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Introduction

This thesis is based on the article [15] by K. H. Karlsen, U. Koley and N.
H. Risebro. The subject of the article is to prove an L1

loc error estimate for
semidiscrete first-order finite difference schemes for nonlinear strongly degener-
ate convection-diffusion equations in one space dimension. More precisely they
show that the L1

loc difference between the approximate solution and the unique
entropy solution converges at a rate O(∆x1/11) where ∆x is the spatial mesh
size. In addition they prove that it converges at a rate O(

√
∆x) if the diffusion

therm is linear. In this thesis I present a convergence rate of the order O(∆x1/7)
in the nonlinear case, and prove a similar result for the fully discrete implicit
scheme. The results are generalized in the sense that they apply to more gen-
eral schemes. This is done by the introduction of the numerical entropy flux
inspired by the article [17]. I also include the existence, uniqueness and some
basic estimates on the semidiscrete scheme that is needed in the proof. Most of
the ideas and techniques are taken from [15] and the results in this thesis should
be seen as a continuation of the work therein.

Finite difference schemes for hyperbolic conservation laws is a well developed
subject and there exists an extensive literature. See for instance [22] or [14].
For an approach using the kinetic formulation see [25]. These methods have
long been known to converge at a rate O(∆x1/2) and this is indeed optimal for
discontinuous solutions ([19, 14, 25]). In the case of strictly parabolic equations
the solutions are smooth and more standard techniques have long been available.
Concerning numerical methods for strongly degenerate problems, there has been
a growing interest the last decade and there exists several articles considering
different approaches. A list of articles is provided in [15]. As stated in [15],
many of these articles show that the approximate solutions converge to the
right entropy solution, but as far as we know, none of them provides a rate of
convergence.

The improved convergence rate in this thesis relies on the use of the piece-
wise constant approximation (3.1) instead of the piecewise linear approximation
applied in [15]. The use of a discontinuous approximation led to the use of differ-
ence quotients instead of derivatives. The advantage being that the difference
quotients appear naturally in the numerical schemes. From a more technical
point of view one should pay special attention to the equality (3.37) as the
improved convergence rate relies on this observation.
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1 Degenerate convection-diffusion equations

Consider the nonlinear, possibly strongly degenerate convection-diffusion prob-
lem

{

∂tu+ ∂xf(u) = ∂2xA(u), (x, t) ∈ ΠT ,
u(x, 0) = u0(x), x ∈ R,

(1.1)

where ΠT = R × (0, T ) for some fixed T > 0, u(x, t) is the scalar unknown
function that is sought and u0, f, A are given. The function f is called the
flux function and A is called the diffusion function. We make the following
assumptions:

• f is differentiable with f(0) = 0 and f ∈ Liploc(R).

• A is differentiable with A(0) = 0, A′ ≥ 0 and A ∈ Liploc(R).

The term strongly degenerate means that A′ = 0 on some open interval. The
class of equations under consideration therefore contains the heat equation, the
porous medium equation, the two phase flow equation and conservation laws.
We will be using the term nondegenerate. This means that (1.1) is uniformly
parabolic, which is another way of saying that A′ ≥ η for some η > 0. In the
nondegenerate case of problem (1.1) it is well known that it admits a unique
classical solution (See for instance [21]). However strongly degenerate equations
must be considered in the weak sense and will in general possess discontinuous,
“shock wave“, solutions. Considering weak solutions it turns out that we need
another condition to ensure that (1.1) is well-posed. The aim is to single out the
physically most relevant solution. The conditions obtained are named entropy
conditions, inspired by thermodynamical considerations (See for instance [22]).
Under the assumption of strong degeneracy the notion of entropy solution goes
back to Vol’pert and Hudjaev ([26]). These authors also proved general existence
and stability results in the BV class. However the uniqueness result therein is
incomplete (See [27]). The existence proof in [26] is obtained by certain viscous
approximate solutions. These are of fundamental importance in the present
thesis and provide a way to introduce the entropy conditions mentioned above.

1.1 Viscous approximations

Let Aη(u) = A(u) + ηu for some η > 0, u0 be in BV (R) and consider the
nondegenerate problem

{

uηt + f(uη)x = Aη(uη)xx, (x, t) ∈ ΠT ,
uη(x, 0) = u0(x), x ∈ R.

(1.2)

It is known that (1.2) admits a unique solution and that the solution opera-
tor has a strong smoothing effect. The problem (1.2) is an approximation of
problem (1.1) and, inspired by fluid dynamics, uη is referred to as a viscous
approximation. Let us collect some properties in a lemma.

Lemma 1.1. Let uη be the solution of problem (1.2). Then ‖uη(·, t)‖L1(R) ≤
‖u0‖L1(R), ‖uη(·, t)‖L∞(R) ≤ ‖u0‖L∞(R) and |uη(·, t)|BV (R) ≤ |u0|BV (R).

For a proof see [21]. Note that these results combined with the Lipschitz
conditions on A and f imply that we have the same type of estimates on both
A(uη) and f(uη).
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Lemma 1.2. Let uη be a solution to (1.2). Then

‖f(uη(·, t))−A(uη(·, t))x‖L∞(R) ≤ ‖f(u0)−A(u0)x‖L∞(R), (1.3)

|f(uη(·, t)) −A(uη(·, t))x|BV ≤ |f(u0)−A(u0)x|BV . (1.4)

Proof. This is outlined in [12]. Consider the equation

uηt + (f(uη)−A(uη)x)x = 0.

Integrating in space we obtain
∫ x

−∞

uηt (ξ, t)dξ + f(uη(x, t)) − (A(uη(x, t)))x = 0. (1.5)

Now, let v(x, t) =
∫ x

−∞
uηt (ξ, t)dξ and differentiate the equation with respect to

t. Then v satisfies the following non degenerate linear parabolic equation

vt(x, t) + f ′(uη(x, t))vx − (A′(uη(x, t))vx)x = 0.

It is then known that v satisfies the following estimates:

‖v(·, t)‖L∞(R) ≤ ‖v0‖L∞(R) and |v(·, t)|BV ≤ |v0|BV .

Hence solving (1.5) for v we obtain (1.3) and (1.4).

Note that ‖A(uη)x‖L∞(ΠT ) and ‖A(uη)xx‖L1(ΠT ) are bounded independently
of η provided that A(u0)x is in BV (R). The next lemma is an easy but important
consequence of the lemma above.

Lemma 1.3. The solution uη is L1 Lipschitz continuous in the time variable.
That is

‖uη(·, t+ h)− uη(·, t)‖L1 ≤ |f(u0)−A(u0)x|BV h

Proof. This follows from lemma 1.2.

‖uη(·, t+ h)− uη(·, t)‖L1 ≤
∫ ∫ t+h

t

|uηt (x, s)|dsdx

=

∫ t+h

t

∫

|(f(uη(x, s)) −A(uη(x, s))x)x|dxds ≤ |f(u0)−A(u0)x|BV h.

