AN IMPROVED ERROR ESTIMATE FOR
THE FINITE DIFFERENCE
APPROXIMATION TO DEGENERATE
CONVECTION-DIFFUSION EQUATIONS

by

ERLEND BRISEID STORROSTEN

THESIS
for the degree of

MASTER OF SCIENCE

(Master i Matematikk)

Faculty of Mathematics and Natural Sciences
University of Oslo

December 2010

Det matematisk- naturvitenskapelige fakultet
Universitetet i Oslo



Introduction

This thesis is based on the article [I5] by K. H. Karlsen, U. Koley and N.
H. Risebro. The subject of the article is to prove an Lj . error estimate for
semidiscrete first-order finite difference schemes for nonlinear strongly degener-
ate convection-diffusion equations in one space dimension. More precisely they
show that the L}, difference between the approximate solution and the unique
entropy solution converges at a rate O(Az'/™) where Az is the spatial mesh
size. In addition they prove that it converges at a rate O(v/Ax) if the diffusion
therm is linear. In this thesis I present a convergence rate of the order O(Az!/7)
in the nonlinear case, and prove a similar result for the fully discrete implicit
scheme. The results are generalized in the sense that they apply to more gen-
eral schemes. This is done by the introduction of the numerical entropy flux
inspired by the article [I7]. I also include the existence, uniqueness and some
basic estimates on the semidiscrete scheme that is needed in the proof. Most of
the ideas and techniques are taken from [I5] and the results in this thesis should
be seen as a continuation of the work therein.

Finite difference schemes for hyperbolic conservation laws is a well developed
subject and there exists an extensive literature. See for instance [22] or [I4].
For an approach using the kinetic formulation see [25]. These methods have
long been known to converge at a rate O(Az'/?) and this is indeed optimal for
discontinuous solutions ([19, 14} 25]). In the case of strictly parabolic equations
the solutions are smooth and more standard techniques have long been available.
Concerning numerical methods for strongly degenerate problems, there has been
a growing interest the last decade and there exists several articles considering
different approaches. A list of articles is provided in [I5]. As stated in [15],
many of these articles show that the approximate solutions converge to the
right entropy solution, but as far as we know, none of them provides a rate of
convergence.

The improved convergence rate in this thesis relies on the use of the piece-
wise constant approximation (3.0]) instead of the piecewise linear approximation
applied in [I5]. The use of a discontinuous approximation led to the use of differ-
ence quotients instead of derivatives. The advantage being that the difference
quotients appear naturally in the numerical schemes. From a more technical
point of view one should pay special attention to the equality (F37) as the
improved convergence rate relies on this observation.
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1 Degenerate convection-diffusion equations

Consider the nonlinear, possibly strongly degenerate convection-diffusion prob-
lem

Ou+ 0, f(u) = 02A(u), (x,t) € Iy,
{ u(z,0) = u'(z), z € R, ! (1.1)

where Il = R x (0,7) for some fixed T > 0, u(z,t) is the scalar unknown
function that is sought and u°, f, A are given. The function f is called the
flux function and A is called the diffusion function. We make the following
assumptions:

o f is differentiable with f(0) =0 and f € Lip;oc(R).
o A is differentiable with A(0) =0, A’ > 0 and A € Lip;oc(R).

The term strongly degenerate means that A’ = 0 on some open interval. The
class of equations under consideration therefore contains the heat equation, the
porous medium equation, the two phase flow equation and conservation laws.
We will be using the term nondegenerate. This means that (LI is uniformly
parabolic, which is another way of saying that A" > n for some n > 0. In the
nondegenerate case of problem () it is well known that it admits a unique
classical solution (See for instance [21]). However strongly degenerate equations
must be considered in the weak sense and will in general possess discontinuous,
“shock wave“, solutions. Considering weak solutions it turns out that we need
another condition to ensure that (ILTl) is well-posed. The aim is to single out the
physically most relevant solution. The conditions obtained are named entropy
conditions, inspired by thermodynamical considerations (See for instance [22]).
Under the assumption of strong degeneracy the notion of entropy solution goes
back to Vol’pert and Hudjaev ([26]). These authors also proved general existence
and stability results in the BV class. However the uniqueness result therein is
incomplete (See [27]). The existence proof in [26] is obtained by certain viscous
approximate solutions. These are of fundamental importance in the present
thesis and provide a way to introduce the entropy conditions mentioned above.

1.1 Viscous approximations

Let A"(u) = A(u) + nu for some n > 0, u® be in BV(R) and consider the
nondegenerate problem

{ U? + f(un)m = An(un)mm, (ZC, t) S HT,

u?(z,0) = u’(x), z €R. (1.2)

It is known that (L2) admits a unique solution and that the solution opera-
tor has a strong smoothing effect. The problem (I2)) is an approximation of
problem () and, inspired by fluid dynamics, u” is referred to as a viscous
approximation. Let us collect some properties in a lemma.

Lemma 1.1. Let u" be the solution of problem ([L2). Then |[u"(-,t)|lL1 @) <
[ulll L1y, [[u"(, t) Lo ) < U] Loer) and |u”(-,8)| By ®) < [u°|By(®)-
For a proof see [2I]. Note that these results combined with the Lipschitz

conditions on A and f imply that we have the same type of estimates on both
A(u) and f(u").



Lemma 1.2. Let u" be a solution to (L2Z). Then

1£(u? (1) = A )all @) < [1f(W”) = AW)elleom), — (13)
[f(u(,8) = AW, 1))al By < | (1) = A(u®)zlBv (1.4)

Proof. This is outlined in [12]. Consider the equation
uf + (f(u") = Au")a)e = 0.

Integrating in space we obtain

[ it nde + o) - (A 0). =0 (15)
Now, let v(x,t) = ffoo uy (€,t)d€ and differentiate the equation with respect to
t. Then v satisfies the following non degenerate linear parabolic equation

vi(@,t) + f(u(2,1)vs — (A'(u"(2,1))vs)s = 0.
It is then known that v satisfies the following estimates:
o Ol Loy < [00)lLo@y and  [o(,t)[Bv < [v°]5v-.
Hence solving ([L3) for v we obtain (L3]) and (L4). O

Note that [|A(u")e|| 1o (1) and [|A(u") el L1 (11,) are bounded independently
of ) provided that A(u®), isin BV (R). The next lemma is an easy but important
consequence of the lemma above.

Lemma 1.3. The solution u" is L' Lipschitz continuous in the time variable.
That is
[u?(t+R) = u( )1 < [f(u®) = A(u®)alBvh

Proof. This follows from lemma

t+h
IIu"(-,t+h)—u”(-,t)||L1s// [ul (z, s)|dsda
t

t+h
- / / (F(W(,3)) — A, 5))2)eldzds < | F(u®) — A@®),|pvh.
|

The results above imply that the family {u"},¢ is relatively compact in
C([0,T]; L}, .(R)). To see this we apply Kolmogorov’s compactness theorem
(See [14]) to prove that {u"(-,t)},>0 is relatively compact in L} (R) for each
t € [0,7]. Lemma implies that the family {u"},~0 is equicontinuous as
functions from [0, 7] into L'(R). The relative compactness now follows by the
Arzela-Ascoli theorem. The convergence rate in this thesis is going to rely on
a much stronger result obtained by S. Evje and K.H. Karlsen in [I0]. Let u
be the limit obtained by considering some subsequence of {u®(™},cy where
a : N — RT is some map such that a(n) — 0 as n — oco. That is, let u be the
entropy solution defined below. Then there exists a constant C' independent of
7 such that

Ju — |z a1y < O/ (1.6)



1.2 The entropy solution and its uniqueness

The intention of this section is to motivate the definition of entropy solution
and introduce some common notions. The discussion leading to the introduc-
tion of an entropy solution is a mere generalization of the theory developed for
conservation laws. In spite of this similarity, the question of its uniqueness was
left unanswered until quite recently. Furthermore we include a brief overview
of the historical development concerning this question.

Let u be the limit obtained by the viscous approximations. Under the as-
sumption that u is somehow the most ”reasonable” solution to (II]) the obvious
questions are; which properties does the limit w satisfies, and which properties
should we demand of the solution in order to obtain uniqueness?

Let 9 be a convex C? function and introduce the corresponding functions ¢
and p with the properties that

¢'(u) =1/ (u)f'(u) and  p'(u) =¥’ (u)a(u)

where a = A’. We call ¢ an entropy function and q, p entropy fluzes. The triple
(1, q, p) is an entropy, entropy fluz triple. Multiply the equation (L2) by ¢’ (u")
to obtain

P(uM)e + 4 (W) f (M ug = ¢ (") A(u")gw + ' (u)u,.
Observe that
pu") ez = " (uM)a(u") (wh)? + 4 (W) A(u")se,
P (u)z = " (u") (u)® + ny’ (u")ull,
and so
(u) + q(u)e — (p(u") + 1 (u")ze = =" (u")(a(u”) +n)(w})?.

Multiply this equation by a non-negative function ¢ € C§°([0,7) x R). Then
use integration by parts on the left hand side and note that the right hand side
is negative. We obtain the inequality

/ [ oo+ o)+ )l + / $(u () (x, 0)dz > 0.

It follows that the limit u satisfies the so called entropy inequality

/ [ b+ a(wes + (0 gardudt + / B (@), 0)dx > 0. (17)

Demanding that this inequality is satisfied for all entropy, entropy flux triples
turns out to be the right criteria. In fact this is also a sufficient condition for u
to be a weak solution to (II). Let ¢ (u,c) = |u — c|. By considering 9;s(u,c) =

(u— ¢)? + 6% one may show that (7)) applies to the entropy, entropy flux
triple (¥(-, ¢),q(+, ¢), p(-,¢)) where

q(u, ¢) = sign(u — ¢)(f(u) = f(¢)) and  p(u,c) = [A(u) — A(c)].

¥ (u, c) is known as the Kruzkov entropy function and it is sufficient to consider
this class of entropies in (7). Note that using the Kruzkov entropies it is seen
that if u satisfies (7)) then it is a weak solution to ((L]).



