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Abstract

In many real-world applications, such as those based on electronic health records, prognos-

tic prediction of patient survival is based on heterogeneous sets of clinical laboratory mea-

surements. To address the trade-off between the predictive accuracy of a prognostic model

and the costs related to its clinical implementation, we propose an optimized L0-pseudonorm

approach to learn sparse solutions in multivariable regression. The model sparsity is main-

tained by restricting the number of nonzero coefficients in the model with a cardinality con-

straint, which makes the optimization problem NP-hard. In addition, we generalize the

cardinality constraint for grouped feature selection, which makes it possible to identify key

sets of predictors that may be measured together in a kit in clinical practice. We demonstrate

the operation of our cardinality constraint-based feature subset selection method, named

OSCAR, in the context of prognostic prediction of prostate cancer patients, where it enables

one to determine the key explanatory predictors at different levels of model sparsity. We fur-

ther explore how the model sparsity affects the model accuracy and implementation cost.

Lastly, we demonstrate generalization of the presented methodology to high-dimensional

transcriptomics data.

Author summary

Feature subset selection has become a crucial part of building biomedical models, due to

the abundance of available predictors in many applications, yet there remains an uncer-

tainty of their importance and generalization ability. Regularized regression methods have

become popular approaches to tackle this challenge by balancing the model goodness-of-

fit against the increasing complexity of the model in terms of coefficients that deviate
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from zero. Regularization norms are pivotal in formulating the model complexity, and

currently L1-norm (LASSO), L2-norm (Ridge Regression) and their hybrid (Elastic Net)

dominate the field. In this paper, we present a novel methodology that is based on the L0-

pseudonorm, also known as the best subset selection, which has largely gone overlooked

due to its challenging discrete nature. Our methodology makes use of a continuous trans-

formation of the discrete optimization problem, and provides effective solvers imple-

mented in a user friendly R software package. We exemplify the use of oscar-package in

the context of prostate cancer prognostic prediction using both real-world hospital regis-

try and clinical cohort data. By benchmarking the methodology against existing regulari-

zation methods, we illustrate the advantages of the L0-pseudonorm for better clinical

applicability, selection of grouped features, and demonstrate its applicability in high-

dimensional transcriptomics datasets.

This is a PLOS Computational Biology Methods paper.

Introduction

Current cancer incidence is more than 19 million new cases per year and rapidly rising glob-

ally [1]. Despite the successful development of medical treatments that have decreased the

mortality of cancer patients, cancer still remains one of the most common causes of death,

thus leading to dire need for more precise and prognostic insights into patient care. Prognostic

prediction is fundamental in patient management, since it enables the assessment of prognosis

in diagnostic phase and prediction of the disease course for an individual patient after treat-

ment or disease relapse. Predicting the risk of cancer recurrence or death, based on the indi-

vidual patient characteristics and laboratory measurements, helps to understand which

patients would benefit from a standard treatment and which are better assigned to a palliative

care or treated with alternative therapy regimens. In clinical practice, survival prediction is typ-

ically carried out using laboratory tests, which are many times numerous and thus expensive.

From a health economics point of view, prognostic modelling should be both accurate and

cost-effective, and the prognostic models should not become too complex to enable their clini-

cal implementation. In this particular aspect, feature selection strategies, such as regularization

in regression modelling, play a key role.

Prostate cancer is one of the most common cancers diagnosed in men and among the top

causes of cancer mortality [1]. Although the prognosis of prostate cancer is generally good, a

considerable number of patients either have a metastasized disease at the time of diagnosis or

they develop a potentially lethal recurrent disease after the initial treatment. Prostate-specific

antigen (PSA) is currently considered as the default marker of disease progression in the disease

and treatment monitoring. However, when prostate cancer develops into a hormonal treatment

independent state (i.e. castration resistant prostate cancer), more rigorous testing using addi-

tional markers is needed for more accurate patient stratification [2]. Given the high prevalence

of prostate cancer globally, it is not trivial how to consider the costs of the more extensive test-

ing during follow-up, further increasing the need for cost-effective risk prediction strategies.

Risk classification models for prostate cancer are traditionally applied either at the diagnos-

tic phase or primary treatment phase. Most of the current prognostic models contain Gleason
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with the selected optimizer the user needs to fix a

value for the percentage γ and set in_selection = 3

together with the default values for other

parameters. Here we utilized γ = 0.0002 for high-

dimensional datasets based on our experimental

results. Oscar R-package is available at the Central

R Archive Network (CRAN) at: https://CRAN.R-

project.org/package=oscar. Representative

simulated real-world registry data are provided

within the oscar R-package. The TYKS hospital

registry data may not be shared publicly due to

patient confidentiality. Access to this data may be

requested via the Auria Clinical Informatics unit

(atp@tyks.fi) at the Turku University Hospital. The

DREAM 9.5 mCRPC processed clinical cohort data

are available from: https://www.synapse.org/#!

Synapse:syn4756967. The curatedPCaData R-

package for the processed transcriptomics

datasets is publicly available as a data resource at:

https://github.com/Syksy/curatedPCaData (version

0.9.42).
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score, which is considered the most significant factor for early disease course estimation [3]. In

contrast, our objective here was to make prognostic prediction of patients who have already

developed metastatic castration-resistant prostate cancer, and therefore seek to investigate

prognostic features beyond Gleason score. Regularized Cox regression models have been a

popular choice for such prognostic modelling purposes [4–8]. For example, in the DREAM 9.5

Prostate Cancer Prediction Challenge [6], our top-performing model was based on an ensem-

ble of regularized models with Cox regression [9].

Our prognostic modelling framework for prostate cancer is based on the Cox’s proportional

hazards model [5, 10], which is extended by introducing a novel feature selection regulariza-

tion strategy. More specifically, we use a cardinality constraint implemented by the L0-pseudo-

norm to restrict the number of nonzero coefficients. Such cardinality constraint complicates

the optimization, since this constraint is discontinuous and nonconvex, which makes the

problem NP-hard (Nondeterministic Polynomial hard) [11]. Previous modelling approaches

with L0-implementations have been developed for generalized linear models, such as linear

and logistic regression [12–14], but they do not offer solutions for the Cox model essential for

prognostic predictions. For example, the SDAR method in [14] relies on Karush-Kuhn-Tucker

optimality conditions for the L0-penalized least squares solutions, thus being applicable only

for linear regression models. To the best of our knowledge, there is only one L0-implementing

Cox’s proportional hazards model, the augmented penalized minimization-L0 (APM-L0) [15],

which approximates the L0 approach, and iterates between a coordinate descent-based convex

regularized regression and a simple hard-thresholding estimation. However, since the APM-L0

method incorporates also L1- and L2-norms, it is unclear whether or not it performs funda-

mentally differently compared, for example, with LASSO.

Our implementation differs from the APM-L0 approach. First, we rewrite the cardinality

constraint with its exact DC (Difference of two Convex functions) representation, after which

the constraint is added to the objective function utilizing a penalty function approach [16].

This leads to a continuous nonsmooth (i.e. not necessarily continuously differentiable) objec-

tive function, whereas the nonconvexity remains even after the transformation. In our meth-

odology, the optimization is done with two sophisticated solvers: the double bundle method

(DBDC) [17, 18] for nonsmooth DC optimization, and the limited memory bundle method

(LMBM) [19, 20] for nonsmooth large-scale optimization. Both solvers are capable of handling

the exact DC representation of the cardinality-constrained problem after it has been trans-

formed into a penalty function form. In addition to the advanced optimization methods and

inclusion of the cardinality constraint, we further generalize the cardinality constraint to also

control the number of used kits that group together multiple predictors that come with the

same cost in clinical practice. Instead of a single measurement, in practice, many features are

often measured together as kits (such as complete blood count). In our methodology, such kit

structure can be included in the model, thus enabling the selection of relevant predictor sub-

sets instead of single predictors only.

In this work, we present a new L0 regularization method OSCAR (Optimal Subset CArdi-

nality Regression) and exemplify it with Cox’s proportional hazards model in prognostic pre-

diction of prostate cancer. The OSCAR method is tested in multiple data cohorts: TYKS (real-

world hospital registry data) [8], VENICE, MAINSAIL and ASCENT (randomized clinical tri-

als) [6], and TCGA, Taylor et al. and Sun et al. (high-dimensional transcriptomics datasets)

[21–23]. We use bootstrap (BS) and cross-validation (CV) analyses to ensure robustness and

generalization ability of the model. For TYKS, VENICE, MAINSAIL, and ASCENT, the model

prediction accuracy is also investigated alongside the corresponding predictor costs; this helps

to identify models that are also cost-effective (i.e. max accuracy, min cost). Combining these

two objectives leads to a multi-objective optimization problem. We note that the process of
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fitting the Cox’s proportional hazards model (i.e. accuracy) for all the required cardinalities is

one way to obtain an approximation of the Pareto-front [24] in this multi-objective problem.