The results above imply that the family {uη}η>0 is relatively compact in
C([0, T ];L1

loc(R)). To see this we apply Kolmogorov’s compactness theorem
(See [14]) to prove that {uη(·, t)}η>0 is relatively compact in L1

loc(R) for each
t ∈ [0, T ]. Lemma 1.3 implies that the family {uη}η>0 is equicontinuous as
functions from [0, T ] into L1(R). The relative compactness now follows by the
Arzela-Ascoli theorem. The convergence rate in this thesis is going to rely on
a much stronger result obtained by S. Evje and K.H. Karlsen in [10]. Let u
be the limit obtained by considering some subsequence of {uα(n)}n∈N where
α : N → R

+ is some map such that α(n) → 0 as n → ∞. That is, let u be the
entropy solution defined below. Then there exists a constant C independent of
η such that

‖u− uη‖L1(ΠT ) ≤ C
√
η. (1.6)
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1.2 The entropy solution and its uniqueness

The intention of this section is to motivate the definition of entropy solution
and introduce some common notions. The discussion leading to the introduc-
tion of an entropy solution is a mere generalization of the theory developed for
conservation laws. In spite of this similarity, the question of its uniqueness was
left unanswered until quite recently. Furthermore we include a brief overview
of the historical development concerning this question.

Let u be the limit obtained by the viscous approximations. Under the as-
sumption that u is somehow the most ”reasonable” solution to (1.1) the obvious
questions are; which properties does the limit u satisfies, and which properties
should we demand of the solution in order to obtain uniqueness?

Let ψ be a convex C2 function and introduce the corresponding functions q
and ρ with the properties that

q′(u) = ψ′(u)f ′(u) and ρ′(u) = ψ′(u)a(u)

where a = A′. We call ψ an entropy function and q, ρ entropy fluxes. The triple
(ψ, q, ρ) is an entropy, entropy flux triple. Multiply the equation (1.2) by ψ′(uη)
to obtain

ψ(uη)t + ψ′(uη)f ′(uη)uηx = ψ′(uη)A(uη)xx + ηψ′(uη)uηxx.

Observe that

ρ(uη)xx = ψ′′(uη)a(uη)(uηx)
2 + ψ′(uη)A(uη)xx,

ηψ(uη)xx = ηψ′′(uη)(uηx)
2 + ηψ′(uη)uηxx

and so

ψ(uη)t + q(uη)x − (ρ(uη) + ηψ(uη))xx = −ψ′′(uη)(a(uη) + η)(uηx)
2.

Multiply this equation by a non-negative function ϕ ∈ C∞
0 ([0, T ) × R). Then

use integration by parts on the left hand side and note that the right hand side
is negative. We obtain the inequality
∫∫

ΠT

ψ(uη)ϕt+q(u
η)ϕx+(ρ(uη)+ηψ(uη))ϕxxdxdt+

∫

R

ψ(u0(x))ϕ(x, 0)dx ≥ 0.

It follows that the limit u satisfies the so called entropy inequality
∫∫

ΠT

ψ(u)ϕt + q(u)ϕx + ρ(u)ϕxxdxdt+

∫

R

ψ(u0(x))ϕ(x, 0)dx ≥ 0. (1.7)

Demanding that this inequality is satisfied for all entropy, entropy flux triples
turns out to be the right criteria. In fact this is also a sufficient condition for u
to be a weak solution to (1.1). Let ψ(u, c) = |u− c|. By considering ψδ(u, c) =
√

(u− c)2 + δ2 one may show that (1.7) applies to the entropy, entropy flux
triple (ψ(·, c), q(·, c), ρ(·, c)) where

q(u, c) = sign(u− c)(f(u)− f(c)) and ρ(u, c) = |A(u)−A(c)|.

ψ(u, c) is known as the Kružkov entropy function and it is sufficient to consider
this class of entropies in (1.7). Note that using the Kružkov entropies it is seen
that if u satisfies (1.7) then it is a weak solution to (1.1).
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Definition 1.1. An entropy solution of (1.1) is a measurable function u =
u(x, t) satisfying:

(D.1) u ∈ L1(ΠT ) ∩ L∞(ΠT ) ∩ C((0, T );L1(R)).

(D.2) For all non-negative test functions ϕ in C∞
0 (ΠT ) and all entropy,entropy

flux triples (ψ, q, ρ) u satisfies the entropy inequality

∫∫

ΠT

ψ(u)ϕt + q(u)ϕx + ρ(u)ϕxxdxdt ≥ 0.

(D.3) The initial condition is satisfied in L1 sense. That is

lim
t→0+

∫

R

|u(t, x)− u0(x)|dx = 0.

(D.4) A(u) is continuous and A(u)x ∈ L∞(R).

The uniqueness of such a solution follows from [16]. Note that condition
(D.4) applies to the limit u of the viscous approximations by lemma 1.2, and
hence the solution is continuously differentiable in the regions where A′ > 0.

The question of whether (1.1) is well posed or not is of fundamental impor-
tance. The discussion above describes how problem (1.1) can be reformulated
in order to yield a well posed problem. For this to be successful we need the
entropy solution to be unique. When discussing the uniqueness of entropy solu-
tions for degenerate parabolic equations one should keep in mind the diversity
of this class. The problem is not restricted to x ∈ R, the functions f and A
may depend on both space and time in different ways and there are different
assumptions on the initial condition. Because of this there exist numerous ar-
ticles with different assumptions. In the case of conservation laws, uniqueness
in L1 ∩ L∞ is a result due to Kružkov presented in 1970 ([18]). This proof was
not straight on adaptable to the more general case. The erroneous uniqueness
proof in the space BV that Vol’pert and Hudjaev proposed in [26] from 1969 is
based on the idea of developing a discontinuity condition. This type of discon-
tinuity conditions goes back to Olĕınik and is interesting not only as an entropy
condition, but also because it gives a more geometric description of the solution
([22, 24]). The discontinuity condition was corrected by Wu and Yin in 1989
and uniqueness in the space BV was established ([27]). In the purely parabolic
case (no convection term) the question of uniqueness in L1 ∩ L∞ was proved
by Brezis and Crandall in 1979 ([2]). This combined with Kružkovs theory for
conservation laws indicated that a L1 ∩ L∞ theory should be possible also for
degenerate equations. In his uniqueness proof Kružkov applied the, by now, fa-
mous technique of doubling of variables. This technique was further developed
by Carrillo who proved uniqueness in L1∩L∞ in 1999 ([4]). This result was later
generalized by Risebro and Karlsen in 2003 ([16]). Using the so called kinetic
formulation Chen and Perthame proved well posedness in L1 in 2001 ([6]).

1.3 An application to traffic flow

Degenerate convection diffusion equations are used to model phenomenons such
as flow in porous media([9]), sedimentation-consolidation processes ([1]) and
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traffic flow ([3, 23]). Let us take a brief look at the last case. The intention
is to sketch how problem (1.1) may appear in applications, and not to give an
introduction to this field. Consider a one-lane highway. Let ρ = ρ(x, t) denote
the car density at a point x at time t. This should be understood the following
way:

“the number of cars between x1 and x2 at time t” ≈
∫ x2

x1

ρ(x, t)dx.