Definition 1.1. An entropy solution of (I]) is a measurable function v =
u(x,t) satisfying:

(D.1) u e LY(IIx) N L=(Ir) N C((0, T); L' (R)).

(D.2) For all non-negative test functions ¢ in C§°(Ilr) and all entropy,entropy
flux triples (¥, q, p) u satisfies the entropy inequality

/H Y(u)pr + qu)pr + p(u)prrdedt > 0.

(D.3) The initial condition is satisfied in L' sense. That is

t—0t

i —u’(z)|dz = 0.
lim /R|u(t,z) (x)|dz =0

(D.4) A(u) is continuous and A(u), € L>(R).

The uniqueness of such a solution follows from [I6]. Note that condition
(D.4) applies to the limit u of the viscous approximations by lemma [[2] and
hence the solution is continuously differentiable in the regions where A’ > 0.

The question of whether (I]) is well posed or not is of fundamental impor-
tance. The discussion above describes how problem (1)) can be reformulated
in order to yield a well posed problem. For this to be successful we need the
entropy solution to be unique. When discussing the uniqueness of entropy solu-
tions for degenerate parabolic equations one should keep in mind the diversity
of this class. The problem is not restricted to z € R, the functions f and A
may depend on both space and time in different ways and there are different
assumptions on the initial condition. Because of this there exist numerous ar-
ticles with different assumptions. In the case of conservation laws, uniqueness
in L' N L* is a result due to Kruzkov presented in 1970 ([18]). This proof was
not straight on adaptable to the more general case. The erroneous uniqueness
proof in the space BV that Vol'pert and Hudjaev proposed in [26] from 1969 is
based on the idea of developing a discontinuity condition. This type of discon-
tinuity conditions goes back to Oleinik and is interesting not only as an entropy
condition, but also because it gives a more geometric description of the solution
(22, 24]). The discontinuity condition was corrected by Wu and Yin in 1989
and uniqueness in the space BV was established ([27]). In the purely parabolic
case (no convection term) the question of uniqueness in L' N L> was proved
by Brezis and Crandall in 1979 (J2]). This combined with Kruzkovs theory for
conservation laws indicated that a L' N L theory should be possible also for
degenerate equations. In his uniqueness proof Kruzkov applied the, by now, fa-
mous technique of doubling of variables. This technique was further developed
by Carrillo who proved uniqueness in L' NL> in 1999 ([4]). This result was later
generalized by Risebro and Karlsen in 2003 ([16]). Using the so called kinetic
formulation Chen and Perthame proved well posedness in L' in 2001 ([6]).

1.3 An application to traffic flow

Degenerate convection diffusion equations are used to model phenomenons such
as flow in porous media([9]), sedimentation-consolidation processes ([I]) and



traffic flow ([3, 23]). Let us take a brief look at the last case. The intention
is to sketch how problem () may appear in applications, and not to give an
introduction to this field. Consider a one-lane highway. Let p = p(z,t) denote
the car density at a point x at time ¢. This should be understood the following
way:

T2
“the number of cars between x; and z9 at time ¢” / p(z, t)de.
1

Let v = v(z, t) denote the speed of the car located at point x at time ¢ and f(x,t)
the flux of cars. That is the approximate number of cars per time passing a
point = at time ¢. Conservation of cars gives the following equation:

T2

& p(z,t)d:c:f(zl,t)—f(zg,t). (18)

The flux of cars is given by the product vp, so if we assume that the speed is
a function of the car density only, we obtain from (L8] the scalar conservation
law

9p + 0z(pv(p)) = 0. (1.9)

The model as it stands above assumes that the driver adjusts his speed instan-
taneously to the local car density. This is not a natural assumption. We follow
the discussion given in [3]. The assumption is thus that there is a difference
between the cars velocity v and the velocity the driver considers as reasonable
9. This is caused by both the drivers reaction time and his ability to observe.
Let 7 represent the drivers reaction time. Furthermore, let us assume that the
driver tries to adjusts his velocity to the car density seen a distance L ahead,
but are delayed by his reaction time. Hence we make the assumption that

v(x,t) = 0(plx + L — 07,8 — 7).

Note that this expression is ambiguous since we have not specified where we
should evaluate the ¢ in the argument of p. Let us make some approximate
calculations. For a proper derivation see either [3] or [23]. Let us expand p
around the point (x,t). This gives

pla + L—07,t—71) = p(x,t) + Opp(a,t)(L — 07) 4+ Orp(a, t)(—7).
By the expansion of ¥ we obtain
v(a,t) & 0(p) + ' (p)(Oup(L — 07) + Orp(—7))

where p = p(x,t). By the conservation law ([L9]) we have 0, p0+ Oip & —p0,0 =
—p?’(p)Ozp. Tt follows that

v(z,t) & 9(p) + 0 () (L + 7p?'(p))up).-

We now make the assumption L = L(9(p)) = L(p). Let us define

Alp) = /Op —s0'(s)(L(s) + 750 (s))ds,



and note that

d(p(x+ L — o7t — 7)) ~ 0(p) + %31/1(/)).

We may now use this expression for v in (L9) to obtain
Bep + 82 (pi(p)) = 92 A(p).

It turns out that it is natural to assume the existence of a critical density p.
up to which the effects discussed above are not present. Hence we exchange the
function A by the function

= pas s, where a(s)= 0 if s < pe,
Ay = [atos, where o) ={ 1 e e

Considering this expression one should note that it is natural that ¢ should
decrease with increasing car density. The question of whether L(s) > —79'(s)s
is closely related to the assumption that there are no collisions. It is therefore
natural to pick L, 0 and 7 in order to yield a problem described by (LII).



2 Finite difference schemes

We are going to consider a particular class of numerical methods used to obtain
approximate solutions to problem ([2]). However we are not interested in how
these methods are obtained, but rather to ensure that our result applies to as
many methods as possible. The schemes under consideration are obtained ei-
ther by a finite difference method or by a finite volume method. Because these
methods are so natural we will refer to them just as the discretization of the
problem. We will consider two different classes of approximations. The first one
is obtained by discretizing in space only and leaving the problem continuous in
time. The idea is that it is simpler to work with the semidiscrete case than the
fully discrete case and hence we may simplify things by dividing the discretiza-
tion process into two stages. The second one is an implicit method obtained by
discretizing both space and time.

One of the main concerns regarding the discretization is how to approximate
the flux function f.

Definition 2.1. (Numerical flux) We call a function F € C*(R?) a numerical
fluz for f given that F(u,u) = f(u) for u € R. If

0 3}
— > — <
auF(u,v) >0 and (%F(u’v) <0

holds for all u,v € R we call it monotone.

Let F, and F,, denote the partial derivatives of F' with respect to the first and
second variable respectively. We will also assume F' to be Lipschitz continuous
in each variable. That is, there exists a constant K such that for real numbers
u,v and w

|F(u,w) — F(u,v)| < K|w—wv| and |F(u,v) — F(w,v)| < K|u — w|.
Let z also be a real number. Then

|F(u,w) — F(z,0)| < |F(u,w) — F(z,w)| + |F(z,w) — F(z,v)|
< K(u—z|+|w—1]). (2.1)

2.1 The semidiscrete scheme
Let Az > 0 and define z; = jAz. The discrete derivatives are defined by

Oj+1 — 0y

D*(o;) = +
(UJ) ASC

for any sequence {o;}. Note that D* can be interpreted as operators. However
it is in general just considered as a shorthand notation. We may now define the
semidiscrete approximation of problem (L) as the solution to the scheme

{ (u]')t+D_Fj :D_D+A(Uj), j GZ, tE (O,T), (2 2)

u;(0) = ﬁ flj u®(z)dz, JjEZLL.
Here Fj = F(uj,uj41) is a numerical flux function and I; = (2;_1/2,241/2].

Note that (Z2) is a system of ordinary differential equations. The method is
therefore often refered to as the method of lines.

10



The problem above can be viewed as an abstract Cauchy problem in the
Banach space ¢! (Z) (See for instance [20]). In order to get bounds independent
of Ax we let

lolly = Az |oj| and |olpy = loj11 — 05l =DV o]

J J

If these are bounded we say that o = {o;} is in £! and of bounded variation.
Let u(t) = {u;(t)},u® = {u;(0)} and define the operator A : ¢! — ¢! by
(A(u)); == D™ (F(uj,ujt1) — DT A(u;)). Then ([22) takes the following form

{ du 1 A(u) =0, te(0,T),

a0 a0 (2.3)

where the derivative is meant in the strong sense. That is

du . u(t+h) —u(t)
ar =l h

where the limit is taken in the norm topology. The existence of a unique con-
tinuously differentiable solution to (Z.3]) may be established on [0, 7] the same
way as in R™ provided that A is Lipschitz continuous. (See problem 1.3.1 [20]).
To see that A is Lipschitz define the induced maps A0t 5 b and Fo 0t — 01
by (A(u)); = A(u;) and (F(u)); = F(u;,u;41). By the Lipschitz continuity of
A and inequality (I these maps are Lipschitz continuous. Considering D* as
maps from ¢! into ¢! these are also Lipschitz continuous. Since

A(u) =D~ (F(u) — DY A(w))  uel!

and the sum and composition of Lipschitz continuous maps are Lipschitz A is
Lipschitz continuous. The solution of (2.3)) then provides a solution to ([Z.2]). For
any t > 0 we let S(t) : £! — ¢* be the solution operator. That is, S(t)u® = u(t).
Then S satisfies the following properties:

St+7)=S8(t)S(1), t,7 >0, (2.4)
lim S(t)u = u, u el
t—0+

That is, the family {S(t) : t € RT} is a semigroup on £'. In our case the map
t — S(t)u is strongly continuous so we call it a strongly continuous semigroup
and condition (23] may be replaced by S(0) = Z. If S also satisfies

([S@E)u — St)v]1 < ||lu—wv|jy for u,v et

we say that it is nonezrpansive. The notions described above were given in the
particular case of the Banach space ¢! but are of course general. The next goal
is to show that our semigroup is nonexpansive and thus obtain an ¢! contraction
property. This will follow from the theory of T.M. Liggett and M.G. Crandall
presented in [7], but to describe the results provided there we need some notions
regarding nonlinear operators on Banach spaces. The next definitions can be
found in [I3] and [II]. For a more elaborate introduction to this field see [§].
Suppose that X is a real Banach space and X* its dual. A duality mapping J
is a map J : X — X™* such that for all z € X,

[J(@)lx- = llzllx and (J(z),2) = [z|%-

11



where (-,-) denotes the pairing between X* and X. A mapping A : D(A) C
X — X is called accretive if for all pairs (u, . A(u)) and (v,.A(v)) in the graph of
A, and for all duality mappings J we have

(J(u—v), A(u) — A(v)) > 0.

