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Abstract 

Bac kgr ound: Single-cell RN A sequencing (scRN A-seq) pr ovides high-r esolution transcriptome data to understand the heterogeneity 
of cell populations at the single-cell lev el. The anal ysis of scRNA-seq data r equir es the utilization of n umer ous computational tools. 
However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep 

learning curves of existing pipelines. 

Results: We ha ve de veloped cellsnake, a comprehensive , reproducible , and accessible single-cell data analysis workflow, to overcome 
these pr ob lems. Cellsnake offers adv anced featur es for standar d users and facilitates do wnstr eam anal yses in both R and Python 

environments. It is also designed for easy inte gr ation into existing workflo ws, allo wing for rapid analyses of multiple samples. 

Conclusion: As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effecti v e and 

user-friendly option for resear c hers. By using cellsnake , resear c hers can streamline the analysis of scRNA-seq data and gain insights 
into the complex biology of single cells. 

Ke yw or ds: scRN A, RN A-seq, w orkflow, microbiome , single-cell, snakemake , Seur at 
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Bac kgr ound 

Single-cell RN A sequencing (scRN A-seq) is a method used to study 
gene expression at the single-cell level. This stands in contrast 
to bulk RNA sequencing, whic h pr ovides information only on the 
av er a ge tr anscript expr ession within a population of cells. With 

r ecent tec hnological adv ancements and decr easing sequencing 
costs, scRNA-seq has become incr easingl y accessible, enabling re- 
searchers to identify novel cell types, cell states, and cellular in- 
teractions [ 1–4 ]. 

A standar d scRN A-seq bioinformatics w orkflo w typically in- 
volv es se v er al steps, including data filtering, normalization, scal- 
ing, dimensionality reduction, clustering, visualization, differen- 
tial expression analysis, functional analysis, and annotation [ 4 , 5 ].
Various analysis w orkflo ws for different platforms (i.e., 10X Ge- 
nomics, Drop-seq, inDrops, SMART-seq2, and Fluidigm C1) have 
been de v eloped to pr ocess, anal yze, and holisticall y visualize 
scRNA-seq data [ 2 , 6–8 ]. Popular workflows like Seurat [ 9 ], Sin- 
gleCellExperiment (of Bioconductor) [ 7 ], and Scanpy [ 6 ] have ex- 
tensiv e featur es for scRNA anal ysis . T he analysis of scRNA-seq 

data poses se v er al c hallenges, including the high-dimensional 
data structur e, tec hnical issues (e .g., dead cells , doublets , and low 

unique molecular identifier [UMI] counts), batch effects, low ex- 
pr ession le v els, and the pr esence of complex cell subsets with 

multiple cell states [ 5 ]. To address these, a variety of supplemen- 
tary bioinformatics tools have been developed. While some of 
these can be integrated into existing w orkflo ws, man y r equir e sub- 
stantial expertise and bioinformatics knowledge. 
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Another challenge is working with multiple scRNA-seq 

atasets. Compr ehensiv e documentation for the analysis of a sin-
le sample using r ecommended par ameters is usually provided.
o w e v er, it is hard for a regular user to k ee p track of all the de-
isions taken during anal yses, especiall y if mor e than one sam-
le is a vailable . T his also creates challenges if one wants to see
he effect of basic par ameter c hanges and document the results
or further hypothesis testing. It is also challenging to harness
he po w er of high-performance computing (HPC) systems when
eeded. Ther e ar e some efforts to make batc h anal ysis, suc h as
he cloud-based system SingleCAnalyzer [ 10 ], the R package sc-
yper [ 11 ], the web application Cellenics (open-source software of
iomage), and Single-Cell Omics workbench on Galaxy [ 12 ]. Cell-
 anger fr om 10X Genomics also pr ovides dataset clustering and
asic differential expression analysis [ 13 ] for initial quality con-
rol (QC). Ho w ever, all these w orkflo ws have limited functionality
r were designed for a specific need. Online (or cluster-based) so-
utions might also not be suitable due to data privacy rules for
ensitive data or do not provide compatible files (e.g., R data files)
or downstream analysis on another platform. 