Let v = v(x, t) denote the speed of the car located at point x at time t and f(x, t)
the flux of cars. That is the approximate number of cars per time passing a
point x at time t. Conservation of cars gives the following equation:

∂

∂t

∫ x2

x1

ρ(x, t)dx = f(x1, t)− f(x2, t). (1.8)

The flux of cars is given by the product vρ, so if we assume that the speed is
a function of the car density only, we obtain from (1.8) the scalar conservation
law

∂tρ+ ∂x(ρv(ρ)) = 0. (1.9)

The model as it stands above assumes that the driver adjusts his speed instan-
taneously to the local car density. This is not a natural assumption. We follow
the discussion given in [3]. The assumption is thus that there is a difference
between the cars velocity v and the velocity the driver considers as reasonable
v̂. This is caused by both the drivers reaction time and his ability to observe.
Let τ represent the drivers reaction time. Furthermore, let us assume that the
driver tries to adjusts his velocity to the car density seen a distance L ahead,
but are delayed by his reaction time. Hence we make the assumption that

v(x, t) = v̂(ρ(x+ L− v̂τ, t− τ)).

Note that this expression is ambiguous since we have not specified where we
should evaluate the v̂ in the argument of ρ. Let us make some approximate
calculations. For a proper derivation see either [3] or [23]. Let us expand ρ
around the point (x, t). This gives

ρ(x+ L− v̂τ, t− τ) ≈ ρ(x, t) + ∂xρ(x, t)(L − v̂τ) + ∂tρ(x, t)(−τ).

By the expansion of v̂ we obtain

v(x, t) ≈ v̂(ρ) + v̂′(ρ)(∂xρ(L− v̂τ) + ∂tρ(−τ))

where ρ = ρ(x, t). By the conservation law (1.9) we have ∂xρv̂+∂tρ ≈ −ρ∂xv̂ =
−ρv̂′(ρ)∂xρ. It follows that

v(x, t) ≈ v̂(ρ) + v̂′(ρ)((L + τρv̂′(ρ))∂xρ).

We now make the assumption L = L(v̂(ρ)) = L(ρ). Let us define

Ã(ρ) =

∫ ρ

0

−sv̂′(s)(L(s) + τsv̂′(s))ds,
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and note that

v̂(ρ(x+ L− v̂τ, t− τ)) ≈ v̂(ρ) +
1

ρ
∂xÃ(ρ).

We may now use this expression for v in (1.9) to obtain

∂tρ+ ∂x(ρv̂(ρ)) = ∂2xÃ(ρ).

It turns out that it is natural to assume the existence of a critical density ρc
up to which the effects discussed above are not present. Hence we exchange the
function Ã by the function

A(ρ) =

∫ ρ

0

a(s)ds, where a(s) =

{

0 if s ≤ ρc,
−sv̂′(s)(L(s) + τsv̂′(s)) if s > ρc.

Considering this expression one should note that it is natural that v̂ should
decrease with increasing car density. The question of whether L(s) ≥ −τ v̂′(s)s
is closely related to the assumption that there are no collisions. It is therefore
natural to pick L, v̂ and τ in order to yield a problem described by (1.1).
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2 Finite difference schemes

We are going to consider a particular class of numerical methods used to obtain
approximate solutions to problem (1.2). However we are not interested in how
these methods are obtained, but rather to ensure that our result applies to as
many methods as possible. The schemes under consideration are obtained ei-
ther by a finite difference method or by a finite volume method. Because these
methods are so natural we will refer to them just as the discretization of the
problem. We will consider two different classes of approximations. The first one
is obtained by discretizing in space only and leaving the problem continuous in
time. The idea is that it is simpler to work with the semidiscrete case than the
fully discrete case and hence we may simplify things by dividing the discretiza-
tion process into two stages. The second one is an implicit method obtained by
discretizing both space and time.

One of the main concerns regarding the discretization is how to approximate
the flux function f .

Definition 2.1. (Numerical flux) We call a function F ∈ C1(R2) a numerical
flux for f given that F (u, u) = f(u) for u ∈ R. If

∂

∂u
F (u, v) ≥ 0 and

∂

∂v
F (u, v) ≤ 0

holds for all u, v ∈ R we call it monotone.

Let Fu and Fv denote the partial derivatives of F with respect to the first and
second variable respectively. We will also assume F to be Lipschitz continuous
in each variable. That is, there exists a constant K such that for real numbers
u, v and w

|F (u,w)− F (u, v)| ≤ K|w − v| and |F (u, v)− F (w, v)| ≤ K|u− w|.

Let z also be a real number. Then

|F (u,w)− F (z, v)| ≤ |F (u,w)− F (z, w)|+ |F (z, w)− F (z, v)|
≤ K(|u− z|+ |w − v|). (2.1)

2.1 The semidiscrete scheme

Let ∆x > 0 and define xj = j∆x. The discrete derivatives are defined by

D±(σj) = ±σj±1 − σj
∆x

.

for any sequence {σj}. Note that D± can be interpreted as operators. However
it is in general just considered as a shorthand notation. We may now define the
semidiscrete approximation of problem (1.1) as the solution to the scheme

{

(uj)t +D−Fj = D−D+A(uj), j ∈ Z, t ∈ (0, T ),
uj(0) =

1
∆x

∫

Ij
u0(x)dx, j ∈ Z.

(2.2)

Here Fj = F (uj , uj+1) is a numerical flux function and Ij = (xj−1/2, xj+1/2].
Note that (2.2) is a system of ordinary differential equations. The method is
therefore often refered to as the method of lines.
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The problem above can be viewed as an abstract Cauchy problem in the
Banach space ℓ1(Z) (See for instance [20]). In order to get bounds independent
of ∆x we let

‖σ‖1 = ∆x
∑

j

|σj | and |σ|BV =
∑

j

|σj+1 − σj | = ‖D+σ‖1.

