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Abstract

Background: Single-cell RNA sequencing (scRNA-seq) provides high-resolution transcriptome data to understand the heterogeneity
of cell populations at the single-cell level. The analysis of scRNA-seq data requires the utilization of numerous computational tools.
However, nonexpert users usually experience installation issues, a lack of critical functionality or batch analysis modes, and the steep
learning curves of existing pipelines.

Results: We have developed cellsnake, a comprehensive, reproducible, and accessible single-cell data analysis workflow, to overcome
these problems. Cellsnake offers advanced features for standard users and facilitates downstream analyses in both R and Python
environments. It is also designed for easy integration into existing workflows, allowing for rapid analyses of multiple samples.

Conclusion: As an open-source tool, cellsnake is accessible through Bioconda, PyPi, Docker, and GitHub, making it a cost-effective and
user-friendly option for researchers. By using cellsnake, researchers can streamline the analysis of scRNA-seq data and gain insights

into the complex biology of single cells.
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Background

Single-cell RNA sequencing (scRNA-seq) is a method used to study
gene expression at the single-cell level. This stands in contrast
to bulk RNA sequencing, which provides information only on the
average transcript expression within a population of cells. With
recent technological advancements and decreasing sequencing
costs, scRNA-seq has become increasingly accessible, enabling re-
searchers to identify novel cell types, cell states, and cellular in-
teractions [1-4].

A standard scRNA-seq bioinformatics workflow typically in-
volves several steps, including data filtering, normalization, scal-
ing, dimensionality reduction, clustering, visualization, differen-
tial expression analysis, functional analysis, and annotation [4, 5].
Various analysis workflows for different platforms (i.e., 10X Ge-
nomics, Drop-seq, inDrops, SMART-seq2, and Fluidigm C1) have
been developed to process, analyze, and holistically visualize
scRNA-seq data [2, 6-8]. Popular workflows like Seurat [9], Sin-
gleCellExperiment (of Bioconductor) [7], and Scanpy [6] have ex-
tensive features for scRNA analysis. The analysis of scRNA-seq
data poses several challenges, including the high-dimensional
data structure, technical issues (e.g., dead cells, doublets, and low
unique molecular identifier [UMI] counts), batch effects, low ex-
pression levels, and the presence of complex cell subsets with
multiple cell states [5]. To address these, a variety of supplemen-
tary bioinformatics tools have been developed. While some of
these can be integrated into existing workflows, many require sub-
stantial expertise and bioinformatics knowledge.

Another challenge is working with multiple scRNA-seq
datasets. Comprehensive documentation for the analysis of a sin-
gle sample using recommended parameters is usually provided.
However, it is hard for a regular user to keep track of all the de-
cisions taken during analyses, especially if more than one sam-
ple is available. This also creates challenges if one wants to see
the effect of basic parameter changes and document the results
for further hypothesis testing. It is also challenging to harness
the power of high-performance computing (HPC) systems when
needed. There are some efforts to make batch analysis, such as
the cloud-based system SingleCAnalyzer [10], the R package sc-
Typer [11], the web application Cellenics (open-source software of
Biomage), and Single-Cell Omics workbench on Galaxy [12]. Cell-
ranger from 10X Genomics also provides dataset clustering and
basic differential expression analysis [13] for initial quality con-
trol (QC). However, all these workflows have limited functionality
or were designed for a specific need. Online (or cluster-based) so-
lutions might also not be suitable due to data privacy rules for
sensitive data or do not provide compatible files (e.g., R data files)
for downstream analysis on another platform.

