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Adaptive protein evolution through length variation of
short tandem repeats in Arabidopsis
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Intrinsically disordered protein regions are of high importance for biotic and abiotic stress responses in plants.
Tracts of identical amino acids accumulate in these regions and can vary in length over generations because of
expansions and retractions of short tandem repeats at the genomic level. However, little attention has been paid
to what extent length variation is shaped by natural selection. By environmental association analysis on 2514
length variable tracts in 770 whole-genome sequenced Arabidopsis thaliana, we show that length variation in
glutamine and asparagine amino acid homopolymers, as well as in interaction hotspots, correlate with local
bioclimatic habitat. We determined experimentally that the promoter activity of a light-stress gene depended
on polyglutamine length variants in a disordered transcription factor. Our results show that length variations
affect protein function and are likely adaptive. Length variants modulating protein function at a global genomic
scale has implications for understanding protein evolution and eco-evolutionary biology.
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INTRODUCTION
Hypervariable short tandem repeats (STRs), also termed microsat-
ellites, are present within gene transcripts and intergenic regions
throughout the Tree of Life (1). Within the coding part of genes,
STRs with a unit size of three encode repeated amino acids (homo-
polymers) of different lengths without generating codon frame-
shifts. A substantial percentage of vertebrate and plant proteins (8
to 9%) contain homopolymer tracts encoded by STRs (2). Unlike
the average protein sequence, homopolymer evolution is driven
by a different mode of mutation: DNA replication slippage. DNA
replication slippage leads to altered homopolymer lengths over gen-
erations. It is established that such length variation may cause
disease in humans (3). However, little is known regarding the
effects of benign homopolymer length variation on protein function
and structure and whether length variants relate to environmental
adaptation.
Homopolymer tracts tend to accumulate in protein regions

lacking a stable structure, termed intrinsically disordered regions
(IDRs) (4). IDRs may, given environmental cues, facilitate a
change in protein solubility that leads to specific cellular responses.
Recent studies demonstrated the importance of IDRs at the pheno-
typic level in Arabidopsis thaliana (henceforth Arabidopsis), in re-
lation to temperature sensing, osmotic stress sensing, and the plant
immune response (5–7). Furthermore, homopolymer length varia-
tion among Arabidopsis accessions (i.e., Arabidopsis gathered from
different locations) has been shown (8, 9).
Here, we address whether the generation of homopolymer

length variants (hypervariability) provides an important yet unex-
ploredmode of protein evolution in plants and other organisms.We
use the 1001 Genomes Consortium dataset (10) of whole-genome
sequenced Arabidopsis to estimate the length of every

homopolymer tract in 770 accessions collected from their local Eur-
asian range, which cover a wide geographical and environmental
spectrum. We combine environmental association analysis with
IDR protein structure predictions to investigate whether natural se-
lection may have shaped homopolymer lengths and, furthermore,
experimentally uncover a role for length variable polyglutamine
(poly-Q) tracts in the activity of a transcription factor.