If these are bounded we say that σ = {σj} is in ℓ1 and of bounded variation.
Let u(t) = {uj(t)}, u0 = {uj(0)} and define the operator A : ℓ1 → ℓ1 by
(A(u))j := D−(F (uj , uj+1)−D+A(uj)). Then (2.2) takes the following form

{

du
dt +A(u) = 0, t ∈ (0, T ),
u(0) = u0,

(2.3)

where the derivative is meant in the strong sense. That is

du

dt
(t) = lim

h→0

u(t+ h)− u(t)

h

where the limit is taken in the norm topology. The existence of a unique con-
tinuously differentiable solution to (2.3) may be established on [0, T ] the same
way as in R

n provided that A is Lipschitz continuous. (See problem 1.3.1 [20]).
To see that A is Lipschitz define the induced maps Â : ℓ1 → ℓ1 and F̂ : ℓ1 → ℓ1

by (Â(u))j = A(uj) and (F̂ (u))j = F (uj , uj+1). By the Lipschitz continuity of
A and inequality (2.1) these maps are Lipschitz continuous. Considering D± as
maps from ℓ1 into ℓ1 these are also Lipschitz continuous. Since

A(u) = D−(F̂ (u)−D+Â(u)) u ∈ ℓ1

and the sum and composition of Lipschitz continuous maps are Lipschitz A is
Lipschitz continuous. The solution of (2.3) then provides a solution to (2.2). For
any t ≥ 0 we let S(t) : ℓ1 → ℓ1 be the solution operator. That is, S(t)u0 = u(t).
Then S satisfies the following properties:

S(t+ τ) = S(t)S(τ), t, τ ≥ 0, (2.4)

lim
t→0+

S(t)u = u, u ∈ ℓ1. (2.5)

That is, the family {S(t) : t ∈ R
+} is a semigroup on ℓ1. In our case the map

t 7→ S(t)u is strongly continuous so we call it a strongly continuous semigroup
and condition (2.5) may be replaced by S(0) = I. If S also satisfies

‖S(t)u − S(t)v‖1 ≤ ‖u− v‖1 for u, v ∈ ℓ1

we say that it is nonexpansive. The notions described above were given in the
particular case of the Banach space ℓ1 but are of course general. The next goal
is to show that our semigroup is nonexpansive and thus obtain an ℓ1 contraction
property. This will follow from the theory of T.M. Liggett and M.G. Crandall
presented in [7], but to describe the results provided there we need some notions
regarding nonlinear operators on Banach spaces. The next definitions can be
found in [13] and [11]. For a more elaborate introduction to this field see [8].
Suppose that X is a real Banach space and X∗ its dual. A duality mapping J
is a map J : X → X∗ such that for all x ∈ X ,

‖J(x)‖X∗ = ‖x‖X and 〈J(x), x〉 = ‖x‖2X .
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where 〈·, ·〉 denotes the pairing between X∗ and X . A mapping A : D(A) ⊆
X → X is called accretive if for all pairs (u,A(u)) and (v,A(v)) in the graph of
A, and for all duality mappings J we have

〈J(u − v),A(u)−A(v)〉 ≥ 0.

If in addition I+λA is surjective for all λ > 0, then A is called m-accretive. To
avoid the notion of multivalued operators we use the less general presentation
of these theorems given in [8].

Theorem 2.1 (Crandall,Liggett). Let X be a Banach space, A : D(A) ⊆ X →
X accretive and such that R(I+λA) ⊇ D for all small λ > 0. Then A generates
a nonexpansive semigroup by means of “the exponential formula”

U(t)x = lim
n→∞

(

I +
t

n
A
)−n

x x ∈ D.

where the convergence is uniform on compact subintervals of R+, and U(·)x is
locally Lipschitz. If, moreover, R(I + λA) ⊇ D for all small λ > 0, then the
exponential formula holds on D.

We are left with two questions to be answered: Does this theorem apply in
our case, and do the two semigroups coincide? Observe that the domain of A
is ℓ1 and so we need to prove that A is m-accretive. The second theorem in [7]
provides an answer to the last question.

Theorem 2.2 (Crandall,Liggett). Let X and A be as in Theorem 2.1. Suppose
also that A is closed, i.e. the graph(A) is closed, and let {U(t) : t ≥ 0} be
the semigroup from Theorem 2.1. Then u is a (strong) solution of u′ + Au =
0, u(0) = x if and only if u(t) = U(t)x and U(t)x is differentiable a.e. with
respect to t.

The graph(A) is the subset {(u,A(u))|u ∈ ℓ1} ⊂ ℓ1× ℓ1 and is closed by the
continuity of A. It follows by the Lipschitz continuity of A that it is m-accretive
if it is accretive. Let us show that A is accretive. In [11] this is done for a slightly
more general F , but in our case we assume F to be monotone so we might as
well do a straightforward calculation. Suppose that X = L1(Ω) where (Ω, dµ) is
some measure space. Then every duality mapping can be written as an integral

〈J(u), v〉 =
∫

Ω

j(u)(x)v(x)dµ where j(u)(x) =

{

sign(u(x)) if u(x) 6= 0,
a(x) if u(x) = 0

where a(x) is any measurable function with |a(x)| ≤ 1 almost everywhere w.r.t.
µ. Let u = {uj} and v = {vj} be in ℓ1. Then for any duality map J we have

〈J(u − v),A(u)−A(v)〉 = ∆x
∑

j

sign(uj − vj)(A(u) −A(v))j

Let wj = uj − vj . By int(a, b) we mean the interval between a and b. By the
mean value theorem we have for each j ∈ Z

F (uj , uj+1)− F (vj , vj+1)

= (F (uj, uj+1)− F (vj , uj+1)) + (F (vj , uj+1)− F (vj , vj+1))

= Fu(αj , uj+1)wj + Fv(vj , βj+1)wj+1
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for sequences {αj} and {βj} with αj , βj ∈ int(uj , vj). Let a = A′, then

A(uj)−A(vj) = a(ξj)wj for some ξj ∈ int(uj, vj).

Hence

(A(u)−A(v))j = D−(F (uj , uj+1)− F (vj , vj+1))−D−D+(A(uj)−A(vj))

= D−(Fu(αj , uj+1)wj + Fv(vj , βj+1)wj+1)−D−D+a(ξj)wj

Using this expression we get

∆x
∑

j

sign(uj − vj)(A(u) −A(v))j =

∑

j

(Fu(αj , uj+1)|wj | − Fu(αj−1, uj)wj−1sign(wj))

+
∑

j

(Fv(vj , βj+1)wj+1sign(wj)− Fv(vj−1, βj)|wj |)

+
1

∆x

∑

j

(−a(ξj−1)wj−1sign(wj) + 2a(ξj)|wj | − a(ξj+1)wj+1sign(wj)) ≥ 0.

Thus A is accretive if F is monotone. Let us collect the above results and some
more in a lemma.

Lemma 2.1. Suppose that F is monotone. Then there exists a unique solution
u = {uj} to (2.2) on [0, T ] with the properties:

(a) ‖u(t)‖1 ≤ ‖u0‖1.

(b) For every j ∈ Z and t ∈ (0, T )

inf
k
{u0k} ≤ uj(t) ≤ sup

k
{u0k}.

(c) |u(t)|BV ≤ |u0|BV .

(d) If v = {vj} is a solution the same problem with initial data v0 then

‖u(t)− v(t)‖1 ≤ ‖u0 − v0‖1.

Proof. The existence of a solution follows from above. The same applies to
property (d). Note that A(0) = 0 so ‖u‖1 ≤ ‖u0‖1 follows from (d) by letting
v0 = 0. The BV estimate follows by letting v0j = u0j+1. To prove (b) note that
there exists an index j0 such that supj(uj(t)) = uj0(t) if supj(uj(t)) > 0 since
uj(t) is in ℓ1. Then D+uj0(t) ≤ 0 and D−uj0(t) ≥ 0. We skip the argument t
in the computations.

