duality method" is used in many ways in mathe-
matical �nance (see e.g. Pennanen [29] and Rogers [37]), and therefore it has
been di�cult to see the underlying ideas of the methods applied. In order to
understand the duality methods used in mathematical �nance, I had to learn a
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lot of background material, such as convex analysis, conjugate duality, Lagrange
duality and optimization theory. Most of this theory is at an advanced level;
it is done in general in�nite-dimensional vector spaces, and is not covered in
any classes. Some in�nite-dimensional convexity has been covered in our two
courses in functional analysis, but not a lot. For example, conjugate duality and
Lagrange duality was completely new to me. Also, there is not a lot of litera-
ture regarding in�nite-dimensional convexity (exceptions are the Hahn-Banach
theorems, see Pedersen [28], and the work of Rockafellar [34] and Ekeland [10]).
Another challenge was that a lot of the required background background theory
from stochastic analysis, measure- and integration theory and functional anal-
ysis is fairly advanced. Finally, I had to take the class in mathematical �nance
in the middle of writing my thesis. Hence, getting to know the �eld of �nancial
mathematics also presented a lot of work.

1.3 My contributions

A main contribution of this thesis is a presentation of convex duality theory
and its connections to several areas in mathematical �nance. Moreover, I have
clari�ed some new connections, proved a number of theorems and "missing
results" and solved several examples illustrating the results. Also, towards the
end of the thesis, I have proved some (to my knowledge) new results regrading
pricing of claims under a general level of inside information, and I have also
proved some known results in a new way using duality theory.

The following summarizes my main contributions:

� Chapter 2:

� The proof of Theorem 2.41 (on (L⊥)⊥ = L̄ for L a subspace) is by
me.

� Chapter 3:

� Theorem 3.3 (on how to make new convex risk measures) and its
proof is by me.

� Chapter 4:

� Lemma 4.4 (�nding the dual problem of the arbitrage problem) and
its proof is by me.

� Chapter 5:

� In Section 5.5, the connection between Lagrange duality and Kramkov-
Schachermayer's work has been done by me. Also, the use of the
Slater condition is introduced by me (Schachermayer [40] does a di-
rect argument using optimization in Rn). Hence, the reasoning has
been simpli�ed and connected to a general theory.
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� In Section 5.6, the connection to Lagrange duality has been made by
me, and hence the reasoning is simpli�ed.

� Sections 5.8 (a special case of Section 5.7) and 5.9 (on utility maxi-
mization under risk constraints) consist of my own ideas.

� In Section 5.10, I have summarized some connections between duality
methods and utility maximization (from my point of view).

� Chapter 6: This entire chapter consists of ideas by me. In particular:

� Theorem 6.3 (on the price of a claim o�ered by a seller with general
information: �nite scenario space) is new (to my knowledge) and
done by me. The proof uses Lagrange duality.

� Lemma 6.4 (used to prove Theorem 6.5) is by me.

� Theorem 6.5 (on the relationship between the prices o�ered by sellers
with di�erent information levels) is by me.

� The example of Section 6.1 is by me.

� Section 6.2 generalizes the results mentioned above to the case where
the scenario space is arbitrary, using the conjugate duality theory of
Rockafellar. In particular, Lemma 6.6, Lemma 6.11 Theorem 6.10,
Lemma 6.12 and Theorem 6.13 are by me.

� Section 6.3 concerns the pricing problem of a seller facing a short
selling constraint on one of the assets. Theorem 6.14 summarizes the
results derived in this section, and is by me.

� Section 6.4 generalizes the results of Section 6.3 to arbitrary scenario
space Ω. The results are based on my ideas and they are summarized
in Theorem 6.15.

� Also, Section 6.5, which considers the pricing problem of a seller
facing a constraint on how much she may sell short or buy of a certain
asset, is by me.

� Chapter 7: This chapter also consists only of my ideas. In particular:

� Section 7.1 proves for an arbitrary scenario space and discrete time
that there is no free lunch with vanishing risk if and only if there exists
an equivalent martingale measure. This is shown via a generalized
version of Lagrange duality (see Section 5.4). The proof is by me.

� Section 7.2 displays a close connection between conjugate duality and
the fundamental theorem of mathematical �nance. The ideas of this
section are by me.

There are also some minor contributions, in the sense that I have �lled in
missing details in proofs, written proofs brie�y etc.

� Chapter 2:
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� The proof of Theorem 2.8 (on properties of convex sets) is written in
brief form by me.

� The proof of Theorem 2.14 (on equivalence of de�nitions of convex
functions) is by me.

� The proof of Theorem 2.23 (on properties of the indicator function
of a set) is by me.

� The proof of Theorem 2.24 (on properties of convex functions) is
written in brief form by me.

� Example 2.40 is by me.

� In most examples, for instance in Example 2.45, some details have
been �lled in.

� Chapter 3:

� Example 3.6 is by me.

� The proof of Theorem 3.7 (on the connection between a convex risk
measure and its acceptance set) is by me.

� The idea of the proof of Theorem 3.8 (a dual representation of con-
vex risk measures) is from Frittelli and Gianin [14], but the proof is
written out in detail by me.

� Some details of the proof of Theorem 3.9 (on a special dual represen-
tation of convex risk measures in Rn) have been �lled out.

� Some details of the proof of Theorem 3.10 (an explicit form of the
dual representation of convex risk measures in Rn) have been �lled
out.

� Some details of the proof of Theorem 3.11 (an explicit representation
of convex risk measures in in�nite dimension) have been �lled out.

� Chapter 4:

� Some details of the proof of Theorem 4.3 (theorem connecting no
arbitrage and the existence of equivalent martingale measures, in
�nite dimension) have been �lled out.

� Chapter 5:

� In Section 5.2 the ideas are from Pham [31], but the market model
has been altered slightly. The proofs in this section are based on the
ideas by [31], but written out by me.

� The example in Section 5.3 (illustrates a direct method for solving
utility maximization problems, �nite dimension) is by me.

� The example in Section 5.5, which is continued from Section 5.3 (il-
lustrates the duality method applied to the previous example) is by
me.
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� The proof of Lemma 5.10 (simpli�es the set of equivalent martingale
measures for the utility maximization problem) is by me.

� The proof of Lemma 5.11 (shows that the set of absolutely continuous
martingale measures is a polytope in Rn) is by me.

� The proof of Lemma 5.12 (reduces the set of absolutely continuous
martingale measures to its extreme points, for the utility maximiza-
tion problem) is by me.

� Some computations and arguments in the proof of Theorem 5.15 (a
strong duality result for the utility maximization problem) has been
�lled in.

The theorems, proofs and sections that are mentioned in the previous lists
are marked with ♦.

1.4 The structure of the thesis

This thesis consists of 8 chapters. Chapter 1 is this introduction. Chapter 2
begins with a summary of convexity theory, and then presents the conjugate du-
ality theory of Rockafellar [34] with some examples. This chapter is background
theory, which will be applied throughout the entire thesis, but in particular in
Chapters 3, 5, 6, and 7. Chapter 3 introduces convex risk measures, and applies
the convexity theory, as well as the conjugate duality theory of Chapter 2, to
derive results regarding such measures. The main purpose of this chapter is to
derive a dual representation theorem for convex risk measures, Theorem 3.8.
This theorem is an example of how duality theory can be used in mathematical
�nance.

Chapter 4 introduces a model for the �nancial market, and shows that such
a market can be modeled by a scenario tree whenever the scenario space is
�nite and the time is discrete. This model will be used in Chapters 5, 6, and 7.
Chapter 5 introduces utility functions and the utility maximization problem for
an agent in the �nancial market. The remainder of the chapter presents some
work by Kramkov and Schachermayer, see [21], [22], and [40]. These papers are
connected to general duality theory by using Lagrange duality and the Slater
condition. Towards the end of the chapter, a special case of the results of [21]
and [22] is shown using conjugate duality, and �nally, a utility maximization
problem with risk constraints is solved using Lagrange duality. Hence, duality
theory can be used to solve utility maximization problems in mathematical
�nance.

Chapter 6 illustrates a another application of duality in mathematical �-
nance, namely to pricing problems. This chapter considers various versions of
the pricing problem of a seller of a contingent claim. In most of the chapter, the
seller can have some general level of inside information, not just the information
given by the prices of the assets in the market. Lagrange duality, linear pro-
gramming duality, the Slater condition as well as conjugate duality is applied
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to derive dual problems to the pricing problem of the seller, and also to prove
the absence of a duality gap.

Chapter 7 considers the connection between equivalent martingale measures,
arbitrage in the �nancial market and the concept of "no free lunch with van-
ishing risk". Here, a slightly weaker version of the fundamental theorem of
mathematical �nance is proved using conjugate duality and a theorem by Pen-
nanen and Perkkiö [30] to close the duality gap (this theorem requires an extra
assumption, which is why the resulting theorem is "slightly weaker" than the
fundamental theorem). This chapter shows that duality theory is useful in the
study of arbitrage problems.

Finally, Chapter 8 gives some concluding remarks summarizing the methods
and results of the thesis.
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Chapter 2
Convexity, optimization, and

convex duality

The purpose of this chapter is to cover some background theory in convexity,
optimization, and convex duality needed to understand how duality methods
are used in mathematical �nance. Convexity is very important for this, see for
instance Pennanen [29] and Karatzas and Shreve [17]. Therefore, this chapter
will be applied throughout the rest of the thesis. The structure of this chapter
is as follows: Section 2.1 recalls some basic notions of convexity theory, such as
convex sets, convex functions and properties of these. Section 2.2 covers some
of the most central theorems and ideas of optimization theory. Section 2.3 in-
troduces the convex (conjugate) duality framework of Rockafellar [34]. Some
examples of optimization using convex duality is given in Section 2.4. Section 2.5
introduces conjugate functions and proves the important Theorem 2.39. Finally,
Section 2.6 introduces the Lagrange function of convex duality theory, and con-
tains another important result, namely Theorem 2.44.

2.1 Basic convexity

This section summarizes some of the most important de�nitions and properties
of convexity theory. The material of this section is mainly based on the presen-
tation of convexity in Rockafellar's book [34], the book by Hiriart-Urruty and
Lemarèchal [16], and the report by Dahl [4]. The last two consider X = Rn,
but the extension to a general inner product space is straightforward. There-
fore, in the following, let X be a real inner product space, i.e. a vector space
X equipped with an inner product 〈·, ·〉 : X ×X → R (so the function 〈·, ·〉 is
symmetric, linear in the �rst component and positive de�nite in the sense that
〈x, x〉 ≥ 0 for all x ∈ X, with equality if and only if x = 0).

We begin with some core de�nitions.

9



10CHAPTER 2. CONVEXITY, OPTIMIZATION, AND CONVEXDUALITY

Figure 2.1: Some convex sets in the plane.

De�nition 2.1 (i) (Convex set) A set C ⊆ X is called convex if λx1 + (1−
λ)x2 ∈ C for all x1, x2 ∈ C and 0 ≤ λ ≤ 1.

(ii) (Convex combination) A convex combination of elements x1, x2, . . . , xk in

X is an element of the form
∑k
i=1 λixi where

∑k
i=1 λi = 1 and λi ≥ 0 for

all i = 1, . . . , k.

(iii) (Convex hull, conv(·)) Let A ⊆ X be a set. The convex hull of A, denoted
conv(A) is the set of all convex combinations of elements of A.

(iv) (Extreme points) Let C ⊆ X be a convex set. An extreme point of C is a
point that cannot be written as a convex combination of any other points
than itself. That is: e ∈ C is an extreme point for C if λx+ (1− λ)y = e
for some x, y ∈ C implies x = y = e.

(v) (Hyperplane) H ⊂ X is called a hyperplane if it is of the form H = {x ∈
X : 〈a, x〉 = α} for some nonzero vector a ∈ X and some real number α.

(vi) (Halfspace) A hyperplane H divides X into two sets H+ = {x ∈ X :
〈a, x〉 ≥ α} and H− = {x ∈ X : 〈a, x〉 ≤ α}, these sets intersect in H.
These sets are called halfspaces.

The following de�nitions are from Rockafellar's book [33].

De�nition 2.2 A set K ⊆ Rn is called a polyhedron if it can be described as
the intersection of �nitely many closed half-spaces.

Hence, a polyhedron can be described as the solution set of a system of
�nitely many (non-strict) linear inequalities. It is straightforward to show that
a polyhedron is a convex set.

A (convex) polytope is a set of the following form:

De�nition 2.3 (Polytope) A set K ⊆ Rn is called a (convex) polytope if it is
the convex hull of �nitely many points.
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x y

Figure 2.2: A non-convex set.

Clearly, all polytopes are convex since a convex hull is always convex. Ex-
amples of (convex) polytopes in R2 are triangles, squares and hexagons.

Actually, all polytopes in Rn are compact sets.

Lemma 2.4 Let K ⊆ Rn be a polytope. Then K is a compact set.

Proof: Since K is a polytope, it is the convex hull of �nitely many points,
say K = conv({k1}, ..., {km}), so

K = {
m∑
i=1

λiki :

m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m}.

Consider the continuous function f : Rm → Rn, f(x1, ..., xm) =
∑m
i=1 xiki,

and the compact set

S = {(λ1, ..., λm) :

m∑
i=1

λi = 1, λi ≥ 0 for all i = 1, ...,m} ⊆ Rm

(S is closed and bounded, hence compact in Rm)
Then, since f is continuous and S is compact, f(S) := {x : x = f(s) for some s ∈

S} ⊆ Rn is a compact set (see for example Munkres [26]). But f(S) = K from
the de�nitions, and hence K is compact. �

From Lemma 2.4, any polytope is a closed and bounded set, since compact-
ness is equivalent to being closed and bounded in Rn.

The following theorem connects the notion of polytope and polyhedron.

Theorem 2.5 A set K ⊆ Rn is a polytope if and only if it is a bounded poly-
hedron.

For a proof of this, see Ziegler [43].

Sometimes, one needs to consider what is called the relative interior of a set.
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De�nition 2.6 (Relative interior, rint(·)) Let S ⊆ X. x ∈ S is a relative
interior point of S if it is contained in some open set whose intersection with
a�(S) is contained in S. rint(S) is the set of all relative interior points of S.
Here, a�(S) is the smallest a�ne set that contains S (where a set is a�ne if
it contains any a�ne combination of its points; an a�ne combination is like a
convex combination except the coe�cients are allowed to be negative).

Another useful notion is that of a convex cone.

De�nition 2.7 (Convex cone) C ⊆ X is called a convex cone if for all x, y ∈ C
and all α, β ≥ 0:

αx+ βy ∈ C

From these de�nitions, one can derive some properties of convex sets.

Theorem 2.8 (Properties of convex sets)

(i) If {Cj}j∈J ⊆ X is an arbitrary family of convex sets, then the intersection
∩j∈JCj is also a convex set.

(ii) conv(A) is a convex set, and it is the smallest (set inclusion-wise) convex
set containing A.

(iii) If C1, C2, . . . , Cm ⊆ X are convex sets, then the Cartesian product C1 ×
C2 × . . .× Cm is also a convex set.

(iv) If C ⊆ X is a convex set, then the interior of C, int(C), the relative
interior rint(C) and the closure of C, cl(C), are convex sets as well.

Proof: ♦
Follows from the de�nitions of convex set, conv(·), intersection, Cartesian

product, interior, relative interior and closure. Statement (i) also uses the fact
that any convex set must contain all convex combinations of its elements. This
can be proved by induction, using that C is convex and that a convex combina-
tion of convex combinations is a convex combination. �

Sometimes, one considers not just R, but R̄, the extended real numbers.

De�nition 2.9 (The extended real numbers, R̄) Let R̄ = R∪{−∞,+∞} denote
the extended real numbers.

When working with the extended real numbers the following computational
rules apply: a −∞ = −∞, a +∞ = ∞, ∞ +∞ = ∞, −∞ −∞ = −∞ and
∞−∞ is not de�ned.

The following function is often useful, in particular in optimization.

De�nition 2.10 (The indicator function for a set M , δM ) Let M ⊆ X be a
set. The indicator function for the set M , δM : X → R̄ is de�ned as

δM (x) =

{
0 if x ∈M
+∞ if x 6∈M.
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f

epi(f)

Figure 2.3: The epigraph of a function f .

The following example shows why this function is useful in optimization.
Consider the constrained minimization problem

min f(x)
s.t. x ∈M

for some function f : X → R̄ and some set M ⊆ X. This can be transformed
into an unconstrained minimization problem by altering the objective function
as follows

min f(x) + δM (x).

This is the same problem as before because the minimum above cannot be
achieved for x /∈ M , because then δM = +∞, so the objective function is
in�nitely large as well.

The next de�nition is very important.

De�nition 2.11 (Convex function) Let C ⊆ X be a convex set. A function
f : C → R is called convex if the inequality

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) (2.1)

holds for all x, y ∈ C and every 0 ≤ λ ≤ 1.

There is an alternative way of de�ning convex functions, which is based on
the notion of epigraph.

De�nition 2.12 (Epigraph, epi(·)) Let f : X → R̄ be a function. Then the
epigraph of f is de�ned as epi(f) = {(x, α) : x ∈ X, α ∈ R, α ≥ f(x)}.

De�nition 2.13 (Convex function) Let A ⊆ X. A function f : A→ R̄ is called
convex if the epigraph of f is convex (as a subset of the vector space X × R).

Of course, these de�nitions are actually equivalent.
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Figure 2.4: A convex function.

Theorem 2.14 De�nitions 2.11 and 2.13 are equivalent if the set A in De�-
nition 2.13 is convex (A must be convex in order for De�nition 2.11 to make
sense).

Proof: ♦
2.11⇒ 2.13: Assume that f is a convex function according to De�nition 2.11.

Let (x, a), (y, b) ∈ epi(f) and let λ ∈ [0, 1]. Then

λ(x, a) + (1− λ)(y, b) = (λx+ (1− λ)y, λa+ (1− λ)b).

But f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) from De�nition 2.11, so

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y)

≤ λa+ (1− λ)b.

So (λx+ (1− λ)y, λa+ (1− λ)b) ∈ epi(f).
2.13 ⇒ 2.11 uses the same type of arguments, thus it is omitted. �

De�nition 2.15 (Concave function) A function g is concave if the function
f := −g is convex.

When minimizing a function, the points where it is in�nitely large are unin-
teresting, this motivates the following de�nitions.

De�nition 2.16 (E�ective domain, dom(·)) Let A ⊆ X and let f : A → R̄ be
a function. The e�ective domain of f is de�ned as dom(f) = {x ∈ A : f(x) <
+∞}.

De�nition 2.17 (Proper function) Let A ⊆ X and let f : A→ R̄ be a function.
f is called proper if dom(f) 6= ∅ and f(x) > −∞ for all x ∈ A.

For de�nitions of general topological terms, such as convergence, continuity
and neighborhood, see any basic topology book, for instance Topology by James
Munkres [26].
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x

f(x)

Figure 2.5: A lower semi-continuous function f .

De�nition 2.18 (Lower semi-continuity, lsc) Let A ⊆ X be a set, and let
f : A → R̄ be a function. f is called lower semi-continuous, lsc, at a point
x0 ∈ A if for each k ∈ R such that k < f(x0) there exists a neighborhood U of
x0 such that f(u) > k for all u ∈ U . Equivalently: f is lower semi-continuous
at x0 if and only if lim infx→x0

f(x) ≥ f(x0).

De�nition 2.19 (α-sublevel set of a function, Sα(f)) Let f : X → R̄ be a
function and let α ∈ R. The α-sublevel set of f , Sα(f), is de�ned as

Sα(f) = {x ∈ X : f(x) ≤ α}.

Theorem 2.20 Let f : X → R̄ be a function. Then, f is lower semi-continuous
if and only if the sublevel sets Sα(f) are closed for all α ∈ R̄.

Proof: The sublevel sets Sα(f) := {x ∈ X : f(x) ≤ α} are closed for all
α ∈ R i�. the complement sets Y = X − Sα(f) = {x ∈ X : f(x) > α} are open
for all α. But this happens i�. all y ∈ Y are interior points, which is equivalent
with that for each y ∈ Y there is a neighborhood U such that U ⊆ Y , i.e.
f(U) > α. But this is the de�nition of f being lower semi-continuous at the
point y. Since this argument holds for all y ∈ X (by choosing di�erent α), f is
lower semi-continuous. �

De�nition 2.21 (Convex hull of a function, co(f)) Let A ⊆ X be a set, and
let f : A→ R̄ be a function. Then the convex hull of f is the (pointwise) largest
convex function h such that h(x) ≤ f(x) for all x ∈ A.

Clearly, if f is a convex function co(f) = f . One can de�ne the lower semi-
continuous hull, lsc(f) of a function f in a similar way.

De�nition 2.22 (Closure of a function, clf) Let A ⊆ X be a set, and let
f : A → R̄ be a function. We de�ne: cl(f)(x) = lsc(f(x)) for all x ∈ A if
lsc(f(x)) > −∞ ∀ x ∈ X and cl(f)(x) = −∞ for all x ∈ A if lsc(f(x′)) = −∞
for some x′ ∈ A.
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We say that a function f is closed if cl(f) = f . Hence, f is closed if it is lower
semi-continuous and f(x) > −∞ for all x or if f(x) = −∞ for all x.

Theorem 2.23 Let M ⊆ X, and consider the indicator function for the set M ,
δM , as de�ned in De�nition 2.10. Then, the following properties hold:

� If N ⊆ X, then M ⊆ N ⇐⇒ δN ≤ δM .

� M is a convex set ⇐⇒ δM is a convex function.

� δM is lower semi-continuous ⇐⇒ M is a closed set.

Proof: ♦

� From De�nition 2.10: δN ≤ δM i�. (If δM (x) < +∞ then δN (x) < +∞)
i�. (x ∈M ⇒ x ∈ N) i�. M ⊆ N .

� δM is convex if and only if δM (λx+(1−λ)y) ≤ λδM (x)+(1−λ)δM (y) holds
for all 0 ≤ λ ≤ 1 and all x, y ∈ X such that δM (x), δM (y) < +∞, that is,
for all x, y ∈M . But this means that λx+ (1− λ)y ∈M , equivalently, M
is convex.

� Assume δM is lower semi-continuous. Then it follows from Theorem 2.20
that Sα(δM ) is closed for all α ∈ R. But, for any α ∈ R, Sα(δM ) =
{x ∈ X : δM (x) ≤ α} = M (from the de�nition of δM ), so M is closed.
Conversely, assume that M is closed. Then, for any α ∈ R, Sα(δM ) = M ,
hence δM is lower semi-continuous from Theorem 2.20.

�

A global minimum for a function f : A → R̄, where A ⊂ X, is an x′ ∈ A
such that f(x′) ≤ f(x) for all x ∈ A. A local minimum for f is an x′ ∈ A such
that there exists a neighborhood U of x′ such that x ∈ U ⇒ f(x′) ≤ f(x).

Based on all these de�nitions, one can derive the following properties of
convex functions.

Theorem 2.24 (Properties of convex functions) Let C ⊆ X be a convex set,
f : C → R be a convex function. Then the following properties hold:

1. If f has a local minimum x′, then x′ is also a global minimum for f .

2. If C = R, so that f : R→ R and f is di�erentiable, then f ′ in monotoni-
cally increasing.

3. If a function g : R → R is twice di�erentiable and g′′(x) > 0, then g is
convex.

4. Jensen's inequality: For x1, . . . , xn ∈ X,λ1, . . . , λn ∈ R, λk ≥ 0, for k =
1, . . . , n,

∑n
k=1 λk = 1, the following inequality holds

f(

n∑
k=1

λkxk) ≤
n∑
k=1

λkf(xk).
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5. The sum of convex functions is convex.

6. αf is convex if α ∈ R, α ≥ 0.

7. If (fn)n∈N is a sequence of functions, fn : X → R, and fn → f pointwise
as n→∞, then f is convex.

8. dom(f) is a convex set

9. If α ∈ R̄, then the sublevel set for f , Sα(f) is a convex set. Similarly,
{x ∈ C : f(x) < α} is a convex set.

10. Maximization: Let {fλ} be an arbitrary family of convex functions, then
g(x) = supλ fλ(x) is convex. Also, g(x) = supy f(x, y) is convex if f(x, y)
is convex in x for all y.

11. Minimization: Let f : X × X → R̄ be a convex function. Then g(x) =
infy f(x, y) is convex.

Proof: ♦

1. Suppose x′ is a local minimum for f , that is: There exists a neighborhood
U ⊆ C of x′ such that f(x′) ≤ f(x) for all x ∈ U . We want to show that
f(x′) ≤ f(x) for all x ∈ C. Let x ∈ C. Consider the convex combination
λx+ (1− λ)x′. This convex combination converges towards x′ as λ→ 0.
Therefore, for a su�ciently small λ∗, λ∗x + (1 − λ∗)x′ ∈ U , so since f is
convex

f(x′) ≤ f(λ∗x+ (1− λ∗)x′)
≤ λ∗f(x) + (1− λ∗)f(x′)

which, by rearranging the terms, shows that f(x′) ≤ f(x). Therefore, x′

is a global minimum as well.

2. Follows from De�nition 2.11 and the de�nition of the derivative.

3. Use De�nition 2.11 and the mean value inequality, see for example Kalku-
lus by Lindstrøm [23], or any other basic calculus book.

4. Follows from De�nition 2.11 by induction, and the fact that a convex
combination of convex combinations is a convex combination.

5. Use De�nition 2.11 and induction.

6. Follows from De�nition 2.11.

7. Use De�nition 2.11 and the homogeneity and additivity of limits.

8. Follows from the de�nitions.
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9. Follows from the de�nitions, but is included here as an example of a typical
basic proof. Let x, y ∈ Sα(f). Then f(x), f(y) ≤ α. Then λx+ (1−λ)y ∈
Sα(f) because

f(λx+ (1− λ)y) ≤ λf(x) + (1− λ)f(y) ≤ λα+ (1− λ)α = α

where the �rst inequality follows from the convexity of f , and the second
inequality follows from that x, y ∈ Sα(f).

10. sup is a limit, so the result is a consequence of property 7.

11. Same as property 10.

�

2.2 Optimization

Optimization is the mathematical theory of maximization and minimization
problems. It is useful in many applications, for example in logistic problems,
�nding the best spot to drill for oil, and in mathematical �nance. In �nance,
one often considers an investor who wishes to maximize her utility, given various
constraints (for instance her salary). The question is how one can solve such
problems. This section gives a short summary of some of the background theory
of optimization that will be used in this thesis.

Let X be a vector space, f : X → R̄, g : X → Rn and S ⊆ X. Consider an
optimization problem of the form

min f(x)
subject to

g(x) ≤ 0 (componentwise)
x ∈ S.

(2.2)

In problem (2.2), f is called the objective function, while g(x) ≤ 0, x ∈ S
are called the constraints of the problem.

A useful technique when dealing with optimization problems is transforming
the problem. For example, a constraint of the form h(x) ≥ y (for h : X → Rn,
y ∈ Rn) is equivalent to y − h(x) ≤ 0, which is of the form g(x) ≤ 0 with
g(x) = y − h(x). Similarly, any maximization problem can be turned into a
minimization problem (and visa versa) by using that inf f(x) = − sup(−f(x)).
Also, any equality constraint can be transformed into two inequality constraints:
h(x) = 0 is equivalent to h(x) ≤ 0 and h(x) ≥ 0.

One of the most important theorems of optimization is the extreme value
theorem (see Munkres [26]).

Theorem 2.25 (The extreme value theorem) If f : X → R is a continuous
function from a compact set into the real numbers, then there exist points a, b ∈
X such that f(a) ≥ f(x) ≥ f(b) for all x ∈ X. That is, f attains a maximum
and a minimum.
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The importance of the extreme value theorem is that it gives the existence
of a maximum and a minimum in a fairly general situation. However, these may
not be unique. But, for convex (or concave) functions, Theorem 2.24 implies
that any local minimum (maximum) is a global minimum (maximum). This
makes convex functions useful in optimization.

For a function f : Rn → R, the maximum and minimum are attained in
critical points. Critical points are points x such that

� f ′(x) = 0, where f is di�erentiable at x,

� the function f is not di�erentiable at x or

� x is on the boundary of the set one is optimizing over.

Hence, for a di�erentiable function which is optimized without extra constraints,
one can �nd maximum and minimum points by solving f ′(x) = 0 and comparing
the objective value in these points to those of the points on the boundary.

Constrained optimization can be tricky to handle. An example of con-
strained optimization is linear programming (LP); maximization of linear func-
tions under linear constraints. In this situation, strong theorems regarding the
solution has been derived. It turns out that corresponding to each LP problem,
there is a "dual" problem, and these two problems have the same optimal value.
This dual problem is introduced in order to get a second chance at solving an
otherwise di�cult problem. There is also an e�ective numerical method for
solving LP problems, called the simplex algorithm. See Vanderbei [42] for more
about linear programming.

The concept of deriving a "dual" problem to handle constraints is the idea
of Lagrange duality (see Section 5.4) as well. Lagrange duality begins with a
problem of the form (2.2) (or the corresponding maximization problem), and
derives a dual problem which gives lower (upper) bounds on the optimal value of
the problem. Actually, linear programming duality is a special case of Lagrange
duality, but since Lagrange duality is more general, one cannot get the strong
theorems of linear programming. The duality concept is generalized even more
in convex duality theory, which is the topic of Section 2.3.

2.3 Convex duality and optimization

This section is based on Conjugate Duality and Optimization by Rockafellar [34].
As mentioned, convex functions are very handy in optimization problems be-
cause of property 1 of Theorem 2.24: For any convex function, a local minimum
is also a global minimum.

Another advantage with convex functions in optimization is that one can
exploit duality properties in order to solve problems. In the following, let X
be a linear space, and let f : X → R be a function. The main idea of convex
duality is to view a given minimization problem minx∈X f(x) (note that it is
common to write min instead of inf when introducing a minimization problem
even though one does not know that the minimum is attained) as one half of a
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minimax problem where a saddle value exists. Very roughly, one does this by
looking at an abstract optimization problem

min
x∈X

F (x, u) (2.3)

where F : X×U → R is a function such that F (x, 0) = f(x), U is a linear space
and u ∈ U is a parameter one chooses depending on the particular problem at
hand. For example, u can represent time or some stochastic vector expressing
uncertainty in the problem data. Corresponding to this problem, one de�nes an
optimal value function

ϕ(u) = inf
x∈X

F (x, u) , u ∈ U. (2.4)

We then have the following theorem:

Theorem 2.26 Let X,U be real vector spaces, and let F : X × U → R be a
convex function. Then ϕ is convex as well.

Proof: This follows from property 10 of Theorem 2.24. �

The following is a more detailed illustration of the dual optimization method:
Let X and Y be general linear spaces, and let K : X × Y → R be a function.
De�ne

f(x) = sup
y∈Y

K(x, y) (2.5)

and
g(y) = inf

x∈X
K(x, y). (2.6)

Then, consider two optimization problems

(P ) min
x∈X

f(x)

and

(D) max
y∈Y

g(y).

From the de�nitions

g(y) ≤ K(x, y) ≤ f(x), ∀ x ∈ X,∀ y ∈ Y. (2.7)

By taking the in�mum over x and then the supremum over y in equation (2.7)

inf
x∈X

sup
y∈Y

K(x, y) = inf
x∈X

f(x) ≥ sup
y∈Y

g(y) = sup
y∈Y

inf
x∈X

K(x, y). (2.8)

If there is equality in equation (2.8), then the common value is called the
saddle value of K.
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The saddle value exists if K has a saddle point, i.e. there exists a point
(x′, y′) such that

K(x′, y) ≤ K(x′, y′) ≤ K(x, y′) (2.9)

for all x ∈ X and for all y ∈ Y . If such a point exists, the saddle value of K is
K(x′, y′).

From these de�nitions, one can prove the following theorem.

Theorem 2.27 A point (x′, y′) is a saddle point for K if and only if x′ solves
(P ), y′ solves (D), and the saddle value of K exists, i.e.

inf
x∈X

f(x) = sup
y∈Y

g(y)

Proof: One can rewrite the saddle point condition (2.9) as

f(x′) = K(x′, y′) = g(y′).

The theorem then follows from equation (2.8). �

Because of this theorem, (P ) and (D) are called dual problems, since they
can be considered as half of the problem of �nding a saddle point for K.

Hence, in order to prove that (P ) and (D) have a solution, and actually �nd
this solution one can instead attempt to �nd a saddle point for the function K.

In convex optimization, one is interested in what has been done above in the
opposite order: If one starts with (P ), where f : X → R, how can one choose
a space Y and a function K on X × Y such that f(x) = supy∈Y K(x, y) holds?
This approach gives freedom to choose Y and K in di�erent ways, so that one
can (hopefully) achieve the properties one would like Y and K to have. This
idea is called the duality approach.

2.4 Examples of convex optimization via duality

Example 2.28 (Nonlinear programming) Let f0, f1, . . . , fm be real valued, con-
vex functions on a nonempty, convex set C in the vector space X. The duality
approach consists of the following steps:

1. The given problem: min f0(x) over {x ∈ C : fi(x) ≤ 0 ∀ i = 1, . . . ,m}.

2. Abstract representation: min f over X, where

f(x) =

{
f0(x) x ∈ C, fi(x) ≤ 0 for i = 1, . . . ,m
+∞ for all other x ∈ X.

3. Parametrization: De�ne (for example) F (x, u) for u = (u1, . . . , um) ∈ Rm
by F (x, u) = f0(x) if x ∈ C, fi(x) ≤ ui for i = 1, . . . , m, and F (x, u) =
+∞ for all other x. Then, F : X × Rm → [−∞,+∞] is convex and
F (x, 0) = f(x)
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Example 2.29 (Nonlinear programming with in�nitely many constraints) Let
f0 : C → R where C ⊂ X is convex, and let h : X × S → R̄ be convex in the
x-argument, where S is an arbitrary set

1. The problem: min f0(x) over K = {x ∈ C : h(x, s) ≤ 0 ∀ s ∈ S}.

2. Abstract representation: min f(x) over X, where f(x) = f0(x) if x ∈ K,
and f(x) = +∞ for all other x.

3. Parametrization: Choose u analoglously with Example 2.28: Let U be the
linear space of functions u : S → R and let F (x, u) = f0(x) if x ∈ C,
h(x, s) ≤ u(s) ∀ s ∈ S and F (x, u) = +∞ for all other x. As in the
previous example, this makes F convex and satis�es F (x, 0) = f(x).

Example 2.30 (Stochastic optimization) Let (Ω,F , P ) be a probability space
and let h : X × Ω → R̄ be convex in the x-argument, where X is a linear,
topological space. Let C be a closed, convex subset of X.

1. The general problem: minh(x, ω) over all x ∈ C, where ω is a stochastic
element with a known distribution. The di�culty here is that x must be
chosen before ω has been observed.

2. We therefore solve the following problem: Minimize the expectation f(x) =∫
Ω
h(x, ω)dP (ω) over all x ∈ X. Here, it is assumed that h is measurable,

so that f is well de�ned. Rockafellar then shows in [34], Theorem 3, that
f actually is convex.

3. Parametrization: Let F (x, u) =
∫

Ω
h(x−u(ω), ω)dP (ω)+δC(u) for u ∈ U ,

where U is a linear space of measurable functions and δC is the indicator
function of C, as de�ned in De�nition 2.10. Then F is (by the same
argument as for f) well de�ned and convex, with F (x, 0) = f(x).

2.5 Conjugate functions in paired spaces

The material in this section is based on Rockafellar [34] and Rockafellar and
Wets [36].

De�nition 2.31 (Pairing of spaces) A pairing of two linear spaces X and V
is a real valued bilinear form 〈·, ·〉 on X × V .

The pairing associates for each v ∈ V a linear function 〈·, v〉 : x 7→ 〈x, v〉 on
X, and similarly for X.

De�nition 2.32 (Compatible topology) Assume there is a pairing between the
spaces X and V . A topology on X is compatible with the pairing if it is a
locally convex topology such that the linear function 〈·, v〉 is continuous, and any
continuous linear function on X can be written in this form for some v ∈ V . A
compatible topology on V is de�ned similarly.
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De�nition 2.33 (Paired spaces) X and V are paired spaces if one has chosen
a pairing between X and V , and the two spaces have compatible topologies with
respect to the pairing.

Example 2.34 Let X = Rn and V = Rn. Then, the standard Euclidean inner
product is a bilinear form, so X and V become paired spaces.

Example 2.35 Let X = L1(Ω,F , P ) and V = L∞(Ω,F , P ). Then X and V
are paired via the bilinear form 〈x, v〉 =

∫
Ω
x(s)v(s)dP (s). Similarly, the spaces

X = Lp(Ω, F, P ) and V = Lq(Ω, F, P ), where 1
p + 1

q = 1, are paired.

We now come to a central notion of convex duality, the conjugate of a func-
tion.

De�nition 2.36 (Convex conjugate of a function, f∗) Let X and V be paired
spaces. For a function f : X → R̄, de�ne the conjugate of f , denoted by
f∗ : V → R̄, by

f∗(v) = sup{〈x, v〉 − f(x) : x ∈ X}. (2.10)

Finding f∗ is called taking the conjugate of f in the convex sense. One may
also de�ne the conjugate g∗ of a function g : V → R̄ similarly.

Similarly, de�ne

De�nition 2.37 (Biconjugate of a function, f∗∗) Let X and V be paired spaces.
For a function f : X → R̄, de�ne the biconjugate of f , f∗∗, to be the conjugate
of f∗, so f∗∗(x) = sup{〈x, v〉 − f∗(v) : v ∈ V }.

De�nition 2.38 (The Fenchel transform) The operation f 7→ f∗ is called the
Fenchel transform.

If f : Rn → R̄, then the operation f 7→ f∗ is sometimes called the Legendre-
Fenchel transform.

To understand why the conjugate function f∗ is important, it is useful to
consider it via the epigraph. This is most easily done in Rn, so let f : Rn → R̄
and consider X = Rn = V . From equation (2.10), it is not di�cult to show that

(v, b) ∈ epi(f∗) ⇐⇒ b ≥ 〈v, x〉 − a for all (x, a) ∈ epi(f). (2.11)

This can also be expressed as

(v, b) ∈ epi(f∗) ⇐⇒ lv,b ≤ f (2.12)

where lv,b(x) := 〈v, x〉 − b. So, since specifying a function on Rn is equivalent
to specifying its epigraph, equation (2.12) shows that f∗ describes the family of
all a�ne functions that are majorized by f (since all a�ne functions on Rn are
of the form 〈v, x〉 − b for �xed v, b).

But from equation (2.11)

b ≥ f∗(v) ⇐⇒ b ≥ lx,a(v) for all (x, a) ∈ epi(f).



24CHAPTER 2. CONVEXITY, OPTIMIZATION, AND CONVEXDUALITY

epi(f)

(x,a)

l   (x) = <v , x> − b
v,b

Figure 2.6: A�ne functions majorized by f .

epi(f*)

(v,b)

l   (v) = <x , v> − a
x,a

Figure 2.7: A�ne functions majorized by f∗.
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This means that f∗ is the pointwise supremum of all a�ne functions lx,a for
(x, a) ∈ epi(f).

This is illustrated in Figures 2.6 and 2.7.
We then have the following very central theorem on duality, which is Theo-

rem 5 in Rockafellar [34]:

Theorem 2.39 Let f : X → R̄ be arbitrary. Then the conjugate f∗ is a closed
(as de�ned in Section 2.1), convex function on V and f∗∗ = cl(co(f)). Similarly
if one starts with a function in V . In particular, the Fenchel transform induces
a one-to-one correspondence f 7→ h, h = f∗ between the closed, convex functions
on X and the closed, convex functions on V .

Proof: By de�nition f∗ is the pointwise supremum of the continuous, a�ne
functions V 7→ 〈x, v〉−α, where (x, α) ∈ epi(f). Therefore, f∗ is convex and lsc,
hence it is closed. (v, β) ∈ epi(f∗) if and only if the continuous a�ne function
x 7→ 〈x, v〉−β satis�es f(x) ≥ 〈x, v〉−β for all x ∈ X, that is if the epigraph of
this a�ne function contains the epigraph of f . Thus, epi(f∗∗) is the intersection
of all the nonvertical, closed halfspaces in X×R containing epi(f). This implies,
using what a closed, convex set is, that f∗∗ = cl(co(f)). �

Theorem 2.39 implies that if f is convex and closed, then f = f∗∗. This
gives a one-to-one correspondence between the closed convex functions on X,
and the same type of functions on V . Hence, all properties and operations on
such functions must have conjugate counterparts (see [36]).

Example 2.40 ♦
Let X and V be paired spaces, and let f = δL where L ⊆ X is a subspace

(so in particular, L is convex) and δL is the indicator function of L, as in
De�nition 2.10. It follows from Example 2.23 that f = δL is convex. Then

δ∗L(v) = sup{〈x, v〉 − δL(x) : x ∈ X}
= sup{〈x, v〉;x ∈ L}

since 〈x, v〉 − δL(x) = −∞ if x /∈ L. This function δ∗L is called the support
function of L (and is often denoted by ψL). Note also that

δ∗L(v) = δL⊥(v)

because if v ∈ L⊥, then 〈x, v〉 = 0 for all x ∈ L, but if v /∈ L⊥ then 〈x′, v〉 6= 0
for some x′ ∈ L. Hence, since L is a subspace, 〈x′, v〉 can be made arbitrarily
large by multiplying x′ by either +t or −t (in order to make 〈x′, v〉 positive),
and letting t→ +∞.

By a similar argument

δ∗∗L = δ(L⊥)⊥ . (2.13)

We will now use conjugate duality to prove a central result in functional
analysis, namely that for any subspace L ⊆ X, (L⊥)⊥ = L̄ (see for instance
Linear Functional Analysis by Rynne and Youngston [39]).
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Theorem 2.41 Let L ⊆ X be a subspace. Then (L⊥)⊥ = L̄.

Proof: ♦
From Example 2.40

δ∗∗L = δ(L⊥)⊥ (2.14)

But then, Theorem 2.39 implies that δ(L⊥)⊥ = cl(co(δL)). δL is convex, so
co(δL) = δL. To proceed, we make the following claim:

Claim: cl(δL) = δL̄.

Proof of Claim: From De�nition 2.22, cl(δL) = lsc(δL) = the largest lower
semi-continuous function that is less than or equal to δL. δL̄ is lower semi-
continuous since L̄ is closed (from Theorem 2.20). Also, from Example 2.40,
δL̄ ≤ δL since L ⊆ L̄. All that remains to be proved is that if f is lower
semi-continuous and f ≤ δL, then f ≤ δL̄.

So assume that f is lower semi-continuous and f ≤ δL. We know that
δL(L) = δL̄(L), so f(L) ≤ δL(L) ≤ δL̄(L), from the assumption that f ≤ δL.