If in addition Z + A A is surjective for all A > 0, then A is called m-accretive. To
avoid the notion of multivalued operators we use the less general presentation
of these theorems given in [§].

Theorem 2.1 (Crandall,Liggett). Let X be a Banach space, A: D(A) C X —
X accretive and such that R(Z+AXA) 2 D for all small A > 0. Then A generates
a nonexpansive semigroup by means of “the exponential formula”

t —n
U(t)z = lim <I+—A) x x € D.
n— oo n

where the convergence is uniform on compact subintervals of R*, and U(-)z is
locally Lipschitz. If, moreover, R(Z + AA) 2 D for all small X > 0, then the
exponential formula holds on D.

We are left with two questions to be answered: Does this theorem apply in
our case, and do the two semigroups coincide? Observe that the domain of A
is /! and so we need to prove that A is m-accretive. The second theorem in [7]
provides an answer to the last question.

Theorem 2.2 (Crandall,Liggett). Let X and A be as in Theorem[21l. Suppose
also that A is closed, i.e. the graph(A) is closed, and let {U(t) : t > 0} be
the semigroup from Theorem [Zl Then u is a (strong) solution of v + Au =
0, u(0) = = if and only if u(t) = U(t)x and U(t)x is differentiable a.e. with
respect to t.

The graph(A) is the subset {(u, A(u))|u € £*} C ¢! x £* and is closed by the
continuity of A. It follows by the Lipschitz continuity of A that it is m-accretive
if it is accretive. Let us show that A is accretive. In [IT] this is done for a slightly
more general F', but in our case we assume F' to be monotone so we might as
well do a straightforward calculation. Suppose that X = L!(Q) where (Q, du) is
some measure space. Then every duality mapping can be written as an integral

o) = [ where () = { T8 o 2

where a(z) is any measurable function with |a(z)| < 1 almost everywhere w.r.t.
p. Let w = {u;} and v = {v;} be in £!. Then for any duality map J we have

(J(u =), A(u) — A(v)) = Az Z sign(u; — v;)(A(u) — A(v));

Let w; = u; — v;. By int(a,b) we mean the interval between a and b. By the
mean value theorem we have for each j € Z

F(uj,ujp1) — F(vj,v541)
= (F(uj,uj1) — Fvj,up1)) + (F(vj, uj41) — F(vj,v541))
= Fu(aj, ujp1)wj + Fy(vg, Bj+1)wjt1

12



for sequences {¢; } and {5;} with «;, 8; € int(u;,v;). Let a = A’, then
A(uj) — A(vj) = a(§j)w; for some &; € int(uj,v;).
Hence
(A(u) = A(v)); = D™ (F(uj,uj41) — F(vj,v541)) — D™ DT (A(u;) — A(v;))
= D™ (Fu(ag, ujr)w; + Fy (v, Bj1)wj1) — D™D a(g;)w;

Using this expression we get
Ax Z sign(u; — v;)(A(u) — A(v)); =
Z (Fulogj, ujir)|wi| — Fu(oy—1, uj)wj—1sign(w;))
+Z w(v5, Bir1)wjrasign(wy) — Fy(vj—1, Bj)|w;])
+ = Y (—a(&o1)w;isign(w;) + 2a(€)wj] — a(&j1)wyyrsign(wy)) > 0.

Thus A is accretive if F' is monotone. Let us collect the above results and some
more in a lemma.

Lemma 2.1. Suppose that F' is monotone. Then there ezists a unique solution
u={u;} to @2) on [0,T] with the properties:

(@) Ju@®ll < [l
(b) For every j € Z and t € (0,T)

inf{up} < u;(t) < sup{up}.
k

(c) [u®)|Bv < |[u’|By.

(d) If v={v;} is a solution the same problem with initial data v° then
lu(t) = o)l < [lu” =1

Proof. The existence of a solution follows from above. The same applies to
property (d). Note that A(0) = 0 so [Juljs < |[u®[|; follows from (d) by letting
1% = 0. The BV estimate follows by letting ’U? = “9+1- To prove (b) note that
there exists an index jo such that sup,(u;(t)) = uj,(t) if sup,(u;(t)) > 0 since
w;(t) is in £'. Then DT u;,(t) < 0 and D~ uj,(t) > 0. We skip the argument ¢
in the computations.

(ujo)/ = D_(D+A(ujo) - F(ujovujoJrl))
1
= (A—x)Q(A(ujo-H) - 2A(ujo) + A(ujo—l))

1
- E(F(ujo,ujoﬂ) — F(ujo—1,uj,)) :=T1 — Ta.

13



Note that 77 < 0 since A is increasing. Consider T5.

Ty = 2 ((F (g 1) = F i) (F oy 030) = Flu 1 05,))

= Fv(ujoaa)D+ujo + Fu(ﬁaujo)D_ujo > 0.

for ujo+1 < @ < uj, and uj,—1 < B < uj,. Similarily there exists an index j;
such that inf;{u;(t)} = u;, if inf;{u;(¢)} < 0. That (u;,)" > 0 follows by the
computations above. O

Lemma 2.2. If F' is monotone, then
1F (g, uj1) = D¥Afug)llie < F(uf, ufy) = DFA@G) e, (2:6)
|F(uj,ujir) = DT A(uy) gy < |F(uf,ulyy) = DT AW v, (2.7)

Proof. We use the same strategy as the one applied in the continuous case. Let
v; = Az, i (ug): for t € (0,T). Then v; satisfies

v =Ax> D™ (DT Aug) — F(up,ups1)) = DT A(u;) — Fluj,ujpr)  (2.8)
k<j

and we may define v; for all ¢ € [0,7]. Note that {v;(¢)} is in ¢! for all ¢ by
lemma 211 Differentiating (2.8]) with respect to t we obtain

(03 = (@) (g0 — o) ()0
= Fy(ug, wjipn)(ug)e — Fo(ug, wjvn) (W)

Note that D~ v; = (u;); and D vj; = (u;41):. Then v; satisfy
1 +
(v)e = { Rz olus+1) = Foluj ujen) | Do

— (ia(uj) + Fu(Uj,Uj+1)) D7v;. (2.9)

Assume that v, (¢) is a local maximum. Then D%v; < 0 and D~ v;, > 0 so
(vj )t < 0since F' is monotone. If v, is a local minimum then (v;,); > 0. Then
inequality (28] follows by the fact that {v;(t)} € £*. Consider (7). We want
to show that (|v;(t)|sv): < 0. Now,

0 .
gn D v — vl | = sign(vjia — v;) (w41 — vy

J J
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so we may apply equation (Z9). Thus
(ol )e = 3 ( gzalusen) = Folusn,ngea) ) (D*opin)sign(usen — ;)
i
- Z ( a(ujy1) + Fu(uj+1,uj+2)) | DT,
- Z ( a(uj+1) Fv(“j’ujJrl)) |DF |

3 ( )4 F, <uj,uj+1>) (D~v,)sign(vy1 - v,))
=51+ 5+ 53+ S54.

Since S7 + S3 < 0 and Sy + 54 < 0 the result follows. O

By lemma ([Z2) {u;} is ¢! Lipschitz continuous by the same argument as in
the continuous case.

2.2 The implicit scheme (Fully discrete case)

Let At > 0 and t" = nAt. Let D denote the discrete derivative in time with
parameter At and DT the discrete derivative in space. The implicit scheme is
then defined by

{ Drup + Dy F( i ufi1) = Dy DFA(u}), (j,n) € ZxN, (2.10)

J}j jez.

This scheme is studied by S. Evje and K. H. Karlsen. Under the assumption
that F' is monotone, all the properties corresponding to the ones obtained for
the semidiscrete scheme in the previous section and some more are proved in
[T1]. Since the solution is discrete in the time variable the ¢! Lipschitz continuity
takes a slightly different form. We state it here as an easy reference.

Lemma 2.3. Let {u}} be the solution to 2I0). Let m,n be non-negative
integers. Then

luj” —uflls < |F(uf,uj i) — DFA(u3)| sy Atlm —n
where || - |1 and |- |pv are defined in section [21]

Observe thet there are no CFL conditions involved. Therefore the error esti-
mate in section [l is based on the assumption that At and Az are independent.
Suppose that we want to construct an algorithm in order to solve ZI0). We
can do this inductively in time. Assume that we have found u* = {u%},cz € ¢!
for 0 < k < n and want to find u™. Using the notation from section 1] we
define the mapping ®,, : £* — ¢! by

D, (2) =u""t — AtA(2)

15



and observe that if ®,, has a fixed point, then this is the sought sequence u".
To see how the Lipschitz constant of ®,, depends on At and Az, take u,v € £1.

By inequality (2.1

[@n(u) — n(v)[1 = At]lA(v) — A(u)lly
= AtAxZ (IDZ (F(vj,vj41) = F(uj,uj1)) — Dy DF (A(vy) — A(uy))])

|A||Lz
< AtAz Z ( )Qp (lvjtr = wja] + 2v; — sl + [vj—1 — uj-1])
At
= (A—$)24(KASC + 1Al Lip)[[u — vl

By Banach’s contraction mapping theorem ®,, has a unique fixed point provided

that
At

(Az)?
Considering the result obtained in section [ this condition on At is unfortunate.