(uj0)
′ = D−(D+A(uj0)− F (uj0 , uj0+1))

=
1

(∆x)2
(A(uj0+1)− 2A(uj0) +A(uj0−1))

− 1

∆x
(F (uj0 , uj0+1)− F (uj0−1, uj0)) := T1 − T2.

13



Note that T1 ≤ 0 since A is increasing. Consider T2.

T2 =
1

∆x
((F (uj0 , uj0+1)− F (uj0 , uj0)) + (F (uj0 , uj0)− F (uj0−1, uj0)))

= Fv(uj0 , α)D
+uj0 + Fu(β, uj0)D

−uj0 ≥ 0.

for uj0+1 < α < uj0 and uj0−1 < β < uj0 . Similarily there exists an index j1
such that infj{uj(t)} = uj1 if infj{uj(t)} < 0. That (uj1)

′ ≥ 0 follows by the
computations above.

Lemma 2.2. If F is monotone, then

‖F (uj , uj+1)−D+A(uj)‖l∞ ≤ ‖F (u0j , u0j+1)−D+A(u0j)‖l∞ , (2.6)

|F (uj , uj+1)−D+A(uj)|BV ≤ |F (u0j , u0j+1)−D+A(u0j)|BV . (2.7)

Proof. We use the same strategy as the one applied in the continuous case. Let
vj = ∆x

∑

k≤j(uk)t for t ∈ (0, T ). Then vj satisfies

vj = ∆x
∑

k≤j

D−(D+A(uk)− F (uk, uk+1)) = D+A(uj)− F (uj , uj+1) (2.8)

and we may define vj for all t ∈ [0, T ]. Note that {vj(t)} is in ℓ1 for all t by
lemma 2.1. Differentiating (2.8) with respect to t we obtain

(vj)t =
1

∆x
(a(uj+1)(uj+1)t − a(uj)(uj)t)

− Fu(uj , uj+1)(uj)t − Fv(uj , uj+1)(uj+1)t.

Note that D−vj = (uj)t and D
+vj = (uj+1)t. Then vj satisfy

(vj)t =

(

1

∆x
a(uj+1)− Fv(uj , uj+1)

)

D+vj

−
(

1

∆x
a(uj) + Fu(uj , uj+1)

)

D−vj . (2.9)

Assume that vj0(t) is a local maximum. Then D+vj0 ≤ 0 and D−vj0 ≥ 0 so
(vj0 )t ≤ 0 since F is monotone. If vj0 is a local minimum then (vj0)t ≥ 0. Then
inequality (2.6) follows by the fact that {vj(t)} ∈ ℓ1. Consider (2.7). We want
to show that (|vj(t)|BV )t ≤ 0. Now,

∂

∂t





∑

j

|vj+1 − vj |



 =
∑

j

sign(vj+1 − vj)(vj+1 − vj)t

14



so we may apply equation (2.9). Thus

(|vj |BV )t =
∑

j

(

1

∆x
a(uj+2)− Fv(uj+1, uj+2)

)

(D+vj+1)sign(vj+1 − vj)

−
∑

j

(

1

∆x
a(uj+1) + Fu(uj+1, uj+2)

)

|D+vj |

−
∑

j

(

1

∆x
a(uj+1)− Fv(uj , uj+1)

)

|D+vj |

+
∑

j

(

1

∆x
a(uj) + Fu(uj , uj+1)

)

((D−vj)sign(vj+1 − vj))

:= S1 + S2 + S3 + S4.

Since S1 + S3 ≤ 0 and S2 + S4 ≤ 0 the result follows.

By lemma (2.2) {uj} is ℓ1 Lipschitz continuous by the same argument as in
the continuous case.

2.2 The implicit scheme (Fully discrete case)

Let ∆t > 0 and tn = n∆t. Let D±
t denote the discrete derivative in time with

parameter ∆t and D±
x the discrete derivative in space. The implicit scheme is

then defined by

{

D−
t u

n
j +D−

x F (u
n
j , u

n
j+1) = D−

xD
+
x A(u

n
j ), (j, n) ∈ Z× N,

u0j =
∫

Ij
u0(x)dx, j ∈ Z.

(2.10)

This scheme is studied by S. Evje and K. H. Karlsen. Under the assumption
that F is monotone, all the properties corresponding to the ones obtained for
the semidiscrete scheme in the previous section and some more are proved in
[11]. Since the solution is discrete in the time variable the ℓ1 Lipschitz continuity
takes a slightly different form. We state it here as an easy reference.

Lemma 2.3. Let {unj } be the solution to (2.10). Let m,n be non-negative
integers. Then

‖umj − unj ‖1 ≤ |F (u0j , u0j+1)−D+
x A(u

0
j)|BV ∆t|m− n|

where ‖ · ‖1 and | · |BV are defined in section 2.1.

Observe thet there are no CFL conditions involved. Therefore the error esti-
mate in section 4 is based on the assumption that ∆t and ∆x are independent.
Suppose that we want to construct an algorithm in order to solve (2.10). We
can do this inductively in time. Assume that we have found uk = {ukj }j∈Z ∈ ℓ1

for 0 ≤ k < n and want to find un. Using the notation from section 2.1 we
define the mapping Φn : ℓ1 → ℓ1 by

Φn(z) = un−1 −∆tA(z)
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and observe that if Φn has a fixed point, then this is the sought sequence un.
To see how the Lipschitz constant of Φn depends on ∆t and ∆x, take u, v ∈ ℓ1.
By inequality (2.1)

‖Φn(u)− Φn(v)‖1 = ∆t‖A(v)−A(u)‖1
= ∆t∆x

∑

j

(

|D−
x (F (vj , vj+1)− F (uj , uj+1))−D−

xD
+
x (A(vj)−A(uj))|

)

≤ ∆t∆x
∑

j

(

K

∆x
+

‖A‖Lip

(∆x)2

)

(|vj+1 − uj+1|+ 2|vj − uj |+ |vj−1 − uj−1|)

=
∆t

(∆x)2
4(K∆x+ ‖A‖Lip)‖u− v‖1.

By Banach’s contraction mapping theorem Φn has a unique fixed point provided
that

∆t

(∆x)2
4(K∆x+ ‖A‖Lip) < 1.

Considering the result obtained in section 4 this condition on ∆t is unfortunate.
It is clear that another way of finding a solution to (2.10) or a better estimate
on ‖Φn‖Lip would be of interest.

2.3 The numerical entropy flux

It turns out that we need some more conditions on F than just demanding it
to be monotone. Lemma 2.4 provides us with a sufficient condition.

Definition 2.2. Given an entropy, entropy flux pair (ψ, q) and a numerical flux
F . Suppose that Q ∈ C1(R2) satisfies

Q(u, u) = q(u),

∂

∂v
Q(v, w) = ψ′(v)

∂

∂v
F (v, w),

∂

∂w
Q(v, w) = ψ′(w)

∂

∂w
F (v, w),

then we call Q a numerical entropy flux.