If x ∈ (L̄)⊥, then δL̄(x) = +∞, so f(x) ≤ δL̄(x).
Finally, if x ∈ L̄\L, then δL(x) = +∞, but δL̄(x) = 0. Hence, we must show

that f(x) ≤ 0. Since f is lower semi-continuous, Theorem 2.20 implies that the
sublevel set S0(f) = {x ∈ X : f(x) ≤ 0} is closed. Because f ≤ δL, L ⊆ S0(f),
hence (since S0(f) is closed) L̄ ⊆ S0(f), so f(x) ≤ 0 for all x ∈ L̄.

So the claim is proved.

The arguments above imply that

δ(L⊥)⊥ = δ∗∗L = cl(co(δL)) = cl(δL) = δL̄

where the �nal equality uses the claim. But this again implies that (L⊥)⊥ = L̄.
�

For a concave function g : X → R̄ one can de�ne the conjugate as:

g∗(v) = inf{〈x, v〉 − g(x) : x ∈ X} (2.15)

This is called taking the conjugate of g in the concave sense.

2.6 Dual problems and Lagrangians

This is our situation as of now. We have an abstract minimization problem:

(P ) min
x∈X

f(x)

which is assumed to have the representation:

f(x) = F (x, 0), F : X × U → R̄ (2.16)



2.6. DUAL PROBLEMS AND LAGRANGIANS 27

(where U is some linear space). Everything now depends on the choice of U and
F . We want to exploit duality, so let X be paired with V , and U paired with Y ,
where U and Y are linear spaces (the choice of pairings may also be important
in applications). Preferably, we want to choose (F,U) such that F is a closed,
jointly convex function of x and u.

De�nition 2.42 (The Lagrange function, K(x, y)) De�ne the Lagrange func-
tion K : X × Y → R̄ to be

K(x, y) = inf{F (x, u) + 〈u, y〉 : u ∈ U}. (2.17)

The following theorem is Theorem 6 in Rockafellar [34]. It says that K is a
closed convex function which satis�es a certain inequality, and that all functions
of this form actually are the Lagrange function associated with some function
f .

Theorem 2.43 The Lagrange function K is closed, concave in y ∈ Y for each
x ∈ X, and if F (x, u) is closed and convex in u

f(x) = sup
y∈Y

K(x, y). (2.18)

Conversely, if K is an arbitrary extended-real valued function on X × Y such
that (2.18) holds, and if K is closed and concave in y, then K is the Lagrange
function associated with a unique representation f(x) = F (x, 0), F : X×U → R̄
where F is closed and convex in u. This means that

F (x, u) = sup{K(x, y)− 〈u, y〉 : y ∈ Y }.

Further, if F is closed and convex in u, K is convex in x if and only if F (x, u)
is jointly convex in x and u.

Proof: Everything in the theorem, apart from the last statement, follows
from Theorem 2.39. For the last statement, assume that F and K respectively
are convex, use the de�nitions of F and K and that the supremum and in�mum
of convex functions are convex (see Theorem 2.24). �

We now de�ne, motivated by equation (2.18), the dual problem of (P ),

(D) max
y∈Y

g(y)

where g(y) = infx∈X K(x, y).
Note that this dual problem gives a lower bound on the primal problem,

from (2.18) since

K(x, y) ≥ inf
x∈X

K(x, y) = g(y).

But then
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sup
y∈Y

K(x, y) ≥ sup
y∈Y

g(y).

So from equation (2.18), f(x) ≥ supy∈Y g(y). Therefore, taking the in�mum
with respect to x ∈ X on the left hand side implies (D) ≤ (P ). This is called
weak duality. Sometimes, one can prove that the dual and primal problems have
the same optimal value. If this is the case, there is no duality gap and strong
duality holds.

The next theorem (Theorem 7 in Rockafellar [34]) is important:

Theorem 2.44 The function g in (D) is closed and concave. By taking the
conjugate in concave sense, g = −ϕ∗, hence −g∗ = cl(co(ϕ)), so

sup
y∈Y

g(y) = cl(co(ϕ))(0)

while

inf
x∈X

f(x) = ϕ(0)

In particular, if F (x, u) is convex in (x, u), then −g∗ = cl(ϕ) and supy∈Y g(y) =
lim infu→0 ϕ(u) (except if 0 /∈ cl(dom(ϕ)) 6= Ø, and lsc(ϕ) is nowhere �nite
valued).

For the proof, see Rockafellar [34].
What makes this theorem important is that it converts the question of

whether infx∈X f(x) = supy∈Y g(y) and the question of whether the saddle
value of the Lagrange function K exists, to a question of whether the optimal
value function ϕ satis�es ϕ(0) = (cl(co(ϕ)))(0). Hence, if the value function ϕ
is convex, the lower semi-continuity of ϕ is a su�cient condition for the absence
of a duality gap.

By combining the results of the previous sections, we get the following rough
summary of the duality method, based on conjugate duality:

� To begin, there is a minimization problem minx∈X f(x) which cannot be
solved directly.

� Find a function F : X × U → R̄, where U is a vector space, such that
f(x) = F (x, 0).

� Introduce the linear space Y , paired with U , and de�ne the Lagrange
function K : X × Y → R̄ by K(x, y) = infu∈U{F (x, u) + 〈u, y〉}.

� Try to �nd a saddle point for K. If this succeeds, Theorem 2.27 tells us
that this gives the solution of (P ) and (D).

� Theorem 2.44 tells us that K has a saddle point if and only if ϕ(0) =
(cl(co(ϕ)))(0). Hence, if the value function ϕ is convex, the lower semi-
continuity of ϕ is a su�cient condition for the absence of a duality gap.
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We can look at an example illustrating these de�nitions, based on Exam-
ple 2.28.

Example 2.45 ♦
(Nonlinear programming) The Lagrange function takes the form

K(x, y) = inf{F (x, u) + 〈u, y〉 : u ∈ U}

= inf{

{
f0(x) + 〈u, y〉;x ∈ C, fi(x) ≤ ui
+∞+ 〈u, y〉;∀ other x

: u ∈ U}

=

{
f0(x) + inf{〈u, y〉 : u ∈ U, fi(x) ≤ ui}, x ∈ C
+∞, otherwise.

=


inf{f0(x) + f1(x)y1 + . . .+ fm(x)ym}, u ∈ U, x ∈ C, y ∈ Rm+
−∞, x ∈ C, y /∈ Rm+
+∞, otherwise.

where the last equality follows because if there is at least one negative yj, one
can choose uj arbitrarily large and make the above expression arbitrarily small.
Therefore, the dual function is

g(y) = inf
x∈X

K(x, y)

= inf
x∈X


f0(x) + f1(x)y1 + . . .+ fm(x)ym if x ∈ C, y ∈ Rm+
−∞, x ∈ C, y /∈ Rm+
+∞, otherwise.

=

{
infx∈C{f0(x) + f1(x)y1 + . . .+ fm(x)ym} if y ∈ Rm+
−∞, y /∈ Rm+ .

By making some small alterations to the approach above, Rockafellar [34] shows
that by beginning with the standard primal linear programming problem (ab-
breviated LP-problem)

max{〈c, x〉 : Ax ≤ b, x ≥ 0}

where c and b are given vectors and A is a given matrix, and �nding its dual
problem (in the above sense), one gets the standard dual LP-problem back.
That is

min{〈b, y〉 : AT y ≥ c, y ≥ 0}

(see Vanderbei [42]).

The purpose of this chapter has been to introduce the convexity theory nec-
essary to understand duality methods in mathematical �nance. The de�nitions
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and theorems from convex analysis will be used throughout the thesis, and the
conjugate duality theory by Rockafellar [34] will be applied in Sections 3.2, 6.2,
6.4, and 7.2. The next chapter introduces convex risk measures. This is a
topic where convexity theory is essential, and it is also useful in mathematical
�nance.



Chapter 3
Convex risk measures

The purpose of this chapter is to de�ne the notion of convex risk measure,
derive some properties of such risk measures and prove a dual representation
theorem (Theorem 3.8) via the conjugate duality theory of Chapter 2. Convex
risk measures will be applied in a utility maximization problem in Section 5.9.
Section 3.1 is devoted to the de�nition of convex risk measures (De�nition 3.1),
and some corresponding notions, such as coherent risk measures (De�nition 3.2)
and acceptance sets (se De�nition 3.4). This section also considers some prop-
erties of convex risk measures; see Theorem 3.3 and Theorem 3.7.

Section 3.2 is derives dual representation theorems for convex risk measures.
The most important of these theorems is Theorem 3.8, which is proved using
the convex duality theorem, Theorem 2.39, of Chapter 2.

3.1 The basics of convex risk measures

This section is based on the papers Artzner et al. [1], Föllmer and Schied [13],
[12], Frittelli and Gianin [14] and Rockafellar [35]. The notion of coherent risk
measure was introduced by Artzner et al. in the seminal paper [1].

Most things in life are uncertain, therefore, risk is very important. How
to quantify risk is an interesting question, and this is especially important in
�nance. Over the years researchers have tried many di�erent methods for this
quanti�cation, but most of these seem to be �awed. One approach to the quan-
ti�cation of risk could be computing the variance. The problem in this case
is that the variance does not separate between negative and positive devia-
tions, and is therefore not suitable in �nance where positive deviations are good
(earning more money), but negative deviations are bad (earning less money).
In order to resolve this, Artzner et al. [1] set up some economically reasonable
axioms that a measure of risk should satisfy and thereby introduced the notion
of coherent risk measure. This notion has later been modi�ed to a convex risk
measure, which is a more general term.

31
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This chapter requires some measure theory, see for example Shilling [41] for
more.

On a given scenario space Ω, one can de�ne a σ-algebra F , that is a family of
subsets of Ω that contains the empty set ∅ and is closed under complements and
countable unions. The elements in the σ-algebra F are called measurable sets.
(Ω,F) is then called a measurable space. A measurable function is a function
f : (Ω,F)→ (Ω′,F ′) (where (Ω′,F ′) is another measurable space) such that the
inverse image of any measurable set is a measurable set. A random variable is a
real-valued measurable function. On a measurable space (Ω,F) one can de�ne
a measure, i.e. a non-negative countably additive function µ : Ω→ R such that
µ(∅) = 0. Then, (Ω,F , µ) is called a measure space. A signed measure is the
same as a measure, but without the non-negativity requirement. A probability
measure is a measure P such that P (Ω) = 1. Let P denote the set of all
probability measures on (Ω,F), and V the set of all measures on (Ω,F). Then
V is a vector space, and P ⊆ V is a convex set.

In the following, let Ω be a �xed set of scenarios, or possible states of the
world. Consider the measure space (Ω,F , P ), where F is a given σ-algebra on
Ω and P is a given probability measure on (Ω,F). A �nancial position, for
example a portfolio of stocks, can be described by a mapping X : Ω→ R, where
X(ω) is the value of the position at the end of the trading period if the state
ω occurs. More formally, X is a random variable. Hence, the dependency of X
on ω describes the uncertainty of the value of the portfolio. Let X be a given
vector space of such random variables X : Ω→ R, which contains the constant
functions (that is, the functions of the form (c1)(ω) = c for all ω ∈ Ω, where
c ∈ R is some constant). An example of such a space is Lp(Ω,F , P ). A convex
risk measure is de�ned as follows:

De�nition 3.1 (Convex risk measure) A convex risk measure is a function
ρ : X→ R which satis�es the following for each X,Y ∈ X:

(i) (Convexity) ρ(λX + (1− λ)Y ) ≤ λρ(X) + (1− λ)ρ(Y ) for 0 ≤ λ ≤ 1.

(ii) (Monotonicity) If X ≤ Y , then ρ(X) ≥ ρ(Y ).

(iii) (Translation invariance) If m ∈ R, then ρ(X +m1) = ρ(X)−m.

If ρ(X) ≤ 0, X is acceptable (to an investor), since the portfolio does not have
a positive risk. On the other hand, if ρ(X) > 0, X is unacceptable.

If a convex risk measure also satis�es positive homogeneity, that is if

λ ≥ 0⇒ ρ(λX) = λρ(X)

then ρ is called a coherent risk measure. The original de�nition of a coherent risk
measure, did not involve convexity directly, but instead required subadditivity:

De�nition 3.2 (Coherent risk measure) A coherent risk measure is a function
π : X→ R which satis�es the following for each X,Y ∈ X:

(i) (Positive homogeneity) π(λX) = λπ(X) for λ ≥ 0.
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(ii) (Subadditivity) π(X + Y ) ≤ π(X) + π(Y ).

(iii) (Monotonicity) If X ≤ Y , then π(X) ≥ π(Y ).

(iv) (Translation invariance) If m ∈ R, then π(X +m1) = π(X)−m.

One can interpret ρ as a capital requirement, that is: ρ(X) is the extra
amount of money which should be added to (or withdrawn from) the portfolio
(in a risk free way) to make the position acceptable for an agent.

The conditions for being a convex risk measure are quite natural. The con-
vexity re�ects that diversi�cation reduces risk. The total risk of loss in two
portfolios should be reduced when the two are weighed into a mixed portfolio.
Roughly speaking, spreading your eggs in several baskets should reduce the risk
of broken eggs.

Monotonicity says that the downside risk, the risk of loss, is reduced by
choosing a portfolio that has a higher value in every possible state of the world.

Finally, translation invariance can be interpreted in the following way: ρ
is the amount of money one needs to add to the portfolio in order to make it
acceptable for an agent. Hence, if one adds a risk free amountm to the portfolio,
the capital requirement should be reduced by the same amount.

As mentioned, Artzner et al. [1] originally de�ned coherent risk measures,
that is, they required positive homogeneity. The reason for skipping this require-
ment in the de�nition of a convex risk measure, is that positive homogeneity
means that risk grows linearly with X, and this may not always be the case.
Therefore, only convex risk measures will be considered in the following.

Starting with n convex risk measures, one can derive more convex risk mea-
sures, as in the following theorem. This was proven by Rockafellar in [35],
Theorem 3, for coherent risk measures.

Theorem 3.3 ♦
Let ρ1, ρ2, . . . , ρn be convex risk measures.

1. If λ1, λ2, . . . , λn ≥ 0 and
∑n
i=1 λi = 1, then ρ =

∑n
i=1 λiρi is a convex

risk measure as well.

2. ρ = max{ρ1, ρ2, . . . , ρn} is a convex risk measure.

Proof: ♦

1. Let's check the requirements in De�nition 3.1. Obviously, ρ : X → R, so
we check for any X,Y ∈ X, 0 ≤ λ ≤ 1:

(i) : This follows from that a sum of convex functions is a convex func-
tion, and a positive constant times a convex function is also a convex
function (see Theorem 2.24 parts 5 and 6, plus induction on part 5).

(ii) : If X ≤ Y , then ρ(X) =
∑n
i=1 λiρi(X) ≥

∑n
i=1 λiρi(Y ) = ρ(Y ).
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(iii) : If m ∈ R,

ρ(X +m) =

n∑
i=1

λiρi(X +m)

=

n∑
i=1

λi(ρi(X)−m)

=

n∑
i=1

λiρi(X)−m
n∑
i=1

λi

= ρ(X)−m.

2. Again, let's simply check De�nition 3.1 for any X,Y ∈ X:

(i) : If 0 ≤ λ ≤ 1,

ρ(λX + (1− λ)Y ) = max{ρ1(λX + (1− λ)Y ),
. . . , ρn(λX + (1− λ)Y )}
≤ max{λρ1(X) + (1− λ)ρ1(Y ),
. . . , λρn(X) + (1− λ)ρn(Y )}
≤ λmax{ρ1(X), . . . , ρn(X)}
+(1− λ) max{ρ1(Y ), . . . , ρn(Y )}
= λρ(X) + (1− λ)ρ(Y ).

(ii) : If X ≤ Y ,

ρ(X) = max{ρ1(X), . . . , ρn(X)}
≥ max{ρ1(Y ), . . . , ρn(Y )}
= ρ(Y ).

(iii) : For m ∈ R,

ρ(X +m) = max{ρ1(X +m), . . . , ρn(X +m)}
= max{ρ1(X)−m, . . . , ρn(X)−m}
= max{ρ1(X), . . . , ρn(X)} −m
= ρ(X)−m.

�

Associated with every convex risk measure ρ, there is a natural set of all
acceptable portfolios, called the acceptance set, Aρ, of ρ.

De�nition 3.4 (The acceptance set of a convex risk measure, Aρ) A convex
risk measure ρ induces a set

Aρ = {X ∈ X : ρ(X) ≤ 0}

The set Aρ is called the acceptance set of ρ.
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The set of acceptable portfolios

X

X+m(1,1)

w

w1

2

Figure 3.1: Illustration of the risk measure ρA associated with a set A of ac-
ceptable portfolios.

Conversely, given a class A ⊆ X of acceptable portfolios, one can associate
a quantitative risk measure ρA to it.

De�nition 3.5 Let A ⊆ X be a set of "acceptable" random variables. This set
has an associated measure of risk ρA de�ned as follows: For X ∈ X, let

ρA(X) = inf{m ∈ R : X +m ∈ A}. (3.1)

This means that ρA(X) measures how much one must add to the portfolio X,
in a risk free way, to get the portfolio into the set A of acceptable portfolios.
This is the same interpretation as for a convex risk measure.

The previous de�nitions show that one can either start with a risk measure,
and derive an acceptance set, or one can start with a set of acceptable portfolios,
and derive a risk measure.

Example 3.6 ♦
(Illustration of the risk measure ρA associated with a set A of acceptable portfo-
lios) Let Ω = {ω1, ω2}, and let X : Ω→ R be a portfolio. Let x = (X(ω1), X(ω2)).
If the set of acceptable portfolios is as in Figure 3.1 , the risk measure ρA asso-
ciated with the set A can be illustrated as in the �gure.

Based on this theory, a theorem on the relationship between risk measures
and acceptable sets can be derived. The following theorem is a version of Propo-
sition 2.2 in Föllmer and Schied [12].

Theorem 3.7 Let ρ be a convex risk measure with acceptance set Aρ. Then:

(i) ρAρ = ρ

(ii) Aρ is a nonempty, convex set.

(iii) If X ∈ Aρ and Y ∈ X are such that X ≤ Y , then Y ∈ Aρ

(iv) If ρ is a coherent risk measure, then Aρ is a convex cone.
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Conversely, let A be a nonempty, convex subset of X. Let A be such that if
X ∈ A and Y ∈ X satisfy X ≤ Y , then Y ∈ A. Then, the following holds:

(v) ρA is a convex risk measure.

(vi) If A is a convex cone, then ρA is a coherent risk measure.

(vii) A ⊆ AρA .

Proof: ♦

(i) For any X ∈ Aρ

ρAρ(X) = inf{m ∈ R : m+X ∈ Aρ}
= inf{m ∈ R : m+X ∈ {Y ∈ X : ρ(Y ) ≤ 0}}
= inf{m ∈ R : ρ(m+X) ≤ 0}
= inf{m ∈ R : ρ(X)−m ≤ 0}
= inf{m ∈ R : ρ(X) ≤ m}
= ρ(X)

where we have used the de�nition of a convex risk measure (De�nition 3.1)
and an acceptance set (De�nition 3.4).

(ii) Aρ 6= ∅ because X = 0 ∈ Aρ. Aρ is a convex set from property 9 of
Theorem 2.24 (since ρ is a convex function).

(iii) Since X ∈ Aρ, ρ(X) ≤ 0, but because Y ∈ X is such that X ≤ Y ,
ρ(Y ) ≤ ρ(X) (from the de�nition of a convex risk measure). Hence

ρ(Y ) ≤ ρ(X) ≤ 0.

So Y ∈ Aρ (from the de�nition of an acceptance set).

(iv) Let ρ be a coherent risk measure, and let X,Y ∈ Aρ and α, β ≥ 0. Then,
from the positive homogeneity and subadditivity of coherent risk measures
(see De�nition 3.2), in addition to the de�nition of Aρ

ρ(αX + βY ) ≤ αρ(X) + βρ(Y ) ≤ α · 0 + β · 0 = 0.

Hence αX + βY ∈ Aρ, so from De�nition 2.7, Aρ is a convex cone.

(v) We check De�nition 3.1: ρA : X→ R. Also, for 0 ≤ λ ≤ 1, X,Y ∈ X

ρA(λX + (1− λ)Y ) = inf{m ∈ R : m+ λX + (1− λ)Y ∈ A}
≤ λ inf{m ∈ R : m+X ∈ A} (3.2)

+(1− λ) inf{m ∈ R : m+ Y ∈ A}
= λρA(X) + (1− λ)ρA(Y )
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where the inequality follows because λρA(X) + (1− λ)ρA(Y ) = K +L, is
a real number which will make the portfolio become acceptable because

(K + L) + (λX + (1− λ)Y ) = (K + λX) + (L+ (1− λ)Y )

= λ(inf{m ∈ R : m+X ∈ A}+X)+

(1− λ)(inf{m ∈ R : m+ Y ∈ A}+ Y ) ∈ A

since A is convex (see Figure 3.2). In addition, if X,Y ∈ X, X ≤ Y

ρA(X) = inf{m ∈ R : m+X ∈ A}
≥ inf{m ∈ R : m+ Y ∈ A}
= ρA(Y )

since X ≤ Y . Finally, for k ∈ R and X ∈ X

ρA(X + k) = inf{m ∈ R : m+X + k ∈ A}
= inf{s− k ∈ R : s+X ∈ A}
= inf{s ∈ R : s+X ∈ A} − k
= ρA(X)− k.

Hence, ρA is a convex risk measure.

(vi) From (v), all that remains to show is positive homogeneity. For α > 0

ρA(αX) = inf{m ∈ R : m+ αX ∈ A}

= inf{m ∈ R : α(
m

α
+X) ∈ A}

= inf{m ∈ R :
m

α
+X ∈ A}

= inf{αk ∈ R : k +X ∈ A}
= α inf{k ∈ R : k +X ∈ A}
= αρA(X)

where we have used that A is a convex cone in equality number three.
Hence, ρA is a coherent risk measure.

(vii) Note that AρA = {X ∈ X : ρA(X) ≤ 0} = {X ∈ X : inf{m ∈ R : m+X ∈
A} ≤ 0}.
Let X ∈ A, then inf{m ∈ R : m + X ∈ A} ≤ 0, since m = 0 will su�ce,
since X ∈ A. Hence X ∈ AρA .

�
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X

Y

Acceptable portfolios

Convex 
combination of

X and Y

X + m (1,1)X

Y + m (1,1)Y

Figure 3.2: Illustration of proof of Theorem 3.7 part (v).

3.2 A dual characterization of convex risk mea-

sures

We want to use the theory presented in Chapter 2 to derive a dual characteriza-
tion of a convex risk measure ρ. Therefore, let V be a vector space that is paired
with the vector space X of �nancial positions (in the sense of De�nition 2.33).
For instance, if X is given a Hausdor� topology, so that it becomes a topological
vector space (for de�nitions of these terms, see Pedersen's Analysis Now, [28]),
V can be the set of all continuous linear functionals from X into R, as in Frittelli
and Gianin [14].

Using the theory presented in Chapter 2, and in particular Theorem 2.39, a
dual characterization of a convex risk measure ρ can be derived. The following
Theorem 3.8 is Theorem 6 in Frittelli and Gianin [14]. In Theorem 3.8, ρ∗

denotes the conjugate of ρ in the sense of De�nition 2.36, ρ∗∗ is the biconjugate
of ρ as in De�nition 2.37, and 〈·, ·〉 is a pairing as in De�nition 2.31.

Theorem 3.8 Let ρ : X → R be a convex risk measure. Assume in addition
that ρ is lower semi-continuous. Then ρ = ρ∗∗. Hence for each X ∈ X

ρ(X) = sup{〈X, v〉 − ρ∗(v) : v ∈ V }
= sup{〈X, v〉 − ρ∗(v) : v ∈ dom(ρ∗)}

where 〈·, ·〉 is a pairing between X and V .

Proof: ♦
Since ρ is a convex risk measure, it is a convex function (see De�nition 3.1

and De�nition 2.11). Hence the convex hull of ρ is equal to ρ, i.e. co(ρ) = ρ
(see De�nition 2.21). In addition, since ρ is lower semi-continuous and always
greater than −∞, ρ is closed (see comment after De�nition 2.22), so cl(ρ) = ρ.
Therefore

cl(co(ρ)) = cl(ρ) = ρ.
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But Theorem 2.39 says that ρ∗∗ = cl(co(ρ)), hence ρ = ρ∗∗.
The second to last equation in the theorem follows directly from the de�ni-

tion of ρ∗∗ (De�nition 2.37), while the last equation follows because the supre-
mum cannot be achieved when ρ∗ = +∞. �

Theorem 3.8 is quite abstract, but by choosing a speci�c set of paired spaces,
X and V , some nice results can be derived.

The next theorem is due to Föllmer and Schied [11]. Consider the paired
spaces X = Rn, V = Rn with the standard Euclidean inner product, denoted ·,
as pairing (see Example 2.34).

In the following, let (Ω,F) be a measurable space and let P denote the set
of all probability measures over Ω. Also, let ρ∗ be the conjugate of ρ, as in
De�nition 2.36.

Theorem 3.9 Assume that Ω is �nite. Then, any convex risk measure ρ : X→
R can be represented in the form

ρ(X) = sup
Q∈P
{EQ[−X]− α(Q)} (3.3)

where EQ[·] denotes the expectation with respect to Q and α : P → (−∞,∞] is
a "penalty function" which is convex and closed. Actually, α(Q) = ρ∗(−Q) for
all Q ∈ P.

The proof of this theorem is from Convex Risk Measures for Portfolio Op-
timization and Concepts of Flexibility by Luthi and Doege [25], some details of
that proof have been �lled out.

Proof: ♦
To show that ρ : X → R (as in Theorem 3.9) is a convex risk measure we

check De�nition 3.1: Let λ ∈ [0, 1],m ∈ R, X, Y ∈ X.

(i) :

ρ(λX + (1− λ)Y ) = sup
Q∈P
{EQ[−(λX + (1− λ)Y )]− α(Q)}

= sup
Q∈P
{λEQ[−X] + (1− λ)EQ[−Y ]− α(Q)}

≤ λ sup
Q∈P
{EQ[−X]− α(Q)}

+(1− λ) sup
Q∈P
{EQ[−Y ]− α(Q)}

= λρ(X) + (1− λ)ρ(Y ).

(ii) : Assume X ≤ Y . Then −X ≥ −Y , so

ρ(X) = sup
Q∈P
{EQ[−X]− α(Q)}

≥ sup
Q∈P
{EQ[−Y ]− α(Q)}

= ρ(Y ).
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(iii) :

ρ(X +m1) = sup
Q∈P
{EQ[−(X +m1)]− α(Q)}

= sup
Q∈P
{EQ[−X]−mEQ[1]− α(Q)}

= sup
Q∈P
{EQ[−X]−m− α(Q)}

= sup
Q∈P
{EQ[−X]− α(Q)} −m

= ρ(X)−m.

Hence, ρ is a convex risk measure.

So, assume that ρ is a convex risk measure. The conjugate function of ρ,
denoted ρ∗, is then de�ned as ρ∗(v) = supX∈X{v ·X − ρ(X)} (where · denotes
Euclidean inner product) for all v ∈ V (= Rn). Fix an X ∈ X and consider
Ym := X +m1 ∈ X for an arbitrary m ∈ R. Then

ρ∗(v) ≥ sup
m∈R
{v · Ym − ρ(Ym)}

because {Ym}m∈R ⊂ X. This means that

ρ∗(v) ≥ sup
m∈R
{v · (X +m1)− ρ(X +m1)}

= sup
m∈R
{m(v · 1 + 1)}+ v ·X − ρ(X)

where the equality follows from the translation invariance of ρ (see De�ni-
tion 3.1). The �rst term in the last expression is only �nite if v · 1 + 1 = 0,
(where 1 = (1, 1, . . . , 1) ∈ Rn) i.e. if

∑n
i=1 vi = −1 (if not, one can make the

�rst term go towards +∞ by letting m go towards either +∞ or −∞). It is
now proved that in order for ρ∗(v) < +∞,

∑n
i=1 vi = −1 must hold.

Again, consider an arbitrary, but �xed X ∈ X, X ≥ 0 (here, X ≥ 0 means
component-wise). Then, for all λ ≥ 0, we have λX ≥ 0, and λX ∈ X, and hence
ρ(λX) ≤ ρ(0), from the monotonicity of ρ (again, see De�nition 3.1). Therefore,
by the same type of arguments as above

ρ∗(v) ≥ sup
λ≥0
{v · λX − ρ(λX)} ≥ sup

λ≥0
{v · (λX)} − ρ(0).

Here, ρ∗(v) is only �nite if v ·X ≤ 0 for all X ≥ 0, hence v ≤ 0.

We then get that the conjugate ρ∗ is reduced to

ρ∗(v) =

{
supX∈X{v ·X − ρ(X)} where v · 1 = −1 and v ≤ 0

+∞ otherwise .
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Now, de�ne α(Q) = ρ∗(−Q) for all Q ∈ P. From Theorem 3.8, ρ = ρ∗∗. But

ρ∗∗(X) = sup
v∈V
{v ·X − ρ∗(v)}

= sup
Q∈P
{(−Q) ·X − α(Q)}

= sup
Q∈P
{
n∑
i=1

Qi(−Xi)− α(Q)}

= sup
Q∈P
{EQ[−X]− α(Q)}

where Qi, Xi denote the i'th components of the vectors Q,X respectively. Hence
ρ(X) = ρ∗∗(X) = supQ∈P{EQ[−X]− α(Q)}. �

Theorem 3.9 says that any convex risk measure ρ : Rn → R is the expected
value of the negative of a contingent claim, −X, minus a penalty function, α(·),
under the worst case probability. Note that we consider the expectation of −X,
not X, since losses are negative in our context.

We already know that the penalty function α in Theorem 3.9 is of the form
α(Q) = ρ∗(−Q). Actually, Luthi and Doege [25] proved that it is possible to
derive a more intuitive representation of α (see Corollary 2.5 in [25]).

Theorem 3.10 Let ρ : Rn → R be a convex risk measure, and let Aρ be its
acceptance set (in the sense of De�nition 3.4). Then, Theorem 3.9 implies that
ρ(X) = supQ∈P{EQ[−X] − α(Q)}, where α : P → R is a penalty function.
Then, α is of the form

α(Q) = sup
X∈Aρ

{EQ[−X]}.

Proof: ♦
It su�ces to prove that for all Q ∈ P

ρ∗(−Q) = sup
X∈X
{EQ[−X]− ρ(X)} = sup

X∈Aρ
{EQ[−X]} (3.4)

since we know that α(Q) = ρ∗(−Q).
For allX ∈ Aρ, ρ(X) ≤ 0 (see De�nition 3.4), so EQ[−X]−ρ(X) ≥ EQ[−X].

Hence, since Aρ ⊆ X

ρ∗(−Q) ≥ sup
X∈Aρ

{EQ[X]− ρ(X)} ≥ sup
X∈Aρ

{EQ[−X]}.

To prove the opposite inequality, and hence to prove equation (3.4), assume
for contradiction that there existsQ ∈ P such that ρ∗(−Q) > supX∈Aρ{EQ[−X]}.
From the de�nition of supremum, there exists a Y ∈ X such that

EQ[−Y ]− ρ(Y ) > EQ[−X] for all X ∈ Aρ.
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Note that Y + ρ(Y )1 ∈ Aρ since ρ(Y + ρ(Y )1) = ρ(Y ) − ρ(Y ) = 0. Therefore
EQ[−Y ]− ρ(Y ) > EQ[−(Y + ρ(Y )1)] = EQ(−Y ) + ρ(Y )EQ[−1] = EQ(−Y )−
ρ(Y ), which is a contradiction. Hence, the result is proved. �

Together, Theorem 3.9 and Theorem 3.10 provide a good understanding
of convex risk measures in Rn: Any convex risk measure ρ : Rn → R can
be written in the form ρ(X) = supQ∈P{EQ[−X] − α(Q)}, where α(Q) =
supX∈Aρ{EQ[−X]} and Aρ is the acceptance set of ρ. But what about in�nite-
dimensional spaces? Can a similar representation of ρ be derived? This is
partially answered in the following Theorem 3.11, which is Theorem 2.2 in
Ruszczynski and Shapiro [38], modi�ed slightly to our setting.

First, let's introduce the setting of Theorem 3.11. Let (Ω,F) be a measurable
space and let V̄ be the vector space of all �nite signed measures on (Ω,F). For
each v ∈ V̄ we know that there is a Jordan decomposition of v, so v = v+− v−.
Let |v| = v+ + v−. Let X be a vector space of measurable functions X : Ω→ R.
Also, let X+ = {X ∈ X : X(ω) ≥ 0 ∀ ω ∈ Ω}. This gives a partial order relation
on X, so X ≤ Y where X,Y ∈ X means Y −X ∈ X+.

Let V ⊆ V̄ be the measures v ∈ V such that
∫

Ω
|X(ω)|d|v| < +∞ for all

X ∈ X. V is a vector space because of uniqueness of the Jordan decomposition
and linearity of integrals. For example: If v, w ∈ V then |v+w| = (v+w)++(v+
w)− = (v+ +w+) + (v− +w−) = |v|+ |w| by uniqueness of the decomposition,
hence

∫
Ω
|X|d|v + w| =

∫
Ω
|X|d|v| +

∫
Ω
|X|d|w| < +∞. De�ne the pairing

〈X, v〉 =
∫

Ω
X(ω)dv(ω). Let V− ⊆ V be the non-positive measures in V and let

P be the set of probability measures in V .

Assume the following:

(A): If v /∈ V− = {v ∈ V : v ≤ 0}, then there exists an

X ′ ∈ X+ such that 〈X ′, v〉 > 0.

Now, let X and V have topologies so that they become paired spaces under
the pairing 〈·, ·〉.

For example, let X = Lp(Ω,F , P ) where P is a measure, and let V be as
above. Each signed measure v ∈ V can be decomposed so that v = vP+v′, where
vP is absolutely continuous with respect to P (i.e. P (A) = 0 ⇒ vP (A) = 0).
Then, dvP = MdP , where M : Ω → R is the Radon-Nikodym density of v
w.r.t. P . Look at V ′ := {v ∈ V :

∫
Ω
|X(ω)|d|vP | < +∞} ⊆ V . This is a

vector space for the same reasons that V is a vector space. Then, any signed
measure v ∈ V ′ can be identi�ed by the Radon-Nikodym derivative of vP w.r.t.
P , that is by M . Actually, M ∈ Lq(Ω,F , P ), where 1

p + 1
q = 1, because∫

Ω
|M |qdP =

∫
Ω
|M |q−1d|vP | < +∞. Hence, each signed measure v ∈ V ′ is

identi�ed in Lq by its Radon-Nikodym density with respect to P .

Note that the pairing de�ned above actually is the usual bilinear form be-
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tween Lp and Lq since for p ∈ Lp, q ∈ Lq

〈p, q〉 =

∫
Ω

p(ω)q(ω)dP (ω)

=

∫
Ω

p(ω)M(ω)dv(ω)

=

∫
Ω

p(ω)dv(ω)

(3.5)

where the second equality follows from that any q ∈ Lq can be viewed as a
Radon-Nikodym derivative w.r.t. P for some signed measure v ∈ V ′ and the
third equality from the de�nition of a Radon-Nikodym derivative. See Exam-
ple 2.35.

In the following theorem monotonicity and translation invariance mean the
same as in De�nition 3.1.

Theorem 3.11 Let X be a vector space paired with the space V , both of the form
above. Let ρ : X→ R be a proper, lower semi-continuous convex function. From
Theorem 2.39 the following holds: ρ(X) = sup{〈X, v〉 − ρ∗(v) : v ∈ dom(ρ∗)}.

We then have the following results:

(i) ρ is monotone ⇐⇒ All v ∈ dom(ρ∗) are such that v ≤ 0

(ii) ρ is translation invariant ⇐⇒ v(Ω) = −1 for all v ∈ dom(ρ∗).

Hence, if ρ is a convex risk measure (so monotonicity and translation
invariance hold), then v ∈ dom(ρ∗) implies that Q := −v ∈ P and

ρ(X) = sup
Q∈P
{〈X,−Q〉 − ρ∗(−Q)}

= sup
Q∈P
{〈−X,Q〉 − ρ∗(−Q)}

= sup
Q∈P
{EQ[−X]− α(Q)}

where α(Q) := ρ∗(−Q) is a penalty function and the pairing, i.e. the
integral, is viewed as an expectation.

Proof: ♦

(i) : Assume monotonicity of ρ. We want to show that ρ∗(v) = +∞ for all
v /∈ V−. From assumption (A), v /∈ V− ⇒ there exists X ′ ∈ X+ such
that 〈X ′, v〉 > 0. Take X ∈ dom(ρ), so that ρ(X) < +∞ and consider
Ym = X + mX ′. For m ≥ 0, monotonicity implies that ρ(X) ≥ ρ(Ym)
(since Ym = X +mX ′ ≥ X because X ′ ≥ 0). Hence
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ρ∗(v) ≥ sup
m∈R+

{〈Ym, v〉 − ρ(Ym)}

= sup
m∈R+

{〈X, v〉+m〈X ′, v〉 − ρ(X +mX ′)}

≥ sup
m∈R+

{〈X, v〉+m〈X ′, v〉 − ρ(X)}

where the last inequality uses the monotonicity. But since 〈X ′, v〉 > 0,
by letting m → +∞, one gets ρ∗(v) = +∞ (since X ∈ dom(ρ), so
ρ(X) < +∞, and 〈X, v〉 is bounded since 〈X, ·〉 and 〈·, v〉 are bounded
linear functionals).

Hence, monotonicity implies that ρ∗(v) = +∞, unless v ≤ 0, so all v ∈
dom(ρ∗) are such that v ≤ 0.

Conversely, Assume that all v ∈ dom(ρ∗) are such that v ≤ 0. Take
X,Y ∈ X, Y ≤ X (i.e. X − Y ≥ 0). Then 〈Y, v〉 ≥ 〈X, v〉 (from the
linearity of the pairing). Since ρ(X) = supv∈dom(ρ∗){〈X, v〉 − ρ

∗(v)}, it
follows that ρ(X) ≤ ρ(Y ). Hence (i) is proved.

(ii) : Assume translation invariance. Let 1 : Ω → R denote the random
variable constantly equal to 1, so 1(ω) = 1 ∀ ω ∈ Ω. This random variable
is clearly measurable, so 1 ∈ X. For X ∈ dom(ρ)

ρ∗(v) ≥ sup
m∈R
{〈X +m1, v〉 − ρ(X +m1)}

= sup
m∈R
{m〈1, v〉+ 〈X, v〉 − ρ(X) +m}

= sup
m∈R
{m(v(Ω) + 1) + 〈X, v〉 − ρ(X)}.

Hence, ρ∗(v) = +∞, unless v(Ω) = 〈1, v〉 = −1.

Conversely, if v(Ω) = −1, then 〈X+m1, v〉 = 〈X, v〉−v(Ω)m = 〈X, v〉−m.
(where the �rst equality follows from linearity of the pairing). Hence,
translation invariance follows from ρ(X) = supv∈dom(ρ∗){〈X, v〉− ρ

∗(v)}.

�

Föllmer and Schied proved a version of Theorem 3.11 for X = L∞(Ω,F , P ),
V = L1(Ω,F , P ) in Convex measures of risk and trading constraints (see [11]).
In this case, it is su�cient to assume that the acceptance set Aρ of ρ is weak*-
closed (i.e., closed with respect to the coarsest topology that makes all the
linear functionals originating from the inner product, 〈·, v〉 continuous) in order
to derive a representation of ρ as above.

This chapter has introduced convex risk measures and proved dual represen-
tation theorems for such measures using the conjugate duality theory of Chap-
ter 2. Hence, the chapter illustrates one application of duality in mathematical
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�nance. Convex risk measures, and their dual representation theorems will be
used in a utility maximization problem in Section 5.9. The following chapter
will introduce a model for the �nancial market, and also some central terms of
mathematical �nance.
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Chapter 4
Mathematical �nance

Mathematical �nance is the mathematical theory of �nancial markets. In this
�eld, one tries to model the �nancial market in order to learn more about how it
works. Mathematical �nance is used widely in "the real world", and uses plenty
of advanced mathematics. The goal of the following chapter is to introduce
a mathematical model of the �nancial market and de�ne terms characterizing
the market such as equivalent martingale measures, arbitrage and completeness.
This is done in Section 4.2. The model introduced in this chapter will be used
in the remaining part of thesis.

Section 4.1 gives a brief summary of Itô integration with respect to Brownian
motion, and also de�nes the important term martingale. Both Itô integration
and martingales will be crucial in the model of the �nancial market de�ned
in Section 4.2. Section 4.3 simpli�es the situation by considering the �nancial
market in the case where the scenario space Ω is �nite and the time t is discrete.
In this case, the fundamental theorem of mathematical �nance (Theorem 4.3)
can be proved using linear programming duality, and this is the main goal of
Section 4.3. This is an application of duality methods to mathematical �nance.

This chapter is based on Kramkov and Schachermayer [22], [21], Øksendal [27],
Pliska [32], and Schachermayer [40].

4.1 Martingales and Itô integration with respect

to Brownian motion

Let (Ω,F , P ) be a given probability space, so Ω is a scenario space, F is a
�ltration on Ω and P is a probability measure on the measurable space (Ω,F).
A �ltration is a family of σ-algebras (Gt)0≤t≤T such that Gs ⊆ Gt for s ≤ t, where
the time t ∈ [0, T ] and the terminal time T ≤ ∞. The space (Ω,F , (Gt)t, P )
is called a �ltered probability space. A stochastic process is a family of random
variables on the (same) probability space (Ω,F , P ). Filtrations and stochastic

47
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processes will be essential in the following. Another term which will become
very useful is martingales.

De�nition 4.1 (Martingale) A stochastic process (Mt)0≤t≤T on the �ltered
probability space (Ω,F , (Gt), P ) is called a martingale with respect to the �l-
tration (Gt)0≤t≤T if:

(i) Mt is Gt-measurable for all t.

(ii) EP [|Mt|] < +∞ for all t.

(iii) EP [Mt|Gu] = Mu for all u ≤ t.

Condition (iii) can be interpreted: given all that as happened up to time u < t,
including the value of the martingale at time u, one does not expect (under the
P -measure) this value to change up to time t.

Note also that for any (Gt)t-martingale (Mt)0≤t≤T , where G0 = {∅,Ω},

EP [Mt] = EP [Mt|G0] = M0.

Here, the �rst equality follows from G0 being the trivial σ-algebra, and the
second equality follows from the de�nition of a martingale.

Note that both of the terms EP [·] and E[·] will be used to denote the expec-
tation with respect to the given probability measure P . The expectation with
respect to some other probability measure R will always be denoted by ER[·],
with the subscript.

Itô-integration is integration of a stochastic process with respect to another
stochastic process. We will consider Itô-integration with respect to a speci�c
stochastic process called Brownian motion. A (standard) Brownian motion
B(t) on probability space (Ω,F , P ) is a stochastic process, which satis�es the
following properties:

� B(0) = 0

� B has independent increments, i.e. B(t)−B(s) is independent of B(u)−
B(z) for z < u ≤ s < t.

