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Abstract

In this thesis we show a reflection theorem for K2. We compare the 3-rank of K2(OQ(
√
D)) to the

3-rank of K2(OQ(
√
−3D)) and find that they differ by at most 2. We also show by examples that

the formula we obtain is optimal. Introductions to algebraic number theory and classical algebraic
K-theory are provided. A proof by Washington of Scholz’s Reflection Theorem is given, and we
discuss in detail results from Moore, Keune and Tate that describe the structure of K2(OF ) of a
number field F .
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Introduction

In 1932, Arnold Scholz wrote a paper Über die Beziehung der Klassenzahlen quadratizcher Kör-
per zueinander, in which he states and proves the following theorem:

Satz. Hat von den beiden Körpern P (
√
δ) und P (

√
−3δ) die Klassengruppe des imaginären

Körpers r Basisklassen und die des reellen Körpers s Basisklassen von Dreierpotenzordnung (also
3r − 1 bezw. 3s − 1 Idealklassen der Ordnung 3), so gilt:

s ≤ r ≤ s+ 1.

In modern terms this would be:

Theorem. Let D be a positive square free number, and consider the quadratic number fields
Q(
√
D) and Q(

√
−3D). Let s be the 3-rank of Cl(Q(

√
D)) and r the 3-rank of Cl(Q(

√
−3D)).

Then
s ≤ r ≤ s+ 1.

This theorem is known as the Reflection Theorem and has since Scholz’s time been generalized
by many authors. Most notably, Leopold’s Spigelungssatz ([12]) and Georges Grass’ T − S-
Reflection Theorem ([8]).

In this thesis, we will “extend” the reflection theorem to K2. We will, by using the same
techniques as Lawrence C. Washington used to prove Scholz’s theorem in [24], prove the following
reflection theorem for K2.

Theorem. Let D be a positive square free integer. Then

rk3(K2(OQ(
√
−3D)))− rk3(K2(OQ(

√
D))) =


1, 0,−1 if d ≡ 1 mod 3

0,−1,−2 if d ≡ 6 mod 9

0,−1 otherwise.

We will also find examples of all the 8 different cases of the theorem above. Most of the
examples have been computed by the free computer algebra system PARI/GP ([23]).

The group K2(OF ) was first studied as the kernel of the direct sum of the Tame symbol maps

τ : K2(F )
⊕τP //

⊕
P k
×
P .

The map τ was first shown to be surjective by Calvin Moore as a consequence of his Reciprocity
Theorem, in 1968 [16], which lead Bass, Milnor and Tate among others to study the Tame kernel
ker τ . The next big breakthrough came when Howard Garland proved that the Tame kernel is
finite, when F is a number field in [7], 1971. The finiteness of ker τ was later extended to function
fields by Bass and Tate. For a very nice summary of what was known about the Tame kernel
before Garland’s Finiteness Theorem see [21]. The Tame kernel was identified with K2(OF ) as
a consequence of Daniel Quillen’s localization sequence for higher K-theory published in [20],
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1973. Quillen’s paper became the foundation of higher algebraic K-theory. In 1976, John Tate
published a paper Relations between K2 and Galois cohomology, [22], where he proves that

K2(F )/n ≈ nBr(F ),

for a global field F , that contains a primitive nth root of unity. Here nBr(F ) denotes the subgroup
of elements of order dividing n, in the Brauer group Br(F ). This result was later extended to all
fields by Merkurjev and Suslin, in [14]. Also in the paper by Merkurjev and Suslin is Hilbert’s 90
for K2 proved.

Organization of the sections

Section 1 is a basic introduction to algebraic number theory with an emphasis on quadratic number
fields. We will define the ring of integers, ideal class group and discuss ideal decompositions in
a Galois extension. For quadratic number fields, we will determine the rings of integers and the
ideal decomposition of a prime number p in Q(

√
D).

In Section 2 we state and prove Scholz’s Reflection Theorem. The proof we give is a slightly
more detailed version of Washington’s proof in [24]. We will later in Section 4 use some of the
same techniques to prove the reflection theorem for K2. In addition to the theory developed in
Section 1, we will need results from Kummer theory and class field theory. The observant reader
may also notice that we make use of the Norm Residue symbol in the proof of Scholz’s Reflection
Theorem, without mentioning it. Since the Norm Residue symbol is closely related to the Hilbert
symbol, which is crucial in the study of the structure of K2(OF ) for a number field F , it might be
possible to find a more direct proof of reflection in K2.

Section 3 is divided into three parts. The first one is an introduction to Classical Algebraic
K-theory, where the functors K0, K1 and K2 are defined and discussed. In the second part, we
use Matsumoto’s description of K2(F ) for a field F , to define Steinberg symbols. The Steinberg
symbols will be used to describe the structure of K2(F ) and K2(OF ) when F is a number field.
The third part shows two “structure” theorems for K2(OF )/p. These results are consequences of
Tate’s work in [22], but the presentation is the same as in [11].

In Section 4, we prove the reflection theorem for K2, using the theory developed in the previ-
ous sections.

In Section 5,we give, for each of the different cases of the theorem in Section 4, an example
of a D such that Q(

√
D) and Q(

√
−3D) satisfies that case. Most of the examples are computed

by the computer algebra system PARI/GP. We have included the code needed to check the first
example with an explanation of what the different functions do, and how to interpret their output.
We prove the reflection theorem for K2 using the theory developed in the previous sections. The
examples show that our theorem in section 4 is optimal.
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1 Basic Number Theory

In this section we will review the basic theory of our main object of study, namely quadratic
number fields. All rings in this section are assumed to be commutative with a unit element.

1.1 Rings of Integers in algebraic number fields

A number field is a finite extension of the rational numbers Q contained in the complex numbers
C. In other words a field L is a number field if it is finite as a Q-algebra. We can therefore give L a
finite dimensional Q-vector space structure. A quadratic number field L = Q(

√
D) is for example

a two dimensional Q-vector space spanned by {1,
√
D}, where D is assumed to be squarefree.

If K is a number field and L is a finite field extension of K, then L is a number field, and
hence finite dimensional as a Q-vector space. We will write L/K for finite extensions K ↪→ L.

Definition 1.1. LetA ⊂ B be an extension of rings1. An element x ∈ B is said to be integral over
A if it is a zero of a monic polynomial with coefficients in A, i.e. xn + an−1x

n−1 + · · ·+ a0 = 0
where ai ∈ A.

The set C ⊂ B consisting of all A-integral elements forms a ring and is called the integral
closure of A in B.

The ring of integers OL of a number field L plays the same role as Z does for Q, in the sense
that OL is the smallest integrally closed subdomain of L such that L is the fraction field of OL.

If A is a domain and the integral closure of A in its fraction field is equal to A, then we say
that A is integrally closed.

Since multiplication distributes over addition, we get a correspondence between elements
a ∈ L and the linear transformation given by Ta : x 7→ ax. By choosing a basis for L, this
correspondence yields a ring homomorphism from L to the center of the non-commutative ring
Gln(K). Each of these matrices has a determinant and a trace.

Definition 1.2. Let L/K be an extension of number fields, and α = {α1, . . . , αn} be a basis of L
as a K-vector space. The trace and norm functions from L to K are defined by

TraceL/K,α(x) = tr Tx and NormL/K,α(x) = det Tx,

where Tx : L→ L is the matrix corresponding to multiplication by x.

The trace and the norm can be defined independently of a basis in the following way:

Lemma 1.3. For an extension of number fields L/K, let S denote the set of K-embeddings of L
in C, then

TraceL/K(x) =
∑
σ∈S

σx and NormL/K(x) =
∏
σ∈S

σx.

Proof. See [17, p. 9] for a proof.
1Recall our assumption about rings.
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The next proposition will show why the norm and trace are useful tools in the study of integral
elements.

Proposition 1.4. If x ∈ OL, then TraceL/K(x) and NormL/K(x) is in OK . Furthermore, x is a
unit in OL if and only if NormL/K(x) is a unit in OK .

Proof. See [17, p. 12] for a proof.

We have seen that a number field L can be given a finite dimensional Q-vector space structure.
What about the ring of integers OL, can it be described as a free Z-module? The answer to this
question is yes. In fact, the ring of integers OL of an extension L/K is a free OK-module if OK
is a principal ideal domain.

Proposition & Definition 1.5. If L/K is an extension of number fields and OK is a principal
ideal domain, then there exists a K-vector space basis {b1, . . . , bn} of L such that

OL =

n⊕
i=1

OK{bi}.

The basis {b1, . . . , bn} is called an integral basis.

Proof. See [17, p. 12-13] for a proof.

Definition 1.6. Let {b1, . . . , bn} be an integral basis for K as a Q-vector space. The number
d(b1, . . . , bn) defined by

d(b1, . . . , bn) = det((σibj))2,

where the σi’s are the Q-embedding of K in C, is called the discriminant of K.

The discriminant turns out to be independent of the choice of integral basis (see [17, p. 14-15]
for details). We will later see that the discriminant contains useful information about the “size” of
the ring of integers, and also about the ramification of prime ideals in OK .

Proposition 1.7. If D ∈ Z is square free, then the ring of integers of the quadratic number field
Q(
√
D) is

OQ(
√
D) =

{
Z[1+

√
D

2 ] if D ≡ 1 mod 4

Z[
√
D] otherwise,

and the discriminant

dQ(
√
D) =

{
D if D ≡ 1 mod 4

4D otherwise.

Proof. For an elementary proof see [10, p. 189].
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1.2 Ideal Class Group

One of the main goals of number theory is to determine which rings of integers have unique
factorization in terms of prime (irreducible) elements. The classical example of a ring of integers
without unique factorization is Z[

√
−5], where we can factor 6 as 2 · 3 and (1 +

√
−5)(1−

√
−5).

Although unique factorization may fail for elements, it is in any noetherian ring possible to factor
proper ideals into a unique finite intersections of primary ideals. See [1, p.83] for details. This
leads to the notion of the ideal class group, which, loosely speaking, measures how far away a ring
of integers is from having unique factorization.

Definition 1.8. An ideal I is said to be primary if xy ∈ I implies that either x ∈ I or yn ∈ I for
some n ∈ N.

Furthermore, for a class of rings called Dedekind domains, we can replace the finite intersec-
tion of primary ideals with a finite product of prime ideals.

Proposition 1.9. LetA be a Dedekind domain and I ⊂ A any ideal. Then there exist finitely many
prime ideals P1, . . . , Pn such that

I = P e11 · · ·P
en
n .

Proof. See [1, p.95] for a proof.

A noetherian integral domain is called Dedekind if it has dimension 1 and is integrally closed
in its field of fractions. The class of Dedekind domains provides a natural environment for the
study of rings of integers.

Theorem 1.10. The ring of integers in a number field is a Dedekind domain.

Proof. See [1, p.96] for a proof.

Definition 1.11. Let A be a Dedekind domain with fraction field K. A fractional ideal I is a
non-zero finitely generated A-submodule of K. If I is generated by one element, i.e. I = cA for
some c ∈ K, we say that I is a principal fractional ideal.

Since all fractional ideals are A-submodules of K, it makes sense to multiply elements of two
different fractional ideals. We can therefore define a multiplication of two fractional ideals I and
J by defining IJ as the A-submodule of K consisting of all the products xy, where x ∈ I and
y ∈ J . If I is generated by (vi) and J is generated by (wj), then clearly IJ will be generated by
(viwj).

Definition 1.12. Let I be a fractional ideal. The set I−1 = {x ∈ K|xI ⊂ A} is called the inverse
of I .

Lemma 1.13. The inverse I−1 of a fractional ideal I is also a fractional ideal.

Proof. Suppose that a1, . . . , an generate I , and that a1, . . . , ak are the generators that are not in
A. If all of the generators are in A, then clearly A ⊂ I−1 and I 6= ∅. If not, let ai be represented
by the fraction ri/si, and consider the element c = s−11 · · · s

−1
k . It is clear that cI ⊂ A, hence that

c ∈ I−1. The inverse I−1 is therefore non-zero. It remains to show that I−1 is finitely generated as
an A-module. Let x ∈ I be non-zero. Clearly xI−1 ⊂ A. Since A is noetherian, we can conclude
that xI−1 is finitely generated, and also that x−1xI−1 = I−1 is finitely generated.
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Let JA denote the set of all fractional ideals of a Dedekind domain A.