These Pareto-fronts can then be provided for the end-users for decision making. Finally, the

models selected based on the Pareto-fronts are further tested in validation cohorts indepen-

dent from the training datasets and pre-selected before model fitting. We compare the OSCAR

results to the traditional LASSO [4], L0-augmented APM-L0 [15], smoothly clipped absolute

deviation (SCAD) penalized regression [25], and greedy forward selection (Greedy FS).

Materials and methods

OSCAR method

In the OSCAR method, we refer to cardinality as the number of predictors or groups of predic-

tors (i.e. kits) in the model. Schematic illustration of the OSCAR methodology is presented in

Fig 1. In addition to survival prediction, the OSCAR method implements binomial model for

logistic regression problems and linear regression with mean square error (see e.g. [26]).

Cox’s proportional hazards model. Our modelling interest is mainly in the patient sur-

vival prediction, where we investigate the relationship between patient features (see subsection

“Prostate cancer data for testing”) and survival time (overall survival or progression free sur-

vival). In the general form, this type of data can be stated as a set

A ¼ fðxi; yi; diÞ 2 R
p � Rþ � f0; 1g j i ¼ 1; . . . ; ng; ð1Þ

where n is the number of observations, xi 2 R
p is the vector of p features, yi 2 Rþ is the

observed time and δi 2 {0, 1} is the label (value 1 indicates an event, typically a failure, and

value 0 right-censoring). In addition, we let t1 < t2 < . . .< tm be increasing list of m unique

failure times, and Di be the set of indices of observations failing at time ti, meaning that ties are

also allowed to happen.

Survival prediction is traditionally carried out using Cox’s proportional hazards model

[10]. The hazard for the patient i at time t is given with the formula

hiðtÞ ¼ h0ðtÞex
>
i β;

where h0(t) is a shared baseline hazard and β 2 Rp
is an unknown coefficient vector. Our aim

is to estimate this vector β by maximizing the Breslow approximation of the partial likelihood
(see [27]). In the following, we denote by �β the solution yielding the maximum value for the

likelihood.

Instead of maximizing the partial likelihood directly, it is also possible to maximize the

scaled log partial likelihood, since this leads to an equivalent solution [5]. This modification

gives the scaled log partial likelihood of the form

lðβÞ ¼
2

n

Xm

i¼1

X

j2Di

x>j β � di ln
X

j2Ri

ex>j β

 !( )

; ð2Þ

where Ri = {j : yj� ti} is the set of indices at risk at time ti and di = |Di| is the number of failures

at time ti. The function −l is convex, since it is a sum of linear and log-sum-exp functions [28].

Therefore, instead of maximizing the concave function l, it is equivalent to minimize the con-

vex function −l. In the following, we concentrate on solving the minimization problem

min
β2Rp

� lðβÞ; ð3Þ

whose solution �β also maximizes (2).
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Fig 1. Schematic illustration of the OSCAR method.

https://doi.org/10.1371/journal.pcbi.1010333.g001
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Restricting the number of model features. In many real-world applications, it is benefi-

cial to have sparse solutions for the partial likelihood function. To favor sparse solutions, a reg-

ularization term is typically added to the optimization problem. For example, the elastic net

penalization is used in [5] by combining L1- and L2-norms. In particular, approaches relying

on the L1-norm ensure sparsity to a certain extent.

In our approach, the sparsity of the solution is obtained by using the cardinality constraint

to restrict the number of nonzero coefficients in the vector β. The strength of this approach is

that it provides us an effective tool to seek solutions with a predetermined model complexity.

Instead of considering each feature separately, we may also want to group some features

together, if they are always measured together (i.e. they belong to the same measurement kit).

Therefore, we also generalize the cardinality constraint-based feature subset selection to a case

where we restrict the number of selected kits (see section 1 in S1 Text for restricting the num-

ber of selected kits, instead of single features).

For any vector β 2 Rp, the L0-pseudonorm kβk0 calculates the number of nonzero compo-

nents. However, it is worth noting that the L0-pseudonorm is not a proper norm since it is not

homogeneous [29], thus the name pseudonorm. In addition, this pseudonorm is discontinu-

ous and nonconvex, making the optimization problem much more challenging [16, 30].

In the problem (3), sparsity can be achieved by fixing the number of nonzero coefficients K
2 {1, . . ., p} and adding a cardinality constraint kβk0� K. This results in the following cardi-
nality-constrained problem

min
β2Rp

� lðβÞ

s:t: k β k0 � K:

8
<

:
ð4Þ

It is known that this problem is difficult to solve due to the combinatorial nature of the con-

straint, which is also discontinuous. To overcome the discontinuity, we use the approach pre-

sented in [16], which utilizes the largest-k norm to obtain an exact continuous representation

of the constraint.

The largest-k norm of a vector β 2 Rp is the sum of the k largest absolute value elements:

kjβ kj
½k�≔ jbð1Þj þ jbð2Þj þ . . .þ jbðkÞj;

where β(i) is the element whose absolute value is the i-th largest among the p elements of β.

The largest-k norm is a proper norm. In addition, it is convex and the constraint kβk0� K is

equivalent to the constraint k β k1 � kjβ kj½K� ¼ 0 [16, 30], where

k β k1 ≔ jb1j þ jb2j þ . . .þ jbpj ¼ kjβ kj½p�. Thus, the problem (4) can be rewritten as

min
β2Rp

� lðβÞ

s:t: k β k1 � kjβ kj½K� ¼ 0

8
<

:
ð5Þ

and we have a continuous constraint instead of a discontinuous one. Note that both problems

(4) and (5) have exactly the same feasible set. However, the combinatorial structure of the car-

dinality constraint causes the continuous constraint to be nonconvex. For this reason, the

problem (5) may have multiple local solutions and identifying a global or near global solution

requires a sophisticated optimizer.

Another disadvantage of the problem (5) is that we still have a constraint. Similarly to [16],

we can utilize the penalty function approach [31, 32] to rewrite the constrained problem (5) as
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an unconstrained one

min
β2Rp

f ðβÞ ¼ � lðβÞ þ rðk β k1 � kjβ kj½K� Þ; ð6Þ

where ρ> 0 is a positive penalization parameter. In this reformulation, we are balancing

between feasibility and optimality. By selecting a too small value for the parameter ρ, we do

not obtain a feasible solution for the original problem (5). However, by selecting a suitably

large value for ρ, we have a heavy cost for cardinality constraint violation and end up with a

feasible solution. Note that the parameter ρ should not be too large since otherwise the penalty

term dominates the objective function and in practice we do not obtain an optimal solution

for the objective of the constrained problem (5). For this reason, as is typical for penalty func-

tion methods, we need to solve the problem (6) sequentially for a series of increasing values of

the parameter ρ until a suitable parameter value is reached that forces the original constraint

in (4) to hold. In practice, this search is done by using a ρ value-grid.

One major benefit of the formulation in (6) is that, although its objective f is nonconvex

and nonsmooth, it is a DC function (Difference of two Convex functions). This means that f
can be represented in the form f = f1 − f2 with two convex functions f1 and f2. This way we can

better control the nonconvexity than in the general case. In addition, these convex functions

can be selected, for example, as

f 1ðβÞ ¼ � lðβÞ þ rk β k1 and f 2ðβÞ ¼ rkjβ kj
½K�:

Another interesting aspect of the penalized reformulation (6) is that it can be seen as a mod-

ification of the L1-norm based penalization since the only difference is the largest-k norm term

� rkjβ kj½K�. Note that this is the term restricting and controlling the upper bound for the num-

ber of nonzero features in the problem.

OSCAR algorithm. In this section, we introduce the new algorithm OSCAR (Optimal

Subset CArdinality Regression) to solve the cardinality-constrained problem formulated in

(4). Since the considered problem is nonconvex, it is well-known that the determination of a

global solution is a challenging task, since there may be many local optima and we lack easily

verified conditions guaranteeing the global optimality. Due to this, the goal of our new local

optimization framework is to find good enough solutions which are close to the global optima.