� Each increment B(t)−B(s), s < t has a normal distribution with expec-
tation 0 and variance t− s.

For the precise de�nition and comments on the existence of Brownian mo-
tion, see Øksendal [27].

Given a Brownian motion B = {B(t)}, t ∈ [0, T ], there is a natural �ltration
(Ft)0≤t≤T which is generated by B. This �ltration is such that for every t ∈
[0, T ], Ft is the smallest σ-algebra which makes B(t) measurable. It can be
shown that the Brownian motion is a martingale with respect to this �ltration.

Let V(0, T ) be the class of functions f : [0,∞)× Ω→ R such that

� (t, ω) 7→ f(t, ω) is B×F-measurable, where B denotes the Borel σ-algebra.
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� ω 7→ f(t, ω) is Ft-measurable for every t ∈ [0, T ].

� E[
∫ T

0
f(t, ω)2dt] <∞.

For functions f(t, ω) ∈ V(0, T ) and t ∈ [0, T ] one can de�ne the Itô inte-

gral
∫ t

0
f(s, ω)dB(s, ω) = limn→∞

∫ t
0
fn(s, ω)dB(s, ω) (limit in L2-sense), where

(fn)∞n=1 is a sequence of simple functions which converge to f (in an L2-sense).

A simple function g(t, ω) is of the form g(t, ω) =
∑J
j=1 ej(ω)1[tj ,tj+1)(t), where

ej is Gtj -measurable for all j = 1, . . . , J , 1A(·) denotes the indicator function
with respect to the set A and t0, t1, ..., tJ is a partition of the interval [0, t]. Here∫ t

0
fn(s, ω)dB(s, ω) :=

∑J
j=1 e

n
j (ω)(B(tj+1, ω) − B(tj , ω)) for a simple function

fn(s, ω) :=
∑J
j=1 e

n
j (ω)1[tj ,tj+1](s). The existence of such an approximating se-

quence of functions is proved in Øksendal [27]. Note that the Itô integral is a
random variable.

From this de�nition, one can prove properties of the Itô integral. To simplify
notation,

∫ t
0
f(s, ω)dB(s, ω) is sometimes denoted by

∫ t
0
f(s, ω)dB(s), or even∫ t

0
fdB. Below is a list of some of the most important properties of the Itô-

integral. Let f, g ∈ V(0, T ), t ∈ [0, T ] and a, b ∈ R be constants.

(i) The Itô integral is linear:∫ t
0
(af(s, ω) + bg(s, ω))dB(s) = a

∫ t
0
f(s, ω)dB(s) + b

∫ t
0
g(s, ω)dB(s).

(ii)
∫ t

0
f(s, ω)dB(s) is Ft-measurable for all t ∈ [0, T ].

(iii) E[
∫ t

0
f(s, ω)dB(s)] = 0.

(iv) The Itô integral
∫ t

0
f(s, ω)dB(s) is a martingale with respect to the �ltra-

tion (Gt)0≤t≤T .

The Itô integral is very useful when modeling the �nancial market, as will
be shown in Section 4.2.

4.2 A model of the �nancial market

In order to apply the theory of the previous chapters to mathematical �nance,
one must construct a mathematical model of the �nancial market. There are
many possible ways to do this, but the following general model is a good foun-
dation to build on.

The �nancial market model is based on a probability space (Ω,F , P ) con-
sisting of a space of possible scenarios of the world Ω, a σ-algebra F , and a
probability measure P on the measurable space (Ω,F).

The �nancial market consists of N + 1 assets: N risky assets (stocks) and
one bond (the bank). The assets each have a price process Sn(t, ω), for n =
0, ..., N , ω ∈ Ω and t ∈ [0, T ], where S0(t, ω) is the price process of the bond.
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The price processes Sn, n = 1, ..., N , are stochastic processes. We denote by
S(t, ω) = (S0(t, ω), S1(t, ω)..., SN (t, ω)), the composed price process of all the
assets. Here, the time t ∈ [0, T ] where the �nal time T may be in�nite. Though
the �nal time may be in�nite, one often assumes T < ∞ in mathematical
�nance.

Let (Ft)0≤t≤T be a �ltration. Usually, one assumes that the price process
S is adapted to the �ltration (Ft)t (S being adapted to (Ft)t means that Sn(t)
is Ft-measurable for all t ∈ [0, T ]), and it is very common to let (Ft)t be
the �ltration generated by the price process S. Actually, the price process
is often assumed to be an (Ft)t-semimartingale. The precise de�nition of a
semimartingale will not be discussed in this thesis, but the main point is that
when Sn is a semimartingale, one can form the Itô-integral with respect to this
stochastic process. See for example Shilling [41], or Øksendal [27], for more on
�ltrations and σ-algebras.

One often assumes that S0(t, ω) = 1 for all t ∈ [0, T ], ω ∈ Ω. This corre-
sponds to having divided through all the other prices by S0, and hence turning
the bank into the numeraire of the market. The altered market is a discounted
(or normalized) market. This text mainly considers discounted markets, but
whether the market is discounted or not will be mentioned when necessary. To
simplify notation, the price processes in the discounted market are denoted by
S as well. Note that for a given probability space (Ω,F , P ), the price process S
describe the market. Therefore the market is sometimes denoted simply by S.

An example of a security market as the one above is the model used in
Øksendal [27]:

S0(t, ω) = 1 +

∫ t

0

r(s, ω)S0(s, ω)ds (4.1)

and for n = 1, ..., N

Sn(t, ω) = xn +

∫ t

0

µn(s, ω)ds+

∫ t

0

σn(s, ω)dB(s, ω) (4.2)

or, written in brief form

dS0(t) = r(t)S0(t)dt, S0(0) = 1 (4.3)

and for n = 1, ..., N

dSn(t) = µn(t)dt+ σn(t)dB(t), Sn(0) = xn. (4.4)

where B(t) is a D-dimensional Brownian motion.
Here, the process r called the interest rate process, µn is called the drift

process (of asset n) and σn is called the volatility process (of asset n). Note
that sometimes, as above, the dependence on ω is suppressed for notational
convenience. The Brownian motion B may be more than one-dimensional, in
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general, B is D-dimensional. Therefore, σn is also D-dimensional (for all n).

If D > 1, the stochastic integral (Itô-integral) σn(t)dB(t) :=
∑D
i=1 σ

i
n(t)dBi(t),

where σin(t) and Bi(t) denotes the i'th components of σn(t) and B(t) respec-
tively. This Brownian motion driven market model will be central in this text.

As mentioned, the space Ω represents the possible scenarios of the world,
and the probability measure P gives the probabilities for each of the measurable
subsets of Ω to occur. As in real �nancial markets, we are interested in modeling
how information reveals itself to the investors, and that is where the �ltration
(Ft)0≤t≤T is useful. This �ltration represents what the investors know at time t.
For instance, if (Ft)t is the �ltration generated by the price process S, the agents
in the market know the asset prices at any time t, but nothing more. For a �nite
Ω and discrete time, using �ltrations to model information can be explained by
the bijection between partitions and σ-algebras (the σ-algebra consists of every
union of elements in the partition). The nested chain of partitions is a convenient
way to model how the world scenarios reveal themselves, see Figure 4.1. When
Ω is in�nite, the correspondence between partitions and �ltrations disappears,
so the use of a �ltration is seen as a generalization of the �nite Ω case.

Trading of assets is essential in real �nancial markets, so one must also
model the concept of a portfolio. A portfolio (or a trading strategy) is an N + 1-
dimensional, predictable S-integrable stochastic process H(t, ω) = (H0(t, ω),
H1(t, ω), ...,HN (t, ω)). Hn(t, ω) represents the amount of asset n held by the
investor at time t in state ω ∈ Ω. In general, a predictable stochastic process is
de�ned as a stochastic process which is measurable (when the process is viewed
as a function from R+×Ω into R) with respect to a special σ-algebra PR, called
the predictable σ-algebra, on the product space R+×Ω. PR is constructed from
predictable rectangles. A predictable rectangle is a subset of R+×Ω of the form
(s, t] × F , where s < t and F ∈ Fs, or of the form {0} × F0, where F0 ∈ F0.
PR is the σ-algebra generated by the collection of all predictable rectangles. In
discrete time, being predictable means that H(t, ·) is Ft−1-measurable for all
t ∈ {1, 2, ..., T}, where Hn(t, ω) represents the amount of asset number n held
from time t− 1 to time t. Hence, predictability means that the investor has to
choose how much to hold of asset n between times t − 1 and t based on what
she knows at time t − 1, that is Ft−1. The abstract notion of a predictable
process is a generalization of this concept. Note that all predictable processes
are adapted. However, it turns out that it does not matter whether one considers
predictable or adapted trading strategies as long as the price process S is not a
jump processes.

A portfolio H is called admissible if there exists a constant C < 0 such
that

∫ t
0
H(u)dS(u) :=

∫ t
0
H(u) · dS(u) > C P -almost surely for all t ∈ [0, T ]

(where the stochastic processes H(t, ω) = (H0(t, ω), H1(t, ω), ...,HN (t, ω)) and
S(t, ω) = (S0(t, ω), S1(t, ω), ..., SN (t, ω)) are viewed as vectors in RN+1, and ·
denotes the standard Euclidean inner product). The family of admissible trading
strategies will be denoted by H.

The value of a portfolio H at time t is the random variable denoted by XH(t)
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and de�ned

XH(t, ω) :=

N∑
n=0

Hn(t, ω)Sn(t, ω). (4.5)

That is, the value of the investor's portfolio at a time t is the sum of the
amount she owns of each asset, times the price of that asset at time t. When
the underlying portfolio is clear, we sometimes denote X = XH , to simplify
notation.

A portfolio H is called self-�nancing if it is an S-integrable process which
satis�es

XH(t) = XH(0) +

∫ t

0

H(u) · dS(u) for all 0 ≤ t ≤ T

A portfolio being self-�nancing means that no money is taken in or out of
the system. That is, all trading of assets after time t = 0 is �nanced by the
price changes in the market, which a�ect the value of the portfolio.

An arbitrage in a �nancial market is, roughly speaking, a riskless way of
making money. More formally, one says that the market (St)0≤t≤T has an
arbitrage if there exists an admissible portfolio H such that

(i) XH(0) = 0,

(ii) XH(T ) ≥ 0 almost surely,

(iii) P (XH(T ) > 0) > 0.

If there was an arbitrage in the market, all investors would want to execute
the arbitrage, and (possibly) cash in a riskless pro�t. Economic principles then
suggest that the demand for the arbitrage opportunity would cause the prices
to adjust such that the arbitrage disappears. Therefore, an arbitrage is a sign
of lack of equilibrium in the market.

For a potential investor, it is interesting to determine whether a market has
an arbitrage or not. In order to do this, the notion of equivalent martingale
measure is useful.

An equivalent martingale measure is a probability measure Q on the mea-
surable space (Ω,F) such that

(i) Q is equivalent to P , and

(ii) The price process S is a martingale with respect to Q (and w.r.t. the
�ltration (Ft)t).

Denote byMe(S) the set of all equivalent martingale measures for the market
S. Then one has the following theorem, which is Lemma 12.1.6 in Øksendal [27]
(for the proof of this theorem, see [27]).
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Theorem 4.2 Let the market be de�ned as in equations (4.3) and (4.4). If the
set of equivalent martingale measures in nonempty, i.e. Me(S) 6= ∅, then there
is no arbitrage.

If Ω is �nite and time is discrete, one can attempt to �nd equivalent mar-
tingale measures by solving the set of linear equations (4.6) for Q

EQ[S(t)|Fu] = S(u) for all 0 ≤ u ≤ t ≤ T (4.6)

When this system is solved, one must check if any of the solutions are probability
measures on (Ω,F) equivalent to P (i.e. such that P and Q have the same null
sets).

It turns out that one can have either Me(S) = ∅, Me(S) = {Q} (a one-
element set) or |Me(S)| = ∞. Why is this? Assume there are at least two
distinct equivalent martingale measures Q,Q∗ ∈ Me(S). Let λ ∈ (0, 1), then
Q̄ = λQ + (1 − λ)Q∗ ∈ Me(S): Clearly, Q̄ is a probability measure. It is a
martingale measure because EQ̄[St|Fu] = EλQ+(1−λ)Q∗ [St|Fu] = λEQ[St|Fu] +
(1−λ)EQ∗ [St|Fu] = λSu + (1−λ)Su = Su for u < t. Finally, Q̄ is equivalent to
P because if A is a P -null set, then, A is a Q- and Q∗-null set, and therefore also
a Q̄-null set. Conversely, if A is a Q̄-null set, then it must be both a Q- and a
Q∗-null set. Hence, since Q and Q∗ are equivalent to P , A must also be a P -null
set. Note that this also proves that Me(S) is a convex set, see De�nition 2.1
(actually, Me(S) being convex implies that Me(S) is either the empty set, a
one-element set or an in�nite set).

In mathematical �nance, one usually assumes that Me(S) 6= ∅, since this
(from Theorem 4.2) guarantees that the market is arbitrage free. Actually,
Theorem 4.2 can be proved to "almost" hold with if and only if. If the market
satis�es a condition similar to the no arbitrage condition called "no free lunch
with vanishing risk" (abbreviated NFLVR), then there exists an equivalent mar-
tingale measure (see Øksendal [27]). This is sometimes called the fundamental
theorem of asset pricing.

Assume Me(S) 6= ∅, so the market has no arbitrage from Theorem 4.2.
A contingent claim (or just claim) B is a �nancial contract where the seller
promises to pay the buyer a random amount of money B(ω) at time T , de-
pending on which state of the world, ω ∈ Ω occurs. Formally, a claim is a
lower bounded, FT -measurable random variable. If all contingent claims can
be replicated by trade in the market, the market is called complete. More for-
mally, this means that for any claim B there exists a self-�nancing, admissible

trading strategy H such that B(ω) = H(0) · S(0) +
∫ T

0
H(t, ω)dS(t, ω) for all

ω ∈ Ω. This can be shown to be equivalent to Me(S) = {Q} (this is due to
Harrison and Pliska (1983), and Jacod (1979), see Øksendal [27]). If there exists
contingent claims which cannot be replicated by trade, the market is called in-
complete. In this case, |Me(S)| =∞. In the real world, �nancial markets tend
to be incomplete, because in order to have a complete market one must, among
other things, have full information and no trading costs. This is not a realistic
situation. However, incomplete markets are mathematically more di�cult to
handle than complete markets.
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4.3 The discrete case

To simplify things, consider the case of �nite scenario space Ω and discrete time.
This is a useful simpli�cation because:

� It may be su�cient in practical situations, since one often envisions only
a few possible world scenarios, and has a �nite amount of times where one
wants to trade.

� It gives a good understanding of the methods used in mathematical �-
nance.

� To apply mathematical �nancial theory, discretization is necessary in order
to use computers.

Hence, let Ω = {ω1, ω2, ..., ωM}, t = 0, 1, ..., T , and consider the �ltered prob-
ability space (Ω,F , (Ft)0≤t≤T , P ). In this case, the σ-algebras in the �ltration
correspond to partitions of Ω, as mentioned previously. One can construct a
scenario-tree illustrating the situation, with the tree branching according to the
information partitions. Hence, there is one node (vertex) for each block (set) in
the partition. Each ω ∈ Ω represents a speci�c development in time, ending up
in the particular world scenario at the �nal time T . Denote the nodes at time
t by Nt, and let the nodes themselves be indexed by k = 1, ...,K.
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Figure 4.1: A scenario tree.

In the model illustrated in Figure 4.1, K = 8 and M = 5. The �ltration
(Ft)t=0,1,2 corresponds to the partitions P1 = Ω, P2 = {{ω1, ω2}, {ω3, ω4, ω5}},
P2 = {{ω1}, ..., {ω5}}.

A little more notation is useful: The parent a(k) (a(·) for ancestor, p(·) is
not practical since it often denotes probability measures) of a node k is the
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unique node a(k) preceding k in the scenario tree. Every node apart from the
�rst one has a parent. Each node k, except the terminal nodes NT , have child
nodes C(k), that is a set of nodes immediately succeeding the node k in the
scenario tree. For each non-terminal node k, the probability of ending up in
node k is called pk, and pk =

∑
m∈C(k) pm. Hence, from the original probability

measure P , which gives probabilities to each of the terminal nodes, one can
work backwards, computing probabilities for all the nodes in the scenario tree.
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Figure 4.2: Illustration of parent and children nodes in a scenario tree.

As in the previous section, there are N risky assets and one bond with a
composed price process S = (S0, S1, ..., SN ). As S is adapted to the �ltration
(Ft)t, for each asset n, there is one value for the price Sn of asset n in each node
k of the scenario tree. This value is denoted by Snk . H

n
k denotes the amount of

asset n held by the investor at node k. Hence the value of the portfolio at node
k is Xk = Sk ·Hk (where · denotes Euclidean inner product).

In this �nite Ω and discrete time case, one may assume that P (ω) > 0 for
all ω ∈ Ω. If not, the states with probability 0 can be removed without any
consequences.

For a node m ∈ C(k), one can compute the conditional probability of m
happening, given that k has happened. Let Fi be the subset of Ω where node

i happens. Then: P (Fm|Fk) = P (Fm∩Fk)
P (Fk) = P (Fm)

P (Fk) = pm
pk

. Here, the equalities

follow from the de�nition of conditional expectation and that Fm ⊆ Fk (since
m ∈ C(k), i.e. m can only happen if k has happened).

As mentioned, the portfolio value at time t is X(t), and the value of this
depends on which node k ∈ N (t) the world is in. Note that EP [X(t)] =∑
k∈N (t) pkXk. The conditional expectation of the portfolio value X(t + 1)

given Ft, that is given N (t), is EP [X(t + 1)|F(t)] = EP [X(t + 1)|N (t)] =
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Figure 4.3: Discounted price process in a scenario tree: One risky asset.

∑
m∈C(k)

pm
pk
Xm, and this is a random variable which takes one value for each

k ∈ N (t).

In this case, where Ω is �nite and time is discrete, a stronger version of The-
orem 4.2, namely Theorem 4.3, holds. Note that in Theorem 4.3, the condition
of Q being equivalent to P , means that Q > 0, i.e. Q(ω) > 0 for all ω ∈ Ω (as
P (ω) > 0 for all ω ∈ Ω by assumption). The proof of the following theorem is
due to King [18] and uses a duality argument which shows how martingales are
introduced via duality theory.

Theorem 4.3 Let Ω be �nite, and time discrete; t = 0, 1, ..., T . Then, the
�nancial market has no arbitrage if and only ifMe(S) 6= ∅.

Proof: ♦
First, assume the market is normalized. It can be shown that if the nor-

malized market is arbitrage free, so is the regular market (see Exercise 12.1 in
Øksendal [27]).

In the �nite Ω setting, an arbitrage is a portfolio H such that:

� S0 ·H0 = 0.

� Sk ·Hk ≥ 0 for all k ∈ NT .

� There exists an k̄ ∈ NT such that Sk̄ ·Hk̄ > 0.

� (Self-�nancing) Sk ·Hk = Sk ·Ha(k) for all k.

where Sk = (S0
k, ..., S

N
k ), Hk = (H0

k , ...,H
N
k ), and Sk ·Hk =

∑N
n=1 S

n
kH

n
k .
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That is, there exists a portfolio that costs nothing, has no risk of losing
money, but a positive probability of earning money, and the portfolio is self-
�nancing in the sense that all investments are �nanced by previous gains in the
market, due to price changes.

One must solve the following optimization problem in order to determine
whether there exists an arbitrage, and actually �nd one (if it exists).

maxH
∑
k∈NT pk(Sk ·Hk)

subject to
S0 ·H0 = 0,

Sk · (Hk −Ha(k)) = 0 for k ∈ Nt, t ≥ 1,

Sk ·Hk ≥ 0 for all k ∈ NT .

(4.7)

If problem (4.7) has a positive optimal value, there exists (from the de�nition)
an arbitrage, and a maximizing portfolio H∗ is an arbitrage.

Also, note that if problem (4.7) has a positive optimal value, then the prob-
lem is unbounded. Actually, if H generates a positive optimal value, then mH,
for m > 0, also generates a positive optimal value, and letting m→∞, problem
(4.7) is unbounded.

A closer look at problem (4.7) reveals that it is a linear optimization problem
(LP-problem)! It is of course also a stochastic optimization problem, but all the
randomness has been put directly into the problem by introducing the scenario
tree.

Problem (4.7) will be studied using of linear programming duality. The �rst
task is �nding the dual problem. This is done by standard linear programming
techniques. This is postponed to right after the proof (to avoid confusion).

We get a dual problem of the form:

min(x,y) 0
subject to

xk ≤ 0 for k ∈ NT ,
(pk − yk − xk)Sk = 0 for k ∈ NT ,

ykSk −
∑
m∈C(k) ymSm = 0 for k ∈ Nt, t ≤ T − 1.

(4.8)

Note that the equation ykSk =
∑
m∈C(k) ymSm would be a martingale condition

on the price process S if the yk's were positive probabilities.

Now, for the actual proof. First, assume that there is no arbitrage. We
want to show that then there must exist an equivalent martingale measure Q.
Since there is no arbitrage, we know that problem (4.7) is bounded (it must
have value 0). Also, (4.7) always has a feasible solution (H = 0), hence (4.7)
has an optimal solution. Therefore, the LP duality theorem (see Vanderbei [42])
implies that the dual problem (4.8) also has an optimal solution (x, y).

From the dual problem (4.8), (pk − yk − xk)Sk = 0 for all k ∈ NT . This is a
vector equality, so it holds for every asset n, in particular for the bond n = 0.
Hence, (pk − yk − xk)S0

k = 0 for k ∈ NT . S0
k 6= 0 for all k, so pk − yk − xk = 0
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for all k ∈ NT . But then pk − yk = xk for all k ∈ NT . From (4.8), xk ≤ 0 for
all k, hence

yk ≥ pk for all k ∈ NT .

Also, from (4.8)

ykS
0
k −

∑
m∈C(k)

ymS
0
m = 0

which implies, since S0
k = 1 for all k = 1, ...,K,

yk =
∑

m∈C(k)

ym.

By induction, this proves that (yk)k is a strictly positive process such that∑
k∈NT yk = y0. Hence, one can de�ne qk = yk

y0
for all k ∈ NT , so that

Q(ωk) := qk, for all ωk ∈ Ω, is a probability measure.
Since (yk)k satis�es the constraints of the dual problem (4.8), so will (qk)k,

therefore ∑
m∈C(k)

qmSm = qkSk for k ∈ Nt, t ≤ T − 1.

Hence, the price process S is a martingale with respect to Q and the �ltration
(Ft)t (from the de�nition of conditional expectation), and Q is an equivalent
martingale measure (since Q > 0).

Conversely, assume that there exists an equivalent martingale measure Q.
De�ne qk := Q(ωk) for all k ∈ NT . Let y0 = max{pkqk : k ∈ NT }, yk = qky0 for
all k ∈ Ω and xk = pk − yk for all k ∈ NT .

Then, xk = pk − yk = pk − qky0 ≤ pk − qk pkqk = 0. So (x, y) will be feasible

for the dual problem (4.8) (from the de�nitions). Hence, by the weak duality
theorem of LP (see Vanderbei [42]), problem (4.7) must be bounded, and hence
there exists no arbitrage.

�

It remains to show how to �nd the dual of the LP-problem (4.7) in the proof
of Theorem 4.3. The primal problem (4.7) is as follows

maxH
∑
k∈NT pkSk ·Hn

subject to
S0 ·H0 = 0

Sk · (Hk −Ha(k)) = 0 for k ∈ Nt, t ≥ 1

Sk ·Hk ≥ 0 for all k ∈ NT

This problem is of the form maxH{eTH : EH = b,KH ≥ c}, where e, b,
c are vectors and E,K are matrices of suitable dimensions, where ≥ is meant
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componentwise (and H is a vector in R|N |×N+1 representing the trading strat-
egy, where |N | denotes the number of nodes in the scenario tree). Therefore,
we begin by proving the following lemma:

Lemma 4.4 ♦ The dual problem of the linear programming problem

max
H
{eTH : EH = b,KH ≥ c}

is
min
(v,w)
{bT v + cTw : ET v +HTw = e, w ≤ 0}.

Proof: ♦
The idea of this proof is to reduce the primal problem to the original primal

LP-problem max{cTx : Ax ≤ b, x ≥ 0}, which is known to have the dual
min{bT y : AT y ≥ c, y ≥ 0} (see Vanderbei [42]).

The following maximization problems, denoted (i)-(iv), are equivalent in the
sense of one having a solution if and only if the other has a solution, and having
the same optimal solution

(i) maxH eTH

subject to

EH = b,

KH ≥ c.

(ii) maxH eTH

subject to

EH ≤ b,

EH ≥ b,

KH ≥ c.

(iii) maxH+,H− eT (H+ −H−)

subject to

E(H+ −H−) ≤ b,

−E(H+ −H−) ≤ −b,
−K(H+ −H−) ≤ −c.

(iv) maxH+,H−
[
e −eT

] [H+

H−

]
subject to  E −E

−E E
−K K

[H+

H−

]
≤

 b
−b
−c

 ,[
H+

H−

]
≥ 0.
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This is a standard form of the primal LP-problem, see [42]. Hence, duality
theory gives that the dual has the form:

minv1,v2,w̄
[
bT −bT −cT

] v1

v2

w̄


subject to [

ET −ET −HT

−ET ET HT

]v1

v2

w̄

 ≥
[
e
−e

]
,

v1, v2, w̄ ≥ 0,

i.e.

minv1,v2,w̄ bT v1 − bT v2 − cT w̄
subject to ET v1 − ET v2 −HT w̄ ≥ e,

−ET v1 + ET v2 +HT w̄ ≥ −e,
v1, v2, w̄ ≥ 0.

Note that the two �rst inequality constraints in the problem above are equiv-
alent with ET (v1 − v2)−HT w̄ = e, and insert this into the problem.

minv1,v2,w̄ bT (v1 − v2)− cT w̄
subject to ET (v1 − v2)−HT w̄ = e,

v1, v2, w̄ ≥ 0.

De�ning v := v1 − v2, v is a free variable, since v1, v2 ≥ 0

minv,w̄ bT v − cT w̄
subject to ET v −HT w̄ = e,

w̄ ≥ 0.

Finally, let w := −w̄, so

minv,w bT v + cTw

subject to ET v +HTw = e,

w ≤ 0.

�

By noting that the primal problem (4.7) is exactly of the form of the primal
problem in Lemma 4.4 and writing problem (4.7) in component form, one sees
that the dual of (4.7) is precisely problem (4.8) (writing this out is quite technical
and notation-packed, so it is omitted).

This chapter has introduced the �nancial market model, and the basic terms
of mathematical �nance, which will be used in the remaining part of the thesis.
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In addition, the proof of Theorem 4.3 which uses linear programming duality,
is an example of an application of duality theory to mathematical �nance. The
next chapter will consist of more examples of duality methods in mathematical
�nance, but in relation to utility maximization problems.
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Chapter 5
Utility maximization

This chapter considers an investor in the �nancial market. The investor is
assumed to have certain preferences, represented by a utility function U . This
utility function is assumed to have some economically reasonable properties, as
will be discussed in Section 5.1.

Throughout this chapter it is assumed that the investor wants to maximize
her expected utility of terminal wealth. This problem is solved in Section 5.3
using the text book technique of Pliska [32] for a simple one step model and a
complete market.

The direct method of Section 5.3 cannot be applied to markets where Ω is
arbitrary and time is continuous. Section 5.5 introduces a more general method
(in the �nite Ω, complete market setting), a duality method, which is based
on convexity arguments and Lagrange duality. Lagrange duality is the topic
of Section 5.4. In Sections 5.6 and 5.7 this duality method is generalized to
incomplete, but �nite Ω, markets and �nally to completely general markets.

Section 5.9 is devoted to a twist on the utility maximization problem, where
a condition on how much risk the investor is willing to take is added to the
problem. This connects the utility maximization problem to the convex risk
measures of Chapter 3.

Section 5.2 shows how the previous utility maximization problem is equiva-
lent to another utility maximization problem where the trading strategy involved
is essential.

This chapter is based on Kramkov and Schachermayer [22], [21], Pham [31],
Pliska [32] and Schachermayer [40].

5.1 Utility functions and utility maximization

It is natural to consider the preferences of an agent in the �nancial market. This
is done by the introduction of utility functions.

63
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Utility function: U

Figure 5.1: A utility function: U

De�nition 5.1 (Utility function, U(·))
A utility function is a function U : R→ R ∪ {−∞} which is increasing (on

{U > −∞}), continuous, di�erentiable and strictly concave (on the interior of
{U > −∞}) and which satis�es:

U ′(∞) = lim
x→∞

U ′(x) = 0

The economic interpretation of the �nal condition is that the marginal util-
ity converges towards 0 as the wealth goes to in�nity. Hence, when the agent
gets a lot of money, a little more means almost nothing. The other conditions
on the utility function also have a natural economic explanation: U should be
increasing, because more money is a good thing. Di�erentiability and continuity
are more technical properties, but one may interpret these as well. Continuity,
for instance, is natural because it does not make sense to be a lot more happy
about having 10 + 0, 00001 NOK, than about having 10 NOK. The utility func-
tion U being concave re�ects that the more money the agent gets, the less a
little extra means: For a student, who makes 50 000 NOK a year, an extra 5000
NOK means a lot, but Bill Gates, who makes 1 billion NOK a year, may not
even notice those extra 5000 NOK.

When it comes to utility functions, there are two cases to consider:

1. Case 1: Not allowing negative wealth: Assume that U(x) = −∞ for x < 0
and that U(x) > −∞ for x ≥ 0. Also, assume the Inada condition:

U ′(0) = lim
x→0+

U ′(x) = +∞.

2. Case 2: Allowing negative wealth: In this case, assume that U(x) > −∞
for all x ∈ R and that U ′(−∞) = limx→−∞+ U ′(x) = +∞.
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Often, there is no reason to distinguish between the two cases. However, in
Section 5.7 the arguments depend on which case one is considering.

An example of a utility function of the �rst type is:

U(x) =

{
ln(x) for x > 0
−∞ otherwise

An example of the second type is U(x) = −e−γx for all x ∈ R, where γ ≥ 0.

So, consider an investor in the market S (see Chapter 4) with preferences
given by the utility function U . How does the investor decide which assets
to buy? One possibility is that she wants to maximize her expected utility of
terminal wealth. One must consider, for instance, the expectation since terminal
wealth is a random variable, and it is not possible to maximize a random variable
directly. Hence, the investor wants to solve the following problem

maxE[U(XH(T ))] (5.1)

where the maximization is done over the set of self-�nancing, admissible port-
folios H that are a�ordable to the investor.

How do we solve a problem of this type? Since U is concave, expectation
is linear and a linear function composed with a concave function gives another
concave function, EP [U(·)] is a concave function. Thus problem (5.1) is a con-
strained concave maximization problem. One possible strategy for attacking
such a problem is the following:

� Try to solve problem (5.1) directly.

� If this fails, �nd a "dual" to the problem.

� Try to solve this dual problem, and prove that the dual problem and
problem (5.1) have the same value.

How to �nd this dual problem will be discussed later.
Note that this is the same as a basic idea of linear programming (LP). The

original (primal) problem may be di�cult to solve, but the linear programming
duality theorem says that solving the dual problem is just as good. Duality is
a "second chance" at solving the problem.

Note that problem (5.1) is also an optimal control problem. This is a type of
problem which has been studied extensively, and this has resulted in Hamilton-
Jacobi-Bellman equations. For more on this, see Øksendal [27].

5.2 Transformation of the utility maximization

problem ♦
AssumeMe(S) 6= ∅, so (from Theorem 4.2) the market has no arbitrage.
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In the next sections the following problem will be considered

maxY ∈L0(FT ) E[U(Y )]
subject to

EQ[Y ] ≤ x for all Q ∈Me(S).
(5.2)

Problem (5.2) is of interest because it turns out to be equivalent to problem
(5.1) for an investor with initial capital x, that is

maxH E[U(XH
T )] (5.3)

where the maximization is done over the set H := {H : H is a self-�nancing,
admissible, predictable portfolio process such that H(1) ·S(0) ≤ x}, where H(t)
denotes the composed amounts of assets held from time t − 1 to time t, S(t)
is the composed price process at time t, and XH

T denotes the terminal value
of the portfolio corresponding to the portfolio process H. Since H ∈ H is

self-�nancing, XH
T = H(1) · S(0) +

∫ T
0
H(u)dS(u). Problem (5.3) is a natural

utility maximization problem for an investor in the market. Note that if XH∗

T

is an optimal solution of problem (5.3), then H∗(1) · S(0) = x, since H∗ is
self-�nancing and E[U(·)] is an increasing function.

This section proves that in some cases, one may solve problem (5.2) instead
of problem (5.3). That is, problems (5.2) and (5.3) have the same optimal value,
and if one has found the optimal solution of problem (5.2), then one can also �nd
the optimal solution of problem (5.3). It turns out that this holds for a market
where Ω is �nite (complete or incomplete), as well as for a complete market
where Ω is arbitrary. In the remaining situation of an incomplete market where
Ω is arbitrary, the original utility maximization problem (5.3) will be tackled
directly.

Now, begin by considering the situation where the scenario space Ω is �nite,
but the market may be complete or incomplete. In this setting, Proposition
2.10 in Schachermayer [40] states:

An FT -measurable random variable Y (ω) can be dominated by a random

variable of the form x +
∫ T

0
HsdSs, where H ∈ H, i�. EQ[Y ] ≤ x for all

Q ∈Me(S).
This proposition is proved via convexity arguments in RM (where |Ω| = M),

the bipolar theorem (which is a �nite-dimensional version of the biconjugate
theorem, Theorem 2.39) and the fundamental theorem of asset pricing (which
can also be proved from convexity arguments in RM ).

Theorem 5.2 ♦
(Transformation, �nite Ω) In the setting above, the following holds:

(i) The optimal values of problems (5.2) and (5.3) coincide.

(ii) If one has found the optimal solution Y ∗ of problem (5.2), one can �nd
the optimal solution H∗ of problem (5.3).

Proof: ♦
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(i) Take a feasible solution of problem (5.2), i.e. a Y ∈ L0(FT ) such that
EQ[Y ] ≤ x for all Q ∈ Me(S). Then there exists, from Proposition 2.10

in Schachermayer, an H ∈ H such that Y ≤ x +
∫ T

0
HsdSs. Hence, since

E[U(·)] is increasing, E[U(Y )] ≤ E[U(x+
∫ T

0
HsdSs)]. Therefore, because

H is self-�nancing, the optimal value of problem (5.2) is less than or equal
the optimal value of problem (5.3).

Conversely, let H ∈ H be a feasible solution of problem (5.3). Then,

XH
T ≤ x +

∫ T
0
HsdSs ∈ L0(FT ) (the terminal value of the value process

corresponding to H), hence EQ[U(XT )] ≤ EQ[x +
∫ T

0
HsdSs] = x ≤ x

for all Q ∈ Me(S), since S is a martingale w.r.t. Q for all Q ∈ Me(S).
Hence, XH

T is feasible for problem (5.2), and therefore the optimal value
of problem (5.3) is less than or equal the optimal value of problem (5.2).

Hence, the two optimal values must coincide.

(ii) Assume Y ∗ is the optimal solution of problem (5.2). From Schacher-

mayer's proposition there exists an H∗ ∈ H such that Y ∗ ≤ x+
∫ T

0
H∗s dSs.

But then

sup{Y :EQ[Y ]≤x ∀ Q∈Me(S)}E[U(Y )] = E[U(Y ∗)]

≤ E[U(x+
∫ T

0
H∗s dSs)]

≤ supH∈HE[U(XH
T )]

= sup{Y :EQ[Y ]≤x ∀ Q∈Me(S)}E[U(Y )].

Hence, all the inequalities hold with equality, so H∗ must give the optimal
solution of problem (5.3).

�

Therefore, solving problem (5.2) is useful in the case of �nite Ω.
Now, consider an arbitrary scenario space Ω and a complete market with

the Brownian motion driven market model of Section 4.2. Then, there is only
one equivalent martingale measure (from the comments after Theorem 4.2).
From Theorem 1.6.6 in Karatzas and Shreve [17] the market model must satisfy
N = D (where N is the number of risky assets and D is the dimension of the
Brownian motion) and the volatility matrix σ must be invertible (P -a.s.). Hence,
the Girsanov theorem holds for the Brownian motion driven market model.

Theorem 5.3 (Girsanov theorem)
Let Y (t) ∈ Rn be an Itô-process (see Øksendal [27] for a de�nition of Itô-

process) on a �ltered probability space (Ω,F , P, (Ft)0≤t≤T ) of the form

dY (t) = β(t, ω)dt+ θ(t, ω)dB(t) , 0 ≤ t ≤ T
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where B(t) ∈ Rm is a Brownian motion, β(t, ω) ∈ Rn and θ(t, ω) ∈ Rn×m.
Suppose there exist generalized Itô-integrable (see [27]) processes u(t, ω) ∈ Rm
and α(t, ω) ∈ Rn such that

θ(t, ω)u(t, ω) = β(t, ω)− α(t, ω).

De�ne

Mt = e−
∫ t
0
u(s,ω)dBs− 1

2

∫ t
0
u2(s,ω)ds for 0 ≤ t ≤ T

and

dQ(ω) = MT (ω)dP (ω).

Assume that Mt is a martingale (this holds, for instance, under a boundedness
condition called the Novikov condition; see [27]). Then Q is a probability mea-
sure which is equivalent to P (since MT (·) > 0 per de�nition). Also, the process
de�ned by

B̄(t) =
∫ t

0
u(s, ω)ds+B(t) for 0 ≤ t ≤ T

is a Brownian motion with respect to Q. Finally

dY (t) = α(t, ω)dt+ θ(t, ω)dB̄(t).

See [27] for more on the Girsanov theorem. Since the Girsanov theorem holds,
and the Girsanov measure Q is an equivalent martingale measure (from the
theorem), the single equivalent martingale measure in the market must be the
Girsanov measure. Karatzas and Shreve [17] prove a replication result for this
kind of market (the theorem is adapted to the present notation and setting):

Theorem 5.4 (Replication result) Consider the setting above. Let the initial
endowment x > 0 be given, and let Y be an FT -measurable random variable
such that EQ[Y ] = x. Then, there exists a portfolio process H ∈ H such that

x+
∫ T

0
HsdSs = Y (P -a.s.).

In Karatzas and Shreve [17], this theorem is proved in a more general setting
using a "budget constraint" (derived from the de�nition of admissible portfolios,
using that a lower bounded local martingale is a supermartingale) and a more
general version of the martingale representation theorem (see Øksendal [27])
called the local martingale representation theorem (to get the existence of a
replicating portfolio H).

Now, one can prove the following theorem:

Theorem 5.5 ♦
(Transformation, arbitrary Ω) Consider the setting above, then:

(i) Problems (5.2) and (5.3) have the same optimal value.
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(ii) If one has found the optimal solution, Y ∗, of problem (5.2), then there
exists an optimal solution H∗ of problem (5.3) which replicates Y ∗.

Proof: ♦
(i) Note that sup{Y :EQ[Y ]≤x}E[U(Y )] = sup{Y :EQ[Y ]=x}E[U(Y )] since

E[U(·)] is increasing. Choose Y ∈ L0(FT ) such that EQ[Y ] = x. Then Y
is feasible for problem (5.2). The replication result, Theorem 5.4, implies
that there exists an H ∈ H that replicates Y , hence

sup{Y :EQ[Y ]≤x}E[U(Y )] = sup{Y :EQ[Y ]=x}E[U(Y )]

≤ sup{H∈H}E[U(x+
∫ T

0
HsdSs)]

= sup{H∈H}E[U(XH
T )].

So the optimal value of problem (5.2) is less than or equal the optimal
value of problem (5.3).

Conversely, take H ∈ H (i.e. a feasible solution of problem (5.3)), and

consider XH
T ≤ x+

∫ T
0
HsdSs ∈ L0(FT ) (where XH

T denotes the terminal

value of the portfolio H). Then, EQ[XH
T ] ≤ EQ[x+

∫ T
0
HsdSs] = x, since

Q is an equivalent martingale measure. Hence, XH
T is feasible for problem

(5.2). Therefore, by the same type of calculations as above, the optimal
value of problem (5.3) is less than or equal the optimal value of problem
(5.2).

Hence, the optimal values coincide.

(ii) Finally, assume that one has found an optimal solution Y ∗ of problem
(5.2). Then, EQ[Y ∗] = x (if not, Y ∗ could not be optimal since E[U(·)] is
increasing), and from the replication result (Theorem 5.4) there exists an
H∗ ∈ H that replicates Y ∗. Since the two optimal values coincide (from
(i)), this H∗ must be optimal for problem (5.3).

�

Hence, one may solve problem (5.2) instead of problem (5.3) in the arbitrary
Ω, complete market situation as well.

The problem with all of the arguments above is that there is no direct for-
mula for �nding the replicating portfolio H when one has derived the optimal
terminal value Y ∗. The core theorems of the replication results; the bipolar
theorem and the local martingale representation theorem, merely give the exis-
tence of a replicating portfolio. Hence, even after solving problem (5.2), there
is a substantial task in actually �nding this portfolio. However, this problem
will not be considered in this thesis.

5.3 A direct approach to utility maximization

The utility maximization problem (5.1) will now be solved for an example market
using a direct method. This method is introduced in Pliska's book [32], and



70 CHAPTER 5. UTILITY MAXIMIZATION

is a very intuitive way to solve the problem. The market considered is very
simple, and this is why the direct approach works. In more complicated market
models, such as arbitrary scenario space models, one needs a more advanced
solution strategy. This will be considered in the next sections, and is where the
equivalence of problems (5.2) and (5.3) is useful.

Example 5.6 ♦
Consider the following complete market in a one step model. Let Ω =

{ω1, ω2}, t = 0, 1. The market is assumed to be normalized, so the price process
of the bond satis�es S0(0) = 1, S0(1, ω1) = S0(1, ω2) = 1. The market only has
one risky asset with price process S1(0) = 4, S1(1, ω1) = 7, S1(1, ω2) = 2. The
probability measure P is such that P (ω1) = 1

3 and P (ω2) = 2
3 .
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@@

Ω = {ω1, ω2}

{ω1}, P (ω1) = 1
3

{ω2}, P (ω2) = 2
3

q q
t = 0 t = T = 1

Figure 5.2: Scenario tree illustration of the model.

The set of equations

EQ[∆S1] = 0

Q(ω1) +Q(ω2) = 1

only has one solution, (Q(ω1), Q(ω2)) = ( 2
5 ,

3
5 ), which satis�es Q(ω1), Q(ω2) >

0, and hence the probability measure Q is an equivalent martingale measure.
Therefore, the market is arbitrage free (from Theorem 4.3) and complete (from
the comments after Theorem 4.3).