Proposition 1.14. The set JA forms an abelian group under multiplication, with A = (1) as the
unit.

Proof. Let I and J be fractional ideals. Clearly IJ = JI is a fractional ideal and (1)I = I(1) =
I . It therefore remains to show that II−1 = A = (1).

By the definition of I−1, it is clear that II−1 ⊂ A. Suppose that I is generated by a1, . . . , an,
where a1, . . . , ak are the only generators that are not in A. Let x = (a1 · · · ar)−1. It is clear that
x ∈ I−1, and hence that 1 = a1 · · · arx ∈ II−1.

Remark 1.15. For every fractional ideal I , there exists an element c ∈ A such that cI = (c)I ⊂
A. By Proposition 1.9, (c)I can be factored uniquely into a product of prime ideals, (c)I =

P e11 · · ·P enn . We can also factor (c) in a unique way as a product of prime ideals, (c) = Q
e′1
1 · · ·Q

e′m
m .

Hence
I = P e11 · · ·P

en
n Q

−e′1
1 · · ·Q−e′mm .

The factorization is also independent of the choice of c. We can therefore conclude that JA is the
free abelian group on the set of non-zero prime ideals.

The map f : K× → JA given by x 7→ (x)A, is a group homomorphism with kernel A×, the
units of A. The image of f is the subgroup of principal fractional ideals, denoted by PA.

Definition 1.16. The ideal class group Cl(A) is the quotient group JA/PA.

The class group is also the cokernel of f , and fits into the following exact sequence

1 // A× // K×
f

// JA // Cl(A) // 1.

The sequence above shows us that the units A× and the ideal class group Cl(A), measure how
far off f is from being an isomorphism. In other words, they measure, respectively, what is “lost”
and what one has to “add” when passing from elements (numbers) to ideals. For example A, is a
unique factorization domain if and only if Cl(A) = 0.

From now on we will only be interested in the case where A is the ring of integers OK of a
number field K.

Definition 1.17. The absolute norm N(I) of an ideal I ⊂ OK is defined by

N(I) = |OK/I| ∈ N>0,

and is a positive natural number.

If (a) is a principal ideal, then N((a)) = |NormK/Q(a)|. The absolute norm also distributes
over products of ideals.
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Proposition 1.18 (Minkowski Bound Theorem). Let L be a number field of degree n. Then for
every fractional ideal I , there exists an ideal I ′ and an element a, such that aI = I ′ and

N(I ′) ≤ n!

nn

( 4

π

)s√
|dL|,

where s is the number of pairs of complex embeddings of L.

Proof. See [17, p. 34] for a proof.

The number n!
nn ( 4

π )s
√
|dL| is called the Minkowski Bound of L.

Theorem 1.19. The ideal class group of a number field Cl(L) is finite.

Proof. The result follows immediately from the Minkowski Bound Theorem.

Remark 1.20. From the proof of Lemma 1.13 it is clear that every fractional ideal I can be written
as a product I = (a)I ′ of an ideal I ′ and a principal fractional ideal (a). We can therefore represent
every class in the ideal class group by an ideal. The ideal classes to prime ideals with norm less
than the Minkowski Bound, will therefore generate the ideal class group.

Example 1.21. Let K = Q(
√
−5). The discriminant dK = −20, which gives the Minkowski

Bound
N(I) ≤ 2

22
(
4

π
)
√

20 =
4

π

√
5 < 3.

We have seen that OK is not a unique factorization domain, hence Cl(K) 6= 0. From Remark
1.20 we can conclude that Cl(L) is generated by the prime ideals above 2. In the next chapter
we will see that the prime number 2 ramifies in all quadratic extensions Q(

√
D) when D = 2, 3

mod 4, hence
Cl(L) ≈ Z/2.

1.3 Galois Theory

We will mostly use Galois theory in the study of ideal factorization. Central to this scheme is the
Hilbert ramification theory, but first some general theory will be presented.

Definition 1.22. An extension L/K of number fields is Galois if every embedding of σ : L ↪→ C,
that is the identity on K, maps L onto itself.

Definition 1.23. If L/K is a Galois extension of number fields, we define the Galois group
Gal(L/K) of L/K to be the group of automorphisms {σ : L→ L | σ|K = idK}.

Proposition 1.24. If L/M/K is a tower of Galois extensions, we have the following relation
between the Galois groups Gal(L/K), Gal(L/M) and Gal(M/K):

Gal(L/K)/Gal(L/M) = Gal(M/K).

Proof. See [6, p. 451] for a proof.
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Furthermore, if N ⊂ Gal(L/K) is a normal subgroup then the fixpoints LN = {x ∈ L|σx =
x for all σ ∈ N} is a Galois extension of K with Galois group Gal(M/K)/N . We have the
following correspondence:

Proposition 1.25. There is a one-to-one inclusion reserving correspondence between normal sub-
groups N of Gal(L/K) and Galois subfields L ⊂M ⊂ K. The correspondence is given by

N 7→ LN .

Proof. See [6, p. 451] for a proof.

Suppose that a is an integral element inK. It is easy to check that σa is also an integral element
in K for all σ ∈ Gal(L/K). Furthermore, if P ⊂ OK is a prime ideal, σ(P ) is also a prime ideal.
We will therefore have well-defined group actions of the Galois group on both OK and the set of
prime ideals in OK . The latter action can easily be extended to the ideal class group.

Let L/K be an extension of number fields. Every prime ideal P ⊂ OL lies above a unique
prime ideal p = OK ∩ P . The ideal pOL factors as a product

pOL = P e11 · · ·P
er
r ,

where the Pi’s are the prime ideals above p. The number ei is called the ramification index of Pi.
By dividing out by p and Pi, we get a finite field extension

OL/Pi

OK/p.

The degree of this extension fi = [OL/Pi : OK/p] is called the inertia degree.

Proposition 1.26. If L/K is a finite extension of degree n, and p ⊂ OK is a prime ideal, then

r∑
i=1

eifi = n.

Proof. See [17, p. 46] for a proof.

Remark 1.27. In some cases we can explicitly find the factorization of a given prime ideal. Sup-
pose that L = K(θ), where θ is a primitive element with minimal polynomial h. Also suppose that
p ⊂ OK is a prime ideal that is relatively prime to the conductor F = {a ∈ OL | aOL ⊂ OK [θ]}.
Let

h̄ = h̄e11 · · · h̄
er
r

be the factorization of h̄ = h mod p ∈ (OK/p)[x]. If we choose monic hi ∈ OK [x] such that
h̄i = hi mod p, we can factorize

p = P e11 · · ·P
er
r ,

where Pi = (p, hi(θ))OL. See [17, p. 47] for more details.
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If r = n = [L : K], we say that p is totally split. If ei 6= 1 for some i, we say that p is ramified
and in the case where e1 = n, we say that it is totally ramified. If r = 1, e1 = 1 and f1 = n, we
say that p is inert.

It turns out that there is only a finite number of prime ideals that ramify. Ramification is also
totally controlled by the discriminant.

Proposition 1.28. If L/K is an extension of number fields with discriminant dL/K , then a prime
ideal p ⊂ OK ramifies if and only if it contains the principal ideal (dL/K)OK .

Proof. See [17, p. 201-202] for a proof.

Corollary 1.29. In an extension of number fields, ramification occurs for only a finite number of
prime ideals.

Proof. There is only a finite number of primes that contain (dL/K)OK , so the result follows
directly from Proposition 1.28.

Let L/K be a Galois extension of number fields and P ⊂ OL a prime above p ⊂ OK .
Since σ ∈ Gal(L/K) fixes K, it also fixes p, hence σ(P ) is above p for all σ ∈ Gal(L/K). If
p = P e11 · · ·P

ek
k , then Gal(L/K) permutes the Pi transitively. Furthermore, if σ ∈ Gal(L/K)

maps Pi to Pj , it induces an isomorphism σ̄ : OL/Pi → OL/Pj , so ei = ej and fi = fj for all
i, j. We can therefore conclude that if L/K is a Galois extension, then the equation of Proposition
1.28 turns into

n = efr.

Definition 1.30. If P is a prime ideal of OL, then the subgroup

GP = {σ ∈ Gal(L/K) | σP = P}

of Gal(L/K) is called the decomposition group of P . The field

ZP = {x ∈ L | σx = x for all σ ∈ GP }

is called the decomposition field of P .

A prime ideal p ⊂ OK splits completely in OZP , and the prime ideal P ∩ OZP is the only
prime ideal in OZP that is below P , i.e. [L : ZP ] = ef .

The field extension (OL/P )/(OK/p) is normal, and we get a surjective group homomorphism

φ : Gal(L/K)P → Gal((OL/P )/(OK/p)).

For a more detailed description of the theory above, we refer the reader to [17, p. 55-56].

Definition 1.31. Let IP denote the kernel of

φ : Gal(L/K)→ Gal((OL/P )/(OK/p)).

The subgroup IP is called the inertia group of P over K. The fixed field TP = {x ∈ L | σx =
x for all σ ∈ IP } is called the inertia field of P over K.
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Theorem 1.32. Let L/K be Galois and P ⊂ OL prime above p ⊂ OK with n = efr. Then the
decomposition field and the inertia field fit into a tower of fields

K ⊂ ZP ⊂ TP ⊂ L

with the following properties:

• The degree [ZP : K] = r, and p is totally split in ZP

• The degree [TP : ZP ] = f , and P ∩ ZT is inert in TP

• The degree [L : TP ] = e, and P ∩ TP is totally ramified in L

Proof. For a proof see [17, p. 56-58].

Example 1.33. Let K = Q and L = Q(
√
D), where D is squarefree. From Corollary 1.7, we

know that the ring of integers OL is given by

OL =

{
Z[
√
D] if D ≡ 2, 3 mod 4

Z[1+
√
D

2 ] otherwise,

and that the discriminant dL is given by

dL =

{
4D if D ≡ 2, 3 mod 4

D otherwise.

Since every quadratic number field is Galois and of degree two over Q, there are three different
ways in which we can factor a prime ideal. If e = 2, p will ramify completely. If f = 2, p will be
inert, and if r = 2, p will split completely.

If D ≡ 2, 3 mod 4, the conductor equals (1). On the other hand, if D ≡ 1 mod 4, the
conductor equals (2), so for odd primes p we get:

• p ramifies if and only if p | D

• p is inert if and only if x2 −D mod p is not solvable and p - D

• p is totally split if and only if x2 − d mod p is solvable and p - D

If p = 2, then p ramifies if and only if D ≡ 2, 3 mod 4. For the last cases, assume that
D ≡ 1 mod 4. We will write L = Q(1+

√
D

2 ). The primitive element 1+
√
D

2 has a minimal
polynomial h = x2 − x+ 1−D

4 , and the conductor is (1). The polynomial h mod 2 is solvable if
and only if 1−D

4 ≡ 0 mod 2, which is equivalent to D ≡ 1 mod 8. Therefore, when p = 2, we
find that:

• 2 ramifies if and only if D ≡ 2, 3 mod 4

• 2 is inert if and only if D ≡ 5 mod 8

• 2 splits if and only if D ≡ 1 mod 8

11



2 The Reflection Theorem

In 1932, Arnold Scholz published an article Über die Beziehung der Klassenzahlen quadratizcher
Körper zueinander in Journal für die reine und angewandte Mathematik 166, in which he formu-
lated and proved what would later be known as the reflection theorem.

Theorem 2.1 (The Reflection Theorem). If D is positive and squarefree, then the following for-
mula holds:

rk3 Cl(Q(
√
D)) ≤ rk3 Cl(Q(

√
−3D)) ≤ rk3 Cl(Q(

√
D)) + 1.

In this section we will go through the proof of the reflection theorem that is given in Lawrence
C. Washington’s Introduction to Cyclotomic Fields. The proof uses results from representation
theory, class field theory and Kummer theory, in addition to the basic number theory that we went
through in Section 1.

