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Introduction

1 Overview and Goals

The principal theme of this thesis is the investigation of techniques for solving the coupled
poroelastic equations, used for analysing the stress and flow dynamics of sedimentary
basins, in large-scale applications. As the papers presented here demonstrate, this theme
straddles a number of fields, from continuum mechanics, through linear algebra and
mathematical analysis, to parallel computation.

The geological history of sedimentary basins undergoing changes due to compaction,
stresses and fluid flow is of fundamental interest, both to scientists trying to under-
stand the effects of geological processes and to the oil and gas exploration community.
For reasons of performance, tools for calculating this history often neglect important
couplings in the underlying physics. These couplings, along with the large number of
unknowns that are typically needed in order to obtain sufficient accuracy, makes the
problem extremely computationally challenging to solve.

Our aim is to be able to perform simulation of such coupled systems on the scale of real
basins. Realistically, these large-scale problems require parallel solution methods. The
methods must furthermore be general and robust enough to handle complex geometries
with discontinuous and highly contrasting material parameters.

The thesis consists of two parts: An introduction (this one) and a collection of papers.
The introductory part aims to give an overview of the problem space, and to summarise
the research work undertaken as fulfillment of the PhD requirements, while the collection
of papers documents the research work itself.

2 Sedimentary Basins

GEOLOGY, n. The science of the earth’s crust — to which,
doubtless, will be added that of its interior whenever a
man shall come up garrulous out of a well.

A. Bierce

Sedimentary basins are depressions in the crust of the Earth, into which debris and
organic materials gather and settle. Eventually the sediments harden into porous rock.
Over time, millions of tonnes of weight from above and heat from below conspire to
transform rock into, well, different rock, and organic material into coal, oil and gas.
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Figure 1: Diagram of the formation of an extensional basin. Redrawn from [12].

This, then, is what makes sedimentary basins interesting. Not only do they provide a
rich history of the changing geography of a region, but they also provide a large part of
the Earth’s hydrocarbon reserves.

In this section, we will briefly outline how sedimentary basins can form and fill, while
a fuller exposition can be found in standard text books such as [3].

2.1 Formation of sedimentary basins

Sedimentary basins can be formed through many different tectonic mechanisms. What
they have in common is that movements of the tectonic plates form depressions in the
crust into which the sediments can settle. For ease of presentation, we describe here
just one such mechanism: extensional basins, which is the main mechanism by which
the North Sea basins are formed.

The formation process of an extensional basin is illustrated in fig. 1. Initially, as
the continental plate is pulled apart by movements of the molten mantle, brittle faults
develop in the crust. The upper mantle stretches and partially melts. As the extension
widens, a rift opens up, and parts of the crust sinks down into the mantle (fig. 1b).
Owing to the melting and thinning the upper mantle, volcanic activity is a common
feature of the extensional phase.
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National Park Service E. Zimbres, cc-by-sa-3.0, http://commons.wikimedia.org/
(a) Heavily eroded sediments. The light-coloured (b) Centimeter-scale turbidites. Point
sandstone layer near the top is up to 150m thick. Loma Formation, California, USA.

Grand Canyon, Arizona, USA.

Figure 2: Sedimentary layers can vary widely in scale.

2.2 Deposition of materials

The depression formed by tectonic mechanisms is slowly filled with sediments (fig. 1c).
The depositional processes are far from simple: the tectonic movement may continue or
reverse; sediment buildup causes undersea avalanches (called turbidite currents); the
sea level changes, as does the local flora and fauna. In fact, depositional modelling is
a rich and complex field of its own, and the end result is often highly heterogeneous.
Fig. 2 illustrates the range of scales that are present. The distinct rock layers can vary
in thickness from a few centimeters up to tens of meters in the same basin.

2.3 Diagenesis and metamorphism

Finally, long-term chemical processes within the buried sediments are important for the
history. Heat, acting on a rich geochemical environment, causes transformation of the
rocks, and fluid circulates trough the porous channels. Owing to the heterogeneity that
results from the depositional and crustal processes, the pressures and fluid flows in a
basin may be rather complex. An example is shown in fig. 3.

Many processes are acting on sedimentary basins, and not everything is well un-
derstood. For example, the effective rheological properties of the rock may be very
different on long time scales (where chemical processes are important) than what can
be measured in wells or in laboratory samples. Still, we do know something about the
processes, and a number of physical models describe the different processes.

In the present thesis, the contributions are in modelling the full three-dimensional
coupled deformation and fluid movement in sedimentary basins with large number of
unknowns and heterogeneous materials.
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Figure 3: Cross section of a pore pressure simulation of the Santos basin outside Sao Paulo, Brazil.
The pore pressures and fluid flow are complex due to the heterogeneous sedimentary layers and salt
deposits.

3 The Mathematical Model

Remember that all models are wrong; the practical ques-
tion is how wrong do they have to be to not be useful.

E. P. Bozx

As described above, the geological history of sedimentary basins is governed by a
number of processes; tectonic, mechanical, chemical and biological. On the short time
scales that are the focus of this thesis, however, the main influence on the evolution is
in many cases the interaction of the deformation of the porous matrix with the flow of
the pore-filling fluid. For a general introduction to other aspects of basin modelling, we
refer to [7].

The mechanics of saturated porous media was first described by Terzaghi [13], who
developed the original theory of one-dimensional homogeneous soil consolidation, and
introduced the ideas of effective stress and the diffusion of fluid pressure by fluid flow.
Biot [2] generalised this work to three dimensions and derived the partial differential
equations (PDEs) governing coupled three-dimensional fluid flow and deformation in
linear elastic porous media. These formulations are based on the continuum hypothesis,
i.e., the particle nature or micro-structure of the media are only considered in an average
sense. A review of modelling of porous media can be found in [11], while [14] offers a
more comprehensive treatment.

Because the fully coupled three-dimensional poroelastic problem is computationally
demanding, many practical large-scale analyses simplify the problem, either by assuming
purely vertical deformation (Terzaghi consolidation), or by assuming one-way coupling
where the fluid pressure influences the deformation but not vice versa. In their compar-
ison of techniques for dealing with the coupling of the poroelastic problem, however,
Dean et al. [5] found that solving the equations in a fully coupled manner is necessary
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(a) A three-dimensional model of the Vgring basin, (b) A cross section of the computational
off the coast of central Norway. grid, showing about 1/5 of the width and

1/3 of the depth.

Figure 4: The Vgring basin is our main test case for realistic large-scale calculations of the poroelastic
equations. It consists of 16 distinct layers of sediments, with about 8.5 million tetrahedral grid cells

in cases where the hydromechanical coupling is sufficiently strong.

In addition to the fundamental hypothesis of overlapping continua for the fluid and
solid phase, we make a number of simplifying assumptions. A thorough discussion of
the underlying assumptions, and a more general derivation of the equations, may be
found for example in [4]. The main assumptions are:

The solid and fluid phase may be treated as two overlapping continua; i.e., we
can ignore micro-structure and treat the material as (piecewise) homogeneous on
a representative macroscopic scale.

The (macroscopic) permeability of the solid is anisotropic, but the elastic parame-
ters are isotropic.

The deformations and strains are small. Thus, a linearised strain tensor (strain-
deformation relation) can be used, and a linear elastic constitutive equation
(stress-strain relation) is adopted for the solid deformation. A relatively short
time scale is implied.

Acceleration terms can be ignored (elastostatic or quasistatic conditions).
Isothermal conditions exist.

A linear relation between the pressure gradient and the fluid seepage velocity
(Darcy’s law) is introduced. Experimental evidence suggests this may be inaccurate
for low pressure gradients, but these are also less important for the overall dynamic
behaviour.

Based on fundamental physical principles, along with the listed assumptions, a system
of two coupled PDEs is derived: One for the fluid (pore) pressure p, and one for the solid
skeleton displacement field u. Additional mathematical equations, e.g., constitutive
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relations and boundary conditions, are introduced as needed to close the model. The
exposition loosely follows that of Wang [14].

3.1 Equation for the fluid pressure

Following Biot [2], we introduce the increment of fluid content, denoted €. This quantity
measures the change in the fluid mass (m¢) in a control volume relative to the reference
density (pg,); hence, & = pi* (mg — my,) given a reference fluid mass my,, and the time
derivative is 9¢/0t = p;, 'Omy/0t. In any control volume, the balance of fluid mass can
be expressed as

% + V- Up = Q, (1)
where vp is the fluid flux, or seepage velocity relative to the matrix velocity, and @
is the injection/withdrawal rate of fluid from external sources. The parameters are
summarised in table 1.

Assuming, as stated, a linear dependence of the fluid content on the total volumetric

stress, and a linear stress-strain relationship, £ can be written as
‘5 = aey + Sep’ (2)

for a given volumetric strain ey and fluid pressure p, where « is the Biot-Willis coefficient
and S, is the unconstrained specific storage coefficient. These can be determined

experimentally,’ or constructed from the combination of other material properties.
Cauchy’s strain tensor, valid for small strains, relates the strain to the deformation
through .
62VU+(VU) 7 3)

2
from which we can deduce ey = Tre = V - u. Here, u is the displacement field of the
solid matrix. The substitution of egs. (2) and (3) into eq. (1) produces

dp oV -u

o T o

The solid velocity dw/0t here plays a similar role to the fluid velocity. Somewhat loosely,
eq. (4) says that in a representary volume, the change in pressure is determined by the
influx of mass, whether from fluid or solid movement or from external sources.

Finally, the fluid seepage velocity is given by Darcy’s law. The driving forces are the
pressure gradient and the gravity g, in a medium with flow mobility A:

vp = —A(Vp — psg). (5)

Assuming a near-constant fluid density pr, this gives the final version of the mass balance
equation for the fluid pressure, eq. (1), in terms of the primary unknowns p and wu,

op oV -u
o to
ot ot
1For example, eq. (2) yields a = 9¢/0ev|s,_o; that is, v is the change in fluid content when the

volumetric strain is increased while the fluid pressure is held constant. This quantity can be measured
in a laboratory.

+V"UD:Q- (4)

Se

—V-AVp=Q. (6)
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3.2 Equation for the deformation

In the quasistatic (or elastostatic) approximation, we assume that mechanical equilibrium
is achieved at any time; thus, inertia (or acceleration) is ignored. The time evolution of
such a system is governed by the slow response of the fluid to changes in the porous
matrix. Balance-of-forces considerations then dictate that the net force in each space
direction is zero, everywhere and at any time. For a control volume positioned at an
arbitrary position (x,y, z) with side length A, this can be expressed by

_ 1 y+ A pz+A
Baws =5 [ [ Siohlea-oil) d2ay =0,
y z

1 z4+A pz+A
Bews)=ns [ [ okl - obly) 4 —0. )

B 1 T+ A py+A z+A
Rwd) =55 [ [ [Sblea-cil = [ peaz]arar—o. )
T y z

where o’ is the effective stress tensor, including the volumetric stress caused by the
fluid pressure (written out below). As A approaches zero, eqs. (7)—(9) approaches the
derivatives and can be written as the vector equation

F=V-0o'+pg=0. (10)

Although the deformations of the sediments are to a large degree plastic, we assume
that for small deformations (or small perturbations within a larger deformation process)
a more computationally efficient elastic model is adequate [4, 14]. By the assumption
of isotropic linear elastic behaviour of the porous medium, the stress components are
related to the displacement field through Hooke’s law with an additional term for the
fluid pressure,

o' =(AV - -u—ap)I+2ue. (11)

Here, A and pu are the Lamé material constants, and the strain tensor is given in eq. (3)
for small strains. The Biot-Willis coefficient « is the same as in eq. (2), as can be shown
by energy considerations [14, p. 19].

The full version of the balance-of-forces equation, in terms of the primary variables u
and p, is given by inserting eq. (11) into eq. (10) and reordering the derivatives in the
first term, as

VAV -u—ap)+ V- u(Vu+ (Vu)') + pg = 0. (12)

3.3 Weak form

We rewrite eqgs. (4) and (10) in weak form, and use Green’s theorem to eliminate second
order derivatives. We arrive thence at the requirement that the relations

/ ﬂse@-FVﬂ"’UD‘FTFOéQ(V'U) dQ—/Wn'deF:/WQdQv (13)
Q ot ot r Q

/Q(Vw:a’) dQ—/Fw-(n-a/)dF:/w-png, (14)

Q
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Table 1: The parameters

Parameter Relation SI unit  Description
Se = I% + agf [Pa—!]  Fluid storage coefficient, in terms of the porosity ¢ and

the fluid/solid bulk moduli Ky/s. A measure of how much
more fluid can be stored when the pressure increases.

A =& [ Flow mobility tensor, in terms of the permeability tensor
« and the fluid viscosity pf. Measures how fast the fluid
moves through the medium at a given pressure gradient.

Pts Ps [rl%] Fluid and solid density.
p = ¢pr + (1 — @)ps [[l% Total density, in terms of the porosity ¢ and the compo-
nent densities.
g ] Force of gravity.
« ~ 1- K¢/Ks, (] The Biot-Willis poroelastic coefficient, relating change in
p<asl fluid content to change in volume. Ky, are the fluid/solid
bulk moduli; ¢ is the porosity.
A = (kyﬁ%@) [Pa] The Lamé elastic material constants, defined in terms of
_ _E P the undrained Poisson’s ratio v and Young’s modulus E.
= 2(1+v) [Pa]

hold for all test functions m and w in their respective spaces, defined on the domain 2
and its boundary I'. To keep these equations simple, and to make the natural boundary
conditions clearer, we do not expand the Darcy velocity vp or the stress tensor o’ in
the relations above. Their definitions in terms of the primary unknowns p and u are
found in egs. (5) and (11), respectively.

The relevant spaces for egs. (13)—(14) are the spaces of weakly differentiable functions,
or Sobolev spaces,

p,m€ HY(Q), u,ve[H(Q) (15)

where d is the number of spatial dimensions. The boundary conditions are of two types:
Prescribed values of p or u, and prescribed fluxes vp - n or tractions o’ - n (through the
boundary integrals over I'). When using mixed formulations, other spaces and boundary
conditions are used; the details of this are found in Paper III.

The discrete finite element approximation follows from solving eq. (13)—(14) in finite-
dimensional subspaces of H1(), as we shall presently describe.

4 Numerical Methods

4.1 The Finite Element method

The finite element method, detailed for example in [1], is a well established method for
the discrete approximation of PDEs. The basic idea is to solve the weak form of the
PDEs in finite dimensional spaces, where the solution can be represented as a weighted
sum of trial functions spanning the discrete solution space. Thus, any function f can
be approximated in the discrete space V), as

7ulm) = 3 xu(r) (16)
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for a vector of weights x, with span{¢;} = spanV},. The discrete solution is found by
using this approximation in the weak equation a(f, ¢;) = L(¢;), where a and L are the
(bi-)linear forms defined for example to satisfy eq. (13) or (14). Replacing f with fj,
we can write

Z%‘(L(@, ¢j) = L(¢j)7 (17)
and the solution can be found byl solving the matrix equation
Ax =bh. (18)
The entries in the coefficient matrix A and the load vector b are given as
Aji=aldi, d5), by = L(¢)). (19)

That the matrix equation in fact solves eq. (17) is readily seen by writing out the matrix
product for any single row j: >, Ajz; = b;.

The trial functions ¢; are normally defined such that each is nonzero only on the patch
of elements surrounding node i. Hence, the integrals that define the matrix elements in
eq. (19) can be computed efficiently by numerical quadrature.

Much more can be said about the solvability of the problem, and about the quality
of the solution, but the basic idea is given above. While a general implementation of
the finite element method is quite complicated, a number of libraries or framework are
available to support this task. Some, like DOLFIN [9], allow the problem to be specified
by entering the weak form of the problem (along with the grid and boundary conditions)
in a language quite close to the mathematical definition. In a lower-level library like
Diffpack [6, 8], which we use, the library handles things like quadrature and matrix
assembly automatically, but the developer must manually implement the inner loops
over the basis functions of an element. Nonetheless, the translation of the mathematical
definitions of sec. 3.3 to working code is quite natural, as the excerpt shown in listing 1
can attest to. This code implements the integrands for the p block-row of all the
formulations (two-, three- and four-field) found in Paper III, and the resulting coefficient
matrices can be used unchanged for solving the individual decoupled equations (using
an iterative method), or for solving the equations partially or fully coupled. In all the
papers that follow, the fully coupled solution method is used.

4.2 Linear algebra

Given a matrix equation, constructed for example by the finite element method as
above,
Ax =b, (20)

we need to solve it to get the unknown weights x. Since A may contain many million
rows, a direct inversion x = A~!b is usually not feasible, and an iterative method is
used instead.