Her e, we intr oduce cellsnake, a platform-independent 
ommand-line application and pipeline for scRNA-seq anal- 
sis . Cellsnake pro vides a reproducible , flexible , and accessible
olution for most scRNA-seq data anal ysis a pplications. One
f the k e y features of cellsnak e is its ability to utilize different
cRNA-seq algorithms to simplify tasks such as automatic mi- 
ochondrial (MT) gene trimming, selection of optimal clustering 
 Open Access article distributed under the terms of the Cr eati v e Commons 
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Table 1: An ov ervie w of the tools and algorithms used in the cellsnake w orkflo w, as w ell as an explanation of what they do and which 

v ersions ar e used 

Tool Version Reference Notes 

Seurat 4 .2.0 [ 8 ] Main analysis platform 

SeuratDisk 0 .9020 [ 27 ] Format converter 
Clustree 0 .5.0 [ 15 ] Clustering interrogation 
MultiK 1 .0 [ 19 ] Optimal cluster detection 
miQC 1 .6.0 [ 18 ] Auto MT gene trimming 
DoubletFinder 2 .0.3 [ 20 ] Doublet detection 
SingleR 2 .0.0 [ 28 ] Cell type annotation 
CellTypist 1 .2.0 [ 16 ] Cell type annotation 
Kraken2 2 .1.2 [ 29 ] Metagenomics 
CellChat 1 .6.1 [ 30 ] Ligand–r eceptor anal ysis and miscellaneous 
clusterProfiler 4 .4.4 [ 31 ] KEGG, GO, and module enrichment 
Monocle3 1 .0.0 [ 32 ] Cell trajectory and velocity 

r  

r  

p  

t  

a  

e  

e  

f  

p  

m

M
C
T  

p  

m  

u  

m  

T  

a  

f  

s  

fl  

d  

T  

b  

i  

i  

y

P
C  

r  

c  

d  

a  

t  

g  

c  

u  

d  

g  

a  

A  

c  

u  

s  

s  

T  

t

C
T  

m  

d  

w  

i  

d  

e  

h  

C

R
C
w
C  

c  

w  

a  

i  

S  

g  

S  

c  

a  

d  

t  

U  

r  

e
 

c  

a  

a  

e  

d  

t  

d  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad091/7330891 by guest on 15 January 2024
esolution, doublet filtering, visualization of marker genes, en-
ic hment anal ysis , and pathwa y analysis . Cellsnake also allows
arallelization and readily utilizes HPC platforms. In addition to
hat, cellsnake provides metagenome analysis if unmapped reads
r e av ailable. Another adv anta ge of cellsnake is its ability to gen-
rate intermediate files (such as R data files) that can be stored,
xtr acted, shar ed, or used later for more advanced analyses or
or r epr oducibility pur poses . With cellsnake , r esearc hers can
erform scRNA-seq data analysis in a reproducible and efficient
anner, without requiring extensive bioinformatics expertise. 

ethods 

ellsnake w orkflo w and tools 

he cellsnake ( RRID:SCR _ 023666 and biotoolsID: cellsnake) wr a p-
er was written in Python, while the main w orkflo w w as imple-
ented in Snak emak e [ 14 ]. To find optimal cluster resolution, we

tilized clustr ee [ 15 ]. Seur at anal ysis pipeline [ 8 ] provides all the
ain functions r equir ed for processing scRNA data in cellsnake.

hese functions are wrapped into different R scripts, which can
lso be used as standalone scripts by advanced users. Cellsnake
acilitates automatic format conversion when r equir ed. For in-
tance, CellTypist [ 16 ] r equir es AnnData format, and the work-
ow converts the files back to the required file format in R. By
efault, cellsnake stores files into 2 folders: analyses and results.
he analyses folder contains metadata and R data files, which can
e accessed by the user. Seurat is used for integration, and after

ntegration, the w orkflo w runs on the integrated dataset automat-
cally, and the output files are stored in separate folders (i.e., anal-
ses_integrated and results_integrated). 