To achieve this goal, our method combines first time the penalty function approach and the

double bundle method (DBDC) [17, 18] for DC optimization together with an incremental

type of an approach to solve the original problem.

OSCAR methodology is designed so, that it does not depend on the specific optimization

method, provided the method is capable of handling both nonsmoothness and nonconvexity.

Therefore, our method generalizes beyond DBDC, although it is offered as the default choice

for small-scale problems with p< 100 features. Due to this, we have also incorporated into the

R-package of OSCAR the possibility to use the limited memory bundle method (LMBM) [19,

20]. LMBM is designed for general nonconvex nonsmooth optimization problems, with the

drawback, that it does not benefit from the DC structure of the objective. The most important

feature of LMBM is that it scales towards large-scale problems and thus it is given as a default

solver for the cases where p� 100. In addition to boosting calculations with high-dimensional

data, we introduce an acceleration procedure that utilizes a one-dimensional subproblem and

a reduced-sized original problem (4) (see section 2 in S1 Text for the acceleration procedure

for high-dimensional data).

As described above, the first step of OSCAR is to use the penalty function approach to

transform the rewritten constrained problem (5) to an unconstrained one. Since the objective

of the unconstrained problem (6) is DC, we can solve it by utilizing the DBDC method for DC
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optimization. This enables us to take advantage of the DC structure, since the selected bundle

method constructs a nonconvex DC cutting plane model (i.e. an approximation of the objec-

tive function, which incorporates both the convex and the concave behavior of the problem).

Another option to solve the problem (6) is LMBM as described above.

However, since DBDC and LMBM are local optimizers, the quality of solutions for a non-

convex problem strongly depends on the choice of starting points. For this reason, the algo-

rithm OSCAR combines the DBDC and LMBM methods with an incremental type of an

approach to generate multiple starting points with higher likelihood of leading to most prom-

ising parts of the search space. The idea in our incremental approach is to start with solving

the cardinality-constrained problem, where only a single predictor (or kit) is allowed to be

used initially, and then to increase the number of predictors (or kits) one at a time until the

maximal number of predictors is achieved. In particular, we utilize the solution of the cardinal-

ity-constrained problem with i − 1 predictors to identify promising starting points to the next

cardinality-constrained problem with i predictors. Since this type of incremental forward

selection process may end up in a local optimum, we alleviate this via the use of multiple start-

ing points to obtain multiple solution candidates for the problem with i predictors (so-called

multi-start global optimization).

Algorithm 1: OSCAR

Input: The values of features xi, the survival times yi, the
labels δi 2 {0, 1} and the maximal number of predictors Kmax
2 {1, 2, . . ., p} until which the cardinality-constrained
problem is solved.

Output: For i = 1, . . ., Kmax, gives the solution β�i for the
cardinality-constrained problem with i predictors.

Step 0: (Initialization) Solve the convex problem (3) with
DBDC or LMBM and denote the solution by �β. Set β�

0
¼ 0 and

i = 1.

Step 1: (Starting points) For the cardinality-constrained
problem with i predictors, initialize the set of starting
points Si = ;. For j = 1, . . ., p construct the point βj

0
with

the formula

b
j
0;l ¼

b
�

i� 1;l for l ¼ 1; . . . ; p and l 6¼ j

�b l for l ¼ j

8
<

:

and if k βj
0
k0 > i � 1 then add the point to the set Si.

Step 2: (Penalty function problem) Do the following steps A–
C for all βj

0
2 Si to obtain solutions β�i;j

Step A: Select a positive initial value for the penaliza-
tion parameter ρ.

Step B: Solve the problem (6) with the DBDC or LMBM method

starting from βj
0
and denote the solution with β̂ j.
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The OSCAR method is presented in Algorithm 1 for the case where each predictor is con-

sidered separately. See section 1 in S1 Text for modifications needed with a kit structure of

grouped features. As an input, one needs to give the maximal number of predictors Kmax,

defining how many predictors maximally can be selected in the densest cardinality-con-

strained problem. As an output, the method provides incrementally a solution to each cardi-

nality-constrained problem with i predictors for i = 1, . . ., Kmax and, thus, one obtains as a by-

product a solution also for each cardinality-constrained problem with a smaller number of

used predictors (or kits). This means that one can control how many different sparse solutions

are generated. Naturally, it is also possible to select Kmax = p, in which case the problem (5) is

solved for all the possible numbers of predictors.

In Step 1 of Algorithm 1, starting points are generated by varying the previous solution β�i� 1

with the best solution �β of the scaled log partial likelihood obtained without any regularization.

More specifically, in a starting point βj
0

the base is β�i� 1
, and then one can simply substitute

predictor j with the corresponding value in �β. In this way, one can easily vary the previous

solution but still maintain its main predictors. Note also that each starting point with i − 1 pre-

dictors is omitted and we only keep the starting points with i predictors.

In Step 2B of Algorithm 1, we always use the original starting point. The reason for this is

that if the parameter ρ is too small, then we may end up with a solution where nearly all the

coefficients are nonzero, and therefore, lose the information provided by the original starting

point. To avoid such solutions, we do not change the starting point, but instead update the

parameter ρ until we obtain a solution with the acceptable number of predictors (or kits). This

guarantees that the obtained solution does not diverge too much from the previous solution

and maintains its best predictors. In addition, this way the method does not become too sensi-

tive to the selection of ρ, since too small values of ρ are basically omitted.

Prostate cancer data for testing

For testing the new algorithm for survival prediction, we used one prostate cancer cohort from

real-world hospital registry data, three prostate cancer cohorts from randomized clinical trials

(see Table A in S1 Text), and three publicly available high-dimensional transcriptomics data-

sets with biochemical recurrence information. The patient-specific features were also

Step C: If k β̂ jk0 ¼ i, then set β�i;j ¼ β̂ j. Otherwise increase the

value of the penalization parameter ρ and go to Step B.

Step 3: (Solution) Select the best solution β�i for the car-
dinality-constrained problem (5) with i predictors using
the formula

β�i ¼ arg min
j
f � lðβ�i;jÞ g:

Update i = i + 1. If i � Kmax, then go to Step 1. Otherwise
go to Step 4.

Step 4: Return β�i for all i = 1, . . ., Kmax.
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considered by the clinical examination groups (kits), in which they are measured in clinical

practice. Prices for the examinations were obtained from the standard laboratory test costs of

the Helsinki University Hospital (Finland). The real prices were converted to costs relative to

PSA, which was given a reference value of 100. One feature (blood urea nitrogen) without a

known cost was ignored. The features are shown in Table 1, along with abbreviations as well as

the kit structures and standardized prices.

Real-world hospital registry data. The real-world hospital registry data were collected

from the advanced prostate cancer patients treated at the Turku University Hospital (TYKS,

Finland). Patients with castration resistance were selected and data processed as in [9]. Fur-

thermore, only patients with diagnosis of castration resistance dated in 2010 or later were

selected, due to the higher sparsity of data in the previous years. In addition, patients with zero

or negative survival time or no measurement data were discarded. A total of 195 patients were

Table 1. Data features for the clinical cohort variables.

Abbreviation Meaning Unit Kit Price

AGEGRP Age group (three groups) - Routine measurements 0

BMI Body mass index kg/m2

DIASTOLICBP Diastolic blood pressure mmHg

HEIGHTBL Height cm

PULSE Pulse bpm

SYSTOLICBP Systolic blood pressure mmHg

WEIGHTBL Weight kg

HB Hemoglobin g/dl B-PVKT 40

HEMAT Hematocrit %

PLT Platelets E9/l

RBC Red blood cells E12/l

WBC White blood cells E9/l log

NEU Neutrophils E9/l log TKD 50

POT Potassium mmol/l

ALP Alkaline phosphatase U/l log P-AFOS 20

ALT Alanine aminotransferase U/l log P-Alat 20

AST Aspartate aminotransferase U/l log P-AsaT 20

CA Calcium mmol/l P-Ca 20

CREAT Creatinine umol/l log P-Krea 20

LDH Lactate dehydrogenase U/l log P-LD 20

PSA Prostate-specific antigen ng/ml log P-PSA 100

TBILI Bilirubin umol/l log P-Bil 20

TESTO Testosterone nmol/l log S-Testo 330

NA Sodium mmol/l cB-Het-Ion 100

MG Magnesium mmol/l log P-Mg 20

PHOS Phosphorus mmol/l log P-Pi 20

ALB Albumin g/l P-ALB 20

TPRO Total protein g/l S-Prot 20

LYM Lymphocytes E9/l log B-Lymf 90

CCRC Calculated creatinine clearance ml/min log Pt-GFReEPI 20

GLU Glucose mmol/l log Gluk 20

Abbreviations, explanations and units for features used in the analyses, as well as kit structures and corresponding prices. Prices were standardized so that PSA has a

price of 100.

https://doi.org/10.1371/journal.pcbi.1010333.t001
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set aside to be used as an independent validation dataset to evaluate the generalization capabil-

ity of the model, and to assess the risk of over-fitting to the training dataset. We further elimi-

nated features with over 50% of missing values. The remaining missing data were imputed

using median values calculated in the training dataset (n = 590). Median imputation has been

previously tested and found adequate [8, 9]. One outlier measurement of systolic blood pres-

sure (>12 000 mmHg) was changed into missing before imputation. Patient characteristics for

the training data are presented in Table A in S1 Text, and the survival curves in the TYKS

cohort with respect to the Gleason scores are shown in Fig 2a. The survival curves behaved as

expected, with lowest survival on the highest Gleason scores and highest survival on the lowest

Gleason scores. Since between-feature correlations may affect the feature selection process, we

investigated these across the available features as shown in Fig A in S1 Text.