The efficiency of iterative methods, such as the Conjugate Gradient (CG) method,
depends intimately on the condition number of the matrix. The condition number
is (for a positive definite matrix) the ratio of the largest to the smallest eigenvalue,
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Listing 1: The Diffpack/C++ implementation of the integrands of the block-row associated with
the fluid pressure p (where both sides are multiplied by At). If the pure u-p formulation is used, the
pp block is defined by IntegrandPP_pure and the pu block by IntegrandPU; if the mixed u-p-vp
formulation is used, the pp block is defined by IntegrandPP_mixed, the pu block by IntegrandPU, and
the pvp block by IntegrandPV. These integrands can be used, unmodified, for both scalar elements
and for vector elements such as Crouzeix-Raviart, and with arbitrary coupling on the algebraic level.

void IntegrandPP_mixed::integrandsMx (ElmMatVec &elmat,
const MxFiniteElement &fe)

{
// eq: -S dp/dt
5
for (int i=1; i<=nbf (iP); i++)
for (int j=1; j<=nbf (iP); j++)
elmat.A(i,j) -= cf.S * NP(i) * NP(j) * detJxW;
10 const real P_prev = the_simulator ->Pprev->valueFEM(fe(iP));
for (int i=1; i<=nbf (iP); i++)
elmat.b(i) -= cf.S * NP(i) * P_prev * detJxW;
¥

void IntegrandPP_pure::integrandsMx (ElmMatVec &elmat,
const MxFiniteElement &fe)

IntegrandPP_mixed::integrandsMx (elmat, fe);
20
// eq: \nabla \cdot \Lambda \nabla p, integrated by parts

for (int i=1; i<=nbf (iP); i++)
for (int j=1; j<=nbf (iP); j++) {
25 real nabla2 = SUM(d,1,nsd, dNP(i,d) * dNP(j,d) * cf.Lambda(d));
elmat.A(i,j) -= nabla2 * cf.dt * detJxW;

}

30 void IntegrandPP_pure::integrands4sideMx (int side, int boind,
ElmMatVec& elmat,
const MxFiniteElement& fe)

{
const real flux = the_simulator->geodata->get (FLUX, fe(iP));
35 const real detSideJxW = fe.detSideJxW();

for (int i=1; i<=nbf (iP); i++)
elmat.b(i) -= flux * cf.dt * NP(i) * detSideJxW;

40
void IntegrandPU::integrandsMx (ElmMatVec &elmat,
const MxFiniteElement &fe)
{

// eq: -\alpha \nabla \cdot du/dt
45

for (int i=1; i<=nbf (iP); i++)

for (int j=1; j<=nbf (iU); j++)
for (int r=1; r<=nsd; r++)
elmat.A(i,_(j,r)) -= cf.alpha * dNU(j,r) * NP(i) * detJxW;

50

const real divU_prev = the_simulator ->Uprev->divergenceFEM(fe (iU));

for (int i=1; i<=nbf (iP); i++)
elmat.b(i) -= cf.alpha * divU_prev * NP(i) * detJxW;
5¢
55 Y

void IntegrandPV::integrandsMx (ElmMatVec &elmat,
const MxFiniteElement &fe)

{
60 // eq: -\nabla \cdot v_D

for (int i=1; i<=nbf (iP); i++)
for (int j=1; j<=nbf(iV); j++)
for (int r=1; r<=nsd; r++)
65 elmat . A(i,_(j,r)) -= cf.dt * NP(i) * dNV(j,r) * detJxW;

10
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and unfortunately it tends to grow with the problem size. The number of iterations
typically increases proportionally with the number of elements in each space direction.
To minimise this growth, we must in practice introduce a preconditioner P, and look
for a solution to the equivalent problem,

P 'Ax=P'h. (21)

With a suitable preconditioner, the condition number of P™'A is much smaller than
that of A alone (approaching 1 as P~! approaches A=), and the product P~1v is fast
to compute (for an arbitrary vector v).

General preconditioners, particularly for coupled systems, are an active research area
to which we contribute in Papers I, I and IV.

4.3 Parallel calculations

It is commonly expected that the days of ever-faster sequential processors are past, and
that in the near-term future, improvements must be gotten mainly through increased
parallelism of the calculations. Luckily, the solution of PDEs by the finite element
method are quite amenable to parallelisation due to the locality of most operators. A
natural approach is to divide the computational grid between the available processors,
making each processor responsible for only a small subgrid. The integration and assembly
phases are purely local, and the challenge is to limit communication as much as possible
in the algebraic solution phase. In a scheme such as the one outlined in Paper IV, each
processor can be seen as responsible for the rows in the (virtual) global matrix that are
associated with its own subgrid. The basic linear algebra operations are embellished a
bit to use data from neighbouring subgrids when necessary (in matrix-vector products),
and global data when necessary (vector norms and inner products). Some operations,
like matrix-matrix products, are forbidden because of their complexity, but these are
usually not required (and too costly even in a sequential calculation). By this procedure,
the necessary local operations can be made to produce the same result as if the global
operations were performed using the (virtual) global matrix.

The communication is managed explicitly by message passing (Message Passing Inter-
face, or MPI), but for the most part this is performed automatically and transparently
in the linear algebra library.

The outlined procedure is well known, and a number of parallel finite element and
linear algebra libraries utilise similar methods. The major outstanding problem lies
in the parallelisation of the preconditioner, because it is in the nature of an effective
preconditioner that it must be a global operator (ideally, it approximates A~! — a
dense matrix).

Multigrid preconditioners, in particular algebraic multigrid (AMG) preconditioners,
have been developed that perform very well in a parallel setting, scaling up to many
thousand processors. Our work in this area is in efficiently combining AMG precondi-
tioners for the decoupled equations (for solid displacement only, or for fluid pressure
only) into an effective preconditioner for the coupled system. This work is performed in
Paper II (in a sequential setting) and in Paper IV (in a parallel setting).
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5 Summary of the Papers

The cycle of papers presented as part of this thesis in reality began with one that was
never published.

In March 2009, I was about to finish my first major paper, on parallel techniques
and scalability for a fully coupled thermoporoelastic basin model applied to large-scale,
sedimentary basins with severe, realistic jumps in material parameters. At the last
minute, a closer examination of the results revealed that our chosen solver (BiCGStab,
using AMG preconditioning in a Block Jacobi configuration) did not actually converge.
That is, the error turned out to remain large in realistic applications although the
residual was small and common convergence criteria for iterative solvers were fulfilled.
Consequently, these numerical methods faced a more fundamental problem. The paper
was promptly submitted to the waste basket, and we turned our focus to two key
questions:

e What are the properties of the basin model that make it difficult to solve?
e What are the remedies for handling these difficulties?

These two questions led to the research reported in Papers I-1V.

5.1 Paper I:. On the performance of an algebraic multigrid
preconditioner for the pressure equation with highly dis-
continuous media

The first paper, presented at the Mek’IT Conference for Computational Mechanics in
Trondheim in May of 2009, looked at solving the decoupled pressure equation with large
permeability contrasts.

The continuum decoupled fluid pressure equation is pysically undefined in the limit
of vanishing permeability. Since there is no longer any spatial coupling between points,
any pressure solution is equally valid inside the impermeable area.

In a numerical approximation the boundaries are more iffy. We looked at what
happens when the permeability in parts of the domain approaches (but not reaches)
zero. Through analysing the eigenvalues of the coefficient matrix, we discovered that
the number of eigenvalues approaching zero is identical to the number of nodes within
the low-permeable region; these are the ill-defined values. Interestingly, the AMG
preconditioner is “perfect” in a certain sense on this problem: The preconditioned
coefficient matrix has mostly eigenvalues of order unity, except for a single eigenvalue
for each high-permeable region that is almost isolated inside a low-permeable region.
This reflects the fact that the pressure inside each such isolated region is only decided
up to an arbitrary constant.

This result makes it possible to solve such nearly indeterminate problems with iterative
solvers, although with a large uncertainty in the pressure associated with each nearly
isolated region.

12
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5.2 Paper II: Efficient block preconditioners for the coupled
equations of pressure and deformation in highly discontin-
uous media

The uncertainty (or, more generally, the ill-posedness) encountered in Paper I disappears
when the fluid pressure is coupled with the displacement of the porous medium. The
numerical difficulties, however, do not.

In this paper, which has been accepted for publication in the International Journal of
Analytical and Numerical Methods in Geomechanics, we consider how to precondition
the coupled equations of fluid pressure and solid elastic displacement. Perhaps due to
the nearly vanishing eigenvalues of the decoupled preconditioner, we found the need to
use a preconditioner which includes the fluid-solid coupling.

The paper discusses and tests a number of block preconditioners which are based on
AMG preconditioners of the decoupled blocks (or modifications thereof). We identify two
good preconditioners, one symmetric and one asymmetric, both based on an exact block
decomposition of the original system by way of the Schur pressure complement. While
the ideas for these two preconditioners have been presented elsewhere, we believe that the
actual application and comprehensive testing of the symmetric variant on the poroelastic
equations is novel. Furthermore, the identification of these two preconditioners as two
variants of the same basic family of preconditioners is, as far as we know, original to
this paper.

5.3 Paper III: On the causes of pressure oscillations in low-
permeable and low-compressible porous media

As a slight detour, we delve into one other artifact of the numerical solution of Biot’s
equations in the presence of low-permeable materials. It has long been known that
pressure oscillations may occur in the discrete solution, oscillations that have no basis in
the physical realm. There have been, however, some differences as to why the oscillations
occur, and how to avoid them. In this paper, which has been accepted for publication
in the International Journal of Analytical and Numerical Methods in Geomechanics,
we try to understand the situation through a bit of analysis backed up by extensive
numerical experiments. For this purpose, we formulate four different versions of Biot’s
equation.

The main result of this paper is a guideline for the choice of finite elements in the
different cases and with different formulations.

5.4 Paper IV: A parallel block preconditioner for large scale
poroelasticity with highly heterogeneous material param-
eters

In Paper II, we developed and tested robust block preconditioners for Biot’s equations

in “difficult” cases. We did consider and mention the parallel scalability of these
preconditioners, but we did not have time or space to expound fully on that subject.

13
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Parallelisation is, as we have argued, a vital component in the solvability of large-scale
problems in coupled geomechanics.

Paper IV, which has been submitted to Computational Geosciences, rectifies this
problem by implementing and testing the symmetric variant of the preconditioner
on parallel computers. Thus we finally demonstrate the ability to solve the original
large-scale basin simulation that prompted this investigation in the first place.

6 Future Work

The present geophysical model has — as a physical approximation — some limitations.
It assumes a linear elastic response in the small strain regime, which may be valid
for short time periods and low stresses. In geology, however, one does not have to
look far before nonlinear processes, such as plastic or viscoelastic deformation, become
important. Plastic processes generate heat, and heat may be of importance in other
scenarios involving for example magmatic intrusions. All of these processes are more
time-consuming to model, but we believe the numerical work undertaken herein will
still prove useful as a foundation.

A natural next step, given the motivation of making simulation of basin-scale models
feasible, would be to further strengthen the integration with industry models. Such
stronger integration would enable the comparison of simulation methods to better assess
the advantages that a fully coupled formulation in various scenarios, and hence to learn
more about the importance of different geomechanical mechanisms.

Finally, the link which is made to low-compressible analysis in Paper III may be
explored further in the context of analysis of salt movement. Since salt is nearly
incompressible, standard Galerkin methods of modelling are insufficient; but a mixed
finite element method which includes the solid volumetric pressure as an independent
field variable makes such analysis possible.
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Abstract

Large-scale simulations of flow in deformable porous media require effi-
cient iterative methods for solving the involved systems of linear algebraic
equations. Construction of efficient iterative methods is particularly chal-
lenging in problems with large jumps in material properties, which is often
the case in geological applications, such as basin evolution at regional scales.
The success of iterative methods for this type of problems depends strongly
on finding effective preconditioners.

This paper investigates how the block-structured matrix system arising
from single-phase flow in elastic porous media should be preconditioned, in
particular for highly discontinuous permeability and significant jumps in
elastic properties. The most promising preconditioner combines algebraic
multigrid with a Schur complement-based exact block decomposition. The
paper compares numerous block preconditioners with the aim of providing
guidelines on how to formulate efficient preconditioners.
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1 Introduction

Common problems of important industrial and scientific interest in coupled geomechanics
include basin modelling, reservoir management, and groundwater depletion. Analysis
of such models on a regional scale requires the ability to solve coupled equations with
a large number of unknowns, complex geometries and significant spatial variation in
the material parameters. To meet the challenge of efficient solution of these models,
scalable solvers that are robust with respect to the geometry and discontinuities of
realistic problems must be developed. This is addressed in the present paper.

The problem of interest couples single-phase fluid flow with deformation in elastic
porous media. This problem is described by a pair of partial differential equations
(PDEs), one governing the fluid pressure and one describing the deformation of the
porous matrix. Terzaghi [33] developed the original theory of uniaxial soil consolidation,
and introduced the ideas of effective stress and the diffusion of fluid pressure by fluid
flow. Biot [6] generalised this work to three dimensions and derived the PDEs governing
coupling of fluid flow and deformation in linear elastic porous media. The necessity of
a hydromechanically coupled formulation has been validated in field and laboratory
studies [7, 20, 21]; see Neuzil [25] for an overview. A review of modelling of such systems
can be found in [31], while [37] offers a comprehensive modern treatment. In this
paper, we apply Biot’s equations to a series of test cases and study the efficiency of
preconditioned iterative solution methods.

In solvers for algebraic systems of equations, such as those arising from discretisations
of PDEs, there is a trade-off between robustness and scalability. Direct solvers are
generally the most robust with respect to the numerical properties of the equations, and
as a result they have become popular in “difficult” finite element applications. However,
they suffer from suboptimal scaling in time and space. The memory requirements
in particular grow substantially faster than the number of unknowns in the problem
[14]. Furthermore, communication requirements limit parallel scalability [12]. Tterative
methods are in contrast highly scalable, but less robust. Their convergence is problem-
dependent and sensitive to the parameters of the problem. Even so, their efficiency
makes them the only choice for truly large-scale problems.

The number of iterations in Krylov space methods, such as the Conjugate Gradient
(CG [18]) or Stabilised Bi-Conjugate Grandient (BiCGStab [36]) methods, for solving
a system Ax = b is typically proportional to v/k, where x is the condition number
of the coefficient matrix A [15]. By applying a preconditioner P~! to the system,
i.e., solving P~ Ax = P~1b, one can reduce the condition number and obtain faster
convergence. It is in the nature of the finite element method that the condition number
of the coefficient matrix increases when the number of unknowns increases — typically,
k ~ O(h™?), where h is the characteristic element length [32]. Using a multigrid method
as preconditioner, the condition number can in many cases be made independent of the
number of unknowns, a property which is referred to as an optimal method because the
amount of work per unknown is then independent of the problem size [3].

Multigrid methods have attracted quite some interest as efficient and widely applicable
preconditioners [5, 38]. A difficulty with the standard geometric multigrid method is
that it needs a hierarchy of coarse grids. This can be difficult to construct in problems
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with complicated geometries and many internal layers of materials, which is the typical
case in geological applications. Algebraic multigrid (AMG [29]) is then a promising
alternative, since it relies only on the algebraic structure of the coefficient matrix.
Previous studies [1, 16] indicate that AMG preconditioning can remove the dependence
of the number of iterations on the number of unknowns when solving the individual
PDEs in Biot’s model. How AMG can be used to efficiently precondition the coupled
systems of equations studied herein is, however, an open question, which we address in
the present paper.

There are basically two main categories of preconditioners for coupled systems. The
first category addresses the system of algebraic equations that arises from numbering
the displacement and pressure degrees of freedom consecutively in each node. Such
numberings may minimize the bandwidth for banded solvers or the fill-in for direct sparse
solvers. The other category is aimed at systems where all the displacement degrees of
freedom are numbered first, followed by the pressure degrees of freedom. This numbering
gives rise to a coefficient matrix with a block structure that more directly corresponds
to the original system of PDEs (e.g., the first row of blocks corresponds to the first PDE
and so forth). Block preconditioners rely on creating separate preconditioners for the
individual decoupled equations, and combining these to precondition the coupled system.
While simple blockwise methods such as block diagonal (or block Jacobi) preconditioning
work well on some coupled problems [23], saddle-point problems (for example) require
the application of Schur complement based methods, owing to non-invertible diagonal
blocks. Schur complement based block preconditioners have also been found to work well
on the discretisation of Biot’s equations [28, 34|, although only homogeneous materials
were tested. To our knowledge, the efficacy of block preconditioners for Biot’s equations
with strongly varying material parameters has not been evaluated.

The main physical parameters that influence the evolution of Biot’s equations are
the elastic parameters and the permeability of the porous matrix. The permeability
in particular may exhibit significant jumps of many orders of magnitude in geological
applications [4, 24, 37]. This feature may have a severe impact on the performance of
numerical methods for solving Biot’s equations. Since there is effectively no flow through
the low-permeable regions, the use of tailored techniques such as solving for the pressure
on only the high-permeable part of the grid is common. In practice, however, this
requires either solving for an additional vector variable for the fluid flux in a mixed finite
element formulation, or the manipulation of two separate grid solutions for pressure and
displacement. Hence, numerical methods that allow the efficient solution of arbitrary
permeability differences without special considerations are attractive.