Here, we introduce cellsnake, a platform-independent
command-line application and pipeline for scRNA-seq anal-
ysis. Cellsnake provides a reproducible, flexible, and accessible
solution for most scRNA-seq data analysis applications. One
of the key features of cellsnake is its ability to utilize different
scRNA-seq algorithms to simplify tasks such as automatic mi-
tochondrial (MT) gene trimming, selection of optimal clustering
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Table 1: An overview of the tools and algorithms used in the cellsnake workflow, as well as an explanation of what they do and which

versions are used

Tool Version Reference Notes

Seurat 4.2.0 18] Main analysis platform
SeuratDisk 0.9020 [27] Format converter
Clustree 0.5.0 [15] Clustering interrogation
MultiK 1.0 [19] Optimal cluster detection
miQC 1.6.0 [18] Auto MT gene trimming
DoubletFinder 2.0.3 [20] Doublet detection

SingleR 2.0.0 [28] Cell type annotation
CellTypist 1.2.0 [16] Cell type annotation
Kraken2 2.1.2 [29] Metagenomics

CellChat 1.6.1 [30] Ligand-receptor analysis and miscellaneous
clusterProfiler 444 [31] KEGG, GO, and module enrichment
Monocle3 1.0.0 [32] Cell trajectory and velocity

resolution, doublet filtering, visualization of marker genes, en-
richment analysis, and pathway analysis. Cellsnake also allows
parallelization and readily utilizes HPC platforms. In addition to
that, cellsnake provides metagenome analysis if unmapped reads
are available. Another advantage of cellsnake is its ability to gen-
erate intermediate files (such as R data files) that can be stored,
extracted, shared, or used later for more advanced analyses or
for reproducibility purposes. With cellsnake, researchers can
perform scRNA-seq data analysis in a reproducible and efficient
manner, without requiring extensive bioinformatics expertise.

Methods

Cellsnake workflow and tools

The cellsnake (RRID:SCR_023666 and biotoolsID: cellsnake) wrap-
per was written in Python, while the main workflow was imple-
mented in Snakemake [14]. To find optimal cluster resolution, we
utilized clustree [15]. Seurat analysis pipeline [8] provides all the
main functions required for processing scRNA data in cellsnake.
These functions are wrapped into different R scripts, which can
also be used as standalone scripts by advanced users. Cellsnake
facilitates automatic format conversion when required. For in-
stance, CellTypist [16] requires AnnData format, and the work-
flow converts the files back to the required file format in R. By
default, cellsnake stores files into 2 folders: analyses and results.
The analyses folder contains metadata and R data files, which can
be accessed by the user. Seurat is used for integration, and after
integration, the workflow runs on the integrated dataset automat-
ically, and the output files are stored in separate folders (i.e., anal-
yses_integrated and results_integrated).

Parameter selection and autodetection

Cellsnake provides Seurat’s default values for fundamental pa-
rameters like min.cells (i.e., features detected at least this many
cells) or min.features (i.e., cells at least this many features). In ad-
dition, nondefault parameters can be provided using a YAML file,
and a YAML file template can be printed and edited. Cellsnake de-
termines which principal component exhibits cumulative percent
greater than 90% and percent variation associated with the prin-
cipal component as less than 5 [17]. To filter MT genes, cellsnake
uses the miQC tool [18]. If that fails, it uses the median absolute
deviation of the MT gene expression as an alternative. MultiK al-
gorithm [19] is used to determine optimal resolution detection,
and doublet filtering is done using the DoubletFinder tool [20].
Autodetection of parameters is not offered as a default option in

cellsnake due to its computational expense and potential for fail-
ure with large sample sizes. Cellsnake utilizes a special directory
structure for MT percentage and resolution, and the results are
saved in different folders named after the selected parameters.
These results are not overwritten and can be reviewed later, or
the parameters can be modified for further investigation.

Cellsnake testing and benchmarks

To test cellsnake, we obtained 4 samples containing exclusively
macrophages from gut mucosal tissue [21], along with 2 fetal brain
datasets [22] and 6 fetal liver datasets [23]. The fetal brain datasets
were provided in matrix file format, while the other datasets were
in FASTQ format and processed by Cellranger (v.7.0.0) with the
default settings and the default databases. For a comprehensive
evaluation, we compared the features of cellsnake with 2 other
holistic tools, Cellenics and Single Cell Omics workbench [12]. The
Cellenics community instance [24] is hosted by Biomage [25].