Randomized clinical trial data. The randomized clinical trial data included in the analy-

ses were previously constructed in the DREAM 9.5 competition (the Prostate Cancer Chal-

lenge, PCC-DREAM), hosted by Project Data Sphere (https://www.projectdatasphere.org/).

These data come from three prostate cancer patient cohorts (MAINSAIL, VENICE, and

ASCENT) with metastatic castration-resistant prostate cancer [33–35]. From each cohort, a

random set of patients was separated as a validation dataset (n = 132, n = 150 and n = 119 for

Fig 2. Survival curves: a) Kaplan-Meier survival probability for the TYKS patient cohort based on the Gleason scores. b) Kaplan-Meier survival probability for the three

clinical trial cohorts: VENICE, MAINSAIL, and ASCENT.

https://doi.org/10.1371/journal.pcbi.1010333.g002
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MAINSAIL, VENICE and ASCENT, respectively). Features with over 50% of missing values

were eliminated. Missing values in each cohort were imputed separately using median values

calculated from the corresponding training datasets (n = 394, n = 448 and n = 357 for MAIN-

SAIL, VENICE and ASCENT, respectively). Patient characteristics are presented in Table A in

S1 Text, and the survival curves per cohort are shown in Fig 2b. The survival curves start simi-

larly, however, the MAINSAIL and ASCENT cohort have a shorter follow-up time. The overall

survival trend was similar to the TYKS real-world cohort (Fig 2a). We also present the correla-

tions between features of the clinical trial cohorts in Fig A in S1 Text.

High-dimensional transcriptomic datasets for prostate cancer recurrence. TCGA [21],

Taylor et al. [22], and Sun et al. [23] datasets were obtained as described in section 6.1 in S1 Text

using the curatedPCaData-package. Only primary tumors were used for model training and val-

idation, with the end-point being disease recurrence. In TCGA and Taylor et al., recurrence

information was available along with follow-up times. However, in Sun et al., recurrence was a

binarized outcome without follow-up times. Therefore, C-index was used as the performance

metric in TCGA and Taylor et al., while ROC-AUC was used in Sun et al. for the performance

metric for evaluating the ability distinguish between recurring and non-recurring tumors.

For analysis of computational cost, the full TCGA (original n = 404, p = 19 658, with 76

observed recurrence events) and Taylor et al. (n = 131, p = 17 410, with 27 observed recurrence

events) datasets were used while examining how the computational burden increased as a

function of data dimensionality. Since Sun et al. (n = 79, p = 12 783, with 39 recurrent and 40

non-recurrent sample) provided only the recurrence as a binarized outcome, it was not

included in the computational benchmarking of the Cox model fitting with OSCAR, but it

was included in the validation of the generalization ability of identified models when using

OSCAR and the other benchmarking methods.

For model validation, the z-score transformation was applied across genes to harmonize the

datasets. Furthermore, genes with less than 50% unique values across the patient samples were

omitted to avoid redundant variables (i.e. genes with little or no variability, and hence having a

limited predictive value). Lastly, in order to make the identified genes as comparable as possi-

ble across the datasets, genes were subset to common gene names. This resulted in a validation

data dimensionality of p = 10 253 across the three transcriptomics datasets.

Results

We first investigated the performance of our OSCAR method in four clinical patient cohort-

based prostate cancer datasets, which portrait two very distinct archetypes of biomedical data.

First, we applied the method to the advanced prostate cancer cohort obtained from Turku uni-

versity hospital (TYKS), representing a highly heterogeneous real-world hospital registry patient

cohort. Second, we applied the method to three prostate cancer cohorts obtained from random-

ized clinical trials, which had been part of a DREAM prostate cancer modelling challenge and

had been homogenized previously by the challenge organizers. Lastly, to investigate the method

performance in high-dimensional transcriptomic data from prostate cancer patients, we used

three additional gene expression-based datasets (TCGA, Taylor et al., and Sun et al.), which all

have data dimensionality above p> 10 000 and disease recurrence as the prediction end-point.

The predictive performance was evaluated with Harrel’s concordance index (C-index) [36]

when the patient follow-up information was available. C-index is commonly used in survival

analysis as it compares the order of predicted risks to the order of observed survival times [37–

39]. In Sun et al. dataset, where recurrence follow-up times were not available, the commonly

used Receiver Operator Characteristic Area Under Curve (ROC-AUC) was used as the perfor-

mance metric.
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To benchmark OSCAR performance, we compared its results to a widely used method

LASSO [4], which utilizes L1-regularization. We included another L0-pseudonorm based

method APM-L0 [15], which was chosen based on literature search for L0-related methods

capable of performing survival analysis. We further compared OSCAR to a SCAD-penalized

regression method [25]. Furthermore, the greedy forward selection (Greedy FS) was included

as a benchmark method. Furthermore, in LASSO, AMP-L0, and SCAD, the penalization coeffi-

cient of the regularization term used is denoted with λ> 0 and thus these methods can be

called λ-penalized shrinkage methods. We performed cross-validation (CV) to assess generali-

zation ability, supported by bootstrapping of the data and subsequent re-fitting of the models

to assess robustness of the selected features.

In addition to the model accuracy, we evaluated the cost-efficiency of the models as a func-

tion of feature measurement costs obtained from actual clinical laboratory measurement kit

reference costs from the Helsinki University Hospital. We evaluated the model performance of

the methods OSCAR, LASSO, APM-L0, SCAD, and Greedy FS with respect to the costs calcu-

lated with the corresponding number of predictors. This gave us an approximation of the

Pareto-front aiming at a good compromise between minimal real-life cost and maximal accu-

racy, since the underlying problem can be seen as a multi-objective optimization problem of

these two objectives.

We also investigated which features were selected as robust predictors. More specifically,

we performed bootstrapping (BS), in which the model was fitted 100 times to calculate how

often (%) each feature was selected as a predictor when a certain cardinality was set. This

enabled us to interpret which features are the most robust predictors that are not sensitive to

slight perturbations in the input data.

Prognostic prediction for advanced prostate cancer in real-world hospital

registry data

Based on the BS evaluation of the OSCAR method in the TYKS cohort (Fig 3a), PSA was clearly

the most robust predictor for the overall survival in prostate cancer. However, as can be seen

from Fig 3b and 3c, the original model and CV C-index improved substantially when at least

four predictors were chosen. Based on the BS results, the most promising predictors within the

explored cardinality values were PSA, hemoglobin (HB), alkaline phosphatase (ALP) and age

group (AGEGRP). Notably, the cost remained low when these four predictors were chosen

(Fig 3b blue). Adding more predictors did not dramatically improve the OSCAR method accu-

racy in the training dataset. However, when more predictors were introduced, creatinine

(CREAT) and pulse (PULSE) were additionally chosen for prognostic modelling by OSCAR.