We assume that the governing differential equations are discretised by a Galerkin
finite element method using mixed elements, and study the effect that a large jump
in the permeability and a moderate jump in the elastic parameters (consistent with
typical geological media) has on the preconditioned iterative solvers. The permeability
is parameterised by a factor € < 1, meaning that we basically consider a domain with
two types of geological media: one with flow mobility (which is proportional to the
permeability) Ag and one with flow mobility €Aq. The typical jump in permeability is
then described by a factor 1/e > 1. The investigations are further extended to the case
where the two media have different elastic parameters.
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The impact of the jump ¢! on the accuracy of the finite element discretisation is

not critical as long as the discontinuities are aligned with the element boundaries [26],
which we assume in the following. The critical numerical impact of the discontinuities
is then on the performance and convergence of solution methods for the coupled linear
system [p u]l = A~!b arising from the discretisation, where p and u denote the pressure
and displacement solution vectors, respectively.

The present paper studies the numerical convergence of an AMG-preconditioned
conjugate gradient-type method applied to the linear system arising from the coupled
equations of pressure and displacement in porous media. Our aim is to extend common
knowledge from earlier work by investigating a series of test cases and iterative solvers
for the coupled problem, with varying degree of discontinuity in the material parameters.
We hope that our findings can guide practitioners in how to choose efficient solution
methods for large-scale simulations involving coupled geomechanical problems and
highly discontinuous media.

2 The mathematical model

The equations describing poroelastic flow and deformation can be derived from the
principles of conservation of fluid mass and the balance of forces on the porous matrix.
The linear poroelastic can be expressed, in the small-strains regime, as

Sp—V-AVp+aV . -u=q, (1)
VA+p)V-u+V. - pVu—aVp=r. (2)

Here, we subsume body forces such as gravitational forces into the right-hand side
source terms ¢ and r. The primary variables are p for the fluid pressure and u for the
displacement of the porous medium, S and A are the fluid storage coefficient and the
flow mobility respectively, « is the Biot-Willis fluid/solid coupling coefficient, and A
and p are the Lamé elastic parameters.

As pointed out in the introduction, the aim of the present paper is to study the
numerical properties of egs. (1)—(2), and how to solve these efficiently with an iterative
solver. To that end, we ignore effects that are not essential to these properties. The
fluid-solid coupling coefficient « is treated as a constant (in practice it varies between
about 0.5 and 1). The fluid storage coefficient S is insignificant compared to the fluid
mobility in high-permeable regions. In low-permeable regions it acts as an effective
fluid compressibility term, and makes the problem less numerically stiff for short time
steps. By dropping this term we try to ensure that the validity of the testing is not
compromised by choosing a too short (“easy”) time step. The other time-derivative
term, V - in eq. (1), couples the displacement to the pressure and is included.

We employ a first-order backward finite difference method in time. Our simplified
model problem is thus

—AtV-AVp+V-u=qgqAt+V - -u,_q, (3)
VIA+u)V-u+V-puVu—-Vp=r, (4)
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where variables without subscripts are taken to be at the current time step k. Moreover,
we restrict A to be isotropic, parameterised by € < 1, so that A = AgI in the high-
permeable region and A = €Ayl in the low-permeable region, with I being the identity
tensor.

2.1 Numerical approximation

We proceed to rewrite eqgs. (3) and (4) in weak form, using integration by parts to
eliminate second derivatives. The following relations must then be satisfied for all test
functions 7 and w in the domain 2

/[AtVﬂ' -AVp+ 7V -uldQ = /[ﬂ'V “wy_g + @At dQ — /anAt dar,  (5)
Q Q r

/S;[(V'W)()\+M)(V-u)+vw:;LVU—(V~W)p]dQ:— Qw-rdQ—Q—/Fvv-tndF.
(6)

The fluid flux f, and normal stress t, at the boundary I' appear here as natural
boundary conditions.

The discrete finite element approximation follows from solving egs. (5) and (6) in
finite-dimensional spaces. In this paper, a piecewise (triangular) continuous quadratic
space is used for the deformation and a piecewise continuous linear space is used for the
pressure,

p,m € PY(Q), u,we[P}N), (7)

with dimensionality d = 2. The reason for this mix of spaces is that spurious pressure
oscillations can occur in low-permeable regions when the same spaces are used for
pressure and deformation [22, 27].

2.2 The algebraic system
The algebraic system that results from discretising egs. (5)—(6) is on the form
Ax =D, (8)

where A is the coefficient matrix derived from the left-hand sides of egs. (5) and (6),
b is the load vector arising from the right-hand sides, and x is the unknown solution
vector. Since this is a coupled system of two equations, the coefficient matrix is a 2 x 2
block matrix

Auu Aup
Apu App

where the subscripts denote the primary variable(s) each block acts upon: A, couples
pressure to pressure, Ay, couples displacement to pressure, et cetera. The solution and
load vectors are given as x = [u p]' and b = [b, b,]". The sign of the equations can be
chosen so as to make this a symmetric indefinite problem, which we write as

A= ; 9)

A B

A=
BT C

: (10)
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where A is symmetric positive definite and C is symmetric negative definite.

3 Block preconditioning methods

Since the convergence rate of iterative solvers depends on the numerical properties — the
condition number in particular, but also the eigenvalue distribution — of the coefficient
matrix, a preconditioner is in most cases required to achieve a satisfactory convergence
rate. In general, the preconditioner P~! should be fast to compute and close to A1,
although the latter is not a necessary condition. In fact, a better (although somewhat
circular) requirement is that it gives P71 A a beneficial eigenvalue distribution. For
the Krylov family of iterative solvers, the exact meaning of “beneficial” is somewhat
complicated, but having a small number of tight eigenvalue clusters often leads to rapid
convergence [30].

We assume for the moment the availability of good preconditioners for the symmetric
definite decoupled problems. These can be formed by, e.g., multigrid or incomplete
factorisation methods; we shall discuss these in a later section. The question then
is: how can these be combined to an effective preconditioner for the coupled Biot’s
equations? We briefly present here the motivation for the block preconditioners that
are chosen for the numerical experiments.

Given a nonsingular 2 x 2 block matrix

A B

A=
BT C

(11)

such as that in eq. (9), we focus on block preconditioners of A, i.e, those that can be
written on the form
M N

P Q

For example, the standard block Jacobi and block Gauf-Seidel preconditioners can be
expressed as

P = : (12)

-1 _
PSJ -

I 0
—BTA! 1 ] ’ (13)

A-1
AO 601] and P;Glsz

Al 0
0 Ct

respectively, where A= and C~! are approximations to the inverses of the diagonal
blocks in eq. (11), i.e., to the inverses of the decoupled equations.
Furthermore, when A is nonsingular, the associated Schur complement of A is

S=B'A"'B-C. (14)

It is then easily verified that the exact inverse of A can be written as

I —-A'B A7t 0 I 0
A_l — R 15
[ 0 I 0 -s! ] —B'A™! 1 ] (15)
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with S defined as in eq. (14). Using this block decomposition as the basis of a precondi-
tioner for symmetric indefinite systems was proposed by Toh et al. [34]. Eq. (15) can
also be viewed as a symmetric block GauB-Seidel preconditioner, where C! is replaced
by —S~! as the (2,2) block. This is seen by comparing egs. (13) and (15). We generalise
this observation by defining the preconditioning basis of A as

A B

-Aprcc = B D

; (16)

where the D block may be replaced by, e.g., the original (C), which leads to the
standard block preconditioners in eq. (13); or the negative Schur complement (—S),
which produces the Schur complement preconditioners based on eq. (15). We have tested
preconditioners using both of these bases, as well as one using an e-capped modification
of C, in our numerical experiments.

Another Schur complement based preconditioner was evaluated in a homogeneous
context by Phoon et al. 28], where the Generalised Jacobi preconditioner was defined
(in un-inverted form) as

Ao } 7 a7

Paste) = 0 aS

where A and S are approximations to the exact (1,1) block and the Schur complement,
respectively. The Generalised Jacobi preconditioner is equivalent to a block Jacobi
preconditioner with D = «S. Phoon et al. argue that while the choice of « is not
significant when the exact (1, 1) block A = A is used, a negative value for a performs
better when a cruder approximation is used. It was shown that this preconditioner
leads to an attractive eigenvalue distribution, with three distinct eigenvalue clusters
around 1 and (14 +/1 + 4/a)/2, each with diameter of order ||[S71C||. Although this
theoretical result depends on the exact inversion of eq. (17), the practical applicability
of a diagonal approximation with o« = —4 was demonstrated.

An interesting question, when utilising a symmetric preconditioner such as one based
on eq. (15), is whether the preconditioned coefficient matrix is positive definite. If it is,
then the Conjugate Gradient method can be used instead of indefinite methods such as
BiCGStab. We can define the “approximate identities” generated by A-'and S7! as

In = A7'A,
Is=SYB'A'B-C).

18)

(
(19)
Both approach the identity matrix I (of the appropriate dimension) as A~'and S
approach the real inverses, and both are symmetric positive definite as long as the
single-block preconditioners are. The preconditioned coefficient matrix, which can be
written as

Ih 0 A-IBS'BT A°'B

—1 A
PgSGSA: [ 0 ~ :| +

Ig -S-1gT 0 0 I-1Ig

lliA 0 } 20)

then also approaches the identity, and the problem is trivially solved. Of more practical
interest is under what circumstances egs. (18) and (19) are close enough to the identity
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Table 1: Number of applications of the single-block operations for one application of the block
preconditioner.

A-'x D'x Bx x+ay

Block Jacobi 1 1 0 0
Block GauB-Seidel 1 1 1 1
Symmetric Block Gauss-Seidel 2 1 2 2

such that eq. (20) is ensured to be positive definite. Since the preconditioned matrix
is symmetric,! its eigenvalues are on the real axis. The question is whether they are
positive. The eigenvalue distribution of eq. (20) (as well as the non-symmetric Gauf-
Seidel variant of the same) was analysed in [34]°. In particular, it was found that the
eigenvalues are not guaranteed to be positive unless all eigenvalues of A~'A are greater
or equal to one, which is typically not the case for efficient single-block preconditioners.
Hence, Pgslc;SA is not necessarily positive definite; but since all eigenvalues approach
unity in the limit of exact single-block preconditioners, it clearly is if these are sufficiently
accurate. The utility of transforming a symmetric indefinite system into a positive
definite one was demonstrated in [8], wherein a preconditioner was explicitly designed to
transform the system of equations into a positive definite one, solvable by Conjugated
Gradients.

3.1 Computational cost

The computational cost of the preconditioner can be divided in two parts. First, the
construction of the preconditioner involves, in addition to the cost of constructing the
single-block preconditioners, the creation of the D block of the preconditioning basis in
eq. (16). If this involves a modified version of the model equations, the cost is that of an
extra finite element assembly. The Schur complement can be very costly to construct,
but a reasonable approximation (as we shall see, the one used in this paper) can be
created at roughly the cost of three single-block matrix-vector products. This is cheaper
than a single iteration of the BiCGStab iterative method.

Second, each application of the block preconditioner results in a number of single-block
operations, which is listed in table 1. This cost is incurred twice for each iteration in
BiCGStab, or once per iteration with CG. For comparison, the 2 x 2 block BiCGStab
iteration also involves eight matrix-vector products (two for each block), twelve vector
additions, and eight inner products.

4Strictly speaking, it is the spectrally equivalent matrix £~ AE~T with P = £T& that is symmetric.
5In the reference, these are called the “constrained” and “block triangular” preconditioners.
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4 Numerical investigations

4.1 Block preconditioners

In our numerical investigations we compare the performance of ten block preconditioners
in combination with the BiCGStab method and one with the CG method. These are
selected from the combinations of five different preconditioning bases with three different
blocking schemes.

We define the lower-triangular coupling matrix as

! 0}. (21)

G = ~
—BTA! T

The blocking schemes are then, with reference to the definition of A in eq. (16), the
block Jacobi preconditioning scheme,

A1 0

Pl =
! 0 D!

(22)

where A=! and D! are (in some sense) close to the real inverses; the block GauB-Seidel
preconditioning scheme

Pyl = Prig; (23)

and the symmetric block Gau3-Seidel variant
Pyt =G"Pr'G. (24)

Note that when D = —S, eq. (15) is approximated by P;*.

The (2,2) block in the preconditioning bases are D = C (the “standard” basis),
D = aS (approximate Schur complement, or “generalised”, basis), and D = C.>19-4
(capped-€ basis). In the latter, the coefficient matrix of a more regular problem, with e
capped to nowhere be smaller than 1074, is used in the basis. This particular value of e
was chosen after some experimentation.

The selected combinations are then: The standard basis combined with all three
blocking schemes; the Schur complement (generalised) basis with o = —1, combined
with all three blocking schemes; the Schur complement (generalised) basis with o = 1
and o = 4, combined with block Jacobi; and the capped-¢ basis combined with block
Jacobi (symmetric block GauB-Seidel was also tested, but it was not observed to bring
any advantages over the Jacobi variant). Finally, the « = —1 generalised basis with the
symmetric Gauf3-Seidel scheme is tested in combination with the Conjugate Gradient
method. These combinations are summarised in table 2 along with their abbreviations.

4.2 The single-block preconditioners

The block preconditioners in the previous section depend on the availability of efficient
single-block preconditioners A~ and D~!. We restrict our attention to preconditioners
which have the property of being efficient on massively parallel computers. This rules
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Table 2: Abbreviations used for the tested preconditioners. These have a three-part structure: The
block basis (standard, generalised or capped) in lower case, followed by the preconditioning scheme
(Jacobi, GauB-Seidel or Symmetric GauB-Seidel), and optionally followed by the variant (the value of o
in the generalised Jacobi preconditioners, or the “cg” postfix where the Conjugate Gradient method is
used). With the exception of gSGS/cg, all preconditioners are used with the BICGStab iterative solver.

Standard Capped Generalised
D=C D=Cs. D=-S D=aS
Block Jacobi sJ cJ gl(=1) gJ(1), gJ(+4)
Block Gauf3-Seidel sGS gGS
Symmetric Block Gauf}-Seidel sSGS gSGS
(... with Conjugated Gradients) gSGS/cg

out incomplete and approximate direct solvers such as the otherwise excellent ILU
methods.

Adams [1] found algebraic multigrid (AMG) to behave very well on problems of elastic
deformation, even in the presence of strong material discontinuities. In particular, the
smoothed aggregation method [9, 35] was considered to be the overall superior AMG
method for elasticity problems. The present authors likewise found AMG to be a nearly
optimal preconditioner for the discontinuous Poisson pressure problem, as long as the
low-permeable regions do not completely isolate any high-permeable regions [16]. In the
limit of € — 0, such isolation would in fact create a physically indeterminate problem.
When coupled with deformation of the solid matrix, however, the problem becomes
well-posed both physically and — as we shall see — numerically.

In the light of these earlier results, and the fact that AMG has been shown to scale
very well in parallel, to at least thousands of processors [2, 10, 19, 38], we have chosen
to use AMG for both the pressure and the displacement equation. As for the other
preconditioning bases, both aS and C.>10-4 are modifications of the single block in the
preconditioning basis associated with the pressure equation, and AMG is used also to
approximate the inverses of these.

4.3 Approximating the Schur complement

The Schur complement in eq. (14) is a dense matrix, and as such it is neither feasible
nor desirable to compute. While a number of sparse approximations to S are possible,
one approximation that is very fast to compute® is

S, = diag(B'(diag A)~'B) — C. (25)

This is the approximation used in the numerical experiments in this paper. The entries
of S are simply S;; = d;; >, (Agr) ' (Bii)? — Cy;. When the matrices are stored in the
CRS (compressed row storage) representation, this makes the calculation extremely

6In particular, this matrix can be calculated with minimal or no interprocess communication on a
parallel computer.
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cheap: a sequential traversal of three matrices plus arbitrary accesses into the diagonal
of A.

More accurate approximations to the Schur complement can be calculated. Toh et
al. [34] evaluated a number of approximations in the context of iterative solution of
Biot’s equations, and found the simple approximations to be effective. This matches our
experience: In addition to the approximation in eq. (25), we also looked at a slightly
more accurate variation,

S, = BT (diag A)™'B — C, (26)

but no improvement was observed (the performance in initial testing was in fact slightly
worse). Other variants, such as using a sparse approximate inverse of A in the triple
matrix product, are also possible.

The action of S™! on a vector v can however also be approximated by an inner
iterative solution of Sx = v, in which case S need not be formed explicitly. For example,
the Conjugate Gradient method can be employed with S = BTA~'B — C. We notice
from eq. (19) that it is in fact better if S approximates BTA~'B — C rather than the
exact Schur complement. We have not seen the need to include this procedure in our
test, so it is mentioned here only for completeness.