arameter selection and autodetection 

ellsnake pr ovides Seur at’s default v alues for fundamental pa-
ameters like min.cells (i.e., features detected at least this many
ells) or min.features (i.e., cells at least this many features). In ad-
ition, nondefault parameters can be provided using a YAML file,
nd a YAML file template can be printed and edited. Cellsnake de-
ermines which principal component exhibits cum ulativ e percent
reater than 90% and percent variation associated with the prin-
ipal component as less than 5 [ 17 ]. To filter MT genes, cellsnake
ses the miQC tool [ 18 ]. If that fails, it uses the median absolute
eviation of the MT gene expression as an alternative. MultiK al-
orithm [ 19 ] is used to determine optimal resolution detection,
nd doublet filtering is done using the DoubletFinder tool [ 20 ].
utodetection of parameters is not offered as a default option in
ellsnake due to its computational expense and potential for fail-
r e with lar ge sample sizes. Cellsnake utilizes a special dir ectory
tructure for MT percentage and resolution, and the results are
av ed in differ ent folders named after the selected par ameters.
hese results are not overwritten and can be reviewed later, or
he parameters can be modified for further investigation. 

ellsnake testing and benchmarks 

o test cellsnake, we obtained 4 samples containing exclusiv el y
acr opha ges fr om gut m ucosal tissue [ 21 ], along with 2 fetal brain

atasets [ 22 ] and 6 fetal liver datasets [ 23 ]. The fetal brain datasets
er e pr ovided in matrix file format, while the other datasets were

n FASTQ format and processed by Cellranger (v.7.0.0) with the
efault settings and the default databases. For a compr ehensiv e
 v aluation, we compar ed the featur es of cellsnake with 2 other
olistic tools, Cellenics and Single Cell Omics workbench [ 12 ]. The
ellenics community instance [ 24 ] is hosted by Biomage [ 25 ]. 

esults 

ellsnake can be run either as a Snakemake 

 orkflo w or as a standalone tool 
ellsnake utilizes a variety of tools and algorithms (Table 1 ) and
onsists of 2 primary components: the main w orkflo w and the
r a pper. The cellsnake wr a pper assists with the main w orkflo w
nd provides an easy-to-use option for users . T he w orkflo w (Fig. 1 )
s primarily designed using the Seurat pipeline (v4.2) and the
nak emak e w orkflo w manager. As needed, the w orkflo w inte-
r ates v arious algorithms to enhance the basic functionality of
eurat. For instance, when 1 droplet encapsulates more than 1
ell, it appears as a single cell and can affect the downstream
nal ysis. Addr essing this issue in the w orkflo w is crucial [ 26 ]. A
istinctiv e featur e of cellsnake is its default doublet filtering op-
ion, a functionality not included in the standard Seurat pipeline.
sers can also adjust other parameters by modifying the configu-
 ation files, whic h ar e formatted in YAML. This flexibility empow-
rs precise analysis of scRNA-seq data. 

Cellsnake covers most of the methods offered by Seurat, in-
luding integration. The w orkflo w is automatically repeated for
n integrated dataset once the analyses have been concluded for
ll individual samples available in the study (i.e., QC, filtering
tc.). Anal ysis outcomes suc h as dimension r eduction, clustering,
iffer ential expr ession anal ysis, functional enric hment, and cell
ype annotations are reported for the integrated sample. Since the
atasets individually passed the initial QC and are trimmed for

https://scicrunch.org/resolver/RRID:SCR_023666
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Figure 1: Ov ervie w of the scRNA-seq pipeline in cellsnak e. (1) Cellsnak e can acce pt the output files fr om Cellr anger in addition to r aw expr ession 
matrix files if provided in an appropriate format. (2) QC is performed by filtering out MT genes , doublets , and cells with a low gene number as 
examples. Clustree is then used to find the optimal resolution for the dimensionality reduction. (3) Afterw ar d, the dataset is normalized and scaled 
before the principal component analysis and visualized by UMAP or t-distributed stochastic neighbor embedding. (4) To find the differences in gene 
expr ession le v els within the dataset, differ ential gene expr ession anal ysis is performed with se v er al outputs suc h as heatma ps , dot plots , and marker 
plots. (5) To get an e v en better insight into the dataset, the pipeline contains se v er al functional analyses such as GO enrichment, KEGG pathway, gene 
set enrichment, and CellChat. Metagenome analysis is also available if the input file from step 1 is the direct output from Cellranger. This is done by 
using the metagenomics tool Kraken2. 
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Table 2: Cellsnake commands and a summary of their outputs 