Consider an investor in this market with utility function U(y) = ln(y). The
initial endowment of the investor is x > 0. Now, consider the utility maximiza-
tion problem of the investor, as discussed previously

max
H∈H

EP [U(XH(1))] = max
H∈H
{1

3
ln(XH(1, ω1)) +

2

3
ln(XH(1, ω2))}

where H is the set of all self-�nancing, predictable portfolio processes H such
that XH(0) = x.
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Note that since the time is discrete, stochastic integrals are reduced to sums,
so

∫ t

0

H(u)dS(u) =

t∑
u=1

H(u) ·∆S(u)

=

t∑
u=1

H(u) · (S(u)− S(u− 1))

where · denotes the Euclidean inner product, and H = (H0, H1, . . . ,HN ) and
S = (S0, S1, . . . , SN ) are viewed as vectors in RN+1.

Hence ∫ 1

0
HudSu = H1(1)(S1(1)− 4)

=

{
3H1(1) for ω = ω1

−2H1(1) for ω = ω2

(5.4)

Here, Hn(1), for n = 0, 1, denotes the number of shares in asset n the
investor decides to hold between time 0 and time 1. From equation (5.4) the
self-�nancing condition becomes XH(1, ω1) = x + 3H1(1) and XH(1, ω2) =
x− 2H1(1).

De�ne the value function

u(x) := maxH∈HEP [U(XH(1))].

From equation (5.4) and the self-�nancing condition

u(x) = maxH{ 1
3 ln(x+ 3H1(1)) + 2

3 ln(x− 2H1(1))}.

This is a calculus maximization problem, which can be solved by di�erentiat-
ing with respect to H1(1), and �nding H0(1) from the condition that XH(0) = x.
Di�erentiating and setting equal to zero gives 1

x+3H1(1)−
4

3(x−2H1(1)) = 0. There-

fore H1(1) = − x
18 . This is the optimal amount of asset 1 for the investor to buy.

Determine H0(1), the amount of money the investor should keep in the bank,
from the initial endowment XH(0) = H0(1) + 4H1(1) = x. Hence H0(1) =
11x
9 . Therefore, the optimal portfolio of the investor is H1 = (H0(1), H1(1)) =

( 11x
9 ,− x

18 ).

The following is a summary of the direct method for a complete model where
|Ω| = M and there are T time steps:

� Consider the function
∑M
m=1 pmU(x +

∑T
t=1H(t, ωm)(S(t, ωm) − S(t −

1, ωm))).
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� For each m = 1, ...,M , n = 1, ..., N and each t ∈ {1, ..., T}, di�erentiate
this function with respect to Hn(t, ωm), and set the result equal to zero.
Here, one must do MTN di�erentiations (this is OK since U is di�er-
entiable). This gives a maximum since E[U(·)] is concave (because U is
concave and E[·] is linear). Also, since the maximization is over all of R,
there is no boundary to check (see Section 2.2).

� Solve this system of MTN equations for Hn(t, ωm) for each n, t,m.

� Compute H0(1) from that XH(0) = x and then compute H0(t, ω) using
the self-�nancing condition.

What are the advantages of this direct method? First of all, it is very intu-
itive and uses only calculus. In addition, constraints on the trading strategies
are easy to model. However, when there are constraints, the utility maximiza-
tion problem must be solved using other techniques than the one illustrated
above. For instance, the Lagrange multiplier method can be applied to tackle
the constraints. The disadvantages of the method are that as the number of
time-steps and the number of ω ∈ Ω increase, many computations become nec-
essary. Also, the system of equations in the method above can be very di�cult
to solve because it is not necessarily a linear system of equations. Another weak-
ness of the direct method is that it cannot be generalized to a model where Ω is
arbitrary and time is continuous, which makes it less useful in theoretical math-
ematical �nance. Because of these disadvantages, it is interesting to consider an
alternative method for solving the utility maximization problem. An example
of such a method is the duality method. Before introducing this method, it is
useful to consider some background theory, called Lagrange duality.

5.4 Lagrange duality

As mentioned, the method of Section 5.3 has some negative sides. Therefore, we
need an alternative method for solving the utility maximization problem, and
duality methods are such an alternative. Before considering the duality method
presented in Schachermayer [40], some background theory, which is used to
derive the method, will be covered. This background theory is called Lagrange
duality. When reading the note Schachermayer [40], the duality method can
be di�cult to understand and various clever functions seem to appear out of
thin air. However, the method becomes clearer by bringing in Lagrange duality
theory.

The method of Lagrange duality can be described as follows: Let X be a
general inner product space with inner product 〈·, ·〉. Assume there is a function
f : X → R to be maximized under certain constraints.

Consider a problem of the following, very general, form

maximize f(x) subject to g(x) ≤ 0, x ∈ S (5.5)
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where g is a function such that g : X → RN and S 6= ∅ (to exclude a trivial
case). This will be called the primal problem. Note that if one has a problem
with equality constraints, one can rewrite this in the form of problem (5.5) by
writing each equality as two inequalities. Also, ≥ can be turned into ≤ by
multiplying with −1, and by basic algebra, one can always make sure there is 0
on one side of the inequality. Note that there are no constraints on f or S and
only one (weak) constraint on g. Hence, many problems can be written in the
form (5.5).

Let λ ∈ RN be such that λ ≥ 0 (componentwise), and assume that g(x) ≤ 0
(componentwise) for all x ∈ S. Then:

f(x) ≤ f(x)− λ · g(x) (5.6)

because λ · g(x) ≤ 0 (where · denotes the Euclidean inner product). This
motivates the de�nition of the Lagrange function, L(x, λ)

L(x, λ) = f(x)− λ · g(x).

Hence, L(x, λ) is an upper bound on the objective function for each λ ∈ RN ,
λ ≥ 0 and x ∈ X such that g(x) ≤ 0. By taking supremum on each side of the
inequality in (5.6), for each λ ≥ 0,

sup{f(x) : g(x) ≤ 0, x ∈ S} ≤ sup{f(x)− λ · g(x) : g(x) ≤ 0, x ∈ S}
= sup{L(x, λ) : x ∈ S, g(x) ≤ 0}
≤ supx∈S L(x, λ)

:= L(λ)
(5.7)

where the second inequality follows because we are maximizing over a larger
set, hence the optimal value cannot decrease.

This implies that for all λ ≥ 0, L(λ) is an upper bound for the optimal
value function. We want to �nd the smallest upper bound. This motivates the
de�nition of the Lagrangian dual problem

inf
λ≥0

L(λ). (5.8)

Therefore, the following theorem is proven (by taking the in�mum on the
right hand side of equation (5.7)).

Theorem 5.7 (Weak Lagrange duality)
In the setting above, the following inequality holds

sup{f(x) : g(x) ≤ 0, x ∈ S} ≤ inf{L(λ) : λ ≥ 0}.

This theorem shows that the Lagrangian dual problem gives the smallest
upper bound on the optimal value of problem (5.5) generated by the Lagrange
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Figure 5.3: Illustration of Lagrange duality with duality gap.

function. The Lagrangian dual problem has only one, quite simple, constraint,
namely λ ≥ 0, and this may mean that the dual problem is easier to solve than
the original problem.

In some special cases, one can proceed to show duality theorems, proving
that sup{f(x) : g(x) ≤ 0, x ∈ S} = infλ≥0 L(λ). If this is the case, one says
that there is no duality gap. This typically happens in convex optimization
problems under certain assumptions. However, often there actually is a duality
gap, but the Lagrangian dual problem still gives us an upper bound, and hence
some idea of the optimal value of our problem.

An example where Lagrangian duality is applied, and a duality theorem is
derived, is linear programming (LP) duality. The calculation of the LP dual
from the primal is omitted here, but it is fairly straight-forward.

The de�nition of conjugate functions (see Section 2.5) also has its roots in
Lagrangian duality. The conjugate function shows up naturally when �nding
the Lagrangean dual of a minimization problem with linear inequalities as con-
strains. Section 5.5 will illustrate a version of this.

One can illustrate Lagrange duality such that it is simple to see graphically
whether there is a duality gap. Consider problem (5.5) where S = X, and de�ne
the set G = {(g(x), f(x)) ∈ RN+1 : x ∈ X}. The optimal value of problem (5.5),
denoted p∗, can then be written as p∗ = sup{t : (u, t) ∈ G, u ≤ 0} (from the
de�nitions). This can be illustrated for g : X → R (i.e. for only one inequality)
as in Figures 5.3 and 5.4.

Figure 5.4 shows the set G, the optimal primal value p∗ and the Lagrange-
function for two di�erent Lagrange multipliers. The value of the function L(l) =
supx∈X{f(x)−lg(x)} is given by the intersection of the line t−lu and the t-axis.
Note that the shaded part of G corresponds to the feasible solutions of problem
(5.5). Hence, to �nd the optimal primal solution p∗ in the �gure, �nd the point
(u∗, t∗) in the shaded area of G such that t∗ is as large as possible.

How can one �nd the optimal dual solution in Figure 5.4? Fix an l ≥ 0,
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G

t

u

p* t − l*u

t − lu

Figure 5.4: Illustration of Lagrange duality with no duality gap.

and draw the line t− lu into the �gure. Now, �nd the function L(l) by parallel-
adjusting the line so that the intersection of t− lu is as large as possible, while
making sure that the line still intersects G. Having done this, tilt the line such
that l is still greater than or equal 0, but such that the intersection of the line
and the t-axis becomes as big as possible. The �nal intersection is the optimal
dual solution.

Actually, there is no duality gap in the problem of Figure 5.4, since the opti-
mal primal value corresponds to the optimal dual value, given by the intersection
of the line t− l∗u and the t-axis.

In Figure 5.3 there is a duality gap, since the optimal dual value, denoted
d∗ is greater than the optimal primal value, denoted p∗. What goes wrong?
By examining the two �gures above, one sees that the absence of a duality
gap has something to do with the set G being "locally convex" near the t-axis.
Bertsekas [2] formalizes this idea, and shows a condition for the absence of a
duality gap (in the Lagrange duality case), called the Slater condition.

The Slater condition, in the case where X = Rn (see Boyd and Vanden-
berghe [3]), states the following: Assume there is a problem of the form (5.5).
If f is concave, S = X, each component function of g is convex and there exists
x ∈ rint(D) (see De�nition 2.6), where D is de�ned as the set of x ∈ X where
both f and g are de�ned, such that g(x) < 0, then there is no duality gap.

Actually, (from Boyd and Vandenberghe [3]) this condition can be weakened
in the case where the component-functions g are actually a�ne (and f is still
concave) and dom(f) is open. In this case it is su�cient that there exists a
feasible solution for the absence of a duality gap. Note that for a minimization
problem, the same condition holds as long as f is convex (since a maximization
problem can be turned into a minimization problem by using that sup f =
− inf(−f)).

There is also an alternative version of the Slater condition, where X = Rn.
This is from Bertsekas et. al [2, p.371]: If the optimal value of the primal
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problem (5.5) is �nite, S is a convex set, f and g are convex functions and there
exists x′ ∈ S such that g(x) < 0, then there is no duality gap.

There is also a generalized version of the Lagrange duality method. The
previous Lagrange duality argument can be done for g : X → Z, where Z is
some normed space (see Rynne and Youngston [39] for more on normed spaces)
with an ordering that de�nes a non-negative orthant. From this, one can derive
a slightly more general version of the Slater condition (using the separating
hyperplane theorem). This version of the Slater condition is Theorem 5 in
Luenberger [24] (adapted to the notation of this section): Let X be a normed
space and let f be a concave function, de�ned on a convex subset C of X.
Also, let g be a convex function which maps into a normed space Z (with some
ordering). Assume there exists some x′ ∈ C such that g(x′) < 0. Then the
optimal value of the Lagrange primal problem equals the optimal value of the
Lagrange dual problem, i.e. there is no duality gap.

In particular, since Rm is a normed space with an ordering that de�nes a non-
negative orthant (componentwise ordering), this generalized Slater condition
applies to the Lagrange problem at the beginning of this section.

Finally, note that the Lagrange duality method is quite general, since it
holds for an arbitrary vector space X.

5.5 Utility maximization via duality: Complete

market, �nite Ω ♦
The results of this section hold for general semi-martingale models, not just
Brownian motion driven models. This section is based on Schachermayer [40],
but some alterations to the approach have been made.

We will now look at an alternative way of solving optimization problems
in a complete �nancial market where Ω = {ω1, ..., ωM} is �nite, and the time
T is �nite as well. Since the market is complete, there is only one equivalent
martingale measure, soMe(S) = {Q}. This new method is a duality method,
based on Lagrangean duality (see Section 5.4) and is more general than the
straight-forward maximization of Section 5.3. We will derive Theorem 5.8 which
summarizes our results, and this theorem can be used to solve the investor's
pricing problem in all situations where Ω is �nite and the time is discrete and
�nite.

In the following, de�ne pm := P (ωm) and qm := Q(ωm) for m = 1, ...,M .
Consider the following utility maximization problem:

u(x) := sup
Y ∈L0(FT )

{EP [U(Y )] : EQ[Y ] ≤ x} (5.9)

Recall from Section 5.2 that if one can solve problem (5.9), one can �nd
a solution to the utility maximization problem over all self-�nancing portfolio
value processes.
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Note that the inequality EQ[Y ] ≤ x will be replaced by equality in an op-
timal solution. The reason for this is the following: Assume that Y is an
optimal solution of problem (5.9), but that EQ[Y ] =

∑
m qmY (ωm) < x. De�ne

εm := Y (ωm) for m = 1, ...,M . Then, the investor may increase one of the
εm's, until EQ[Y ] =

∑
m qmεm = x, and hence increase the objective function,

EP [U(Y )] (because U is increasing, and EP [·] is linear, so EP [U(·)] is increas-
ing). Therefore, the original solution Y could not have been optimal.

Our approach for solving this problem can be summarized as follows

(i) Write the problem in component form by de�ning εm := Y (ωm) for all
ωm ∈ Ω:

maxε
∑
m pmU(εm)

subject to ∑
m qmεm ≤ x.

(ii) Set up the Lagrange function

L(ε1, ..., εM , y) =

M∑
m=1

pmU(εm)− y(

M∑
m=1

qmεm − x).

Here, the Lagrange multiplier is denoted by y.

(iii) Find and solve the Lagrange dual problem infy≥0 L(y) by introducing the
KS-conjugate function V (y) := supx{U(x)−xy} and using the properties
of this function.

We now execute our plan, using the method from Schachermayer [40].

De�ne εm := Y (ωm) for m = 1, ...,M and denote ε := (ε1, ..., εM ). Then,
problem (5.9) can be rewritten

supε∈RM
∑
m pmU(εm)

subject to ∑
m qmεm ≤ x.

Note that this is a concave maximization problem with one constraint and
variable ε ∈ RM .

De�ne, for y ≥ 0, the Lagrange function L : RM+1 → R

L(ε1, ..., εM , y) =

M∑
m=1

pmU(εm)− y(

M∑
m=1

qmεm − x).

As in Section 5.4, denote by L(y) the supremum of the Lagrange function

L(y) := sup
ε
{
∑
m

pmU(εm)− y(
∑
m

qmεm − x)}.
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From Section 5.4, L(y) gives an upper bound for the optimal value of problem
(5.9).

The Lagrangean dual problem is the problem of �nding the smallest upper
bound. Hence, the dual problem is

inf
y≥0

L(y) = inf
y≥0

sup
ε
L(ε1, ..., εM , y)

= inf
y≥0

sup
ε
{
∑

pmU(εm)− y(
∑

qmεm − x)}.

Another de�nition is useful. The KS-conjugate V of a function U is de�ned
by V (y) = supx{U(x)− xy}, y > 0. The KS-conjugate is a technical tool used
in duality arguments, and it is de�ned as it is because it naturally appears in
the Lagrange duality argument that follows. The name KS-conjugate is chosen
(by me) because V is the version of a conjugate function used by Kramkov and
Schachermayer in their papers [21] and [22], as well as by Schachermayer in [40].
The relationship between the KS-conjugate V and the regular conjugate U∗ of
Chapter 2 is that V (y) = −U∗(−y).

Continuing the computations

inf
y≥0

L(y) = inf
y≥0

sup
ε
{
∑
m

pmU(εm)− y(
∑

qmεm − x)}

= inf
y≥0

sup
ε
{
∑
m

pm(U(εm)− y qm
pm

εm) + xy}

= inf
y≥0
{
∑

pm sup
εm

{U(εm)− y qm
pm

εm}+ xy}

= inf
y≥0
{
∑

pmV (y
qm
pm

) + xy}.

Note that the Lagrangean dual problem above decomposes into M di�er-
ent optimization problems, each of the form supεm{U(εm) − y qmpm εm}. These
problems are quite easy to solve, and this decomposition is a reason why the
duality approach is useful. Also, the decomposed problems above have a very
convenient form, since supεm{U(εm)− y qmpm εm} = V (y qmpm ), where V is the KS-

conjugate of U . Note how the term qm
pm

arises in the calculations above. This
may be viewed as the Radon-Nikodym derivative of the probability measure Q
with respect to P. We return to this in Section 5.7.

It is possible to �nd the ε which attains the maximum in V , because U is
assumed to be strictly concave and di�erentiable (recall the de�nition of a utility
function, De�nition 5.1). Di�erentiating and setting equal to zero implies that
for all m = 1, ...,M

U ′(ε∗m) = yqm
pm

.

This equation has a unique solution ε∗m = (U ′)−1(yqmpm ) since U ′ is strictly

increasing (recall that U is strictly concave). This is a maximum since U is
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strictly concave, and there is no boundary to check since the maximization is
done over all of R. In order to simplify notation, this will not be inserted
directly into L(ε1, ..., εM , y), instead general properties of the KS-conjugate V
will be used to �nd infy≥0 L(y), and then the ε∗m's will be inserted into the �nal
expression.

One can prove that V has the following properties (see Schachermayer [40]):

� V is �nite-valued.

� V is di�erentiable.

� V is convex.

� V ′(0) = −∞

This implies that v(y) :=
∑
pmV (yqmpm ), is also di�erentiable in y. Now, �nd

infy≥0 L(y) by di�erentiating and setting equal to zero:

v′(y) + x = 0 so v′(y) = −x.

This is a minimum since v is convex (because V is convex). Hence, the smallest
upper bound for our original problem is L(ε∗1, ..., ε

∗
M , y

∗).
We now wish to show that there is no duality gap, i.e., that

u(x) := sup∑
qmεm≤x

∑
pmU(εm) = L(ε∗1, ..., ε

∗
M , y

∗).

From Section 5.4, u(x) ≤ L(y∗) = L(ε∗1, ..., ε
∗
M , y

∗) (L(y∗) is an upper
bound).

The Slater condition from Section 5.4 will be used to show that there is
no duality gap. Assume that the utility function U is de�ned for all x ∈ RM .
The primal problem, problem (5.9), is a concave maximization problem with
one a�ne constraint. Also, Y (ω) = 0 for all ω ∈ Ω := {ω1, . . . , ωm} is a
feasible solution, because EQ[Y ] = EQ[0] = 0 < x, and 0 ∈ rint(Rm), (note
that D = RM ). (Actually, one can work around assuming that U is de�ned for
all x ∈ RM by de�ning a new function Ū to be equal to U where it is de�ned,
and very negative where U is not de�ned, and considering the corresponding
utility maximization problem. Then, the optimal values of the two problems
will be the same since Y = 0 is feasible for both problems, and this gives a
non-negative primal value function. Then, the Slater condition can be applied
to the new utility maximization problem.)

Hence, u(x) = L(ε∗1, ..., ε
∗
M , y

∗) =
∑
pmU(ε∗m). Also, the optimal solution

is Y ∗(ωm) = ε∗m = I(y
∗qm
pm

) where I := (U ′)−1, and y∗ is determined from the

equation v′(y∗) = −x. From the correspondence between problems (5.2) and
(5.3) of Section 5.2, it follows that the optimal solution Y ∗ = XH∗

T , the optimal
terminal portfolio value of the utility maximization problem.

There is a connection between the primal optimal value function u and the
function v,
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u(x) = L(ε∗1, ..., ε
∗
M , y

∗)

= inf
y≥0
{v(y) + xy}

where the last equality follows from the calculations below:

inf
y>0
{v(y) + yx} = v(y∗(x)) + y∗(x)x

= EP [V (y∗(x))
dQ

dP
] + y∗(x)x

= EP [sup
εm

{U(εm)− y∗(x)
qm
pm

εm}] + y∗(x)x

=
∑
m

pmU(ε∗m)−
∑
m

qmy
∗(x)ε∗m + y∗(x)x

= EP [U(ε∗)]− y∗(x)(EQ[ε∗]− x)

= L(ε∗1, ..., ε
∗
M , y

∗(x)).

Hence, u and v are KS-conjugate by Proposition 2.14 in [40].
We summarize our results in the following theorem, which is a part of The-

orem 2.16 in Schachermayer [40]:

Theorem 5.8 Consider an agent in a complete �nancial market based on a
�nite probability space (Ω,F , P ), where Me(S) = {Q}. Let U be the agent's
utility function and x her initial endowment. Also, let

u(x) = sup
{Y ∈L0(FT ):EQ[Y ]≤x}

EP [U(Y )]

and let

v(y) = EP [V (y
dQ

dP
)]

where V is the KS-conjugate of U .
Then:

� u(x) = infy{v(y) +xy}, hence (from Proposition 2.14 in [40]) u and v are
KS-conjugate.

� The optimal terminal portfolio value Y ∗ exists and is uniquely determined
by

Y ∗(x) = I(y∗
dQ

dP
)

where I := (U ′)−1, dQ
dP is the Radon-Nikodym derivative of Q w.r.t. P

and y∗ is uniquely determined by v′(y∗) = −x.

� In the optimum, the constraint holds with equality: EQ[Y ∗] = x.
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What is the practical use of this theorem? Theorem 5.8 gives an alter-
native method for solving the investor's problem (5.9): If one cannot solve
the investor's problem directly, Theorem 5.8 says that one can �nd the func-
tion v(y) := EP [V (y dQdP )] instead, and use that u(x) = infy{v(y) + xy} to
�nd u. The optimal terminal value can then be determined from the formula
Y ∗(x) = I(y∗ dQdP ).

Example 5.9 ♦
Now, consider this duality method for solving the investor's problem (5.9) in

the market of Example 5.6 in Section 5.3. This is pearls before swine, but useful
for achieving an understanding of the method.

We already know thatMe(S) = {Q} = {( 2
5 ,

3
5 )} in our market.

Writing (5.9) for Example 5.6

maxε1,ε2
1
3 ln(ε1) + 2

3 ln ε2

such that
2
5ε1 + 3

5ε2 ≤ x.

Theorem 5.8 implies that the optimal terminal value is given by Y ∗(ω) =
I(y∗ dQdP (ω)). U(x) = ln(x), so U ′(x) = 1

x , hence

I(y) := (U ′)−1(y) = 1
y

Also dQ
dP (ω1) = 6

5 and dQ
dP (ω1) = 9

10 . y
∗ is determined from v′(y) = −x: V (z) :=

supx{ln(x)−zx}, by di�erentiating and setting equal to zero V (z) = −(1+ln(z)).
Now v(y) := E[V (y dQdP )], so

v(y) = −1− ln( 6
5 ) 1

3 − ln( 9
10 )− ln(y).

Hence, − 1
y = v′(y) = −x, so y∗ = 1

x . Therefore, the optimal solution is

Y ∗(x) = I(y∗(x)
dQ

dP
)

=

{
5x
6 , ω1

10x
9 , ω2

.

As mentioned, Y ∗ = XH∗

T , the optimal terminal portfolio value of the utility
maximization problem. Hence, XH∗

T (ω1) = 5x
6 and XH∗

T (ω2) = 10x
9 are the

optimal values of the portfolio in ω1, ω2 respectively. From this, one can derive
the optimal trading strategy (since the market is complete) by solving the linear
system of equations

H0(1) + 4H1(1) = x

H0(1) + 7H1(1) = 5x
6

H0(1) + 2H1(1) = 10x
9 .

where Hn(1) denotes the amount of asset n the agent should choose to hold from
time 0 to time 1. This system of equations has solution H(1) = (H0(1), H1(1)) =
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( 11x
9 ,− x

18 ). Note that this is the same as the previously derived optimal trading
strategy.

Now, two di�erent approaches for solving the utility maximization problem
have been presented: The direct method of Section 5.3, and the duality method
of this section. One of the major advantages of the duality method is that there
is no system of (possibly) non-linear equations to solve, which was an issue with
the direct approach. Another advantage with the duality method, even for small
examples, is that there are far fewer computations than the direct method. The
duality method is also simple to program. Appendix A contains two Matlab-
programs. The �rst one checks if a �nancial market is complete (since the
market must be complete in order to apply Theorem 5.8). The second program
applies Theorem 5.8 to a complete �nancial market where the investor has utility
function U(x) = ln(x), and hence derives the optimal terminal portfolio value
for the agent. Then, the program uses the optimal terminal portfolio value to
�nd the optimal trading strategy (by computing backwards). Both the programs
work for markets with �nite, discrete time and �nite scenario space. One can use
the program for di�erent utility functions as well, by computing the alternative
formula for y∗ and inserting this into the program. A �nal advantage with the
duality method is that it generalizable, as will be shown.

5.6 Utility maximization via duality: Incomplete

market, �nite Ω ♦
The results in this section hold for general semi-martingale models. It is based
on Schachermayer [40], but some alterations have been made to the approach.

Now that we know how to solve the investor's problem for a complete market
where Ω is �nite, it is natural to look at what happens in an incomplete market
(also for �nite Ω). So, assume |Me(S)| =∞, i.e. that the set of equivalent mar-
tingale measures, contain in�nitely many elements. Hence, there is no arbitrage
and the market is incomplete.

The investor's problem now takes the form

max E[U(Y )]
subject to

EQ[Y ] ≤ x for all Q ∈Me(S).
(5.10)

Recall that from Section 5.2, this problem can be solved instead of the original
utility maximization problem supH∈HE[U(XH

T )].
The di�culty in the investor's problem (5.10) is that there are in�nitely

many constraints. If one could reduce these in�nitely many constraints to a
�nite number, the Lagrange duality theory of Section 5.4 would apply. Luckily,
it is actually possible to reduce the number of constraints. In order to do this,
observe the following lemma:
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Lemma 5.10 For Y ∈ L0(FT ), EQ[Y ] ≤ x for all Q ∈ Me(S) if and only
if EQ[Y ] ≤ x for all Q ∈ Ma(S), where Ma(S) is the set of all probability
measures that are absolutely continuous w.r.t. to P and are such that the price
process S is a Q-martingale.

Proof: ♦
One direction is clear, sinceMe(S) ⊆Ma(S).

As for the other direction: Assume that EQ[Y ] ≤ x for all Q ∈ Me(S).
Take Q ∈ Ma(S), and take Q′ ∈ Me(S). Then, for every λ ∈ (0, 1), Qλ :=
λQ′ + (1 − λ)Q ∈ Me(S). Hence, EQ[Y ] = limλ→0EQλ [Y ] ≤ x. Therefore
EQ[Y ] ≤ x for all Q ∈Ma(S).

�

Because of Lemma 5.10, consider the constraints EQ[Y ] ≤ x for all Q ∈
Ma(S) from now on. Why is this a better set to work with? The following
Lemma 5.11 is the reason. Note that in Lemma 5.11 the setMa(S) is identi�ed
with the corresponding set of probability vectors in Rm, and this set is denoted
byMa(S) as well.

Lemma 5.11 Ma(S) is a polytope in RM . Hence, Ma(S) is the convex hull
of its �nitely many extreme points, and it is a compact set.

Proof: ♦
Denote by qm := Q(ωm) for all ωm ∈ Ω, and q := (q1, ..., qm). We want to

show thatMa(S) is a polytope. From Theorem 2.5 in Chapter 2, we know that
Ma(S) is a polytope if and only if it is a bounded polyhedron. Hence, it su�ces
to show that Ma(S) is bounded and can be described as the intersection of a
�nite number of closed halfspaces (from De�nition 2.2). That is, we want to
prove thatMa(S) is bounded and that it is the solution set of a �nite number
of (non-strict) linear inequalities (see comment after De�nition 2.2). Ma(S) is
bounded because it is contained in the unit ball of RM . It is clear from the
de�nition ofMa(S) that it is the solution set of �nitely many non-strict linear
inequalities (because the martingale condition can be written as a �nite set of
linear equalities in q, which can be rewritten as a �nite set of linear inequalities
in q).

Hence,Ma(S) is a polytope, and therefore it is compact, and it is the convex
hull of its �nitely many extreme points, from Lemma 2.4 and De�nition 2.3.

�

Hence, all ofMa(S) can be described by a �nite subset, namely its extreme
points. This is very good news, because we are trying to reduce the in�nitely
many constraints EQ[Y ] ≤ x for all Q ∈ Ma(S), to a �nite number of con-
straints.

Lemma 5.12 Let Q1, ..., QK be the extreme points of Ma(S) and let Y ∈
L0(FT ). Then EQk [Y ] ≤ x for k = 1, ...,K if and only if EQ[Y ] ≤ x for
all Q ∈Ma(S).
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Proof: ♦
We show this by combining convexity and linearity of the expectation oper-

ator.

� Assume EQk [Y ] ≤ x for k = 1, ...,K. We want to show that EQ[Y ] ≤ x
for all Q ∈ Ma(S). So take Q ∈ Ma(S). Then Q can be written as a

convex combination of the Qk's, so Q =
∑K
k=1 λkQk, where

∑
k λk = 1,

λk ≥ 0 for all k = 1, ...,K. But then:

EQ[Y ] =
∑M
m=1 qmY (ωm)

=
∑
m(
∑
k λkq

k
m)Y (ωm)

=
∑
k λk(

∑
m q

k
mY (ωm))

=
∑
k λkEQk [Y ]

≤
∑
k λkx

= x
∑
k λk

= x

where qkm := Qk(ωm) for all ωm ∈ Ω, k = 1, . . . ,K and the inequality
follows from that Qk ∈ {Q1, ..., QK} for k = 1, ...,K and our assumption.
Hence, EQ[Y ] ≤ x for all Q ∈Ma(S).

� Assume EQ[Y ] ≤ x for all Q ∈ Ma(S). Then, clearly, EQk [Y ] ≤ x for
k = 1, ...,K, since Qk ∈Ma(S) for k = 1, ...,K.

�

Lemma 5.12 implies that the investor's problem can be written as a concave
maximization problem over RM with a �nite number of constraints

max E[U(Y )]
subject to

EQk [Y ] ≤ x for k = 1, ...,K.

Or, in component form, de�ning εm := Y (ωm) for m = 1, . . . ,M

max
∑
m pmU(εm)

subject to ∑
m q

k
mεm ≤ x for k = 1, ...,K.

(5.11)

The form of this problem is suitable for the Lagrange duality method of
Section 5.4. Therefore, de�ne the Lagrange function

L(ε1, ..., εM , η1, ..., ηK) =
∑
m pmU(εm)−

∑K
k=1 ηk(

∑
m q

k
mεm − x)

=
∑
m pm(U(εm)−

∑
k
εmηkq

k
m

pm
) + x

∑
k ηk

where εm ∈ dom(U) for m = 1, ...,M and ηk ∈ R+ for k = 1, ...,K are the
Lagrange dual variables.
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Some notation is useful in order to make the Lagrange function similar to
the one in the complete case of Section 5.5. Let y :=

∑
k ηk, µk := ηk

y for

k = 1, ...,K, µ := (µ1, ..., µK) and Q =
∑
k µkQ

k.
Note that if (η1, ..., ηK) runs through RK+ , then the couple (y,Q) runs through

R×Ma(S) (sinceMa(S) is the convex hull of its extreme points Q1, ..., QK).
Hence

L(ε1, ..., εM , η1, ..., ηK) = E[U(Y )]− y(EQ[Y ]− x)

=
∑
m pm(U(εm)− yqmεm

pm
) + yx.

where εm ∈ dom(U) for all m, and the �rst equation is true because

E[U(Y )]− y(EQ[Y ]− x) =
∑M
m=1 pmU(εm)−

(η1 + ...+ ηK)(
∑M
m=1 qmεm − x)

=
∑
m pmU(εm)−

(
∑K
k=1 ηk)(

∑
m(
∑
k q

k
mµk)εm − x)

=
∑
m pmU(εm)−

(
∑
k ηk)(

∑
m(
∑
k q

k
m

ηk∑
k ηk

)εm − x)

=
∑
m pmU(εm)−

∑
m(
∑
k q

k
mηk)εm+

x(
∑
k ηk)

=
∑
m pm(U(εm)−

∑
k
ηkq

k
mεm
pm

) +
∑
k ηkx

which is the previous expression for the Lagrange function.
Hence

L(ε1, ..., εM , y,Q) =
∑
m pm(U(εm)− yqm

pm
εm) + xy

where εm ∈ dom(U) for all m, y ≥ 0 and Q = (q1, ..., qM ) ∈Ma(S). This is the
same expression as in the complete case, except that Q is not a �xed measure,
but varies inMa(S).

From Lagrange duality (see Section 5.4), u(x) ≤ supε L(ε1, ..., εM , y,Q) for
all y ≥ 0 and Q ∈Ma(S).

Note that

supε1,...,εM L(ε1, ..., εM , y,Q) = supε1,...,εM
∑
m pm(U(εm)− yqm

pm
εm) + yx

=
∑
m pm supεm{U(εm)− yqm

pm
εm}+ yx

=
∑
m pmV (yqmpm ) + yx.

for y ≥ 0, Q ∈Ma(S), where V is the KS-conjugate of U .
Now consider the Lagrangian dual problem of �nding the smallest upper

bound on the optimal primal value generated by the Lagrange function

infy≥0,Q∈Ma(S) supε1,...,εM L(ε1, ..., εM , y,Q) =
infy≥0,Q∈Ma(S){

∑
m pmV ( qmypm

) + yx}
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First consider infQ∈Ma(S)

∑
m pmV ( qmypm

) + yx. The function

Q 7→
∑
m

pmV (
qmy

pm
) + yx

is a continuous function, and the set Ma(S) is compact. Hence, the extreme
value theorem (see any book on multi-variable calculus) implies that the function
Q 7→

∑
m pmV ( qmypm

) + yx achieves its minimum Q∗(y) onMa(S). Since V is a
strictly convex function, the minimum is unique. Actually, one can prove that
Q∗(y) ∈Me(S). This is done in Schachermayer [40].

Now, de�ne v(y) :=
∑
m pmV (

yq∗m(y)
pm

) = infQ∈Ma(S)

∑
m pmV (yqmpm ), and

consider the Lagrange dual problem

infy≥0 infQ∈Ma(S)

∑
m pmV ( qmypm

) + yx = infy≥0{v(y) + xy}.

v is a di�erentiable function (from properties of V and the de�nition of v).
Hence, this minimization problem can be solved by di�erentiating and setting
equal to zero. Therefore y∗ is de�ned by v′(y∗) = −x, as in the complete case,
and for the same reasons as before y∗ ≥ 0.

Let Q∗ := Q∗(y∗) and ε∗m := I(
y∗q∗m
pm

) for all m = 1, ...,M . We want to show

that there is no duality gap, i.e. that u(x) = L(ε∗1, ..., ε
∗
M , y

∗, Q∗). From La-
grange duality, u(x) ≤ L(ε∗1, ..., ε

∗
M , y

∗, Q∗). Again, the Slater condition proves
that there is no duality gap: Problem (5.11) is a concave maximization problem
with �nitely many a�ne inequalities as constraints. As in Section 5.5, Y = 0 is
a strictly feasible solution in rint(D) = rint(RM ). Hence, the Slater condition
implies that there is no duality gap. Therefore, u(x) = L(ε∗1, ..., ε

∗
M , y

∗, Q∗).
Finally, we get theorem similar to Theorem 5.8 for the incomplete case:

Theorem 5.13 (Utility maximization: �nite Ω, incomplete market)
Consider a �nancial market S based on a �nite probability space (Ω,F , P )

and letMe(S) 6= ∅. Consider an agent with a utility function U . Let:

u(x) := supY ∈L0{E[U(Y )] : EQ[Y ] ≤ x for all Q ∈Me(S)}
v(y) := infQ{E[V (y dQdP )] : Q ∈Ma(S)}

Then:

(i) u and v are KS-conjugate.

(ii) Y ∗ and Q∗ that optimize respectively u and v above exist, are unique, and
satisfy Q∗ ∈Me(S) as well as:

Y ∗(x) = I(y∗ dQ
∗

dP )

where I = (U ′)−1 and y∗ is de�ned as the unique solution to the equation
v′(y∗) = −x.
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Proof: Everything in (ii) follows from the previous derivation. As for (i):

u(x) = L(ε∗1, ..., ε
∗
M , y

∗, Q∗)
= infy≥0{v(y) + xy}

so from Proposition 2.14 in [40], u and v are KS-conjugate. �

5.7 Utility maximization via duality: The gen-

eral case

As in the two previous sections, the results of this section hold for a general
semi-martingale model. This section is based on the papers [21] and [22] by
Kramkov and Schachermayer.

Until now it has been assumed that the scenario space Ω is �nite when
working with the utility maximization problem. The goal of this section is to
generalize the theory of the previous sections to the case where Ω is arbitrary.

In the following, assume that Me(S) 6= ∅, so that the market has no arbi-
trage, but it may be incomplete. This is a very general, but also very realistic
situation. The question is: What, if any, extra conditions need to be imposed
in order to get a theorem analogous to Theorem 5.13 for the case where Ω is
arbitrary?

Recall from Section 5.1 that the utility function U : R → R ∪ {−∞} is
assumed to be increasing on R, continuous on {U > −∞}, di�erentiable and
strictly concave on the interior of {U > −∞} and that limx→∞ U ′(x) = 0. In
that section, we also distinguished between two di�erent cases: negative wealth
not allowed and negative wealth allowed, and de�ned some extra conditions on
the utility function depending on which of these cases applied. So far, there has
really been no di�erence between the two cases, but in the situation where Ω is
arbitrary, the cases separate. Here, only case 1 will be considered. This is the
case where negative wealth is not allowed. Hence we assume (as in Section 5.1)
that limx→0 U

′(x) = ∞. The idea for solving case 2 is the same, and can be
found in Kramkov and Schachermayer [22].

It turns out that one does not need to add a lot of extra conditions in order
to get a theorem similar to Theorem 5.13 also in the present, more general
case. Actually, the answer to our question is that we have to choose some clever
sets for the terminal portfolio value and Q to vary in, and these sets depend on
whether we are in case 1 or case 2. Also the utility function U must satisfy what
Kramkov and Schachermayer [22] refer to as reasonable asymptotic elasticity.

A utility function U satis�es reasonable asymptotic elasticity (in case 1) if

lim supx→∞
xU ′(x)
U(x) < 1.

One can show that this condition holds if for instance U(x) = ln(x).
The economic principles behind the concept of reasonable asymptotic elas-

ticity is that xU
′(x)

U(x) = U ′(x)
U(x)
x

is the marginal utility divided by the average utility.
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Since a utility function has decreasing marginal utility (see De�nition 5.1), intu-
ition suggests that as x gets bigger, the marginal utility should become smaller
than the average utility. This is what the concept of reasonable asymptotic
elasticity states.

Even though one does not need a lot of extra conditions on the market in
the general case, things are a lot more complicated than in our previous �nite
Ω situation. Therefore, we begin with some intuition of how to proceed with
the proof of the generalization of Theorem 5.13, before actually embarking on
the proof.

The proof uses similar ideas as the previous sections. However, a di�culty
is that many of the previous arguments are based on results in multivariate
calculus which do not generalize to in�nite dimension. Instead, one must use
functional analysis and an in�nite dimensional version of the MiniMax theorem.

The MiniMax theorem in in�nite dimension states (see Kramkov and Schacher-
mayer [22] or Komiya [20]):

Theorem 5.14 (MiniMax theorem)
Let E and F be a pair of locally convex paired vector spaces and let C ⊆ E,

D ⊆ F be convex subsets of these spaces. Also, let L(x, y) be a function de�ned
on C × D which is concave and upper semi-continuous in the x-variable and
convex and lower semi-continuous in the y-variable. If in addition, at least one
of the sets C,D is compact, there exists a saddle point (ε∗, µ∗) ∈ C × D such
that

L(ε∗, µ∗) = supε∈C infµ∈D L(ε, µ) = infµ∈D supε∈C L(ε, µ).

The idea of the following proof is to �rst prove things in an abstract setting,
using spaces that satisfy the MiniMax theorem. Then, one chooses appropriate
spaces for the primal and dual variables to vary in, so that one falls into the
abstract setting.

In order to formulate the theorem, some more notation is needed.
Let X (x) be the set of all value processes that are greater than or equal to

0 with start value x, i.e.

X (x) := {X : Xt = x+

∫ t

0

HsdSs ≥ 0 for all t,H ∈ H}

where H consists of all predictable stochastic processes that are integrable with
respect to S.

Let also X := X (1).
The investor wants to solve the following version of problem (5.1)

u(x) = sup
X∈X (x)

EP [U(XT )]. (5.12)

Note that this is the original utility maximization problem, problem (5.3). Here,
the function u is the value function of the investor's problem.
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As usual, the KS-conjugate in the concave sense (KS for Kramkov and
Schachermayer) of the utility function U is de�ned by V (y) = supx>0{U(x)−xy}
for y > 0.

De�ne

Y := {Y ≥ 0 : Y0 = 1, XY is a supermartingale for all X ∈ X} (5.13)

and let Y(y) := yY = {yY : Y ∈ Y} for y > 0.
Consider the following dual optimization problem

v(y) = inf
Y ∈Y(y)

EP [V (YT )]. (5.14)

So v is the value function of the dual problem.
Then, the following theorem, which is a combination of Theorem 1 and

Theorem 2 in Kramkov and Schachermayer [22], holds.

Theorem 5.15 Assume that u(x) <∞ for some x and v(y) <∞ for all y > 0.
Then

(i) v(y) = supx>0{u(x)−xy}, for all y > 0, so u and v are KS-conjugate (see
Proposition 2.14 in Schachermayer [40]).

(ii) v(y) = infQ∈Me(S)EP [V (y dQdP )] for all y > 0. Here dQ
dP denotes the Radon-

Nikodym derivative of Q w.r.t. P (that is, dQ = (dQdP )dP ).

(iii) For a �xed x∗, y∗ = u′(x∗) and Q∗ that optimizes the in�mum in (ii), the
optimal terminal value X∗x(T ) in the primal problem will satisfy

U ′(X∗x(T )) = y∗
dQ∗

dP
. (5.15)

The proof is from Kramkov and Schachermayer [21], [22], some details have
been �lled in.

Proof: ♦

(i) : First, de�ne an abstract setting: Let C andD be two subsets of L0
+(Ω,F , P )

(the set of all non-negative P-integrable functions from Ω into R) such that

(a) C and D are convex, solid (i.e. h ∈ D and 0 ≤ g ≤ h implies that
g ∈ C) and closed in the convergence of measure topology.

(b)

g ∈ C ⇐⇒ EP [gh] ≤ 1 for all h ∈ D and

h ∈ D ⇐⇒ EP [gh] ≤ 1 for all g ∈ C.