It is clear that another way of finding a solution to (2I0) or a better estimate
on ||®,| rip would be of interest.

A4 KAz + ||AllLip) < 1.

2.3 The numerical entropy flux

It turns out that we need some more conditions on F' than just demanding it
to be monotone. Lemma 2.4 provides us with a sufficient condition.

Definition 2.2. Given an entropy, entropy flux pair (¢, ¢) and a numerical flux
F. Suppose that @ € C'(R?) satisfies

Q(Uau) = q(u),
P L0
%Q(U’w) =9 (’U)%F(U,w),
p) L a
a_wQ(U’w) =9 (w)a_wF(an)a

then we call Q a numerical entropy fluz.

A natural question would now be for what type of numerical fluxes, if any,
does such a function exists.

Lemma 2.4. The numerical flux F' has a numerical entropy flux @), independent
of the chosen entropy, entropy flur pair, if there exist Fy, Fy € CY(R) such that

F(u,v) = F1(u) + Fa(v), (2.11)
Fi(u) + Fi(u) = f'(w) (212)

for all u,v € R.

Proof. Let (1, q) be an entropy, entropy flux pair. Then ¢ has the form

/ V() f (2)dz + C
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for some constant C. Define @ by

Quo) = [ VEOFEE [ vEpeere @)
It is easily verified that @) is a numerical entropy flux for F. O

Note that if @ is supposed to have symmetric partial derivatives, then (211
and (ZI2]) are necessary conditions. Fortunatly there exist some numerical flux
functions which satisfies lemma 241

Example 2.1. (The Engquist-Osher flux) Let
FL(s) = max(f/(5),0) and  f(s) = min(f'(5),0).
Then, in the terminology of lemma 24 let F(u,v) = Fy(u) + F1(v) where

Fi(u) = f(0) +/ fi(s)ds and Fy(v) :/ I (s)ds.
0 0
It is easily seen to satisfy the criteria given in lemma [2.4] and it is also clearly

monotone.
Example 2.2. Let a,b € R and define

Fi(u) =af(u)+bu and Fr(v)=(1-a)f(v)— bu.
Note that F(u,v) = F1(u) + F2(v) is monotone if

ainf{f()} > ~b and (1 - a)sup(f(x)} <b

This example includes both the upwind scheme and the Lax-Friedrichs scheme
(See for instance [14]).

From a more general point of view we may consider any flux splitting. That
is f(u) = fT(u) + f~(u) where (fT(u)) > 0 and (f~(u)) <0 for all u € R.
Then the numerical flux F' defined by

F(u,v) = f*(u)+ [~ (v)

satisfies the assumptions of lemma[Z4l Note also that any convex combinations
of numerical flux functions which satisfies the hypothesis of lemma [2.4] itself
satisfies the lemma.

If lemma 2.4 holds we have a representation of @ given by (213)). It follows
that

Qo) = aw) + [ W)

Note that we may obtain another representation depending on Fj by splitting
up the first integral. The next result is taken from [I7] by I. Kroker and C.
Rohde.

Lemma 2.5. Let Q be a numerical entropy fluxr associated with the entropy,
entropy flux pair (v, q) and the monotone numerical flur F. Then

1/)/(’(1,)(F(’U,,’LU) - F(“v“)) > Q(uvw) - Q(’U, u)
for all u,v,w € R.
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Proof. Let u be fixed. Define p(v, w) = p1(w) 4 p2(v) where

pi(w) = =¢'(u)F(u, w) + Qu, w) + 4" (u) f (u) — q(u),
p2(v) =9 (W) F(v,u) — Q(v,u) — o' (u) f (u) + q(u).

Then we have

p(v,w) = =4 (u)(F(u,w) = F(v,u)) + (Q(u, w) = Q(v,u))

and so the lemma is proved if we can show that p(v,w) < 0 for all v,w € R.
Let us differentiate p; and po.

() =~ (u) o P 0) 4 (0) 5 Fu,0)
=€) o () (o )

for some &; € int(u,w). Similarly

= 0(62) o F(v, w)(u — v)

for some &; € int(u,v). Since F' is monotone and 9 is convex we may infer that
if z € R then p}(z)(z —u) < 0 for both ¢ = 1 and ¢ = 2. It remains to observe
that p1(u) = pa(u) = 0 and so

pi(z) = /Zp;(é)df <0, fori=1,2.

Hence p(v,w) < 0. O
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3 An error estimate for the semidiscrete approx-
imation

Let u; be a solution to [2.2)) with A = A" and let u be the viscous approximation
defined by (2. We need to consider u; not as a sequence, but rather as a
piecewise constant function. Note that equation (2:2) also holds for all (z,t) €
II7 given that

uj(z,t) = Zuj(t)xjj (x) (3.1)

and the discrete differentials denote difference quotients with parameter Az.
Observe that the norm || - |1 defined in section 2] has the property that
lluj(®)]l1 = [Jui(-,)||L1r). In order to obtain the estimate we need many of
the uniform bounds obtained in section[[land 2.l These are based on the prop-
erties of u” and so we need to assume that u° is sufficiently well behaved. We
make the following assumptions on u°:

(i) uY is contained in the space BV. That is u® € L'(R) N L*°(R) and
T.V.(u) < oo.

(i) A(u®) is differentiable and A(u®), is in the space BV.

We may now state the theorem. The proof is presented in the rest of this
chapter.

Theorem 3.1. Suppose that u is the entropy solution to (L) and that u? 18
the semidiscrete approzimation with n = (Az)7. Ifu® satisfies (i) and (ii), then
there exists a constant C' independent of Ax such that

||u(, t) — u?('vt)HLl(Ll(t),Lr(t)) < C’\/7 ASC, t e (0, T)
where Li(t) = =L+ Mt,L.(t) = L — Mt, M > ||f|lLip and L > MT + Azx.

Note, C' might depend on L. Let us define some of the functions we are
going to work with. First, let the approximation of the sign function be given
by
sin(52) if o] <,
sign(c) otherwise

sen (o) = {

where ¢ > 0. Note that sign_ is a C' function which is nondecreasing and odd.
Since the derivative of an odd function is even, sign’ is even. Having defined
an approximation of the sign function we get a natural approximation of the
absolute value function | - | given by

|u|8:/ sign, (z)dz.
0

By a simple substitution argument

u
|lu—cle = / sign_(z — ¢)dz and i(|u —¢|e) = sign_(u — ¢).
c du
In the semi-discrete case we are only going to work with difference quotients
in the spatial direction, so we might as well let D* denote Diz. The follow-
ing lemma is a kind of substitution for the chain-rule when working with the
piecewise constant approximation ([3I) and difference quotients.
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Lemma 3.1. Given a sequence {u;} there exist sequences {7;} and {6;} such
that both T; and 6; lies in int(uj,u;jy1) and

Dsign, (A(u;) — A(c)) = sign_(A(7;) — A(c)) D™ A(uy),

€

DT (|A(u;) — A(c)|e) = sign. (A(6;) — A(c) DT A(u;).

The proof is a simple application of the mean value theorem. Note that both
7; and 6; depends on both {u;} and c.

3.1 The doubling of variables

This part contains the construction of an equality on which the sought inequality
is based. The manipulations involved are inspired by the entropy inequality.
We let (x,t,y,s) denote a point in Il x Iy = II2% where z and y are the
spatial variables and s and t are the time variables. Let u; defined by B.J)
be a function of x and ¢, and the viscous approximation v be a function of
y and s. To avoid writing four integral signs we will in general write one for
each domain Il and let dX = dxdtdyds. For a function ¢ on HQT we let
©”% denote the function translated by Az in the spatial variable x. That is,
©2%(z,t,y,8) = o(x + Az, t,y,s). We write u;1 instead of ujAI.

3.1.1 Rewriting the continuous equation (Local to global)

Define an entropy, entropy flux pair (¢., ¢.) by

Let ¢ be a non-negative test function in II2. and observe that for each fixed
point (x,t), ¢(z,t,y,s) is a test function in Ir. Multiply equation (L2) by
YL (u, c)p and integrate in both space and time to get

te(u, €)sp + Pe(u, ) (f (u) = f())ypdyds

- /H (61 €)p) A(us) dyds.

Integration by parts gives

Ve (u, ¢)ps + g (u, ¢)pydyds
fr (3.2)
= [ sien.A(u) — AW) Ay, + sl (Al — Al (A, eduds

Using the chain rule and integration by parts we get

/H sign, (A(u) — A(e))(A(w))ypydyds = — / |A(w) — A©)|epyydyds. (3.3)

IIr
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Next we are going to write zero in a rather complicated manner. The idea
will be clear at a later point. Let 7; be as in lemma [B.Jl By Leibniz rule and
integration by parts

0= / D (sign, (A(u) — A(u;))Au)yp) dX
13
-/ [ D" (sgn.(A(w) - Aw) A9 ~ |A(w) — Aluy)|- DT pydX

= //H2 —Signls(A(Tj) - A(u))D+A(Uj)A(u)y(pAm _ |A(u) _ A(Uj)|5D+<Pde.