Recall that the p-rank rkpG of a finite abelian groupG is the vector space dimension of Fp⊗ZG
as a Fp vector space. The p-rank is also equal to the number of generators of the Sylow p-subgroup
of G. If A is the p-Sylow subgroup of G, we have

rkp G = rkp A = dimZ/(p) Z/(p)⊗Z A = dimZ/(p) A/pA.

Let G be an abelian group, and let R be a ring. The group ring R[G] consists of elements∑
g∈G aigi, ai ∈ R, with only finitely many ai different from 0. Multiplication and addition in

the group ring R[G] are defined in the obvious way.
If G is an abelian group, we will denote Ĝ = Hom(G,C×), the character group of G.

Definition 2.2. Let G be a finite abelian group and Ĝ the character group. The elements

εφ =
1

|G|
∑
g∈G

φ(g)g−1 ∈ C[G],

where φ ∈ Ĝ, are called the orthogonal idempotents of the group ring C[G].

The name “orthogonal idempotents” stems from the following set of properties

Lemma 2.3. The orthogonal idempotents satisfy

(i) ε2φ = εφ

(ii) εφεθ = 0 if φ 6= θ

(iii) 1 =
∑

φ∈Ĝ εφ

(iv) εφg = φ(g)εφ for all g ∈ G.

Proof. The properties (i), (ii), (iii) and (iv) are proved by straightforward calculations, and will
therefore be left to the reader.
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LetR be a ring andG a group, such that |G|−1 ∈ R. Also suppose that there exists a subgroup
N ⊂ R× such that Hom(G,N) ≈ Hom(G,C×). By letting Ĝ = Hom(G,N), we can define
orthogonal idempotents in R[G] by the same recipe as for C[G]. The properties of Lemma 2.3
will clearly hold in this more general setting.

If R is such a ring and M is an R[G]-module, we may from the properties (i), (ii) and (iii)
decompose M as

M =
⊕
φ∈Ĝ

εφM.

Example 2.4. Let R = Zp be p-adic integers, and let A ⊂ Cl(Q(ζp)) be the p-Sylow subgroup.
Since (A)p

k
= 1 for k >> 0, we can consider A as a Zp-module. The module structure is given

by the following multiplication: If s =
∑
aip

i ∈ Zp and I ∈ A, then

sI = I
∑
aip

i
= I

∑k
i=0 aip

i
.

The Galois group G = Gal(Q(ζp)) also acts on A. We can therefore decompose

A =

p−1⊕
i=1

εiA

as a Zp[G]-module.

A finite extension of number fields L/K is called unramified if every prime ideal p ⊂ OK is
unramified in OL. It is also called abelian if Gal(L/K) is abelian. Let K be a number field. The
maximal unramified abelian field extension L/K, is called the Hilbert class field of K. The next
well-known result belongs to class field theory.

Theorem 2.5. Let L be the Hilbert class field of an number field K. Then

Gal(L/K) ≈ Cl(K).

Proof. See [17, p. 399] for a proof.

Consider the Galois extension L/K, with Galois groupG = Gal(L/K). LetM be the Hilbert
class field of L. If σ̃ ∈ Gal(M/K) is some extension of σ ∈ G, then

σ̃−1φσ̃ ∈ Gal(M/L), for φ ∈ Gal(M/L).

The automorphism σ̃−1φσ̃ is also independent of the choice of the extension of σ. We can there-
fore act on Gal(M/L) by elements of G. This action makes Gal(M/L) into a Z[G]-module, and
the isomorphism in Theorem 2.5 into a Z[G]-isomorphism ([24, p. 188]).

If L/K is a Galois extension of number fields and M is the Hilbert class field of L, then the
subgroup N = (Cl(L))p of Cl(L) corresponds to a subfield L′ ⊂M by the fundamental theorem
of Galois. This gives us a tower of fields

Q K L L′ M,

13



where G = Gal(L/K), (Cl(L))p = Gal(M/L′) and

Gal(L′/L) = Cl(L)/(Cl(L))P ≈ A/Ap,

where A is the p-Sylow subgroup of Cl(L). The last group is not only a p-group, but is also
elementary.

Definition 2.6. Let K be a number field, and suppose that a primitive n-th root of unity ζn is in
K. The field extension L/K is called a Kummer extension if Gal(L/K) is abelian with group
exponent n.

Lemma 2.7. Let L/K be a Kummer extension of exponent n. Then there exists a subgroup
B ⊂ K×/(K×)n such that L = K( n

√
B).

Proof. See [17, p. 278] for a proof.

We are now ready to prove the Reflection Theorem.

Proof of the Reflection Theorem. Let L = Q(
√
D, ζ3) and G = Gal(L/Q). The number field L

has three quadratic subfields:

L = Q(
√
D, ζ3)

ooooooooooo

PPPPPPPPPPPP

Q(
√
D)

OOOOOOOOOOOOO
Q(ζ3) Q(

√
−3D)

nnnnnnnnnnnnnn

Q

The first objective of the proof is to decompose the 3-Sylow subgroups A of Cl(L) as a di-
rect sum of the 3-Sylow subgroup AQ(

√
D) and AQ(

√
−3D) of Cl(Q(

√
D)) and Cl(Q(

√
−3D)),

respectively.
Let

{1, τ} = Gal(L/Q(
√
D)),

{1, σ} = Gal(L/Q(
√
−3D)) and

{1, στ} = Gal(L/Q(ζ3)).

The elements of the character group ĜmapG to the multiplicative group {±1} ⊂ C×.We can
therefore decompose the identity element in the the group ring Z3[G] as a sum of the orthogonal
idempotents

1 = ε1 + ε2 + ε3 + ε4.

14



The orthogonal idempotents are

ε1 =
(1 + τ

2

)(1 + σ

2

)
,

ε2 =
(1 + τ

2

)(1− σ
2

)
,

ε3 =
(1− τ

2

)(1 + σ

2

)
and

ε4 =
(1− τ

2

)(1− σ
2

)
.

Let A denote the 3-Sylow subgroup of the ideal class group of L. As in Example 2.4, we can
make A into a Z3[G]-module and decompose it as A = ⊕εiA.

If a ∈ A then ε1a = 1
4aσ(a)τ(a)στ(a) = 1

4NormL/Q(a), so ε1A = 1. Similarly, we see that

ε2 =
1

4
(1− σ)NormL/Q(

√
D),

ε3 =
1

4
(1− τ)NormL/Q(

√
−3D) and

ε4 =
1

4
(1− τ)NormL/Q(ζ3).

Since Cl(Q(ζ3)) = 1, ε4A = 1 and

A = ε2A⊕ ε3A.

If we can show that ε2A = AQ(
√
D) and ε3A = AQ(

√
−3D), then our first objective will be

achieved. Since ε2 = 1
4(1− σ)NormL/Q(

√
D), the inclusion ε2A ⊂ AQ(

√
D) is clear. On the other

hand, we may consider AQ(
√
D) as a subgroup of A. This gives us

ε2A = ε22A ⊂ ε2AQ(
√
D) ⊂ ε2A.

If I ∈ AQ(
√
D), it is clear that τI = I and (1 + σ)I = 1. Thus σI = I−1 and

1

4
(1− σ)(1 + τ)I = (I4)

1
4 = I.

We can therefore conclude that ε2AQ(
√
D) = AQ(

√
D), and that

ε2A ⊂ AQ(
√
D) ⊂ ε2A.

Similarly, it follows that ε3A = AQ(
√
−3D)).

We will now use Kummer theory in the form of Lemma 2.7 and Class Field theory in the form
of Theorem 2.5 to compare the size of AQ(

√
D) and AQ(

√
−3D).

Let L′ be the subfield of the Hilbert class field of L such that the Galois group

H = Gal(L′/L) ≈ A/A3.
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Since L′ is a Kummer extension of exponent 3, there exists a Z3[G]-submodule B ⊂ L×/(L×)3

such that L′ = L( 3
√
B). Let H ×B be the Z3[G]-module given by the diagonal action. Define

φ : H ×B → µ3,

where µ3 is the group of 3-roots of unity, by

φ(h, b) =
h( 3
√
b)

3
√
b
.

Since ζ3 ∈ L, G acts on µ3, making it a Z3[G]-module. Consider H ×B as a G-module equipped
with the diagonal action. Note that

gb = g(
3
√
b)3 = (g̃

3
√
b)3,

where g̃ is some extension of g, so we get that

3
√
gb = ζi3g̃

3
√
b

for some i. This gives us

φ(hg, bg) =
g̃hg̃−1( 3

√
gb)

( 3
√
gb)

=
g̃hg̃−1ζi3g̃

3
√
b

ζi3g̃
3
√
b

=
ζi3g̃hg̃

−1g̃ 3
√
b

ζi3g̃
3
√
d

=
g̃h 3
√
b

g̃ 3
√
b

= g
(h 3
√
b

3
√
b

)
,

and hence that φ is G-equivariant.
The map b 7→ φ(−, b) from B to Hom(H,µ3) = Ĥ , is clearly injective. It is also surjective,

since for every i, there is an h such that h(b
1
3 ) = ζi3b

1
3 . Hence φ is nondegenerate. This gives us

isomorphisms
B ≈ Ĥ ≈ H ≈ A/A3,

where the second isomorphism is neither G-linear nor canonical. Since the last isomorphism is
G-linear,

εiH ≈ εiA/A3

for all i. In particular, ε1H = ε4H = 1 so

φ(εiH, εjB) = 1, for i = 1, 4.
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Let h ∈ ε2H , and let I ∈ ε2(A/A
3) be the image of h under the isomorphism ε2H ≈

ε2A/(A)3. Since ε2A = AQ(
√
D), we can consider I as an element of AQ(

√
D)/(AQ(

√
D))

3. It
follows that σI = I−1 and τI = I , so σh = h−1 and τh = h. Similarly, if h ∈ ε3H , then σh = h
and τh = h−1.

If b is in ε1B, then b is also in Q×/(Q×)3, and σb = τb = b. On the other hand, if b is in
ε2B, we only know that τb = b. Similarly, we know that σa = a and στb = b for a ∈ ε3B and
b ∈ ε4B, respectively.

Assume that h ∈ ε2H , b ∈ ε1B. Since τh = h and τb = b,

φ(h, b) = φ(τh, τb) = τφ(h, b).

On the other hand, τ does not act trivially on Q(ζ3) so φ(h, b) = 1. Similar arguments show that

φ(h, b) = 1

when h ∈ εiH and b ∈ εjB for pairs

(i, j) ∈ {(2, 2), (3, 1), (3, 3), (3, 4)}.

For i = 2, 3, h ∈ εiH and b ∈ ε4B, we see that

φ(h, b)−1 = φ(h−1, b) = φ(στh, στb) = στφ(h, b) = φ(h, b),

and hence φ(h, b) = 1. It is therefore clear that

φ(εiH, εjB) = 1,

unless (i, j) = (2, 3), (3, 2). Since φ : H ×B → µ3 is nondegenerate,

φ : ε2H × ε3B → µ3 and φ : ε3H × ε2B → µ3,

have to be nondegenerate as well.
The field L( 3

√
b) is an unramified extension of L. We can therefore find an ideal I such that

I3 = (b) in OL (see exercise 9.1 in [24, p. 182]). Sending each b ∈ B to the ideal class of
the corresponding I , defines a map ψ : B → A. It is welldefined since, if x3 ∈ (L×)3, then
(x3b) = (xI)3 and (x)I is in the same ideal class as I . Since g(b) = (gb) = (gI)3, the map is
clearly G-linear. Suppose that ψ(b) = (1). Then (b) = (a)3 for some a ∈ L, and hence b = ua3,
where u is a unit in OL, so

kerψ ⊂ O×L/(O
×
L )3.

Since ψ is G-linear we, get maps

ψ|ε2B : ε2B → ε2A,

ψ|ε3B : ε3B → ε3A,
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and kerψ ∩ ε2B is a subgroup of ε2(O×L/(O
×
L )3). Similarly, kerψ ∩ ε3B is a subgroup of

ε3(O×L/(O
×
L )3). It is clear that ε2(O×L/(O

×
L )3) is contained in O×

Q(
√
D)
/(O×

Q(
√
D)

)3. By the
Dirichlet unit Theorem (see for example [17, p. 42]), we can conclude that

ε2(O×L/(O
×
L )3) ≈ 0 or Z/3.