RESULTS
Coding STRs predominantly encode structurally disordered
homopolymers
We analyzed all protein coding DNA sequences in The Arabidopsis
Information Resource 10 (TAIR10) reference genome based on the
Col-0 accession (CS76778) and found the most common STR-
encoded homopolymers to be polyglutamate (poly-E), polyserine
(poly-S), and polyaspartate (poly-D) (Fig. 1A and table S1). To
address the hypothesis that length variation in STRs could tune in-
termolecular interactions by introducing structural changes in dis-
ordered protein stretches, we assessed whether homopolymers in
Arabidopsis proteins coincided with predicted IDRs, as well as
with predicted disordered protein-protein, DNA-protein, and
RNA-protein interaction regions (PPIs, DPIs and RPIs, respective-
ly). The analysis scheme is depicted in Fig. 1B. To assess the extent
of over- or underrepresentation of the homopolymers in IDRs and/
or in disordered interaction regions, we used two-sided Fisher’s
exact tests. The results are shown in Fig. 1C and dataset S1. We
found that 12 of 20 different amino acid homopolymer tracts
were overrepresented in IDRs, broadly mirroring patterns identified
in mammalian and avian proteins (4). The strongest enrichments in
PPI regions, predicted by DisoRDPbind were poly-E (log odds ratio,
2.3), poly-Q (log odds ratio, 2.2), and poly-D tracts (log odds ratio,
2.1). This differed from the strongest enrichments in Molecular
Recognition Feature predictor (MoRFpred) regions, PPI regions
(poly-M; log odds ratio, 2.3), and ANCHOR2 PPI sites (poly-H;
log odds ratio, 1.7). Poly-K tracts were strongly enriched in DPI
regions (log odds ratio, 3.3), and in RPI regions, the strongest en-
richment was for poly-R tracts (log odds ratio, 2.2). These results
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Fig. 1. Protein coding STRs often encode disordered regions in A. thaliana proteins. (A) The bar chart shows the number of STR-encoded homopolymer tracts per
type of amino acid in the A. thaliana reference (TAIR10) protein sequences (table S1). (B) Outline of prediction tools used for IDRs and disordered interaction regions. (C)
Degree of over- or underrepresentation (two-sided Fisher’s exact test) of homopolymer tracts encoded by reference genome STRs within the predicted (IDR, PPI, DPI, and
RPI) regions. Box color shading, from black to light green, is scaled with log odds ratio values. All results shown were statistically significant after Bonferroni correction for
multiple testing (dataset S1). (D) The box plots show distributions of the estimated number of coding STR alleles in 770 different A. thaliana accessions (dataset S2). Amino
acid legend: A, alanine; C, cysteine; D, aspartate; E, glutamate; F. phenylalanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L: leucine, M, methionine; N, asparagine; P,
proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; Y, tyrosine. Note that no STR-encoded tracts of tryptophane (W) were detected in the TAIR10 reference
proteins.
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show that STR-encoded homopolymers are nonrandomly distribu-
ted with regard to IDRs and disordered interaction regions.We pre-
viously genotyped STRs in the Arabidopsis accessions released by
the 1001 Genomes Consortium and defined 770 accessions as a
high-quality subset (9). We used this subset (dataset S2) to
further explore the characteristics of length variable coding STRs.
Notably, we found that polar (S, T, N, and Q) and negatively
charged (D and E) homopolymers had a high number of estimated
STR length variants present in the population (Fig. 1D). To better
grasp the biological relevance of proteins with length variable ho-
mopolymers in IDRs and/or in disordered interaction regions, we
performed network and Gene Ontology (GO) analysis of these pro-
teins via the STRING database (11). The network and GO analyses
showed that the protein set (1850 proteins) was more biologically
connected (including physical interactions, co-mentioning in
PubMed abstracts, and coexpression) than what was expected in
the Arabidopsis background (5995 edges in the network compared
to 4252 expected edges; P < 1.0 × 10−16; dataset S3). The top en-
riched biological process GO terms included heterochronic regula-
tion of development (6 proteins), circadian rhythm (20 proteins),
regulation of salt stress responses (12 proteins), and response to
chitin (21 proteins). Notably, we found a high number of teosinte
branched1, cycloidea, and proliferating cell factors 1 and 2 (TCP)
family proteins (TCP2, TCP3, TCP4, TCP7, TCP10, TCP13,
TCP14, TCP15, and TCP24) in the network [9 of the 24 TCP
members, protein family (PFAM) enrichment P = 0.01; dataset
S3]. TCP proteins are known to contain IDRs and to be responsive
to environmental stimuli (12, 13). Next, on the basis of gene expres-
sion analyses from previous work (9), we investigated whether
length-variable STRs encoding homopolymers in IDRs or disor-
dered interaction regions were more frequently associated with
the expression of the gene that it resides in compared to other
coding STRs. Supporting that DNA binding homopolymer tracts
could function as autoregulatory gene expression modulators, we
found that homopolymers likely to bind DNA (i.e., in DPI
regions) were significantly overrepresented (fig. S1 and dataset
S4). Furthermore, the tools predicted elevated protein-protein
binding propensity in the poly-Q tract of the thermosensor
region in early flowering 3 (ELF3), as well as in the poly-E tract of
alfin-like 6 (AL6), where we previously demonstrated an effect on
PPIs (9). This supports that the prediction tools can point to
known biologically interesting regions. PPI, DPI, and RPI predic-
tions for ELF3, AL6, and other example proteins are shown in
fig. S2.

Early-light induced protein 1 promoter activation depends
on the length of poly-Q tracts in TCP14
Several members of the TCP transcription factor family had STR-
encoded homopolymers predicted to be in IDRs and/or in disor-
dered interaction regions (dataset S3). One member of this family,
TCP14, activates the photoprotective early-light induced proteins
(ELIPs), which are involved in plant responses to high light stress
(14–16). The expression of ELIP1 is directly regulated by the
binding of TCP14 to up1 elements in the ELIP promoter regions.
TCP14 acts epistatic to the Dana-like zinc finger domain–contain-
ing transcriptional regulator ORANGE (OR). OR physically inter-
acts with TCP14 in the nucleus and represses its transactivation
activity, leading to reduced transcriptional levels of ELIP1, reduc-
tion in chlorophyll biosynthesis, and delays of thylakoidmembranes