4.4 Implementation

We have implemented the finite element discretisation, block preconditioners and linear
solvers using the Diffpack C++ framework [11], somewhat modified for our needs. The
single-block AMG preconditioners are from the ML package for smoothed aggregation
[13], which is part of Trilinos [17].

4.5 Test geometry

Fig. 1 shows the two-dimensional domain of the test problems. For the pressure variable,
we use essential boundary conditions at the top of the domain (specified pressure)
and natural boundary conditions at the bottom and sides (no-flow condition). The
displacement boundary conditions are essential at the bottom (fixed position) and
natural at the top (specified traction force). At the sides the horizontal displacement
components are zero.

It should be noted that when ¢ — 0, the decoupled pressure equation is ill-posed
because 2; in fig. la becomes an isolated subdomain with indeterminate pressure
because of the pure Neumann conditions. When coupled to deformation, however, the
problem is well-posed.

4.6 Convergence criterion

We have in our earlier work observed that a convergence criterion based on the residual
in iteration k, r, = b — Ax;, may be misleading when A is severely ill-conditioned,
owing to some components of x being k(.A) times more influential than others [16]. This
problem is exacerbated when pushing against the limits of machine precision, as may
happen when parameters vary by more than ten orders of magnitude. Hence, in the
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Figure 1: The domain (a) and the mesh (b). The mesh is the smallest regular P?~P! mesh that
aligns the element boundaries with the discontinuities (N = 9).

convergence tests in the present paper we exploit an established property of iterative
solvers: their rate of convergence is independent of the right-hand side b as long as the
initial guess contains all eigenvectors of A [15, ch. 3.4].

For this reason we have chosen to solve the modified problem Ax = 0, instead of
Ax = b, together with a random initial solution vector xo. With this choice of right-hand
side, the error norm ||eg||s, is trivially available, since e = x;. The convergence criterion
is |lex|le, < 107%||eql|s,- We also note that due to this testing procedure, the exact value
of any boundary condition is irrelevant, since these values go into the b vector. The
only relevant information is whether or not they are essential, since the presence of an
essential boundary condition at a node is reflected by a modification to A.

All the reported iteration counts are from at least five runs using different random
initial guesses. In the graphs, the mean and range of the results are shown.

4.7 On the order of iterative methods

We often refer to the order of an iterative solution method, or the order of a preconditioner
(in combination with an iterative method). As mentioned in the introduction, the number
of iterations to solve a linear system to a given accuracy with conjugate gradient-
type methods is proportional to v/k, where k(P71 A) is the condition number of the
preconditioned coefficient matrix. For discretisations of the finite element methods,
k(A) ~ O(h™2), where h is the length scale of the elements. The number of iterations
of an iterative method for this unpreconditioned coefficient matrix is then of order
O(h™) ~ O(N), since N ~ h~! in the present paper denotes the number of nodes in
each space direction.
In general, we assume that the number of iterations to reduce the error by a fixed
factor can be modelled as
n ~ aN?, (27)

where the multiplicative factor a and the exponent p of the order may depend on the
geometry and mesh, the heterogeneity of the material parameters, boundary conditions,
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and so on; but not on N. By optimal order (with respect to N ) we mean that p = 0,
and hence that the number of iterations is independent of N. A method which is
optimal with respect to € may have p > 0, but the number of iterations is independent
of e. Finally, a weaker (but still attractive) property is having a growth rate that is
independent of €; that is, p does not depend on € even if a does.

4.8 Performance of the fully coupled solver with uniform elas-
tic parameters

In the first group of experiments with the fully coupled solver, the elastic parameters
are held constant throughout the domain, while the permeability has a discontinuous
jump of up to 16 orders of magnitude (¢ = 10°,...,1071%). The time step and fluid
mobility are scaled such that AgAt = 1, and the elastic parameters are A = 114 and
p = 455 (corresponding to Young’s modulus E = 10® and Poisson’s ratio v = 0.1).

Performance with constant permeability

The constant-parameter Biot’s equations, with ¢ = 10° and uniform elasticity, seem
simple to solve. If AMG can solve or precondition the separate equations nearly
optimally — which seems to be the case, at least in idealised cases [2, 16] — then one
might expect the same to be the case for the fully coupled problem with the application
of an equally simple block preconditioner. Yet, as seen in fig. 2, this is not necessarily
the case. The (nearly) optimal order, where the number of iterations is independent of
problem size, is seen only when the domain is discretised with equal polynomial order
quadrilateral (Q'-Q') elements. These elements are however less attractive for other
reasons; equal-order elements are susceptible to pressure oscillations in permeability
interfaces, and quadrilaterals are less flexible with respect to unstructured geometries
than triangular elements. When triangular or mixed elements are used, the order is
slightly below v/N. This is still a major improvement over the expected order N of
the unpreconditioned or diagonally scaled finite element method. For two-dimensional
problems, it means that the number of unknowns can be increased at least 16 times for
a doubling in the number of iterations, whereas using diagonal scaling it can only be
increased fourfold.

The figure shows convergence data for the block Jacobi (sJ) preconditioner, but as
seen in table 3b similar rates are seen with the other preconditioners for the P?-P!
space.

Performance with moderate jumps in permeability.

As long as the jumps in permeability are of moderate size, ¢ > 1074, the problem is
numerically well behaved. Fig. 3a shows the convergence behaviour of the different
block preconditioners under these conditions. In fact, some of the preconditioned solvers
initially have decreasing order as e gets smaller (most easily seen by comparing columns
one through three in table 3b). This is however a small effect, and not significant
compared to the increase in number of iterations observed in fig. 3a.
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Figure 2: Iteration count for the homogeneous-domain problem. The sJ preconditioner was used. @
denotes quadrilaterals and P denotes simplices of a given polynomial order.

Performance of the fully coupled solver with severe jumps in permeability.

When the discontinuities become more severe, with € < 107%, several of the precon-
ditioners fail to converge, as shown in fig. 3b. The first to diverge are the standard
and generalised Jacobi preconditioners sJ and gJ(—1), which drop out at € = 1078
(hence these are not plotted in this figure). The GaufB-Seidel preconditioners are better,
but when € goes below 1078, the standard-basis variants sGS and sSGS also fail. At
€ = 10710, the gJ(—4) preconditioner does not converge on the finest grid (N = 65).

In short, the story told in fig. 3 is that the generalised GauB-Seidel (gGS and gSGS)
preconditioners perform consistently well (the latter also with Conjugated Gradients),
with both a low number of iterations and a low growth rate. The gJ(1)/gJ(4) precondi-
tioners also exhibit a low rate of growth, and their higher absolute iteration count is at
least partly offset by a lower computational cost per iteration.

4.9 Discontinuities in both permeability and elastic parame-
ters

In the experiments we have looked at so far, the elastic parameters have been constant
throughout the domain. We now proceed to investigate the effect of discontinuous
elastic material parameters. This is a more realistic case of two different geological
materials. The parameters of the (soft, high-permeable) surrounding subdomain € are
the same as in the constant-parameter case. Inside €., the scaled elastic parameters
are A = 1.43 - 10° and ;o = 3.57 - 10, corresponding to Young’s modulus £ = 10° and
Poisson’s ratio v = 0.4.

Performance with moderate jumps in permeability.

Fig. 4a shows the results for a moderate discontinuity in permeability. The general
behaviour of the preconditioners is quite similar to the constant-elasticity case, differing
mostly by a multiplicative factor (on average, the number of iterations is about doubled).
Except for the a > 0 generalised Jacobi variants, all preconditioners perform equally
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Figure 3: Number of iterations to reach convergence (|ex| < 1075|eg|) for the model problem with
uniform elastic parameters. In (a), all preconditioners except for gJ(ow > 0) show a growth rate of
roughly N°3-N%4  with N being the number of displacement nodes in each space direction. At
e = 1078 (lower left), the sGS and sSGS preconditioners show a surprisingly low growth rate as N
increases, but with a large constant factor. When the discontinuities are even stronger (lower right),
these variants fail to converge at all. The Schur variants (2GS, gSGS and gJ(1)/gJ(4)) show a growth
rate of about N%® for both values of €, while the cJ preconditioner exhibits linear growth.
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well, with a growth rate in the range N%3-N%* (see table 3b). This demonstrates that
heterogeneity in the elastic parameters is not in itself a major difficulty with these block
preconditioners.

Performance with severe jumps in permeability.

When the permeability contrasts are strengthened, however, we see some changes relative
to the constant-elasticity case. This is shown in fig. 4b (compared with fig. 3b). Four
of the preconditioners have the same behaviour as they did with uniform elasticity.
These are the sJ and gJ(—1) Jacobi-scheme methods, which fail, and the gGS and
gSGS generalised GauB-Seidel methods, which converge robustly. But the remaining
preconditioners behave differently in the problem with discontinuous elastic parameters.

At € = 1078, the standard GauB-Seidel preconditioners, sGS and sSGS, perform
very well, while the capped-e Jacobi method (c¢J) actually converges faster as N grows
(although the number of iterations is still much higher than for the other methods).
All of these methods were among the worst performers with the same value of € and
uniform elastic parameters. These anomalies disappear in the most discontinuous case,
where € = 10715; here, the standard basis (sGS, sSGS) methods do not converge at all,
and the ¢J and gJ(—4) methods fail for large N. The latter result is in line with its
performance in the continuous-elasticity case, fig. 3b. While the good result at ¢ = 1078
is surprising, it has little practical significance since the effect appears to be a result of
particular combinations of parameters.

We note that the only four preconditioners that achieve convergence for all values
of € are the same that performed best in the constant-elasticity test: The positive-a
generalised Jacobi methods gJ(1) and gJ(4), and the generalised GauB-Seidel methods
gGS and gSGS (with either BiCGStab or CG iterations). The high sensitivity of gJ(4)
to the initial vector, seen most clearly in fig. 4a as a large variance in the results, can be
construed either as a warning flag, or as a sign that it can potentially be more efficient
if certain (unidentified) modes are not present in the initial guess.

The orders of the different methods, when used with discontinuous elastic material
parameters, is given on the right side of table 3b. The gSGS method does not go
significantly above O(N®?) in any of the tests — a remarkably robust result.

4.10 Summary of experimental results

Fig. ba summarises the performance of the successful preconditioners for the largest
problem size, N = 65. The ones that fail to converge in one or more of the tests
are similarly shown in fig. 5b. It is clear that when ¢ > 107, it does not matter
much which preconditioner is chosen; they all converge, and with the exception of the
generalised Jacobi preconditioners gJ(1)/gJ(4) they are equally effective. When the
permeability jump becomes larger, however, there are only four preconditioners that
converge consistently with every combination of material parameters: the generalised
GauB-Seidel methods gGS/gSGS, and the generalised Jacobi methods gJ(1)/gJ(4),
again with gJ(«) being least efficient. Additionally, gSGS/cg (which is solved with
Conjugated Gradients) performs well in all cases. Although the number of iterations is
higher for this method, the cost per iteration is lower than with BiCGStab, resulting in

52



4. NUMERICAL INVESTIGATIONS PAPER 11

—= sJ
sGS
sSGS
gGS
gSGS

— — gSGSleg

=== g1
gd(1)

=== gJ4)
gd(—4)

Number of iterations

o | " il " " ol . | " l " L ol
16 32 64 8 16 32 64

Elements per space direction Elements per space direction

10t

o

(a) Low to moderate permeability contrast. The GauB-Seidel methods overlap, and are drawn in gray
for legibility.

e=10"8% e=10"16
104 T T T ™ T T T T T ™ T T

—= sd
cd
sGS
— sSGS
gGS
10° | e I I § 4 —— 8SGS
F -/ - } 1F 1 —— &5GS/eg

T—TTTTTT

1 === &i-1
AL CERT gJ(L)

RPN, ~]11 -.,T—""T'"— 4 gJ(d)
] ;%z::-_-:a—;a—a: 5257 “ L gI(—4)

Number of iterations

10%

Elements per space direction Elements per space direction

(b) Severe permeability contrast.

Figure 4: Iterations to reach convergence for the model problem with discontinuous elastic parameters.
With moderate permeability contrasts, (a), the tested preconditioners show a growth rate of roughly
VN, with N being the number of divisions in each space direction. When the contrasts are stronger,
(b), the picture is more complicated; but the generalised GauB-Seidel preconditioners remain efficient.
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Table 3: Performance of the iterative solvers with the various preconditioners listed in table 2, with
uniform and discontinuous elastic parameters. Failure to converge is indicated by “—”.

(a) Average number of iterations at N = 65

Uniform elastic parameters Discontinuous elastic parameters

e— 10 107* 10°% 1072 10" 10° 10°* 10°® 1072 10716

sJ 18 35 — — — 36 o7 178 — —
sGS 19 34 486 — — 37 96 80 — —
sSGS 19 32 621 — — 37 99 95 — —

cJ  same as sJ 323 313 326  same as sJ 579 — —

gGS 19 36 72 71 7™ 38 57 79 116 109
gSGS 19 35 67 66 66 37 56 70 104 108
gSGS/cg 26 45 89 91 91 46 65 96 146 153

gl(-1) 18 3% — —  — 3 63 177 —  —
gl(—4) 19 38 1279 1545  — 36 61 152 @ —  —
glJ(1) 60 103 195 213 207 119 173 177 348 360
gl(4) 76 122 195 204 199 134 185 210 327 409

(b) Order of convergence (p in eq. (27)) calculated from N = 33...65

Uniform elastic parameters Discontinuous elastic parameters

e— 10 107* 107% 1072 10°% 10° 107* 1078 107'2 1076

s] 041 031 — — — 035 045 —-0.10 — —
sGS 033 048 0.18 — — 041 034 0.05 — —
sSGS  0.43  0.29 0.33 — — 037 044  0.09 — —

cJ  sameassJ 1.00 0.86 1.00  same assJ —0.14 — —

gGS 047 047 057 049 060 040 041 047 0.58 0.54
gSGS 0.37 046 051 048 043 035 0.38 026 0.46 0.52
gSGS/cg 0.40 049 042 045 044 0.37 0.36 0.27 042 0.50

gJ(-1) 038 030 — — — 033 059 008 —  —
gJ(—4) 042 036 298 220 — 038 048 08 —  —
gJ(1) 052 054 046 050 045 053 049 026 047 0.54
gJ(4) 064 066 051 053 053 070 057 048 050 0.91
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faster overall performance.
We further note that:

e The standard-basis family of block methods (sJ, sGS and sSGS) does not work
well for this problem.

e The Generalised Jacobi family of block preconditioners is unstable with negative
«, even though these are more efficient with less severe discontinuities. Positive «
is stable, but requires a large number of BiCGStab iterations to converge. The
magnitude of o seems to be of less importance, although the variance is much
higher with o = 4 than with o = 1.

e The capped-¢ cJ preconditioner is stable, although inefficient for large permeability
jumps, when the elastic parameters are uniform; but it fails for large jumps in the
discontinuous-elasticity cases.

e The generalised symmetric Gau-Seidel (gSGS) block preconditioner performs
well in all cases.

e The gGS block preconditioner, which is a simplified variant of gSGS, performs
almost as well (but fails to preserve symmetry, limiting the choice of iterative
solver).

e The gSGS block preconditioner with sufficiently accurate single-block precondi-
tioners transforms the problem into a symmetric positive definite one, which can
be solved by the Conjugated Gradient method. This combination is denoted as
the gSGS/cg method. The AMG method combined with a cheap approximation
of the Schur complement is sufficiently accurate for the model problems presented
in this paper.

5 Concluding remarks

The iterative solution of large-scale problems in geomechanics requires efficient and
robust preconditioners. While a number of preconditioners for Biot’s equation (and
similar symmetric indefinite problems) have been put forth in the literature, their
performance with highly discontinuous permeability has to our knowledge not previously
been systematically evaluated. This paper evaluates several block preconditioners for
this problem in the presence of severe jumps in the material parameters.

Our investigations reveal that discontinuous material parameters, which are present
in many realistic geological scenarios, pose a serious challenge for iterative solution
methods. Indeed, some seemingly attractive methods converge very slowly, or fail to
converge, on a model problem when the heterogeneities are sufficiently strong. These
include the standard block Jacobi and block GauB-Seidel preconditioners [23], as well
as the generalised Jacobi block preconditioner [28] with av < 0. The generalised Jacobi
block preconditioner with o > 0 does however converge at an acceptable rate.

Using Algebraic Multigrid as the single-block preconditioners and a cheap approxi-
mation to the Schur complement, we identify two block preconditioners that perform
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Figure 5: The e-dependence of the preconditioners with N = 65 displacement nodes in each space
direction. The upper plots show the methods that converged in all tests, while those that failed to
converge for some combination of parameters are shown at the bottom.
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consistently well on Biot’s equation with severe jumps in permeability and discontinuous
elastic parameters. These two, one symmetric and one non-symmetric variant of the
generalised GauB-Seidel method, are (in our interpretation) based on an exact blockwise
inversion of the coupled equations. The performance of these preconditioners is very
good, with a number of BiCGStab iterations which is about one third of the generalised
Jacobi preconditioner with o > 0. Furthermore, the symmetric variant leads (under
certain assumptions) to a symmetric positive definite problem which can be solved by
the Conjugate Gradient method.