Since Q(
√
−3D) 6= Q(ζ3) for D 6= 1, we get

ε3(O×L/(O
×
L )3) = 0.

Putting the above together, we get

rk3 Cl(Q(
√
D)) = rk3ε2A

= rk3 ε2H

= rk3 ε3B

≤ rk3 ε3(O×L/(O
×
L )3) + rk3 ε3A

= 0 + rk3 Cl(Q(
√
−3D)),

and

rk3 Cl(Q(
√
−3D)) = rk3 ε3A

= rk3 ε3H

= rk3 ε2B

≤ rk3 ε2(O×L/(O
×
L )3) + rk3 ε2A

≤ 1 + rk3 Cl(Q(
√
D)).

There are examples of both the case where rk3 Cl(Q(
√
D)) = rk3 Cl(Q(

√
−3D)), and the

case where rk3 Cl(Q(
√
D)) + 1 = rk3 Cl(Q(

√
−3D)).

Example 2.8. By using the computer algebra system PARI/GP (see Section 5), one can easily
verify that D = 79 is an example where

rk3 ClQ(
√

79) = rk3 ClQ(
√
−237) = 1.

One can also use PARI/GP to show that D = 69 is an example of the case where

rk3 ClQ(
√

69) = 0 but rk3 ClQ(
√
−13) = 1.
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3 Classical Algebraic K-theory

Classical algebraic K-theory usually refers to the study of the three functors K0, K1 and K2 from
the category of associative rings with multiplicative unit,Rings, to the category of abelian groups,
Ab. As we will see, there are several equivalent, but different, ways to define the K-functors. It
is also not immediately clear how the different K-functors relate to each other. All of this may
lead the reader to question the intrinsic value of Algebraic K-theory. On the other hand, there is
a big picture theory usually referred to as “higher algebraic K-theory” that generalizes the three
classical K-functors. The two most important generalizations are Quillen’s Q-construction and
Waldhausen’s S•-construction. Both of these constructions make it clear how the different Ki’s
are related and also what type of information they give.

In this section we will define the classical K-functors and study in more detail the structure of
K2(OK) for a number field K. The main theorem in the last section is central in our proof of the
reflection theorem for K2.

3.1 The functors K0, K1 and K2

Let R be an associative ring with a multiplicative identity, and denote by Proj(R) the category
of finitely generated projective left R-modules. The isomorphism classes of objects in Proj(R)
form a set [Proj(R)], and for an R-module M , let [M ] be its isomorphism class. We can define a
summation ⊕ on the set of isomorphism classes by

[M ]⊕ [N ] = [M ⊕N ].

This summation makes the set of isomorphism classes into a commutative monoid with identity
the zero module.

Let M be a commutative monoid. The Grothendieck group of M , K0(M), is the group
completion of M . It can be constructed as a quotient

K0(M) = M ×M/ ∼,

where (m1,m2) ∼ (n1, n2) if there exists a k ∈ M such that m1 + n2 + k = n1 +m2 + k. The
Grothendieck group has the following universal property:

There exists a monoid homomorphism i : M → K0(M) such that for every monoid homo-
morphism f : M → A, where A is an abelian group, there is a unique group homomorphism
f̃ : K0(M)→ A, such that the following diagram commutes

M
f

//

i
��

A

K0(M).
f̃

;;wwwwwwwww

Definition 3.1. Let R be an associative ring with a multiplicative identity. The group completion
of [Proj(R)] is called the Grothendieck group of R, and is denoted by K0(R), i.e.

K0(R) = K0([Proj(R)]).
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The functor K0 : Rings → Ab sends a ring R to the abelian group K0(R), and a ring
homomorphism f : R→ R′ to the group homomorphism K0(f) given on generators by

[P ] 7→ [R′ ⊗R P ],

where [P ] is a finitely generated projective left R-module.

Example 3.2. Let F be a field. Since all projective F -modules are free, we get an isomorphism
between the monoid [Proj(F )] and N by mapping [P ] to dimFP . By group completing both the
monoids, it is clear that

K0(F ) ≈ Z.

Remark 3.3. Although K0(R) contains a lot of information about the “additive” structure of the
category Proj(R), it also forgets most of the mapping structure of the same category. Consider
for example the two fields R and F2. Both K0(R) and K0(F2) are isomorphic to Z. But the
vector space (F2)

2 is only isomorphic to itself in 6 different ways, while on the other hand R2 is
isomorphic to itself in uncountably many ways.

Let Aut(Proj(R)) be the category whose objects are pairs (M,α), where M is an object
in Proj(R), and α : M → M is a isomorphism. A morphism f : (M,α) → (N, β) in
Aut(Proj(R)) is a morphism f : M → N in Proj(R) such that β ◦ f = f ◦ α.

Definition 3.4. The Bass group K1(Proj(R)) of Aut(Proj(R)) is defined as the abelian group
with isomorphism classes, [M,α], of Aut(Proj(R)) as generators, and subject to the following
relations:

[M,α] + [N, β] = [M ⊕N,α⊕ β],

[M,α] + [M,α′] = [M,α ◦ α′].

There is a description ofK1(Proj(R)) using the general linear groupGLn(R). We can embed
GLn(R) into GLn+1(R) by mapping a matrix P to the matrix[

P 0
0 1

]
.

This gives us a directed system

GL1(R)→ GL2(R)→ · · ·GLn(R)→ · · · ,

whose colimit is denoted by GL(R). A matrix m in GL(R) is called elementary if it has only one
off-diagonal entry different from 0.

A well known theorem by Whitehead states that

Theorem 3.5. The subgroupE(R) generated by elementary matrices is the commutator subgroup
of GL(R).

Proof. See [15, §4] for a nice proof.

20



Definition 3.6. The first algebraic K-group of R is defined as

K1(R) = GL(R)/E(R) = GL(R)ab.

Hyman Bass shows in his Algebraic K-theory ([3]) that there is a natural isomorphism between
K1(Proj(R)) and K1(R).

In the case where R is a ring of integers for some number field, both K0(R) and K1(R)
correspond to classical invariants:

K0(R) ≈ Z⊕ Cl(R) and

K1(R) ≈ R×.

The first isomorphism follows from a result of Steinitz (see [15, p. 9-18]), which says that each
finitely generated projective module M is isomorphic to Rn⊕ I , where I is a fractional ideal, and
is true in general for all Dedekind domains. The second isomorphism is given by the determinant
map det : GL(R)→ R×, which was shown to be an isomorphism for rings of integers in number
fields by Bass, Milnor and Serre in [2].

Let eai,j , be the elementary matrix with entry a in the (i, j)-th place. Then

eai,je
b
i,j = ea+bi,j ,

and for the commutators we have the relations

[eai,j , e
b
k,l] =


1 if j 6= k, i 6= l

eabi,l if j = k, i 6= l

e−bak,j if j 6= k, i = l.

Definition 3.7. For n ≥ 3, we will define the Steinberg group St(n,R) of R as the group gener-
ated by formal symbols xai,j , 1 ≤ i, j, n and a ∈ R, subject to the following relations:

(1) xai,jx
b
i,j = xa+bi,j

(2) [xai,j , x
b
j,l] = xabi,l for i 6= l

(3) [xai,j , x
b
k,l] = 1 if j 6= k, i 6= l

We can define a canonical homomorphism

φn : St(n,R)→ GLn(R)

for every n, by mapping xai,j to eai,j . By passing to the colimit, we obtain the map

φ = colim φn : St(R)→ GL(R).

Note that φ(St(R)) = E(R).

Definition 3.8. The kernel of the homomorphism φ : St(R)→ GL(R) will be called K2(R).
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Theorem 3.9. The group K2(R) is the center of the Steinberg group St(R).

Proof. See [15, §5] for a proof.

The abelian group K2 fits into the exact sequence

0 // K2(R) // St(R) // GL(R) // K1(R) // 0.

As Milnor explains in [15, §5], the intuition you should have in mind, is that K2(R) forms the set
of nontrivial relations between elementary matrices, i.e. relations not of the form (1), (2) and (3).
In fact, any relation

ea1i1,j1e
a2
i2,j2
· · · earir,jr = I

gives rise to an element xa1i1,j1x
a2
i2,j2
· · ·xarir,jr in K2(R) and every element in K2(R), can be ob-

tained in this way.

Example 3.10. The matrix

e11,2e
−1
2,1e

1
1,2 =

[
0 1
−1 0

]
inE2(Z) represents a 90 degree rotation, and has order 4. This gives rise to an element (x11,2x

−1
2,1x

1
1,2)

4

in K2(Z). It turns out that
K2(Z) ≈ Z/2,

and generated by (x11,2x
−1
2,1x

1
1,2)

4. See [15, §10] for the complete computation.

There is also another interesting definition of the Steinberg group which is more closely related
to group homology.

Definition 3.11. A central extension of a group G consists of a pair (E,ψ), where E is a group
and ψ : E → G is a surjective homomorphism such that ker(ψ) is a central subgroup of E.

A morphism of central extension (E,ψ) to (E′, ψ′) is a homomorphism from E to E′ over G.

Definition 3.12. A central extension of G is called the universal central extension if it is the initial
object in the category of all central extensions of G.

Definition 3.13. A group G is called perfect if [G,G] = G.

Since [G,G] = G for a perfect group, Gab = 1, and hence the first homology group H1(G;Z)
vanishes.

Proposition 3.14. A group G admits a universal central extension if and only if G is perfect.

Proposition 3.15. There is a canonical isomorphism between the kernel ker ψ : E → G of the
universal central extension of G, to the second homology group H2(G;Z).

The proofs of Propositions 3.14 and 3.15 can be found in [15, p. 45-46].
Since E(R) is a perfect group, and its universal central extension is the Steinberg group (see

[15, p. 47-48]), we get that
K2(R) = H2(E(R);Z).
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3.2 Steinberg Symbols and K2

Let R be a commutative ring. Suppose that A,B ∈ E(R) are matrices that commute. If a, b ∈
St(R) are representatives of A and B, respectively, i.e. φ(a) = A and φ(b) = B, then the
commutator [a, b] = aba−1b−1 is in K2(R), since φ([a, b]) = ABA−1B−1 = I . The commutator
[a, b] will be denoted by

A ? B.

To see that A?B is independent of the choice of representatives, consider another representa-
tive a′ of A. Since φ(a) = φ(a′), ac = a′, where c is in the center of St(R), we get

[a′, b] = a′ba′−1b−1 = acbc−1a−1b−1 = aba−1b−1 = [a, b].

This way of producing elements ofK2(R), will give rise to a skew-symmetric bimultiplicative
paring

{−,−} : K1(R)⊗K1(R)→ K2(R), (1)

see [15, §8] for more details.
In the case R = F is a field, we have that K1(F ) ≈ F×, and hence a pairing

{−,−} : F× ⊗ F× → K2(F ).

It turns out that K2(F ) is generated by the symbols {x, y}, where x, y ∈ F×. Furthermore,
H. Matsumoto identified the kernel of this pairing in his thesis [13].

Theorem 3.16 (Matsumoto). The abelian groupK2(F ) can be viewed as the abelian group gener-
ated by symbols {x, y}, with x, y ∈ F× subject to the following relations and their consequences:

(1) {x, 1− x} = 1 for x 6= 0, 1

(2) {x1x2, y} = {x1, y}{x2, y}

(3) {x, y1y2} = {x, y1}{x, y2}

Proof. For a complete proof of Matsumotos theorem, see [15, §12].

Consider a bimultiplicative map

(−,−) : F× × F× → A,

where A is an abelian group, that satifies (x, 1 − x) = 1, for x 6= 1. Such a map will be called a
Steinberg symbol. And Matsumoto’s theorem is equivalent to the following proposition:

Proposition 3.17. Given any Steinberg Symbol (−,−) : F× × F× → A, there exists one unique
map α : K2(F )→ A such that the diagram

F× × F×
(−,−)

//

{−,−} &&LLLLLLLLLL A

K2(F ),

α

OO

commutes.
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Proof. See [15, p. 94] for a proof of the equivalence of Theorem 3.16 and Proposition 3.17.