(3.4)

Let ¢ = u; in 33). By B3) and B.4) we turn equation (B2)) into the
following equation:

//112 [u — ujlps — g (u, uz)ypdX
T

B //Hz sign’ (A(7;) — A(u))((A(u)y)® — DF A(uy) A(u), )p™*dX
a //Hz |A(u) - A(“j)|a(90yy + D+<py)dX

" //nzT('u = uj| = Ye(u, 1)) psdX

+ [ (st — Aw))e - signd (A(r) ~ Aw)e™) (Afu),PdX.
17
(3.5)

3.1.2 Rewriting the semidiscrete equation (Local to global)

Let us try to rewrite the semidiscrete equation (2.2)) in a similar way. Multiply
by . (uj,c)p and integrate in both time and space to obtain

; Ve (g, €)rp + YL (us, ¢) D™ F(uj, ujpr ) pdrdt
T
= /H sign_ (A(u;) — A(c)) D™ Dt A(u;)pdxdt.  (3.6)
T
Using integration by parts for difference quotients we get
. Ye(uj, ¢)pr — Yl (uj, ¢) D™ F(uj, uji1)pdrdt
T
_ /H D*sign, (A(uy) — A(¢)) D™ A(uy)p™* dadt (3.7)
T

+/H sign, (A(u;) — A(c)) Dt A(u;) DT pdxdt.
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Concerning the second term on the right of [B.7]) we would like to use a type of
chain rule. By lemma 3.1

/H sign_(A(uj) — A(c)) D" A(u;) D" pdadt

_ _/H |A(u;) — Alc)| D~ D+ pdadt

+ /H [sign. (A(u;) — A(c)) — sign, (A(0;) — A(c))] DT A(u;) DT pddt.
As in the continuous case observe that
0= [[siene(A(u) = A)D* A5, 0

- //1'[2 ((Signs(A(uj) - A(U)))y@Am + SignE(A(uj) — A(u))cpyAm) D+A(Uj)dX.
) (3.8)

The last term on the right may be rewritten using lemma [3.1] as above. Note
that D~ (¢2%) = DY p. Then

J[ siena(au;) = A@)D* Ay )3 ax
=[] 1) - A@].D* g dx
* //n sign. (A(uy) — A(u)) — sign, (A(6;) — A(u))] D* A(uy)el"dX.

Let ¢ = u(y,s) in ). Integrate (B1) in both y and s and add equation
B3) to obtain

JI s = ke = 50D Pl )X

= [ sientAm) - Aw) (D* (A = D* Ay A(w),) ¢>7dX

- [ 14w) — 4@ D*e + DY, )ax

[, oA - A) —sign.(40) ~ A)| D Al )X

[ o =l vt )

+ [ Gt (A(r,) - Aw) - signl (Alu;) - Aw))Al), DT Alu)>7dX
17

+ [ n.(AGu) ~ Afw) - sign.(A®) - A(w)] D* Au) D X,
e

(3.9)
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3.1.3 Adding up the equations
Adding equation (3.3]) to equation ([B.9) we get

S s =t 0~ s A 510) + 0w DX (310
= // signl (A(7;) — A(u)) (D (A(uy) — A(u)y)QcpAde (3.11)
// (uy) u)|«(D” DY +2D% o, + ¢y, )dX (3.12)
+ [ s = ul = (g )X (3.13)
+ [ Gu=] = el ) (3.14)

+ [ ene(at) - Aw)
— sign,(A(0)) — A())] D* A(u;)g3*dX (3.15)

+ [ st am) - aw)
— sign (A(uy) — A())] A(u), D* Al ) dX (3.16)

+ [ iena(au;) - Aw)
— sign_(A(0;) — A(u))]| DT A(u;)DF pd X (3.17)

+ [ el (40w) - Ay

— signl (A(r;) — A(u)) ¢ (A(w),)?X. (315)

3.2 Obtaining the inequality

Following lemma [24] we may define the numerical entropy flux Q%(u;, u;+1) by

Ujt+1

Qujuen) = aclup o)+ [ wlaOFEd @19

u;
By lemma
de(uy, ) D™ F(uj, ujn) 2 D7 Q% (ug, ujy1)-
The term (B.I1) is positive and so

/ / 5 — ul(@r + @) — (D~ Q(uz g1 + e (1 13)y ) pd X

//112 (uj) w)|c(D”"DTp + 2D, + ¢,)dX >R, (3.20)

where R is the sum

Ri= @I + -+ @IF).
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Integration by parts and (B19) yields
- [ D@ uie + o)X
T
= /H2 Q2 (uj, ujr1) DT + ge(u, uj)pydX
T
= //H2 qe(uj,w) Do + e (u, uj)pydX

Ujt1
+ // / YL (z,u)F3(2)dzDVpdX.
1z Ju,

T 7Y

Next we need an expression for g.(u;,u)DT¢ + g-(u,uj)p,. Let us rewrite
e (u, ¢) using integration by parts.

ic(w.0) = [ sign(4(:) = A ) - f(0)'d:
— sign. (A(u) — A(€))((u) - £(0)
- [ i (46) - @) G - s
Observe that sign_ (A(u;) — A(u)) = —sign, (A(u) — A(u;)) and so
qe(uj, u) DT @ + qo (u, uz) @y
— sign, (A(u;) — A() (f(u3) — F)(D¥o + )

N /uj (sign. (A(z) — A(u)))'(f(2) — f(u))dzD T
- /u(Signe(A(Z) — A(u))) (£(2) = f(uy))dzpy.

J

Let

m= //H% /uuj (sign_ (A(z) — A(w)) (f(2) — f(u))dzD*pdX,  (3.21)

Y2 = //H2 / (sign,_ (A(z) — A(u;))) (f(2) — f(u;))dzp,dX, (3.22)

T VU

V3 ://H /%M YL(z,u)Fy(2)dzD T pdX. (3.23)

T VU

We obtain from the inequality
J[ =l +ax
[ , S(4(05) ~ AW ) = F)D ™ +2,)dX
+ [ 14w) = A@LD"D e+ 2D% 0, + )X s

2
T

>y +1v+R (3.24)
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The next task is to chose ¢ in a clever way. Let w € C§°(R) be a function
satisfying

supp(w) C [-1,1], w(o) >0, /w(a)do =1
R
and let w,(0) = Lw(o/r). Let v < 7 be two numbers in (0, 7). For any « define
¢
Hozo(t) = / wao(g)d& and X?,Bﬂ—)(t) :Hozo(t_y) _Hao(t_T)'

Furthermore let
Kq(x,t) = (L — Mt)a+ 1 — alz]

and x{7, LT)(:c,t) = max (0, min(1, K,(x,t))). That is

1 it |z < (L — Mt),
X(onn(@t) =4 Ka(z,t) if (L—Mt) <|z| < (L—-Mt)+ 1,
0 else.

Here L; and L, denote the lines defined in theorem 3.1l Let

(e, t) = X2 (DX 1 (1)
and
(p((E, ta y) S) = \II(‘T’ t)wT(‘rE - y)wTo (t - S)'

To make sure that supp(¢) C 112 let 0 < ap < min(v,T — 7) and 0 < ry <
min(v, T — 7). We let w = wyw,, and remark that this should not be confused
with the w defined above. Observe that ¢ has some very important properties:

ot + s = Yy,

Pr + Py = ‘I]zwa
Using difference quotients instead of derivatives these properties are not directly
involved, but as long as the difference quotient parameter Az tend relatively
fast to zero compared with r and rg these properties still approximatly apply.

This will be seen in the following computations. Before going further we include
a list of elementary results. These results will be used without reference.

Lemma 3.2. Let L > MT + Az and define
1
A={(z,t)[(L - Mt) < |a| < (L - Mt)+—},
Anz = {(z,t)|(L — Mt) — Ax < |z| < (L — Mt) + 1 + Az}
o

Let xa, XA, denote the characteristic functions of A and Aa, respectively.
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Then the following computations and estimates apply for all t € [0,T]:

(x*(z,t))t = —Maxa(z,t)
(X*(z, 1)) = —(sign(z))axa(z,1)
DTK(z,t) = —aD™(|z|)

|D+Xa| < AXAnq

D™D (x*)(z,t)|dr = 4o
R

/ |IDT X (z,t) — (X*)z|dz < 4Aza
R

/RXA(:E,t)dx =

/XAM (x,t)dx =
R
1
/ x*(z, t)de = 2(L — Mt)+ —
R

(0%

+4Ax

Dl 2w

T T
/ / x%dxdt = (2L — MT)T + —
o Jr e

The proof of these statements are left to the reader. The next task is to find
out what type of inequality we may obtain from (324 with this choice of test
function ¢. Consider the first term on the left in ([B24]). Let us split it into
positive and negative parts.

S oo =i+ ax
// — UwWea, (t — V)X wdX — // — UWea, (t — T)x*wdX
Iz, Iz,

— / . Maluj — ulxax*wdX = 61 + 63 + 3.
Consider the second term in (BmZ) We add and subtract to obtain
/I , s (A) = A ) = F) Do+ )X =
I S0 (4() — AT 15) = F@) g+ )X
+f , S0 (4() = AT 1) = F) (D™~ e2)aX

=B+ Bo. (3.25)
Observe that
03+ fp1 =
I , @l (A~ AW () () ~ (00) = Mg~ xax™ X
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= //H a (1 (uy) = FQ)] = My = u]) xax*wdX.

Since M > || f|lLip we have d3 + 81 < 0. By (3.24)

S s = s = )i + 5o
7

4 / / A(y) — A@)].(D™ D o + 2D 0y + 9yy)dX + 73
112,

> // [uj — wlwa, (E — )X wdX
7
— (034 B1)+m+r+R

It follows that
S s = w6 = )X + B+l + sl +
7
+ [ 1) - A@ID™D o+ 2D% 0, + o)X + R
T

> // [uj — ulwae (t — T)x“wdX. (3.26)
7

3.3 Finding the rate of convergence

The subject of this section is to show how and at which speed the “unwanted
terms in ([320]) tend to zero as the small parameters Ax, o, ag, €, r and ry van-
ish. Note that Az and 7 are the parameters which define the approximations
while the other parameters can be picked freely in order to optimize the rate of
convergence.