Given that AMG preconditioners have shown themselves to scale to massively parallel
computers [2, 19], and that the methods presented herein only have minor parallel
communication requirements beyond those of AMG, we anticipate that this combined
block preconditioner is equally scalable. This assertion must however be investigated in
more detail, which will be performed in a forthcoming paper.

Moreover, owing to its construction from an exact decomposition, we believe that the
generalised symmetric Gauf3-Seidel preconditioner is widely useful for general difficult
coupled problems where the single blocks A and S are individually invertible.
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Abstract

Non-physical pressure oscillations are observed in finite element calcula-
tions of Biot’s poroelastic equations in low-permeable media. These pressure
oscillations may be understood as a failure of compatibility between the
finite element spaces, rather than elastic locking. We present evidence to
support this view by comparing and contrasting the pressure oscillations in

low-permeable porous media with those in low-compressible porous media.

As a consequence, it is possible to use established families of stable mixed

elements as candidates for choosing finite element spaces for Biot’s equations.
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1 Introduction

The coupled poroelastic equations due to Biot [7] describe the behaviour of fluid-filled
porous materials undergoing deformation. It is well known that the finite element
solution of these equations may exhibit unphysical oscillations in the fluid pressure
under certain conditions — low permeabilities, early times (shocks), and short time steps
[14, 22, 25]. For the practitioner it is important to know why non-physical oscillations
may occur and how to avoid them. This is the research problem we address in the
present paper.

Several methods have been proposed to remove the spurious pressure oscillations.
Murad et al. [14, 15] considered the displacement/fluid pressure (two-field) form of
Biot’s equation, and identified the initial state (early times) consolidation problem as
an instance of the Stokes saddle-point problem, with an associated inf-sup stability
test. They developed short- and long-term error bounds for some continuous pressure
elements. In particular, they found that the oscillations decay in time and may be
treated by post-processing even with unstable element combinations. Wan [23] employed
a stabilised finite element method, based on the Galerkin least-squares method, on the
two-field and the displacement/fluid velocity/fluid pressure (three-field) formulations.
Wan pointed out that the oscillations do not decay, and may even be amplified, under
different assumptions, in particular in heterogeneous materials with low-permeable
layers. Another stabilisation method was proposed by Aguilar et al.[1], who employ a
perturbation term depending only on a priori material and grid parameters.

More recently, least-squares mixed finite element methods for the stress tensor/dis-
placement/fluid velocity/fluid pressure four-field formulation have been proposed by
Korsawe and Starke [12] and Tchonkova et al.[21]. These methods have elliptic varia-
tional representations and hence appear to be naturally stable.

Phillips and Wheeler [17] investigated the same three-field variant of Biot’s equation
as Wan, and identified the oscillation phenomenon for short time steps and early times
as related to (in-)elastic locking, observed in linear elasticity [6]: The reduction of
effective degrees of freedom (owing to vanishing divergence) “locks” the displacement
solution.

In the present paper, we investigate the characteristics of the poroelastic fluid pressure
oscillations and compare them to those of elastic locking and inf-sup violation. The
similarity with the solid pressure oscillations in elasticity is investigated, in part through
a mathematical analogy with the elasticity problem and in part through extending the
two- and three-field poroelastic formulations to mixed formulations which includes the
solid pressure. The addition of a solid pressure field is known to overcome the locking
problem in pure elasticity.

Our idea is to link the fluid pressure oscillations to a violation of the compatibility
requirements for the discrete finite element spaces. Careful investigations performed
in the paper support the view that these phenomena are related. We can then draw
upon a large body of knowledge regarding stable spaces for saddle-point problems.
This approach helps us to formulate hypotheses about stable mixed finite elements
for two-, three-, and four-field formulations of poroelasticity. We test the validity of
the hypotheses through extensive numerical experiments. The results form a body of
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evidence for our goal of giving practitioners a range of choices for the robust solution of
Biot’s equations, whether the requirement is a fast solver (which might use a two-field
formulation with the minimal-order stable elements) or higher-order accuracy.

2 The mathematical model

The equations describing poroelastic flow and deformation are derived from the principles
of conservation of fluid mass and the balance of forces on the porous matrix. The linear
poroelastic equations can, in the small-strains regime, be expressed as

Spr—V - AVps+aV -u =g, (1)
VOA+u)V-u+V - -uVu—aVp =r. (2)

Here, 7 represents the total body forces, and ¢ is a fluid injection rate. The primary
variables are p¢ for the fluid pressure and w for the displacement of the porous medium.
Furthermore, S and A are the fluid storage coefficient and the flow mobility respectively,
a is the Biot-Willis fluid/solid coupling coefficient, and A and p are the Lamé elastic
parameters.

The fluid (Darcy) velocity is often of particular interest in poroelastic calculations. It
can be written

vp = —A(Vpr — 1), (3)

and represents the net macroscopic flux, given body forces r¢ acting on the fluid phase.
For the displacement equation, the main secondary quantity of interest is the effective
stress tensor,

o =0 —apl=\Tre — ap)l + 2pue, (4)
which is written in terms of the small-strains tensor
e=(Vu+Vu')/2. (5)
In the following, this canonical form of Biot’s equation given in eqgs. (1)—(2) is referred
to as the two-field formulation.
Weak discrete-in-time form.

We employ a first-order backward finite difference method in time, which leads to the
discrete-time form of eq. (1)

Spr — AtV - AVps + aV - u = ¢At + Spr + aV - . (6)

Hatted variables (pr, @) indicate values from the previous time step, while unmarked
variables are taken to be at the current time step.

Next, we rewrite eq. (2) and (6) in weak form, using integration by parts to eliminate
second derivatives. We define the following (bi-)linear forms on the domain  with
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boundary T,

af(¢e, pr) = — [ Shpr + AtV - AVpedQ,
bl(¢f1 u) - fQ &d)fv ‘U dQ> (7)
B(¢r) = — [o,(aAt + Spe + V- @)dpdQ + [ e fr — 1 - Ar)Atdl,

and

a(puu)= [NV -)(V-u)+ Ve, : Vau]do,
L(pu) = — [y o TdU+ [ Py - tndl.

The problem then becomes: Find ps € V; and u € V, that satisfy the following relations:

(8)

ag(¢r, pe) + b'(dr, w) = I () Vor € Vg, (9)
al (¢, w) + b (pr, o) = L () Ve, € V. (10)

The normal flux f,, = vp - n and normal stresses t,, on the boundary I' appear in these
equations as natural boundary conditions. We note that egs. (9)—(10) form a symmetric,
but indefinite, system of equations.”

The natural spaces for the continuous problem are V; = H' (or L? when A = 0) for the
pressure and V,, = H' for the displacement. The discrete finite element approximation
follows from solving the equations for the weak form in finite-dimensional spaces. We
shall return later to the question of discrete spaces.

2.1 Three-field (fluid velocity) formulation

In many applications of the poroelastic equations, the flow of the fluid through the
medium is of primary interest. However, due to the differential operator acting on
the pressure pr, the flow is of lower accuracy than the pressure itself. Furthermore,
the derivative is not continuous between elements, and hence the fluid mass is not in
general conserved. A natural extension is then to introduce vp as an extra primary
variable in a mixed finite element formulation. The order of accuracy is higher, and
mass conservation for the fluid phase can be ensured by using continuous elements for
Up.

By inserting the relation for fluid flux, eq. (3), into eq. (1), we get a coupled system
of three equations (of which two are vector equations). The equations for fluid flux and
pressure are

Spe+ V- -vp+aV-u=gq, (11)
Ail’UD + Vpr = 7y, (12)

and these are coupled with the unmodified eq. (2) for solid displacement. We shall call
this the fluid velocity three-field formulation.

"Symmetric because the trial (pg, w) and test (¢f, ¢,) functions are interchangeable; indefinite
because al is negative definite while a, is positive definite.
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Weak discrete-in-time form.
We define the following additional forms:
- f Q S (bfpf dQ

—fﬂpr Up dQAt (13)
— Jo(gAt + Spe+ V - @) e dQ,

af (¢f7pf)
v (¢r, vp) =
lH( f)

)

which are derived from eq. (11

, and

¥y, vp) = [y by - A wp dQAL,
CH(¢vvpf = fl (bv . n}pf dFAt7 (14)
ZH ¢v fQ v - Tt dQ.

from eq. (12). The solution is then given as (u,ps,vp) € V =V, x V; X V, satisfying

a?(qbfvpf) + bl(¢f7 ’LL) + bH(¢f7 UD) = l?(qﬁf) V¢f € ‘/f? (15)
a{zl(gbw vD) + bH(pﬁ ¢v) + CH(¢V7pf) = Z\I/I(d)v) v¢v S ‘/\/7 (16)

along with eq. (10) for the displacement.

The displacement space is the same as in the two-field formulation, while the pressure
space is always L? (in the two-field formulation, this is the case only when A = 0).
Additionally, we define the fluid velocity space as V, = H(div)®. We note that the
system is symmetric only when ' = 0; this is achieved when the whole boundary has
either zero fluid pressure or zero fluid flux conditions (and the spaces V; and V; are
restricted accordingly).

2.2 Three-field (solid pressure) formulation

In the field of (pure) elasticity, it is well understood that a low-compressible material
(with Poisson’s ratio close to 0.5) leads to unphysical oscillations in the solid pressure
field, and in some cases also to a wrong solution for the calculated displacement. This
can be explained by A becoming very large in eq. (2), leading to the requirement that
V -u — 0. When this requirement is applied to standard finite elements, several degrees
of freedom become “locked”; leaving too few degrees of freedom to represent the correct
solution.

One way to overcome this obstacle is to introduce a new primary variable for the
solid pressure. We define the (incomplete) solid pressure as

Ds=—AV . u, (17)
whereby eq. (2) can be rewritten as the coupled equations,

VuV - -u+V . -uVu—Vp,—aVp =r, (18)
MNP+ Veou=0, (19)

SL2D> H(div)={veL?|V-vel’} DH'={ve L? | Vvel?

69



PapPer 111 3. ON THE CAUSES OF PRESSURE OSCILLATIONS

and combined with eq. (1) for the fluid pressure. This definition of the solid pressure
makes the equation simpler than when using the volumetric solid stress, ps = —0vo =
—(A+ %M)V - u, while still including the “difficult” part of the pressure.

The three-field (solid pressure) formulation can be used with low-compressible or
even incompressible materials.

Weak discrete-in-time form.

The additional variational forms associated with egs. (18)—(19) are
at (@, ) = [, uV e, : VudQ,
a£11(¢svﬁs) = fQ A_1¢sps dQv (20)
(g, u) = [, ¢V - udQ,

and the solution is given as (u, Dy, pr) € Vi X Vi x V4 satisfying

aIHII(¢11’ u) + bl(pf7 ¢U) + bIII(pb7 ¢)11) = ll11(¢)11) v¢u E %7 (21)
al (s, 75) + 0" (¢, u) = 0 Vo, € Vi, (22)

along with the original equation for the fluid pressure, eq. (9). The continuous spaces
are as in the two-field formulation, with the addition of the solid pressure space V; = L2.

2.3 Four-field formulation

Combining the three-field formulations of fluid velocity and solid pressure, we get a
formulation of two scalar and two vector fields which attains accurate fluid velocities,
and which is stable in the presence of low-compressible materials. The formulation is
obtained as the coupled system of egs. (11)-(12) and (18)—(19), as

Spe+V - -vp+aV-u=gq,

A lop + Vpr =,

VuV - -u+V . -uyVu—-Vp, —aVp =r,
AP+ Vu=0,

Weak discrete-in-time form.

The weak form of the four-field formulation is: Find (w,vp,p, D) € Vu X Vo x Ve X V
such that egs. (15)—(16) and egs. (21)—(22) are satisfied.

3 On the causes of pressure oscillations
It is well known that spurious fluid pressure oscillations may occur in low-permeable
regions in finite element calculations of the poroelastic equations [13, 17, 18]. To

illustrate this phenomenon, we use a simple test case where a low-permeable layer is
placed inside a “normal” material, shown in fig. la. The low-permeable layer uses A = €l
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Figure 1: Domain for illustrating pressure oscillations. On the sides and bottom, no-flux conditions
are imposed so that no fluid or solid movement is allowed in the normal direction. The top is drained
with fluid pressure ps = 0 and an applied normal stress. Spurious pressure oscillations are clearly
present in (b) — the analytical solution is constant o7, ; = 1.

for some € < 1, while the “normal” layer has unit permeability. In all three layers, the
elastic parameters are set to A = p = 1. The boundary conditions at the sides and
bottom are no-flux for both the fluid and the solid,

fn|F0 :Ov u'n‘ro :07 (27)
while the top boundary is drained, with an applied normal force
pf‘IH =0, tn|F1 = F(x)n, (28)

where F(x) is constant 1 for the present. No body forces are present, and the initial
conditions are u = 0 and pf = 0 with At = 1.

fig. 1b shows the naive numerical solution to the two-material test case when € is very
small, computed with the two-field formulation using first order quadrilateral elements
(Q1/Q1)°. The pressure oscillations in the middle layer clearly have no physical basis,
nor are they present in the analytical solution to the problem.

Studying the fluid velocity three-field formulation, Phillips and Wheeler [18] argue
that such pressure oscillations have the same cause as the phenomenon known as locking
in pure elasticity. To see why, we consider that the basic linear elastic equation is just
eq. (2) without the fluid pressure term,

VA+u)V-u+V . -uyVu=r. (29)

Elastic locking occurs when finite elements are asked to reproduce a displacement field
that is nearly divergence free, as A — oo corresponds to V - u — 0. Satisfying this with

9 Elements are listed in the order up,/vpps, where any unused position for a particular formulation
is skipped. Hence, the two-field formulation uses w/p¢, fluid velocity three-field uses w/vpps, and solid
pressure three-field uses up,/ps.
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Figure 2: The Barry-Mercer problem consists of a pulsating pressure point source embedded in a
uniform porous material which is drained on all sides, with zero tangential displacement. Pressure
oscillations are clearly visible when using Q1 /RT1 Qo elements.

standard (low-order piecewise polynomial) finite elements locks out many of the degrees
of freedom, to the extent that only constant displacement fields can be represented.
More commonly, the error in displacement is seen to cause nonphysical oscillations in
the solid pressure (ps — p, = —AV - u). This is because the errors in V - u =~ 0 are
magnified by a very large factor A in the post-process calculation of the volumetric
stress.

The argument by Phillips and Wheeler is that under certain conditions the same
happens in poroelasticity. Consider eq. (1) with uniform permeability, discretised in
time with time step At and with S = ¢ = 0. Assume furthermore that we take one
time step from a divergence-free initial state, which is quite normal at the start of a
simulation (when u = 0). Then, eq. (1) reduces to

V- u=AtV - -AVp/a, (30)

The right-hand side becomes very small for short time steps and low permeabilities.
Again, the requirement for a nearly divergence-free solution for the displacement u ap-
pears. Fluid pressure oscillations are demonstrated in (among others) the Barry-Mercer
problem (shown in fig. 2a), using the three-field formulation with lowest-order Raviart-
Thomas elements for the fluid and linear elements for the displacement (Q1/RT1Q).
This problem [5] consists of a pulsating pressure point source embedded in a uniform
porous material, with boundary conditions chosen to permit an analytical solution:
pslr = 0, u X n|r = 0, and initial conditions w = 0 and p¢ = 0. The pressure oscillations
disappear when the displacement is instead calculated with a discontinuous Galerkin
method, and the optimality of the pressure solution is proven for this method.

As regards the test case shown in fig. 1, we remark that elastic locking can not appear
in this test case which is one-dimensional, because in one dimension V-u = du,/dz — 0
implies constant displacement — a trivial solution which can be represented by any
element. Hence, the oscillations shown in this figure are not caused by elastic locking.
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Figure 3: Plausible (smooth) solution for the three-material problem with a low-permeable layer and
non-uniform load. As e decreases, the fluid pressure becomes dominant in the middle layer, and each
of the pressure components approach a discontinuous solution.

We therefore introduce asymmetry through a load on just the right half of the
top boundary, F(z) = {0 when z < 0.5, 1 otherwise}, in the three-layer problem
(fig. 1a). With asymmetric loading we do not have an analytical solution, unlike in the
uniform-load case. Instead, we use the fact that the volumetric effective stress,

, Tro’

Oyvol = 3

=P+ §MV~u+apf, (31)
should be continuous and smooth (away from the externally applied discontinuity on
the surface at @ = 0.5). The solution is illustrated in fig. 3, where the thick gray line
shows that o/ is continuous even when each of its three components is discontinuous.
The smoothness of ¢!, does not prove that the numerical solution converges, but it
makes it easy to identify many of the wrong solutions with oscillating pressure.!® In the
text, we refer to these apparently correct solutions as “plausible”, since they are not
compared to a known analytical solution.