(c) C is a bounded subset of L0(Ω,F , P ) such that 1 ∈ C (where 1 denotes
the function identically equal to 1).
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Let C(x) = xC and D(y) = yD.
Let, as before, U be the utility function and V its KS-conjugate. Consider
the following abstract versions of the previous primal and dual optimiza-
tion problems

u(x) = sup
g∈C(x)

EP [U(g)]

v(y) = inf
h∈D(y)

EP [V (h)].

Abstract version of statement (i): v(y) = supx>0{u(x)− xy}.
Proof of abstract version of statement (i): For n > 0, let Bn be the positive
elements in the ball with radius n in L∞(Ω,F , P ), so Bn = {g : 0 ≤ g ≤
n}. Bn is a σ(L∞,L0)-compact set (this follows from Alaoglu's theorem
plus the fact that a closed subset of a compact set is compact).

Since 1 ∈ C, EP [g] = EP [g1] ≤ y < ∞ for all yg ∈ yD = D(y). This,
plus the assumptions on D, imply that D(y) is a closed, convex subset of
L∞(Ω,F , P ). Therefore, the MiniMax theorem holds. This implies

sup
g∈Bn

inf
h∈D(y)

EP [U(g)− gh] = inf
h∈D(y)

sup
g∈Bn

EP [U(g)− gh].

From the dual relations (assumption (b)) between C and D

g ∈ C ⇐⇒ EP [gh] ≤ 1 for all h ∈ D.

So,

g ∈ C ⇐⇒ sup
h∈D

EP [gh] ≤ 1.

Hence,

ḡ ∈ xC = C(x) ⇐⇒ sup
h∈D

EP [
ḡ

x
h] ≤ 1.

Therefore, this happens if and only if

sup
h∈D

EP [ḡh] ≤ x.

So,
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ḡ ∈ C(x) ⇐⇒ sup
h̄∈D(y)

EP [ḡ
h̄

y
] ≤ x.

Finally,

ḡ ∈ C(x) ⇐⇒ sup
h̄∈D(y)

EP [ḡh̄] ≤ xy.

Hence,

lim
n→∞

sup
g∈Bn

inf
h∈D(y)

EP [U(g)− gh] = lim
n→∞

sup
g∈Bn
{EP [U(g)]− sup

h∈D(y)

EP [gh]}

= sup
x>0

sup
g∈C(x)

EP [U(g)− xy]

= sup
x>0
{u(x)− xy}.

The second to last equality follows from suph∈D(y)EP [gh] ≤ xy in C(x),
and since we want to make this expression small, it is su�cient to consider
g ∈ C(x). The last equality follows from the de�nition of u, plus the fact
that xy is deterministic.

On the other hand,

inf
h∈D(y)

sup
g∈Bn

EP [U(g)− gh] = inf
h∈D(y)

EP [Vn(h)]

:= vn(y).

where Vn(y) := sup0≤x≤n{U(x)− xy}.
Hence, it su�ces to prove that

lim
n→∞

vn(y) = lim
n→∞

inf
h∈D(y)

EP [Vn(h)] = v(y), for y > 0. (5.16)

(because supg infhEP [U(g)− gh] = infh supg EP [U(g)− gh]).

Note that vn ≤ v because

vn(y) = infh∈D(y)EP [Vn(h)]
= infh∈D(y)EP [sup0≤x≤n{u(x)− xy}]

and

v(y) = infY ∈Y(y)EP [V (YT )]
= infY EP [supx>0{u(x)− xYT }]
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and we also have D(y) ⊆ Y(y), {0 < x ≤ n} ⊆ {x > 0}.
Let (hn)n≥1 be a sequence in D(y) such that

lim
n→∞

EP [Vn(hn)] = lim
n→∞

vn(y).

(such a sequence exists from the de�nition of in�mum).

The following lemma holds.

Lemma (i): Let (fn)n≥1 be a sequence of positive random variables. Then
there exists a sequence (gn)n≥1 ∈ co{fn, fn+1, ...}, n ≥ 1 which converges
almost everywhere towards a variable g with values in [0,∞].

For a proof of Lemma (i), see Kramkov and Schachermayer [21].

Lemma (i) implies that there exists a sequence (fn)n in co{hn, hn+1, ...}
which converges P -a.s. towards a variable h. This h must be in D(y),
since D(y) is closed under convergence of measure (by assumption).

Since Vn(y) = V (y) for y ≥ I(1) ≥ I(n), where I := (U ′)−1, Lemma 3.2
in [21] implies that the sequence {(Vn(fn))−}n≥1 is uniformly integrable
(here, a− := max{−a, 0}).
Convexity of Vn and Fatou's Lemma now implies that

lim
n→∞

E[Vn(hn)] ≥ lim inf
n→∞

E[Vn(fn)]

≥ E[V (h)]

≥ v(y).

This gives equation (5.16), since

vn ≤ v ⇒ lim
n→∞

vn ≤ v

and

v(y) ≤ lim
n→∞

EP [Vn(hn)]

= lim
n→∞

vn(y).

This completes the proof of the abstract version of (i).

The next step is to prove (i) from its abstract version:

Let

C(x) = {g ∈ L0(Ω,F , P ) : 0 ≤ g ≤ XT for some X ∈ X (x)}
D(y) = {h ∈ L0(Ω,F , P ) : 0 ≤ h ≤ YT for some Y ∈ Y(y)}.

Then

u(x) = sup
g∈C(x)

EP [U(g)]v(y) = inf
h∈D(y)

EP [V (h)]



5.7. UTILITY MAXIMIZATION VIA DUALITY: THE GENERAL CASE 93

where u, v are the original optimal value functions of the primal and dual
problems.

From Proposition 3.1 in Kramkov and Schachermayer [21], C(x) and D(y)
will satisfy the conditions (a)-(c). Hence, the claim in (i) is proved.

(ii) : Moving on to claim (ii), we want to prove that v(y) = infQ∈Me(S)E[V (y dQdP )].

Proof of claim (ii): We will use the following proposition from Kramkov
and Schachermayer [22], see this article for the proof.

Proposition 1 : Assume that U is such that U ′(0) = ∞, U ′(∞) = 0. As-
sume also that C,D are sets such that C is bounded in L0(Ω,F , P ), 1 ∈ C,
g ∈ C if and only if EP [gh] ≤ 1 for all h ∈ D, h ∈ D if and only if h ≥ 0
and EP [gh] ≤ 1 for all g ∈ C and that D̄ is a convex subset of D such that:

� For all g ∈ C we have suph∈D̄ EP [gh] = suph∈D EP [gh].

� D̄ is closed under countable convex combinations.

Then, v(y) = infh∈D̄ EP [V (yh)].

Proposition 1 is used to prove (ii). Let D̄ be the set of Radon-Nikodym
derivatives for equivalent martingale measures

D̄ = {h =
dQ

dP
: Q ∈Me(S)}. (5.17)

D̄ is closed under countable convex combinations: If (hn)n ⊆ D̄, (λn)n,
λn ≥ 0 for all n,

∑
n λn = 1, then there exists a sequence (Qn)n ∈Me(S)

such that hn = dQn
dP for n = 1, 2, .... Then∑

n

λnhn =
∑
n

λn
dQn
dP

=
d

dP

∑
n

λnQn

=
dQ̄

dP

where the middle equality follows from linearity of the integral, and the
last equality follows from that

∑
n λnQn ∈Me(S).

In addition

g ∈ C ⇐⇒ g ≥ 0 and EQ[g] ≤ 1 for all Q ∈Me(S).

Hence, all the conditions of Proposition 1 are satis�ed, and claim (ii)
follows from the proposition plus the de�nition of D̄.

(iii) : Finally, we prove claim (iii). Assume again the generalized setting of
(i). From the same type of argument as it (i), it will su�ce to prove the
following generalized version of claim (iii):
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Abstract version of (iii): Under the same assumptions on U, C,D, v and u
as in (i), we have: The optimal solution ḡ(x) ∈ C(x) of supg∈C(x)EP [U(g)]
exists for x > 0 and it is unique. If ȳ = u′(x̄) for x̄ > 0, we have

U ′(ḡ(x)) = h̄(ȳ)

where h̄ is the optimal solution to infh∈D(ȳ)EP [V (h)].

Proof of the abstract version of (iii): Existence of solution follows from
Lemma 1 and Theorem 3 in Kramkov and Schachermayer [22]. Strict
concavity of U ⇒ EP [U(·)] is strictly concave ⇒ EP [U(·)] has a unique
maximum ⇒ ḡ is unique.

Let x̄ > 0, ȳ = u′(x̄) and ḡ, h̄ be optimal solutions of supg∈C(x̄)EP [U(g)]
and infh∈D(ȳ)EP [V (h)] respectively. Then

0 ≤ EP [|V (h̄(ȳ)) + ḡ(x)h̄(ȳ)− U(ḡ(x))|]
= EP [V (h̄(ȳ)) + ḡ(x)h̄(ȳ)− U(ḡ(x))]

≤ v(ȳ) + x̄ȳ − u(x̄)

= 0.

Here, the �rst equality follows from properties of ḡ and h̄. The second
inequality follows from the de�nitions of u, v, that ḡ ∈ C(x̄), h̄ ∈ D(ȳ) and
g ∈ C(x) if and only if EP [gh] ≤ xy for all h ∈ D(y). The last equality
follows from the de�nition of v, regular maximization by di�erentiation
and setting equal to 0, and that ȳ = u′(x̄).

Hence

U(ḡ(x̄)) = V (h̄(ȳ)) + ḡ(x̄)h̄(ȳ).

Denoting ḡ(x̄) by x′ and di�erentiating the expression above w.r.t. x′

gives

U ′(x′) = h̄(ȳ) a.s .

So U ′(ḡ(x̄)) = h̄(ȳ) P -a.s.

This proves the abstract version of (iii), and hence (iii) is also proven.

�

5.8 Duality in a complete market ♦
The arguments in the previous section are fairly complicated. However, it turns
out that for a complete market model, even for Ω arbitrary and continuous
time, it is possible to derive a dual problem and quickly show that there is no
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duality gap using Lagrange duality, the Slater condition and the transformation
of Section 5.2.

Consider a �nancial market based on a probability space (Ω,F , P ), where
Ω is arbitrary. Assume, as usual, that there are N risky assets in the market,
and one non-risky asset (bond). The composed price process of these assets is
denoted St, where the time t ∈ [0, T ] (where the �nal time T may be in�nite).
Let (Ft)t be the �ltration generated by the price processes. Assume that the
market is complete, so there is only one equivalent martingale measure (see
Section 4.2).

From Section 5.2, it is reasonable to consider the following utility maximiza-
tion problem

max E[U(Y )]
subject to

EQ[Y ] ≤ x
where Q is the single equivalent martingale measure, x ∈ R, x > 0 is a constant,
and the maximization is done over all Y ∈ L0(Ω,FT , P ).

Let λ ≥ 0 be the Lagrange dual variable. The Lagrange function is L(Y, λ) =
E[U(Y )]− λ(EQ[Y ]− x), so the Lagrange dual problem takes the form

infλ≥0 supY ∈L0(FT ){E[U(Y )]− yEQ[Y ] + xλ}
= infλ≥0{supY {E[U(Y )− λdQdP Y ]}+ xλ}
= infλ≥0{supY {

∫
(U(Y )− λdQdP Y )dP}+ xλ}

= infλ≥0{
∫

supY (ω)(U(Y (ω))

−λdQdP (ω)Y (ω))dP}+ xλ}
= infλ≥0{

∫
V (λdQdP )dP + xλ}

= infλ≥0{E[V (λdQdP )] + xλ}
where V is the KS-conjugate of the utility function U and dQ

dP denotes the Radon-
Nikodym derivative of Q with respect to P . In the calculations above the �rst
equality follows from a change of measure and the third equality follows from
the interchange rule between expectations and supremum of Theorem 14.60 in
Rockafellar and Wets [36] (h(x, ω) = U(x) − y dQdP (ω)x is a normal integrand
from De�nition 14.27 in [36]).

Now, to show that there is no duality gap, we check that the generalized
Slater condition of Section 5.4 is satis�ed. The objective function E[U(·)] is
a concave function, the constraint EQ[·] − x ≤ 0 is a�ne (hence convex) and
Y (ω) = 0 for all ω ∈ Ω is a strictly feasible solution. Hence, the generalized
Slater condition of section 5.4 implies that there is no duality gap, so

sup{E[U(Y )] : EQ[Y ] ≤ x,XT ∈ L0(FT )} = inf
λ≥0
{E[V (

dQ

dP
λ)] + xλ}.

Actually, by solving supY (ω){U(Y (ω)) − λdQdP (ω)Y (ω)}, one �nds that the

optimal solution is Y ∗λ (ω) = I(λdQdP (ω)) for each ω ∈ Ω (by di�erentiating and
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setting equal to zero, where I := (U ′)−1). This is allowed since U is di�eren-
tiable, it is a maximum because U is concave, and since the maximization is
done over all of R there is no boundary to check.

One must also �nd the optimal λ from infλ≥0{E[V (λdQdP )] + xλ}. Note that

infλ≥0{E[V (λdQdP )] + xλ} = infλ≥0{v(λ) + xλ}

where v(λ) := E[V (λdQdP )]. By di�erentiating (v is di�erentiable) and setting
equal to zero one sees that the optimal λ∗ is determined as the solution of
v′(λ) = −x.

Summarizing, the following theorem holds

Theorem 5.16 Consider the primal optimization problem

sup{E[U(Y )] : EQ[Y ] ≤ x, Y ∈ L0(FT )}

in the complete market setting above. The Lagrange dual problem is

inf
λ≥0
{E[V (

dQ

dP
λ)] + xλ}.

There is no duality gap, so

sup{E[U(Y )] : EQ[Y ] ≤ x, Y ∈ L0(FT )} = inf
λ≥0
{E[V (

dQ

dP
λ)] + xλ}.

Also, the optimal terminal portfolio value Y ∗(ω) = I(λdQdP ), where λ is de-
termined from v′(λ) = −x.

Note how much simpler it is to prove the main result of Section 5.7 when
the market is assumed to be complete, and Lagrange duality applies.

5.9 Utility maximization under risk constraints

♦
Consider a �nancial market where the scenario space Ω is �nite. Assume that the
market is arbitrage free and complete, so there is only one equivalent martingale
measure Q ∈Me(S) (see comments after Theorem 4.2).

Consider the utility maximization of Section 5.5, but with a twist

maxY ∈L0(Ω,FT ,P ) EP [U(Y )]
subject to

EQ[Y ] ≤ x for all Q ∈Me(S)
ρ(Y − x) ≤ c

(5.18)

where ρ(·) is a convex risk measure, and c is some constant determined by the
investor. One can assume that c ≥ 0, since c < 0 corresponds to a negative risk,
i.e. no chance of losing money, which any investor would be willing to accept.
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This problem is actually equivalent to the problem

max EP [U(XT )]
subject to

ρ(XT − x) ≤ c
(5.19)

where the maximization is done over all admissible, predictable, self-�nancing

trading strategies H such that XT = x+
∫ T

0
HsdSs, (where the market is deter-

mined by the price process S). The interpretation of problem (5.19) is: Maxi-
mize the expected utility of terminal wealth over all admissible, predictable, self-
�nancing trading strategies such that the risk of the investment is not greater
than what the investor can tolerate.

These two problems are equivalent from arguments similar to those of Sec-
tion 5.2. The following theorem is useful:

Theorem 5.17 ♦ In the setting above, the following holds:

(i) Problems (5.18) and (5.19) have the same optimal value.

(ii) If Y ∗ is an optimal solution of problem (5.18), then there exists an optimal
solution H∗ of problem (5.19) which replicates Y ∗.

Proof: ♦

(i) To prove that the optimal value of problem (5.18) is less than or equal the
optimal value of problem (5.19), assume that Y ∗ is an optimal solution of
(5.18). Then there exists (from Proposition 2.10 in Schachermayer [40]) an

H ∈ H such that Y ∗ ≤ x+
∫ T

0
HsdSs. This implies that c ≥ ρ(Y ∗ − x) ≥

ρ(
∫ T

0
HsdSs) (since Y ∗ must be feasible for problem (5.18)), hence H is

feasible for problem (5.19). Also, since E[U(·)] is increasing E[U(Y ∗)] ≤
E[U(x+

∫ T
0
HsdSs)], thus the optimal value of (5.18) is less than or equal

the optimal value of (5.19).

Conversely, assume thatH∗ is an optimal solution of (5.19). Then,XH∗

T :=

x +
∫ T

0
H∗SdSs, so EQ[XH∗

T ] = EQ[x +
∫ T

0
H∗SdSs] = x ≤ x for all Q ∈

Me(S) (since S is a Q-martingale for all Q ∈ Me(S)). Also, since H∗

must be feasible for problem (5.19), ρ(XH∗

T − x) ≤ c. Therefore, the
optimal value of (5.19) must be less than or equal the optimal value of
(5.18).

Therefore, the two optimal values coincide.

(ii) Now, assume that Y ∗ is an optimal solution of problem (5.18). Then there

exists (from Proposition 2.10 in [40])H ∈ H such that Y ∗ ≤ x+
∫ T

0
HsdSs.

Since Y ∗ is an optimal solution, E[U(·)] is an increasing function and the
two problems have the same optimal value, this inequality must hold with
equality. Hence there exists an H ∈ H which replicates Y ∗, and this is
therefore a feasible and optimal solution of problem (5.19).
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�

Rewriting problem (5.18) by using Theorem 3.9

maxY EP [U(Y )]
subject to

EQ[Y ] ≤ x for all Q ∈Me(S)
supR∈P{ER[−Y + x]− α(R)} ≤ c

where P is the set of all probability measures on (Ω,F)} and α(·) : P → R is a
convex and closed penalty function.

Ω is assumed to be �nite, say Ω ⊆ RM , so any P ∈ P can be uniquely iden-
ti�ed with a p ∈ RM , by de�ning p = (p1, ..., pM ) = p(P ) = (P (ω1), ..., P (ωM )).
This is a one-to-one correspondence. Let P̄ = {p(P ) : P ∈ P}. This set is called
the standard simplex of RM . This standard simplex is a polytope (can be proved
similarly as Lemma 5.11), and hence it can be described as all the convex combi-
nations of its �nitely many extreme points, which will be denoted by R1, ..., RS .
Note that the extreme points of the standard simplex are actually the coordinate
vectors, so R1 = (1, 0, . . . , 0), R2 = (0, 1, 0, . . . , 0), . . . , RS = RM = (0, . . . , 0, 1)
(where all the vectors are in RM , and S = M since there are M coordinate
vectors of RM ). This implies that supR∈P{ER[−Y +x]−α(R)} ≤ c if and only
if ERi [−Y + x]−α(Ri) ≤ c for i = 1, ..., S (since R 7→ ER[−Y + x] and α(·) are
convex functions).

Hence, problem (5.18) can be rewritten as

maxY EP [U(Y )]
subject to

EQ[Y ] ≤ x for all Q ∈Me(S)
ERi [−Y ]− α(Ri) ≤ c− x for i = 1, ..., S.

But from the same kind of arguments as in Section 5.6 this problem can be
rewritten

maxY EP [U(Y )]
subject to

EQk [Y ] ≤ x for k = 1, ...,K
ERi [−Y ]− α(Ri) ≤ c− x for i = 1, ..., S.

(5.20)

where Q1, ..., QK are the extreme points of the polytopeMa(S).
This can be rewritten in component form as in Section 5.10, by de�ning

εm := Y (ωm) for m = 1, ...,M , ε = (ε1, ..., εM ).
Let y ∈ RK+ and z ∈ RS+ be Lagrange dual variables. Then, the Lagrange

function of problem (5.20) becomes

L(ε, y, z) = EP [U(ε)]−
K∑
k=1

yk(EQk [ε]− x)−
S∑
i=1

zi(ERi [−ε]− α(Ri)− (c− x)).



5.9. UTILITY MAXIMIZATION UNDER RISK CONSTRAINTS ♦ 99

Hence, the Lagrange dual problem is

infy,z≥0 supε L(ε, y, z) = infy,z≥0 supε{
∑
m(pmU(εm)−

εm(
∑
k ykq

(k)
m +

∑
i zir

(i)
m )) + x

∑
k yk

+(c− x)
∑
i zi +

∑
i ziα(Ri)}

= infy,z≥0{
∑
m pm supεm{U(εm)−

εm
pm

(
∑
k ykq

(k)
m +

∑
i zir

(i)
m )}

+x
∑
k yk + (c− x)

∑
i zi +

∑
i ziα(Ri)}

= infy,z≥0{
∑
m pmV (

∑
k yk

dQk
dP +

∑
i zi

dRi
dP )

+x
∑
k yk + (c− x)

∑
i zi +

∑
i ziα(Ri)}

(5.21)

where the Radon-Nikodym derivatives must exist since Ω is assumed to be �nite,
so one can assume that P > 0, and then the Radon-Nikodym derivative of any
measure R w.r.t. P is just dR

dP (ω) = rm
pm

where rm = R(ωm) for m = 1, ...,M .
Note that for the measures R1, . . . , RM , corresponding to the extreme points of
the standard simplex in RM , this implies that

dRi
dP

(ω) =

{ 1
P (ωi)

for ω = ωi,

0 otherwise.

Since V (the KS-conjugate of U) is di�erentiable, the optimal ε∗m's in V are
found by di�erentiating and setting equal to 0. Hence

ε∗m = I(
∑
k

yk
dQk
dP

+
∑
i

zi
dRi
dP

)

where I := (U ′)−1, as previously. Note that this is in fact a maximum from the
properties of V , and that since the maximization is done over all of R, there are
no boundaries to check.

The Slater condition of Section 5.4 can again be used to show that there
is no duality gap: Problem (5.20) is a concave maximization problem with
linear constraints and εm := x − c

2 for m = 1, ...,M is a (strictly) feasible
solution (in rint(Rm)) because EQk [ε] = x − c

2 < x for all k (since c > 0), and
ρ(ε− x) = ρ(0 + 1(x− c

2 − x)) = ρ(0)− (− c
2 ) = 0 + c

2 < c (from De�nition 3.1).
Hence, the Slater condition implies that there is no duality gap, so problems
(5.19) and (5.21) share the same optimal value.

Theorem 5.18 (Utility maximization under risk constraints) Problem (5.19)
has optimal solution

XH∗

T (ωm) = I(
∑
k yk

dQk
dP (ωm) +

∑
i zi

dRi
dP (ωm))

= I(
∑
k yk

dQk
dP (ωm) + zm

1
P (ωm) )

where I := (U ′)−1, Qk (k = 1, . . . ,K) are the extreme points of the set of
absolutely continuous martingale measures Ma(S), and we have used the form
of Ri, i = 1, . . . , S (recall S = M), the probability measures corresponding to
the extreme points of the standard simplex of RM .
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Proof: The theorem follows from the derivation above. �

5.10 Final comments on utility maximization ♦
This chapter has shown how duality theory can be applied to solve utility max-
imization problems. The following is a summary of the techniques that have
been used:

� For a complete market or �nite Ω:

� Consider the problem max{E[U(XT )] : there exists a self-�nancing

admissible trading strategy H such that XT = x+
∫ T

0
HsdSs}.

� Rewrite the problem as in Section 5.2. The rewritten problem is a
constrained concave maximization problem which only depends on
the �nal portfolio value. This is called Phase 1.

� Solve the rewritten problem using Lagrange duality, and use the
Slater condition to show that there is no duality gap (as in e.g. Sec-
tion 5.5). This is called Phase 2.

� For an incomplete market where Ω is arbitrary:

� Skip Phase 1, and work with the original problem.

� Try to �nd a dual problem and a space for the dual variables to vary
in such that it is possible to apply the MiniMax theorem.

The problem with the �rst method, including Phase 1, is that it is di�cult
to generalize to the situation where there are, for example, portfolio constraints.
The Phase 1 rewriting is clever, but it removes the portfolio process from the
problem. Hence, the only kind of additional constraints one can add to this
method are constraints on the terminal value. However, the Phase 1- Phase 2
method also works when the investor gets utility not only from terminal wealth,
but also from consumption (as long as the market is complete). The objective

function to be maximized is then of the form E[
∫ T

0
U1(c(u), u)du + U2(XT )],

where U1, U2 are utility functions, c is a consumption process and XT is the
terminal portfolio value. This is illustrated in Karatzas and Shreve [17] (though
without close explanation of the Lagrange duality principle, and no use of the
Slater condition).

Karatzas and Shreve [17], also illustrate utility maximization in incomplete
markets. For a utility maximization problem where the portfolio process is con-
strained to a closed, convex set K ⊆ RN , such that 0 ∈ K, they introduce a
family of new markets that are translations of the original market. In each new
market, they solve the unconstrained utility maximization problem. A proposi-
tion is derived, which states that if one can �nd a translated market satisfying
certain equations, then the solution of the utility maximization problem in the
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translated market, gives the solution to the problem in the original market as
well, (see Proposition 6.3.8 in [17]). The weakness of this proposition is that
it does not give any existence conditions for such a market. Therefore, the
proposition may not provide much information.

The purpose of this chapter has been to show how duality methods can
be used to solve utility maximization problems. Results from convexity- and
duality theory, such as Lagrange duality, the Slater condition, and the Mini-
Max theorem are combined with stochastic, real, and functional analysis to �nd
dual problems, and show the absence of a duality gap. The next chapter will
proceed along these lines, but will consider pricing problems instead of utility
maximization problems.
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Chapter 6
Pricing of claims via duality

The purpose of this chapter is to show (to my knowledge) new applications of
duality to pricing problems in mathematical �nance. Section 6.1 investigates (for
a �nite scenario space, discrete time model) the pricing problem of the seller of a
contingent claim who has a general level of inside information. Lagrange duality
and the linear programming duality theorem is used to derive a characterization
of the seller's price of the claim (see Theorem 6.3). This result is applied to show
that a seller with more information can o�er the claim at a lower price than a
seller with less information, see Theorem 6.5. The buyer's problem is analogous
to the seller's problem, so this implies that there is a smaller probability of a
seller and buyer agreeing on a price in a market with partial information than
in a market with full information.

Section 6.2 generalizes the results of Section 6.1 to the case where the sce-
nario space Ω is arbitrary.

Section 6.3 considers the seller's pricing problem with short-selling con-
straints in a �nancial model where the scenario space is �nite and the time
is discrete. Lagrange duality and the Slater condition are used to characterize
the seller's price of a claim under short selling constraints, see Theorem 6.14.
Section 6.4 generalizes the results of Section 6.3 to a model where the scenario
space is arbitrary using conjugate duality.

Section 6.5 also considers the pricing problem of a seller, but under the
constraint Hn∗(t, ω) ∈ [A,C] for all t, ω (where 0 ∈ [A,C] ⊆ R). This section
works with a �nite scenario space and discrete time, and a characterization of
the seller's price is derived via Lagrange duality.

This chapter emphasizes the close connection between fundamental results
of mathematical �nance and the conjugate duality theory introduced by Rock-
afellar [34] (see Chapter 2). In the literature, there seems to be quite few papers
considering this connection. Exceptions are the work of Henclova [15], King and
Korf [19] and Pennanen [29].

A comment on notation: In this chapter, terms such as full information and

103
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inside information will be used. Full information means that the agent knows
the prices of all the assets in the market at any given time. Inside information
means that the agent knows something more than this. Though knowing the
prices of the assets is referred to as having full information, this is also in a sense
a minimal level of information, at least when working with a discrete time model.
Why is this a minimal information? Assume that an agent does not know the
actual prices of the assets in the market at some time t, she only knows the
prices of the assets at, say, time t− 1. Then, the agent will make a decision of
how to trade in the market, based on incorrect information. However, when she
tries to execute this trading strategy, she will be informed of the actual prices
in the market, and may not wish to (or a�ord to) follow her plan. She will then
make a new decision based on her updated information, and hence, the fact that
she initially did not know the prices does not matter (where it is assumed that
trading and decision-making happens instantaneously).

6.1 The pricing problem with inside information:

Finite Ω ♦
The arguments of this section are inspired by King [18] (see Section 4.3).

This section considers the pricing problem of the seller of a contingent claim
under a general �ltration modeling full- or inside information.

Consider a �nancial market based on a probability space (Ω,F , P ) where
the scenario space Ω is �nite. There are N risky assets in the market with price
processes Sn(t), n = 1, . . . , N and one bond with price process S0(t). The time
t ∈ {0, 1, . . . , T} where T < ∞. Let S denote the composed price process, and
let (Ft)t be the �ltration generated by the price process. Hence, the composed
price process S is adapted to the �ltration (Ft)t. The market can be modeled
by a scenario tree as in Section 4.3.

Recall that a contingent claim is a nonnegative, FT -measurable random vari-
able on the probability space (Ω,FT , P ). Consider a contingent claim B in the
market. Consider also a seller of this claim with a general information modeling
�ltration (Gt)Tt=0 such that G0 = {∅,Ω} and GT is the algebra corresponding to
the partition {{ω1}, ..., {ωM}} (sometimes the �ltration is denoted by (Gt)t to
simplify notation). We assume that the price process S is adapted to (Gt)t, in
order for the seller to know the price of each asset at any given time. Hence the
�ltration (Ft)t is nested in (Gt)t.

It will turn out that the setMa(S,G) is important: Q ∈Ma(S,G) if

� Q is a probability measure on (Ω,GT ) (recall that FT = GT by assump-
tion).

� Q is absolutely continuous with respect to P .

� The price process S is a Q-martingale w.r.t. the �ltration (Gt)t.
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SoMa(S,G) is the set of absolutely continuous martingale measures w.r.t. (Gt)t.
This is (to my knowledge) a new term.

The pricing problem of this seller is

min v
subject to

S0 ·H0 ≤ v

Bk ≤ Sk ·Ha(k) for all k ∈ N GT ,
Sk ·Hk = Sk ·Ha(k) for all k ∈ N Gt , 1 ≤ t ≤ T − 1,

(6.1)

where the minimization is done with respect to v ∈ R and Hk ∈ RN+1 for
k ∈ N Gt , t = 0, ..., T − 1. Here, N Gt denotes the set of time t-vertices (nodes)
in the scenario tree representing the �ltration (Gt)t, and Bk denotes the value
of the claim B in the node k ∈ NT . Recall that a(k) denotes the ancestor of
vertex k, see Section 4.3.

Hence, the seller's problem is: Minimize the price v of the claim B such
that the seller is able to pay B at time T from investments in a self-�nancing,
adapted portfolio that costs less than or equal to v at time 0. Note that the
portfolio process H has been translated, so that H is adapted to (Gt)t, not
predictable (which is assumed in many papers in mathematical �nance). This
is just a simpli�cation of notation.

Problem (6.1) is actually a linear programming (LP) problem, and one can
�nd the dual of this problem using standard LP-duality techniques. However, it
turns out to be easier to �nd the dual problem via Lagrange duality techniques
(see Section 5.4). The LP-dual problem is a special case of the Lagrange dual
problem, so LP-duality theory implies that there is no duality gap (this can also
be shown via the Slater condition, since choosing v := 1 + supω∈ΩB(ω) and
putting everything in the bank account is a strictly feasible solution of problem
(6.1)). Note also that since problem (6.1) is a linear programming problem,
the simplex algorithm is an e�cient method for computing optimal prices and
optimal trading strategies for speci�c examples.

Problem (6.1) is equivalent to

min v
subject to

S0 ·H0 − v ≤ 0

Bk − Sk ·Ha(k) ≤ 0 for all k ∈ N GT
Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ N Gt , 1 ≤ t ≤ T − 1,

−Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ N Gt , 1 ≤ t ≤ T − 1,
(6.2)

which is of a form suitable for the Lagrange duality method.
Let y0 ≥ 0, zk ≥ 0 for all k ∈ N GT and y1

k, y
2
k ≥ 0 for all k ∈ N Gt , t ∈

{1, . . . , T − 1} be the Lagrange multipliers. Then, the Lagrange dual problem
is
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supy0,z,y1,y2≥0 infv,H {v + y0(S0 ·H0 − v) +
∑
k∈NGT

zk(Bk − Sk ·Ha(k))

+
∑T−1
t=1

∑
k∈NGt

(y1
k − y2

k)Sk(Hk −Ha(k))}
= supy0,z≥0,y{infv {v(1− y0)}+ infH0

{y0S0 ·H0 −
∑
m∈CG(0) ymSm ·H0}

+
∑T−2
t=1

∑
k∈NGt

infHk{ykSk ·Hk −
∑
m∈CG(k) ymSm ·Hk}

+
∑
k∈NGT−1

infHk{ykSk ·Hk −
∑
m∈CG(k) zmSm ·Hk}

+
∑
k∈NGT

zkBk}

where we have de�ned yk := y1
k− y2

k for all k ∈ N
G
t , t ∈ {0, 1, . . . , T −1}. y (the

vector of the yk's) is a free variable (i.e. the sign of the components of y is not
clear a priori).

Consider each of the minimization problems separately. In order to have
a feasible dual solution, all of these minimization problems must have optimal
value greater than −∞.

� infv{v(1 − y0)} > −∞ (that is, there is a feasible dual solution) if and
only if y0 = 1.

� infH0
{y0S0 · H0 −

∑
m∈CG(0) ymSm · H0} > −∞ if and only if y0S0 =∑

m∈CG(0) ymSm.

� infHk{ykSk · Hk −
∑
m∈CG(k) ymSm · Hk} > −∞ if and only if ykSk =∑

m∈CG(k) ymSm. Therefore, in order to get a dual solution, this must

hold for all k ∈ N Gt , for t = 1, ..., T − 2.

� Finally, infHk{ykSk · Hk −
∑
m∈CG(k) zmSm · Hk} > −∞ if and only if

ykSk =
∑
m∈CG(k) zmSm. In order to get a feasible dual solution this must

hold for all k ∈ N GT−1.

Hence, the dual problem is

supy0,z≥0,y

∑
k∈NGT

zkBk
subject to

y0 = 1

ykSk =
∑
m∈CG(k) ymSm for all k ∈ N Gt ,

t = 0, 1, ..., T − 2,

ykSk =
∑
m∈CG(k) zmSm for all k ∈ N GT−1.

By considering the second equation above for the bond, i.e. for S0
k, one sees

that in order to have a feasible dual solution

y0S
0
0 =

∑
m∈CG(0)

ymS
0
m
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must hold. Since the market is assumed to be normalized, so S0
k = 1 for all k,

1 = y0 =
∑

m∈CG(0)

ym.

Also, from the second equation above, the same type of argument implies
that

yk =
∑

m∈CG(k)

ym

for all k ∈ N Gt , t = 1, ..., T − 2. Hence
∑
k∈NGT−1

yk = y0 = 1 (by induction).

From the last dual feasibility equation (considered for n = 0),
∑
k∈NGT

zk =∑
k∈NGT−1

yk = 1 and zk ≥ 0 for all k (since z is a Lagrange multiplier). There-

fore, {zk}k∈NGT can be identi�ed with a probability measure Q (on the terminal

vertices of the scenario tree) such that the Q-probability of ending up in terminal
vertex k is zk. Then, the condition ykSk =

∑
m∈CG(k) ymSm for all k ∈ N Gt , is

a martingale condition of the form S(t− 1) = E[St|Gt−1] (from the de�nition of
conditional expectation), which can be shown by induction to imply the general
martingale condition in this discrete time case. This proves that any feasible
dual solution is inMa(S,G). The converse also holds: Take Q ∈Ma(S,G), and
de�ne zm := Q(ωm) for m = 1, ...,M , yk :=

∑
m∈CG(k) zm for k ∈ N GT−1 and

yk :=
∑
m∈CG(k) ym for k ∈ N Gt , 0 ≤ t ≤ T − 2. It can be checked (from these

de�nitions) that this is a feasible dual solution.
Hence, the Lagrange dual problem can be rewritten

sup
Q∈Ma(S,G)

EQ[B]

where Ma(S,G) denotes the set of martingale measures with respect to (Gt)t
which are absolutely continuous with respect to the original measure P .

As explained previously, LP-duality (or the Slater condition) implies that
there is no duality gap. Hence, the optimal primal value, i.e. the seller's
price of the contingent claim B, is equal to the optimal dual value, that is
supQ∈Ma(S,G)EQ[B].

From general pricing theory (see Karatzas and Shreve [17], Theorem 6.2),
a seller who has the �ltration (Ft)t (the original �ltration) will o�er B at the
price supQ∈Me(S,F)EQ[B] (in a normalized market). Here, Me(S,F) denotes
the set of all equivalent martingale measures w.r.t. the �ltration (Ft)t. This
appears to be a di�erent price than the one derived above. However, it turns
out that

sup
Q∈Ma(S,F)

EQ[B] = sup
Q∈Me(S,F)

EQ[B].

Why is this?
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The following lemma is a slight adaptation of Proposition 2.10 in Schacher-
mayer [40].

Lemma 6.1 Assume there exists Q∗ ∈Me(S,G). For any g ∈ L∞(Ω,F , P ),

EQ[g] ≤ 0 for all Q ∈Ma(S,G).

if and only if

EQ[g] ≤ 0 for all Q ∈Me(S,G).

Proof:
By assumption, there exists at least one Q∗ ∈ Me(S,G) (and hence also

a Q ∈ Ma(S,G), since Me(S,G) ⊆ Ma(S,G)). For any Q ∈ Ma(S,G) and
λ ∈ (0, 1), λQ∗ + (1− λ)Q ∈Me(S,G). Hence,Me(S,G) is dense inMa(S,G),
and the lemma follows. �

Lemma 6.2 ♦
Assume there exists a Q ∈Me(S,G). Then

sup
Q∈Ma(S,G)

EQ[B] = sup
Q∈Me(S,G)

EQ[B].

Proof: ♦

� To prove that supQ∈Ma(S,G)EQ[B] ≤ supQ∈Me(S,G)EQ[B]: De�ne x :=
supQ∈Ma(S,G)EQ[B]. Then EQ[B] ≤ x for all Q ∈ Ma(S,G). But from
Lemma 6.11 (with g = B − x), this implies that EQ[B] ≤ x for all Q ∈
Me(S,G), so supQ∈Me(S,G)EQ[B] ≤ x, and hence the inequality follows.

� The opposite inequality follows from thatMe(S,G) ⊆Ma(S,G).

�

Hence, in particular

sup
Q∈Ma(S,F)

EQ[B] = sup
Q∈Me(S,F)

EQ[B]. (6.3)

if we assume that there is no arbitrage with respect to (Ft)t, so there exists
Q ∈Me(S,F) =Me(S).

Note that the arguments above would go through in the same way for the
buyer's problem, so for a general �ltration (Gt)t, the buyer's price of the claim B
is infQ∈Ma(S,G)EQ[B]. Note also that by assuming that both seller and buyer in
the market have the same full information �ltration (Ft)t, and that the market
is complete, we know that there is only one equivalent martingale measure (see
Øksendal [27], chapter 12), and hence the buyer and seller will agree on EQ[B]
(where Q is the single equivalent martingale measure) as the price of B.
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Theorem 6.3 ♦
Consider a normalized �nancial market based on a �nite scenario space. The

seller of a contingent claim B, who has �ltration (Gt)t such that Ft ⊆ Gt for all
times t ∈ {0, 1, . . . , T} will sell B at the price

sup
Q∈Ma(S,G)

EQ[B]

where Ma(S,G) denotes the set of probability measures (hence, absolutely con-
tinuous w.r.t. P ) that turn the price process S into a martingale w.r.t. the
�ltration (Gt)t.

If there exists Q ∈Me(S,G),

sup
Q∈Ma(S,G)

EQ[B] = sup
Q∈Me(S,G)

EQ[B]

Hence, in particular, if we consider a seller with full information (Ft)t in a
market where there is no arbitrage (w.r.t. (Ft)t), then the price o�ered by the
seller is supQ∈Me(S,F)EQ[B].

Now, we will consider pricing with di�erent levels of information. We now
introduce two sellers of the claim B into the model. The �rst seller, seller A1, has
information corresponding to a �ltration (Ht)Tt=0 (where H0 = {∅,Ω} and HT is
the algebra corresponding to the partition {{ω1}, ..., {ωM}}). The price process
S in the market is adapted to this �ltration (in order for the seller to know the
prices of each asset at any given time). Hence (Ft)t is nested in (Ht)t. The
second seller, seller A2, has more information. His information is modeled by a
�ltration (Jt)Tt=0 (where J0 = {∅,Ω} and JT corresponds to {{ω1}, ..., {ωM}}),
and this �ltration is such that Ht ⊆ Jt for all t = 0, 1, ..., T .
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Figure 6.1: Possible scenario tree for seller A1.
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Figure 6.2: Possible scenario tree for seller A2.

Possible scenario trees for seller A1 and seller A2 when T = 2 are illustrated
in Figures 6.1 and 6.2.

From Theorem 6.3, we know that seller A1, with less information, will o�er
B at the price supQ∈Ma(S,H)EQ[B], while seller A2, with more information
can sell B for supQ∈Ma(S,J )EQ[B]. What is the relationship between these
two prices? (Recall that Ma(S,G) denotes the set of absolutely continuous
probability measures Q such that S is a Q-martingale w.r.t. the �ltration (Gt).)

Lemma 6.4 ♦
Ma(S,J ) ⊆Ma(S,H)

Proof: ♦
Assume that Q ∈ Ma(S,J ). Then, EQ[St|Js] = Ss for all s < t and Q is a

probability measure. But then

EQ[St|Hs] = EQ[EQ[St|Js]|Hs]
= EQ[Ss|Hs]
= Ss

where the �rst equality follows from the rule of double expectation (since Hs ⊆
Js) and the �nal equality follows from Ss being Hs-measurable. Hence, S is a
Q-martingale with respect to (Ht)t, so Q ∈Ma(S,H). �

Lemma 6.4 is illustrated in Figure 6.3.
The next theorem follows directly from Lemma 6.4.

Theorem 6.5 ♦
In the setting above

supQ∈Ma(S,J )EQ[B] ≤ supQ∈Ma(S,H)EQ[B]
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Figure 6.3: The polytopesMa(S,H) andMa(S,J ).

Hence, a seller of claim B with less information will o�er B at a price greater
than or equal the price of a seller with more information.

Proof: ♦
This follows from Lemma 6.4 and that maximizing over a larger set must

give a greater (or equal) value. �

The result of Lemma 6.5 has a natural economic interpretation: The well
informed seller can o�er a better price for the claim than the less informed seller,
because it is a smaller risk to o�er a low price for a seller who knows a lot about
the development of the market than it is for a seller with less information.

This type of argument can be done from a buyer's point of view as well. This
leads to the same kind of result: infQ∈Ma(S,H)EQ[B] ≤ infQ∈Ma(S,J )EQ[B].
That is: The well informed buyer is willing to pay more for the claim since he
knows the market development better. Hence, there is a larger probability of
the seller and buyer agreeing on a price in a market with more information than
in one with less information.

From Section 5.6, the following holds for Ma(S,G) (for a general �ltration
(Gt)t):

� Ma(S,G) is a polytope, hence it is compact, convex and described by its
�nitely many extreme points.