in plastids of germinating cotyledons. This repression decreases
upon illumination when the nuclear localization of OR is dimin-
ished and accumulation of TCP14 in the nucleus derepresses chlo-
roplast biogenesis during hypocotyl de-etiolation by increased
ELIP1 transcription (15). We found TCP14 to contain poly-Q
tracts that overlapped predicted disordered PPI regions (fig. S2)
and that varied in length in different Arabidopsis accessions. We ex-
perimentally tested the functional relevance of poly-Q tracts in
TCP14 by quantifying the ability of the different homopolymer
length variants to activate transcription of the ELIP1 gene. The
two poly-Q tracts that we focused on overlap with predicted disor-
dered PPI sites (Fig. 2A), and we envisioned that length variation in
these poly-Q tracts would influence the ability of TCP14 to activate
ELIP1. We tested our hypothesis using TCP14 variants from acces-
sions that only differed in these two tracts in the TCP14 protein se-
quence. The Col-0 accession had seven repeated Qs in the first tract
and three repeated Qs in the second tract (TCP14-7Q-3Q). The Bul-
garian accession Schip-1 (CS77239) had four repeated Qs in the first
tract and six repeated Qs in the second tract (TCP14-4Q-6Q). No
other amino acid level differences were present between the two ac-
cessions (dataset S5). To isolate the total effects of the first and the
second tract, we synthesized and experimentally tested all the re-
maining combinations (7Q-6Q and 4Q-3Q). To verify that the ac-
tivity of the ELIP1 promoter (pELIP1) was significantly altered by
the length of the TCP14 poly-Q tracts, we performed a luciferase
assay in Nicotiana benthamiana (N. benthamiana) leaves where
the luciferase luminescence signal [relative light units (RLU)] was
a determinate of promoter activity. We coinfiltrated a pELIP1:LUC
construct together with the different TCP14 proteins coupled to
green fluorescent protein (GFP) in N. benthamiana leaves
(TCP14-Qn-Qn). An estradiol-inducible 35S promoter was used to
drive expression of the TCP14-Qn-Qn-GFP variants to achieve com-
parable expression levels for the fusion proteins. TCP14-7Q-3Q-
GFP, TCP14-4Q-6Q-GFP, TCP14-7Q-6Q-GFP, and TCP1-4Q-
3Q-GFP localized to the nucleus in N. benthamiana leaf cells
(Fig. 2B). As negative controls, we measured the luciferase lumines-
cence signals in assays containing the constructs without adding es-
tradiol, as well as assays without pELIP1:LUC (Fig. 2C). Our results
show that a simultaneous length change in both tracts produced sig-
nificantly different luciferase outputs (7Q-6Q versus 4Q-3Q: Welch
t test P = 0.007 and 4Q-6Q versus 7Q-3Q:Welch t test P = 0.03) and
that the last tract yielded a significant difference only when the first
tract was 7Q (7Q-6Q versus 7Q-3Q, Welch t test P = 0.0008).
Changes in only the first tract did not produce any significant dif-
ferences (Fig. 2C). We conclude that both tracts are involved with
ELIP1 promoter activation but that the last tract is more important.
These results show that natural allelic variations in the poly-Q tracts
alters ELIP1 promoter activation, and given the important role of
ELIP1 in light stress toleration, this may reflect the ability of differ-
ent accessions to respond to light stress. We grouped the 770 acces-
sions by the length of the poly-Q tract (Fig. 3A) and tested whether
the poly-Q tract length correlated with environmental variables re-
trieved from (17). We investigated both linear and nonlinear effects
of the poly-Q tract using ordinary least squares (OLS) regression,
and the top correlation of the nonlinear effect model (R2 = 0.031,
P < 0.0001) was with global horizontal irradiation, consistent with a
scenario where the poly-Q tract has a role in light-driven responses
(table S2). Next, we investigated the poly-Q tract variant allele fre-
quencies, based on the group designation inferred by the 1001
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Fig. 2. Natural allelic variation in two STR-encoded poly-Q tracts in TCP14 influences the activation of the ELIP1 promoter. (A) The alignments show excerpts of
the TCP14 (Col-0) and TCP14 (CS77239) gene and protein sequence, highlighting the two poly-Q tracts with natural allelic length variation. The cartoon shows the location
of the poly-Q tracts relative to the predicted protein-protein binding propensity of the TCP14. (B) Transient expression of synthesized TCP14 (TCP14-4Q-3Q-GFP), TCP14
from accession CS77239 (TCP14-4Q-6Q-GFP), TCP14 from Col-0 (TCP14-7Q-3Q-GFP), and synthesized TCP14 (TCP14-7Q-6Q-GFP) in N. benthamiana leaves. The images
show that TCP14-4Q-3Q-GFP, TCP14-4Q-6Q-GFP, TCP14-7Q-3Q-GFP, and TCP14-7Q-6Q-GFP localize to the nuclei. A protein known to localize to the plasma membrane
(PM) was used to outline the PM of the cells. (C) The luciferase output (RLU) of the ELIP1 promoter is dependent on the Q tracts in TCP14. The differences in luciferase
output show that all TCP14 variants activate the ELIP1 promoter and that when both tracts are changed so is the strength of the activation. The asterisks indicate the result
of Welch t test [****P < 0.0001, ***P < 0.001, **P < 0.01, and *P < 0.05; not significant (ns), P > 0.05]. N = 12 (for technical replicates, see dataset S14). Ind., induction.
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Genomes Consortium (10), and found that the “Relict” and “Asia”
accessions were fixed for nonreference variants, while approximate-
ly 35% of the “Germany” and “Spain” accessions had the reference
variant (three repeated Qs; Fig. 3B). We tested whether these differ-
ences in allele frequencies could be explained by environmental gra-
dients by using Bayesian modeling (Bayenv 2.0), which took the
genetic similarities between the groups into account (fig. S3).
Given the genetic structure and the variation in mean environment,
Bayenv2.0 calculated that the poly-Q variant allele frequencies
could be explained by a complex environmental gradient that pri-
marily captured variation in soil silt content and tempera-
ture (Fig. 3C).