In these computations we let C' denote a generic constant. By constant it
is meant that it does not depend on the small variables but it might depend
on L, M and T. Similarly we let T' = T'(Az,n, a, ag,r,79) denote a generic
function with the property that it is locally bounded, positive and increasing in
each variable. Note that given I'y and I'y we can always pick I' = max{T';,T'2}.
That is, taking the maximum of two increasing functions we obtain an increasing
function. Thus we may work with this class of functions in a similar way as with
constants. The following simple computation should be kept in mind while
simplifying the expressions below. Given two positive functions f and g we
have

Dif+Teg <Tf+Tg=T(g+f)

We are going to need some more elementary results.
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Lemma 3.3. The following estimates apply:

|D* (wr(z —y))| < Hw/HL‘X’(]R)%X{|x7y|§r+Az} (3.27)
|(wr(z = y))a| < ||w/||L°°(]R):_2X{|x7y|§r} (3.28)
|(wr (2 = Y))aal| < ||w”||L°°(R)Ti3X{\zfy\§r} (3.29)
D%, — (@)l < 6l ) a Xitemyire ) (3.30)

Proof. The proof of these statements are elementary computations. To show

B27) note that
supp(D wr(z —y)) C {(2,y) | lv —y| <7+ Az}

Now, consider w;, as a function of one variable. By the mean value inequality
| DFw, || oo (r) < |[(wr)'|| Loe(my. Differentiating gives
1 o 1
/ _ / /
|wy (o) = |r—2w (;)| < 7,—2||w | oo (m) -

The proof of [3:28)) and ([3:29) are similar. The proof of ([3.30) follows by the
Taylor expansion of w;.. O

We start by considering the term Sz defined in (B:25).

ol < T(ama) (55 (14 57)).

Estimate 3.1.

r2a r
Proof. Since both [[u;| e () < [[u°|| ooy and ||ul| poe(r) < [[u°]| Lo (r) it follows
by the Lipschitz continuity of f that |f(u;) — f(u)| is bounded independently

of n and Az. We need to estimate ||[Dty — ¢xll1(mz). Differentiating and
comparing terms we obtain

Do — ¢, = (DTY — VU, )w,wp + U (D w, — (Wr)e)wry + (\IIAI — ) DV w,w, .-

Therefore

D% = eullisgy < [ DT Waldzat + [[ WD, ()l
Ty 2,

+// |2 — 0| DY w,|wy,dX.
e
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We can now consider each of these terms.
/ |DYW — U, |dzdt < / XD X — (x¥)z|dzdt < CAza.
HT 1—IT

Ax
// \I/|D+WT — (Wr)z|wrdX < 0—3 // ‘IIX{|m—y|§r+Az}wrodX
Iz, r Iz,

A A 1
< C—f(r+A:c)/ Wdzdt < C=5 (r + Ax) (1+ —).
r My r Q@

// | T2 — || DFw,|w,dX| < Az// | DT || DY w,|w,,dX|
LE LE

< CaAac

//2 XQOX/\AmX{\zfy\STJrAx}wrodX
17,

SCQAQz(r+Az) (lJrA:c).
r o

Collecting all the terms we obtain
ID*p — <Pz||L1(n2T)
Az A A A
<C<Aaca+— <1+—z> (1+a)+r—2z <1+Tz) (1+an)>.

The result follows by this inequality. [l

Let us consider the double derivative term (3.I2). Before doing the compu-
tations below, observe that DY D~ = D~ D™.

Estimate 3.2.

(BIY)| < Ca+T(Az,a) (% (1 + %)) _

Proof. Observe that

D=D*(p) = D= (¥2*D*w + DT Ww)
= DYU(D W) A + U2 DT DT w
+ D D w2 + DTUD w,
2D*(p), = —DTU(W)2* + DT (w), — DTVw, — TA*Dtw,,
Pyy = —P(wa)y.

By Leibniz rule

D™D o +2D%p, + ¢y, = D™ DTVW™A" + DT(U(D™w — w,))
+U(DYw —wy)y, + DTU(D~w —wh®). (3.31)

Let us estimate each term separately. First note that |A(u;) — A(u)|. is bounded
independently of 7 and Az. Hence

|// (u)|. D~ DT Vw22, dX| < Co.
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The next two terms can be estimated using integration by parts.
S, 1409) ~ A@ID* @D X
= f/ . D7 A(u;) — A(w) [ U (D™ wy — (wy)z)wrydX
1—IT

- //H sign. (A(&) — A(w) (D™ A(u;) ¥ (D~ w, — (@), )wr,dX

T

for some & € int(uj_l,uj). Recall that HD_A(UJ‘)HLl(HT) and HA(u)yHLl(HT)
is bounded independently of 7 and Az. Applying lemma [3.3]it follows that

// D~ A(uy) [ WD~ w, — (wr)o g dX
7
A A
< Cr—s(r + Aw)/ U|D~ A(uj)|dzdt < Cr—gx(r + Az).
IIr
Similarly

I//H [A(uj) — A(W) | ¥ (DT wr — (wr)e)ywr, dX| < C’%(r + Az).

To estimate the term associated with the last term on the right of [B31]) we
split it the following way:

// A@) [ DFU(D w0y — ()27 orgdX
// A(w)|e DU (D™ w, — (wy)z )wr, dX
— Az // A(u)|c DT (DY w,)pwpdX.
Now
|// u)|c DT (D™ w, — (w2 )wrydX |
o 1
< CAz—(r+ Az)(— + Ax)
T a
Ax|// A(u)|c DTU DT (wy.) pwp, d|
Ael(r+ Ar)(E A
<C zr—3(r+ x)(a + Az).
The result follows by collecting all the terms. O

Estimate 3.3.
€ Ax
Iyl + 172l <T(a,r) (_ (1 + _)) _
anr r
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Proof. We start with the term ;. Consider the integral
u;
I= [ sl (AG:) — A@)(() - F) A ()
By the mean value theorem |A(z) — A(u)| > n]z — u|. Let K = ||| Lip, then
K
[F(2) = fw)l < Kz = ul < Z1(A(z) = A(w)].

Observe that sign(u; — u)(A(z) — A(u)) = |A(z) — A(u)] for all z € int(u;,u).
Let o(z) = |A(z) — A(u)|. Then o'(z) = sign(u; — u)A’(z). Recalling that sign.
is symmetric we can make a change of variables.

K, [
1] < ;|/ sign; (A(z) — A(u))|A(z) — A(u)|A'(2)dz]
K [owi) .
<[ sl (o)) - Aw)de
0
K [* 2
< —/ sign’ (o)odo = K< <1 - —) .

nJo n ™

To finish the estimate we need a bound on [[DF || (2. Note that

1
DT o] < axan, X wrwr, + ‘I’Mﬁxww—y\gmmwm (3.32)

and so

A
// DV pldX < a/ XAa, X0 dxdt + T+2 x/ TAL drdt
Iz, Ir r Mz

Az

<C <(1 + Aza) + éa + 250+ a)> . (3.33)

T
Therefore

A
;1;2(1 +r+a2r2)) .

3 g
| < € (—(1 + o+ ar) +
anr naor

72| is estimated in the same way. Just note that [, < CH Uy ,_y<rwr, SO

// loy|dX < g/ Udzdt < E(1—|—0¢).
H%, T r rox

£
|72l SCW (1+a).

Hence

Estimate 3.4.

ol < ) (5 (14 52)).
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Proof. Since F is Lipschitz in each variable Fj(z) is bounded. Hence
Uj+1
| / sign, (A(2) — A(u))Fy(2)dz| < CAz|D* ).
u;

Now, ||D%u;(-,t)||L1@) < C which is independent of Az since |u;(-,t)[py <
|U]O‘|BV < [u®| gy by lemma(EI). We use ([B.32) to obtain the following inequal-
ity:

/]’|D+qu+wa
1%,

A
Sa/ |D+uj|XAdedt+Cr+ i
IIr

r2

/ | DT | UAT dadt.
IIr

Hence

1 A A A
|vs] < CAx <o¢+—+—2x) SC’—x <(1+OAT)+—$(1+OH’>>.
roor r r

We are now left with the terms contained in &.

Estimate 3.5.

A A A
< D) (o4 (224 22) (14 50))
rono er ar T

Proof. We start by the first term and continue until we have reached the end.
BI3) Note that |A(z) — A(u)| > n|z — u| and
sign, (A(z) — A(u)) = sign(u; — u)sign_(|A(z) — A(u)])

for all z € int(u,u;). Let ((2) = 52|z — u|. Then we have

Uj

[luj = ul = e (uy, u)] = / sign(u; — u) — sign. (A(z) — A(u))dz

u

= sign(u; — u) /uj 1 —sign, (|A(z) — A(u)|)dz

< sign(u; — u)/ 1 —sign,_(n|z — ul|)dz
2¢  [S(u)) €
== 1 —si ¢ < £
) (1 —sin(¢))xc<n/2d¢ < ;

Consider [|¢¢[|z1(rz). First differentiate to obtain

// |g0t|dX§/ |\Pt|dzdt+// Vw,|(wry )t |dX.
2. Iy 117,

We may now estimate each of these terms.

1 1
// Vw, |(wr )t ]dX < C— Vdxdt < ¢ (1 + —> ,
H% To It To (0%
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/ |\Ilt|d:cdt</ [(x*°): |X”‘dzdt+/ XY (x®)¢|dadt
IIr

IIr

(L+1/«)
Xy (t) = Hoo (t—v)—Ha, (t=7) / / (e (=) Fwag (t—7))dazdt
’ (L+1/a)

1
+ Ma/ X xadxdt <4 (L—i— —) +2MT.
10 @
It follows that o
leell iz < To—a(l +70)(1+ a).

Hence

g
<T
(BT < Dlewro)

This term may be estimated as BI3)). Note that |ps| = Yw,|(wr, )¢ and
thus by the above computations

|BI14)| <T(a)

rona’

This term cancels with the term (BI6). To see this we rewrite (310)
according to the following equalities:

sign, (A(u;) — A(u))A(u)y DT Auy) = — (sign.(A(u;) — A(w)) DT A(uy))
_(D+|A(Uj) — A(u)e)y
+(sign. (A(6;)—A(u)) — sign. (A(uj) — A(u)))y DT A(uy).

Y

and
sign. (A(7;) — A(u)) D™ A(u;) A(u), = D sign. (A(u;) — A(u))A(u),
—(DT[A(uy) — Au)|e)y-

Hence

(signZ(A(7;) — A(u)) — sign (A(u;) — A(u))) A(u)y D" A(uy)
= (sign.(A(u;) — A(u)) — sign_(A(6;) — A(w))), DT A(u). (3.34)

By (3.34) and integration by parts the two terms cancels.