Mode ∗ Outputs How to run? 

cellsnake minimal Dimension reduction plots, QC metrics, technical 
plots (MT, counts, gene, feature), clustree plot 

$ cellsnake minimal data 

OR 

$ snakemake -j 5 --config option = minimal 

cellsnake standard All minimal outputs and CellTypist, singleR 
annotations, enric hment anal yses tables, 
trajectory plots, summarized marker plots 

$ cellsnake standard data 

OR 

$ snakemake -j 5 --config option = standard 

cellsnak e ad vanced All standard outputs and CellChat results, 
detailed top markers per cluster plots 

$ cellsnake advanced data 

OR 

$ snakemake -j 5 --config option = advanced 

cellsnake integrate A single integrated object for analysis $ cellsnake integrate data 

OR 

$ snakemake -j 5 --config option = integrate 

∗Data folder may contain multiple samples and this will trigger a batch analysis. 

a  

a  

t  

e  

t  

p  

m  

m  

t  

o
 

r  

fi  

d  

i  

T  

t  

s  

i  

a  

a  

a  

a

R
c
W  

a  

(  

2  

1  

m  

o  

o  

c  

w  

u  

(

a  

(  

a  

s  

s  

d  

w  

d  

i  

s  

i  

s  

i  

g

C
s
A  

m  

C  

c  

o  

m  

a  

i
 

m  

l  

o  

t  

A  

c  

t

D
I  

a  

g  

s  

t  

b  

a  

t  

s  

a  

t
 

d  

a  

s  

D
ow

nloaded from
 https://academ

ic.oup.com
/gigascience/article/doi/10.1093/gigascience/giad091/7330891 by guest on 15 January 2024
rtifacts, these steps are skipped by the workflow. Cellsnake can
lso gener ate publication-r ead y plots for both indi vidual and in-
egrated samples. It also automatically produces plots for mark-
rs (i.e., genes), which can be investigated to better understand
he predicted clusters (i.e., cell subsets). Ad ditionally, cellsnak e
rovides the option to produce supplementary plots, featuring di-
ension reduction and expression images for selected genes or
arkers . T his functionality adds a v aluable le v el of customiza-

ion to the analysis, enabling the user to explore targeted genes
r markers of interest in greater detail. 

The input of cellsnake can be either Cellranger output directo-
ies for batc h anal ysis or single-expression matrix files (e.g., h5
les) for individual sample processing. Cellsnake automatically
etects the input format and runs accordingly with minimal user

ntervention and with minimal lines of input commands (Table 2 ).
he Cellsnake w orkflo w offers 3 primary modes with distinct op-
ions: minimal, standard, and advanced. The minimal mode is
uitable for fast anal ysis, par ameter selection, and downstream
ntegr ation. Fundamental par ameters, suc h as filtering thr esholds
nd clustering resolution, can be determined via a minimal run
t an early stage, which will reduce computational cost. Standard
nd advanced w orkflo w modes contain additional features and
lgorithms (Table 2 ). 

eanalyses of publicly available datasets using 

ellsnake 

e showcase some features of the pipeline using publicly avail-
ble datasets . T he first dataset is fr om the fetal br ain containing
only) count tables from 2 samples (Figs. 2 and 3 ). We processed
 samples using the default settings (e.g., MT filtering threshold
0% and resolution parameter 0.8). Minimal mode only takes 4
inutes on a laptop for 2 samples of the fetal brain dataset. An-

ther 5 minutes is enough for both integration and processing
f the integrated sample with minimal mode . T he user can de-
ide on the parameters early on (Fig. 2 ), and the standard mode
ill finish in 50 minutes without parallel processing. Cellsnake
tilizes different tools and provides outputs for all as figures
 Supplementary Figs. 1 –6 ) or as tables. 