Environmental correlations are driven by disorder, binding
propensities, and amino acid type
Next, we explored the relationship between natural allelic variation
in all the protein coding STRs that we detected in the Col-0 refer-
ence genome and the environmental origin of the accessions.
Eighty-eight numerical variables had complete measurements for
all the 770 accessions (dataset S6). As many of these variables

were highly correlated, we decomposed the information to seven
principal components (PCs) that together explained 80% of the
total variation (fig. S4). The top correlations between the individual
environmental variables and PC axes 1 to 7 are shown in table S4,
and the accessions’ values along the axes are available in dataset S7
(PCA plot shown in fig. S5). We regressed the seven environmental
PC axes on our estimates of allelic variation in 2514 protein coding
STRs, one site and one environmental axis at a time (dataset S8).
The accessions’ original sampling location colored by their position
along PC1 and PC2 are shown in Fig. 4A. As a negative control, we
used mock STR genotypes (dataset S9). We separately treated STR
alleles as continuous or categorical values to assess whether linear or
nonlinear effects best explained the environmental variation. In
24% of tests with multiallelic STRs, nonlinear effects better ex-
plained the environmental variation compared to linear effects.
For further analysis, we kept the top associations (by P value) per
PC axis and per STR. Of the 2514 protein coding STRs, 969 had
length variation best associated with PC axis 1 (Fig. 4B and
dataset S8). This axis mostly represent variation in spring
maximum temperatures (table S4). At the highest confidence