To estimate this term note that |sign’(z)| < g So by the mean value

inequality we obtain -
. . Ax
[sign. (A(u;) — Au)) = sign.(A(0;) — A(u))] = C— D" Auy)]  (3.35)

since 0; € int(uj,u;41). We are left with a similar computation as in
estimate 341 Hence

Ax 1 Az Ax Ax
<(C— -+ — | <T — (1 +—.
@) <2 (o 24 57 ) srnSE (1457

r
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BI8) Let us first split (BI])) according to the following equality:

signl (A(u;) — A(u))p — signZ(A(r;) — A(u))p™*
= sign’ (A(u;) — A(u))(p — ¢>7)
+ (signl (Auy) — A(w)) — signl, (A(r;) — A(w))) % (3.36)

The first term on the right gives rise to the term

//n sign (A(u;) — A(u))(p — ¢27)(A(u)y)*dX

= Az //H2T sign, (A(u;) — A(u))A(u)y DT pdX.

Recall that A(u), is bounded independently of Az and 7, and hence we
may use ([B.33) to obtain

[ sientatw) = Aw)(e - ¢ (Aww), x|

cran (22 (1429)).

We now consider the second term on the right of ([B36). We would like
to use equation ([3:34)), but the factor DT A(u;) is missing. The key is to
observe that whenever Dt A(u;) = 0 we have u; = uj1;1. It follows since
both 7; and 6; belongs to int(u;,uj4+1) that

(signz(A(7)) — A(u) — signi (A(u;) — A(u))) Alu)y
= (sign. (A(u;) — A(u)) — sign. (A(6;) — A(u)) . (3.37)

Using this equation and partial integration we obtain
J[ Gentatu) = Aw) = siel (A7) = A) (Alw), 77X =
J[, sien(406)) = Aw) = sign. (40 = Aw)) (Alu),°7),dX.

We may now apply ([335). Since DT A(u;) is bounded and both A(u)y,
and A(u)y is in L*(II7) it follows that

1
J[ 10 Al + Ay eptiax <0 (1 41)).
2

Hence

T er

A A A
(BIR)| < D(ew,r,70) (a—f (1 + x)) +T(r) =2,
The result now follows by

R <|BI3)| + |BID] + |BID| + [BIF)-
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Let us turn back to inequality (3:26]). Define « by
- //112 fx,t,y, $)way (t — )X (x, t)wy (T — y)wy, (t — s)dX.
T

By the triangle inequality we have
uj(@,t) —uy, s) < fu;(z,t) —u(z, )] + |u(z,t) —u(y, )] + [uly, t) — uly, s)l,
|uj (‘rE, t) - U((E, t)' < |uj (:Ea t) - u(ya S)' + |U(y, S) - u(ya t)l + |U(y, t) - U(.’L‘, t)l

Recall that |u(-, s)|pv is bounded independently of 1, s and Az. Using lemma
and the L' Lipschitz continuity of  in the time variable we get the following
bounds:

Fu(lu(z, t) —u(y, 1)) < Cr and K (|u(y, s) — u(y, t)]) < Cro.
It follows that

koo (Jug (2, 1) — uly, s)|) < ko (Juj(z,t) —ulz, t)|) + C(r + o),
for (Jug (1) — u(e, t)]) < rr(Jug(@,t) — uly, s)]) + C(r + o).

We add C(r+ro) to both sides of ([8.26]). Using the inequalities (B.38]) we obtain

(3.38)

ko (|uj(z,t) —u(z,t)]) +2C(r +710) + Bo + 1| + 72| + 73
+f / AW(D™ DY+ 2Dy + )X + R
> fir(luj(2,t) — u(z,t)]).
Combining all the estimates we get the following inequality:

rr(Juj (2, 8) —u(z, 1)]) < mo(fu;(e,t) —u(z, 1)) + C(r + 0 + a)

A A A
+ (o, Az, 7y 10) (i—i— ° +_x+_x) (1+—x).

anr  amrg 12 er r

Observe that we might let oy go to zero. Since

ol lusovt) = (o 0) [ Jua, ) = ule, p) 3 o )

as ag — 0, we obtain

L,(7)
/ luj(z, 7) — u(z, 7)|de < / luj(z,v) — u(z,v)|de
Li(7) R

Ar A A
+C(r+r0+a)+r(a,m,r,ro)(i+ - +—$+—x) (1+—x).

anr  amrg 12 er r

Let us pick a relation between the parameters. These are of course picked this
way to optimize the convergence rate in the final result. Let « = r = rg =
v, €= a® and Az = a”. Why we pick 7 this way will become clear below. As
I is increasing, and Az is assumed to be smaller than some constant there is a
constant C' such that

[ 7) = als Dl (Lo(). L)) < Mg v) = uls )|y + Ca
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Recall that 79 < v. Let us pick v = 2rg. Then the L! Lipschitz continuity of
both u; and u combined with lemma [5.]] implies that

lJui (- v) —u( V) <
lJug (-, v) = w5 (5 0) Loy + Il (-5 0) — ul-, 0)[[ Ly + [Ju(-, 0) — (-, v) |11 (r)
< C(ro + Az).

Therefore
llui (- 7) =G e i), Loy < Ce
Let u = u" and u; = u] and u denote the solution to (ILT)). Then recall that

lu(-,7) = u(-, )| L1 () < CV/n.
Using the triangle inequality we get
lu(,7) = ul(, PllLr (i), Lory) < OV + @) = CV AR,

This finishes the proof.
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4 An error estimate for the fully discrete ap-
proximation

The subject of this chapter is to obtain a similar result for the fully discrete
approximation defined in section The approach is exactly the same as for
the semidiscrete approximation, and so the task is to track down the differences
and the dependency on the discretization parameter At. Let {u;’} satisfy the
implicit monotone scheme (ZI0) with A = A". That is

D% + Dy F(u},u} ) = Dy DFA"(u?), (j,n) € Z xN,
ug-) = fI‘ u®(z)dz, Jj €.

Let z; = jAz and t" = nAt. Then define the squares

{ (@172, Tj4n/2) X ("2, 7F2)if (j,n) € Z x N,

¢y = (Ij_1/2,$j+1/2] X [O,At/Q] lf] € Zand n = 0.

J

The discrete approximation is the stepfunction also denoted by uj. That is

uj(z,t) = Z Z ujxen ().

j n=0
Let us first state the result.

Theorem 4.1. Suppose that u is the entropy solution to (L) and that uj is the
discrete approximation defined by (2I0) with A = A" where n = (Am)% If u
satisfies (1) and (ii) from section[3, then there exists a constant C independent

of Ax and At such that
||u(, t) — ’UJ?(, t)”Ll(Ll(t),Lr(t)) S Cmax{ \/7 ASC, \3/ At} t c (0, T)
where Li(t) = =L+ Mt, L. (t) = L — Mt, M > ||f|lLip and L > MT + Azx.

The proof of this statement is provided in the rest of this chapter. It is
very similar to the proof of theorem 3.1l In order to avoid repeating the steps
already done in chapter 3], the approach is to give corresponding terms the same
name and take the results obtained by merely interchanging u; with v} for
granted. Define 7' and 07 analogous to the sequences defined in lemma B
Let u = u(y, s) be the viscous approximation defined by ([[2]). We may rewrite
the continuous equation as in section BTl Next, we want to reformulate (Z10)
in a similar way as done in section with the semidiscrete approximation.

Using the Taylor series of ¢, (-, ¢) we obtain

_ n n _ . At n W
D, 1/’8(“ja¢) = wé(“jaC)Dt Uj — 7%/(4} ,¢)(Dy Uj)2 (4.1)
for some (7' € int(uj, u?il). Multiply (ZI0) with ¢.(u],c)¢ and integrate in

time and space. Using (A1) we get

D;wE (’U,;L, C)Sﬁ + 7/’;(“;17 C>D;F(uyv u;lJrl)@d'rdt
Il

_ n — —+ n
= | w;(uj ,¢)D, D] A(uj Yodxdt
T

At .
7/11 SN Dy ) pdadt.
T
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Except for the last term on the right, this equation is very similar to (34). By
the same manipulations as in section B.1.2] we obtain a similar equation. Adding
up the two equations we get

// [ — ul(Df ¢+ pa) — (Wl ) Dy F(ulluly) + qu, €)y)pdX  (4.2)

- / /H sig (A7) — A(w) (DF (A(u}) — A(u),)” ¢2%dX (4.3)
- [ 14G) = AI(D5 DE ¢+ 2DF g, + o)X (14)
[ =l = ot D pix (45)
+ //H2 (Jlu— u?| — 1/}€(u,u?))<pst (4.6)
+ [ oA - Atw)-
sign_(A(0}) — A(u)] D A(u}) )" dX (4.7)
+ [ Benia) - Aw)-
sign;(A(u?) — A(u))]A(u)yD;rA(u?)goAde (4.8)
+ //H2 [sign_ (A(u]) — A(u))—
signE(A(G;-’) - A(u))] D:A(u?)D:gadX (4.9)
+ [ | A - aa)e-
sign’ (A(TJ") — A(u))cpAz] (A(u)y)QdX (4.10)
// —1/)” )(D_u") pdX. (4.11)

4.1 Obtaining the inequality

Let us chose ¢ in the same way as in section with one minor exception.
Since we are using difference quotients instead of the ordinary derivative in the
variable ¢, we do not need ¢ to be smooth in this variable. Hence we use x{,,(t)
instead of x*°(t). Note that

1
D;_X[u,r] (t) = dar(t —v) — dar(t — 7) where 0aL(t) := A_tx[_At’O] (t).

Introduce the numerical entropy flux

n
Uj+1

Qe (uj,ujq) = qe(uf,c) +/ (2, c)Fy(2)dz,

s
J

and let

R o= @) + -+ @I0).
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Removing the positive terms on the right hand side and applying lemma 2.5 we
obtain the inequality

JI 1 =D+ 00 = (D7 Qe ) + gl ), )X
T
+ [ 1A ~ AI(D; Dig +2DF 0, +p)aX = R (412
nz

Consider the term including the numerical entropy flux. We do the same compu-
tations as in the semidiscrete case and defines v1,v2 and 3 as in (3.21)),([3.22)
and [323). The inequality corresponding to ([B3:24]) then takes the following
form:

//H [uff —ul(Df o+ ps)dX
+ / /H sign. (A(u}) — Aw)(f(uf) = F(w)(DF ¢+ py)dX

2
+ [ 1) = AWIAD; DEe + 2DF 0, + )dX +
HT
>y +yr+R (4.13)

Consider the first term on the left in ([@I3).