The second dataset is from the fetal liver containing 3 CD45 + 

nd 3 CD45 − FACS-sorted samples from 3 different donors
Fig. 4 A). T his time , we selected automatic filtering of MT gene-
bundant cells rather than a hard cutoff when pr epr ocessing the
amples. In total, 29,045 cells passed the filtering threshold. The
tandar d w orkflo w took 3 hours with onl y 2 CPU cor es on a stan-
ard la ptop, whic h is enough for most use cases . T he samples
ere later integrated, and the optimal number of clusters was pre-
icted automatically. The separation of 2 groups (Fig. 4 A, B) in the

ntegrated dataset is similar to what was reported in the original
tudy [ 23 ], which indicates that cellsnake is capable of r epr oduc-
ng k e y findings from published studies . T he differ ential expr es-
ion analysis also reveals that the AHSP gene is highly expressed
n CD45 + samples, which is in line with the known function of this
ene in erythroid cells. 

ellsnake can analyze metagenomics from 

ingle-cell data 

nother unique feature of Cellsnake is its ability to perform
eta genomics anal ysis using Kr aken2. If a database is pr ovided,

ellsnake will automatically run Kraken2. After collapsing read
ounts to a taxonomic le v el based on user input, such as genus
r phylum, results are re ported accordingly. Cellsnak e provides
eta genomic r esults in the form of dimension reduction plots

nd barplots, and users can load metadata into R for personal-
zed downstream analysis. 

This feature was tested on 4 samples from mucosal
acr opha ges, with automatic trimming of MT genes and se-

ection of resolution (Fig. 5 ). Cellsnake reported results based
n the optimal number of clusters, and nonhuman material de-
ected by Kraken2 is visualized on integrated Uniform Manifold
ppr oximation and Pr ojection (UMAP) plots (Fig. 5 A, B). Users
an also obtain a detailed list of results based on the selected
axonomic le v el in an Excel file. 

iscussion 

n recent years, there has been an increasing interest in scRNA-seq
s it is a po w erful technique for understanding the cellular hetero-
eneity of tissues and organs. Ho w ever, the scRN A-seq data analy-
is can be complex and time-consuming. Cellsnake was designed
o simplify this process, enabling researchers without extensive
ioinformatics experience to easily analyze their data. It includes
 range of automated pr epr ocessing and downstr eam anal ysis
ools and also provides advanced features for additional analy-
is. Its user-friendly interface and reproducibility features make it
 valuable tool for researchers seeking to understand transcrip-
ional heterogeneity in tissues at single-cell resolution. 

Cellsnake has se v er al critical functionalities for scRNA-seq
ata analysis. It includes preprocessing steps, such as QC, filtering,
nd parameter auto-selection, and also has downstream analy-
is tools for identifying differ entiall y expr essed genes, perform-

https://academic.oup.com/gigascience/article-lookup/doi/10.1093/gigascience/giad091#supplementary-data
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Figure 2: Cellsnake quic kl y gener ates standard output plots that include tec hnical information. (A) T he user can in vestigate the fundamental 
statistics like MT gene percentage, number of genes detected, and reads mapped per cell information. Here the results shown are based on one of the 
fetal br ain samples. (B) Clustr ee anal ysis is not part of the Seurat pipeline, but cellsnake offers this by default. This plot can be used to find the optimal 
number of clusters. (C) The selected resolution resulted in 23 clusters and 6,298 cells passed the filtering thresholds (after filtering doublets and 
low-quality cells). (D) t-distributed stochastic neighbor embedding (tSNE) plot shows the clusters. Cellsnake prints only the top clusters in the legend 
to pr e v ent ov er plotting. The user will get UMAP, principal component analysis, and tSNE plots by default. 
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ing clustering, visualization, and exploring cell type–specific gene 
expression patterns . T hese features are crucial for characteriz- 
ing cell subpopulations and identifying specific genes and path- 
ways associated with them. Cellsnake also includes advanced fea- 
tur es suc h as supporting the integration of multiple scRNA-seq 