Recall that a discrete valuation v on F is a homomorphism from the multiplicative group F×

to the additive group of integers, such that v(x + y) ≥ min (v(x), v(y)). The discrete valuation
ring Ov consisting of all the elements x such that v(x) ≥ 0, is called the associated valuation ring
of v. The ring Ov is a local ring, with maximal ideal mv = {x ∈ F | v(x) > 0}. The residue
field of v, kv, is the quotient Ov/mv.

If F is a number field, then every non-zero prime ideal P in OF will give rise to a discrete
valuation ring (OF )P , and hence a discrete valuation v such that (OF )P = Ov. Conversely, for
every discrete valuation v on F , Ov = (OF )P for some prime ideal P .

Let x, y be in F× and v be a discrete valuation on F . The formula

fv(x, y) = (−1)v(x)v(y)xv(y)y−v(x) (2)

gives rise to a bimultiplicative map from F× × F× to F×. It is clear that v(fv(x, y)) = 0 for all
x, y, so fv(x, y) ∈ O×v .

Consider the Steinberg symbol

τv : F× × F× → k×v ,

where τv is the composition of fv and the quotient map q : Ov → kv. Formally,

τv(x, y) = q(f(x, y)) = (−1)v(x)v(y)xv(y)y−v(x) mod mv.

From Proposition 3.17, we know that τv factors through K2(F ). We will abuse the notation
and denote the induced map from K2(F ) to k×v by τv as well.

Let T be the set of the non-zero prime ideals of OF . We get tame symbols

τP : K2(F )→ k×P ,

for every prime P in T . Consider the product of the tame symbols

τ =
∏

τP : K2(F )→
∏
P∈T

k×P .

We can replace the product with a direct sum, since τP (a, b) = 1 for all but finitely many
prime ideals P .

The kernel of τ is called the tame kernel of F , and can be identified with K2(OF ).

Lemma 3.18. The map τ fits into a short exact sequence:

0 // K2(OF ) // K2(F )
τ //

⊕
P

k×P // 0,

where K2(OF ) has been identified with the tame kernel.
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Proof. Quillen’s localization sequence [20, Thm. 5] gives us the following long exact sequences:

//

⊕
P

K2(kP ) i∗ // K2(OF )
i∗ // K2(F )

∂ //

⊕
P

k×P
i∗ // O×F

i // F× // · · · // 0.

Clearly the inclusion i : O×F → F× is injective. Quillen also shows in [19] that K2i(k) = 0 for
all finite fields k and i > 0. Consider the commutative diagram with exact rows

0 // K2(OF )

��

i∗ // K2(F )
∂ //

id

��

⊕
P

k×P //

��

0

0 // ker(τ) // K2(F )
τ //

⊕
P

k×P // coker(τ) // 0,

where the top sequence comes from Quillen’s localization sequence, and the lower sequence is the
exact sequence associated with the map τ . If a, b ∈ O×F , then τP ({a, b}) = 1 for all primes P .
This gives us the vertical map K2(OF )→ ker(τ). The vertical map

⊕
P

k×P →
⊕

P k
×
P is just the

induced map.
The Snake Lemma gives us that K2(OF ) ≈ ker(τ). A theorem of Bass [4, Thm. 6] shows

that in the more general setting, where R is a Dedekind Domain with countably many maximal
ideals, coker(τ) = SL(R)/E(R), where SL(R) is the special linear group. By a theorem of
Bass, Milnor and Serre, SL(R)/E(R) vanishes when R is the ring of integers of some number
field ([2]).

Let F be a number field. A valuation on F is a function | | : F → R, such that the following
is satisfied:

• |x| ≥ 0, and |x| = 0 if and only if x = 0

• |xy| = |x||y|

• |x+ y| ≤ |x|+ |y|

We will disregard the trivial valuation | |, which satisfies |x| = 1 for all x ∈ F×. Every
valuation defines a norm on F , and hence induces a topology on F . We will say that two valuations
are equivalent if they define the same topology.

There are two kinds of valuations, archimedean and nonarchimedean. The nonarchimedean
valuations, in addition to satisfy the axioms above, also adhere to the strong triangle inequality:

|x+ y| ≤ max{|x|, |y|}.

We have seen that for every non-zero prime ideal, there exists a discrete valuation. Moreover,
every discrete valuation v gives rise to a nonarchimedean valuations | |v (see [17, Ch. II] for
details). In fact, for a number field F , every equivalence class of a nonarchimedean valuation can
be represented by a valuation | |v with v a discrete valuation.
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The equivalence classes of archimedean valuations can be represented by valuations | |τ given
by

|x|τ = |τ(x)|,

where τ is either a complex or real embedding of F .

Definition 3.19. A place v of a number field F is an equivalence class of valuations on F . The
nonarchimedean equivalence classes will be called finite places, and the archimedean ones will be
called infinite places.

Let F be a nonarchimedean local field of characteristic 0, i.e. it is complete with respect to a
nonarchimedean valuation | |P , where P is the corresponding ideal of the valuation ring. Suppose
that F contains the n-th roots of unity µn. We then get a Steinberg symbol( ,

P

)
n

: F× × F× → µn,

called the Hilbert symbol of order n. For a complete definition of the Hilbert symbol see [17, Ch.
V]. We will only give an explicit definition for some of the cases.

Example 3.20. Let (F, v) be a local nonarchimedean field of characteristic 0 that contains the
n-th roots of units µn. Consider the formula (2) for the tame symbol

fv(x, y) = (−1)v(x)v(y)yv(x)x−v(y).

It defines a bimultiplicative homomorphism from F× × F× to O×v . Assume that the residue field
k has order q and characteristic p. The field F must contain the (q − 1)-th roots of unity, so
n | (q − 1). Suppose now that the residue characteristic p of F does not divide n. The units O×F
of F can be written as a product

u = πkh(u)g(u)

in a unique way, where π is a prime element, h(u) ∈ µq−1 a (q − 1)-th root of unity and
g(u) ∈ 1 +mv is an element of the group of principal units (see [17, p. 136]). We can com-
pose fv and h, this gives us a map from F× × F× to µq−1, which we can map onto the subgroup
µn. Denote the new map by λv. We then have

λv(x, y) = (h((−1)v(x)v(y)yv(x)x−v(y)))q−1/n.

The λv defines a Steinberg symbol on F to the cyclic group of n elements µn. In the case
above, λv is equal to the Hilbert symbol on F , and is therefore often called the tame Hilbert
symbol of order n.

If F = R and n = 2, we get a Hilbert symbol
(
,
∞

)
2
, defined by

(a, b
∞

)
2

= (−1)
sgna−1

2
· sgnb−1

2 .

If F = C, the Hilbert symbols will be trivial.
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Now consider a number field F . For every finite and real infinite place v, we have a completion
F ⊂ Fv. For some general field L, let µ(L) denote the complete group of roots of unity contained
in L. Let m = |µ(F )| and mv = |µ(Fv)|. We can then define Steinberg symbols

λv : F× × F× // F×v × F×v // µ(Fv),

where the first map is the inclusion, and the second is the Hilbert symbol
(
,
v

)
mv

of order mv.

Theorem 3.21. Let F be a number field, with µn ⊂ F×. We have the following product formula
for the Hilbert symbols ∏

(λv(x, y))mv/n = 1,

where the product is taken over all finite and real infinite places v if n = 2, and over all finite
places when n > 2.

Proof. See [17, p. 414] for a proof.

The Steinberg symbols λv will again induce maps

λv : K2(F )→ µ(Fv),

which we can combine to get a map

λ = ⊕λv : K2(F )→
⊕

µ(Fv).

By the product formula of Theorem 3.21, it is clear that the different λv-s are linearly depen-
dent. Conversely, a theorem of Calvin Moore [16, Thm. 7.4] states that the product formula is the
only relation between the different λv-s, so we get the following theorem:

Theorem 3.22. The sequence

K2(F )
λ //
⊕
µ(Fv)

c // µ(F ) // 0,

is exact when c((xv)) =
∏

(xv)
mv/m.

Proof. See [16, p. 39] for the original proof. There is also a direct proof in [5].

The kernel W of λ is called the wild kernel. Let S be the set of all finite and real-infinite
places. Consider the commutative diagram

K2(F )
λ //

τ

��

⊕
v∈S

µ(Fv)

{{vv
vv

vv
vv

v

⊕
v finite

k×v
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The ker-coker sequence of this triangle relates the wild kernel to K2(OF ) in the following
way:

0 // W (F ) // K2(OF ) //
⊕

ker(µ(Fv) // k×v ) // µ(F ) // 0.

It will be useful to let
λn : K2(F )→

⊕
µn

denote the map given by
{a, b} 7→

⊕
λv(a, b)

mv/n,

where the sum is taken over all finite places for n > 2, and over all finite and real infinite places
for n = 2. Note that

λn = ⊕
( ,
v

)
n
.

The last Steinberg symbol we will look at relates K2 to Brauer groups.

Definition 3.23. Let A be an finite dimensional F -algebra. The algebra A is called central simple
over F if A is simple, i.e. it has no two-sided ideals other than 0 and itself, and the center of A,
Z(A) is F .

Let A and B be central simple algebras over F . The tensor product A ⊗F B is also a central
simple algebra over F , so it turns the set C(F ) of isomorphism classes of central simple algebras
into a multiplicative monoid with identity F . By the Artin-Webberburn Theorem, every central
simple algebra is determined up to isomorphism in the following way.

Proposition 3.24. Let A be a central simple algebra over F . Then there exists a natural number
n and a division algebra D over F , such that

A ≈Mn(D),

where Mn(D) is the algebra of n× n matrices over D.

Proof. This is a special case of the Artin-Webberburn Theorem that is stated and proved in
[18, p. 49].

We can therefore represent each isomorphism class of central simple F -algebras by the pair
(n,D). The division ring D is called the basic algebra, and is a representation of its isomorphism
class. Note that the tensor product of two division rings is not necessarily a division ring.

Define the relation ∼ by
(n1, D1) ∼ (n2, D2),

if and only if D1 ≈ D2.

Proposition 3.25. The relation∼ is an equivalence relation, andC(F )/ ∼ is a group with respect
to the tensor product.

Proof. For a complete proof see [18, p. 228].
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Let [A] denote the equivalence class of A in C(F ). The identity element is given by [F ], and
[A][B] = [A ⊗F B]. Since A ⊗F Aop ≈ Mm(F ), where Aop is the opposite ring of A with the
same algebra structure as A, it is clear that [A]−1 = [Aop].

Definition 3.26. The group Br(F ) = C(F )/ ∼ is called the Brauer group.

Let F be a number field that contains a primitive n-th root of unity ζn. For a, b ∈ F× consider
the algebra Aζn(a, b) over F that is the unital associative algebra of dimension n2 generated by
the formal symbols X,Y , subject to the following relations:

Xn = a, Y n = b and XY = ζnY X.

Proposition 3.27. The algebra Aζn(a, b) is central simple, and the map

ψζn : F× × F× → nBr(F )

given by
(a, b) 7→ [AζN (a, b)],

defines a Steinberg symbol on F . Here nBr(F ) denotes the subgroup of Br(F ) generated by all
elements with order dividing n.

Proof. See [15, p. 144] for a complete proof.

A natural question to ask, is how the symbol depends on the choice of ζn. It turns out that if
you consider another primitive n-th root ζ such that ζ = ζin, then

ψζ(a, b)
i = ψζn(a, b).

On the other hand, if i | n, we get that

ψζ(a, b) = ψζn(a, b)i.

For detailed computations see [15, p. 148].
This dependence can be fixed by tensoring with ζ, i.e., consider the Steinberg symbol

ζ ⊗ ψζ : F× × F× → µn ⊗ nBr(F ),

which sends (a, b) to the element ζ ⊗ ψζ(a, b). This symbol is independent of the choice of prim-
itive n-th root ζ, since if i is relative prime to n,

ζi ⊗ ψζi(a, b) = ζ ⊗ (ψζi(a, b))
i = ζ ⊗ ψζ(a, b).