Results

Cellsnake can be run either as a Snakemake
workflow or as a standalone tool

Cellsnake utilizes a variety of tools and algorithms (Table 1) and
consists of 2 primary components: the main workflow and the
wrapper. The cellsnake wrapper assists with the main workflow
and provides an easy-to-use option for users. The workflow (Fig. 1)
is primarily designed using the Seurat pipeline (v4.2) and the
Snakemake workflow manager. As needed, the workflow inte-
grates various algorithms to enhance the basic functionality of
Seurat. For instance, when 1 droplet encapsulates more than 1
cell, it appears as a single cell and can affect the downstream
analysis. Addressing this issue in the workflow is crucial [26]. A
distinctive feature of cellsnake is its default doublet filtering op-
tion, a functionality not included in the standard Seurat pipeline.
Users can also adjust other parameters by modifying the configu-
ration files, which are formatted in YAML. This flexibility empow-
ers precise analysis of scRNA-seq data.

Cellsnake covers most of the methods offered by Seurat, in-
cluding integration. The workflow is automatically repeated for
an integrated dataset once the analyses have been concluded for
all individual samples available in the study (i.e., QC, filtering
etc.). Analysis outcomes such as dimension reduction, clustering,
differential expression analysis, functional enrichment, and cell
type annotations are reported for the integrated sample. Since the
datasets individually passed the initial QC and are trimmed for
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Figure 1: Overview of the scRNA-seq pipeline in cellsnake. (1) Cellsnake can accept the output files from Cellranger in addition to raw expression
matrix files if provided in an appropriate format. (2) QC is performed by filtering out MT genes, doublets, and cells with a low gene number as
examples. Clustree is then used to find the optimal resolution for the dimensionality reduction. (3) Afterward, the dataset is normalized and scaled
before the principal component analysis and visualized by UMAP or t-distributed stochastic neighbor embedding. (4) To find the differences in gene
expression levels within the dataset, differential gene expression analysis is performed with several outputs such as heatmaps, dot plots, and marker
plots. (5) To get an even better insight into the dataset, the pipeline contains several functional analyses such as GO enrichment, KEGG pathway, gene
set enrichment, and CellChat. Metagenome analysis is also available if the input file from step 1 is the direct output from Cellranger. This is done by
using the metagenomics tool Kraken?2.
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Table 2: Cellsnake commands and a summary of their outputs

Mode*

Outputs

How to run?

cellsnake minimal

cellsnake standard

cellsnake advanced

Dimension reduction plots, QC metrics, technical
plots (MT, counts, gene, feature), clustree plot

All minimal outputs and CellTypist, singleR
annotations, enrichment analyses tables,
trajectory plots, summarized marker plots
All standard outputs and CellChat results,

$ cellsnake minimal data
OR
$ snakemake -j 5 --config option=minimal
$ cellsnake standard data
OR
$ snakemake -j 5 --config option=standard
$ cellsnake advanced data

detailed top markers per cluster plots

cellsnake integrate A single integrated object for analysis

OR
$ snakemake -j 5 --config option=advanced
$ cellsnake integrate data
OR

$ snakemake -j 5 --config option=integrate

*Data folder may contain multiple samples and this will trigger a batch analysis.

artifacts, these steps are skipped by the workflow. Cellsnake can
also generate publication-ready plots for both individual and in-
tegrated samples. It also automatically produces plots for mark-
ers (i.e., genes), which can be investigated to better understand
the predicted clusters (i.e., cell subsets). Additionally, cellsnake
provides the option to produce supplementary plots, featuring di-
mension reduction and expression images for selected genes or
markers. This functionality adds a valuable level of customiza-
tion to the analysis, enabling the user to explore targeted genes
or markers of interest in greater detail.