In general, OSCAR resulted in improved performance in terms of C-index in CV, when

benchmarked against LASSO, APM-L0, and SCAD methods (Fig 3c–3e). Greedy FS achieved

almost the same C-index level than OSCAR, but it required more features for the top-perfor-

mance. All the methods exhibited roughly similar amount of variation over the CV folds. Of

note, OSCAR estimates do not shrink toward zero, but are instead either included or excluded,

which may partly explain the saturation effect in the CV performance curves. In this modelling

task, the number of predictors (p = 22) was relatively low in comparison to the number of

patients (n = 590). All the methods selected similar predictors (Fig 3a). For example, LASSO

with conservative λ (λ1se) selected three predictors (PSA, HB, and ALP), which are the same as

the most important predictors of OSCAR based on the BS. The penalization coefficient λ in

LASSO, APM-L0, and SCAD is typically chosen either based on a local optimum for CV per-

formance (λmin), or when a solution is within a range of the standard error of the local opti-

mum (λ1se). In OSCAR, to avoid arbitrary choices for the crucial model penalization, we
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leverage the use of bootstrapping-based inference to explore feature robustness in addition to

the CV generalization ability.

To compare the methods in terms of implementation costs, we investigated the mean C-

index in CV of the methods OSCAR, LASSO, APM-L0, SCAD, and Greedy FS with respect to

the costs calculated with the corresponding number of predictors or the values of λ (Fig B in

S1 Text). Interestingly, the Pareto-front for OSCAR CV performance vs. cost suggested multi-

ple candidate models, which could be then refined using the domain-expert clinical guidance.

The models from these approximated Pareto-fronts were subsequently selected for testing in

the left-out validation data to further assess model generalization ability beyond the already

observed training data. The observed C-index in the validation dataset (Fig 4) was similar to

that in the training dataset. All the methods performed well in the validation dataset, with

OSCAR slightly better for low and high costs (or number of predictors).

We further considered scenarios in which the Pareto-front is of no special interest and only

a single model prediction is required. For this purpose, the maximum C-index in CV was

Fig 3. TYKS data: a) OSCAR BS performance. +/- denotes the sign of the coefficient in the model. Positive coefficient: higher predictor value leads towards high risk.

Negative coefficient: higher predictor value leads towards low risk. ¤denotes features selected by LASSO with λ1se and � denotes features selected by LASSO with λmin, a

denotes features selected by APM-L0, s denotes features selected by SCAD, g denotes features selected by Greedy FS. Color denotes how often among 100 bootstrap runs

a feature is selected when a certain cardinality is set (1 meaning 100%). b) OSCAR accuracy in the TYKS training data (C-index), and cost with respect to the allowed

number of predictors. Cost is calculated by kits and a kit price is added if any feature from a kit is used. c) CV performance of OSCAR. d) CV performance of LASSO.

The numbers at top indicate the number of predictors selected by a specific λ. e) CV performance of APM-L0. f) CV performance of SCAD. g) CV performance of

Greedy FS. The red dots denote the mean values and the error bars denote the standard errors of the mean (SEM) calculated over the CV folds.

https://doi.org/10.1371/journal.pcbi.1010333.g003
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identified, and the cardinality was selected from this solution within the range of the standard

error of the mean (SEM). This is similar approach to those used in LASSO, APM-L0, and

SCAD, but we used SEM instead of standard error. For Greedy FS, the model was selected sim-

ilarly to OSCAR. Using this strategy, four predictors (PSA, HB, ALP, and AGEGRP Fig 3a)

were selected, suggesting a similar model as previously identified with BS. These results dem-

onstrate that even though the methods had a trend toward the same features, the generaliza-

tion ability of OSCAR was similarly good or better than those using shrinkage-based

coefficient estimates.

Prediction with kit structure. While the most typical approach is to choose features one

at a time, as presented above, features may be available as groups. In clinical practice, features

are often measured together as kits (e.g. complete blood count), and therefore including a sin-

gle feature from a kit in the model leads to availability of measurements for the rest of the kit’s

features as well. As the extra features become available at the same cost, it is economical to con-

sider including all of the kit’s features in the model simultaneously.

Such a kit structure can be easily included in the OSCAR method (see section 1 in S1 Text),

and was investigated in the TYKS dataset. Kit structures used in the analysis are presented in

Table 1. Consistent with the non-kit version in the previous subsection, PSA was the most rele-

vant predictor in the TYKS data (Fig 5a). When two kits are allowed, the model suggests

B-PVKT (complete blood count), which includes HB, platelets (PLT), white blood cells (WBC),

red blood cells (RBC), and hematocrit (HEMAT). While the inclusion of B-PVKT was largely

driven by HB, which had been identified as an important predictor in the non-kit approach,

four other predictors were now available for model fitting as well. The model fit C-index levels

were slightly lower than those with the non-kit prediction. For example, with two kits (total of

six predictors), C-index was 0.708 (Fig 5b), whereas the non-kit model of six predictors had C-

index on 0.728 (Fig 3b). This is due to trend of including less prognostic features when a kit

includes also a highly prognostic feature. However, the cost of six predictors in the non-kit

model was 180, whereas the cost for six predictors (two kits) in the kit structure model was 120.

Fig 4. Model accuracy in the validation data cohort for OSCAR (red filled circles), LASSO (yellow hollow circles), APM-L0 (blue hollow circles), SCAD (light

purple hollow circles), and Greedy FS (green hollow circles). a) with respect to the corresponding costs, b) with respect to the corresponding number of predictors.

Only the performance of the models in the corresponding approximated Pareto-fronts are presented.

https://doi.org/10.1371/journal.pcbi.1010333.g004
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Fig 5. Model performance of OSCAR when the kit structure is used. a) BS performance, b) Goodness (C-index) and cost, c) CV performance. The red dots denote

the mean values and the error bars denote the standard errors of the mean (SEM) calculated over the CV folds.

https://doi.org/10.1371/journal.pcbi.1010333.g005
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The overall levels of C-index in the CV were similar with or without the kit structure (Fig

5c), when compared to the non-kit prediction (Fig 3c). With the kit structure, the model

included features that would not be likely picked by the non-kit model, such as the above men-

tioned PLT, WBC, and RBC. Furthermore, additional features could be included while keeping

the cost low. For example, with two kits the cost was 120 when including six features, whereas

without the kit structure, a higher cost was paid with only two features. However, with more

features, the risk of overfitting increases. These results demonstrate how the OSCAR method

enables the inclusion of clinically relevant kit structures and the addition of multiple model pre-

dictors at a given cardinality. In the presented application, the models retained a similar level of

generalization ability regardless whether or not the kit structure was taken into account.

Prognostic prediction for prostate cancer patients in clinical trial data

To investigate how the developed methodology would perform in a more systematically col-

lected and homogenized clinical cohort, we investigate the model performance in three clinical

trial data cohorts. One of the striking differences was, that in contrast to the real world cohort

TYKS, PSA was significantly less frequently selected as prognostic factor in the three trial data

cohorts. In the ASCENT cohort, PSA was distinguished as a prominent predictor (Fig 6 bot-

tom row); however, if only one predictor was allowed, ALP was selected most often in the BS

analysis. Furthermore, ALP was selected as the main predictor in the VENICE cohort (Fig 6

top row). In the MAINSAIL cohort, ALP was not detected as a prognostic feature (Fig 6 mid-

dle row), and instead, lactate dehydrogenase (LDH) was the most prominent predictor. In the

VENICE and MAINSAIL cohorts, HB was selected most often as the second predictor.

ALP and HB were also highly prognostic in the real-world TYKS cohort. Unfortunately, the

otherwise highly interesting LDH was not available in the TYKS cohort, due to high percentage

of missing values (>80%, Table A in S1 Text). Similarly, TYKS data was missing aspartate ami-

notransferase (AST), which had notable prognostic power in the VENICE cohort. We note that

AST was also, along with LDH, ALP, and HB, detected as one of the most important predictors

in the original DREAM 9.5 Prostate Cancer Prediction Challenge [6]. The lack of PSA as the

clear top-predictor is also in line with the DREAM 9.5 challenge results, since rather multiple

predictors and their interactions need to be considered for maximal prognostic accuracy. Fur-

thermore, the elevated prominence of PSA as a prognostic predictor may be also biased by data

generation and reporting, as it is routinely measured in prostate cancer follow-ups, while real-

world clinical applications may be less prone to adapt novel markers into routine use.

In the VENICE cohort, after the selection of these main predictors that appeared in all the trial

cohorts, it became less clear which additional features had the most prognostic power on patient

survival. However, based on the model accuracy and the CV results (Figs 6 and 7 top rows), a

higher model accuracy was reached with additional predictors. Potential candidate features that

improved the model performance were AST, CREAT, sodium (NA), HB, and albumin (ALB).