John Tate proved in [22, Thm. 5.1] that the induced map

ζ ⊗ ψ : K2(F )/n→ µ⊗ nBr(F ),

is an isomorphism for the case where F is a number field or a global function field. It was later
proved by A. S. Merkurjev and A. A. Suslin that the result holds in general for all fields ([14]).
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When F is a local field, the subgroup nBr(F ) of all the elements in Br(F ) that has order
dividing n is cyclic. This follows from the classical result

Br(F ) ≈ Q/Z,

when F is local, see [18, p. 338]. On the other hand, if F is a number field, the Brauer group fits
into the following short exact sequence

0 // Br(F ) //

⊕
P

Br(FP ) // Q/Z // 0.

We can use this sequence to prove the next proposition, but first we should recall what is meant
by the ring of S-integers of a number field F .

Definition 3.28. Let S be a set of places containing the infinite places of a number field F . The
ring of S-integers denoted by OF,S is the ring

OF,S = {x ∈ F | v(x) ≥ 0 for all v /∈ S}.

Proposition 3.29. Let F be a number field containing the n-th roots of unity µn. Then the follow-
ing sequence is exact

0 // K2(F )/n
λn //

⊕
v
µn c // µn // 0,

where for n > 2, the sum is taken over all finite places v, and for n = 2, the sum is taken over all
finite and real infinite places.

Proof. See [11, Prop. 3.2] for a detailed proof.

Proposition 3.30. Let F be a number field that contains the n-th roots of unity, µn, and let S be
an arbitrary set of places that contains the infinite places and the primes dividing n. Then the
following sequence is exact

nK2(F )
τ //

⊕
P /∈S

µn f
// µn ⊗ Cl(OF,S) // 0,

where τ : nK2(F )→
⊕

v nk
×
v =

⊕
v µn is the tame symbol and f the map given by

(n)v 7→ ζn ⊗ [
∏

Pnvv ],

where Pv is the prime ideal corresponding to the finite place v.

Proof. Consider the exact sequence

F× //

⊕
P /∈S

Z // Cl(OF,S) // 0.
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The first map is given by the direct sum ⊕vP of the valuation maps vP , P /∈ S, and the second is
f as defined in the proposition. It is clear that this sequence is exact from the definition of the ideal
class group of OF,S . If we tensor the sequence above with µn, we get another exact sequence:

µn ⊗ F× //

⊕
P /∈S

µn // µn ⊗ Cl(OF,S) // 0.

Since the tensor product commutes with direct products, we can decompose the first map as⊕
(id⊗vP ). Each component id⊗vP maps ζ⊗a to ζ⊗vP (a), which we can identify with ζvP (a)

in µn. Now consider the weak Steinberg symbol restricted to µn ⊗ F×, τP : µn ⊗ F× → µn.
Recall that the weak symbol is given by the following formula:

a⊗ b 7→ (−1)vP (a)vP (b)bvP (a)a−vP (b) mod P.

For a = ζ ∈ µn, we get that

τP (ζ ⊗ b) = (−1)vP (ζ)vP (b)bvP (ζ)ζ−vP (b) mod P = ζvP (b),

and hence that the two maps τP and id ⊗ vP agree. We can therefore factor the map through
nK2(F ) to get the result.

3.3 Structure of K2(OK)/p

In this section, we will show two “structure” theorems for K2(OF )/p.

Theorem 3.31. Let F be a number field containing a primitive p-th root of unity, and let S0 be the
set of finite places above p. (If p = 2, S0 has to include all the real infinite places as well). The
following sequence is exact

0 // µp ⊗ Cl(OF [1p ]) l // K2(OF [1p ])/p λ′ //

⊕
v∈S0

µp c // µp // 0,

where λ′ is induced by the Hilbert symbol of order p, and c is the codiagonal map. The map l is a
boundary map, defined by

l(ζ ⊗ [I]) = xp mod pK2(OF,S)),

if x ∈ K2(F ) such that τP (x) = ζvP (I) mod P for all prime ideals P not containing p.

Proof. Compare [11, Thm. 3.5]. Let S be the set of places containing the infinite places and
the finite places above p. Recall, that we identified K2(OF , S) with the kernel of τ : K2(F ) →⊕
v/∈S

k×v . Consider the commutative diagram with exact rows

0 // K2(OF,S) //

·p

��

K2(F )
τ //

·p

��

⊕
v/∈S

k×v

·p
��

// 0

0 // K2(OF,S) // K2(F )
τ //

⊕
v/∈S

k×v // 0.
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The Snake Lemma gives us the following exact sequence

0 //
pK2(OF,S) //

pK2(F )
τ //

⊕
v/∈S

µp // K2(OF,S)/p // K2(F )/p
λ′ //

⊕
v/∈S

µp // 0.

Note that the penultimate map is obtained from the composition of the quotient map⊕
v/∈S

k×v →
⊕
v/∈S

µp, and τ : K2(F )→
⊕
v/∈S

k×v ,

which is equal to λ′, where
λ′ = ⊕

v/∈S
(λv)

mv/p.

From Proposition 3.30 we have that the cokernel of τ is µp⊗Cl(OF,S). We can therefore shorten
the exact sequence to

0 // µp ⊗ Cl(OF,S)
l // K2(OF,S)/p // K2(F )/p

λ′ //

⊕
v/∈S

µp // 0,

where l is the map described in the theorem. Recall from Proposition 3.29 that there is an exact
sequence

0 // K2(F )/p
λp

//

⊕
v/∈(S−S0)

µp c // µp // 0.

In lack of a better name, we denote the map from K2(OF,S)/p → K2(F )/p by f . Now consider
the composition λp ◦ f : K2(OF,S) → ⊕µp. Since λp is injective, ker(λp ◦ f) = ker f , and
hence it gives us an alternative ending of the exact sequence. Now since λ′ ◦ f = 0, it is clear
that λ ◦ f = ⊕

v∈S0

(λv)
mv/n, which only hits elements in ⊕

v∈S0

µp. Moore’s Reciprocity Theorem

(Theorem 3.22) tells us that the cokernel is given by the codiagonal map c, so we get the exact
sequence

0 // µp ⊗ Cl(OF,S)
l // K2(OF,S)/p

λ′ //

⊕
v∈S0

µp c // µp // 0.

In [11], Theorem 3.31 is stated and proved also for the case where p is a natural number not
necessarily a prime. We are on the other hand only interested in the case where p is prime, and
will therefore refer the interested reader to [11] for the more general case.

The second structure theorem can also be found in ([11, Thm 5.4]).

Theorem 3.32. Let p be an odd prime, F a number field, ζp a primitive pth root of unity, and
suppose ζp /∈ F. Then we have a short exact sequence

0 // (µp ⊗ Cl(OF (ζp)[
1
p ]))G // K2(OF )/p //

⊕
s
µp // 0,

where G = Gal(F (ζp)/F ) acts diagonally on µp ⊗ Cl(OF (ζp)[
1
3 ]), and s is the number of p-adic

primes of F that split completely in F (ζp).
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Theorem 3.31 and Theorem 3.32 together give a description of K2(OF /p) both when µp is
contained in F and when it is not. Theorem 3.32 will in particular be very useful in Section 4
where we prove a reflection theorem for K2.

In order to prove Theorem 3.32, we need to develop some more theory. In particular we will
have to make use of transfer homomorphism i∗ : Ki(E)→ Ki(F ) for a field extension E/F .

LetA ⊂ B be rings such thatB is a finitely generated leftA-module. The inclusion i : A→ B
induces a map on K-groups

i∗ : Kj(A)→ Kj(B),

for j = 0, 1 or 2, by the functoriality of Kj . We can also define transfer maps

i∗ : Kj(B)→ Kj(A),

see [15, §14].
Let A be a number field F or its ring of integers OF , and let B be correspondingly either an

extension E of F or the ring of integers OE .

• The zero transfer map i∗ : K0(B)→ K0(A) is given by restriction of scalars.

• The first transfer map i∗ : K1(B)→ K1(A) can be identified with the norm map

NormE/F : B× ≈ K1(B)→ K1(A) ≈ A×,

(see [15, p. 139] for details).

The second transfer map i∗ : K2(B) → K2(A) is hard to describe explicitly, but it satisfies the
projection formula of Theorem 3.33.

Theorem 3.33. Let A ⊂ B be commutative rings such that B is a finitely generated A-module.
For every a ∈ K1(A) and b ∈ K1(B), the following formula holds

i∗({b, i∗(a)}) = {i∗(b), a},

where { , } is the product from 1.

Proof. See [15, §14] for a proof.

Lemma 3.34. Let F be a number field and E a finite Galois extension of F , with Galois group
G = Gal(E/F ). Then the compositions i∗i∗ : K2(F ) → K2(F ) and i∗i∗ : K2(E) → K2(E)
are given by

i∗i∗({x, y}) = deg(E/F ){x, y},

i∗i
∗({x, y}) =

∏
σ∈G
{σx, σy}.
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Proof. Let {x, y} ∈ K2(E), and suppose that x, y ∈ F×, i.e. {x, y} is in the image of i∗. From
Theorem (3.33), we get

i∗{x, y} = {NormE/F (x), y} = {xn, y} = {x, y}n,

where n = deg(E/F ).
The second composition is harder to prove. We will therefore refer the reader to [9, p. 6] for

a complete proof, and only remark that in the case y ∈ F×, we get the result from the Projection
formula by the following computation:

i∗{x, y} = {
∏

σx, y} =
∏
{σx, σy}.

Lemma 3.35. Let E/F be an extension of number fields. Let S be a set of places in K containing
the infinite places and let T be the set of places in L that lie above the places in S. Then the
following diagram with exact rows commutes

0 // K2(OE,T ) //

i∗

��

K2(E)
τ //

i∗

��

⊕
k×v

//

N
��

0

0 // K2(OF,S) // K2(F )
τ //

⊕
k×v

// 0,

where the map N = ⊕(
∏

Normkw/kv).
If E/F is a Galois extension with Galois group G = Gal(E/F ), then the diagram is a com-

mutative diagram of G-modules with G-homomorphisms.

Proof. The transfer homomorphism i∗ : K2(OE,T ) → K2(OF,S) coincides with the restriction,
so it is only necessary to prove commutativity of the last square. Consider the following diagram

K2(E)

⊕
w|v

τw

//

i∗

��

⊕
w|v

k×v

∏
Normkw/kv

��

K2(F )
τv //

i∗

��

k×v

⊕i
��

K2(E)

⊕
w|v

τw

//

⊕
w|v

k×v .

The lower square is clearly commutative. Since i∗i∗{x, y} =
∏
σ∈G{σx, σy}, from Lemma 3.34,

we see that the outer square is also commutative. Since ⊕i : kv →
⊕
kw is injective, we can

conclude that the upper square is commutative, which completes the proof.

Another consequence of Lemma 3.34 is the following:
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Proposition 3.36. For a Galois extensionE/F , with Galois groupG = Gal(E/F ) and an integer
n, the map i∗ induces homomorphisms

i∗ : K2(F )/n→ (K2(E)/n)G

and
i∗ : K2(OF,S)/n→ (K2(OE,T )/n)G.

Moreover, both are isomorphisms when n is relatively prime to |G|.

Proof. Consider the maps

i∗ : K2(F )/n→ (K2(E)/n)G and i∗ : (K2(E)/n)G → K2(F )/n.

It is clear that both i∗i∗ and i∗i∗ are multiplications by |G|. So if |G| and n are relatively
prime, both i∗i∗ and i∗i∗ are isomorphisms. Since i∗i∗ is an isomorphism, i∗ is injective, and
since i∗i∗ is an isomorphism, i∗ is surjective.

The same argument follows through for

i∗ : K2(OF,S)/n→ (K2(OE,T )/n)G.

Proof of Theorem 3.32. Let p be an odd prime. From Theorem 3.31, we have an exact sequence

0 // µp ⊗ Cl(OF (ζp)[
1
p ]) l // K2(OF (ζp)[

1
p ])/p λ′ //

⊕
v∈S0

µp c // µp // 0.

Since p is odd, S0 consists of all the finite places above p, and

λ′({x, y}) =
⊕
P |p

(x, y
P

)
p
.

We will first show that the exact sequence from Theorem 3.31 can be made into an exact
sequence of G-modules.