Fig. 3. Poly-Q tract length variation in TCP14 associates with temperature and edaphic variables. (A) Map of the Eurasian A.. thaliana accessions colored by the
estimated diploid unit count of the second poly-Q tract in the TCP14 protein, including heterozygous variants. (B) The allele frequencies (y axis) of the nonreference
variants in the 10 groups (x axis) designated by the 1001 Genomes Consortium (10). (C) The bar plot shows the Bayes factors (y axis) that resulted from Bayenv2.0 in
models where the variation in allele frequencies was treated as a response to variation in seven complex environmental gradients (PC 1 to 7, x axis), given the average
genetic distance between groups (fig. S3). The top positive and negative correlation (squared Pearson’s R) between the complex environmental gradient PC6 and single
environmental variables are highlighted. WC2 BIO8, mean temperature of the wettest quarter.
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Fig. 4. Natural allelic length variation in STRs associates with environmental gradients. (A) The maps show the sampling origins of the 770 A. thaliana accessions.
Samples are colored by their position on the environmental PC axes 1 and 2 (see color bar) used in the OLS analyses. (B) The number of protein coding STR sites (y axis)
associated with the environmental PC axes 1 to 7 as a function of the confidence of the environmental association (−log10 P values). (C) Overlap between protein coding
STRs that correlated with the complex environmental gradients from the OLS environmental association analysis, the Bayenv2.0 environmental association analysis, and
the pairwise FST analysis. (D) The histogram shows the distribution of the expected number of overlaps given that the candidate sites were drawn at random, without
replacement. The orange, stapled line shows the number of true overlaps. (E) The results of multiple linear regression where variation in either the R2 (OLS, top), the Bayes
factor (Bayenv 2.0, middle), or the FST (FST analysis) served as a response and the type of amino acid, the disorder predictions, and the binding propensity predictions
served as explanatory variables. The y axes show the t score, where positive values correspond to a positive coefficient and negative values correspond to a negative
coefficient in themodel (dataset S13). Note that the effect of the amino acid was relative to the baseline amino acid, set to be alanine. Asterisks denote a P value below the
Bonferroni-corrected α threshold (0.002), and dots denote P values below the α threshold (0.05). Amino acid legend: C, cysteine; D, aspartate; E, glutamate; F, phenyl-
alanine; G, glycine; H, histidine; I, isoleucine; K, lysine; L, leucine; M, methionine; N, asparagine; P, proline; Q, glutamine; R, arginine; S, serine; T, threonine; V, valine; Y,
tyrosine.
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levels (i.e., lowest P values), associations with PC axis 2 were more
common (Fig. 4B and dataset S8). PC axis 2 best represents varia-
tion in net primary production sensitivity to precipitation and tem-
perature seasonality (table S4). A total of 0.3% of the tests withmock
genotypes produced significant associations with a PC axis after
multiple test (Bonferroni) correction, compared to 9.4% of the es-
timated genotypes (datasets S9 and S8). Note that we cannot
completely rule out that the associations are confounded with the
population structuring along the environmental gradients (fig. S6).
However, when controlling for the pairwise genetic similarity with
putative neutral markers (fig. S7), P value distributions were right
skewed (fig. S8), and 23 coding STRs were still significant after Bon-
ferroni correction (dataset S10). Next, we tested whether the amino
acid type and the disorder prediction state of homopolymer tracts
were significant explanatory variables in multiple regression models
with the outputs of OLS (R2), Bayenv2.0 (Bayes factor), and fixation
index (FST) analyses as responses (datasets S11 and S12). To run
Bayenv2.0 and FST analyses, we converted multiallelic variants
into biallelic variants using the frequency of the most common
variant and the combined frequency of the less common variants
per STR, per Arabidopsis subpopulation. We decomposed the var-
iation in environmental means as previously, retaining all PC axes
that explained more than 1% of the total variation in means, yield-
ing eight environmental PCs (fig. S9). We found a high overlap
between FST outliers identified by the pairwise FST analysis and
the candidate sites that resulted from the OLS and Bayenv2.0
models (240 overlaps versus 56 mean expected overlaps; Fig. 4, C
and D). For every homopolymer tract, we treated the squared cor-
relation (R2 from OLS), the Bayes factor, or the FST as the response.
As explanatory variables, we used the homopolymer tract type
(poly-N, poly-S, etc.) and the IDR/IDR binding prediction (PPIs,
DPIs, and RPIs) as explanatory variables. The three simple
models only explained a small fraction of the variation (0.4 to
1.1%; dataset S13) but together agreed that disordered tracts
(three of three), poly-N tracts (three of three), and poly-Q tracts
(three of three) produce significantly higher R2/Bayes factor/FST
values (Fig. 4E). These results suggest that homopolymer tracts
with these features are especially interesting as candidates in
further functional studies, as they may serve important adaptive
roles in Arabidopsis.

DISCUSSION
In this study, we performed a global analysis of protein coding STRs
in Arabidopsis accessions to explore how coding length variation
has the potential to affect protein function and how length varia-
tions relate to environmental conditions. Our protein structure
analyses indicated that coding STRs promote disorder in protein
structure and that STRs in disordered regions often are predicted
to bind other proteins, DNA or RNA (Fig. 1C). The nonrandom
distribution of STR-encoded amino acids with regard to protein
structure implies that protein level length variation, caused by
random replication slippage on the DNA level, predominantly
affects regions of proteins predicted to be disordered. By using
the wealth of knowledge resulting from decades of functional
studies with Arabidopsis as a model plant, our protein network en-
richment analysis (dataset S3) revealed that proteins encoded in
part by structural disorder-promoting STRs are not a random
subset of the Arabidopsis proteome but are heavily involved in

circadian rhythms, defense responses, and responses to salt stress.
Circadian rhythms are intrinsically linked to variation in daylight
and temperature and plays a role in growth and development, as
well as abiotic and biotic stress responses (18–20). The enrichment
of circadian, biotic, and abiotic functions in proteins with disor-
dered regions is consistent with a scenario where functional varia-
tion in these regions has been important for the expansion of
Arabidopsis across the northern hemisphere.
The results of our experimental approaches on TCP14 support