We now compare the behaviour of the non-uniform load problem with a low-permeable
layer to that of a low-compressible layer. In the latter case, the middle layer of fig. 1a is
replaced with a layer with unit permeability but low compressibility; A = e7!, A = 1.
The plausible (smooth) solution to this problem is shown in fig. 4. The total pressure
profile is similar to the low-permeable problem, but the load in the middle layer is here
mainly supported by the volumetric stress, instead of the fluid pressure. Furthermore,
we know that this problem is susceptible to elastic locking. fig. 5 compares these two
cases using equal-order )1/Q elements. As expected, the low-permeable problem has
difficulty with the fluid pressure, while the low-compressible problem has difficulty with
the volumetric stress. There is, however, a major difference in the effect that this has

0We also note that the existence of analytical solutions is no panacea. As noted in, e.g., [16],
geologically relevant solutions are often not realisable on a reasonably sized computational mesh. For
example, the fluid pressure solution in fig. 1b should have a very sharp gradient between the two top
layers, a feature that is not possible to realise with continuous elements unless an extremely fine grid is
used. Similarly, the Barry-Mercer problem requires a point pressure source, while discrete analogues
have source areas on the order of the element size. These inaccuracies in the discrete model may mask
any “real” convergence difficulties for all but very fine meshes.
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Figure 4: Plausible (smooth) solution for the three-material problem with a low-compressible layer
and non-uniform load. As opposed to the low-permeable case in fig. 3, the pressure components are
continuous.

on the displacement. fig. 6 compares the locking behaviour of the low-permeable and
the low-compressible problems. In the low-compressible problem, the faulty pressure
is associated with elastic locking, i.e., the displacement is pulled toward a constant
in the middle region, fig. 6b. This restriction of the displacement is not seen in the
low-permeable problem, fig. 6a.

It appears that elastic locking is not in general a sufficient explanation for the fluid
pressure oscillations in low-permeable regions.

4 Spurious pressure oscillations and saddle-point
problems

It is instructive to look at the case of total impermeability, A =S = 0. For clarity of
presentation, we furthermore set & = 1 and let ¢ = At + V - 4, where 4 is the value of
u at the previous time step. In this case, eqs. (1)-(2)* take on almost the same form
as those of the mized formulation of incompressible linear elasticity (as opposed to the
pure displacement formulation mentioned in the previous section). This is evident when
we compare the impermeable poroelastic equations

VOA+u)V-u+V-uVu—Vp=r, V- u=yq, (32)
with the incompressible elastic equations
VuV-u+V. - pyVu—-Vp, =r, V.-u=0. (33)

Much of the analysis of eq. (33) is valid also for the present problem. In particular,
Bathe [6] notes that the weak form of eq. (33) has two major failure modes: The
first is the already mentioned elastic locking, wherein the displacement space is overly
constrained by V -« = 0. The second failure mode occurs when the pressure space is
too large and contains spurious pressure modes.

MOr egs. (11)—(12) and (2) after eliminating vp = 0.
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In linear algebra terms, eq. (33) can be discretised as

HEH

where B;; = b'(¢!, ¢!) (and w is approximated as uj, = Y, u*@¥; similarly for p). Then,

locking follows when kernel(BT) does not span the displacement space, while spurious
pressure modes are a consequence of a too large kernel(B). The same argument can
be used in the poroelastic case, eq. (32), except that the presence of locking is now
determined by the space spanned by solutions of B'u =  instead of the null space.

If the cause of the fluid pressure oscillations lies in the well-posedness of the discrete
weak form of the equations, we know from, e.g., [8], that the solvability of the equations
and the stability of the solution follows from the Babuska inf-sup condition [3], which
should be fulfilled for any mesh size h:

A B
BT 0

o <= inf sup LAt
vn €V wy, eV, [[Vallv [lwnllv

(35)

for some 7y > 0. In the four-field formulation, for example, the discrete space is V}, =
Vi x Vi x V, x V; and vy, wy, are functions in this space, e.g., v, = (Vu, Up;, Vup Ups) € V.
The key insight is that this condition must be fulfilled for the complete coupled system
of equations, and not only separately for the fluid velocity/fluid pressure and the solid
displacement /solid pressure. Hence, ¢ in eq. (35) is defined as

c(¢, ) = af' (dg, 1g) + a (b, o) + all (Gu, ) + @ (6, 05) + (05, 000)
+ bH(d)f: 7v[}v) + bH(/(/)fv ¢v) + CII(¢U7 wf) + bl(q/)fa ¢u) + bIH(wsv Qbu) + bHI(¢s7 wu) (36)

In the special case of symmetric saddle-point problems, on the canonical form a(v, u)+
b(v,p) + b(u,q) = I((v,q)), Y(v,q) € V and with a coercive, the following Brezzi
conditions [8] are equivalent to the Babuska condition. The Brezzi coercivity constant
ay, 18

a(u,v)
lullvlvllv’

with Z, = {v € V3, | b(v,q) = 0, Vq € Qp,}, while the Brezzi inf-sup constant!? 3, is

(37)

ap = inf sup
ueZp, VEZp

B, = inf sup _bv.a) (38)
a€Qn vev;, [[v]lv]lalle

Both of these should be bounded from below as h — 0. The Brezzi inf-sup constant
is particularly interesting, because zero values for ), indicate the presence of spurious
modes in @, (as we stated in terms of the kernel of the matrix B in the previous section).
The two-field formulation approaches a saddle-point problem when S =0 and A — 0,
in which case it is similar to the mixed linear elasticity problem (for finite A). Spurious

pressure modes are then associated with zero values of the Brezzi inf-sup constant,

[
By = inf sup b(g,v)

v 39
a€Vivew, [lgllviv] )

Vu

12The Brezzi inf-sup condition is also known as the Ladyzhenskaya-Babugka-Brezzi (LBB) condition.
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The three-field (fluid velocity) problem, however, is a true saddle-point problem
whenever S = 0 (and symmetric when ¢! = 0). We can define

a((v,w), (2,y)) = ay(v, ) + a/'(w,y), (40)
bg, (v, w)) = b'(q,v) +b"(q, w), (41)
1((p,v)) = I(v) + i (p), (42)

and restate egs. (10) and (15)—(16) in the form of a canonical saddle-point problem:
Find the solution (w,vp,ps) € V satisfying

a((v,w), (w,vp)) + b(pr, (v,w)) + b(q, (w,vp)) = ((q,v)), V(v,w,q) €V, (43)
with Brezzi stability constants

I 11
ap = inf sup 0 (v, @) + a (w, y) ; (44)
ww)eZn @y)ez, ([Vllvi + [lwlv)(lzllv, + yllw)
b (g, v) + "' (g, w)

v +lwlv,)

By =inf  sup (45)

€V (v w)evix Ve |2V ([|V]

The Brezzi inf-sup constant is therefore zero only when the individual terms b' and b
are. These individual couplings between the variables are similar to those of well-known
problems, which have known stable choices of finite element spaces:

e The displacement-fluid pressure coupling is similar to the displacement-solid
pressure coupling in the mixed linear elasticity problem (as shown),

e the displacement-solid pressure coupling is the same as in the mixed linear elasticity
problem, and

e the fluid velocity-fluid pressure coupling is same as the Darcy flow problem.

The separation of the coupling terms in the Brezzi inf-sup condition motivates our
strategy of choosing combinations of element spaces that satisfy these individual prob-
lems. Hence, p; should be chosen to be an element that is usable for mixed formulations
of both linear elasticity and fluid flow. For example, if an element combination that
is stable for mixed linear elasticity is chosen for w and p,, and a combination that is
stable for Darcy flow is chosen for vp and pg¢, we must then ensure that the resulting
combination for u and pr is also stable for mixed linear elasticity. An example of a
combination that could work is the lowest order Raviart-Thomas (RT) for vp-p; and the
lowest order Crouzeix-Raviart (CR) or Rannacher-Turek (TR) elements for u-p,. Both
pressure elements (fluid and solid) are then piecewise constant, so the w-ps combination
is also potentially stable (CR or TR).

With these guidelines, we proceed to examine the stability of a number of combinations
of finite elements.
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Table 1: Summary of pairwise element combinations. Elements of polynomial order k are classified as
Py, or Q, for Lagrangian elements, while RTj, CRy and TRy, are the Raviart-Thomas, Crouzeix-Raviart
(triangular) and Rannacher-Turek (quadrilateral) non-conforming elements, respectively. Discontinuous
elements are marked as “_;” (except k = 0, where this is implicit). Enriched (bubble) elements are

marked by “*”.
(a) Triangular elements (b) Quadrilateral elements
Element Comment Element Comment
PP Equal order Lagrange (lowest or-  Q1Q1 Equal order Lagrange (lowest or-
der) der)
PPy Equal order Lagrange Q202 Equal order Lagrange
RT Py Lowest order Raviart-Thomas  RT1Qq Lowest order Raviart-Thomas
(Hdiv) vector element (Hdiv) vector element
P2Jr P “Good element” (M. Fortin, via  Q2Q1 Lowest order Taylor-Hood
(11]) Q2Q0 Only linear convergence in Q2
PP Lowest order Taylor-Hood TR1Qo Lowest order Rannacher-Turek
PPy Only linear convergence in P» non-conforming
[10] Q1Q0 One of the most popular elements
CR1FPy  Lowest order Crouzeix-Raviart in practice [11], LBB unstable
non-conforming element (but still usable)
P;fP_;  From [10]; “optimal” [6], “good ~ QaP_; Discontinuous, linear (rather than
element” (M. Fortin, via [11]) bilinear) pressure; “optimal” [6],
PP MINTI [2] “most accurate 2D element” [11]

QT+Q1 Quadrilateral MINI analogue [4]

5 Convergence testing

The Babuska or Brezzi conditions require careful work to evaluate analytically, even
for a single element family on a two-field problem. For a large number of combinations
on three- and four-field problems, it is impractical. As an alternative, the conditions
may be tested numerically on a series of meshes, by solving the generalised eigenvalue
problems associated with the Babuska or Brezzi conditions [9, 19]. Automated tools
are available for this purpose, e.g, ASCoT [20]. The full generality with regards to
element definitions and boundary conditions is however not yet achieved. Hence, we
have chosen to analyse the element combinations by investigating their real performance
on a number of concrete test cases.

We have selected several element pairs, listed in table 1, that are in common use, and
tested combinations of these. Using the four-field formulation as an example, we could
choose these element pairs: RT1Qy for vp-ps and QaP-; for u-p,, resulting in Q2Qy for
u-pg. This is written as the element combination Q2P_1/RT1Qy.

Two of the test cases are as described earlier: A problem with a low-permeable layer
embedded in a normal one from fig. 1a, and the Barry-Mercer problem, with a point
pressure source inside a low-permeable material from fig. 2a. For the Barry-Mercer
problem, we use elastic parameters A = p = 1, a time step of At = 0.01, and source
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Figure 7: The three-material test case. In the top layer, the load is carried by the solid pressure; in
the middle layer by the fluid pressure.

strength py = 1.

The third test case is shown in fig. 7a. It is a variation of the earlier embedded-layer
case, where the top layer is made low-compressible. Thus, there are three layers: The
top one low-compressible; the middle one low-permeable; and the bottom one normal.
The two three-layer cases are both tested with uniform load and with load on just the
right half of the top boundary.

In either case, we evaluate the solution after a single time step. As reported in, e.g.,
[23], the pressure oscillations tend to smooth out over time, and hence the first time
step is the most revealing one.

We have summarised the results in table 2. Most of the results are as expected based
on our previous analysis: The equal interpolation elements, and those which are picked
from known-stable pairs in table 1 mostly work. The exceptions are the CR; Py and
TR; Qo non-conforming elements for u-p;. The CR; or TR, element might potentially
be useful for u when using RT; for vp, since both are first order and both combine
with piecewise constant pressure elements. As noted in the table, we were able to “fix”
the TR, element by setting extra tangential boundary conditions, but this solution is
not very satisfactory in general.

The Q1/RT1Qq combination for the fluid velocity three-field formulation succeeds
with the two- and three-material problems, but fails on the Barry-Mercer problem. The
latter failure is shown in figure fig. 2b, which illustrates what is called the “checkerboard”
spurious pressure mode (as does fig. 1b). This spurious mode is well known and
ubiquitous [6, 11]. It can in many cases be “fixed” by juggling of boundary conditions;
in particular, by releasing tangential essential conditions. Furthermore, Gresho and
Sani [11] state that in their experience (and analysis) the Q1@ combination actually
has optimal convergence after filtering the spurious pressure modes.

Whenever the domain has large permeability contrasts, the solution may contain
steep pressure gradients. Discontinuous elements may then be advantageous to avoid
localised oscillations in the fluid pressure. Comparing fig. 8a and fig. 8b, it is evident
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Table 2: Summary of the numerical stability results for different elements. The test cases are (in
order) Uniform load, Right-Half load for the two- and three-material cases, and the Barry-Mercer
problem. The three-material case is used when P is present, otherwise the two-material case is used.

(a) Triangular elements (b) Quadrilateral elements

Element Test case Element Test case

u Ds vp e U RH BM u Ds vp e U RH BM

P —  — P fail fail fail Q1 — —  Qp fail fail fail
P — — P fail fail fail Q2 — — Q2 fail fail fail
Pt P, OK! OK! OK! @Qft Q OK! OK! OK!
p, — — P OK' OK!' OK!' @ — — @  OK! OK! OK!
p, — R, P, OK OK OK @ — RI; Q OK OK OK
CR, — RT; P, fail® fail®> fail>2 TRy — RT; Qo fail® fail® OK
P2 - P2 P1 ()I{1 OKl OKl Ql — RTl Qo OK OK fail
Py Pf P, OK OK OK Q@ Q Qb OK OK OK
pt b — P OK' OK' OK o — @ < OK' OK' OK

J— 1 1 1
Pf P RT, Py fail  fail  fal @2 T @ OK' OK' OK

pPf P, RI; B, OK OK OK TRy @ RI; @ OK fail OK
P, P RI;7 b OK OK OK @ Q RIi Q OK OK fail
PF P, Pf P; OK OK OK @ P, @ P; OK OK OK

tContinuous pressure elements exhibit local 3Succeeds when tangential displacement BCs
pressure spikes are added

2Singular coefficient matrix

that the continuous pressure elements cannot represent the gradient at the interface
between the high- and low-permeable region, and the resulting overshoot induces local
oscillations in the pressure solution. When using discontinuous elements for the fluid
pressure, these oscillations are not present. Discontinuous elements for the fluid pressure
can not be used in the two-field formulation, where H' regularity is required.

Nevertheless, local pressure oscillations may still occur in certain situations, for
example in early times of the Terzaghi consolidation problem. Terzaghi’s problem,
analysed in for example [24], describes the vertical consolidation of saturated soil.
One end of the soil column is drained, and a compressive force of unit magnitude is
instantaneously applied. In this case, both continuous and discontinuous elements
lead to some overshoot of the fluid pressure, as shown in fig. 8c. In contrast to the
earlier case, this problem cannot be well approximated with a small number of elements;
arguably, the best approximation to the continous pressure solution at early times is
a constant (pf = 1), but this solution violates the essential boundary condition at the
drained end (ps = 0). Hence, this problem requires additional stabilisation to avoid
initial oscillations for short time steps [1, 12, 21].

Depending on the model and on the desired properties of the solution, we list some
combinations of element spaces that we find attractive.
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Figure 8: Using discontinuous elements for the fluid pressure (b) avoids local oscillation at the edge of
the low-permeable material, where the pressure gradient is very steep. It does not, however, smoothly
handle the pressure front in early stages of the Terzaghi consolidation problem (c).

e For a fast solver, the two-field formulation may be desirable. The fluid pressure

solution must then be a subspace of H!, (i.e., continuous), and localised pressure
oscillations are unavoidable, as remarked above, unless stabilisation is added
(such as the flow perturbation proposed by Aguilar et al.[1]). The MINT element
combination (P;f/P)), or its quadrilateral analogue (Qf"/Q:) are attractive
choices. The Taylor-Hood element (P,/P; or QQ2/Q1) is also stable, but the higher
accuracy in u may be wasted since vp is only piecewise constant.

If higher accuracy of vp is required, the fluid velocity three-field solution is
warranted. A popular choice for the fluid velocity is the lowest order Raviart-
Thomas elements, with piecewise constant fluid pressure. However, the simplest
Stokes-stable element to combine with piecewise constant pressure is Crouzeix-
Raviart (or Rannacher-Turek for quadrilaterals), which we found to be problematic.
One would then have to use quadratic displacement (P,/RT1 Py or Q2/TR1Qy),
which is rather expensive for a method which is still only first order accurate in the
velocity. An alternative might be to follow the precept of Phillips and Wheeler [17],
and use the Discontinuous Galerkin method for the displacement, or to use a
variant which has second order accuracy also for the velocity (such as Py /PyF Py

or Qa/Q2P_4).