Let σ ∈ G act on µp ⊗ Cl(OF (ζp)[
1
p ]) diagonally, i.e. σ(ζ ⊗ I) = (σζ ⊗ σI). Recall the

definition of l : µp⊗Cl(OF (ζp)[
1
p ])→ K2(OF [1p ])/p in Theorem 3.31. Suppose that l(ζ⊗I) = xp

for some x with
τp(x) = ζvP (I) mod P

for all prime ideals P not dividing p. We need to show that τP (σx) = (σζ)vP (σI) mod P for all
P not dividing p. If σQ = P , then

τPσx = τσQσx = (σζ)vσQ(σI) = (σζ)vP (σI),

and σl(ζ ⊗ I) = l(σζ ⊗ σI).
Define a G-action on

⊕
P∈S0

µp by

(
∑

ζ[P ])σ =
∑

σ(ζ)[ζ(P )],
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i.e. the diagonal action followed by a permutation.
Observe that

σ
(x, y
P

)
p

=
(σx, σy

σP

)
p
.

Clearly, theG-action we defined on
⊕
P∈S0

µp makes λ′ into aG-module homomorphism, which

makes the sequence into an exact sequence of G-modules.
Taking cohomology of the sequence of G-modules yields an exact sequence

0 // (µp ⊗ Cl(OF (ζp)[
1
p ]))G l′ // (K2(OF (ζp)[

1
p ])/p)G λ′′ //

( ⊕
v∈S0

µp

)G
c′ // µGp ,

where l′, λ′′ and c′ are just the restrictions of the original maps. It is clear that µGp = 0, and from
Proposition 3.36

i∗ : K2(OF [1p ])/p // (K2(OF (ζp)[
1
p ])/p)G

is an isomorphism. We can therefore rewrite the sequence as

0 // (µp ⊗ Cl(OF (ζp)[
1
p ]))G l′ // (K2(OF (ζ)[

1
p ])/p)G λ′′ //

( ⊕
v∈S0

µp

)G
c′ // 0.

Let T0 be the set of p-adic primes in F . We can decompose⊕
P∈S0

µp =
⊕
Q∈T0

(⊕
P |Q

µp

)
.

Let σ be the generator of G, and suppose that Q = P e1 · · ·P er . Since σPi = Pj for some j 6= i, we
get that (⊕

P∈S0

µp

)G
=
⊕
Q∈T0

(⊕
P |Q

µp

)G
.

How can we describe
(⊕
P |Q

µp

)G
? Let

(ζ1, . . . , ζir) ∈ (µp)⊕ · · · ⊕ (µp).

We may assume that
σ(ζ1, . . . , ζr) = (σζr, σζ1, . . . , σζr−1),

so if (ζ1, . . . , ζir) ∈ ((µp) ⊕ · · · ⊕ (µp))
G, then ζi = σi−1ζ1. In particular, ζ1 = ζr+1 = σrζ1,

which implies that r = p− 1. We can therefore conclude that

(⊕
P |Q

µp

)G
≈

{
µp if Q splits completely in E,
0 otherwise.
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From Quillen’s localization sequence, we have that the sequence

0 // K2(OF ) // K2(OF [1p ]) //

⊕
P |p
k×P // 0

is exact. Since µp 6⊂ F×, |k×P | is relatively prime to p, hence

K2(OF ) // K2(OF [1p ])

is an isomorphism.
This gives us the exact sequence

0 // (µp ⊗ Cl(OF (ζp)[
1
3 ]))G // K2(OF )/p //

⊕
s
µp // 0,

which completes the proof.
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4 Reflection in K2

In this section we will make use of the theory developed in the previous sections to prove a reflec-
tion theorem for K2.

Theorem 4.1. Let D be a positive squarefree integer. Then

rk3(K2(OQ(
√
−3D)))− rk3(K2(OQ(

√
D))) =


1, 0,−1 if D ≡ 1 mod 3

0,−1,−2 if D ≡ 6 mod 9

0,−1 otherwise.

Let L = Q(ζ3,
√
D), F1 = Q(

√
D), and F2 = Q(

√
−3D). In the rest of this section one

should keep the following picture in mind:

L = Q(ζ3,
√
D) 0

F1 = Q(
√
D)

mmmmmmmmmmmm
Q(ζ3) F2 = Q(

√
−3D)

RRRRRRRRRRRRR

Gi = Gal(L/Fi)

Q

llllllllllllllll

QQQQQQQQQQQQQQQ
G = Gal(L/Q).

Recall from Theorem 3.32 that we have a short exact sequence

0 // (µ3 ⊗ ClOL[13 ])Gi // K2(OFi)/p //

⊕
si

µ3 // 0,

where Gi = Gal(L/Fi) and si is the number of 3-adic primes in Fi that split completely in L.
Since all the groups in the above sequence are elementary 3-groups,

rk3K2(OFi) = si + rk3(µ3 ⊗ ClOL[13 ])Gi .

Corollary 4.2. We can write the difference rk3(K2(OF2))− rk3(K2(OF1)), as s+ t, where

s = s2 − s1,

and
t = rk3(µ3 ⊗ ClOL[13 ])G2 − rk3(µ3 ⊗ ClOL[13 ])G1 .

Since L/Q is Galois, we can use Hilbert’s ramification theory to factorize (3) in L.

Lemma 4.3. If s1 is the number of 3-adic primes in OQ(
√
D) that split in OL, and s2 the number

of 3-adic primes in OQ(
√
−3D) that split in L, then we have

s = s2 − s1 =


1 ifD ≡ 1 mod 3

−1 ifD ≡ 6 mod 9

0 otherwise.
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Proof. Since dQ(
√
−3) = −3 and 3 divides −3, the prime ideal (3) will ramify in Q(ζ3) =

Q(
√
−3). The prime 3 will therefore neither split totally, nor be completely inert in L. We also

want to eliminate the case where 3 is totally ramified in L.
Assume for contradiction that (3) is totally ramified in L. By Proposition 1.28, 3 has to divide

both dQ(
√
D) and dQ(

√
−3D). But

dQ(
√
D) =

{
4D if D ≡ 2, 3 mod 4

D otherwise,

so 3 must divide D. Furthermore, since 3|D, Q(
√
−3D) = Q(

√
−D

3 ), which by the same

argument as above, implies that 3 divides D
3 . This contradicts the assumption that D is squarefree.

We can therefore conclude that there are only two possible ways of factoring 3 in L. In other
words,

(3) =

{
P 2

P 2
1P

2
2 ,

for some prime ideals P , P1 and P2 in L. We also know that 3 ramifies in either Q(
√
D) or

Q(
√
−3D), but not in both.

Assume that 3 ramifies in Q(
√
D). Then 3 will either split or be inert in Q(

√
−3D), and

correspondingly the 3-adic prime of OQ(
√
D) will split or be inert in L. The prime 3 splits in

Q(
√
−3D) if and only if x2 + D

3 is solvable modulo 3 (see Example 1.33). The equation x2 + D
3

is solvable if D ≡ 0 mod 9 or D ≡ 6 mod 9. We can disregard the first case since D is assumed
to be square free, which leaves us with

s1 =

{
1 if D ≡ 6 mod 9

0 otherwise.

Similarly, we get that

s2 =

{
1 if D ≡ 1 mod 3

0 otherwise,

and hence the result.

In order to compute the difference

t = rk3(µ3 ⊗ ClOL[13 ])G2 − rk3(µ3 ⊗ ClOL[13 ])G1 ,

we will adapt some of the techniques used in the proof of Scholz’s Reflection Theorem 1.18.

Lemma 4.4. Let A be the 3-Sylow subgroup of Cl(OL[13 ]), and assume that 〈σi〉 = Gi. Then

(µ3 ⊗ ClOL[13 ])Gi = µ3 ⊗ ker(1 + σi : A→ A).
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Proof. It is clear that µ3 ⊗ ClOL[13 ] = µ3 ⊗ A. Consider elements of the form ζi3 ⊗ I , where
I ∈ A, generate µ3⊗A.Moreover, since ζi3⊗I = ζ3⊗Ii, we can write every generator as ζ3⊗I ′,
for some I ′ ∈ A. Consider an element

∑
(ζ3 ⊗ I) in µ3 ⊗A. Clearly∑

(ζ3 ⊗ I) = ζ3 ⊗
(∏

I
)
.

We can therefore write any element in µ3 ⊗A as ζ3 ⊗ I ′′, for some I ′′ in A.
Since ζσi3 = ζ−13 , we get that

(ζ3 ⊗ I)σi = ζσi3 ⊗ I
σi = ζ−13 ⊗ I

σi = ζ3 ⊗ I−σi .

The fixed points (µ3 ⊗A)Gi are the elements ζ3 ⊗ I where −σI = I , i.e. (1 + σ)I = 0.

Recall from Section 2 that every Z3[G]-module M can be decomposed as

M = ε1M ⊕ ε2M ⊕ ε3M ⊕ ε4M,

where

ε1 =
(1 + σ1

2

)(1 + σ2
2

)
,

ε2 =
(1 + σ1

2

)(1− σ2
2

)
,

ε3 =
(1− σ1

2

)(1 + σ2
2

)
,

ε4 =
(1− σ1

2

)(1− σ2
2

)
.

In particular,
A = ε1A⊕ ε2A⊕ ε3A⊕ ε4A.

In the proof of Scholz’s Reflection Theorem, we showed that

ε1 =
1

4
NormL/Q and ε4 =

(1− σ1
4

)
NormL/Q(ζ3),

and hence the subgroup ε1 3Cl (L) = ε4 3Cl (L) = 0. The same argument applies to A, i.e.
ε1A = ε4A = 0. Later in the proof of Scholz’s Reflection Theorem, we showed that

ε2 3Cl (L) = 3Cl (Q(
√
D)),

ε3 3Cl (L) = 3Cl (Q(
√
−3D)).

Let A1 denote the 3-Sylow subgroup 3Cl (OQ(
√
D)[

1
3 ]) of Cl(OQ(

√
D)), and A2 the 3-Sylow sub-

group 3Cl (OQ(
√
−3D)[

1
3 ]) of Cl(OQ(

√
−3D)). Let I ⊂ 3 Cl(L) be the subgroup generated by the

3-adic primes of order a power of 3, then A = 3 Cl(L)/I . Let φ : 3 Cl(L) → A be the quotient
map. It is clearly a G-module map, hence

ε2A = A1

and
ε3A = A2.
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Lemma 4.5. The kernel of 1 + σ1 : A → A is equal to the subgroup A2 = 3Cl (OQ(
√
−3D)[

1
3 ]),

and ker(1 + σ2 : A→ A) is equal to A1 = 3Cl (OQ(
√
D)[

1
3 ]).

Proof. We have that A = ε2A⊕ ε3A = (1+σ12 )(1−σ22 )A⊕ (1−σ12 )(1+σ22 )A. Since

(1 + σ1)(
1 + σ1

2
)(

1− σ2
2

)A = (
1 + 2σ1 + 1

2
)(

1− σ2
2

)A

= 2A1

= A1,

and

(1 + σ1)(
1− σ1

2
)(

1 + σ2
2

)A = (
1− 1

2
)(

1− σ2
2

)A

= 0,

we get that ker(1+σ1 : A→ A) = A2. Similarly, it follows that ker(1+σ2 : A→ A) = A1.

We can now write the sequence from Theorem 3.32 as

0 // µ3 ⊗A2
// K2(OF1)/p //

⊕
s1

µ3 // 0,

and

0 // µ3 ⊗A1
// K2(OF2)/p //

⊕
s2

µ3 // 0.

Lemma 4.6. We can write the t from Corollary 4.2 as

t = rk3A1 − rk3A2 =


0,−1,−2 ifD = 1 mod 3

1, 0,−1 ifD = 6 mod 9

0,−1 otherwise.

Proof. Let t1 = rk3A1 and t2 = rk3A2. If t′1 = rk3 Cl(Q(
√
D)), and t′2 = rk3 Cl(Q(

√
−3D)),

then by Scholz’s Reflection Theorem 1.18

t′2 − t′1 = 1, 0.