Based on the cardinality within the range of SEM from the maximum C-index in CV, OSCAR

selected three predictors (ALP, HB, and CREAT). In the CV analysis, the OSCAR method

resulted in a higher mean C-index than LASSO, APM-L0, and SCAD (Fig 7 top row). Greedy FS

resulted in a similar accuracy, further implying the difference between cardinality based methods

(OSCAR and Greedy FS) and shrinkage-based methods (LASSO, APM-L0, and SCAD). How-

ever, all the methods suggested similar predictors, indicating their importance and robustness.

In the MAINSAIL cohort, a relatively high C-index was reached by using roughly five pre-

dictors, and adding more predictors did not considerably increase the C-index. In the CV, a

local maximum was also reached with three predictors (Fig 7 middle row). Thus, based on the

BS analysis, in addition to LDH and HB, features like magnesium (MG), body mass index
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Fig 6. Left panel: BS performance for three trial cohorts. Right panel: Model goodness (C-index) and costs with respect to the allowed number of predictors.

Cost is calculated by kits and a kit price is added if any feature from a kit is used.

https://doi.org/10.1371/journal.pcbi.1010333.g006

PLOS COMPUTATIONAL BIOLOGY OSCAR: Optimal subset cardinality regression using the L0-pseudonorm

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1010333 March 10, 2023 18 / 31

https://doi.org/10.1371/journal.pcbi.1010333.g006
https://doi.org/10.1371/journal.pcbi.1010333


(BMI), ALB, AST, and weight (WEIGHT) were suggested as potential candidates. Based on

the cardinality within the range of SEM from the maximum C-index in CV, OSCAR selected

two predictors (LDH and HB). When compared to LASSO, APM-L0, and SCAD, OSCAR

again resulted in a higher mean C-index (Fig 7 middle row). As in the VENICE cohort, Greedy

FS resulted in a similar level of accuracy in the MAINSAIL cohort.

In the ASCENT cohort, PSA and ALP were the most important predictors (Fig 6 bottom

row). Allowing more predictors, such as neutrophils (NEU), calcium (CA), LDH, and HB, further

Fig 7. First panel: CV performance of OSCAR in the three trial cohorts. Second panel: CV performance of LASSO in the three trial cohorts. Third panel: CV

performance of APM-L0 in the three trial cohorts. Fourth panel: CV performance of SCAD in the three trial cohorts. Fifth panel: CV performance of Greedy FS in the

three trial cohorts. The red dots denote the mean values and the error bars denote the standard errors of the mean (SEM) calculated over the CV folds.

https://doi.org/10.1371/journal.pcbi.1010333.g007
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increased the C-index. Based on the cardinality within the range of SEM from the maximum C-

index in CV, OSCAR selected six predictors (PSA, NEU, ALP, CA, HB, and WBC). Similar to the

other clinical trial cohorts, OSCAR resulted in the highest mean C-index in the CV analysis of the

ASCENT cohort when compared to LASSO, APM-L0, and SCAD (Fig 7 bottom row).

To investigate the implementation costs, the mean CV accuracies were inspected with

respect to the cost in all three trial data cohorts and for all the methods (OSCAR, LASSO,

APM-L0, SCAD, and Greedy FS) (Fig C in S1 Text). For each of the cohort-method pairings,

the approximated Pareto-fronts were analysed. Similarly to the TYKS dataset, OSCAR method

resulted in higher accuracies when compared to LASSO, APM-L0, and SCAD at the same cost

levels. Greedy FS resulted in similar levels of accuracies and costs. Next, the models corre-

sponding to the approximated Pareto-fronts were applied in the validation dataset (Fig 8). In

Fig 8. Model accuracy in the validation data cohort for OSCAR (red filled circle), LASSO (yellow hollow circles), APM-L0 (blue hollow circles), SCAD (light

purple hollow circles), and Greedy FS (green hollow circles) in the three trial data cohorts VENICE, MAINSAIL, and ASCENT. Only the performance of the

models in the corresponding approximated Pareto-fronts are presented (see Fig C in S1 Text).

https://doi.org/10.1371/journal.pcbi.1010333.g008
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the validation data, the models may have exhibited some overfitting as the highest validation

C-index was often reached already with a relatively low feature cost. In general, OSCAR per-

formed well in validation considering the goal of simultaneously maintaining a high validation

C-index and a low cost. None of the comparison methods excelled over the trial cohorts.

These results demonstrate that the models based on the trial cohorts slightly differ in terms

of the selected model parameters from each other, and also from the real-life cohort TYKS.

However, part of the differences may be caused by the lack of data in some of the cohorts (e.g.

LDH lacking from TYKS). The comparison methods selected similar predictors within a

cohort. In general, the OSCAR method improved the prediction accuracy in training data

without increasing the cost when compared to the shrinkage-based methods.

Benchmarking in high-dimensional transcriptomics datasets for prostate

cancer recurrence prediction

As high-dimensional ‘omics data present key features for prognostic and predictive modelling

for patient’s recurrence and survival in most cancers, we conducted further analysis across

three prostate cancer gene expression datasets. Firstly, The Cancer Genome Atlas (TCGA)

[21] presents one of the most comprehensive openly available multi-’omics data in cancer, and

has been widely utilized for discovering novel molecular patterns across multiple cancer types.

Here, we utilized the primary prostate cancer samples (PRAD) with biochemical recurrence

status from follow-up, characterized with RNA-seq and processed by the UCSC XenaBrowser

platform. Secondly, Taylor et al. [22] provided hundreds of publicly available prostate cancer

samples from Memorial Sloan-Kettering Cancer Center (MSKCC) with HuEx-1_0-st exon

array transcriptomics profiles for over a hundred primary tumors along with biochemical

recurrence information with follow-up times (GEO accession ID GSE21032). Thirdly, Sun

et al. [23] profiled 79 patients using HG-U133A Affymetrix microarrays (GEO accession ID

GSE25136), with roughly even recurrent and non-recurrent cases, which were used for binar-

ized recurrence status prediction, as follow-up times were unavailable.

Model training and validation. TCGA (n = 404, total 76 observed recurrence events

without censoring) presented the most comprehensive dataset, thus it was used for training all

the five methods. One fourth of the data (n = 101, with 18 observed events) was set aside as a

held-out TCGA validation cohort, while the remaining primary tumor samples (n = 303, with

58 observed events) were used for training the models.

Results for the recurrence predictions with the five methods are presented in Fig 9. The

shrinkage based methods (LASSO, APM-L0, and SCAD) were plotted as a function of λ; of

these, SCAD exhibited a non-monotonous number of non-zero coefficients as a function of

the penalization coefficient λ. Of note, all the shrinkage methods were closely clustered

together, with only minor differences observed between the methods. For the cardinality-

based methods (OSCAR and Greedy FS), a spectrum of model fits from k = 1 to k = 50 was

inspected, and the results of the shrinkage methods were mapped to the cardinality based scale

on their count of non-zero coefficients as a function of penalization coefficient λ.

The TCGA held-out dataset was in general well modeled across the spectrum of model

complexity, with all models starting with relatively high C-index of 0.65 when using the first

few features (Fig 9a). After this, the next few key genes differentiated the cardinality-based

methods OSCAR and Greedy FS, with OSCAR choosing a few advantageous features while

Greedy FS decreased its C-index to around 0.6, where it remained until k = 50. The shrinkage

methods performed best after k> 10, reaching a C-index of approximately 0.7 as more features

were introduced into the models. At higher cardinalities, OSCAR performed slightly worse

than the shrinkage methods, while maintaining a reasonable C-index of slightly below 0.65.
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The Taylor et al. transcriptomic dataset differentiated OSCAR from the other methods

when trained in the TCGA training dataset (Fig 9b); while OSCAR did not initially perform

well with a few genes, by k = 10 it outperformed the other methods and maintained a C-index

of around 0.70. The shrinkage-based methods again performed very similarly, with C-indices

ranging between 0.60 and 0.65. Greedy FS maintained a stable performance of C-index of

around 0.60 across the cardinality range.

Sun et al. clearly represented the most difficult prediction task for the TCGA-trained mod-

els, possibly because it was the oldest dataset, had the lowest sample size, and it lacked follow-

up information; the end-point was a binarized recurrence outcome, with ROC-AUC used as

the performance metric (Fig 9c). All the methods had initially high variability until k = 10, per-

forming only slightly better than random (C-index = 0.5) at best. Between k = 10 to k = 20

OSCAR and the shrinkage methods improved in performance, with OSCAR gaining an

advantage over the other methods with ROC-AUC reaching above 0.65. This was slightly

reduced when more features were introduced into the model, but OSCAR remained above

ROC-AUC > 0.6.