When low-compressible materials are present, the solid pressure three-field for-
mulation (or even the four-field formulation) may be required. A good choice
for the former appears to be the MINI combination P;fP/P; or QfTQ1/Q:,
although the problem of localised oscillations in both fluid and solid pressure
around discontinuities reappears. For the four-field formulation, we recommend
Py P_y /Py P_; or the quadrilateral QoP_1/Q2P_1.
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6 Concluding remarks

In this paper we have investigated the spurious pressure oscillations that are present
in the finite element solution of the poroelastic equations for small time steps and
low-permeable materials.

Through comparison with the displacement-solid pressure mixed formulation of
linear elasticity, we identify the spurious pressure modes as a specific consequence
of a vanishing Brezzi inf-sup constant ;. Since the Brezzi inf-sup condition for the
poroelastic equations takes on a similar form as in, e.g., the mixed linear elasticity or
Stokes problem, this identification opens up the field to a plethora of stable element
candidates. These can be used directly for the basic solid displacement-fluid pressure
two-field formulation of poroelasticity, or in combinations for the various three- and
four-field formulations involving solid pressure and/or fluid velocity.

Extensive numerical investigation of the stability of a large set of two-, three- and
four-field models have been performed. These investigations provide evidence that
most of the element combinations recommended by our theoretical guidelines give
oscillation-free solutions for the pressure.
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Abstract

Large-scale simulations of coupled flow in deformable porous media
require iterative methods for solving the systems of linear algebraic equations.
Construction of efficient iterative methods is particularly challenging in
problems with large jumps in material properties, which is often the case in
realistic geological applications, such as basin evolution at regional scales.
The success of iterative methods for such problems depends strongly on
finding effective preconditioners with good parallel scaling properties, which
is the topic of the present paper.

We present a parallel preconditioner for Biot’s equations of coupled
elasticity and fluid flow in porous media. The preconditioner is based on an
approximation of the exact inverse of the two-by-two block system arising
from a finite element discretisation. The approximation relies on a highly
scalable calculation of the global Schur complement of the coefficient matrix,
combined with generally available state-of-the-art multilevel preconditioners
for the individual blocks. This preconditioner is shown to be robust on
problems with highly heterogeneous material parameters. We investigate
the weak and strong parallel scaling of this preconditioner on up to 512
processors, and demonstrate its ability on a realistic basin-scale problem in
poroelasticity with over 8 million tetrahedral elements.
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1 Introduction

Iterative methods have proven to be the most scalable approach for parallel solvers
for algebraic systems of equations, such as those arising from discretisations of partial
differential equations (PDEs). Nonetheless, the efficiency of iterative solvers is highly
problem-dependent and sensitive to the parameters of the system. Biot’s equations [4],
describing the coupled poroelastic response of fluid-filled materials, have been shown
to be a difficult problem for such solvers due to the extreme jumps that some of the
material parameters exhibit in realistic problems. As a result, direct solvers are often
employed in such situations. Direct solvers, however, suffer from suboptimal scaling
in time [9] and in space [14]. Thus, for truly large-scale problems, such as realistic
basin-scale models, efficient and robust iterative methods must be found.

In [17], the present authors demonstrated the efficacy of a preconditioner based
on the exact block decomposition in the serial case, using the Schur complement of
the 2 X 2 coefficient matrix. For the individual blocks, an algebraic multigrid (AMG)
preconditioner is used. The AMG preconditioner has been shown to have good parallel
scaling properties for up to thousands of processors [2, 21]. Given scalable preconditioners
for the individual blocks, block preconditioners that work on the unmodified blocks of the
coefficient matrix are relatively straightforward to parallelise. The Schur complement,
however, requires special care. Elman et al. [10, 11] studied the parallel scaling of block
preconditioners based on the Schur complement for the Navier-Stokes problem. Simpler
Schur complement block preconditioners have been employed successfully for Biot’s
equation [25, 27]. However, it remains to investigate the parallel efficiency of the more
advanced block preconditioners from [17], particularly targeting large jumps in material
parameters. This is exactly the topic of the present paper.

We perform extensive numerical investigations on model problems in two and three
dimensions on a computer cluster using up to 512 processors to verify parallel scalability.
Additionally, we perform tests on a realistic basin model exported from a commercial
basin simulator. This model is too large to be solved by direct methods, and has so
far proven intractable to standard iterative methods due to the strong contrasts in the
material parameters (in particular, the permeability).

This paper is organised as follows. In sec. 2 the governing equations of the poroelastic
problem are presented, followed by a brief overview of their weak form and the approxi-
mation this leads to in the finite element method. An outline of block preconditioners
is found in sec. 3, along with algorithms for construction of the distributed Schur
complement approximation. Sec. 4 shows how the mathematical model is implemented
in software, and details how the parallelism is achieved, while sec. 5 reports the results
of the numerical investigations including parallel scaling results. Finally, we give some
concluding remarks in sec. 6.

2 Mathematical model

The equations describing poroelastic flow and deformation are derived from the principles
of conservation of fluid mass and the balance of forces on the porous matrix. The linear
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poroelastic equations can, in the small-strains regime, be expressed as

Sp—V-AVp+aV - -u=q, (1)
VA+u)V-u+V-uVu—aVp=r. (2)
Here, we subsume body forces such as gravitational forces into the right-hand side
source terms ¢ and r. The primary variables are p for the fluid pressure and u for
the displacement of the porous medium. Furthermore, S and A are the fluid storage
coefficient and the flow mobility respectively, « is the Biot-Willis fluid/solid coupling
coefficient, and A and p are the Lamé elastic parameters.
The fluid (Darcy) velocity is often of particular interest in poroelastic calculations. It
can be written

vp = —AVp, (3)

and represents the net macroscopic flux. For the displacement equation, the main
secondary quantity of interest is the effective stress tensor,

&= (ap+p)I + p(Vu+ (Vau)'), (4)
which is written here using the solid pressure

ps=—AV -u. (5)

2.1 Weak time-discrete form.

We employ a first-order backward finite difference method in time, which leads to the
time-discrete form of eq. (1)

Sp— AtV -AVp+V -u=qAt + Sp+ V - . (6)

Hatted variables (p, @) indicate values from the previous time step, while unmarked
variables are taken to be at the current time step.

Next, we rewrite eq. (2) and (6) in weak form, using integration by parts to eliminate
second derivatives. We define the following (bi-)linear forms on the domain  with
boundary T',

aP(¢P,p) = — [, SoPp + AtV P - AVpdQ, )
P(¢P) = — [, (gAt + Sp+ V - 0)¢P dQ + [ ¢P fn At dT,

and
a'(¢"u) = [olA+p)(V- ")V -u)+pVe": VuldS,
b(¢",p) = — [apV - $"dQ, (8)
(") =— [, @" - rdQ+ [ ¢" - t,dl.

The problem then becomes: Find p € V,, and uw € V;, that satisfy the following relations:

a’(¢”, p) + b(u, ¢°) = 1°(¢P) VP e Vi, (9)
a'(@", u) + (9", p) = I"(¢") V¢' e Vi (10)
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The normal flux f,, = vp - n and the normal stress ¢,, on the boundary I" appear in
these equations as natural boundary conditions. The natural spaces for the continuous
problem are V, = H' for the pressure and V, = H' for the displacement.

The discrete approximation follows from solving the equations for the weak form
in finite-dimensional subspaces of the continuous spaces: Given finite element basis
functions ¢} € V4, C V, spanning the discrete displacement space, and basis functions
@Y € Vp,, C V}, spanning the discrete fluid pressure space, the unknown functions are
approximated as u = >, w;¢} and p~ Y, p;¢7. The task is to find the vectors u and
p that makes these approximations as good as possible (in some sense); this is done by
the finite element method.

2.2 The algebraic system

The algebraic system that results from discretising eqgs. (9)—(10) is on the form
Ax =b, (11)

where A is the coefficient matrix derived from the left-hand sides of eqs. (9) and (10),
b is the load vector arising from the right-hand sides, and x is the unknown solution
vector. As this is a coupled system of two equations, the coefficient matrix can be
viewed as a 2 x 2 block matrix. The signs of the equations have been chosen so as to
make this a symmetric indefinite problem, which we write blockwise as

u "
R

with A symmetric positive definite and C symmetric negative definite. Using the finite
element basis functions ¢} and ¢ introduced above, the entries of each block are

A B

A=
BT C

AU = au( ;la d);)/ (13)
Bi; = b(}, ¢7), (14)
Cij = a”(¢7, 47).- (15)

The load vector is defined in a similar way, with I = ["(¢}') and I = [P(¢}).

The solution of algebraic systems of equations like eq. (11), resulting from finite
element discretisations, generally shows poor convergence properties when using iterative
solvers. To overcome this, suitable preconditioning is crucial.

3 Block preconditioning methods

We seek a preconditioner that exploits the block structure of eq. (12). The simplest
example is perhaps the block Jacobi preconditioner,

A0 ] (16)

Pl =
] 0 C!
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Algorithm 1: Application of the block Gau-Seidel preconditioners
to a block vector: [v ] < ng(é)cs[w i

1V A71W

> q «Blv—r

3 Silq/

1 if symmetric then
5 v o Bq

6 v «v—Aly
7 end

/

The single-block inverses are normally too expensive to compute exactly, and will
be approximated by single-block preconditioners. In the following, we mark such
approximations with a tilde: A=' and C~!. By further defining the lower-triangular
coupling matrix as
I 0
} ) (17)

G = -
-BTA7L 1

we can express the block GauB-Seidel preconditioner as Pgg = P;'G, and its symmetric
variation as Pggq = G' Py 'G.

The Schur complement of the block coefficient matrix A is defined as S = BTA™'B—C.
It is symmetric and positive definite. Following [25] we can write the Generalised Jacobi
preconditioner as'®
Pl =

g

(18)

A1 0
0 -S|

As the present authors pointed out in [17], the corresponding Generalised Symmetric
GauB-Seidel preconditioner, which we define by analogy with regular Gauf}-Seidel as

Pascs = 9P 9, (19)

is in fact an exact inverse of A, if the single-block inverses are exact. An inexact version
of eq. (19), along with its nonsymmetric cousin Pgés, were shown in [17] to be very
robust preconditioners for Biot’s equations on a problem with extreme contrasts in
the material parameters. Algorithm 1 shows the necessary steps to implement this
preconditioner. Each assignment requires one global single-block operation, i.e., the
processor-local operation followed by an update of the foreign nodes.  The application
of the (1, 1) preconditioner A~ to a vector is normally by far the most expensive step
of this algorithm, and the symmetric variant is therefore about twice as expensive as
nonsymmetric generalised Gauf-Seidel. However, the symmetric variant provides the
opportunity to use the Conjugate Gradient method instead of more expensive iterative
solvers, which justifies this additional cost. In the remainder of this paper, we focus on
the symmetric variant.

131n the reference, a scalar multiplier « is used for the (2,2) block; here, a = —1.
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3.1 The distributed Schur complement approximation

First a small note on terminology: The word “node” is traditionally used both in the
parallel computing context and in the PDE context, with different meanings. In the
following, we reserve node to mean a spatially located unknown in the finite element
method, while computational node is used for a single computer in a cluster. To further
clarify the computational hierarchy, processor is used interchangeably with core to mean
a computing unit that runs a single process. One or more processors make up a die,
and one or more dies make up a computational node. Thus, a typical computational
node may have two quad-core dies with a total of eight processors.

We shall come back later to the subject of parallel partitioning, but to simplify the
discussion we assume the following properties of the partitioning:

(i) Each node is owned exclusively by one processor. This node is then interior to
the owning processor. The node may also be present on neighbouring processors,
where it is a foreign node. We also use the term border node for those nodes which
are interior, but share an element with (and hence couple to, in the coefficient
matrix) a foreign node.

(ii) Every interior node has full cover on the owning processor, i.e., all elements that
contain the node are present in the local finite element assembly.

While forming the exact Schur complement is infeasible, an approximation that was
shown in [17] to perform well for high-contrasting material parameters is

S = Diag(B"(Diag A)"'B) — C, (20)

where Diag is an operator that creates a matrix of equal dimension, containing only the
diagonal elements.'> This approximation can be calculated in parallel with overhead
equal to that of a single matrix-vector product. To understand how, we look briefly at
the behaviour of a parallel matrix-matrix product.

In fig. 1a, we have sketched the structure of a processor-local part of the global
coefficient matrix. The salient part is this: All rows and columns involving interior
nodes are globally correct and complete. Hence, the diagonal of the result of a local
matrix-matrix product (shown in fig. 1b) is correct for all entries associated with interior
unknowns. Only the entries associated with foreign unknowns are incorrect. This is
not a problem, since a matrix-vector product is always followed by an update of the
foreign nodes. However, eq. (20) involves a triple matrix product. To ensure that the
diagonal of this triple-product is correct for all interior entries, we do need to have
globally correct entries for the whole of Diag A; otherwise the product (Diag A)~!B
will not have the structure of fig. la (the interior columns of the foreign rows will be
wrong). The complete algorithm to create the distributed Schur complement of eq. (20)
is presented in algorithm 2. The only interprocess communication in this algorithm
takes place in step 3, where the diagonal is updated.

14We remark that if a crude preconditioner is used for A, the Schur complement should ideally
involve an approximation of A~! rather than A= [17].
15In MATLAB notation, Diag A is written as diag(diag(A)).
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(a) Processor-local matrix structure (b) Structure after local matrix-matrix prod-
uct

Figure 1: In a processor-local matrix-matrix product, the interior rows with nonzero foreign coupling
terms are wrong; only the interior-row part of the diagonal can be trusted

3.2 The single-block preconditioners

The block preconditioners in the previous section depend on the availability of efficient
single-block preconditioners A=' and S~'. We restrict our attention to preconditioners
which are efficient on massively parallel computers. This rules out incomplete and
approximate direct solvers such as the otherwise excellent ILU methods.

Adams [1] found AMG to behave very well on problems of elastic deformation, even in
the presence of strong material discontinuities. In particular, the smoothed aggregation
(SA) method [5, 28] was considered to be the overall superior AMG method for elasticity
problems. The present authors likewise found SA to be a nearly optimal preconditioner
for the discontinuous Poisson pressure problem (see [16]), and to perform well on the
similarly structured Schur complement approximation found in eq. (20) (see [17]).

In the light of these earlier results, and the fact that AMG has been shown to scale
very well in parallel, to at least thousands of processors [2, 7, 21, 29], we have chosen to
use SA to precondition both the decoupled displacement equation (A) and the Schur

complement (S).

4 Software framework

We have implemented the finite element discretisation and assembly, the block precondi-
tioners and iterative solvers using the Diffpack C++ framework [8, 23], with extensive
modifications in key areas: parallel block systems, parallel partitioning, and mixed finite
elements (serial and parallel).

A domain decomposition approach is used for the finite element assembly stage, where
each processor works on a subset of the global grid. In the linear algebra stage, message
passing (using Message Passing Interface, MPI) is used to formulate globally consistent
operations for matrix-vector products, vector inner products, and so on. The main
trade-off in this approach is in choosing how to partition the grid between processors.
Our choice is mainly motivated by the ease of interfacing with external parallel libraries.
Hence, we employ a model wherein each node is owned exclusively by one processor.
If we further require that every such interior node is provided with full cover on the
owning processor, we gain the desirable property that the matrix rows (and, incidentally,
the matrix columns) associated with this node are complete.
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Algorithm 2: Construction of the distributed Schur complement approxi-
mation S < Diag(B" Diag(A)~'B) — C

1 parallel for each processor P do

> al’ « diag(AT) b create column vector from diagonal
3 af + update(al) o fetch foreign nodes from neighbours
4 SP < 7CP

5 for each interior row i do

6 for each nonzero index k in the matrix row B do
7 SE S+ (BR) ap) ™!

8 end

9 end

10 end

The partitioning procedure proceeds in two stages:

(i) Balance the nodes between the processors, while minimising the number of inter-
sected elements,

(if) Add foreign nodes to each partition until full cover is provided for each interior
node.

A hypergraph partitioner, with each hyperedge containing the nodes of one element,
should be the ideal way to achieve (i). However, all partitioners use heuristics to achieve
acceptable performance, and a graph or even a geometric partitioner may perform
equally well on a given problem. We interface with the PHG hypergraph partitioner
and a geometric partitioner from Zoltan [6], and with the METIS and ParMETIS [22]
graph partitioners.

The single-block AMG preconditioners are from the ML package for Smoothed
Aggregation [13], which is part of Trilinos [19]. The ML interface requires the input
of complete local rows for the global coefficient matrix, which is greatly aided by the
properties of the partitioning listed above.