datasets to identify shared and unique cell types across differ- 
ent tissues or conditions. Cellsnake also ensures reproducibility by 
r eating separ ate folders when r equir ed, r estricting the v ersions
f the tools in the en vironment, sa ving config files with the cell-
nake v ersion, explicitl y sharing differ ent ima ges for eac h v ersion
n the Docker repository, and storing results for downstream anal-
sis by default. In comparison to other tools (Table 3 ), cellsnake
as se v er al adv anta ges, including a compr ehensiv e r ange of tool
tilization, unique features, the ability to run locally or on HPC
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Figure 3: Cellsnake processes integrated samples similar to the individual samples and generates the same plots. (A) The UMAP plots were generated 
for 2 samples from the fetal brain dataset, seen in the first and second panels. (B) The UMAP plot shows clusters for the integrated samples. (C) The 
UMAP plot shows cluster annotation based on the singleR pac ka ge “BlueprintEncodeData” model pr edictions . T he results sho w ed the cells w er e mostl y 
predicted as neurons, which are consistent with the dataset, but there are also some mispredictions . T he detailed annotations can be accessed as 
Excel tables and heatmaps. 
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latforms, and seamless integration with other w orkflo ws using
ock er or Bioconda. Ad ditionally, cellsnak e also provides R data
erialization (RDS) files to enhance data sharing and accessibility.

Recent studies have shown that the heterogeneity in mi-
robiota and the present cell types along with their functions
re codependent [ 33 ]. Cell-associated microbial reads can be
dentified in scRNA-seq data [ 34 ]. Cellsnake uses Kraken2 [ 29 ] to
nalyze these data, and cellsnake provides the ability to fine-tune
ar ameters to incr ease sensitivity and/or specificity and to use
ersonal databases . T his can help r esearc hers identify potential
icrobial associations with host cells and tissues. Some of these
icrobial hits can originate from environmental contamination

r can be false positives . T hese outcomes might not necessarily
 eflect r eal biological associations; ne v ertheless, the r esults may
r ovide v aluable insights for QC suc h as r ecognizing potential
ontamination sources. 

Ther e ar e some limitations of the w orkflo w that need to be ad-
r essed. First, cellsnake r equir es disk space to k ee p tr ac k of the
ntire pipeline, including metadata files that are required for ad-
 anced downstr eam anal ysis. Although the users can delete large
les , they ma y want to k ee p metadata files for re producing the
esults at a later time. Second, the fully featured w orkflo w relies
n Cellranger outputs from the 10X Genomics platform, which
a y not alwa ys be a vailable . Even though cellsnake was designed

nd tested utilizing this platform, it can still use the count matrix
les from other platforms, such as the fetal brain dataset. Third,
hile cellsnake has moderate performance in terms of memory
nd speed on standard workstations for an av er a ge number of
ells, the auto-detection of par ameters (e.g., r esolution par ame-
er) can be slow when processing samples with a large number
f cells. To impr ov e performance, a parallel version of the Mul-
iK tool was used, which is not officially supported by the au-
hors of MultiK (see Methods). Finally, the underlying tools uti-
ized by cellsnake may involve various parameters . T he funda-

ental parameters can be adjusted by the user and supplied
hrough the configuration files, while the rest are set to default
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Figur e 4: T he fetal liver dataset consists of 6 FACS-sorted samples , integrated by cellsnake . (A) Cellsnake displa ys the integrated UMAP plot and labels 
and (B) annotates the clusters. (C) The user can provide the clinical information, which shows differentially expressed genes among 2 groups. (D) It is 
also possible to visualize selected marker genes. For example, the AHSP gene is upregulated in CD45 + samples compared to CD45 − samples. 
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values . T his approach was preferred to make the w orkflo w more 
user-friendly. 

In conclusion, cellsnake is a convenient and adaptable tool,
empo w ering resear chers to analyze scRNA-seq data in a r epr o- 
ducible and customizable manner. With its advanced features and 

streamlined w orkflo w, cellsnake stands as a valuable bioinformat- 
ics asset for investigating cellular heterogeneity and gene expres- 
sion patterns at single-cell resolution within tissues. 

Futur e Dir ections 

Accurate bioinformatics software requires long-term develop- 
ment and commitment to the project [ 35 ]. It is also a major prob- 
lem in the field that many projects are abandoned after pub- 
lication, becoming unusable and outdated. For instance, cere- 
broApp [ 36 ], a component of cellsnake’s development version, was 
dropped as it is no longer in active development. Cellsnake is an 

open-source tool that is activ el y de v eloped, allowing an yone to 
open pull requests and report issues on its GitHub page. To k ee p 

the softwar e bug-fr ee and str eamlined, futur e de v elopments of 
ellsnake will involve incorporating new tools, such as the latest
eur at v ersion, and r emoving obsolete tools fr om the main work-
ow. The users can access the pr e vious r eleases for r epr oducibil-

ty. Although cellsnake is mainly designed for the 10X Genomics
ingle-cell platform, we plan to expand its compatibility with 

ther platforms and offer additional support for various input for-
ats. Our aim is for cellsnake to become an essential toolkit for

ast, accurate, tunable, and compr ehensiv e scRNA data anal ysis. 