� Ma(S,G) is contained in the standard simplex of RM (the set of all prob-
ability measures on an M -dimensional scenario space).

Since Ma(S,G) is described by its �nitely many extreme points, it follows
that supQ∈Ma(S,G)EQ[B] is actually attained in one of these extreme points

denoted QG1 , ..., Q
G
L ofMa(S,G) (since the function Q 7→ EQ[B] is linear). Hence
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Figure 6.4: Possible optimal solution.

max
Q∈Ma(S,G)

EQ[B] = max
Q∈{QG1 ,...,Q

G
L}
EQ[B] = EQ∗G [B].

Returning to the two sellers with di�erent information. How large is the gap
between the the prices o�ered by these sellers? That is, what is

max
Ma(S,H)

EQ[B]− max
Ma(S,J )

EQ[B]?

(note that the sup has been changed to a max since the optimum is actually at-
tained) The price of the seller with less information, sellerA1, is maxQ∈{QH1 ,...,QHL′}
= EQ∗H [B]. Hence, from Lemma 6.5, if Q∗H ∈Ma(S,J ) then maxQ∈Ma(S,J ) =
EQ∗H [B], and hence the two sellers o�er B at the same price. (Note that if

QHl ∈ {QH1 , ..., QHL′} is an extreme point for Ma(S,H) and QHl ∈ Ma(S,J ),
then QHl is an extreme point forMa(S,J ) as well).

Note that the optimal measure Q∗ ∈ Ma(S) (with respect to either of the
�ltrations (Ht)t or (Jt)t) may not be unique (depending on the structure of
Ma(S) and the claim B). If there are two extreme points ("corners" of the
polytopeMa(S)) that achieve the same optimal value, all the measures repre-
sented by the points on the line connecting these two corners must also attain
this optimal value, see Figure 6.5.

Regardless of whether the optimums are unique or not, the di�erence

max
Ma(S,H)

EQ[B]− max
Ma(S,J )

EQ[B]

will be equal to the (Euclidean) norm of B times the distance between the
hyperplanes through Q∗H and Q∗J (respectively) with normal vector B.

We will now look at an example illustrating Theorem 6.5.
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Figure 6.5: Potential optimal solutions.

Consider a market as in Section 4.3, where N = 1, so there is only one
risky asset, plus a bond. The terminal time T = 2, and sellers A1 and A2

have information structures as in Figures 6.1 and 6.2, where (as previously) the
�ltration of seller A1 is denoted by (Ht)t, and the information of seller A2 is
denoted (Jt)t, where (Ht)t is nested in (Jt)t. Assume that (Ht)t = (Ft)t (the
original, full information, �ltration). The market is assumed to be normalized,
so S0

k = 1 for all k ∈ NH and all k ∈ NJ (i.e. for all the vertices in the scenario
tree of both the agents). The price process of S1 (the risky asset) is illustrated
in Figures 6.6 and 6.7.

In Figures 6.6 and 6.7, S1
k(t) denotes the price of the risky asset at node

number k ∈ Nt at time t.

Consider the contingent claim B given by (B1, B2, B3, B4, B5, B6, B7) =
(2, 3, 7, 1, 3, 5, 1), where Bk is the value of B in node k ∈ N2 of the terminal
vertices. B takes one value in each of the terminal vertices, and is therefore
F2-measurable.

In order to compute the price seller A1 and seller A2 will demand for B, one
must (from Theorem 6.3) determineMa(S,H) andMa(S,J ) (respectively).

To determineMa(S,J ), one must solve

q1 + ...+ q7 = 1

7(q1 + q2) + 7(q3 + q4) + 2(q5 + q6 + q7) = 4

9 q1
q1+q2

+ 6 q2
q1+q2

= 7

4 q3
q3+q4

+ 8 q4
q3+q4

= 7

3 q5
q5+q6+q7

+ 5 q6
q5+q6+q7

+ 1 q7
q5+q6+q7

= 2.
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Figure 6.6: Seller A1.

Solving this for q gives that the set

Ma(S,J ) = {q ∈ R7 : q1 = 0.133− 0.444q4 ≥ 0,

q2 = 0.267− 0.889q4 ≥ 0, q3 = 0.333q4, q4 ≥ 0, q5 = 0.9− 2q7 ≥ 0,

q6 = −0.3 + q7 ≥ 0, q7 ≥ 0}
= {q ∈ R7 : q1 = 0.133− 0.444q4, q2 = 0.267− 0.889q4, q3 = 0.333q4

0 ≤ q4 ≤ 0.3, q5 = 0.9− 2q7,

q6 = −0.3 + q7, 0.3 ≤ q7 ≤ 0.45}.

Hence, the price of the claim B o�ered by seller A2 will be

supq∈Ma(S,J )Eq[B] = sup{0≤q4≤0.3}{2.27− 0.22q4}
= 2.27

since the supremum is attained for q4 = 0 (and for example q7 = 0.3, and
q1, q2, q4, q5, q6 determined by the equations necessary to have q ∈Ma(S,J )).

By doing analogous calculations for seller A1 andMa(S,H), one �nds that
the price o�ered by seller A1 is supQ∈Ma(S,H)EQ[B] = 3.20. Hence, the price
of seller A1, the less informed seller, is greater than the price of seller A2, the
well informed seller. This con�rms Theorem 6.5 for this example.

6.2 The pricing problem with inside information:

Arbitrary Ω ♦
Consider again a �nancial market based on a probability space (Ω,F , P ) where
Ω is arbitrary (as opposed to the situation in Section 6.1). As previously, there
are N +1 assets: one bond and N risky assets, with the composed price process
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Figure 6.7: Seller A2.

S(t) = (S0(t), S1(t), ..., SN (t)) for discrete time t ∈ {0, 1, . . . , T}. Denote by
(Ft)t the �ltration generated by the price process S.

Since Ω is arbitrary, the scenario tree model of Section 6.1 no longer applies.
Also, neither linear programming or Lagrange duality work because the seller's
pricing problem turns out to have in�nitely many constraints. Fortunately, the
conjugate duality theory of Rockafellar [34] can be applied in this setting.

Let (Gt)t∈{0,1,...,T} be a �ltration such that G0 = {∅,Ω}, GT = P(Ω), where
P(Ω) denotes the set of all F-measurable subsets of Ω. Assume that the price
process S is adapted to (Gt)t, i.e. that (Ft)t is nested in (Gt)t. As in Section 6.1,
(Gt)t represents the information being revealed to the seller at any time t. Also,
assume that there exists there is no arbitrage with respect to (Gt)t. For ex-
ample, if one is considering (Gt)t := (Ft)t, one may assume that there exists
Q ∈Me(S,G) (so there is no arbitrage, from the fundamental theorem of math-
ematical �nance, see Section 7.2).

The following lemma will be useful in what follows:

Lemma 6.6 ♦
Let f be any random variable w.r.t. (Ω,F , P ) and let Gt be a sub-σ-algebra

of F . Let Xt denote the set of all Gt-measurable random variables. Then

inf
{g∈Xt}

E[fg] > −∞

if and only if
∫
A
fdP = 0 for all A ∈ Gt.

Proof: ♦

� Assume there exists A ∈ Gt such that
∫
A
fdP = K 6= 0. De�ne g(ω) = M

for all ω ∈ A, whereM is a constant. Also de�ne g(ω) = 0 for all ω ∈ Ω\A.
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Then g is Gt-measurable (since A ∈ Gt) and

E[gf ] =
∫

Ω
gfdP

=
∫
A
MfdP

= MK → −∞

by letting M → +/−∞ (depending on the sign of K). Hence,

inf
{g∈Xt}

E[gf ] > −∞

implies that
∫
A
fdP = 0 for all A ∈ Gt.

� Conversely, assume that
∫
A
fdP = 0 for all A ∈ Gt. Let g be a simple,

Gt-measurable function, so g =
∑
A∈Gt gA1A, where gA is a constant for

all A ∈ Gt (and 1A denotes the indicator function of the set A). Then,

E[gf ] =
∫

Ω
gfdP

=
∑
A∈Gt

∫
A
gAfdP

=
∑
A∈Gt gA

∫
A
fdP

= 0.

Since all Gt-measurable functions can be approximated arbitrarily well by
a sequence of simple Gt-measurable functions (see for example Shilling [41],
Theorem 8.8), and g 7→ E[gf ] is linear (hence continuous), E[gf ] = 0 for
any Gt-measurable g. Therefore,

∫
A
fdP = 0 for all A ∈ Gt implies that

inf{g∈Xt}E[gf ] = 0 > −∞.

�

The derivation of this section will also use the next lemma (where the nota-
tion is the same as in Lemma 6.6):

Lemma 6.7 inf{g∈Xt}E[fg] > −∞ implies that inf{g∈Xt}E[fg] = 0.

Proof: Assume that inf{g∈Xt}E[gf ] > −∞. It is known that inf{g∈Xt}E[gf ] ≤
0, since g = 0 (the zero-function) is a feasible solution. For contradiction, as-
sume that

inf
{g∈Xt}

E[gf ] = K > −∞,K 6= 0.

Then there exists a g which is Gt-measurable such that −∞ < E[gf ] < 0 (since
there exists a sequence of g's such that E[gf ] is arbitrarily close to K, from
the de�nition of the in�mum). Then, Mg is also Gt-measurable, so by letting
M → ∞, E[Mgf ] = ME[gf ] → −∞, hence inf{g∈Xt}E[gf ] = −∞, which is a
contradiction. Therefore, inf{g∈Xt}E[gf ] > −∞ implies that

inf
{g∈Xt}

E[gf ] = 0.

�
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By combining Lemma 6.7 with Lemma 6.6, it follows that inf{g∈Xt}E[gf ] =
0 if and only if

∫
A
fdP = 0 for all A ∈ Gt.

Consider a seller of a contingent claim B in the market with information
corresponding to a �ltration (Gt)t. Assume there is no arbitrage in the market
w.r.t. the �ltration (Gt)t. The pricing problem of the seller is

infv,H v
subject to

S(0) ·H(0) ≤ v
B ≤ S(T ) ·H(T − 1) for all ω ∈ Ω,

S(t) ·∆H(t) = 0 for t ∈ {1, . . . , T − 1},
and for all ω ∈ Ω,

(6.4)
where the minimization is done over v ∈ R and all processes H that are adapted
(using adapted or predictable here is just a matter of translation) to the �ltration
(Gt)t, since the seller must choose her trading strategy given what she knows at
a particular time. Recall that the price process S is assumed to be adapted to
(Gt)t, that G0 = {∅,Ω} and GT = P(Ω). Here S(0), H(0) denotes the composed
price process and trading strategy at time 0 (respectively) and ∆H(t) := H(t)−
H(t− 1).

Note also that the �rst constraint must hold with equality in an optimal
solution (v,H), because if it held with strict inequality, the seller could �x
the trading strategy H and decrease the price v without violating any of the
constraints. Since this would give a better optimal value, (v,H) could not have
been an optimal solution. Therefore, problem (6.4) is equivalent to

infv,H v
subject to

S(0) ·H(0) = v
B ≤ S(T ) ·H(T − 1) for all ω ∈ Ω,

S(t) ·∆H(t) = 0 for t ∈ {1, . . . , T − 1},
and for all ω ∈ Ω,

which is again equivalent to

infH S(0) ·H(0)
subject to

B − S(T ) ·H(T − 1) ≤ 0 for all ω ∈ Ω,
S(t) ·∆H(t) = 0 for t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω.

(6.5)

It is useful to transform the problem even more. Actually, problem (6.5) is
equivalent to the following problem (6.6):



118 CHAPTER 6. PRICING OF CLAIMS VIA DUALITY

infH S(0) ·H(0)
subject to

B − S(T ) ·H(T − 1) ≤ 0 for all ω ∈ Ω,
S(t) ·∆H(t) = 0 for t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω,
S(0) ·H(0) ≥ 0.

(6.6)

Why are problems (6.5) and (6.6) equivalent? Since there is no arbitrage
w.r.t. (Gt)t in the market, there is no self-�nancing trading strategy H such
that S(0) · H(0) < 0, but S(T ) · H(T − 1) ≥ B since B ≥ 0 (for all ω ∈ Ω).
Hence, there is no feasible solution to problem (6.5) with S(0) ·H(0) < 0, and
therefore the two problems are equivalent.

Problem (6.6) is (by basic algebra) equivalent to

infH S(0) ·H(0)
subject to

B − S(T ) ·H(T − 1) ≤ 0 for all ω ∈ Ω,
S(t) ·∆H(t) ≤ 0 for t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω,
−S(t) ·∆H(t) ≤ 0 for t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω,
−S(0) ·H(0) ≤ 0 (for all ω ∈ Ω)).

(6.7)

(Note that the �nal constraint may be assumed to hold for all ω ∈ Ω, since
S(0) and H(0) are also random variables, we just happen to know they are
deterministic.)

Now, the conjugate duality method of Rockafellar [34] will be applied. There-
fore, de�ne the perturbation space U by

U := {ū := (u, (vt1)t, (v
t
2)t, w) : ū ∈ Lp(Ω,F , P ;R2T )}

where 1 ≤ p < ∞ and the R2T originates from that there is one component
of the perturbation function for each constraint in the primal problem. By
counting the constraints one sees that there are 2T constraints that each hold
for every ω ∈ Ω (the constraint −S(0) ·H(0) ≤ 0 also holds for each ω ∈ Ω, but
since H(0) and S(0) are G0-measurable, S(0), H(0) are constants).

Let Y be the dual space of U , so Y := U∗ = Lq(Ω,F , P ;R2T ) where 1
p+ 1

q = 1

(see for example Pedersen [28] for more on dual spaces). Consider the pairing
(see De�nition 2.31) between U and V

〈(u, (vt1)t, (v
t
2)t, w), y〉 := E[y1u] +

∑T−1
t=1 (E[yt2v

t
1] + E[yt3v

t
2]) + E[y4w].

Then U and Y are paired spaces from Example 2.35 (see also Pennanen and
Perkkiö [30] for more on this). Actually, it is not necessary to assume that U and
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Y are Lp-spaces, it is su�cient that U is a decomposable space, see Pennanen
and Perkkiö [30].

De�ne the perturbation function F as in Example 2.29, so for (u, v1, v2, w) ∈
U where vi := (vti)t∈{1,...,T−1} for i = 1, 2, F (H, (u, v1, v2, w)) := S(0) ·H(0) if
B(ω)−S(T, ω) ·H(T −1, ω) ≤ u(ω) for all ω ∈ Ω and S(t, ω) ·∆H(t, ω) ≤ vt1(ω)
for all t ∈ {1, ..., T −1}, ω ∈ Ω, −S(t, ω) ·∆H(t, ω) ≤ vt2(ω) for all t ∈ {1, ..., T −
1}, ω ∈ Ω, −S(0) · H(0) ≤ w for all ω ∈ Ω, and F (H, (u, v1, v2, w)) := ∞
otherwise.

Hence,

K(H, y) := inf(u,v,z)∈U{F (H, (u, v, z)) + 〈(u, v, z), y〉}

=


S(0) ·H(0) + E[y1(B − S(T ) ·H(T − 1))]− E[y4S(0) ·H(0)]

+
∑T−1
t=1 E[(yt2 − yt3)S(t) ·∆H(t)]

if y1, y
t
2, y

t
3, y4 ≥ 0 a.e. for all t ∈ {0, . . . , T − 1},

−∞ otherwise.

=


S(0) ·H(0) + E[y1(B − S(T ) ·H(T − 1))]

+
∑T−1
t=1 E[ȳtS(t) ·∆H(t)]− E[y4]S(0) ·H(0)

if y1, y4 ≥ 0 a.e. for all t ∈ {0, . . . , T − 1},
−∞ otherwise.

where ȳt := yt2 − yt3 is a free variable (i.e. the sign of ȳ is not clear a priori).

Note that

S(0) ·H(0) +E[y1(B − S(T ) ·H(T − 1))] +
∑T−1
t=1 E[ȳtS(t) ·∆H(t)]

−E[y4]S(0) ·H(0)

= E[S(0) ·H(0)] + E[y1(B − S(T ) ·H(T − 1))] +
∑T−1
t=1 E[ȳtS(t) ·∆H(t)]

−E[y4S(0) ·H(0)]

= E[S(0) ·H(0)] + E[y1(B − S(T ) ·H(T − 1))] + E[ȳ1S(1) · (H(1)−H(0))]

+E[ȳ2S(2) · (H(2)−H(1))] + E[ȳ3S(3) · (H(3)−H(2))] + ...+

+E[ȳT−2S(T − 2) · (H(T − 2)−H(T − 3))]

+E[ȳT−1S(T − 1) · (H(T − 1)−H(T − 2))]− E[y4S(0) ·H(0)]

= E[H(0)(S(0)(1− y4)− S(1)ȳ1)] + E[H(1)(ȳ1S(1)− ȳ2S(2))]

+E[H(2)(ȳ2S(2)− ȳ3S(3))]

+...+ E[H(T − 2)(ȳT−2S(T − 2)− ȳT−1S(T − 1))]

+E[H(T − 1)(ȳT−1S(T − 1)− y1S(T ))] + E[y1B]

= E[H(0)(S(0)[1− y4]− S(1)ȳ1)] +
∑T−2
t=1 E[H(t)(ȳtS(t)− ȳt+1S(t+ 1))]

+E[H(T − 1)(ȳT−1S(T − 1)− y1S(T ))] + E[y1B]
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From Lemma 6.6 dual objective function g is given by

g(y) := inf{H : (Gt)−adapted}K(H, y)

=



E[y1B]+ infH(0){E[H(0)(S(0)[1− y4]− S(1)ȳ1)]}+∑T−2
t=1 infH(t){E[H(t)(ȳtS(t)− ȳt+1S(t+ 1))]}+

infH(T−1){E[H(T − 1)(ȳT−1S(T − 1)− y1S(T ))]}
if y1 ≥ 0, y4 ≥ 0 a.e.

−∞ otherwise.

=



E[y1B] if y1, y4 ≥ 0 a.e.,
∫
A
S(0)[1− y4]dP =

∫
A
ȳ1S(1)dP

for all A ∈ G0,
∫
A
ȳtS(t)dP =

∫
A
ȳt+1S(t+ 1)dP

for all A ∈ Gt, for t ∈ {1, ..., T − 2}
and

∫
A
ȳT−1S(T − 1)dP =

∫
A
y1S(T )dP

for all A ∈ GT−1,

−∞ otherwise.

where the �nal equality uses the comment after Lemmas 6.6 and 6.7.
Hence, the dual problem is

supy∈Y,y1,y4≥0 a.e. E[y1B]
subject to ∫

A
ȳ1S(1)dP =

∫
A

[1− y4]S(0)dP

for all A ∈ G0,∫
A
ȳt+1S(t+ 1)dP =

∫
A
ȳtS(t)dP

for all A ∈ Gt, for t = 1, ..., T − 2,∫
A
y1S(T )dP =

∫
A
ȳT−1S(T − 1)dP

for all A ∈ GT−1.
(6.8)

Actually, problem (6.8) is equivalent to a simpler problem:

supy∈Y,y1≥0 E[y1B]
subject to ∫

A
ȳ1S(1)dP =

∫
A
S(0)dP

for all A ∈ G0,∫
A
ȳt+1S(t+ 1)dP =

∫
A
ȳtS(t)dP

for all A ∈ Gt, for t = 1, ..., T − 2,∫
A
y1S(T )dP =

∫
A
ȳT−1S(T − 1)dP

for all A ∈ GT−1.
(6.9)

Why are problems (6.8) and (6.9) equivalent?
Clearly, if ȳ is a feasible solution for problem (6.9), then (ȳ, 0) is a feasi-

ble solution for problem (6.8), and the corresponding value functions coincide.
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Hence, the optimal value of problem (6.9) is less than or equal the optimal value
of problem (6.8).

Conversely, assume y is a feasible solution of problem 6.8, where y4 > 0 on
a set of P -measure greater than 0. What happens to the value function if y4

is reduced to zero almost everywhere? From the dual feasibility conditions, the
reduction of y4 implies that one must increase

∫
A
S(1)ȳ1dP for A := Ω ∈ G0.

This again implies an increase in
∫
A
S(2)ȳ2dP for A = Ω (since G0 ⊆ G1), and

by continuing to use the dual feasibility conditions systematically, the reduction
of y4 �nally leads to an increase in

∫
A
y1S(T )dP for A = Ω. Hence, from the

reduction of y4, one has the freedom to choose a y′1 such that∫
Ω

S(T )y′1dP >

∫
Ω

S(T )y1dP,

S(T ) is unaltered, so this means that one can increase y′1 (compared to y1) on a
set of measure greater than zero, without altering y′1 (compared to y1) anywhere
else, so y′1(ω) = y1(ω) for all ω ∈ Ω \ A. Hence, one can choose A ∈ GT such
that P (A) > 0, B(A) > 0 and let y′1(ω) > y1(ω) for all ω ∈ A. But then

E[(y′1 − y1)B] =
∫

Ω
(y′1 − y1)BdP

=
∫
A

(y′1 − y1)BdP +
∫

Ω\A(y′1 − y1)BdP

=
∫
A

(y′1 − y1)BdP + 0
> 0.

This implies that E[y′1B] > E[y1B], hence, for any feasible solution y of problem
(6.8) with y4 > 0, one can construct another feasible solution y′ with y′4 = 0
(almost everywhere), which corresponds to a greater value function. Hence, it
is su�cient to only consider solutions where y4 = 0 (P -a.e.) in problem (6.8).
Therefore, problems (6.8) and (6.9) are equivalent.

From now on, we only consider problem (6.9). This problem will be trans-
formed into a more familiar form. Actually, it will be shown that there is
a one-to-one correspondence between feasible dual solutions (i.e. solutions to
problem (6.9)) and absolutely continuous martingale measures w.r.t. (Gt)t.

The following analysis will use a rule for change of measure under conditional
expectation, which is formulated as a lemma (see Davis [6]):

Lemma 6.8 (Change of measure under conditional expectation) Let (Ω,F , P )
be a given probability space, and de�ne a new probability measure Q by dQ

dP = Z,
where Z is some F-measurable random variable such that Z ≥ 0 P -a.s. and
E[Z] = 1. Let G ⊆ F be a sub-σ-algebra of F , and let X be any F-measurable
random variable. Then

E[Z|G]EQ[X|G] = E[ZX|G].

Now, we will show the correspondence between feasible dual solutions and
absolutely continuous martingale measures w.r.t. (Gt)t.

First, assume that Q ∈ Ma(S,G), i.e. that Q is an absolutely continu-
ous martingale measure w.r.t. the �ltration (Gt)t. We want to show that
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Q corresponds to a feasible dual solution. The idea is to de�ne y1 := dQ
dP

(this is F-measurable since any Radon-Nikodym derivative is measurable), and
ȳt := E[y1|Gt] (note that this de�nition is OK since E[y1|Gt] is Gt-measurable),
and then check that the dual feasibility conditions of problem (6.9) hold.

� First, consider the �nal dual feasibility condition:∫
A

y1S(T )dP =

∫
A

ȳT−1S(T − 1)dP for all A ∈ GT−1. (6.10)

By using the de�nition of conditional expectation, this condition is equiv-
alent to ȳT−1S(T − 1) = E[y1S(T )|GT−1]. From the rule for change of
measure under conditional expectation, Lemma 6.8,

E[y1|GT−1]EQ[S(T )|GT−1] = E[y1S(T )|GT−1].

Hence, condition (6.10) is equivalent to

ȳT−1S(T − 1) = E[y1|GT−1]EQ[S(T )|GT−1]. (6.11)

So it is su�cient to check that y1, ȳT−1 satis�es equation (6.11). But this
is clear, since ȳT−1 := E[y1|GT−1], and EQ[S(T )|GT−1] = S(T − 1) since
Q is a martingale measure.

� To show that y1, (ȳt)t satisfy the second dual feasibility equation, consider
�rst this equation for T − 2, i.e.∫

A

ȳT−1S(T − 1)dP =

∫
A

ȳT−2S(T − 2)dP for all A ∈ GT−2.

GT−2 ⊆ GT−1, so every A ∈ GT−2 is also in GT−1. From the �nal dual
feasibility equation, which was proven to hold for y1, ȳT−1 in the previous
item ∫

A

ȳT−1S(T − 1)dP =

∫
A

y1S(T )dP for all A ∈ GT−1.

In particular∫
A

ȳT−1S(T − 1)dP =

∫
A

y1S(T )dP for all A ∈ GT−2.

Hence, it is su�cient to prove that∫
A

ȳT−2S(T − 2)dP =

∫
A

y1S(T )dP for all A ∈ GT−2,

which, from the de�nition of conditional expectation, is equivalent to

ȳT−2S(T − 2) = E[y1S(T )|GT−2] = E[y1|GT−2]EQ[S(T )|GT−2], (6.12)

where the �nal equality follows from Lemma 6.8. But equation (6.12)
holds since ȳT−2 := E[y1|GT−2] and EQ[S(T )|GT−2] = S(T−2) sinceQ is a
martingale measure. By the same kind of argument for t = T−3, T−4, ..., 1
(or by backwards induction), the second dual feasibility equation holds for
all t.
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� It remains to prove that the �rst dual feasibility condition holds for ȳ1,
i.e. that ∫

A

ȳ1S(1)dP =

∫
A

S(0)dP for all A ∈ G0

Since G0 := {∅,Ω} and
∫
∅ ȳ1S(1)dP =

∫
∅ S(0)dP trivially, it only remains

to show that E[ȳ1S(1)] = E[S(0)] = S(0). From the previous item it
follows that

E[ȳ1S(1)] = E[ȳ2S(2)]
= ...(induction)
= E[ȳT−1S(T − 1)]
= E[y1S(T )]
= EQ[S(T )]
= EQ[S(T )|G0]
= S(0)

where the �nal equality follows because Q is a martingale measure w.r.t.
(Gt). But this implies that the �rst dual feasibility equation holds as well.

Hence, for each absolutely continuous martingale measure, there is a fea-
sible dual solution.

Conversely, assume there exists a feasible dual solution y1, ȳt for t = 1, ..., T−
1. We want to show that this dual solution corresponds to an equivalent martin-
gale measure. De�ne Q(F ) :=

∫
F
y1(ω)dP (ω) for all F ∈ F (note that y1 ≥ 0,

since it is feasible in the dual problem, and that one may assume E[y1] = 1,
since the dual problem is invariant under translation). The problem is to prove
that for any ȳt, the dual feasibility conditions can be interpreted as martingale
conditions.

The dual feasibility condition∫
A

y1S(T )dP =

∫
A

ȳT−1S(T − 1)dP for all A ∈ GT−1

is, from the de�nition of conditional expectation, equivalent to

ȳT−1S(T − 1) = E[y1S(T )|GT−1] = E[y1|GT−1]EQ[S(T )|GT−1]

where the last equality follows from Lemma 6.8.
From this, it follows that EQ[S(T )|GT−1] = S(T − 1) (which is a martingale

condition) if ȳT−1 = E[y1|GT−1].
Therefore, one must prove that ȳT−1 = E[y1|GT−1]: The third dual feasibil-

ity condition implies that
∫
A
ȳT−1S(T − 1)dP =

∫
A
y1S(T )dP . This is a vector

equation, so by considering the component corresponding to S0 (the bond),
and using that the market is assumed to be normalized, so S0(t, ω) = 1 for all
t ∈ {0, 1, ..., T} and for all ω ∈ Ω, it follows that∫

A

y1dP =

∫
A

ȳT−1dP for all A ∈ GT−1.
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From the de�nition of conditional expectation, this is equivalent to

ȳT−1 = E[y1|GT−1].

Hence, EQ[S(T )|GT−1] = S(T −1). We would like to prove this for a general
time t, i.e. that EQ[S(T )|Gt] = S(t). Take t ∈ {1, ..., T − 2}. The second dual
feasibility equation states that∫

A

ȳtS(t)dP =

∫
A

ȳt+1S(t+ 1)dP for all A ∈ Gt for t ∈ {1, ..., T − 2}.

Since Gt ⊆ Gt+1, this implies that
∫
A
ȳtS(t)dP =

∫
A
ȳt+2S(t + 2)dP for all

A ∈ Gt, so by induction,
∫
A
ȳtS(t)dP =

∫
A
ȳT−1S(T − 1)dP for all A ∈ Gt.

From the �nal dual feasibility condition,
∫
A
ȳT−1S(T − 1)dP =

∫
A
y1S(T )dP

for all A ∈ GT−1, in particular, this holds for all A ∈ Gt (since Gt ⊆ GT−1

because t ≤ T − 1). Hence∫
A

ȳtS(t)dP =

∫
A

y1S(T )dP for all A ∈ Gt. (6.13)

From the de�nition of conditional expectation, (6.13) is equivalent to

ȳtS(t) = E[y1S(T )|Gt]
= E[y1|Gt]EQ[S(T )|Gt]

where the last equality uses Lemma 6.8. Hence, it su�ces to show that ȳt =
E[y1|Gt].

By considering equation (6.13) for S0 (the bond)∫
A

ȳtdP =

∫
A

y1dP for all A ∈ Gt

which, from the de�nition of conditional expectation, implies that ȳt = E[y1|Gt].
Hence, E[S(T )|Gt] = S(t) for t = 1, ..., T − 1.

From the �rst dual feasibility equation, it follows that E[S(T )|G0] = S(0):
The �rst dual feasibility condition states that∫

A

ȳ1S(1)dP =

∫
A

S(0)dP for all A ∈ G0.

From the same argument as before, using the second and third dual feasibil-
ity equations, and that G0 ⊆ Gt for all t ≥ 0, it follows that

∫
A
ȳ1S(1)dP =∫

A
ȳT−1S(T − 1) for all A ∈ G0. From the �nal dual feasibility condition,∫

A
ȳT−1S(T − 1)dP =

∫
A
y1S(T )dP for all (in particular) A ∈ G0. Hence∫

A

S(0)dP =

∫
A

y1S(T )dP for all A ∈ G0.

Since Ω ∈ G0, this means in particular that

E[S(0)] = E[y1S(T )] = EQ[S(T )] = EQ[S(T )|G0]
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so the martingale condition is OK also for t = 0. Note that EQ[S(T )|GT ] =
S(T ), since S(T ) is GT -measurable.

Finally, to generalize this to the regular martingale condition E[S(t)|Gs] =
S(s) for s ≤ t, s, t ∈ {0, 1, ..., T}. Choose s and t such that s ≤ t, and s, t ∈
{0, 1, ..., T}. Then

EQ[S(t)|Gs] = EQ[EQ[S(T )|Gt]|Gs]
= EQ[S(T )|Gs]
= S(s).

Here, the �rst equation follows from the martingale condition that has already
been proved, and the second equality comes from the rule of double expectation,
and that Gs ⊆ Gt for s ≤ t.

Hence, Q turns the price process S into a martingale, and each feasible dual
solution corresponds to an absolutely continuous martingale measure w.r.t. (Gt),
i.e. Q ∈Ma(S,G).

To summarize, it has been proven that the dual problem of the seller's pricing
problem (in a normalized market) for a seller with information corresponding
to the �ltration (Gt)t can be rewritten

supQ∈Ma(S,G)EQ[B], (6.14)

whereMa(S,G) denotes the family of all absolutely continuous martingale mea-
sures with respect to the �ltration (Gt)t.

As for proving that there is no duality gap, i.e. that the value of problem
(6.14) is equal to the value of problem (6.4), this can be done via Theorem 9 in
Pennanen and Perkkiö [30], which will be called Theorem 6.9 in this thesis. This
theorem is based on a conjugate duality setting similar to that of Rockafellar,
and gives conditions for the value function ϕ (see Section 2.3) to be lower semi-
continuous. Hence, from Theorem 2.44 (which is Theorem 7 in Rockafellar [34]),
if these conditions hold, there is no duality gap (since ϕ(·) is convex, because
the perturbation function F was chosen to be convex).

The theorem is rewritten to suit the notation of this thesis.

Theorem 6.9 Assume there exists a y ∈ Y and an m ∈ L1(Ω,F , P ) such that
for P -a.e. ω ∈ Ω

F (H,u, ω) ≥ u · y(ω) +m(ω) for all (H,u) ∈ RT (N+1) × R2T , (6.15)

where · denotes the standard Euclidean inner product. Assume also that A :=
{H ∈ HG : F∞(H(ω), 0, ω) ≤ 0 P − a.s.} is a linear space. Then, the value
function ϕ(u) is lower semi-continuous on U and the in�mum of the primal
problem is attained for all u ∈ U .

In Theorem 6.9, H ∈ RT (N+1) is a vector representing a stochastic process H
with N + 1 components at each time t ∈ {0, 1, . . . , T − 1} and HG denotes
the family of all stochastic processes that are adapted to the �ltration (Gt)t.
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F∞ is the recession function of F . In general, if h(x, ω) is a function and
dom(h(·, ω)) 6= ∅, h∞ is given by the formula (see Pennanen and Perkkiö [30])

h∞(x, ω) = sup
λ>0

h(λx+ x̄, ω)− h(x̄, ω)

λ
(6.16)

(which is independent of x̄).
For the proof of Theorem 6.9, see Pennanen and Perkkiö [30].

Actually, there is one di�erence between the frameworks of Rockafellar [34],
and Pennanen and Perkkiö [30]. In [30] it is assumed that the perturba-
tion function F is a so-called convex normal integrand (in order to be able
to change the order of minimization and integration). Example 1 in Penna-
nen [29] considers the same choice of perturbation function F as we have cho-
sen above, and this examples states that F is a convex normal integrand if
the objective function and the constraint functions of the primal problem are
convex normal integrands. Clearly, for our primal problem (6.7), all of these
functions are convex. To check that they are normal integrands, an example
from Rockafellar and Wets [36] will be applied. Example 14.29 in [36] states
that all Caratheodory integrands are normal integrands, i.e. that all functions
f : Rn×Ω→ R̄ such that f(x, ω) is measurable in ω for each x, and continuous
in x for each ω ∈ Ω, is a normal integrand (where x may depend measur-
ably on ω). Hence, we check that this holds for one of the constraint func-
tions of the primal problem (6.7). Let ft(H,ω) := S(t, ω) · ∆H(t, ω). Choose
H ∈ R(N+1)T . Then, ft(H,ω) = S(t, ω) · ∆H(t) (where H(t) denotes the
part of the vector H ∈ R(N+1)T corresponding to time t) is F-measurable,
since S(t) is Ft-measurable for all t and Ft ⊆ F . Now, choose ω ∈ Ω, then
ft(H,ω) = S(t, ω) ·∆H(t), which is continuous in H (since it is linear). Hence,
ft is a convex, normal integrand. Since the objective function and constraint
functions of the primal problem (6.7) are similar (and B is FT -measurable),
the same type of arguments prove that (from Example 14.29 in Rockafellar and
Wets [36]) all of these functions are convex normal integrands. Hence (from Ex-
ample 1 in Pennanen [29]), F is a convex normal integrand, and therefore, the
framework of Pennanen and Perkkiö, in particular Theorem 6.9, can be applied.

Now, assume that the set A in Theorem 6.9 is a linear space. We would
like to prove that the inequality (6.15) holds for the perturbation function cor-
responding to the primal problem (6.4).

As shown previously, the perturbation function takes the form

F (H, (u, v1, v2, w)) := S(0) ·H(0)

if B(ω) − S(T, ω) ·H(T − 1, ω) ≤ u(ω) for all ω ∈ Ω and S(t, ω) ·∆H(t, ω) ≤
vt1(ω) for all t ∈ {1, ..., T − 1}, ω ∈ Ω, −S(t, ω) · ∆H(t, ω) ≤ vt2(ω) for all
t ∈ {1, ..., T − 1}, ω ∈ Ω, −S(0) · H(0) ≤ w and F (H, (u, v1, v2, w)) := ∞
otherwise.

Now, choose y(ω) := (0, (0)t, (0)t,−1) for all ω ∈ Ω. Then, y ∈ Lq (since P
is a �nite measure). Also, choose m(ω) = −1 for all ω ∈ Ω. m ∈ L1 since P is
a �nite measure.
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Then:

F (H, ū) ≥ S(0) ·H(0) (from the de�nition of F )
≥ −w (from the de�nition of F )
≥ ū · y(ω) +m(ω) (from the choice of y and m)

for all (H, ū) ∈ R(N+1)T × R2T .
Hence, the conditions of Theorem 6.9 are satis�ed, and the theorem implies

that there is no duality gap. This means that the seller's price of the contingent
claim B (i.e. the optimal value of problem (6.4)) is equal to the optimal value
of problem (6.14).

Hence, the following theorem has been proved.

Theorem 6.10 ♦
Consider a normalized market and a seller of the claim B with information

corresponding to the �ltration (Gt)t. Assume that there is no arbitrage in the
market w.r.t. (Gt)t and that A := {H ∈ HG : F∞(H(ω), 0, ω) ≤ 0 P - a.s.} is a
linear space. Then, the seller's price of a contingent claim B is

sup
Q∈Ma(S,G)

EQ[B]

whereMa(S,G) denotes the family of all absolutely continuous martingale mea-
sures with respect to the �ltration Gt.

From general pricing theory, it is known that the seller's price, when the
seller has full information corresponding to the �ltration (Ft)t, will be

sup
Q∈Me(S,F)

EQ[B]

(if the market is assumed to be normalized) whereMe(S,F) is the set of equiv-
alent martingale measures w.r.t. the �ltration (Ft)t. We will prove that this
is consistent with Theorem 6.10. In order to do this, the following lemma is
useful.

Lemma 6.11 Assume there is no arbitrage in the market. For any
g ∈ L∞(Ω,F , P ),

EQ[g] ≤ 0 for all Q ∈Ma(S,F)

if and only if
EQ[g] ≤ 0 for all Q ∈Me(S,F).

Proof: Since there is no arbitrage in the market (by assumption), there exists
at least one Q∗ ∈Me(S,F) (and hence also a Q ∈Ma(S,F), sinceMe(S,F) ⊆
Ma(S,F)) from the fundamental theorem of mathematical �nance (since the
time is assumed to be discrete, see Delbaen [7]). For any Q ∈ Ma(S,F) and
λ ∈ (0, 1), λQ∗+(1−λ)Q ∈Me(S,F). Hence,Me(S,F) is dense inMa(S,F),
and the lemma follows. �
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Lemma 6.12 supQ∈Ma(S,F)EQ[B] = supQ∈Me(S,F)EQ[B].

Proof:

� To prove that supQ∈Ma(S,F)EQ[B] ≤ supQ∈Me(S,F)EQ[B]: De�ne x :=
supQ∈Ma(S,F)EQ[B]. Then EQ[B] ≤ x for all Q ∈ Ma(S,F). But from
Lemma 6.11 (with g = B − x), this implies that EQ[B] ≤ x for all Q ∈
Me(S,F), so supQ∈Me(S,F)EQ[B] ≤ x, and hence the inequality follows.

� The opposite inequality is shown similarly, or by using thatMe(S,F) ⊆
Ma(S,F).

�

Hence, the seller's price which has been derived via conjugate duality is the
same as the seller's price which is familiar from pricing theory.

We will now consider pricing with di�erent levels of information. As in
Section 6.1, consider two sellers of the same claim B. Seller A1 has information
corresponding to the �ltration (Ht)t where H0 = {∅,Ω}, and HT = P(Ω) (the
σ-algebra consisting of all measurable subsets of Ω) and Ft ⊆ Ht for all t (so the
seller A1 knows the prices at all times). Similarly, seller A2 has �ltration (Jt)t
such that J0 = {∅,Ω}, and JT = P(Ω). A1 is assumed to have less information
than A2. Hence, Ht ⊆ Jt for all t = 0, 1, . . . , T , i.e. (Ht)t is nested in (Jt)t.
Since (Ft)t is nested in (Ht)t, it is nested in (Jt)t as well. Note that Lemma 6.4
goes through even though Ω is arbitrary, soMa(S,J ) ⊆Ma(S,H). Therefore,
Theorem 6.5 holds also for an arbitrary Ω, and the following theorem holds.

Theorem 6.13 ♦
If (Ht)t and (Jt)t are �ltrations such that (Ht)t is nested in (Jt)t, then

sup
Q∈Ma(S,J )

EQ[B] ≤ sup
Q∈Ma(S,H)

EQ[B].

Hence, a well informed seller can o�er the contingent claim B at a price
which is less than or equal to the price o�ered by a less informed seller (if we
assume that the set A of Theorem 6.10 is a linear space).

As previously, the buyer's problem is analogous to the seller's problem,
so the price a buyer with �ltration (Gt)t is willing to pay for the claim B is
infQ∈Ma(S,G)EQ[B] (if the set A of Theorem 6.10 is a linear space). Hence, the
same kind of arguments that lead to Theorem 6.13 imply that a well informed
buyer will be willing to pay more for the claim B than a less informed buyer.
This, together with Theorem 6.13, implies that the probability of a seller and
buyer agreeing on a price is smaller in a market where the agents have little
information than in a market with more information.

Finally, note that Lemma 6.11 also holds for a general �ltration (Gt)t, so the
price o�ered by a seller with �ltration (Gt)t will actually be supQ∈Me(S,G)EQ[B],
whereMe(S,G) denotes the family of all probability measures equivalent to P
that turn S into a martingale with respect to the �ltration G (ifMe(S,G) 6= ∅).
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6.3 The pricing problem with short-selling con-

straints: Finite Ω ♦

Consider a �nancial market where the time t is discrete and the scenario space
Ω is �nite, so the scenario tree model of Section 4.3 applies. Given a con-
tingent claim B in the market, consider a seller of this claim with �ltration
(Gt)t∈{0,1,...,T} such that G0 = {∅,Ω}, GT is the σ-algebra that corresponds to
the partition {{ω1}, ..., {ωM}}, and Ft ⊆ Gt for t = 0, 1, . . . , T . Hence the seller
knows the prices of the assets at any time. We will consider the pricing problem
of this seller, as in Section 6.1, but with a twist: the seller is not allowed to
short-sell in one speci�c asset, asset n∗ 6= 0 (i.e. we assume that the seller can
short-sell in the bond). In the following, assume that the market is normalized,
so S0

k = 1 for all k.

Hence, the pricing problem of this seller is

min v
subject to

S0 ·H0 ≤ v,

Bk ≤ Sk ·Ha(k) for all k ∈ N GT ,
Sk ·Hk = Sk ·Ha(k) for all k ∈ N Gt , t ∈ {1, 2, . . . , T − 1},
Hn∗

k ≥ 0 for all k ∈ N Gt , t ∈ {0, 1, . . . , T − 1},
(6.17)

where the minimization is done with respect to v ∈ R and Hk ∈ RN+1 for
k ∈ N Gt for t = 0, ..., T − 1. Here, N Gt denotes the set of time t-vertices (nodes)
in the scenario tree representing the �ltration G, and Bk denotes the value of
the claim B in the vertex k ∈ NT . Recall that a(k) denotes the ancestor of
vertex k, see Section 4.3. Hence, the seller's problem is: Minimize the price v of
the claim B such that the seller is able to pay B at time T from investments in
a self-�nancing, predictable portfolio that costs less than or equal to v at time
0 and which does not sell short in the asset n∗. As in Section 6.1, note that
the portfolio process H has been translated, so that H is adapted to (Gt)t, not
predictable. This is done without loss of generality.