The input of cellsnake can be either Cellranger output directo-
ries for batch analysis or single-expression matrix files (e.g., h5
files) for individual sample processing. Cellsnake automatically
detects the input format and runs accordingly with minimal user
intervention and with minimal lines of input commands (Table 2).
The Cellsnake workflow offers 3 primary modes with distinct op-
tions: minimal, standard, and advanced. The minimal mode is
suitable for fast analysis, parameter selection, and downstream
integration. Fundamental parameters, such as filtering thresholds
and clustering resolution, can be determined via a minimal run
at an early stage, which will reduce computational cost. Standard
and advanced workflow modes contain additional features and
algorithms (Table 2).

Reanalyses of publicly available datasets using
cellsnake

We showcase some features of the pipeline using publicly avail-
able datasets. The first dataset is from the fetal brain containing
(only) count tables from 2 samples (Figs. 2 and 3). We processed
2 samples using the default settings (e.g., MT filtering threshold
10% and resolution parameter 0.8). Minimal mode only takes 4
minutes on a laptop for 2 samples of the fetal brain dataset. An-
other 5 minutes is enough for both integration and processing
of the integrated sample with minimal mode. The user can de-
cide on the parameters early on (Fig. 2), and the standard mode
will finish in 50 minutes without parallel processing. Cellsnake
utilizes different tools and provides outputs for all as figures
(Supplementary Figs. 1-6) or as tables.

The second dataset is from the fetal liver containing 3 CD45%
and 3 CD45~ FACS-sorted samples from 3 different donors
(Fig. 4A). This time, we selected automatic filtering of MT gene-
abundant cells rather than a hard cutoff when preprocessing the
samples. In total, 29,045 cells passed the filtering threshold. The
standard workflow took 3 hours with only 2 CPU cores on a stan-
dard laptop, which is enough for most use cases. The samples

were later integrated, and the optimal number of clusters was pre-
dicted automatically. The separation of 2 groups (Fig. 4A, B) in the
integrated dataset is similar to what was reported in the original
study [23], which indicates that cellsnake is capable of reproduc-
ing key findings from published studies. The differential expres-
sion analysis also reveals that the AHSP gene is highly expressed
in CD45* samples, which is in line with the known function of this
gene in erythroid cells.

Cellsnake can analyze metagenomics from
single-cell data

Another unique feature of Cellsnake is its ability to perform
metagenomics analysis using Kraken?2. If a database is provided,
Cellsnake will automatically run Kraken2. After collapsing read
counts to a taxonomic level based on user input, such as genus
or phylum, results are reported accordingly. Cellsnake provides
metagenomic results in the form of dimension reduction plots
and barplots, and users can load metadata into R for personal-
ized downstream analysis.

This feature was tested on 4 samples from mucosal
macrophages, with automatic trimming of MT genes and se-
lection of resolution (Fig. 5). Cellsnake reported results based
on the optimal number of clusters, and nonhuman material de-
tected by Kraken? is visualized on integrated Uniform Manifold
Approximation and Projection (UMAP) plots (Fig. 5A, B). Users
can also obtain a detailed list of results based on the selected
taxonomic level in an Excel file.