[y = alop e+ pujax
17
_ // i — (D W™+ U(Df w — wr))dX
7
= // [uf — u|Df YwdX + At// [uf — u|Df WD wdX
17, 17,
+ // luf — u|U(Dfw —wy)dX =T + (1 + Co.
17,
Using Leibniz rule we obtain:
T = // | — ul X X, rwd X + // [} —ul (D X = X)X, rwd X
17, 17,

+ // |’u’;l - ulXaD:rX[V,T]WdX + At // |U’j - u|D2_XaDjX[U,T]dX
17, 117,
=:03 + (3 + 1o + (4.

Furthermore

Ty = // |uf — ulx*oa(t — v)wdX — // |uf —ulx*oa(t — T)wdX.
17, 17,
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The terms $; and 3 are defined as in ([3:23]). Collecting these computations we
obtain the inequality

4
// |uf —ulx*oas(t — v)wdX + B2 + Z Cx
17 k=1

+ [ 1AGE) = A@ID™ Do+ 2D, + )X + 5
T

> // [uf — ulx*oas(t — T)wdX
7
— (s +B1)+tn+rtR
As M > ||f||Lip it follows that d3 + 81 < 0. Hence

4
It = ot = v + a4 bl + bl + 5+ 3 G
1% k=1

4 / / AW — A(u)]o(D Do+ 2D% 0y + pyy)dX + R
112,

> // [uj — ulx*oas(t — T)wdX. (4.14)
oz

4.2 Finding the rate of convergence

Comparing ([@I4) with (3.26)) it is clear that there are only some minor changes.
We consider these and take the results obtained by merely interchanging u; with
uj for granted. Note that interchanging x*° with x|, -] amounts to taking the
limit a9 — 0. One may therefore apply the Lebesgue dominated convergence
theorem to ensure that this interchange does not cause any problems. First
consider some useful elementary estimates.

Lemma 4.1. Let
Aar ={(x,)|(L — Mt) — At/M < || < (L — Mt)+1/a+ At/M}.

Then the following estimates apply:

DX < Maxas,. (4.15)
D wny| < ||w’|Lw<R>%xs_t§m+At, (4.16)
D gy — ()l < ||w”|Lw<R>%x|st|<m+m, (4.17)
/|DZFXQ — Xt ldt < 2AtMax |z <41/ (4.18)

Let us start by considering the terms {(;}3_;-

Estimate 4.1. A
At At
Z |<k| < F(Oé,?"o, At) (1 + _) :
k=1

Qaro To
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Proof. (1) Recall that [u} —u| € L>(I17) and so
1
G| < OOt (ro + A8 DF ¥l 1)
0

Consider ||Df ¥||11(11,,). Using Leibniz rule we obtain two integrals that
may be estimated separately.

// |D;"XG‘(X[V7T])At|dzdt < T(M + 2aAt),
IIr

L+1/a T 1
// X D3 X |dadt < / / | D Xy |dtda < 4 (L + —) .
r —L-1/aJ0 «

It follows that || D} W1,y < T'(c, At)L. Hence

Q] < T(a, A2 (1 n ﬁ) .

Tox

(¢2) By the above lemma

At
// uf —u[¥(Dfw —w)dX < C—5(ro + At) // Udxdt.
Iz, o

IIr
6] < () 2L (1+§>.

Tox To

Hence

({3) This also follows by the above lemma.
|Gl < // |uf — || DX = X7 Xy, rwd X
17,
< C’// |Dfx® — x§|dtde < T'(a)At.
IIp

¢4) Consider the L' norm of D;f x*D; x1y 1.
t t X[v,7]

||D:_XQD:_X[V,T]HL1(HT)
< Ma / / aw, (Oaet — V) + Oas(t — 7))dwdt
Il
< 4(M + aAt).

Hence
|C4| < T(a, At)AL.

The proof follows by collecting all the terms. O

Let us look at the terms in . Considering estimate we observe that the
computations apply in this case as well with one exception. In the term (&3]
we have exchanged ¢, with D;f ¢ so we need to find a bound on ||Dj<p|\L1(H2T).

C
1D @l < IDF Wl + 150+ A1 /H dlrdt,
T
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By the above computations
1 At
D 2y < T — |1+ —.
IDF el m < Tlaro) 1 (1421
The above discussion implies the following result:

Estimate 4.2.

A Az A A
I%ISF(a,r,ro)( : (1+—t)+(—x+—x) (1+—$)>.
ronQ 0 er ar r

Considering 1, v2, 73, the double derivative term (&4]) and 2 we may apply
the same estimates as in the semidiscrete case with w; interchanged with .
Let

67 o= [ 10t 9)5lt = i 2 = iy ¢ = 5)aX.

By the same argument as in the semidiscrete case

4

ro (| (2,8) = u(, 8)]) +20(r +70) + B2 + [yl + el + 73+ D G
k=1

+ [ 1AW ~ AL(D; DEv +2DF 0, + )X + R
7
> ol a.t) ~ e B)). - (419)
Combining the estimates we get

rr(Juf (2, 1) —u(z, 1)]) < ko (fuf(2,t) —ulz, 1)) + C(r + 710 + a)

A Az A A
+ (e, Az, 7, 10) (iJr : (1+—t) +—$+—$) (1+Tx)

ro r2a  er

+ (e, 1o, At)ﬁ (1 + g) .

aro To

Let o =7 =1y = /7], € = . Let @ = max(V Az, VAt). Then o’ > Az and
a3 > At. Recall that Az is less than some constant. We may assume that the
same applies to At. Thus there exists a constant C' such that

H,,—(|u;-l(1', t) —u(z, t)]) < nl,(|u?(z, t) —u(x,t)]) + Ca. (4.20)

In the semidiscrete case we used the Lipschitz continuity of both u; and u to
finish the estimate. Since u} is piecewise constant in the time variable we need
a slightly different approach. Assume that g = ™ + At/2 for some n € N.
Observe that uf(z,t) does not depend on ¢ for t € (u — At, ], so by the Lt

Lipschitz continuity of v and the reversed triangle inequality

1 H n n
< —/ Ml () =ul Ol pr oy, n e =6 ()=l ) 121 (Lo (), 20 1
At a,

1 I
<o [t = ol g 2 < CA
At p—At
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Furthermore

([ (2, 8) = u(@, DIX (L1 0. Lo () (@) = Ru(uf (@,8) = ulz,B)])] < CAL

Assume that 7 = t" + At/2 and v = t"™ + At/2 where n,m € N. Then by the
above estimates and (£20) we obtain:

[0 (5 7) = wls Dl Lom). Loy < i G v) =l V)| + Ca

The next observation provides a useful substitution for the lack of L' Lipschitz
continuity.

luf (- t) —uj (- 8)l|Lrwy < CO(|t — s| + At) t,s > 0. (4.21)

This follows by observing that there exist integers p,q > 0 such that [t? —t| <
At/2, [t? — s| < At/2,u}(-, ) = ul (-, t7) and u?(-, s) = u} (-, t?). By lemma 23]

[[uf (- 8) = uf ()l = lluj — uilly < C(Atlp —ql) < C(|s — 1] + At).

Recall that we assumed rg < v. Let v be such that rg < v < rg + At. By the
triangle inequality, (Z21)), lemma 51l and the L' Lipschitz continuity of u

[[uj (- v) —u(, V)l w) < Clro + At + Az). (4.22)

Hence
[uwj (- 7) = u(s T2 Ly (r), Lo (1)) < Ca

By the same reasoning as we used to obtain (£22) we may show that this
inequality applies to any 7 € (0,T"). The theorem now follows by (L) as in the
semidiscrete case.
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5 Appendix

Here I have collected some results which I decided not to include in the main
text. This is either because they are elementary results written down to convince
the author, or because they serve rather as background than as a part of the
proof.

Lemma 5.1. Let x; = jAx and
u? = AL/ u®(z)de, I = (xj_1/2, %41 /2)-
z /g,
Then
1. [u|pv < |u’|py
2. [[ufll Lo < [lu®] Lo

3. |ud —uOllprmy < $lul|vAx

Proof. Let
[l (z+€) —u®(a)|
g(&) = f]R €] dv £70
0 £€=0
and note that [u°|gy = ||g]|co-
1.

S, e
0 0 0 0
;| J+1 J| ;AQE| L I |
1 0Az 0 / |(u%)2* —
= B — — < N -1
XJ:A$|/IJ(U) udm|_zj: ; e dx

= g(Az) < [u°|py

2. This is obvious.

Az /2
/R|u2—u0|dac:/ |/AI/2 (x+€&) —u (m)d§|dx

Az/2
/A‘T/Az/Q |u® (z + &) — u®(z)|dédx

1 Ax/2

3.

Ax
= — de < =20
i I€lg(€)dE < 1 [u”| By

Lemma 5.2. Let u € BV(R) and w be a mollifier. Then

/ () — u(y)lwr (& — y)dedy < (fulpy)r
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Proof. Let

£=0
and note that |u|py = ||g]lco. Let © =y + £ and observe that

9(6) = { Jg i €20

/ () — u(y) |, (& — y)dady = / fuly + €) — uly) wr(€)dyde
- / Elg(€)n(©)dE < (Julsy)r

O

Lemma 5.3. Let f: R — R be Lipschitz continuous with lipschitz constant K.
Then

| / F(E)omelt — it — F(u)| <

for any 1 € R and Sar(t) = 2 x (- ac0) (D).
Proof.

[ 1o =i g1 = 51 [ o)~ sy

—At
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