A natural question would now be for what type of numerical fluxes, if any,
does such a function exists.

Lemma 2.4. The numerical flux F has a numerical entropy flux Q, independent
of the chosen entropy, entropy flux pair, if there exist F1, F2 ∈ C1(R) such that

F (u, v) = F1(u) + F2(v), (2.11)

F ′
1(u) + F ′

2(u) = f ′(u) (2.12)

for all u, v ∈ R.

Proof. Let (ψ, q) be an entropy, entropy flux pair. Then q has the form

q(u) =

∫ u

c

ψ′(z)f ′(z)dz + C
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for some constant C. Define Q by

Q(u, v) =

∫ u

c

ψ′(z)F ′
1(z)dz +

∫ v

c

ψ′(z)F ′
2(z)dz + C. (2.13)

It is easily verified that Q is a numerical entropy flux for F .

Note that if Q is supposed to have symmetric partial derivatives, then (2.11)
and (2.12) are necessary conditions. Fortunatly there exist some numerical flux
functions which satisfies lemma 2.4.

Example 2.1. (The Engquist-Osher flux) Let

f ′
+(s) = max(f ′(s), 0) and f ′

−(s) = min(f ′(s), 0).

Then, in the terminology of lemma 2.4, let F (u, v) = F1(u) + F1(v) where

F1(u) = f(0) +

∫ u

0

f ′
+(s)ds and F2(v) =

∫ v

0

f ′
−(s)ds.

It is easily seen to satisfy the criteria given in lemma 2.4 and it is also clearly
monotone.

Example 2.2. Let a, b ∈ R and define

F1(u) = af(u) + bu and F2(v) = (1 − a)f(v)− bv.

Note that F (u, v) = F1(u) + F2(v) is monotone if

a inf
x
{f ′(x)} ≥ −b and (1− a) sup

x
{f ′(x)} ≤ b

This example includes both the upwind scheme and the Lax-Friedrichs scheme
(See for instance [14]).

From a more general point of view we may consider any flux splitting. That
is f(u) = f+(u) + f−(u) where (f+(u))′ ≥ 0 and (f−(u))′ ≤ 0 for all u ∈ R.
Then the numerical flux F defined by

F (u, v) = f+(u) + f−(v)

satisfies the assumptions of lemma 2.4. Note also that any convex combinations
of numerical flux functions which satisfies the hypothesis of lemma 2.4 itself
satisfies the lemma.

If lemma 2.4 holds we have a representation of Q given by (2.13). It follows
that

Q(u, v) = q(u) +

∫ v

u

ψ′(z)F ′
2(z)dz.

Note that we may obtain another representation depending on F1 by splitting
up the first integral. The next result is taken from [17] by I. Kröker and C.
Rohde.

Lemma 2.5. Let Q be a numerical entropy flux associated with the entropy,
entropy flux pair (ψ, q) and the monotone numerical flux F . Then

ψ′(u)(F (u,w)− F (v, u)) ≥ Q(u,w)−Q(v, u)

for all u, v, w ∈ R.

17



Proof. Let u be fixed. Define p(v, w) = p1(w) + p2(v) where

p1(w) = −ψ′(u)F (u,w) +Q(u,w) + ψ′(u)f(u)− q(u),

p2(v) = ψ′(u)F (v, u)−Q(v, u)− ψ′(u)f(u) + q(u).

Then we have

p(v, w) = −ψ′(u)(F (u,w)− F (v, u)) + (Q(u,w)−Q(v, u))

and so the lemma is proved if we can show that p(v, w) ≤ 0 for all v, w ∈ R.
Let us differentiate p1 and p2.

p′1(w) = −ψ′(u)
∂

∂w
F (u,w) + ψ′(w)

∂

∂w
F (u,w)

= ψ′′(ξ1)
∂

∂w
F (u,w)(w − u)

for some ξ1 ∈ int(u,w). Similarly

p′2(v) = ψ′(u)
∂

∂v
F (v, u)− ψ′(v)

∂

∂v
F (v, u)

= ψ′′(ξ2)
∂

∂v
F (v, u)(u − v)

for some ξ2 ∈ int(u, v). Since F is monotone and ψ is convex we may infer that
if z ∈ R then p′i(z)(z − u) ≤ 0 for both i = 1 and i = 2. It remains to observe
that p1(u) = p2(u) = 0 and so

pi(z) =

∫ z

u

p′i(ξ)dξ ≤ 0, for i = 1, 2.

Hence p(v, w) ≤ 0.
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3 An error estimate for the semidiscrete approx-

imation

Let uj be a solution to (2.2) with A = Aη and let u be the viscous approximation
defined by (1.2). We need to consider uj not as a sequence, but rather as a
piecewise constant function. Note that equation (2.2) also holds for all (x, t) ∈
ΠT given that

uj(x, t) =
∑

j

uj(t)χIj (x) (3.1)

and the discrete differentials denote difference quotients with parameter ∆x.
Observe that the norm ‖ · ‖1 defined in section 2.1 has the property that
‖uj(t)‖1 = ‖uj(·, t)‖L1(R). In order to obtain the estimate we need many of
the uniform bounds obtained in section 1 and 2.1. These are based on the prop-
erties of u0 and so we need to assume that u0 is sufficiently well behaved. We
make the following assumptions on u0:

(i) u0 is contained in the space BV . That is u0 ∈ L1(R) ∩ L∞(R) and
T.V.(u0) <∞.

(ii) A(u0) is differentiable and A(u0)x is in the space BV .

We may now state the theorem. The proof is presented in the rest of this
chapter.

Theorem 3.1. Suppose that u is the entropy solution to (1.1) and that uηj is

the semidiscrete approximation with η = (∆x)
2
7 . If u0 satisfies (i) and (ii), then

there exists a constant C independent of ∆x such that

‖u(·, t)− uηj (·, t)‖L1(Ll(t),Lr(t)) ≤ C
7
√
∆x, t ∈ (0, T )

where Ll(t) = −L+Mt,Lr(t) = L−Mt, M ≥ ‖f‖Lip and L ≥MT +∆x.

Note, C might depend on L. Let us define some of the functions we are
going to work with. First, let the approximation of the sign function be given
by

signε(σ) =

{

sin(πσ2ε ) if |σ| ≤ ε,
sign(σ) otherwise

where ε > 0. Note that signε is a C1 function which is nondecreasing and odd.
Since the derivative of an odd function is even, sign′ε is even. Having defined
an approximation of the sign function we get a natural approximation of the
absolute value function | · | given by

|u|ε =
∫ u

0

signε(z)dz.

By a simple substitution argument

|u− c|ε =
∫ u

c

signε(z − c)dz and
d

du
(|u− c|ε) = signε(u− c).