Problem (6.17) is a linear programming (LP) problem, and one can �nd the
dual of this problem using standard LP-duality techniques. However, it turns
out to be easier to �nd the dual problem via Lagrange duality (see Section 5.4).
Since the linear programming dual problem is a special case of the Lagrange dual
problem, the linear programming duality theorem implies that there is no duality
gap (this can also be shown via the Slater condition, since v > supω∈ΩB(ω)
and putting everything in the bank is a strictly feasible solution of problem
(6.17)). Also, since problem (6.17) is an LP problem, the simplex algorithm is
an e�cient computational method which can be used to �nd optimal solutions
in speci�c examples.

Problem (6.17) can be rewritten
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min v
subject to

S0 ·H0 − v ≤ 0

Bk − Sk ·Ha(k) ≤ 0 for all k ∈ N GT ,
Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ N Gt , t ∈ {1, 2, . . . , T − 1},
−Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ N Gt , t ∈ {1, 2, . . . , T − 1},

Hn∗

k ≥ 0 for all k ∈ N Gt , t ∈ {0, 1, . . . , T − 1}.
(6.18)

Problem (6.18) is suitable for the Lagrange duality method.
Let y0 ≥ 0, zk ≥ 0 for all k ∈ N GT and y1

k, y
2
k ≥ 0 for all k ∈ N Gt , t ∈

{1, 2, . . . , T −1} be the Lagrange multipliers. Then, the Lagrange dual problem
is

supy0,z,y1,y2≥0 infv,H:Hn
∗

k ≥0 ∀k{v + y0(S0 ·H0 − v) +
∑
k∈NGT

zk(Bk − Sk ·Ha(k))

+
∑T−1
t=1

∑
k∈NGt

ykSk(Hk −Ha(k))}
= supy0,z≥0,y{ infv{v(1− y0)}

+ infH0:Hn
∗

0 ≥0{y0S0 ·H0 −
∑
m∈CG(0) ymSm ·H0}

+
∑T−2
t=1

∑
k∈NGt

infHk:Hn
∗

k ≥0{ykSk ·Hk −
∑
m∈CG(k) ymSm ·Hk}

+
∑
k∈NGT−1

infHk:Hn
∗

k ≥0{ykSk ·Hk −
∑
m∈CG(k) zmSm ·Hk}

+
∑
k∈NGT

zkBk}

where z, y1, y2 denotes the vectors of zk's, y
1
k's and y

2
k's respectively and yk :=

y1
k − y2

k is a free variable (i.e. the sign of yk is not clear a priori).
Consider each of the minimization problems separately. In order to have

a feasible dual solution, all of these minimization problems must have optimal
value greater than −∞.

� infv{v(1 − y0)} > −∞ (that is, there is a feasible dual solution) if and
only if y0 = 1.

� inf{H0 : Hn∗0 ≥0}{H0 · (y0S0 −
∑
m∈CG(0) ymSm)} > −∞ if and only if

y0S
n
0 =

∑
m∈CG(0) ymS

n
m for all n 6= n∗, and y0S

n∗

0 ≥
∑
m∈CG(0) ymS

n∗

m .
In this case the in�mum is equal to 0.

� inf{Hk : Hn∗k ≥0}{Hk · (ykSk −
∑
m∈CG(k) ymSm)} > −∞ if and only if

ykS
n
k =

∑
m∈CG(k) ymS

n
m for all n 6= n∗ and ykS

n∗

k ≥
∑
m∈CG(k) ymS

n∗

m .
Note that in this case, the in�mum is 0. Therefore, in order to get a dual
solution, this must hold for all k ∈ N Gt for t = 1, ..., T − 2.

� Finally, inf{Hk : Hn∗k ≥0}{Hk ·(ykSk−
∑
m∈CG(k) zmSm)} > −∞ if and only

if ykS
n
k =

∑
m∈CG(k) zmS

n
m for all n 6= n∗ and ykS

n∗

k ≥
∑
m∈CG(k) zmS

n∗

m .
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In order to get a feasible dual solution this must hold for all k ∈ N GT−1.
Note that in this case the in�mum is 0.

Hence, the dual problem is

supy0,z≥0,y

∑
k∈NGT

zkBk
subject to

y0 = 1,

ykS
n
k =

∑
m∈CG(k) ymS

n
m for all k ∈ N Gt ,

t = 0, 1, ..., T − 2, n 6= n∗,

ykS
n∗

k ≥
∑
m∈CG(k) ymS

n∗

m for all k ∈ N Gt ,
t = 0, 1, ..., T − 2,

ykS
n
k =

∑
m∈CG(k) zmS

n
m for all k ∈ N GT−1, n 6= n∗,

ykS
n∗

k ≥
∑
m∈CG(k) zmS

n∗

m for all k ∈ N GT−1.

By considering the second equation above for the non-risky asset (the bond),
i.e. for S0

k, one sees that in order to have a feasible dual solution

ykS
0
k =

∑
m∈CG(k)

ymS
0
m

must hold. Here, we have used that the assumption that the seller is allowed to
short-sell in the bond, i.e. n∗ 6= 0. Since the market is normalized, S0

k = 1 for
all k, therefore

yk =
∑

m∈CG(k)

ym

for all k ∈ N Gt , t = 1, ..., T − 2. Hence, in particular
∑
m∈CG(0) ym = y0 = 1.

Therefore
∑
k∈NGT−1

yk = y0 = 1 (by induction). From the �nal dual feasibility

condition (considered for the bond, i.e. n = 0),
∑
k∈NGT

zk =
∑
k∈NGT−1

yk = 1

and zk ≥ 0 for all k (since z is a Lagrange multiplier). Therefore, {zk}k∈NGT
can be identi�ed with a probability measure Q (on the terminal vertices of
the scenario tree) such that the Q-probability of ending up in terminal vertex
k is zk. Then, as in Section 6.1, the conditions ykS

n
k =

∑
m∈CG(k) ymS

n
m are

martingale conditions (w.r.t. the �ltration (Gt)t) for each asset n 6= n∗, of the
form Snt−1 = E[Snt |Gt−1], which can be shown to imply the general martingale
condition in this discrete time case: Let s ≤ t,
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E[Snt |Gs] = E[E[Snt |Gt−1]|Gs] (from double expectation)
= E[Snt−1|Gs] (from the one step martingale condition)
= E[E[Snt−1|Gt−2]|Gs] (double expectation)
= E[Snt−2|Gs] (one step martingale condition)
= . . .
= E[Sns+1|Gs]
= Sns

hence the martingale condition holds.
Similarly, the condition ykS

n∗

k ≥
∑
m∈CG(k) ymS

n∗

m is a super-martingale

condition (w.r.t. the �ltration (Gt)t):
From the de�nition of conditional expectation∑

m∈CG(k)

ymS
n∗

m = ykEQ[Sn
∗

t+1|Gt]k for all k ∈ N Gt

where EQ[Sn
∗

t+1|Ft]k denotes the conditional expectation of Sn
∗

t+1 given Gt w.r.t.
the probability measure Q corresponding to the feasible dual solution y, evalu-
ated in node k ∈ N Gt . Hence

ykS
n∗

k ≥ ykEQ[Sn
∗

t+1|Ft]k for all k ∈ N Gt
So, if yk > 0, the super-martingale condition holds. If yk = 0 (note that yk ≥ 0
since zk ≥ 0), then the Q-probability of node k happening is 0. Therefore, the
conditional expectation EQ[Sn

∗

t+1|Ft]k is de�ned (by convention) to be 0. Since
the price process is non-negative, the super-martingale condition holds in this
case as well.

This proves that any feasible dual solution can be identi�ed with a prob-
ability measure Q which is absolutely continuous w.r.t. P such that assets
1, . . . , n∗ − 1, n∗ + 1, . . . , N are martingales w.r.t. Q and asset n∗ is a super-
martingale w.r.t. Q. Denote the set of such probability measures by M̄a

n∗(S,G).
The converse also holds: Take Q ∈ M̄a

n∗(S,G), and de�ne zm := Q(ωm) for
m = 1, ...,M , yk :=

∑
m∈CG(k) zm for k ∈ N GT−1 and yk :=

∑
m∈CG(k) ym for

k ∈ N Gt , 0 ≤ t ≤ T − 2. It can be checked (from these de�nitions) that this is a
feasible dual solution.

Hence, the Lagrange dual problem can be rewritten

β := sup
Q∈M̄a

n∗ (S,G)

EQ[B]

where the maximization is done over the set of probability measures on (Ω,GT )
such that assets 1, . . . , n∗ − 1, n∗ + 1, . . . , N are martingales w.r.t. Q and asset
n∗ is a super-martingale w.r.t. Q (w.r.t. the �ltration (Gt)t).

As explained previously, LP-duality implies that there is no duality gap.
Hence, the optimal primal value, i.e. the seller's price of the contingent claim
B, is equal to the optimal dual value, that is β.

The following theorem summarizes what we have shown in this section.
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Theorem 6.14 ♦
Consider a normalized �nancial market with discrete time and �nite scenario

space Ω. Consider also a seller of a contingent claim B, who has information
represented by the �ltration (Gt)t, such that (Ft)t is nested in (Gt)t, and who is
not allowed to short-sell risky asset n∗. This seller will sell B at the price

sup
Q∈M̄a

n∗ (S,G)

EQ[B]

where the maximization is done over the set of probability measures on (Ω,GT )
such that assets 1, . . . , n∗ − 1, n∗ + 1, . . . , N are martingales w.r.t. Q and asset
n∗ is a super-martingale w.r.t. Q (w.r.t. the �ltration (Gt)t).

Note that the previous arguments go through in the same way if there are
short-selling constraints on several of the risky assets (as long as the seller is
allowed to sell short in the bond), the only di�erence in the result will be that
the �nal maximization in the dual problem will be over the set of probability
measures that turn all the shorting-prohibited assets into super-martingales,
and the rest of the assets into martingales.

Note that since all martingales are super-martingales

sup
Q∈Ma(S,G)

EQ[B] ≤ β.

Hence, a seller who has short-selling prohibitions on one, or several, of the
risky assets will be forced to demand a higher price for the claim B than a
seller without prohibitions (for seller's with the same, general, level of inside
information).

6.4 Pricing with short-selling constraints: Arbi-

trary Ω ♦

The goal of this section is to generalize the results of Section 6.3.

Consider the usual �nancial market, but with an arbitrary scenario space
Ω. That is: Consider a �nancial market based on a general probability space
(Ω,F , P ). There are N risky assets with price processes S1(t), . . . , SN (t) and
one bond with price process S0(t) and the time t ∈ {0, 1, . . . , T}. Let (Ft)Tt=0

be the �ltration generated by the price process. Assume that the market is
normalized, so S0(t, ω) = 1 for all ω ∈ Ω, t ∈ {0, 1, . . . , T}.

The problem facing the seller of a contingent claim B, who is not allowed to
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short-sell in risky asset n∗, and who has �ltration (Ft)t, is

inf{v∈R,H (Ft)t-adapted} v

subject to
S(0) ·H(0) ≤ v,

S(T ) ·H(T − 1) ≥ B for all ω ∈ Ω,
S(t) ·∆H(t) = 0 for all t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω,
Hn∗(t) ≥ 0 for all t ∈ {0, . . . , T − 1},

and for all ω ∈ Ω.
(6.19)

Assume that there is no arbitrage in the market with respect to (Ft)t, i.e.
thatMe(S,F) 6= ∅ (from the fundamental theorem of mathematical �nance, see
Delbaen and Schachermayer [9]). This implies that problem (6.19) is equivalent
to

inf{v∈R,H (Ft)t-adapted} v

subject to
S(0) ·H(0) ≤ v,

S(T ) ·H(T − 1) ≥ B for all ω ∈ Ω,
S(t) ·∆H(t) = 0 for all t ∈ {1, . . . , T − 1},

and for all ω ∈ Ω,
Hn∗(t) ≥ 0 for all t ∈ {0, . . . , T − 1},

and for all ω ∈ Ω,
H(0) · S(0) ≥ 0.

(6.20)
Why are these two problems equivalent? Since there is no arbitrage in the
market, there does not exist any self-�nancing trading strategy H such that
S(0) ·H(0) < 0, but S(T ) ·H(T − 1) ≥ 0. Hence, there does not exist any self-
�nancing trading strategy H such that S(0) ·H(0) < 0 and S(T ) ·H(T − 1) ≥
B ≥ 0, and therefore problems (6.19) and (6.20) are equivalent.

From the same kind of argument as in Section 6.3, this problem can be
rewritten

inf{H (Ft)t-adapted} S(0) ·H(0)

subject to
B − S(T ) ·H(T − 1) ≤ 0 for all ω ∈ Ω,

S(t) ·∆H(t) = 0 for all t ∈ {1, . . . , T − 1},
and for all ω ∈ Ω,

−Hn∗(t) ≤ 0 for all t ∈ {0, . . . , T − 1},
and for all ω ∈ Ω,

−H(0) · S(0) ≤ 0 (for all ω ∈ Ω).
(6.21)

(Note that the �nal feasibility condition may be assumed to hold for all ω ∈ Ω,
since S(0) and H(0) are random variables.)
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Equation (6.21) �ts into the conjugate duality framework of Rockafellar [34].
It turns out that the Lagrange function is the same whether one rewrites the
equality constraint in problem (6.21) to two inequality constraints or not. We
work with problem (6.21) to keep notation as simple as possible. Hence, let

U := {u = (ū, (vt)
T−1
t=1 , (zt)

T−1
t=0 , x) : u ∈ Lp(Ω,F , P : R2T+1)}

Let Y := U∗ = Lq(Ω,F , P : R2T+1), the dual space of U , where 1
p + 1

q = 1.
Consider the following pairing of U and Y

〈(ū, (vt)T−1
t=1 , (zt)

T−1
t=0 , (xt)

T−1
t=0 ), y〉

= E[y1ū] +
∑T−1
t=1 E[yt2vt] +

∑T−1
t=0 E[yt3zt] + E[xy4]

De�ne (for notational convenience) v := (vt)
T−1
t=1 and z := (zt)

T−1
t=0 . Choose

the perturbation function F to be F (H, (ū, v, z, x)) := S(0) · H(0) if B(ω) −
S(T, ω) · H(T − 1, ω) ≤ ū(ω) for all ω ∈ Ω, S(t, ω) · ∆H(t, ω) = vt(ω) for all
t ∈ {1, . . . , T−1}, for all ω ∈ Ω, and−Hn∗(t, ω) ≤ zt(ω) for all t ∈ {0, . . . , T−1},
for all ω ∈ Ω, −H(0) · S(0) ≤ x for all ω ∈ Ω, and F (H, (ū, v, z, x)) := ∞
otherwise.

Note that vt = S(t) ·∆H(t) is feasible since S(t) ·∆H(t) is Ft-measurable.

Note also that we, contrary to Section 6.3, introduce dual variables for the
constraints Hn∗(t, ω) ≥ 0 (for all t, ω). This is done because the separable
problems coming from the Lagrange function are more di�cult to solve when Ω
is arbitrary.

The Lagrange function is

K(H, y) := inf
(ū,v,z,x)∈U

{F (H, (ū, v, z, x)) + 〈(ū, v, z, x), y〉},

so

K(H, y) = S(0) ·H(0) + E[y1(B − S(T ) ·H(T − 1))]

+
∑T−1
t=1 E[yt2S(t) ·∆H(t)]−

∑T−1
t=0 E[yt3Hn∗(t)]

−E[y4S(0) ·H(0)]

if y1 ≥ 0, yt3, y4 ≥ 0 a.e. for all t ∈ {0, . . . , T − 1} and K(H, y) = −∞ otherwise.
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Consider

S(0) ·H(0) +E[y1B]− E[y4S(0) ·H(0)]− E[y1S(T ) ·H(T − 1)]

+(E[y1
2S(1)·)(H(1)−H(0))] + E[y2

2S(2)·)(H(2)−H(1))] + . . .+

+E[yT−1
2 S(T − 1) · (H(T − 1)−H(T − 2))])

−(E[y0
3Hn∗(0)] + E[y1

3Hn∗ ] + . . .− E[yT−1
3 Hn(T − 1)])

= E[
∑
i 6=n∗ Hi(0){Si(0)[1− y4]− y1

2Si(1)}]
+E[Hn∗(0){Sn∗(0)[1− y4]− y1

2Sn∗(1)− y0
3}]

+
∑T−2
t=1 {E[

∑
i 6=n∗ Hi(t){yt2Si(t)− yt+1

2 Si(t+ 1)}]
+E[Hn∗(t){yt2Sn∗(t)− yt+1

2 Sn∗(t+ 1)− yt3}]}
+E[

∑
i 6=n∗ Hi(T − 1){−y1Si(T ) + yT−1

2 Si(T − 1)}
+Hn∗(T − 1){−y1Sn∗(T ) + yT−1

2 Sn∗(T − 1)− yT−1
3 }]

+E[y1B]

(recall that S(0) ·H(0) is deterministic, so S(0) ·H(0) = E[S(0) ·H(0)].)

Hence, the dual objective function is

g(y) := infH:(Ft)t−adaptedK(H, y)

= E[y1B] +
∑
i 6=n∗ infHi(0){E[Hi(0){Si(0)(1− y4)− y1

2Si(1)}]}
+ infHn∗ (0){E[Hn∗{Sn∗(0)(1− y4)− y1

2Sn∗(1)− y0
3}]}

+
∑T−2
t=1 (

∑
i 6=n∗ infHi(t){E[Hi(t)(y

t
2Si(t)− yt+1

2 Si(t+ 1))]}
+ infHn∗ (t){E[Hn∗(t)(y

t
2Sn∗(t)− yt+1

2 Sn∗(t+ 1)− yt3)]})
+
∑
i 6=n∗ infHi(T−1){E[Hi(T − 1)(−y1Si(T ) + yT−1

2 Si(T − 1))]}
+ infHn∗ (T−1){E[Hn∗(T − 1)(−y1Sn∗(T )

+yT−1
2 Sn∗(T − 1)− yT−1

3 )]}

There exists a feasible dual solution if and only if all the minimization problems
above have an optimal value greater than −∞. Hence, by considering each of
the minimization problems separately and using the comments after Lemma 6.6
and Lemma 6.7, the dual problem is
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sup{y∈Y :y1≥0,yt3,y4≥0 a.e. ∀ t} E[y1B]

subject to∫
A
Si(0)(1− y4)dP =

∫
A
y1

2Si(1)dP for all A ∈ F0, i 6= n∗,∫
A
Sn∗(0)(1− y4)dP =

∫
A
y1

2Sn∗(1)dP +
∫
A
y0

3dP for all A ∈ F0,∫
A
yt2Si(t)dP =

∫
A
yt+1

2 Si(t+ 1)dP for all A ∈ Gt,
t = 1, . . . , T − 1, i 6= n∗,∫

A
Sn∗(t)y

t
2dP =

∫
A
yt+1

2 Sn∗(t+ 1)dP +
∫
A
yt3dP +

∫
A
yt3dP

for all A ∈ Ft, t = 1, . . . , T − 2,∫
A
y1Si(T )dP =

∫
A
yT−1

2 Si(T − 1)dP for all A ∈ GT−1, i 6= n∗,∫
A
yT−1

2 Sn∗(T − 1)dP =
∫
A
y1Sn∗(T )dP +

∫
A
yT−1

3 dP for all A ∈ FT−1.
(6.22)

Note that since yt3 ≥ 0 a.e. for all t ∈ {0, 1, . . . , T −1} and P is a probability
measure (hence non-negative),

∫
A
yt3dP ≥ 0 for all A ∈ Ft for all t. There-

fore, all the conditions regarding yt3 can be replaced by altering the conditions
of the form

∫
a
yt2Sn∗(t)dP =

∫
A
yt+1

2 Sn∗(t + 1)dP +
∫
A
yt3dP for all A ∈ Ft

by
∫
A
yt2Sn∗(t)dP ≥

∫
A
yt+1

2 Sn∗(t + 1)dP (similarly,
∫
A
Sn∗(0)(1 − y4)dP =∫

A
y1

2Sn∗(1)dP +
∫
A
y0

3dP for all A ∈ F0 is replaced by
∫
A
Sn∗(0)(1− y4)dP ≥∫

A
y1

2Sn∗(1)dP for all A ∈ F0). Hence, problem (6.22) is equivalent to

supy∈Y :y1≥0,y4≥0 a.e. ∀ t E[y1B]

subject to∫
A
Si(0)(1− y4)dP =

∫
A
y1

2Si(1)dP for all A ∈ F0, i 6= n∗,∫
A
Sn∗(0)(1− y4)dP ≥

∫
A
y1

2Sn∗(1)dP for all A ∈ F0,∫
A
yt2Si(t)dP =

∫
A
yt+1

2 Si(t+ 1)dP for all A ∈ Ft,
t = 1, . . . , T − 2, i 6= n∗,∫

A
Sn∗(t)y

t
2dP ≥

∫
A
yt+1

2 Sn∗(t+ 1)dP for all A ∈ Ft,
t = 1, . . . , T − 2,∫

A
y1Si(T )dP =

∫
A
yT−1

2 Si(T − 1)dP for all A ∈ FT−1, i 6= n∗,∫
A
yT−1

2 Sn∗(T − 1)dP ≥
∫
A
y1Sn∗(T )dP for all A ∈ FT−1.

(6.23)

From the same kind of arguments as in Section 6.2, one can show that it is
su�cient to only maximize over feasible solutions y of problem (6.23) where y4 =
0 P -almost everywhere (see the arguments after problem (6.9), and apply similar
reasoning to the dual feasibility constraints with equality of problem (6.23)) if
such a solution exists.

Hence, (if there exists a feasible dual solution where y4 = 0 P -a.e.) the dual
problem can be written
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supy∈Y :y1≥0 E[y1B]

subject to ∫
A
Si(0)dP =

∫
A
y1

2Si(1)dP for all A ∈ F0, i 6= n∗,∫
A
Sn∗(0)dP ≥

∫
A
y1

2Sn∗(1)dP for all A ∈ F0,∫
A
yt2Si(t)dP =

∫
A
yt+1

2 Si(t+ 1)dP for all A ∈ Ft,
t = 1, . . . , T − 1, i 6= n∗,∫

A
Sn∗(t)y

t
2dP ≥

∫
A
yt+1

2 Sn∗(t+ 1)dP for all A ∈ Ft,
t = 1, . . . , T − 2,∫

A
y1Si(T )dP =

∫
A
yT−1

2 Si(T − 1)dP for all A ∈ FT−1, i 6= n∗,∫
A
yT−1

2 Sn∗(T − 1)dP ≥
∫
A
y1Sn∗(T )dP for all A ∈ FT−1.

(6.24)
Actually, it will be shown that there is a one-to-one correspondence be-

tween feasible dual solutions where y4 = 0 and a certain kind of measures
Q ∈ M̄a

n∗(S,F) (de�ned similarly as in Section 6.3). Hence, since we have
assumed that the set Me(S,F) 6= ∅ and Me(S,F) ⊆ M̄a

n∗(S,F) (since all
martingales are super-martingales) there exists a feasible dual solution where
y4 = 0.

To prove this one-to-one correspondence, techniques similar to those of Sec-
tion 6.2 will be used.

Recall that a stochastic process (Mt)t is a super-martingale on a �ltered
probability space (Ω,F , P, (Ft)t) if Mt ∈ L1(Ω,F , P ) for all t, (Mt)t is (Ft)t-
adapted and E[Mt|Fs] ≤Ms for all s ≤ t.

De�ne, as in Section 6.3, M̄a
n∗(S,F) as the set of probability measures Q

on (Ω,F) that are absolutely continuous w.r.t. P and are such that the price
processes S1, . . . , Sn∗−1, Sn∗+1, . . . , SN are Q-martingales (w.r.t. the �ltration
(Ft)t) and Sn∗ is a Q-super-martingale (w.r.t. (Ft)t).

We will prove that the dual problem (6.24) is equivalent to another problem,
namely

supQ∈M̄a
n∗ (S,F)EQ[B]. (6.25)

The approach for doing this is similar to that of Section 6.2.
Therefore, assume there exists a Q ∈ M̄a

n∗(S,F). De�ne y1 := dQ
dP (the

Radon-Nikodym derivative of Q w.r.t. P ), and yt2 := E[y1|Ft] (this is OK
since E[y1|Ft] is Ft-measurable) for t = 1, . . . , T − 1. As in Section 6.2, we
prove that y1, y

t
2 satisfy the dual feasibility conditions of problem (6.24). Note

that the conditions for assets 1, . . . , n∗ − 1, n∗ + 1, . . . , N are precisely as in
Section 6.2, and these price processes are Q-martingales (from the de�nition of
M̄a

n∗(S,F)), hence these dual feasibility conditions hold by the same arguments
as in Section 6.2. The conditions for asset n∗ must be checked separately.

�

∫
A
yT−1

2 Sn∗(T − 1)dP ≥
∫
A
y1Sn∗(T )dP for all A ∈ FT−1: Recall that

E[y1Sn∗(T )|FT−1] is the unique FT−1-measurable random variable such
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that ∫
A

E[y1Sn∗(T )|FT−1]dP =

∫
A

y1Sn∗(T )dP for all A ∈ FT−1.

Hence, it is su�cient to prove that∫
A

E[y1Sn∗(T )|FT−1]dP ≤
∫
A

yT−1
2 Sn∗(T − 1)dP for all A ∈ FT−1.

In particular, it su�ces to prove that

E[y1Sn∗(T )|FT−1] ≤ yT−1
2 Sn∗(T − 1) for all ω ∈ Ω.

From the rule for change of measure under conditional expectation, Lemma 6.8

E[y1Sn∗(T )|FT−1] = E[y1|FT−1]EQ[Sn∗(T )|FT−1].

Hence, it is enough to show that

E[y1|FT−1]EQ[Sn∗(T )|FT−1] ≤ yT−1
2 Sn∗(T − 1).

But this is OK, since yT−1
2 := E[y1|FT−1] and EQ[Sn∗(T )|FT−1] ≤ Sn∗(T−

1), since Sn∗ is a Q-super-martingale.

�

∫
A
Sn∗(t)y

t
2dP ≥

∫
A
yt+1

2 Sn∗(t+ 1)dP for all A ∈ Ft, t = 1, . . . , T − 2: We
begin by proving this inequality for T − 2, i.e. we want to show that∫

A

yT−2
2 Sn∗(T − 2)dP ≥

∫
A

yT−1
2 Sn∗(T − 1)dP for all A ∈ FT−2.

Note that the following holds for all A ∈ FT−2∫
A
yT−1

2 Sn∗(T − 1)dP =
∫
A
E[yT−1

2 Sn∗(T − 1)|FT−2]dP
=
∫
A
E[E[y1|FT−1]Sn∗(T − 1)|FT−2]dP

=
∫
A
E[E[y1Sn∗(T − 1)|FT−1]|FT−2]dP

=
∫
A
E[y1Sn∗(T − 1)|FT−2]dP

where the �rst equality uses the de�nition of conditional expectation, the
second uses the de�nition of yT−1

2 , the third uses that Sn∗(T −1) is FT−1-
measurable and the �nal equality uses the rule of double expectation and
that FT−2 ⊆ FT−1. Hence, from Lemma 6.8, it is su�cient to prove that

yT−2
2 Sn∗(T − 2) ≥ E[y1Sn∗(T − 1)|FT−2]

= E[y1|FT−2]EQ[Sn∗(T − 1)|FT−2].

But this is clearly true, since yT−2
2 := E[y1|FT−2] and Sn∗(T − 2) ≥

EQ[Sn∗(T − 1)|FT−2] since asset n∗ is a Q-super-martingale. The same
kind of argument goes through for all the other dual feasibility conditions
of this type.
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�

∫
A
Sn∗(0)dP ≥

∫
A
y1

2Sn∗(1)dP for all A ∈ F0: Recall that F0 = {∅,Ω}.
The inequality is trivially true for A = ∅. Hence, it only remains to check
that E[y1

2Sn∗(1)] ≤ E[Sn∗(0)] = Sn∗(0). Note that

E[y1
2Sn∗(1)] = E[y1

2Sn∗(1)|F0]
= E[E[y1|F1]Sn∗(1)|F0]
= E[E[y1Sn∗(1)|F1]|F0]
= E[y1Sn∗(1)|F0]
= E[y1Sn∗(1)]
= EQ[Sn∗(1)]
= EQ[Sn∗(1)|F(0)]
≤ Sn∗(0)

where the second equality follows from the de�nition of y1
2 , the fourth

equality from the rule of double expectation and the inequality from that
Sn∗ is a Q-martingale. Hence, the �nal dual feasibility condition is OK as
well.

This proves that any Q ∈ M̄a
n∗(S,F) corresponds to a feasible dual solution.

Conversely, assume there exists a feasible dual solution y1 ≥ 0, (yt2)T−1
t=1 . De-

�ne Q(F ) :=
∫
F
y1dP for all F ∈ F . This de�nes a probability measure since

y1 ≥ 0, and one can assume that E[y1] = 1 since the dual problem (6.24) is
invariant under translation.

The goal is to show that Q ∈ M̄a
n∗(S,F), i.e. that the dual feasibility

conditions can be interpreted as martingale and super-martingale conditions.

� First, consider the �nal dual feasibility condition for i 6= n∗:∫
A

y1Si(T )dP =

∫
A

yT−1
2 Si(T − 1)dP for all A ∈ FT−1 (6.26)

and for n∗:∫
A

y1Sn∗(T )dP ≤
∫
A

yT−1
2 Sn∗(T − 1)dP for all A ∈ FT−1. (6.27)

The de�nition of conditional expectation implies that equation (6.26) is
equivalent to E[y1Si(T )|FT−1] = yT−1

2 Si(T − 1). But

E[y1Si(T )|FT−1] = E[y1|FT−1]EQ[Si(T )|FT−1]

from change of measure under conditional expectation (see Lemma 6.8).
Hence, EQ[Si(T )|FT−1] = Si(T −1) if yT−1

2 = E[y1|FT−1], so this is what
we want to prove.

By considering equation (6.26) for the bond and using that the market is
normalized (by assumption), so S0(t, ω) = 1 for all t, ω∫

A

y1dP =

∫
A

yT−1
2 dP for all A ∈ FT−1.
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From the de�nition of conditional expectation, this means that yT−1
2 =

E[y1|FT−1]. Hence, EQ[Si(T )|FT−1] = Si(T − 1).

� The argument is similar for equation (6.27). From the de�nition of con-
ditional expectation, equation (6.27) implies that∫

A

E[y1Sn∗(T )|FT−1]dP ≤
∫
A

yT−1
2 Sn∗(T − 1)dP for all A ∈ FT−1.

Note that from Lemma 6.8∫
A
E[y1Sn∗(T )|FT−1]dP =

∫
A
E[y1|FT−1]EQ[Sn∗(T )|FT−1]dP

=
∫
A
yT−1

2 EQ[Sn∗(T )|FT−1]dP

where the last equality uses the result of the previous item. Hence∫
A

yT−1
2 EQ[Sn∗(T )|FT−1]dP ≤

∫
A

yT−1
2 Sn(T − 1)dP for all A ∈ FT−1.

So

0 ≤
∫
A

yT−1
2 (Sn∗(T − 1)− EQ[Sn∗(T )|FT−1])dP for all A ∈ FT−1.

Note that yT−1
2 ≥ 0 since yT−1

2 = E[y1|FT−1] from the previous item,
and y1 ≥ 0. Note also that for all A ∈ FT−1 such that yT−1

2 (A) ≥ 0,
but not identically equal 0 a.e., the super-martingale condition Sn∗(T −
1) ≥ EQ[Sn∗(T )|FT−1] holds. If yT−1

2 (A) = 0 a.e., then Q(A) = 0, and
therefore EQ[Sn∗(T )|FT−1](A) := 0 by convention, so also in this case, the
super-martingale condition Sn∗(T − 1) ≥ EQ[Sn∗(T )|FT−1] holds. (Here
yt2(A) denotes the value yt2 takes on A, the notation is similar for the other
measurable random variables.)

We would like to show the same result for a general time t, i.e. we want to
show that for i 6= n∗

EQ[Si(T )|Ft] = Si(T ) for all t ≤ T.

This is OK by the same kind of argument as in Section 6.2. We also need to
prove that

EQ[Sn∗(T )|Ft] ≤ Sn∗(t) for all t ≤ T.
The second dual feasibility condition for asset n∗ states that

∫
A
yt2Sn∗(t)dP ≥∫

A
yt+1

2 Sn(t+1)dP for all A ∈ Ft. Note that by using this equation for t+1, t+
2, . . . , T − 2, it follows that∫

A
yt2Sn∗(t)dP ≥

∫
A
yt+1

2 Sn∗(t+ 1)dP ∀A ∈ Ft
≥
∫
A
yt+2

2 Sn∗(t+ 2)dP ∀A ∈ Ft+1,
in particular ∀A ∈ Ft

≥ . . .
≥
∫
A
yT−1

2 Sn∗(T − 1)dP ∀A ∈ Ft
≥
∫
A
y1Sn∗(T )dP ∀A ∈ Ft
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where the �nal inequality uses the third dual feasibility condition. From the
change of measure under conditional expectation, Lemma 6.8∫

A
y1Sn∗(T )dP =

∫
A
E[y1|Ft]EQ[Sn∗(T )|Ft]dP.

Hence ∫
A

yt2Sn∗(t)dP ≥
∫
A

E[y1|Ft]EQ[Sn∗(T )|Ft]dP ∀ A ∈ Ft.

Recall that yt2 = E[y1|Ft], so∫
A

yt2(Sn∗(t)− EQ[Sn∗(T )|Ft])dP ≥ 0 ∀ A ∈ Ft.

If yt2(A) ≥ 0, but not identically equal 0 a.e., this implies the super-martingale
condition

Sn∗(t, A) ≥ EQ[Sn∗(T )|Ft](A) for all A ∈ Ft.

If yt2(A) = 0 a.e., then Q(A) = 0, so EQ[Sn∗(T )|Ft](A) = 0 by convention, and
hence, since the price processes are non-negative, the super-martingale condition
Sn∗(t) ≥ EQ[Sn∗(T )|Ft] holds.

From the same kind of arguments as in Section 6.2, for i 6= n∗, EQ[Si(T )|Ft] =
Si(t) (for all t ≤ T ) can be generalized to EQ[Si(t)|Fs] = Si(s) for all s ≤ t.

Similarly, EQ[Sn∗(t)|Fs] ≤ Sn∗(s) for all s ≤ t: We know that

EQ[Sn∗(T )|Fs] ≤ Sn(s) ∀ s ≤ T.

Consider t ≥ s. Then, for all A ∈ Fs,∫
A
ys2Sn∗(s)dP ≥

∫
A
yt2Sn∗(t)dP

=
∫
A
E[yt2Sn∗(t)|Fs]dP

=
∫
A
E[E[y1|Ft]Sn∗(t)|Fs]dP

=
∫
A
E[E[y1Sn∗(t)|Ft]|Fs]dP

=
∫
A
E[y1Sn∗(t)|Fs]dP

=
∫
A
E[y1|Fs]EQ[Sn∗(t)|Fs]dP

where the �rst inequality follows from second dual feasibility condition iterated,
the �rst equality from the de�nition of conditional expectation, the second equal-
ity from that yt2 = E[y1|Ft] (from the same kind of arguments as in Section 6.2).
The fourth equality uses the rule of double expectation and the �nal equality
uses Lemma 6.8, regarding change of measure under conditional expectation.

Hence, since ys2 = E[y1|Fs] ≥ 0 (because y1 ≥ 0)∫
A

ys2(Sn∗(s)− EQ[Sn∗(t)|Fs])dP ≥ 0 for all A ∈ Fs.

Again, if ys2(A) ≥ 0, but not identically equal 0 a.e., the super-martingale
condition Sn∗(s,A) ≥ EQ[Sn∗(t)|Fs](A) for all A ∈ Fs holds. If ys2(A) = 0
a.e., then Q(A) = 0, so by convention EQ[Sn∗(t)|Fs](A) = 0. Therefore, since
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the price processes are non-negative, the super-martingale condition Sn∗(s,A) ≥
EQ[Sn∗(t)|Fs](A) holds.

Hence

EQ[Sn∗(t)|Fs] ≤ Sn∗(s) for all s ≤ t.

This implies that Q ∈ M̄a
n∗(S,F), and therefore, the dual problem of the

seller's pricing problem with short-selling constraints (in a normalized market)
is

sup
Q∈M̄a

n∗ (S,F)

EQ[B].

Finally, to show that there is no duality gap, Theorem 6.9 will be applied.
In order to apply this theorem, it is necessary to rewrite the perturbation func-
tion F so that the equality constraint is represented by two inequality con-
straints instead (in order to be consistent with the setting of Pennanen and
Perkkiö). The alternative perturbation function (which, again, would result
in the same Lagrange function as previously, it just requires extra notation)
is F (H, (ū, v(1), v(2), z, x)) = S(0) · H(0) if B − S(t) · H(T − 1) ≤ ū for all ω,

S(t) ·∆H(t) ≤ v(1)
t for all t, ω, −S(t) ·∆H(t) ≤ v(2)

t for all t, ω, −Hn∗(t) ≤ zt for
all t, ω, −H(0) ·S(0) ≤ x, and F (H, (ū, v(1), v(2), z, x)) =∞ otherwise. One can
prove that F is a convex normal integrand (which is necessary for the framework
of Pennanen and Perkkiö), from arguments similar to those of Section 6.2.

As in Section 6.2, assume that the set A of Theorem 6.9 is a linear space.
To check the other assumption of the theorem, choose

y = (0, (0)t, (0)t, (0)t,−1) ∈ Lq(Ω,F , P : R3T )

(since P is a �nite measure), where 0 represents the 0-function. Also, choose
m(w) = −1 for all ω ∈ Ω. Then m ∈ L1(Ω,F , P ) (again, since P is a �nite
measure). Then, given (H,u) ∈ R(N+1)T × R2T+1:

F (H,u) ≥ S(0) ·H0

≥ −x (from the de�nition of F )
= u · y(ω) (from the choice of y)
≥ m(ω) + u · y(ω) (from the choice of m)

where the notation H0 is used to emphasize that this is a deterministic vector.
Hence, the the conditions of Theorem 6.9 are satis�ed, and therefore, there is
no duality gap, so the seller's price of the contingent claim is

sup
Q∈M̄a

n∗ (S,F)

EQ[B].

Note that the previous derivation also goes through in the same way if there
are short-selling constraints on several of the risky assets (the notation is just a
little more complicated). Hence we have proved the following theorem.
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Theorem 6.15 ♦
Consider a �nancial market with N risky assets and one bond, based on a

�ltered probability space (Ω,F , P, (Ft)Tt=0) (where (Ft)t is generated by the price
process), where the time is discrete, t ∈ {0, 1, . . . , T}, and the scenario space
Ω is arbitrary. Let M̄a

n1,...,nK (S,F) denote the set of probability measures Q
which are absolutely continuous w.r.t. P , such that Si for i 6= n1, . . . , nK is
a Q-martingale, and Snk is a Q-super-martingale for k = 1, . . . ,K (w.r.t. the
�ltration (Ft)t). Assume Me(S,F) 6= ∅ (so the market has no arbitrage), and
that the set A := {H ∈ HG : F∞(H(ω), 0, ω) ≤ 0 P -a.s.} is a linear space
(where F is de�ned as above). The seller of a contingent claim B who has short
selling constraints on risky assets n1, . . . , nK will o�er the claim at a price

sup
Q∈M̄a

n1,...,nK
(S,F)

EQ[B].

Note that the arguments of this section would go through in the same way
if the seller's �ltration was not (Ft)t, but some (Gt)t such that (Ft)t is nested
in (Gt)t, i.e. some general level of inside information.

Also, since all martingales are super-martingales, the price o�ered by a seller
without short-selling constraints will be less than or equal the price o�ered by
the seller facing constraints (given that the two sellers have the same level of
information).

6.5 The constrained pricing problem: Finite Ω ♦
Consider a normalized �nancial market based on a probability space (Ω,F , P )
where Ω is �nite and the time t ∈ {0, 1, . . . , T} is discrete. Recall that this means
that the �nancial market can be modeled by a scenario tree as in Section 4.3.
The �nancial market consists of N risky assets and one non-risky asset (bond).
The price processes of the assets are S1, . . . , SN and S0 respectively. Let (Ft)Tt=0

denote the �ltration generated by the price processes.
This section considers the pricing problem of a seller facing a constraint on

how much she is allowed to purchase of the risky asset n∗ ∈ {1, 2, . . . , N}. The
constraint facing the seller is Hn∗(t, ω) ∈ [A,C] for all times t ∈ [0, T ] and all
ω ∈ Ω, where 0 ∈ [A,C]. Hence, the seller's problem for a claim B is:

min v
subject to

S0 ·H0 ≤ v,
Bk ≤ Sk ·Ha(k) for all k ∈ NT ,

Sk ·Hk = Sk ·Ha(k) for all k ∈ Nt, t ∈ {1, . . . , T − 1},
Hn∗

k ∈ [A,C] for all k ∈ Nt, t ∈ {0, 1, . . . , T − 1}
(6.28)

where Sk := (S0
k, S

1
k, . . . , S

N
k ) and Hk := (H0

k , H
1
k , . . . ,H

N
k ).

Note that problem (6.28) is a linear programming problem, and hence the
linear programming duality theorem implies that there is no duality gap. As
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in previous sections, the dual problem is found using Lagrange duality (which
gives the linear programming dual problem, since linear programming is a spe-
cial case of Lagrange duality). Recall that because problem (6.28) is a linear
programming problem, the simplex algorithm is an e�cient method for com-
puting optimal solutions in speci�c examples.