that the prediction tools pointed to functional disordered amino
acid tracts within the TCP14 protein sequence (Fig. 2). The Q
tracts in TCP14 were predicted to have elevated protein-protein
binding propensities, making it likely that differential downstream
interacting ELIP1 promoter activation was caused by an altered PPI
between TCP14 and OR, as OR is known to bind TCP14 and re-
presses its ability to activate the ELIP1 promoter (15). Further ex-
periments on TCP14 would be necessary to fully test this
hypothesis, and follow-up experiments on additional candidate
tracts, similar to Jung et al. (5), will be key to understanding the
extent of the phenotypic consequences of protein coding STR
length variation.
Here, we have demonstrated that length variation of coding STRs

is associated with various environmental adaptations in Arabidopsis
accessions. On the basis of the knowledge from other plant, fungal,
animal, and bacterial species, coding STRs are found at high fre-
quencies throughout the Tree of Life (1, 2, 21–27), and there are
some published examples of functional consequences of tract
length variation on specific proteins. These examples include a var-
iable glycine-threonine tract that maintains the circadian rhythm in
response to temperature inDrosophila (28). In yeast, a variable poly-
Q tract in a transcriptional regulator protein influenced fitness
under different growth regimes (22). Avariable poly-Q tract in com-
bination with a variable poly-A tract facilitates swift evolution of
limb and skull morphology in canids (29). Arabidopsis is,
however, one of the few species where a large collection of whole-
genome sequenced accessions (adapted to very different local envi-
ronments) is available. This made it possible to perform a global
analysis of homopolymer tract length variation and to find candi-
date proteins exhibiting environmentally associated length variants.
In an even further and broader perspective, the nature of STR length
variation somewhat resembles that of epigenetic changes (epimuta-
tions) in that both STR length variations and epimutations occur at
a rapid mode and both STR variation and epimutations may be in-
volved in local adaptation. However, the transgenerational effect of
epigenetics is not completely clear, while STR mutations acting at
the DNA level are inheritably stable. In turn, this is likely to provide
rapid adaptation under specific (and even recurrent changing) se-
lection regimes due to the high length mutation rates and the stand-
ing variation in the populations.
Our environmental association analyses showed that specific ho-

mopolymer tracts (poly-N and poly-Q), as well as tracts predicted to
be disordered had length variation associated with complex envi-
ronmental gradients (Fig. 4E). Hence, our data suggests that
natural selection has driven the STR length variation between eco-
logically adapted populations and, consequently, the allelic varia-
tion in these tracts as a response to differences in light,
temperature, temperature variability, soil content, and other more
complex gradients. Furthermore, the presence of such tracts in pro-
teins facilitates a rapid fine-tuning of protein function in plants and
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likely other groups of organisms because coding STRs are ubiqui-
tous throughout the Tree of Life.

MATERIALS AND METHODS
Disorder and disordered binding site predictions
We downloaded A. thaliana reference (TAIR10) proteome disorder
consensus predictions from Database of Disordered Protein Predic-
tions (d2p2) (30). d2p2 itself uses nine different predictors: VLXT,
VSL2b, PrDOS, PV2, IUPred-S, IUPred-L, Espritz-N, Espritz-X,
and Espritz-D (31–36). d2p2 requires that 75% of tools should
agree to designate disorder. From these consensus ranges, we gen-
erated Browser Extensible Data (BED) files. To find overlaps with
STR-encoded amino acids, we first ran Tandem Repeats Finder
with standard options (37) on the TAIR10 coding DNA sequences
retrieved from arabidopsis.org. This allowed us to map the STR on
the coding DNA transcript level to the protein sequence. Hence, we
generated another BED file containing amino acids encoded by
STRs. We used Pybedtools with the “intersect” command to
assess overlap of STR-encoded amino acids and the predicted
regions. Pybedtools is a Python wrapper of BEDTools (38, 39).
For predicting disordered binding regions, we used DisoRDPbind
predictions, MoRFpred predictions, and ANCHOR2 predictions
(40–42). For retrieving DisoRDPbind predictions, we accessed the
DisoRDPbind web server (http://biomine.cs.vcu.edu/servers/
DisoRDPbind/). To retrieve MoRFpred predictions, we uploaded
protein sequences to the fast MoRFpred web server available at
http://biomine.cs.vcu.edu/servers/fMoRFpred/ (43). To retrieve
ANCHOR2 predictions, we ran the IUApred2A tool locally (44).
The different tools’ output result files were parsed to generate
BED files, and overlap was quantified using Pybedtools. To link
the STR-encoded homopolymer coordinates back to the genomic
coordinates of the STR, we matched transcript IDs from the
coding DNA sequence FASTA file to the genome annotation
Generic Feature Format file (from arabidopsis.org) and then
located the identical motifs detected by Tandem Repeats Finder
in the TAIR10 genome sequence and in the coding DNA sequence
FASTA file.