In addition to the above, we have developed software to import finite element grids,
fields and material parameters from Petromod [24], which is one of the leading basin
simulation software packages in the oil and gas industry. This allows us to use realistic
geometries, initial conditions and material parameters in our tests.

5 Numerical experiments

5.1 Convergence criterion

When using iterative methods for solving algebraic systems of equations, a suitable
convergence criterion must be introduced. Different criteria are possible, but the “ideal”
criterion which measures the error is generally not available unless the solution is known
in advance. More commonly, a convergence criterion based on the residual 1, = b — Ax;,
(in the k-th iteration) is used. However, such a criterion may be misleading when
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Figure 2: Iterations to reach a given error on the realistic basin case (III)

A is very ill-conditioned [16], such as with severe jumps in the material parameters.
We are less interested in the solution itself than in the convergence properties of the
solver, and thus we may exploit a convenient property of iterative solvers: their rate of
convergence is independent of the right-hand side b as long as the initial guess contains
all eigenvectors of A [15, ch. 3.4].

Hence, we solve the modified problem Ax = 0 with a randomised initial solution
vector Xg, instead of the original Ax = b. With a zero right-hand side, the error is
simply e, = x;. We also note that due to this testing procedure, the exact value of
any boundary condition is irrelevant, since these values go into the b vector. The only
relevant information in this case is where essential boundary conditions are used, since
the presence of an essential boundary condition at a node is reflected by a modification
to the associated row(s) and column(s) of A.

In the description that follows of the numerical experiments, we use the term error
criterion (with an associated tolerance e, implying |lex|| < €) for the convergence
criterion described above. However, in order to measure more narrowly the efficiency of
the parallel implementation itself, it is sometimes advantageous to measure the time to
complete a fixed number of iterations (convergence criterion k = kpay); we shall refer to
this as the iteration criterion.

5.2 Choice of iterative solver

The coefficient matrix A is symmetric indefinite. Since the preconditioner is symmetric,
the preconditioned coefficient matrix 77;51@5./4 is also symmetric, and, given sufficiently
accurate single-block preconditioners, it may even be positive definite [17]. With such a
system of equations, one would normally prefer an iterative solver which can be used
with indefinite systems. However, the Conjugate Gradient method is often considered
the best choice for symmetric positive definite matrices, and it is known that it can
perform well even when there are a few negative eigenvalues [12]. Fig. 2 compares the
Stabilised Bi-Conjugate Gradient (BiCGStab) method, which is designed for general
use, with the Conjugate Gradient (ConjGrad) method for the realistic basin model
described below. Three experiments are shown for each of BiCGStab and Conjugate
Gradients, using random initial vectors with error 10° (jumping to ~ 10° in the first
iteration).

This is our most difficult test case for the iterative solver. It appears that the
Conjugate Gradient method performs just as well as the BiCGStab method, and
furthermore that it has much smaller sensitivity to the (random) initial solution vector.
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Consequently, we use the Conjugate Gradient method in our experiments.

We should note, lest the results in fig. 2 make our chosen preconditioner look bad,
that this test problem is one which we previously have not been able to solve at all
using standard iterative solvers and preconditioners. Thus, even a preconditioner which
requires 500+ iterations is a significant step forward.

5.3 Scaling

Before looking further into the experimental data, it may be advantageous to have
a rough idea what to expect from the results. We can identify five main causes of
imperfect parallel scaling:

(i) increased local problem size due to duplicated nodes and imbalance,
(i) point-to-point (neighbour) communication,
(iii) collective (global) communication,
(iv) increasing number of iterations in the iterative solver for a given accuracy, and

(v) slowdown due to congestion of shared resources (within or beetween computational
nodes).

In general, (iv) depends on the chosen preconditioner/iterative solver combination, and
can be controlled by using an iteration criterion instead of an error criterion, while (v)
is hardware dependent and must usually be discovered through testing.

We investigate the parallel scalability in two different scaling paradigms. In the weak
scaling paradigm, the number of nodes (or work) per processor is fixed. Causes (i) and
(ii) should then approach constant overhead (after an initial ramp-up), while the cost of
cause (iii) is of order log P on P processors [26].

We also investigate strong scaling, where the total problem size is fixed as the number
of processors increases. Strong scaling has received less attention than weak scaling in
the literature, but in practical applications the need to solve a large problem as fast as
possible is perhaps more common than the need to solve a problem that is as large as
possible in a given time. In this case, the absolute overhead due to causes (i) and (ii)
decreases with increasing P. It does not, however, decrease as fast as the amount of
useful work per processor. Hence, the relative overhead increases.

We define the efficiency as the ratio of the perfect-scaling runtime to the actual
runtime, or, equivalently, the number of unknowns processed per unit aggregate time.
In D spatial dimensions, the walltime T and efficiency F in the weak scaling paradigm,
with NV nodes on each of P processors, can be modelled as

T(1) = ¢N, (21)
Ty(P) = T(1) + acN "> + belog P, (22)
Ey(P) = T N L oN-logP] (23)

W - TW(P) - a 0og )
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Figure 3: Typical shape of the efficiency curves for strong and weak scaling.

where a, b and ¢ are constant factors depending on the specifics of the problem and of
the platform. In the strong scaling paradigm, with N/P > 1 nodes per processor, these
can be modelled as

T,(P) =T(1)/P + ac(N/P)"5 + bclog P, (24)
E,(P) = % = |1+ a(P/N)D + b(P/N)log P} - (25)

This assumes perfectly scalable hardware (no interconnect saturation, etc), and a fixed
number of iterations of the iterative solver. The constant a comes from (i)—(ii) above,
and b comes from (iii); the quantity N7 is proportional to the number of nodes
intersected by a slice through the domain.

Disregarding the exact value of the various constants, we expect to see efficiency
curves of the general shapes shown in fig. 3: A nearly flat, slightly upturned curve on
the log-log plot in weak scaling, and a strongly downturned curve in strong scaling.

Comparing this with numerical tests on various hardware is instructive. Two such
are shown in fig. 4 for weak scaling, at a fixed number of iterations. On the Cray
cluster'® (fig. 4a), the scaling appears roughly as in the simple model illustrated in
fig. 3, except a small (~ 10%) drop when utilising all four processors on a single
computational node instead of one processor on each of four computational nodes. This
drop must be caused by contention of a shared resource internally to a computational
node, most likely exhaustion of the memory bandwidth. Compare this with a commodity
cluster'” (fig. 4b) when utilising multiple cores per computational node: Four cores on a
single computational node, 36% drop in efficiency; eight cores, 64% drop! Clearly, this
hardware is not very efficient for such a data intensive workload.

Furthermore, we see a rapid worsening of the efficiency on the commodity cluster when
more than a few tens of processors are involved. This does not match our expectation
from the weak scaling curve of fig. 3, and we therefore suspect it is caused by congestion
of the interconnect between computational nodes. Measuring the time spent in MPI
communications shows this to be the major cause, as shown in fig. 4c. On the commodity
cluster (which uses a GHz Ethernet interconnect), most of the time is indeed spent
doing MPI communication.

The point of this comparison is that the interpretation of parallel scaling experiments
must consider the hardware they are performed on, since even a good algorithm may

6The hezagon Cray XT4 cluster located in Bergen, Norway [20].
The bigblue computer cluster at Simula Research Laboratory [3].
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Figure 4: Weak scaling efficiency on two different hardware platforms

look bad on inadequate hardware. Since we want our algorithm to look good, we perform
the remainder of our experiments on the Cray cluster.

5.4 On the number of iterations for the iterative solver

In [17], we estimated the number of iterations of the Pyggs preconditioner on the
current problem as proportional to h~%4-h=05 where h is the characteristic element
size. It should be remarked that this estimation was performed using only a quite small
two-dimensional test problem. There are two questions we need to answer.

(i) Is the number of iterations independent of the number of processors P in the
strong scaling paradigm?

(ii) Does the number of iterations keep growing at about the same rate as previously
estimated in the weak scaling paradigm?

Question (i) only makes sense if some of the operations in the iterative solver are
not independent of P. Generally, the Conjugate Gradient iteration is independent of
P, as is the block preconditioner. However, the Smoothed Aggregation single-block
preconditioners behave somewhat differently when P is large. In particular, the high-
level aggregates do not cross processor boundaries [29]. To answer this question, we
compared the convergence of the basin-scale model from sec. 5.7 when it is run in
sequential mode and in parallel using 512 processors. The results, shown in fig. 5a,
indicate that the differences in convergence are minimal. The smoothed mean of three
experiments is shown for each case, along with the individual experiments.

The answer to question (ii) is found in fig. 5b; h~%4® remains a fair estimate of the
order of the solver. The test case used to gather this data is described in sec. 5.5, with
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Figure 5: The dependence of the convergence on the number of processors (a) and the characteristic
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Q?Q" Taylor-Hood elements and a factor 1076 reduction of the error in L2-norm as the
convergence criterion.

5.5 Test case I: Weak scaling

Layered media with severe jumps in material parameters constitute the normal case
in basin modelling. To capture the essence of the numerical difficulties with such
media, we have constructed a test problem with three layers as shown in figs. 6a—6b.
We have investigated these (and similar) model problems in earlier works. A low-
permeable layer with vanishing fluid storage coefficient S creates an ill-defined problem
for the decoupled pressure equation [16], which can nevertheless be solved (up to an
arbitrary constant) by an AMG-preconditioned iterative solver. The coupling of the fluid
pressure with displacement makes the problem well-defined, but when the permeability
contrasts are sufficiently strong (starting around ||A;]|/[|Az|| = 10~* with S = 0), novel
preconditioners such as the one presented herein are required for convergence [17].

As explained in sec. 5.1, we do not care about the actual boundary conditions, except
to note where essential conditions are in use:

e The displacement equation has essential boundary conditions in the normal
direction at the sides and the bottom,

e The fluid pressure equation has essential boundary conditions at the top.

Another difficulty is that of nonphysical oscillations in the fluid pressure, which may
occur in models where low-permeable layers are present. Pursuant to the results in [18],
we avoid this by using the Taylor-Hood quadrilateral element combination, with second
order Lagrange elements for the displacement and first order Lagrange elements for the
fluid pressure.

In this test case of weak scaling, each processor is responsible for about 200? elements
in 2D, or about 163 elements in 3D; these are the largest problems that can fit comfortably
in the available 1GB of memory per processor. Parallel partitioning is performed using
the METIS graph partitioner [22].

The plots in fig. 7 show the parallel efficiency of the iterative solver phase of a single
time step of this model, i.e., of solving eq. (11). When using an iteration convergence
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Figure 6: The domains of test cases I-111

criterion, the parallel scalability is excellent, with only 10-20% lower efficiency at 512
processors. Since the ratio of foreign to interior nodes is much larger in the three-
dimensional case, it is somewhat less efficient than the two-dimensional case. However,
once a more practical error criterion is used, this is turned upside down: Since the
condition number of the matrix (as a function of the problem size) deteriorates less
rapidly in the three-dimensional case, the actual error-reduction efficiency is much better
in 3D than in 2D. The 2D efficiency drops below 50% at around 32 processors, while
the 3D efficiency still remains above 50% at 512 processors.

5.6 Test case II: Strong scaling

Test case II uses the same model geometry, parameters, elements, and partitioning as
test case I. The only difference is that it is fixed in size: 4002 elements in 2D and 263
elements in 3D. Again, the size is determined by memory considerations: These are the
largest problems to fit in memory on a single 4GB computational node.

We assume that the rate of error reduction is nearly constant (as discussed in sec. 5.4),
and hence that the error and iteration criteria are nearly equivalent; an error criterion
with € = 1076 is used.

The scalability results are shown in fig. 8a. As we may expect from the results of
test case I, the 3D test drops off faster in efficiency, but both tests exhibit adequate
scalability up to 256 processors.

We remark that in the strong scaling paradigm, the limits of scalability are determined
to a large degree by the problem size. A large problem can be subdivided more times
before the number of foreign nodes becomes significant. For example, with 256 processors
the number of foreign nodes is larger than the number of interior nodes in the 3D test.

5.7 Test case III: Strong scaling on a basin-scale geometry

Our final test case is a realistic model of a sedimentary basin, derived from a real
industry model. Shown in fig. 6¢, the model consists of 16 distinct layers of sediments,
8.4 - 10° tetrahedral elements, and 1.7 - 10° nodes. No attempt has been made to make
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Figure 7: Weak scaling in a two- and three-dimensional test case

the computational grid more friendly to finite element calculations, and thus the grid
quality is low in some places — outer/inner radius ratios exceed 100 in many elements.
The material parameters are also from the real model, and are listed in table 1.

For this test, equal-order Lagrange tetrahedral elements P'P! are used. We believe
this to be acceptable, since the fluid storage coefficient S does not vanish anywhere (see
discussion in sec. 5.5 and [18]). Even if it were not acceptable, Taylor-Hood elements
would simply be too expensive on this grid — the memory requirements would increase
almost tenfold, to well over a hundred gigabytes. One possibility would be to use a
mixed element with extra internal degrees of freedom, such as the MINI element, and
to eliminate the internal degrees of freedom at the element level by static condensation.
Such a procedure would reduce the size of the system to that of the P'P! combination
used here.

The efficiency results are shown in fig. 9a, with the associated runtime (for both the
assembly and the solution phase) in fig. 9b. A peculiarity with these graphs is that the
single-processor runtime is only estimated, because the memory requirements for this
test case precludes running it on fewer than five computational nodes. This estimate,
which is used both to determine the multiplicative factor 7'(1) in the efficiency and to
determine the “perfect scaling” line in fig. 9b, is made by simply subtracting the MPI
communication overhead from the five-processor aggregate runtime.

6 Concluding remarks

We have implemented and tested a parallel block preconditioner for the finite element
discretisation of a fully coupled 3D problem of fluid flow in elastic porous media. The
parallel preconditioner targets especially the challenges of real-world geological problems:
unstructured computational grids and heterogeneous material parameters with severe
jumps between geological layers. As the numerical results in previous sections show,
we achieve strong scaling results for a realistic large-scale basin model that are quite
acceptable on up to five hundred processors, thereby making simulations on this scale
practical. The performance of this parallel block preconditioner is robust with respect
to heterogeneities and severe grid distortion.

The smaller strong scaling case (test case II) shows an earlier drop-off in efficiency.
This may be expected from the fact that a smaller problem has a higher ratio of foreign
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Table 1: Material parameters for test case III.
Layer no. S[Pa~1] Az, Aym?Pa's71] A [m?Pa~'s™']  u[] G[Pa
1 1-100%9-2.107 3.107! - 7.10° 8-10' —2-103 0.35 5-108
2 1-107%-2.1071°  6-10* - 3-102 2-10*-1-10° 035 5-108
3 1-107%-2.1071° 3.10°-2.10! 1-102-6-102 035 5-108
4 1-107%°-2.1071% 2.1072-1-107¢ 8-10° - 3. 10! 0.35 5-108
5 1-10710 5-1073 - 7-1072 1-10° -2-10! 0.35 5-108
6 1-10710 2-107%-5-10"2 5.-107*-2-10' 0.35 5-108
7 1-10710 1-1072-3-1072 3-10°-5-10° 035 5-108
8-9 1-10710 2-1076-1.1074 5-1074 -4-1072 0.35 5-108
10 1-10710 2:107%-4-107* 5.107*-1-10"! 0.35 5-108
11 1-10710 2-1072-5-10"2  2-107'-6-10° 0.35 5-108
12 2.10710 5.1072 - 8- 10° 5.10°-8-102 025 8-108
13 1-10710 2-107% -6-1073 4-107' —1-10° 0.35 5-108
14 6-10"11 510714 510714 0.40 1-10°
15 2.10710 3-1071 - 3102 7-10°-6-10° 020 9-108
16 1-10710 2-1072-3-1072 3-100 - 6-10° 0.35 5-108
o) 0 L= B . - MU g
3 < B @ 10000
8 07 8
= = -
é 05 [ zssembly & E 1000 Bttt scaling (est ;\\. o
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1 4 16 64 256 1 4 16 64 256
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(a) Assembly and solve parallel efficiency. (b) Elapsed time for assembly and 10~ reduc-

tion in the error.

Figure 9: Test case III, a realistic basin model
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nodes to interior nodes, which increases relative communication overhead as well as
local overhead.

The results for weak scaling can be interpreted in two different ways. On one hand,
the parallel scalability for a fixed number of iterations is very good, and should easily
scale into thousands of processors (limited mainly by the per-processor problem size,
as alluded to in the strong-scaling case). On the other hand, the preconditioner is
not optimal, in that its performance degrades with problem size (see fig. 5b). This
degradation is rather small, but it still overwhelms the parallel overhead, and thus
the weak scalability (particularly in 2D) is less good when using an error criterion for
convergence. Further research into improving the size-dependence of the preconditioner
may be warranted.

As our main result, we demonstrate that good parallel scaling is achievable on
a complex problem in coupled geomechanics, using a standard iterative solver and
state-of-the-art general single-block preconditioners, combined in a novel fashion.
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