In the semi-discrete case we are only going to work with difference quotients
in the spatial direction, so we might as well let D± denote D±

∆x. The follow-
ing lemma is a kind of substitution for the chain-rule when working with the
piecewise constant approximation (3.1) and difference quotients.
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Lemma 3.1. Given a sequence {uj} there exist sequences {τj} and {θj} such
that both τj and θj lies in int(uj , uj+1) and

D+signε(A(uj)−A(c)) = sign′ε(A(τj)−A(c))D+A(uj),

D+(|A(uj)−A(c)|ε) = signε(A(θj)−A(c))D+A(uj).

The proof is a simple application of the mean value theorem. Note that both
τj and θj depends on both {uj} and c.

3.1 The doubling of variables

This part contains the construction of an equality on which the sought inequality
is based. The manipulations involved are inspired by the entropy inequality.
We let (x, t, y, s) denote a point in ΠT × ΠT = Π2

T where x and y are the
spatial variables and s and t are the time variables. Let uj defined by (3.1)
be a function of x and t, and the viscous approximation u be a function of
y and s. To avoid writing four integral signs we will in general write one for
each domain ΠT and let dX = dxdtdyds. For a function ϕ on Π2

T we let
ϕ∆x denote the function translated by ∆x in the spatial variable x. That is,
ϕ∆x(x, t, y, s) = ϕ(x+∆x, t, y, s). We write uj+1 instead of u∆x

j .

3.1.1 Rewriting the continuous equation (Local to global)

Define an entropy, entropy flux pair (ψε, qε) by

ψε(u, c) =

∫ u

c

signε(A(z)−A(c))dz,

qε(u, c) =

∫ u

c

ψ′
ε(z, c)(f(z)− f(c))′dz.

Let ϕ be a non-negative test function in Π2
T and observe that for each fixed

point (x, t), ϕ(x, t, y, s) is a test function in ΠT . Multiply equation (1.2) by
ψ′
ε(u, c)ϕ and integrate in both space and time to get

∫

ΠT

ψε(u, c)sϕ+ ψ′
ε(u, c)(f(u)− f(c))yϕdyds

=

∫

ΠT

(ψ′
ε(u, c)ϕ)A(u)yydyds.

Integration by parts gives

∫

ΠT

ψε(u, c)ϕs + qε(u, c)ϕydyds

=

∫

ΠT

signε(A(u)−A(c))A(u)yϕy + sign′ε(A(u)− A(c))(A(u)y)
2ϕdyds.

(3.2)

Using the chain rule and integration by parts we get

∫

ΠT

signε(A(u)−A(c))(A(u))yϕydyds = −
∫

ΠT

|A(u)−A(c)|εϕyydyds. (3.3)
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Next we are going to write zero in a rather complicated manner. The idea
will be clear at a later point. Let τj be as in lemma 3.1. By Leibniz rule and
integration by parts

0 =

∫∫

Π2
T

D+ (signε(A(u)−A(uj))A(u)yϕ) dX

=

∫∫

Π2
T

D+(signε(A(u)−A(uj)))A(u)yϕ
∆x − |A(u)−A(uj)|εD+ϕydX

=

∫∫

Π2
T

−sign′ε(A(τj)−A(u))D+A(uj)A(u)yϕ
∆x − |A(u)−A(uj)|εD+ϕydX.

(3.4)

Let c = uj in (3.3). By (3.3) and (3.4) we turn equation (3.2) into the
following equation:

∫∫

Π2
T

|u− uj|ϕs − qε(u, uj)yϕdX

=

∫∫

Π2
T

sign′ε(A(τj)−A(u))((A(u)y)
2 −D+A(uj)A(u)y)ϕ

∆xdX

−
∫∫

Π2
T

|A(u)−A(uj)|ε(ϕyy +D+ϕy)dX

+

∫∫

Π2
T

(|u − uj| − ψε(u, uj))ϕsdX

+

∫∫

Π2
T

(

sign′ε(A(uj)−A(u))ϕ − sign′ε(A(τj)−A(u))ϕ∆x
)

(A(u)y)
2dX.

(3.5)

3.1.2 Rewriting the semidiscrete equation (Local to global)

Let us try to rewrite the semidiscrete equation (2.2) in a similar way. Multiply
by ψ′

ε(uj , c)ϕ and integrate in both time and space to obtain

∫

ΠT

ψε(uj , c)tϕ+ ψ′
ε(uj , c)D

−F (uj , uj+1)ϕdxdt

=

∫

ΠT

signε(A(uj)−A(c))D−D+A(uj)ϕdxdt. (3.6)

Using integration by parts for difference quotients we get

∫

ΠT

ψε(uj , c)ϕt − ψ′
ε(uj, c)D

−F (uj, uj+1)ϕdxdt

=

∫

ΠT

D+signε(A(uj)−A(c))D+A(uj)ϕ
∆xdxdt

+

∫

ΠT

signε(A(uj)−A(c))D+A(uj)D
+ϕdxdt.

(3.7)
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Concerning the second term on the right of (3.7) we would like to use a type of
chain rule. By lemma 3.1

∫

ΠT

signε(A(uj)−A(c))D+A(uj)D
+ϕdxdt

= −
∫

ΠT

|A(uj)−A(c)|εD−D+ϕdxdt

+

∫

ΠT

[signε(A(uj)− A(c))− signε(A(θj)−A(c))]D+A(uj)D
+ϕdxdt.

As in the continuous case observe that

0 =

∫∫

Π2
T

(signε(A(uj)−A(u))D+A(uj)ϕ
∆x)ydX

=

∫∫

Π2
T

(

(signε(A(uj)−A(u)))yϕ
∆x + signε(A(uj)−A(u))ϕ∆x

y

)

D+A(uj)dX.

(3.8)

The last term on the right may be rewritten using lemma 3.1 as above. Note
that D−(ϕ∆x) = D+ϕ. Then

∫∫

Π2
T

signε(A(uj)−A(u))D+A(uj)ϕ
∆x
y dX

= −
∫∫

Π2
T

|A(uj)−A(u)|εD+ϕydX

+

∫∫

Π2
T

[signε(A(uj)−A(u)) − signε(A(θj)−A(u))]D+A(uj)ϕ
∆x
y dX.

Let c = u(y, s) in (3.7). Integrate (3.7) in both y and s and add equation
(3.8) to obtain

∫∫

Π2
T

|uj − u|ϕt − ψ′
ε(uj , u)D

−F (uj, uj+1)ϕdX

=

∫∫

Π2
T

sign′ε(A(τj)−A(u))
(

[D+(A(uj))]
2 −D+A(uj)A(u)y

)

ϕ∆xdX

−
∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+D+ϕy)dX

+

∫∫

Π2
T

[signε(A(uj)− A(u))− signε(A(θj)−A(u))]D+A(uj)ϕ
∆x
y dX

+

∫∫

Π2
T

(|uj − u| − ψε(uj, u))ϕtdX

+

∫∫

Π2
T

(sign′ε(A(τj)−A(u))− sign′ε(A(uj)−A(u)))A(u)yD
+A(uj)ϕ

∆xdX

+

∫∫

Π2
T

[signε(A(uj)− A(u))− signε(A(θj)−A(u))]D+A(uj)D
+ϕdX.