Allelic variation in STRs and neutral single-nucleotide
polymorphisms
We previously scored the number of units in each (diploid) STR
allele across the Arabidopsis accessions (9). An STR-specific
variant caller, haplotype inference and phasing for STRs (45), was
used to call the variants. We used the same STR unit counts in this
study but for an expanded set of accessions (770), and only STRs
that encoded a minimum of four repeated amino acids. We con-
structed the putative neutral single-nucleotide polymorphism
(SNP) matrix for the 770 accessions as in our previous study (9).
Briefly, we drew random, common (major allele frequency < 0.9)
intergenic SNPs that we pruned for linkage disequilibrium using
the “locate_unlinked” function of the Python package scikit.allel
(parameters: size = 1000, step = 20, and threshold = 0.1) (46).
From these SNPs, we calculated the pairwise correlation between
accessions and standardized the output matrix. The second
TCP14 poly-Q tract highlighted in this study was too short, i.e.,
only three CAA repeats in the TAIR10 (Col-0) reference genome,
to be detected by the initial Tandems Repeat Finder scan. Thus,
we pointed to this site directly for genotyping with bcftools

“mpileup” and “call” (47) to investigate the natural variation in
the accessions.

Bayesian modeling with Bayenv2.0
To format our genotyping data for use with Bayenv, we used the
variant calling format (VCF) file originating from the STR variant
calling of the 1001 genomes, as described in (9). We read the VCF
with the “allel.GenotypeArray” function of scikit-allel. We used the
“count_alleles_subpops” function and the “to_frequencies” func-
tion to retrieve allele frequencies per subpopulation. We used the
variance-covariance matrix produced by Bayenv2.0 after 100,000 it-
erations as the estimate of genetic structure, which was based on the
allele frequencies of a linkage disequilibrium-pruned set of all
coding STRs (pruning parameters: size = 10, step = 1, and thresh-
old = 0.1). Last, we ran Bayenv2.0 with the variance-covariance
matrix as parameter -m, as described in the Bayenv2.0 documenta-
tion. A log10 Bayes Factor larger than one is usually interpreted as
strong evidence, while a BF larger than two is often interpreted as
decisive evidence (48).

FST outlier analysis
We used allele frequency data per subpopulation to calculate pair-
wise the Hudson’s FST of all coding STRs from the 10 subpopula-
tions (45 comparisons), with the “hudson_fst” function from the
scikit-allel Python package. Outliers were defined as sites with FST
values above the global 95th percentile of the empirical distribution.

Bioclimatic variables
We retrieved the full set of environmental variables retrieved by
Ferrero-Serrano and Assmann (17) and dropped measurements
that were not fully covered in all samples, which left 88 different en-
vironmental variables (dataset S6). First, we scaled the variables
using the “sklearn.preprocessing.scale” and then the “sklearn.de-
composition.pca” functions of the “sklearn” Python module (49)
to perform the decomposition of the 88 variables. For the use of bi-
oclimatic variables with Bayenv2.0, we decomposed the mean
values per subpopulation based on all the 197 variables.

Cloning and transient expression of proteins
Arabidopsis accession CS77239 was ordered from Nottingham Ara-
bidopsis Stock Center. Clonal genes of TCP14-7Q-6Q and TCP14-
4Q-3Q were ordered from Twist Bioscience. The DNA sequences
encoding TCP14 from Col-0 (TCP14-7Q-3Q) and TCP14
(TCP14-4Q-6Q) from accession CS77239, as well as the ordered
genes encoding TCP14-7Q-6Q and TCP14-4Q-3Q were cloned in
frame with an expression vector containing an 35S estradiol-induc-
ible promoter and a C-terminal fluorescent molecule of GFP using
the Invitrogen Gateway cloning system (50). The ELIP1 promoter
(pELIP1) was defined as the region 2000–base pair upstream of
the ELIP1 start codon and amplified from Col-0 genomic DNA.
pELIP1 was cloned into the R4pGWB635 vector (51, 52) containing
the LUC gene, creating the pELIP1:LUC construct. Primers are
listed in table S3. Plasmids were transformed into Agrobacterium
tumefaciensC58 and further used for transient expression inN. ben-
thamiana leaves following a previously described protocol (53).