Method comparisons. In addition to validation performance, we observed that the meth-

ods separated into roughly two distinct classes. The first class was constituted by those methods

that rely on a λ-penalized shrinkage (LASSO, APM-L0, and SCAD), which formed a very

closely performing model across all three validation datasets as seen in Fig 9 panels a-c. The

other distinct class was formed of OSCAR and Greedy FS, which instead relied on choosing a

suitable cardinality. In order to examine whether this was also reflected on the chosen variables,

we chose the top variable candidates up to k = 50 for OSCAR and Greedy FS, while for the λ-

penalized methods we chose the lowest λ with the first model with 50 non-zero coefficients. A

Venn diagram of these variables is presented in Fig 10a and the largest overlap of chosen vari-

ables was between LASSO and APM-L0. However, SCAD somewhat deviated from the other

Fig 9. Performance in the high-dimensional transcriptomics data based on model fitting on the TCGA training data. Shrinkage based methods (LASSO, APM-L0,

and SCAD) were plotted as a function of λ; of these, SCAD was the only method for which the number of incorporated features appeared as a non-monotonous function

of λ. a) One fourth of the TCGA data (n = 101) was left out as a held-out validation dataset. b) Taylor et al. (n = 131) with biochemical recurrence with follow-up times

was used as an independent validation dataset. c) Sun et al. (n = 79) with binarized biochemical recurrence without follow-up times was used as an independent

validation dataset.

https://doi.org/10.1371/journal.pcbi.1010333.g009
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shrinkage-based methods, as it identified 20 genes unique to this method, in contrast to unique

gene counts specific to LASSO and APM-L0 of three and four, respectively. OSCAR and Greedy

FS identified notably more unique genes, that were specific to each cardinality-based method.

Regarding the identified top predictors themselves, only one predictor, PTER, was detected

across all five methods. Further, genes such as GPRC5D, HSPA1B, LINC00652, NADK,

SEC61A2, and TMC6 were common for four methods including OSCAR, and LEFTY2 and

SLC14A2 were common for OSCAR, LASSO, and APML0. Biological interpretation for the

mentioned genes remains challenging and should not be accepted at face-value, for example,

for clinical risk predictor use; while perhaps robust modelling-wise, there is no clear connec-

tion to the mechanics of prostate cancer recurrence. As presented in the original work in [21,

22], the mechanics underlying prostate cancer progression and recurrence are multi-faceted,

and it is likely that associated biological processes would possibly be better explained via copy-

number alterations, gene fusions, mutations, or gene expression pathways rather than expres-

sion of individual genes. As such, while the model built with OSCAR generalized well across

these three validation datasets, its biological applicability ought to be subjected to the scrutiny

of the particular expert domain, ideally complemented by other ‘omics.

Computational burden of OSCAR in high-dimensional transcriptomics data. While

many computationally efficient regularized regression methods rely on fast algorithms, such

as coordinate descent-based approaches, our optimization approach utilizes a DC decompo-

sition of the objective function and sophisticated nonsmooth optimization algorithms for

finding optimal solutions. However, this inevitably comes at an increased computational

cost.

As we performed computational burden simulations on the TCGA and Taylor et al. datasets

for Cox models in high-dimensional datasets (p = 19 353 and n = 404, and p = 17 410 and

Fig 10. High-dimensional transcriptomics data comparisons in the TCGA dataset. a) Venn diagram for top 50 genes identified by the five feature selection methods.

b) Run times on a standard personal desktop subsampled from TCGA across the methods by varying dimensionality (samples from all genes, p), and sample size (subsets

from all primary tumor samples, n).

https://doi.org/10.1371/journal.pcbi.1010333.g010
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n = 140, respectively), we observed that the computational time increased linearly for identify-

ing kmax top features as the desired maximum cardinality k was increased (Fig D panel a in S1

Text for TCGA and Fig E panel a in S1 Text for Taylor et al.). Interestingly, as we used the

acceleration procedure in OSCAR (see section 2 in S1 Text for details) containing a tuning

parameter γ for the used percentage of starting points, this parameter was counter-intuitive

since it did not provide better solutions as a larger quantity of starting points was provided

with a higher value of γ (Figs D and E panels b-c in S1 Text). This highlights that designing

suitable heuristics for the optimization of an NP-hard nonconvex problem remains a non-triv-

ial task. Lastly, we observed a non-linear increase in the computational time as dimensionality

p increased (Figs D and E panels d in S1 Text); despite such non-linear increase, the computa-

tional burden of OSCAR remained within the scope of a standard personal desktop for even

high-dimensional transcriptomics data.

As expected, OSCAR was more computationally intensive than the shrinkage-based meth-

ods LASSO, APM-L0, and SCAD. While OSCAR was computationally more demanding than

the shrinkage methods, it retained a computational time lesser than that of Greedy FS across

tested parameter grid of dimensionality p 2 {50, 100, 500, 1 000, 5 000, 10 000} and sample

sizes n 2 {50, 100, 200, 300} as seen in Fig 10b. These run time simulations were performed by

sampling from the TCGA transcriptomics dataset.

Discussion

In this work, we have introduced a new L0-regularized regression methodology OSCAR, and

demonstrated its use in one hospital registry dataset (TYKS), three datasets from clinical trials

(VENICE, MAINSAIL, and ASCENT) and three high-dimensional transcriptomics datasets

(TCGA, Taylor et al., Sun et al.). The OSCAR method utilizes the L0-pseudonorm as a penalty

term to restrict the number of predictors. Unlike previous approaches trying to tackle the diffi-

cult discrete nature of the L0-pseudonorm, OSCAR restructures the problem so that no

approximation is required and the original solution can be then obtained in an exact manner.

Since the pseudonorm is discontinuous and nonconvex, the optimization problem becomes

NP-hard and computationally heavy [11]. In the OSCAR method, the L0-pseudonorm based

penalty was rewritten for easier management, and this leads to a regularization term in the

form of a DC (Difference of two Convex functions) composition. The optimization was done

using DBDC algorithm [17, 18]. This method is more sophisticated and more suitable for non-

convex problems than, for example, the classical coordinate descent. DBDC was also supple-

mented by a more computationally efficient optimizer LMBM, available in the OSCAR R-

package.

We compared OSCAR to LASSO (a widely used method in survival prediction), APM-L0 (a

L0-based survival prediction method) [15], SCAD-penalized regression [25], and greedy for-

ward selection. All shrinkage-based methods selected similar predictors. In general, OSCAR

provided robust and accurate predictions based on the CV analyses, and did not perform sig-

nificantly worse than the other methods in any of the datasets. This is partly because the L0-

pseudonorm allows the model coefficients to vary freely from zero, unlike, for example, in

LASSO, which pushes the coefficients towards zero. LASSO, APM-L0, and SCAD utilize the

coordinate descent in optimization, which is more prone to local optima when compared to

the DBDC and LMBM algorithms. Despite the L0-approach, APM-L0 performed similarly to

LASSO, most likely because it incorporates both L1 and L2.

In the TYKS cohort, the OSCAR method suggests PSA, HB, ALP, and age group as the

main predictors. Similar trend was also observed if the kit structure was included. PSA reflects

the disease severity, especially at disseminated state and in treatment-resistant disease [40].
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Thus, PSA has often been acknowledged as an important predictor for prostate cancer, and it

is being used in practice to determine and monitor the state or occurrence of prostate cancer.

The elevated prominence of PSA as a prognostic predictor in our hospital registry data may

thus be biased by data generation and reporting. A high level of ALP is associated with metas-

tases in advanced prostate cancer and it is also measured in the clinical practice to monitor the

spreading of cancer into the bones [41]. Metastases typically lead to decreased survival times

and, thus, an increased risk of death. Therefore predictors associated with metastases have an

intuitive explanation as to why they have prognostic power. HB is generally a good indicator

of a person’s health. Similarly to HB, age group is linked to the overall health of a person as

overall disease burden is typically higher when physical performance status is lower. Since we

predict overall survival, higher age leads to decreased survival time regardless of the cancer

related characteristics, which somewhat complicates its survival interpretation.