vailability and Requirements 

� Project name: cellsnake 
� Pr oject homepa ge: https:// github.com/ sinanugur/ cellsnake 

[ 37 ] 
� Documentation: https://cellsnake .readthedocs .io/en/latest/

[ 38 ] 
� RRID:SCR _ 023666 
� biotoolsID: cellsnake 
� Operating system: Platform independent 
� Pr ogr amming langua ge: Python, R 

https://github.com/sinanugur/cellsnake
https://cellsnake.readthedocs.io/en/latest/
https://scicrunch.org/resolver/RRID:SCR_023666
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Figure 5: Cellsnake’s metagenomics feature was tested on mucosal macrophages. (A) Four samples were integrated. The clusters were predicted and 
annotated using the CellTypist immune model. (B) The cells annotated as “plasma cells” contain the highest number of bacterial reads. (C) The foreign 
r eads wer e mostl y associated with Streptom yces . (D) Cellsnake r eports the top 10 most pr e v alent taxonomic gr oups by default. The r est colla psed and 
wer e r eported as “others .” T he user can select the desir ed taxonomic le v el (in this case, it was genus). All r esults ar e also sav ed as tables, whic h include 
reads detected per cluster and annotation. 
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a ble 3: Standar d featur es of cellsnake compar ed to av ailable holistic 

Cellsnake 

latform Snak emak e/Python wr a pper/Doc ke
nput file type Count tables (10X or others), 

R Data File 
oublet filtering Yes 
T gene filtering Yes (auto) 

ind clusters Yes (auto) 
lustree plot Yes 
iffer ential expr ession anal ysis Yes 
nric hment anal ysis KEGG and GO 

ell type annotation Yes 
etailed gene expression plots Yes 
eta genome anal ysis Yes 

r ajectory anal ysis Yes 
ntegration Yes (Seurat only) 
utput and downstream analysis Plot files, expression tables, Seura

RDS files and Excel files, etc. 
tools/w orkflo ws 

Cellenics 
Single Cell Omics 

Workbench 

r Web based Web based (Galaxy) 
Count tables (10X) Count tables (10X), FASTQ 

and others 
Yes No 

Yes (auto) Yes 
Yes Yes 
No No 
Yes Yes 
No No 
Yes No 
No No 
No No 
Yes Yes 

Yes (various algorithms) Yes 
t Plots and expression 

tables 
Miscellaneous 

guest on 15 January 2024
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� Other r equir ements: Python 3.8 or higher, R 4.2.2 
� License: MIT 

� PyPi: https:// pypi.org/ project/ cellsnake [ 39 ] 
� Bioconda: https:// anaconda.org/ bioconda/ cellsnake [ 40 ] 
� Doc ker: https://hub.doc ker.com/ r/ sinanugur/ cellsnake [ 41 ] 
� Snak emak e w orkflo w: https:// github.com/ sinanugur/ scrna- 

w orkflo w [ 42 ] 

Additional Files 

Supplementary Fig. S1. Summarized marker plots. 
Supplementary Fig. S2. Heatmap plots showing clusters/markers. 
Supplementary Fig. S3. SingleR annotation prediction plots. 
Supplementary Fig. S4. Celltypist label transfer prediction plots. 
Supplementary Fig. S5. CellChat prediction plots. 
Supplementary Fig. S6. Monocle3 trajectory analysis. 
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GO: Gene Ontology; HPC: high-performance computing; KEGG: 
Ky oto Enc yclopedia of Genes and Genomes; MT: mitochondrial; 
QC: quality control; RDS: R data serialization; scRNA-seq: single- 
cell RNA sequencing; tSNE: t-distributed stochastic neighbor em- 
bedding; UMAP: Uniform Manifold Approximation and Projection; 
UMI: unique molecular identifier. 
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