Luciferase assay
N. benthamiana leaves were coinfiltrated with ELIP1:LUC and one
of the TCP14 constructs individually. The empty vector pab117
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served as a no ELIP1:LUC negative control. Leaves were cut into
discs of 3 mm in diameter and incubated in a 10 mM estradiol sol-
ution for 3 hours to induce gene expression of TCP14. Uninduced
leaf discs for each construct were used as a negative control for
TCP14 activation of ELIP1:LUC. Leaf discs were individually trans-
ferred to wells in a 96-well plate treated with D-luciferin (0.5 mg/ml)
and kept in darkness for 105 min before luminescence was detected
using a BioTek Synergy H1 microplate reader (Agilent). For
imaging, leave discs were incubated in a 10 mM estradiol and
4′,6-diamidino-2-phenylindole solution mix (2.5 μg/ml) overnight.
Images were captured using an Olympus FV1000 Inverted micro-
scope with a Uplan-Apochromat 20×/0.7 Working Distance = 0.65
objective.

Statistical analysis
Fisher’s exact test can be used to test for dependence by calculating
how extreme observed differences in ratios are, given no depen-
dence. We used this test with different kinds of counts in this
study. In relation to disorder predictions, we used Fisher’s exact
test to investigate whether STRs and the predicted features were de-
pendent. Given no dependence between two features (for instance,
between STRs and predicted IDRs), we would not expect a large dif-
ference between ratios. Hence, we constructed contingency tables
and used the “fisher_exact” function of the Python module “stats-
models” to calculate odds ratios and P values from contingency
tables (54). The odds ratio would be AB =

C
D for a given type of

amino acid, where A is the count of STR-encoded amino acids in
the predicted region, B is the count of amino acids not encoded
by STRs in the predicted region, C is the count of STR-encoded
amino acids not in the predicted region, and D is the count of
amino acids not encoded by STRs and not in the predicted region
(see legend dataset S1). Here, we used two-sided Fisher’s exact test,
as we were interested in both positive and negative dependence. We
used one-sided Fisher’s exact tests to address whether there was de-
pendence between IDRs or predicted IDR binding sites and associ-
ations with gene expression (see legend dataset S4).
We used ordinary linear square regression to test whether the

environment of Arabidopsis accessions could be predicted by
allelic variation in coding STRs. The modeling was performed
using the “ols” function of the statsmodels Python package. We
ran OLS regression with the seven PC axes as a response, separately,
and each STR separately. In addition, STRs were modeled as cate-
gorical variables, which tests for nonlinear STR effects. For multi-
allelic STRs (more than two variants), we compared the nonlinear
STR effect model with the linear model using the “anova_lm” func-
tion of statsmodels and kept the P value and R2 of the best model.
Mock STRs were generated by shuffling the real STR genotypes ran-
domly among the accessions, per STR site, and were modeled in the
exact same manner as the real STRs. For purposes of correcting for
population structure, we used linear mixed models as described in
(9). Briefly, we used the “qtl.scan” function of the Python package
“limix” (v3.0.4; https://github.com/limix/limix), setting G as the
STR genotypes, Y as the environmental PC axes, and K as the stan-
dardized genetic correlation matrix. Models with and without G
were then compared, and P values were calculated by comparing
the likelihood ratios of the two models.
We first used the “rda” function of the R package “vegan” to de-

compose the standardized correlation matrix into PC axes 1 and
2. We used the vegan function “envfit” (55) to treat the seven

environmental PC axes as responses in multiple regressions with
the PC axes as explanatory variables (environmental variable ~
PC axis 1 + PC axis 2) to produce P and R2 values used to assess
the extent of explained variation.
We used the ols function of the statsmodels Python package to

run multiple linear regression with the command “smf.ols(‘bestR2
~ 1 + AA + protein_binding + DNA_binding + RNA_binding +
in_disorder’, data = data, hasconst = True).fit(),” where bestR2 is
the squared correlation (R2) resulting from the environmental asso-
ciation analysis; 1 is the intercept; AA is the repeated amino acid in
the tract (as a categorical variable); “protein_binding” is an ordinal
variable with values 0, 1, 2, or 3 depending on the extent the three
different PPI prediction tools agreed (for instance, 3 if all tools
agreed); and “DNA_binding,” “RNA_binding,” and “in_disorder”
were treated as binary (0 or 1) variables. We repeated the modeling
using the Bayes factor stemming from Bayenv2.0 and the FST value
from the FST analysis as response variables.
The luciferase measurements were performed 12 times per con-

struct. We used a Welch t test to test whether the differences in
mean luciferase outputs were statistically significant.

Supplementary Materials
This PDF file includes:
Figs. S1 to S9
Tables S1 to S4
Legends for datasets S1 to S14

Other Supplementary Material for this
manuscript includes the following:
Datasets S1 to S14

View/request a protocol for this paper from Bio-protocol.
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