In the VENICE cohort, ALP prevailed as the most prominent predictor, and AST, CREAT,

NA, HB, and ALB followed as additional predictor candidates. As mentioned above, ALP is

associated with metastases and thus poor prognosis. AST tests for liver damage, and it has

been associated with multiple cancers including prostate, bladder, testicular and small cell

lung cancer [42–46]. CREAT is related to kidney malfunction, and NA metabolism also mainly

reflects kidney function. Taken together, these prognostic factors therefore reflect potential

organ failure or organ damage burden. As such, their use in prognostic models are highly justi-

fied and intuitive.

Albumin is a protein that maintains fluid balance and osmolality in bloodstream and it is

associated with malnutrition and problems in intake of nutrients in the gut [47]. Compro-

mised intake of nutrients may be caused by cancer, cancer-related decrease in daily perfor-

mance or cancer treatments, suggesting a potential link between ALB and cancer prognosis

[48, 49]. In addition, ALB is considered to reflect liver function and in metastasized, castra-

tion-resistant prostate cancer, and lowered levels of ALB is known to associate with increased

tumor burden [50, 51].

In the MAINSAIL cohort, HB and ALB were again identified as key prognostic features. In

addition, LDH was selected systematically in the BS analysis as a key predictor. LDH is an

enzyme participating in energy production in nearly all tissues. Damaged tissues release LDH,

which has been linked to cancer burden [48].

Similarly to the VENICE cohort, AST was among the top predictors in the MAINSAIL

cohort. In addition, BMI, MG, and WEIGHT had considerable prognostic power, of which

MG is a pivotal part of metabolism.

In the ASCENT cohort, similar features were selected consistently in the BS analysis: PSA

and ALP, along with NEU, CA, LDH, and HB. NEU are white blood cells that kill bacteria and

help in wound healing. They have also been associated with cancer, despite the previous belief

of neutrality against cancer [52, 53]. Especially advanced cancer accumulates NEU, which

therefore becomes a predictor of poor survival. Unlike in other two trial cohorts, CA was

selected among six top predictors in the ASCENT cohort. CA is a mineral especially involved

in bone metabolism. Since prostate cancer is prone to metastasize in bones, the CA balance

may be related to the cancer development. However, another causation could also be consid-

ered since high calcium intake has been associated with increased risk of advanced prostate

cancer [54, 55].

Interestingly, when the OSCAR method as well as the four benchmarking methods were

applied to a higher dimension recurrence prediction task in the three transcriptomics datasets,

the performance of the methods started to split into roughly two main categories. OSCAR and

Greedy FS formed a varying bundle of cardinality-based methods, in which addition of new

features shifted the model performance metric rather considerably. In contrast, LASSO, APM-
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L0 (despite embedding the L0-pseudonorm), and SCAD penalized models performed almost

identically (Fig 9 panels a-c), indicating that their regularization mechanics perform very simi-

larly in real-data applications, despite some differences in the underlying theoretical formula-

tion. In these application examples, this illustrates that while a variety of regularized regression

methods exist, some are variants of existing methods, and fundamentally differing approaches

are yet to be explored.

The high-dimensional data provided by TCGA [21] and Taylor et al. [22] likely present a

more indolent disease phenotype than those of CRPC in the real-world hospital cohort

(TYKS) or the three mCRPC clinical cohorts (ASCENT, MAINSAIL, and VENICE). Thus,

while we applied here survival modelling for right-censored biochemical recurrence, it is likely

that the underlying characteristics for the studies for prostate cancer greatly differ in their

molecular processes. This should be noted when interpreting results presented here-in. Fur-

ther, data was modeled on a very different level (gene expression vs. clinical variables), and ide-

ally, multiple levels of ‘omics would be incorporated together with key clinical characteristics.

As such, comprehensive modelling of prostate cancer would leverage such multi-modal data,

which imposes its own unique challenges, and remains out of the scope of this methodology-

orientated work.

As a future work, it would be interesting to compare OSCAR with more sophisticated

Sequential Feature Selection (SFA) algorithms that incorporate forward selection, backward

elimination, and their adaptive mixture techniques [56]. It is possible that OSCAR has some

beneficial properties due to the inherent nature of the L0-pseudonorm, while multiple variants

of SFA methods have long existed in the feature selection domain. This presents a venue for

future research to explore additional properties of the under-studied L0-pseudonorm in practi-

cal applications. While it may be intuitive to first compare the L0-approach to L1- and L2-norm

based regularization, more similar counterparts may be found from such SFA algorithms,

where norms are not used in the method formulation.

The novelty in practical implementations of the L0-pseudonorm is highly interesting in the

light of our recent application of the OSCAR methodology in the DREAM Anti-PD1 Predic-

tion Challenge. In this crowd-sourced data analysis challenge, the Cox model produced by

OSCAR was a top-performer for predicting nivolumab efficacy in non-small cell lung cancer

among competing models submitted by over 50 data modelling teams across the world, repre-

senting with a diverse set of modelling algorithms ranging from tree-based regression, regular-

ized regression (L1 and L2), to deep learning algorithms. This highlights that there is untapped

potential in methods, such as the L0-regularized regression, in various applications where it

can outperform competing traditional methods. [57]

Taken together, interesting potential improvements remain, despite the already promising

validation results with comparable accuracy and reasonable model features. Due to the inclu-

sion of the L0-pseudonorm, the optimization problem becomes NP-hard and computationally

heavy as illustrated in the high-dimensional transcriptomics data (Fig D in S1 Text for TCGA

and Fig E in S1 Text for Taylor et al. Cox model computational burden simulations) and in Fig

9b. Thus, further development of the optimization process, such as using different optimiza-

tion algorithms or refining the selection of starting points, could potentially improve the run-

ning time and the model solutions. Another alternative in the future work is to design a

completely new and computationally lean optimizer tailored for the nonconvex and non-

smooth model resulting from the usage of the L0-pseudonorm and complement it with suitable

heuristics. Another potential development is to reformulate the objective function to take into

account also the user-provided costs of features and kits. However, this will lead to an even

more difficult discrete optimization problem.
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Conclusion

We have developed, tested and made available a novel approach to the L0-regularized regres-

sion, which has previously gone under-represented within the domain of regularized regres-

sion, partially due to challenges related to solving the discrete optimization task. Our

approach is exact to L0-penalty as it does not utilize any approximation of the L0-pseudo-

norm, but instead uses its exact DC (Difference of two Convex functions) reformulation,

bringing the optimization task to the continuous domain. In addition, we have incorporated

the kit structure into the method, enabling the selection of grouped features as they are mea-

sured in the clinical practice. Since the measurements may have a potentially high costs, the

model sparsity allows the selection of the most prognostic features to avoid excessive costs by

addition of redundant predictors. The costs were investigated along with model accuracy.

This gave us an approximation of the Pareto-front based on the minimal cost and maximal

accuracy, since the underlying problem can be seen as a multi-objective optimization prob-

lem with two objectives: accuracy and cost. The multi-objective optimization could be

regarded as a new way of providing models that are highly relevant to real-world applica-

tions, rather than merely optimal according statistical metrics. This way the regularized

methodology can also leverage domain-expert knowledge in choosing the final model for

real-world applications. Unfortunately, since the transcriptomics data are not collected on a

cost-per-gene basis, our Pareto-front approach was not directly applicable to these data.

However, simple count of features (i.e. genes in the model) could potentially have applica-

tions in designing commercially effective targeted panels using, for example, PCR-based

approaches.

The OSCAR method demonstrated efficient and robust performance in the context of

metastatic castration resistant prostate cancer in real-world hospital registry data, as well as

in three clinical trial data cohorts, and three publicly available high-dimensional transcrip-

tomics data capturing biochemical recurrence. Our results brought insights into the best

markers, which to some extent differ between the real-world registry data and the clinical

trial data, possibly due to differences in cohort patient characteristics, missingness patterns,

or data reporting practices. Furthermore, exploration of the transcriptomics data revealed

that the existing shrinkage-based methods are prone to providing similar solutions, despite

some incorporating L0-pseudonorm like characteristics. Thus, we observed that the L0-

pseudonorm may present similar properties as sequential feature selection algorithms

rather than the shrinkage-based methods such as LASSO (L1-norm) or Ridge Regression

(L2-norm). We benchmarked our methodology against highly popular regularization meth-

ods, readily available for R users, such as LASSO, and demonstrated comparable or

improved performance of our L0-approach. The OSCAR methodology has been imple-

mented and distributed as a user-friendly R-package, accompanied by a wide range of use-

ful helper functions and a set of efficient Fortran optimizers called from within the R-

package. The OSCAR method is easily accessible through the Central R Archive Network

(CRAN).
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data.
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