We rewrite the equality constraint of problem (6.28) to two inequality con-
straints, in order to make problem (6.28) suitable for the Lagrange duality
method:

min v
subject to

S0 ·H0 − v ≤ 0,
Bk − Sk ·Ha(k) ≤ 0 for all k ∈ NT ,

Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ Nt, t ∈ {1, . . . , T − 1},
−Sk · (Hk −Ha(k)) ≤ 0 for all k ∈ Nt, t ∈ {1, . . . , T − 1},

−Hn∗

k ≤ −A for all k ∈ Nt, t ∈ {0, 1, . . . , T − 1}
Hn∗

k ≤ C for all k ∈ Nt, t ∈ {0, 1, . . . , T − 1}.
(6.29)

Let y0, (zk)k, (y
1
k)k, (y

2
k)k, (w

k
1 )k, (w

k
2 )k ≥ 0 (componentwise) be Lagrange

multipliers. The Lagrange dual problem is

sup infv,H {v + y0(S0 ·H0 − v) +
∑
k∈NT zk(Bk − Sk ·Ha(k))

+
∑T
t=1

∑
k∈Nt(y

1
k − y2

k)Sk(Hk −Ha(k)) +
∑T−1
t=0

∑
k∈Nt w

k
1 (A−Hn∗

k )

+
∑T−1
t=0

∑
k∈Nt w

k
2 (Hn∗

k − C)}
= sup{ infv{v(1− y0)}+

∑
n 6=n∗ infHn0 (y0S

n
0 −

∑
m∈C(0) ymS

n
m)Hn

0

+ infHn∗0
(y0S

n∗

0 −
∑
m∈C(0) ymS

n∗

m − w0
1 + w0

2)Hn∗

0

+
∑T−2
t=1

∑
k∈Nt

∑
n 6=n∗ infHnk (ykS

n
k −

∑
m∈C(k) ymS

n
m)Hn

k

+ infHn∗k
(ykS

n∗

k −
∑
m∈C(k) ymS

n∗

m − wk1 + wk2 )Hn∗

k

+
∑
k∈NT−1

∑
n 6=n∗ infHk(ykS

n
k −

∑
m∈C(k) zmS

n
m)Hn

k

+ infHn∗k
(ykS

n∗

k −
∑
m∈C(k) zmS

n∗

m − wk1 + wk2 )Hn∗

k

+
∑T−1
t=0

∑
k∈Nt Aw

k
1 − Cwk2 +

∑
k∈NT zkBk}

(6.30)
where yk := y1

k − y2
k for all k ∈ Nt, t ∈ {1, . . . , T − 1}, and the supremum is

taken over all y0, (zk)k, (w
k
1 )k, (w

k
2 )k ≥ 0, (yk) free (componentwise).

Consider each of the minimization problems of equation (6.30) separately.
In order for there to be a feasible dual solution, each of these problems must
have optimal value greater than −∞. This leads to the Lagrange dual problem

sup
∑
k∈NT zkBk +

∑T−1
t=0

∑
k∈Nt Aw

k
1 − Cwk2

subject to
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y0 = 1
y0S

n
0 =

∑
m∈C(0) ymS

n
m for all n 6= n∗,

y0S
n∗

0 =
∑
m∈C(0) ymS

n∗

m + w0
1 − w0

2,

ykS
n
k =

∑
m∈C(k) ymS

n
m for all n 6= n∗, k ∈ Nt,

t ∈ {1, . . . , T − 2},
ykS

n∗

k =
∑
m∈C(k) ymS

n∗

m + wk1 − wk2 for all k ∈ Nt, t ∈ {1, . . . , T − 2},
ykS

n
k =

∑
m∈C(k) zmS

n
m for all n 6= n∗, k ∈ NT−1,

ykS
n∗

k =
∑
m∈C(k) zmS

n∗

m + wk1 − wk2 for all k ∈ NT−1

(6.31)
where the maximization is done over the set {y0, (zk), (wk1 ), (wk2 ) ≥ 0} (compo-
nentwise), (yk) is a free variable (i.e. the sign is not clear a priori).

Note that since wk1 , w
k
2 ≥ 0 for all k, wk1 − wk2 is a free variable.

From the same kind of arguments as in Section 6.1 one can show that if
there exists a feasible dual solution, i.e. a feasible solution to problem (6.31),
then there exists a probability measure Q on (Ω,F) which is absolutely contin-
uous w.r.t. P such that Sn is a Q-martingale for all n 6= n∗ (one cannot say
anything about Sn∗ being a martingale/super-martingale/sub-martingale etc.).
Conversely, if there exists a probability measure Q which is absolutely continu-
ous w.r.t. P such that Sn is a Q-martingale for all n 6= n∗, then there exists a
feasible dual solution. The reasoning behind this is the same as in Section 6.1,
except that one has to choose appropriate wk1 , w

k
2 for the feasibility equations

involving Sn∗ to hold. Hence, there exists a feasible dual solution if and only
if there exists a probability measure Q which is absolutely continuous w.r.t.
P such that Sn is a Q-martingale for all n 6= n∗. Note that these arguments
use that the market is normalized, and that there are no constraints on the
non-risky asset (bond).

Therefore, the dual problem can be rewritten

sup EQ[B] +
∑T−1
t=0

∑
k∈Nt Aw

k
1 − Cwk2

subject to

wk1 − wk2 = Q(k)(Sn
∗

k − EQ[Sn
∗
(t+ 1)|Ft]k) for all k ∈ Nt

t ∈ {0, 1, . . . , T − 1}.
(6.32)

where the maximization is done over the set {Q, (wk1 ), (wk2 ) ≥ 0 : Sn is Q −
martingale for all n 6= n∗}, EQ[Sn

∗
(t + 1)|Ft]k denotes the value of the ran-

dom variable EQ[Sn
∗
(t + 1)|Ft] in the node k ∈ Nt and Q(k) denotes the

Q-probability of ending up in node k. As mentioned, the linear programming
duality theorem implies that there is no duality gap, so the seller's price of the
claim B is equal to the optimal value of problem (6.32).

Finally, note that the same kind of argument as above would go through if
there was more than one constrained risky asset. This leads to a similar result
as the one derived above.
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This chapter has presented various applications of duality theory in math-
ematical �nance. Sections 6.1, 6.3, and 6.5 use the scenario tree framework of
Section 4.3 to convert the stochastic pricing problem into a linear programming
problem. Lagrange duality is then applied to �nd the dual problem (since linear
programming is a special case of Lagrange duality), and the linear programming
duality theorem is used to prove that there is no duality gap. This is possible
since the time is assumed to be �nite and discrete, and the scenario space Ω is
assumed to be �nite. Sections 6.2 and 6.4 also consider a discrete time model,
but with an arbitrary scenario space. This complicates things, and requires
tools from stochastic analysis, functional analysis and measure theory. Also,
the conjugate duality theory of Chapter 2 is used instead of Lagrange duality
and linear programming. However, the results derived for �nite Ω and arbitrary
Ω are consistent. The next chapter will continue along these lines, but will
consider arbitrage problems instead of pricing problems.
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Chapter 7
Arbitrage, EMMs and duality

This chapter illustrates connections between duality methods and arbitrage-
theory.

Section 7.1 considers a �nancial market model where the scenario space Ω is
arbitrary and the time is �nite and discrete. The main purpose of this section
is to prove that for this model, there is no arbitrage in the market if and only
if there is no free lunch with vanishing risk. This is done via the generalized
Lagrange duality method of Section 5.4.

Finally, Section 7.2 proves a slightly weaker version of the fundamental the-
orem of mathematical �nance via conjugate duality.

7.1 NFLVR and EMMs via Lagrange duality ♦
This section presents a proof of the equivalence between the existence of an
equivalent martingale measure (EMM) and the no free lunch with vanishing
risk condition (NFLVR), via generalized Lagrange duality (see Section 5.4), for
�nite, discrete time and arbitrary scenario space Ω. This is a slightly weaker
result than the fundamental theorem of mathematical �nance (also known as
the Dalang-Morton-Willinger theorem, see Dalang et al. [5]).

The idea of this section is to begin with a version of the arbitrage problem
(the NFLVR-problem), and show how one can quickly derive a dual problem
which has a convenient form.

The setting is as follows. A probability space (Ω,F , P ) is given, where
the scenario space Ω is arbitrary. As previously, there is one bond (non-
risky asset) with price process S0(t), and N risky assets represented by the
price processes Sn(t), n ∈ {1, 2, . . . , N} where the time t ∈ {0, 1, . . . , T}. Let
S = (S0, S1, ..., SN ) be the composed price process. Assume that the market
is normalized, so S0(t) = 1 for all t ∈ {0, 1, ..., T}. Also, let (Ft)Tt=0 be the
�ltration generated by the price process S, and consider the �ltered probability
space (Ω,F , P, (Ft)t).

149
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One says that there is no free lunch with vanishing risk if there does not
exist any sequence of self-�nancing trading strategies with initial values 0 that
approximate an arbitrage strategy, in the sense that the negative parts of the
terminal value of the portfolio converge to 0 uniformly for all ω ∈ Ω (see Delbaen
and Schachermayer [9]).

Theorem 7.1 Given the setting above, there is no free lunch with vanishing
risk if and only if there exists an equivalent martingale measure.

Proof: The idea of the proof is as follows

� Show that it is su�cient to show the theorem for T = 1. This proof is a
version of the one in Delbaen and Schachermayer's The Mathematics of
Arbitrage [9], section 6.7, adapted to this situation.

� Assume T = 1. Set up the NFLVR-problem, and call this the primal
problem.

� De�ne the generalized Lagrange function as in Section 5.4.

� Derive the dual problem, which turns out to have a very convenient form.

� Show that there is no duality gap using the generalized Slater condition
from Section 5.4, and deduce the theorem.

Now, for the actual proof: It is fairly simple to prove that the existence of
an equivalent martingale measure implies NFLVR (see Delbaen and Schacher-
mayer [8]), so this is omitted.

Instead, consider the opposite direction: NFLVR implies the existence of an
equivalent martingale measure. Therefore, assume that NFLVR holds, i.e. that
there is no free lunch with vanishing risk from time t = 0 to time T . This implies
that there is no free lunch with vanishing risk from time t = 0 to time t = 1
(one time step), and that there is no free lunch with vanishing risk from time
t = 1 to time T (T−1 time steps). Why is this? Assume, for contradiction, that
there exists a free lunch with vanishing risk from time t = 0 to time t = 1. This
implies that there exists a sequence of trading strategies (H̄0

n)n such that (H̄0
n)n

is an arbitrage in the limit (the 0 in H̄0
n symbolizes that the trading strategy is

chosen at time t = 0). But then, (Hn)n, such that H0
n := H̄0

n and Ht
n, t ≥ 1,

simply places all values in the bond, is a free lunch with vanishing risk from
time t = 0 to time T . This is a contradiction. A similar argument proves that
there is no free lunch with vanishing risk from time t = 1 to time T .

Hence, NFLVR holds from time t = 0 to t = 1 and from time t = 1 to time
T . To show that it is su�cient to consider T = 1, induction will be applied. We
formulate what we would like to prove as a separate theorem:

Theorem 7.2 Assume NFLVR holds for time t = 0 to time T . Then, there
exists an equivalent martingale measure Q, i.e. a probability measure Q such
that Q is equivalent to P and
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(i) St ∈ L1(Ω,FT , Q) for all t ∈ {0, 1, . . . , T}.

(ii) (St)
T
t=0 is a Q-martingale, i.e. EQ[St|Ft−1] = St−1 for t = 1, 2, . . . , T .

(iii) The Radon-Nikodym derivative dQ
dP is bounded.

Starting condition: Theorem 7.1 holds for T = 1 (this will be shown right
after the induction).

Induction hypothesis: Assume Theorem 7.1 holds for time T − 1 (i.e. for
T − 1 time steps).

Since NFLVR holds from time t = 0 to time T , it also holds from time t = 1
to time T (i.e. for T − 1 time steps). Hence, the induction hypothesis (i.e. use
of Theorem 7.2 for T − 1 time- steps) implies that there exists a probability

measure Q′ on (Ω,FT ) such that Q′ is equivalent to P , dQ
′

dP ∈ L
∞ and the price

process (S(t))Tt=1 is integrable w.r.t. Q′ and is a martingale w.r.t. Q′ (and the
�ltration (Ft)t). The martingale condition can be written∫

A

StdQ
′ =

∫
A

St+1dQ
′ for all A ∈ Ft, t ∈ {1, 2, . . . , T − 1}

(from the de�nition of conditional expectation).
By using the starting condition, i.e. the one time step version of Theo-

rem 7.2 on the process (St)
1
t=0, the probability space (Ω,F1, Q

′) and the �ltra-
tion (Ft)1

t=0, one �nds that there exists a bounded function f1 such that f1 is
F1-measurable, f1 > 0, EQ′ [f1] = 1 and such that∫

A

S(0)f1dQ
′ =

∫
A

S(1)f1dQ
′ for all A ∈ F0.

(note that f1 is actually the Radon-Nikodym derivative of the martingale mea-

sure Q̄ coming from Theorem 7.2 w.r.t. the measure Q′, so f1 := dQ̄
dQ′ ).

Then, de�ne the measure Q on (Ω,FT ) by

Q(A) =

∫
A

f1dQ
′ for all A ∈ FT

(so dQ
dP = f1

dQ′

dP ).
Q is bounded (since Q′ is bounded and f1 is bounded), hence it can be

transformed into a probability measure, also dQ
dP > 0 (since f1 > 0), and hence

Q is equivalent to P .
To check the integrability condition of Theorem 7.2, note that for t =

1, 2, . . . , T , ∫
Ω

|S(t)|dQ =

∫
Ω

|S(t)|f1dQ
′ <∞,

since f1 is bounded and St ∈ L1(Ω, Q′,FT ).
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To check the martingale condition, note that for all A ∈ F0∫
A

S(0)dQ =

∫
A

S(0)f1dQ
′ =

∫
A

S(1)f1dQ
′ =

∫
A

S(1)dQ,

from the rule for change of measure and the martingale condition.
For t ≥ 1, f1 is Ft-measurable (since it is F1-measurable, and F1 ⊆ Ft for

all t ≥ 1) and bounded, hence∫
A

S(t)dQ =

∫
A

S(t)f1dQ
′ =

∫
A

S(t+ 1)f1dQ
′ =

∫
A

S(t+ 1)dQ,

where the �rst and last equality follow from a change of measure, and the
middle inequality can be proved by approximating the measurable function f1

by a sequence of simple functions (this is always possible, see Shilling [41]) and
using the martingale condition for the measure Q′.

Hence, the induction is OK, and it is su�cient to prove the theorem for
T = 1.

For T = 1, the NFLVR-problem, which will be called the primal problem,
takes the form

infH,k k
subject to

E[∆S ·H] ≥ 1
∆S ·H + k ≥ 0 for all ω ∈ Ω,

k ≥ 0,

(7.1)

where H ∈ RN+1 is the trading strategy vector chosen at time 0, S is the price
process and k is a slack variable.

Why is this the NFLVR-problem? Assume that the optimal value of problem
(7.1) is 0. Then there exists a free lunch with vanishing risk since there exists
(from the de�nition of in�mum) a sequence (Hn, kn) ∈ RN+2 such that kn → 0,
E[∆S ·Hn] ≥ 1 > 0 and ∆S ·Hn = ∆S ·Hn+kn ≥ 0. Conversely, assume there
exists a free lunch with vanishing risk, i.e. that there is a sequence (Hn, kn) ∈
RN+2 such that kn → 0, ∆S ·Hn + kn ≥ 0 for all ω ∈ Ω and E[∆S ·Hn] > 0.
Then, clearly, the optimal value of problem (7.1) is 0.

Rewriting problem (7.1) slightly, to suit the Lagrange duality setting of
Luenberger [24], gives

infH,k k
subject to

1− E[∆S ·H] ≤ 0
−∆S ·H − k ≤ 0 for all ω ∈ Ω

−k ≤ 0.

Note that the composed constraints may be considered as a function G of (k,H)
from R × Lp(Ω,F , P ;RN+1) into the normed space R := R × Lp(ω,F , P ) × R
(where we assume that the price process and trading strategies must be in Lp for
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each time t). This is a normed space with the norm ||(x, y, z)|| = |x|+ ||y||p+ |z|
(it is straightforward to check that this is a norm), where (x, y, z) ∈ R.

The dual space of R is R∗ = R × Lq(ω,F , P ) × R, where 1
p + 1

q = 1. The
Lagrange function L takes the form

L((H, k), (y1, ȳ, y2)) = k + y1(1− E[∆S ·H]) + E[ȳ(−∆S ·H − k)] + y2(−k),

where (y1, ȳ, y2) ∈ R∗+ := {(y1, ȳ, y2 ∈ R∗ : y1 ≥ 0, ȳ ≥ 0 P -a.e., y2 ≥ 0)}.
Consider

inf
k,H

L((H, k), (y1, ȳ, y2)) = inf
k
{k(1− y2 − E[ȳ])}+ inf

H
{−H(∆S(y1 + ȳ))}+ y1.

infk{k(1− y2 − E[ȳ])} > −∞ if and only if 1− y2 − E[ȳ] = 0, and in this case
the in�mum is zero. Similarly, infH{−H(∆S(y1 + ȳ))} > −∞ if and only if
E[∆S(y1 + ȳ)] = 0, and in this case the in�mum is zero (from the comments
after Lemma 6.7).

Hence, the dual problem is

supy1,y2,ȳ y1

subject to
E[ȳ] = 1− y2

E[(ȳ + y1)∆Sn] = 0 for all n ≤ N,
ȳ ≥ 0 P -a.s.,

y1, y2 ≥ 0.

The y2-variable can be eliminated by requiring E[ȳ] ≤ 1 (because then one
can choose y2 := 1−E[ȳ] ≥ 0 as a feasible solution). The �nal dual problem is

supȳ,y1 y1

subject to
E[ȳ] ≤ 1

E[(ȳ + y1)∆Sn] = 0 for all n ≤ N,
ȳ ≥ 0 P -a.s.,
y1 ≥ 0.

(7.2)

So, problems (7.1) and (7.2) are Lagrange dual problems.
To prove that there is no duality gap, the generalized Slater condition of

Section 5.4 (Theorem 5 in Luenberger [24]) will be applied. In the primal
problem (7.1), the objective function is convex and real-valued, hence, we only
need to �nd a strictly feasible solution to the primal problem to prove that there
is no duality gap. Two cases will be considered. First, assume there exists a
trading strategy H such that E[∆S · H] > 0. Then (by multiplying H by a
positive constant), there exists a trading strategy H̄ such that E[∆S · H̄] >
1. Hence, 1 − E[∆S · H̄] < 0. Let k := | infω∈Ω ∆S(ω) · H(ω)| + 1. Then,
k + ∆S · H > 0 for all ω ∈ Ω and k > 0. Therefore, this is a strictly feasible
solution to the primal problem, and hence there is no duality gap from Theorem
5 in Luenberger [24].
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Conversely, assume there does not exists a trading strategy H such that
E[∆S · H] > 0. In this case, we will not use Lagrange duality to prove the
equivalence between EMM's and NFLVR, but do a direct argument instead.
Note that under this assumption, there is is no trading strategy H such that
E[∆S ·H] < 0 either, because if there was such a strategy H, E[∆S(−H)] > 0,
which is a contradiction. Hence, every measurable random variable H is such
that E[∆S·H] = 0. In particular, choose a probability measureQ which is equiv-
alent to P , and consider the Radon-Nikodym derivative dQ

dP . Then, H := dQ
dP en

(where en ∈ RN+1 denotes the n'th unit vector, so en := (0, . . . , 0, 1, 0, . . . , 0)),
must be such that E[∆S · H] = 0. But this implies that E[∆Sn

dQ
dP ] = 0 for

all n. So, EQ[∆Sn] = 0 for all n, so the price process S is a Q-martingale.
Hence, from the choice of Q, Q is an equivalent martingale measure. Therefore,
in particular, if there is no free lunch with vanishing risk (in this case), then
there exists an equivalent martingale measure (since there always exists such
a measure). Conversely, note that the assumption directly implies that there
is no free lunch with vanishing risk (from the de�nition of NFLVR). Hence,
Theorem 7.1 always holds under this assumption on the market.

Therefore, consider only the case where there exists a trading strategy H
such that E[∆S ·H] > 0, and hence there is no duality gap, for the remainder
of the proof.

To conclude the proof:

� From Delbaen and Schachermayer [8], the existence of an equivalent mar-
tingale measure implies that there is no free lunch with vanishing risk.

� Conversely, assume that there is no free lunch with vanishing risk, i.e. that
the optimal primal value is greater than 0. Since there is no duality gap,
the optimal dual value is greater than zero. Hence, there exists ȳ ≥ 0,
y1 > 0 such that E[ȳ] ≤ 1, E[(ȳ + y1)∆Sn] = 0 for all n. De�ne

Q′(F ) :=

∫
F

(ȳ(ω) + y1)dP (ω) for all F ∈ F .

(ȳ is integrable since E[ȳ] ≤ 1). Q′ is a measure on (Ω,F) and Q′ is
equivalent to P (since ȳ ≥ 0 P -a.e., so ȳ(ω) + y1 > 0 P -a.e.). De�ne

Q(F ) =
Q′(F )

Q′(Ω)
,

then Q is a probability measure which is equivalent to P (note that
Q′(Ω) <∞ since P is a probability measure, E[ȳ] ≤ 1 and y1 is bounded
since it is the optimal primal value, which is less than∞ since there always
exists a feasible primal solution).

Note that for all n ≤ N ,
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0 = EP [∆Sn(ȳ + y1)]
=

∫
Ω

∆Sn(ȳ + y1)dP
=

∫
Ω

∆SndQ
′

=
∫

Ω
∆SnQ

′(Ω)dQ
= Q′(Ω)

∫
Ω

∆SndQ,

so EQ[∆Sn] =
∫

Ω
∆SndQ = 0. Therefore, Q is an equivalent martingale

measure.

Hence, it is proved that there is no free lunch with vanishing risk in the
market if and only if there exists an equivalent martingale measure, and this
completes the proof of Theorem 7.1. �

7.2 Proof of a slightly weaker version of the FTMF

♦
This section presents an alternative proof of a version of the fundamental theo-
rem of mathematical �nance (abbreviated FTMF) for �nite, discrete time and
arbitrary scenario space. The proof is based on the conjugate duality theory
introduced by Rockafellar [34], which was presented in Chapter 2.

The idea of the proof is to begin with the arbitrage problem, and derive a
dual problem using conjugate duality. Then, Theorem 6.9 will be used to show
that there is no duality gap. However, as in previous sections (for example in
Section 6.2) we will assume that the set A of Theorem 6.9 is a linear space.
Therefore, the result derived here is slightly weaker than the fundamental the-
orem of mathematical �nance.

The setting is as follows. A probability space (Ω,F , P ) is given, where
the scenario space Ω is arbitrary. As previously, there is one bond (non-risky
asset) with price process S0(t), and N risky assets represented by the price
processes Sn(t), n ∈ {1, 2, . . . , N}. The time t ∈ {0, 1, . . . , T}, where T < ∞.
S = (S0, S1, ..., SN ) is the composed price process. Assume that the market is
normalized, so S0(t) = 1 for all t ∈ {0, 1, ..., T}. Also, let (Ft)t be the �ltration
generated by the price process S.

The following theorem is due to Dalang, Morton and Willinger [5] and is
called the fundamental theorem of mathematical �nance.

Theorem 7.3 (Fundamental theorem of mathematical �nance) Given the set-
ting above, there is no arbitrage if and only if there exists an equivalent martin-
gale measure.

To prove that the existence of an equivalent martingale measure implies
that there is no arbitrage is quite simple, see Delbaen and Schachermayer [9].
To prove the other direction of Theorem 7.3, i.e. that no arbitrage implies the
existence of an equivalent martingale measure, conjugate duality (see Chapter 2)
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will be applied. In order to prove this, it is su�cient to prove it for T = 1. This
is proved in Delbaen and Schachermayer's The Mathematics of Arbitrage [9],
section 6.7, but is omitted here. The proof is nearly identical to the argument
in Section 7.1, and it is quite short. Therefore, assume T = 1. Now, the idea is
as follows: set up the arbitrage problem, and call this the primal problem. Then,
rewrite this problem to suit the setting of Chapter 2, and choose appropriate
paired spaces. De�ne a perturbation function F as in Example 2.29, and de�ne
the Lagrange function as in Section 2.6. Then we will derive the dual problem,
which turns out to have a very convenient form.

Proceeding with this plan: From Delbaen and Schachermayer [9] it is su�-
cient to consider T = 1. In this case, the arbitrage problem, which will be called
the primal problem, takes the form

α := supH∈RN+1{EP [∆S ·H] : ∆S ·H ≥ 0}, (7.3)

where ∆S := S(1) − S(0) = (S1(1) − S1(0), ..., SN (1) − SN (0)) is the price
change vector and H ∈ RN+1 is the (deterministic) vector representing the
trading strategy chosen at time 0.

This problem is equivalent to the following problem

supH∈RN+1{EP [S(1) ·H] : S(0) ·H = 0, S(1) ·H ≥ 0},

which is more closely related to the de�nition of an arbitrage.
Note that the optimal value of problem (7.3) is always greater than or equal

zero, since H = 0 ∈ RN+1 is a feasible solution. If the optimal value of problem
(7.3) is zero, i.e. α = 0, then there is no arbitrage. If the optimal value is
greater than zero, then the problem is unbounded, because if H generates a
positive optimal value, so will KH for K > 0. Therefore, by letting K → ∞,
the problem is unbounded, and there exists an arbitrage in the market.

Note also that reducing the problem to T = 1 removes the self-�nancing
condition by taking it implicitly into the terminal portfolio value.

Rewriting problem (7.3) as a minimization problem (in order to get into the
setting of Chapter 2) gives

infH∈RN −EP [
∑N
n=1 ∆SnHn]

subject to

−
∑N
n=1 ∆Sn(ω)Hn ≤ 0 for all ω ∈ Ω.

(7.4)

(where we have omitted a minus in front of the in�mum to simplify notation.
This will be included later.)

Let U := Lp(Ω,F , P ) (where 1 ≤ p < ∞) be the Banach space paired with
Y := (Lp(Ω,F , P ))∗ = Lq(Ω,F , P ) where 1

p + 1
q = 1 (its dual, see for example

Pedersen [28]) via the pairing 〈u, y〉 =
∫

Ω
u(ω)y(ω)dP (ω) = EP [uy], u ∈ U ,

y ∈ Y . Note that, from Rockafellar [34], there is some ambiguity in the choice
of U and Y . The choice of these spaces may make it more or less di�cult
to show the absence of a duality gap (without having to make any additional
assumptions).
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De�ne the perturbation function F by

F (H,u) =

{
−EP [

∑N
n=1 ∆SnHn] if −

∑N
n=1 ∆Sn(ω)Hn ≤ u(ω) for all ω ∈ Ω,

∞ otherwise.

Then, F is a convex function (can be checked, and is also stated in Rock-
afellar [34]).

Now, de�ne the corresponding Lagrange function

K(H, y) := infu∈U{F (H,u) + 〈y, u〉}

=

{
−EP [

∑N
n=1 ∆SnHn] + EP [y(−

∑N
n=1 ∆SnHn)] if y ≥ 0 P -a.s.,

−∞ otherwise.

Then, the dual objective function is de�ned by g(y) := infH∈X K(H, y),
hence

g(y) =

{
0 if y ≥ 0 P -a.e. and EP [∆Sn] = −EP [y∆Sn] for all n ≤ N,
−∞ otherwise,

=

{
0 if y ≥ 0 P -a.e. and EP [∆Sn(y + 1)] = 0 for all n ≤ N,
−∞ otherwise.

Hence, the dual problem is

supy∈Y g(y) = supy 0, (7.5)

where the �nal maximization is done over the set {y ∈ Y : y ≥ 0 P -a.e. and
EP [∆Sn(y + 1)] = 0 for all n ≤ N}. Note that the dual objective function is a
constant, equal to 0, so the dual problem is really a feasibility problem.

Assume that there exists a feasible dual solution, i.e. a y ∈ Y such that
y ≥ 0 P -a.e. and EP [∆Sn(y + 1)] = 0 for all n ≤ N . De�ne

Q′(F ) :=

∫
F

(y(ω) + 1)dP (ω) for all F ∈ F .

Q′ is a measure on (Ω,F) and Q′ is equivalent to P (since y ≥ 0 P -a.e., so
y + 1 > 0 P -a.e.). Since y ∈ Y = Lq(Ω,F , P ) ⊆ L1(Ω,F , P ) (where the set
inclusion follows since P is a probability measure, so all measurable sets have
�nite measure), y is integrable. Therefore, y + 1 is integrable, so Q′(Ω) < ∞.
De�ne

Q(F ) =
Q′(F )

Q′(Ω)
.

Then, Q is a probability measure which is equivalent to P , and for all n ≤ N ,
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0 = EP [∆Sn(y + 1)]
=

∫
Ω

∆Sn(y + 1)dP
=

∫
Ω

∆SndQ
′

=
∫

Ω
∆SnQ

′(Ω)dQ
= Q′(Ω)

∫
Ω

∆SndQ,

hence EQ[∆Sn] =
∫

Ω
∆SndQ = 0. This implies that Q is an equivalent martin-

gale measure. The same kind of argument can be done in the opposite direction
to get a one-to-one correspondence between feasible dual solutions and equiva-
lent martingale measures.

Recall that the original primal arbitrage problem (7.3) was transformed to
suit the setting of Rockafellar [34]. In this transformation a minus-sign was
skipped to simplify notation. This minus should be included into the dual
problem. Therefore, the problem which is dual to (7.3) is

inf{Q:Q is EMM} 0. (7.6)

where EMM is short for equivalent martingale measure.
This derivation shows how equivalent martingale measures are naturally con-

nected to the existence of arbitrage in the market.
Now, to show that there is no duality gap. Let

f(H,u) :=

{
−
∑N
n=1 ∆SnHn if −

∑N
n=1 ∆Sn(ω)Hn ≤ u(ω) for all ω ∈ Ω,

∞ otherwise.

Assume that the set A := {H ∈ HG : f∞(H(ω), 0, ω) ≤ 0 P -a.s.} of Theo-
rem 6.9 is a linear space (see equation (6.16) for a de�nition of f∞). The slight
alteration of the perturbation function in the set A is due to a di�erence in
notation between Rockafellar [34] and Pennanen and Perkkiö [30]. Note that
the alternative perturbation function f is a convex normal integrand from ar-
guments similar to those of Section 6.2, hence the framework of Pennanen and
Perkkiö [30] can be applied. To show that the �rst condition of Theorem 6.9
holds, choose y(ω) = −1 and m(ω) = −1 for all ω ∈ Ω. Then y ∈ Lq(Ω,F , P )
and m ∈ L1(Ω,F , P ) since P is a �nite measure. Note that

f(H,u) ≥
∑N
n=1 ∆SnHn (from the de�nition of f)

≥ −u (from the de�nition of f)
= u · y(ω) (from the choice of y)
≥ u · y(ω) +m(ω) (from the choice of m),

for any (H,u) ∈ RN+1 × R.
Hence, the �rst condition of Theorem 6.9 holds, and therefore, the theorem

implies that there is no duality gap (by using the comments after Theorem 2.44,
since the perturbation function is convex).

To conclude, assume there is no arbitrage in the market. Then, the optimal
primal value is 0 (from the de�nition of the primal problem (7.3)). Since there is
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no duality gap, the optimal value of the dual problem (7.6) is 0 as well. Hence,
there must exist a feasible dual solution (if not, the dual optimal value would
be ∞), i.e. there exists an equivalent martingale measure.

Conversely, assume there exists an equivalent martingale measure. Then, it
follows from Delbaen and Schachermayer [9] that there is no arbitrage in the
market.

To summarize, the following theorem is true:

Theorem 7.4 Given the setting above, assume that the set A := {H ∈ HG :
f∞(H(ω), 0, ω) ≤ 0 P -a.s.} is a linear space. Then, there is no arbitrage in the
market if and only if there exists an equivalent martingale measure.

This chapter completes our study of how duality methods can be used in
mathematical �nance. The chapter has shown how generalized Lagrange du-
ality (see Section 5.4) and conjugate duality (see Chapter 2) can be used to
solve arbitrage problems in mathematical �nance. The next, and �nal, chapter
consists of some concluding remarks.
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Chapter 8
Final comments

The purpose of this thesis has been to combine stochastic analysis, functional
analysis, measure- and integration theory, real analysis and convex analysis
to investigate, and prove, some results in mathematical �nance. Background
theory, such as convexity, convex analysis, the conjugate duality framework of
Rockafellar [34], Lagrange duality and the general stochastic analysis frame-
work for modeling a �nancial market, has been covered. Then, these results
and frameworks have been applied to various central problems in mathematical
�nance, for instance convex risk measures, utility maximization, pricing, and
arbitrage problems. I believe the results are interesting, and that they indicate
the potential of exploiting duality in mathematical �nance, and more generally,
in stochastic control problems.

A central technique of this thesis can be roughly summarized as follows:

� Given a problem in mathematical �nance, formulate the problem as an op-
timization problem in a suitable space. Typically, it will be a constrained
stochastic optimization problem. Call this the primal problem. Try to
solve the primal problem by standard optimization techniques.

� If one is unable to solve this primal problem as it is: Find a dual to the
problem. The optimal value of the dual problem will provide bounds on
the optimal value of the primal problem. Try to solve this dual problem.
If one is unable to solve this dual problem as well, it may help to transform
either the primal or the dual problem (by basic algebra, exploiting that
some inequalities must hold with equality in the optimum etc.).

� Try to show that there is no duality gap, i.e. that the optimal primal
and dual values coincide. There are hopes of this if one is working with a
convex objective function and convex constraints.

However, as this thesis has shown, there are many types of duality and
some are simpler to handle than others. For example, linear programming is
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less complicated than the conjugate duality framework. So how can one know
which duality method to try?

� If the time is �nite and discrete, the scenario space is �nite, and the ob-
jective function as well as the constraints are linear: Linear programming
(LP) can be applied. There will not be a duality gap from the linear pro-
gramming duality theorem. Note that sometimes it may be easier to �nd
the Lagrange dual problem than �nding the LP dual (LP is a special case
of Lagrange duality).

� If there are �nitely many constraints (even though the scenario space is
arbitrary and time is continuous) Lagrange duality can be applied. If the
objective function and constraint functions are convex, the Slater condi-
tion can be used to show that there is no duality gap. If the constraints are
linear, this boils down to checking whether there exists a feasible solution
to the primal problem.

� If there are arbitrarily many constraints (for instance one constraint for
each ω ∈ Ω), the conjugate duality framework may work. There are several
ways to de�ne the perturbation space and the perturbation function, and
hence there are several di�erent dual problems. It may be necessary to
try di�erent perturbation spaces.

If the objective function and constraints are convex, there is hope that
there is no duality gap. In order to show this, one must essentially show
that the optimal value function ϕ is lower semi-continuous. However,
there are several other theorems guaranteeing this, for instance the gen-
eralized Slater condition of Example 4� in Rockafellar and Theorem 9
(Theorem 6.9) in Pennanen and Perkkiö [30].

Though closing the duality gap is a desirable result in many examples, it
is not always possible. However, all is not lost. Even if one cannot close the
duality gap, the dual problem gives bounds on the optimal primal value, and
an iterative method where one computes primal and dual solutions every other
time will give an interval where the optimal primal (and dual) value(s) must be.
Also, note the elegance and step-by-step approach that duality methods bring
to many well-known problems in mathematical �nance. Another advantage
regarding most of the duality approaches of this thesis is that one does not have
to make a lot of assumptions on the market structure.

However, even though duality methods provide a step-by-step approach,
many di�culties can occur. A lot of stochastic and functional analysis is nec-
essary in order to study the functions that arise naturally from duality. When
working with conjugate duality, it may be di�cult to choose appropriate paired
spaces, and an appropriate perturbation function, in order to attain useful prop-
erties assuring, for instance, no duality gap. Sometimes, the primal and dual
problems have to be transformed in order to apply duality methods, or per-
haps in order to get results that can be interpreted. These transformations may
require a lot of stochastic analysis, measure theory, and clever observations.
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Many results in this thesis, in particular the results in the �nal chapters,
have been proved in discrete time. The reason for this is that this makes it
simpler to apply the conjugate duality framework of Rockafellar [34]. However,
it may be possible to generalize the results presented here to continuous time,
possibly using a discrete time approximation. However, this is beyond the grasp
of this thesis, and open for further research.

I hope this thesis has enlightened, and structured, the vast and (at least to
me in the beginning) rather confusing topic of duality methods in mathematical
�nance. A topic which I feel has a lot of potential still to be exploited.
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Appendix A
Matlab programs

This appendix consists of two Matlab programs connected to Chapter 5. The
�rst program checks whether a �nancial market is complete, and the second
program uses Theorem 5.8 to compute the optimal trading strategy for an in-
vestor with ln-utility in a given complete �nancial market. See Chapter 5 for
further comments.

clear all

%PROGRAM FOR DECIDING WHETHER A FINANCIAL MARKET IS COMPLETE.

%Assume the market is normalized. All asset prices have been

%divided through by the bank.

%General:

N=4; %Number of scenarios \omega in \Omega

T=2; %Number of time steps

M=1; %Number of risky assets

%Information structure:

%List all scenarios and give them same numeral value as order

omega=zeros(N,1);

for n=1:N

omega(n)=n;

end

%Write partition at different times , represent \omega_n by n

%Don 't need to write first and last partition since assumed

%to be trivial and biggest sigma alg.

%Notation: Fi=time i partition

%t=1:
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%NB:these are cell arrays

F={{[1 2 3 4]} ,{[1 2],[3 4]} ,{[1] ,[2] ,[3] ,[4]}}; %F represents

%partitions. Add more partitions with comma and

%another curly bracket.

%Prices:

Price ={4 ,[5;2] , [7;3;4;1]}; %Prices risky asset: time 0,

%time 1 and time 2. If you have more than one risky asset:

%Add more rows with semi colon to separate.

%Want to check if there exists measure such that the price

%process is a martingale. Need to construct correct matrix:

Antallrader = 0;

for t=1:T

Antallrader=Antallrader + size(F{t},2);

end

Antallrader=Antallrader + 1; %Need one extra row for

%probability measure condition.

A=zeros(Antallrader ,N);

if T>1

for t = 2:T %for each time

for m = 1:size(F{t},2) %check how many rows you need

for k = F{t}{m}(1):F{t}{m}(size(F{t}{m},2))

%and which columns to use

A(m,k) = Price{t+1}(k) - Price{t}(m);

end

end

end

else

T=1; %Don 't need to do anything if T=1.

end

%Time 1 condition:

for i=1: size(F{2},2)

for j=F{2}{i}(1):F{2}{i}(size(F{2}{i},2))

A(Antallrader - 1,j)= Price {2}(i);

end

end

A(Antallrader , :) = ones(1,N); %Probability measure condition



167

%Make right hand side vector:

b=zeros(Antallrader ,1);

b(Antallrader )= 1;

b(Antallrader - 1) =Price {1};

%Solve equation for Q:

Total=[A b];

%Have to read from the row reduced form whether market is

%complete or not.

RowReducedQMatrix=rref(Total)

clear all

%PROGRAM FOR MAXIMIZING EXPECTED UTILITY OF TERMINAL WEALTH

%AND COMPUTING CORR. OPTIMAL TRADING STRATEGIES IN A

%COMPLETE MARKET.

%Assume marked is complete and normalized.

%Assume F_0 is trivial , F_T is the biggest sigma -alg.

%possible. Assume investor has utility function

%U(x)=ln(x), and wants to maximize expected utility

%of terminal wealth.

%INPUT

%General:

N=4; %Number of scenarios \omega in \Omega

T=2; %Number of time steps

M=1; %Number of risky assets

%Information structure:

%List all scenarios and give them same numeral value as order

omega=zeros(N,1);

for n=1:N

omega(n)=n;

end

%Write partition at different times , represent \omega_n by n

%Don 't need to write first and last partition since assumed

%to be trivial and biggest sigma alg.

%Notation: Fi=time i partition

%t=1:
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%NB:these are cell arrays

F={{[1 2],[3 4]}}; %F represents partitions. Add more

%partitions with comma and another curly bracket.

%Prices:

Price ={4 ,[5;2] , [7;3;4;1]}; %Prices risky asset: time 0,

%time 1 and time 2. If you have more than one risky asset:

%Add more rows with semi colon to separate.

x=10; %Initial endowment of investor

%Probabilities:

P=[1/5; 1/5; 2/5; 1/5]; %Given probability measure

Q=[1/3;1/3;1/9;2/9]; %Risk neutral probability measure

%NOTE: Can compute this in program. Do check if complete.

%I(y)=1/y; Define previously computed func. from ln-utility

%COMPUTATIONS

dQdP=Q./P; %Find Radon Nikodym derivative by componentwise

%division of verctors.

yStar =1/x; %From previous computation for ln-utility.

%Change this if agent has another utility function.

%Use Thm. in Schachermayer 's "Utility maximization in an

%incomplete market" to compute final optimal value.

FinalOptValue=ones(N ,1)./( yStar*dQdP); %Compute final optimal

%value from formula in Thm.

%Print output

for n=1:N

fprintf('The terminal value of the optimal portfolio is

%g.\n in state omega %g.\n',FinalOptValue(n),n)

end

%Compute things needed for finding optimal trading strategy

if T==1

PriceTime1 =[ Price {2} ones(size(Price {2} ,2) ,1)];

TradeTime1=PriceTime1\FinalOptValue;

fprintf(' In the following trading strategy vector the

first component is the bank , the second risky asset 1

and so on.')

fprintf('The optimal trading strategy at time 0 is:')

disp(TradeTime1)
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else

%Make list of price matrices

for t=1:T

A{t} = [Price{1,t+1}];

for m=2:M

A{t}=[A{t} Price{m,t+1}];

end

A{t}=[A{t} ones(size(Price{1,t+1}))];

end

%A is now the list consisting of all the price matrises

%for the different times.

%For all times we need to consider the optimal trading

%strategy given the information at that time. Hence ,

%we must divide up our price matrices , in order to get

%the correct computations done.

%t gives the time you 're in. k gives the element of the

%partition at time t you 're in.

B{1,1}=A{1};

for t=2:T %Don 't need to divide up for first since first

%sigma alg. is trivial.

for k=1: size(F{t-1},2)

B{t,k}= A{t}((F{t-1}{k}(1)):F{t-1}{k}...

(size(F{t-1}{k},2)) ,:);

end

end

%B{t,k} is the matrix corresponding to the trading

%strategies you should choose at time t-1 given the

%information at that time.

%Need to split up final value vector as well , depending

%on \Omega:

for k=1: size(F{T-1},2)

c{T,k}= FinalOptValue(F{T-1}{k}(1):F{T-1}{k}...

(size(F{T-1}{k} ,2)));

%The c's give the valueprocess

end

%Compute optimal trading strategy:Compute backwards

for l=1:T

t=(T+1)-l; %The indices become a little messy because

%of backwards

if t==1

c1=[c{1 ,1};c{1 ,2}];

b{t,1}=B{t,1}\c1;
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break

else

for k=1: size(F{t-1},2)

b{t,k}=B{t,k}\c{t,k}; %b{t,k} is optimal

%trading strategy to choose from time t-1

%to t when you are in part k of the partition.

%Need to compute optimal value of process one

%step back.

L{t-1,k}=A{t-1}(k,:);

c{t-1,k}=L{t-1,k}*b{t,k};

end

end

end

%Note that in the calculations above we compute the

%self -financing trading strategy that gives us the

%optimal portfolio.

%Make nice print

fprintf(' \n \n In the following trading strategy

vectors the first component is the bank , \n the

second risky asset 1 and so on. \n')

for t=1:T

if t==1

fprintf('The optimal trading strategy at

time 0 is \n \n')

disp(b{1 ,1})

else

for k=1: size(F{t-1},2)

fprintf('The optimal trading strategy at

time %g if you are in states omega \n \n' ,...

t-1)

disp(F{t-1}{k}')

fprintf('is \n')

disp(b{t,k})

end

end

end

end
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