The 3-Sylow subgroup A1 ⊂ Cl(OQ(
√
D)[

1
3 ]) is the quotient of 3Cl (Q(

√
D)) by the 3-adic

primes of order a power of 3. The prime 3 can either split totally, ramify totally or be inert in
Q(
√
D). If 3 is inert, i.e (3) is a prime ideal in Q(

√
D), then it is also principal, and hence

A1 = 3Cl (Q(
√
D)). If 3 ramifies, the 3-adic prime has order two, which also implies that

A1 = 3Cl (Q(
√
D)). The only case where the 3-adic primes can have order a power of 3, is when

3 splits (we will give examples of this in the next section). Suppose that (3) = P1P2 in OQ(
√
D).

Since (3) is principal, the ideal classes of P1 and P2 are mutually inverses of each other, hence
there is at most one 3-adic generator of 3Cl (Q(

√
D)).
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The prime 3 splits in Q(
√
D) if and only if D ≡ 1 mod 3, so

t′1 − t1 =

{
1, 0 if D ≡ 1 mod 3

0 otherwise.

Similarly, we get that

t′2 − t2 =

{
1, 0 If D ≡ 6 mod 9

0 otherwise.

We can write the difference

t = t1 − t2 = t′1 − t′2 + (t1 − t′1)− (t2 − t′2)

= 0,−1 +

{
0,−1 if D ≡ 1 mod 3

0 otherwise
+

{
1, 0 If D ≡ 6 mod 9

0 otherwise

=


0,−1,−2 if D ≡ 1 mod 3

1, 0,−1 if D ≡ 6 mod 9

0,−1 otherwise.

We can now easily prove the Reflection Theorem for K2.

Proof of theorem 4.1. If we put Lemma 4.3 together with Lemma 4.6, we get by Corollary 4.2
that

rk3 K2(OQ(
√
−3D))− rk3 K2(OQ(

√
D)) = s+ t =


1, 0,−1 if D ≡ 1 mod 3

0,−1,−2 if D ≡ 6 mod 9

0,−1 otherwise.
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5 Examples

In this section we will present examples of the eight different cases of Theorem 4.1. All of our
computations (except for the easiest ones) have been done with the computer algebra system PAR-
I/GP, first developed by Henri Cohen and his co-workers at Université Bordeaux I. It is now main-
tained by Karim Belabas [23]. The first example will be followed by a block of GP code that
computes the integral basis and the class group of a number field. The code is followed by its
output when run through the GP calculator. The rest of the examples can be computed in a similar
way, by slightly modifying the input in the function bnfinit().

Recall from Section 4 that

• L = Q(
√
D, ζ3), F1 = Q(

√
D) and F2 = Q(

√
−3D)

• G1 = Gal(Q(
√
D)/Q) and G2 = Gal(Q(

√
−3D)/Q)

• si is the number of 3-adic primes in Fi that split completely in L

• s = s2 − s1

• t = rk3(µ3 ⊗ ClOL[13 ])G2 − rk3(µ3 ⊗ ClOL[13 ])G1

• rk3(K2(OQ(
√
−3D)))− rk3(K2(OQ(

√
D))) = s+ t

The formula in the Reflection Theorem 4.1 states that

rk3(K2(OQ(
√
−3D)))− rk3(K2(OQ(

√
D))) =


1, 0,−1 if D ≡ 1 mod 3

0,−1,−2 if D ≡ 6 mod 9

0,−1 otherwise.

(3)

5.1 For D ≡ 1 mod 3

If D ≡ 1 mod 3, we have from Lemma 4.3 that the 3-adic prime in Q(
√
−3D) will split com-

pletely in L, so s = 1. We also know from the proof of Lemma 4.6 that rk3 Cl(OQ(
√
−3D)[

1
3 ]) =

rk3 Cl(OQ(
√
−3D)).

If t = 0, the right hand side of formula (3) will be 1. This happens for example if the 3-Sylow
subgroups of Cl(Q(

√
D)) and Cl(Q(

√
−3D)) are trivial. So let D = 7. The Minkowski bound

of Q(
√

7) is
2!

22

( 4

π

)s√
|dQ(

√
7)| =

√
7 < 3.

By Remark 1.20 we get that the 2-adic primes will generate Cl(Q(
√

7)). Since (2) ramifies in
Q(
√

7), it is clear that the 3-Sylow subgroup of Cl(OQ(
√
7)) will be trivial.

An easy calculation in PARI/GP shows that the ideal class group

Cl(OQ(
√
−3D)) = Cl(OQ(

√
−21)) ≈ Z/2⊕ Z/2,

and it is generated by the class of the prime ideals (5, 2 +
√

7), (2, 1 +
√

7). So if D = 7, we have

rk3K2(OQ(
√
−3D))− rk3K2(OQ(

√
D)) = 1.
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se t rand ( 1 ) ;
/ / s e t s t h e random seed

bnf = b n f i n i t ( x ^2+21) ;
/ / c r e a t e s t h e number f i e l d o b j e c t Q ( \ s q r t (−21) )

bnf . zk
/ / p r i n t s t h e i n t e g r a l b a s i s o f b n f

bnf . c l g p
/ / p r i n t s t h e c l a s s group

b n f c e r t i f y ( bnf )
/ / c h e c k s i f t h e r e s u l t i s c o r r e c t

/ / Reads t h e code from t h e f i l e example . gp
? \ r { example . gp }

/ / o u t p u t o f b n f . z k i s an a r r a y where t h e e l e m e n t s form an
/ / i n t e g r a l b a s i s f o r t h e g i v e n number f i e l d . Here x d e n o t e s t h e
/ / q u o t i e n t c l a s s o f x i n Q( x ) / x ^2+21

%1 = [ 1 , x ]

/ / o u t p u t o f b n f . c l g p i s a 3 a r r a y where t h e f i r s t e l e m e n t i s
/ / t h e c l a s s number , t h e second i s a v e c t o r t h a t d e s c r i b e s t h e
/ / c y c l i c d e c o p o s i t i o n o f t h e c l a s s group , i n t h i s case i t i s
/ / Z / 2 xZ / 2 . The l a s t e l e m e n t i s an a r r a y o f m a t r i c e s on Hermi te
/ / Normal Form , t h a t d e s c r i b e s t h e i d e a l s w i t h r e s p e c t t o t h e
/ / i n t e g r a l b a s i s g i v e n by b n f . zk , t h a t g e n e r a t e t h e i d e a l c l a s s
/ / group .

%2 = [ 4 , [ 2 , 2 ] , [ [ 5 , 2 ; 0 , 1 ] , [ 2 , 1 ; 0 , 1 ] ] ]

/ / b n f i n i t ( ) assumes GRH, we t h e r e f o r e have t o v e r i f y our
/ / r e s u l t s by u s i n g b n f c e r t i f y ( ) . I f t h e o u t p u t i s 1 we are
/ / s a f e .

%3 = 1

The right hand side of formula (3) will be 0 when t = −1. This will happen if, for example,

rk3 Cl(OQ(
√
−3D)[

1
3 ]) = rk3 ClOQ(

√
−3D) = 1 + rk3 ClOQ(

√
D) = 1 + rk3 Cl(OQ(

√
D)[

1
3 ]).

If D = 58, then −3D = −174, and we get isomorphisms

ClOQ(
√
D) ≈ Z/2,

ClOQ(
√
−3D) ≈ Z/6⊕ Z/2.

The ideal class groups are generated by {[(3, 1 +
√

58)]} and {[(5, 4 +
√
−174)], [(3,

√
−174)]},

respectively. Thus inverting 3 in OQ(
√
−3D) will not change the 3-sylow subgroup of the ideal

class group. So, if D = 58, we get

rk3K2(OQ(
√
−3D))− rk3K2(OQ(

√
D)) = 0.
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The last example will satisfy

rk3K2(OQ(
√
−3D))− rk3K2(OQ(

√
D)) = −1.

In other words, we need to find a D such that t = −2 and

rk3 Cl(OQ(
√
−3D)[

1
3 ]) = rk3 ClOQ(

√
−3D) = 1 + rk3 ClOQ(

√
D) = 2 + rk3 Cl(OQ(

√
D)[

1
3 ]).

The smallest D that satisfies the equation above is D = 2917 so −3D = −8751, whence

ClOQ(
√
D) ≈ Z/3,

ClOQ(
√
D)

[1

3

]
≈ 0 and,

ClOQ(
√
−3D) ≈ Z/24⊕ Z/3.

The class group ClOQ(
√
D) is generated by [(3, 1+

√
2917
2 )] and the class group ClOQ(

√
−3D) is

generated by {[(2, 1+
√
−8751
2 )], [(46, 83+

√
−8751
2 )]}. Note that (46, 83+

√
−8751
2 ) is not a prime

ideal, but a product of a 2-adic prime ideal and a 23-adic prime ideal.

5.2 For D ≡ 6 mod 9

If D ≡ 6 mod 3, we have from Lemma 4.3 that the 3-adic prime in Q(
√
D) will split completely

in L, so s = −1. We also know from the proof of Lemma 4.6 that

rk3 Cl(OQ(
√
D)[

1

3
]) = rk3 Cl(OQ(

√
D)).

Note also that Q(
√
−3D) = Q

(√
−D

3

)
.

As we saw for D ≡ 1 mod 3, the different cases will correspond to different values of t. The
case where

rk3K2(OQ(
√
−D

3
)
)− rk3K2(OQ(

√
D)) = 0,

corresponds to t = 1. In other words, we need to find an example where

rk3 Cl(O
Q(

√
−D

3
)
[
1

3
]) + 1 = rk3 ClO

Q(
√
−D

3
)

= rk3 ClOQ(
√
D) = rk3 Cl(OQ(

√
D)[

1

3
]).

If D = 321, then −D
3 = −107, and we get

ClOQ(
√
D) ≈ Z/3,

Cl(O
Q(

√
−D

3
)
) ≈ Z/3.
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The ideal class groups are generated by {[(2, 1+
√
321

2 )]} and {[(3, 1+
√
−107
2 )]}, hence

Cl(O
Q(

√
−D

3
)
[13 ]) = 0.

So for D = 321,
rk3K2(OQ(

√
−D

3
)
)− rk3K2(OQ(

√
D)) = 0.

We can easily find an example of the case where t = 0. Let D = 6, so −D
3 = −2. The

Minkowski Bound of Q(
√
D) is less than 3, and the Minkowski Bound of Q(

√
−D

3 ) is 4
π < 2, so

both rk3 ClQ(
√
D) and rk3 ClQ(

√
−D

3 ) are zero, since 2 ramifies in Q(
√
D). Thus

rk3K2(OQ(
√
−D

3
)
)− rk3K2(OQ(

√
D)) = −1.

The last case corresponds to t = −1. In other words, we should have

rk3 Cl(O
Q(

√
−D

3
)
[13 ]) = rk3 ClO

Q(
√
−D

3
)

= 1 + rk3 ClOQ(
√
D) = 1 + rk3 Cl(OQ(

√
D)[

1
3 ]).

If D = 69, then −D
3 = −23, and we get that

ClOQ(
√
D) ≈ 0,

Cl(O
Q(

√
−D

3
)
) ≈ Z/3,

and we can conclude that

rk3K2(OQ(
√
−D

3
)
)− rk3K2(OQ(

√
D)) = −2.

5.3 Neither D ≡ 1 mod 3 nor D ≡ 6 mod 9

In the two last examples, (3) will be inert in either Q(
√
D) or Q(

√
−3D) and ramify in the other.

Since it will neither split in Q(
√
D) or in Q(

√
−3D), s = 0. Furthermore, since (3) is inert or

totally ramified, the 3-adic primes will have order 1 or 2 in the class group. The 3-rank of the ideal
classes will therefore be unaffected when we invert 3. So t is either 1 or 0.

If D = 2, the Minkowski Bound of Q(
√
D) will be

√
2 < 2, so ClQ(

√
D) = 0. The

Minkowski bound on Q(
√
−3D) is less than 3. Since 2 ramifies, rk3 ClQ(

√
−3D) = 0. So for

D = 2, we get
rk3K2(OQ(

√
−3D))− rk3K2(OQ(

√
D)) = 0.
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On the other hand, if D = 29, then ClQ(
√
D) = 0 and ClQ(

√
−3D) ≈ Z/6. So

rk3K2(OQ(
√
−3D))− rk3K2(OQ(

√
D)) = −1.

We see from the examples given in this section that our reflection theorem for K2 is optimal
in the sense that there are examples of all the different cases.
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