Discussion

Inrecentyears, there has been an increasinginterestin scRNA-seq
asitisapowerful technique for understanding the cellular hetero-
geneity of tissues and organs. However, the scRNA-seq data analy-
sis can be complex and time-consuming. Cellsnake was designed
to simplify this process, enabling researchers without extensive
bioinformatics experience to easily analyze their data. It includes
a range of automated preprocessing and downstream analysis
tools and also provides advanced features for additional analy-
sis. Its user-friendly interface and reproducibility features make it
a valuable tool for researchers seeking to understand transcrip-
tional heterogeneity in tissues at single-cell resolution.
Cellsnake has several critical functionalities for scRNA-seq
data analysis. It includes preprocessing steps, such as QC, filtering,
and parameter auto-selection, and also has downstream analy-
sis tools for identifying differentially expressed genes, perform-
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Figure 2: Cellsnake quickly generates standard output plots that include technical information. (A) The user can investigate the fundamental
statistics like MT gene percentage, number of genes detected, and reads mapped per cell information. Here the results shown are based on one of the
fetal brain samples. (B) Clustree analysis is not part of the Seurat pipeline, but cellsnake offers this by default. This plot can be used to find the optimal
number of clusters. (C) The selected resolution resulted in 23 clusters and 6,298 cells passed the filtering thresholds (after filtering doublets and
low-quality cells). (D) t-distributed stochastic neighbor embedding (tSNE) plot shows the clusters. Cellsnake prints only the top clusters in the legend
to prevent overplotting. The user will get UMAP, principal component analysis, and tSNE plots by default.

ing clustering, visualization, and exploring cell type-specific gene
expression patterns. These features are crucial for characteriz-
ing cell subpopulations and identifying specific genes and path-
ways associated with them. Cellsnake also includes advanced fea-
tures such as supporting the integration of multiple scRNA-seq
datasets to identify shared and unique cell types across differ-
ent tissues or conditions. Cellsnake also ensures reproducibility by

creating separate folders when required, restricting the versions
of the tools in the environment, saving config files with the cell-
snake version, explicitly sharing different images for each version
in the Docker repository, and storing results for downstream anal-
ysis by default. In comparison to other tools (Table 3), cellsnake
has several advantages, including a comprehensive range of tool
utilization, unique features, the ability to run locally or on HPC
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platforms, and seamless integration with other workflows using
Docker or Bioconda. Additionally, cellsnake also provides R data
serialization (RDS) files to enhance data sharing and accessibility.

Recent studies have shown that the heterogeneity in mi-
crobiota and the present cell types along with their functions
are codependent [33]. Cell-associated microbial reads can be
identified in scRNA-seq data [34]. Cellsnake uses Kraken? [29] to
analyze these data, and cellsnake provides the ability to fine-tune
parameters to increase sensitivity and/or specificity and to use
personal databases. This can help researchers identify potential
microbial associations with host cells and tissues. Some of these
microbial hits can originate from environmental contamination
or can be false positives. These outcomes might not necessarily
reflect real biological associations; nevertheless, the results may
provide valuable insights for QC such as recognizing potential
contamination sources.

There are some limitations of the workflow that need to be ad-
dressed. First, cellsnake requires disk space to keep track of the

entire pipeline, including metadata files that are required for ad-
vanced downstream analysis. Although the users can delete large
files, they may want to keep metadata files for reproducing the
results at a later time. Second, the fully featured workflow relies
on Cellranger outputs from the 10X Genomics platform, which
may not always be available. Even though cellsnake was designed
and tested utilizing this platform, it can still use the count matrix
files from other platforms, such as the fetal brain dataset. Third,
while cellsnake has moderate performance in terms of memory
and speed on standard workstations for an average number of
cells, the auto-detection of parameters (e.g., resolution parame-
ter) can be slow when processing samples with a large number
of cells. To improve performance, a parallel version of the Mul-
tiK tool was used, which is not officially supported by the au-
thors of MultiK (see Methods). Finally, the underlying tools uti-
lized by cellsnake may involve various parameters. The funda-
mental parameters can be adjusted by the user and supplied
through the configuration files, while the rest are set to default
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and (B) annotates the clusters. (C) The user can provide the clinical information, which shows differentially expressed genes among 2 groups. (D) It is
also possible to visualize selected marker genes. For example, the AHSP gene is upregulated in CD45" samples compared to CD45~ samples.

values. This approach was preferred to make the workflow more
user-friendly.

In conclusion, cellsnake is a convenient and adaptable tool,
empowering researchers to analyze scRNA-seq data in a repro-
ducible and customizable manner. With its advanced features and
streamlined workflow, cellsnake stands as a valuable bioinformat-
ics asset for investigating cellular heterogeneity and gene expres-
sion patterns at single-cell resolution within tissues.

Future Directions

Accurate bioinformatics software requires long-term develop-
ment and commitment to the project [35]. It is also a major prob-
lem in the field that many projects are abandoned after pub-
lication, becoming unusable and outdated. For instance, cere-
broApp [36], a component of cellsnake’s development version, was
dropped as it is no longer in active development. Cellsnake is an
open-source tool that is actively developed, allowing anyone to
open pull requests and report issues on its GitHub page. To keep
the software bug-free and streamlined, future developments of

cellsnake will involve incorporating new tools, such as the latest
Seurat version, and removing obsolete tools from the main work-
flow. The users can access the previous releases for reproducibil-
ity. Although cellsnake is mainly designed for the 10X Genomics
single-cell platform, we plan to expand its compatibility with
other platforms and offer additional support for various input for-
mats. Our aim is for cellsnake to become an essential toolkit for
fast, accurate, tunable, and comprehensive scRNA data analysis.

Availability and Requirements

® Project name: cellsnake

® Project homepage: https://github.com/sinanugur/cellsnake
[37]

® Documentation: https://cellsnake.readthedocs.io/en/latest/
38]

® RRID:SCR_023666

® biotoolsID: cellsnake

® Operating system: Platform independent

® Programming language: Python, R
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were reported as “others.” The user can select the desired taxonomic level (in this case, it was genus). All results are also saved as tables, which include

reads detected per cluster and annotation.

Table 3: Standard features of cellsnake compared to available holistic tools/workflows

Single Cell Omics

Cellsnake Cellenics Workbench
Platform Snakemake/Python wrapper/Docker Web based Web based (Galaxy)
Input file type Count tables (10X or others), Count tables (10X) Count tables (10X), FASTQ
R Data File and others
Doublet filtering Yes Yes No
MT gene filtering Yes (auto) Yes (auto) Yes
Find clusters Yes (auto) Yes Yes
Clustree plot Yes No No
Differential expression analysis Yes Yes Yes
Enrichment analysis KEGG and GO No No
Cell type annotation Yes Yes No
Detailed gene expression plots Yes No No
Metagenome analysis Yes No No
Trajectory analysis Yes Yes Yes
Integration Yes (Seurat only) Yes (various algorithms) Yes
Output and downstream analysis Plot files, expression tables, Seurat Plots and expression Miscellaneous

RDS files and Excel files, etc.

tables
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® Other requirements: Python 3.8 or higher, R 4.2.2

¢ License: MIT

® PyPi: https://pypi.org/project/cellsnake [39]

® Bioconda: https://anaconda.org/bioconda/cellsnake [40]

® Docker: https://hub.docker.com/r/sinanugur/cellsnake [41]

® Snakemake workflow: https://github.com/sinanugur/scrna-
workflow [42]

Additional Files

Supplementary Fig. S1. Summarized marker plots.
Supplementary Fig. S2. Heatmap plots showing clusters/markers.
Supplementary Fig. S3. SingleR annotation prediction plots.
Supplementary Fig. S4. Celltypist label transfer prediction plots.
Supplementary Fig. S5. CellChat prediction plots.
Supplementary Fig. S6. Monocle3 trajectory analysis.

Abbreviations

GO: Gene Ontology; HPC: high-performance computing; KEGG:
Kyoto Encyclopedia of Genes and Genomes; MT: mitochondrial;
QC: quality control; RDS: R data serialization; scRNA-seq: single-
cell RNA sequencing; tSNE: t-distributed stochastic neighbor em-
bedding; UMAP: Uniform Manifold Approximation and Projection;
UMI: unique molecular identifier.
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