(3.9)
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3.1.3 Adding up the equations

Adding equation (3.5) to equation (3.9) we get
∫∫

Π2
T

|uj − u|(ϕt + ϕs)− (ψ′
ε(uj , c)D

−F (uj , uj+1) + qε(u, c)y)ϕdX (3.10)

=

∫∫

Π2
T

sign′ε(A(τj)−A(u))
(

D+(A(uj)−A(u)y
)2
ϕ∆xdX (3.11)

−
∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX (3.12)

+

∫∫

Π2
T

(|uj − u| − ψε(uj, u))ϕtdX (3.13)

+

∫∫

Π2
T

(|u− uj| − ψε(u, uj))ϕsdX (3.14)

+

∫∫

Π2
T

[

signε(A(uj)−A(u))

− signε(A(θj)−A(u))
]

D+A(uj)ϕ
∆x
y dX (3.15)

+

∫∫

Π2
T

[

sign′ε(A(τj)−A(u))

− sign′ε(A(uj)−A(u))
]

A(u)yD
+A(uj)ϕ

∆xdX (3.16)

+

∫∫

Π2
T

[

signε(A(uj)−A(u))

− signε(A(θj)−A(u))
]

D+A(uj)D
+ϕdX (3.17)

+

∫∫

Π2
T

[

sign′ε(A(uj)−A(u))ϕ

− sign′ε(A(τj)−A(u))ϕ∆x
]

(A(u)y)
2dX. (3.18)

3.2 Obtaining the inequality

Following lemma 2.4 we may define the numerical entropy flux Qc
ε(uj , uj+1) by

Qc
ε(uj , uj+1) = qε(uj , c) +

∫ uj+1

uj

ψ′
ε(z, c)F

′
2(z)dz. (3.19)

By lemma 2.5

ψ′
ε(uj , c)D

−F (uj , uj+1) ≥ D−Qc
ε(uj , uj+1).

The term (3.11) is positive and so

∫∫

Π2
T

|uj − u|(ϕt + ϕs)− (D−Qu
ε (uj , uj+1) + qε(u, uj)y)ϕdX

+

∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX ≥ ℜ, (3.20)

where ℜ is the sum
ℜ := (3.13) + · · ·+ (3.18).
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Integration by parts and (3.19) yields

−
∫∫

Π2
T

D−Qu
ε (uj , uj+1)ϕ+ qε(u, uj)yϕdX

=

∫∫

Π2
T

Qu
ε (uj, uj+1)D

+ϕ+ qε(u, uj)ϕydX

=

∫∫

Π2
T

qε(uj , u)D
+ϕ+ qε(u, uj)ϕydX

+

∫∫

Π2
T

∫ uj+1

uj

ψ′
ε(z, u)F

′
2(z)dzD

+ϕdX.

Next we need an expression for qε(uj, u)D
+ϕ + qε(u, uj)ϕy. Let us rewrite

qε(u, c) using integration by parts.

qε(u, c) =

∫ u

c

signε(A(z)−A(c))(f(z)− f(c))′dz

= signε(A(u)−A(c))(f(u)− f(c))

−
∫ u

c

(signε(A(z)−A(c)))′(f(z)− f(c))dz.

Observe that signε(A(uj)−A(u)) = −signε(A(u)−A(uj)) and so

qε(uj, u)D
+ϕ+ qε(u, uj)ϕy

= signε(A(uj)−A(u))(f(uj)− f(u))(D+ϕ+ ϕy)

−
∫ uj

u

(signε(A(z)−A(u)))′(f(z)− f(u))dzD+ϕ

−
∫ u

uj

(signε(A(z)−A(uj)))
′(f(z)− f(uj))dzϕy.

Let

γ1 =

∫∫

Π2
T

∫ uj

u

(signε(A(z)−A(u)))′(f(z)− f(u))dzD+ϕdX, (3.21)

γ2 =

∫∫

Π2
T

∫ u

uj

(signε(A(z)−A(uj)))
′(f(z)− f(uj))dzϕydX, (3.22)

γ3 =

∫∫

Π2
T

∫ uj+1

uj

ψ′
ε(z, u)F

′
2(z)dzD

+ϕdX. (3.23)

We obtain from 3.20 the inequality

∫∫

Π2
T

|uj − u|(ϕt + ϕs)dX

+

∫∫

Π2
T

signε(A(uj)−A(u))(f(uj)− f(u))(D+ϕ+ ϕy)dX

+

∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + γ3

≥ γ1 + γ2 + ℜ. (3.24)
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The next task is to chose ϕ in a clever way. Let ω ∈ C∞
0 (R) be a function

satisfying

supp(ω) ⊂ [−1, 1], ω(σ) ≥ 0,

∫

R

ω(σ)dσ = 1

and let ωr(σ) =
1
rω(σ/r). Let ν < τ be two numbers in (0, T ). For any α define

Hα0
(t) =

∫ t

−∞

ωα0
(ξ)dξ, and χα0

(ν,τ)(t) = Hα0
(t− ν)−Hα0

(t− τ).

Furthermore let
Kα(x, t) = (L −Mt)α+ 1− α|x|

and χα
(Ll,Lr)

(x, t) = max(0,min(1,Kα(x, t))). That is

χα
(Ll,Lr)

(x, t) =







1 if |x| ≤ (L−Mt),
Kα(x, t) if (L −Mt) ≤ |x| ≤ (L −Mt) + 1

α ,
0 else.

Here Ll and Lr denote the lines defined in theorem 3.1. Let

Ψ(x, t) = χα0

(ν,τ)(t)χ
α
(Ll,Lr)

(x, t)

and
ϕ(x, t, y, s) = Ψ(x, t)ωr(x− y)ωr0(t− s).

To make sure that supp(ϕ) ⊂ Π2
T let 0 < α0 < min(ν, T − τ) and 0 < r0 <

min(ν, T − τ). We let ω = ωrωr0 and remark that this should not be confused
with the ω defined above. Observe that ϕ has some very important properties:

ϕt + ϕs = Ψtω,

ϕx + ϕy = Ψxω,

ϕxx + 2ϕxy + ϕyy = Ψxxω.

Using difference quotients instead of derivatives these properties are not directly
involved, but as long as the difference quotient parameter ∆x tend relatively
fast to zero compared with r and r0 these properties still approximatly apply.
This will be seen in the following computations. Before going further we include
a list of elementary results. These results will be used without reference.

Lemma 3.2. Let L > MT +∆x and define

Λ = {(x, t)|(L −Mt) ≤ |x| ≤ (L−Mt) +
1

α
},

Λ∆x = {(x, t)|(L −Mt)−∆x ≤ |x| ≤ (L−Mt) +
1

α
+∆x}.

Let χΛ, χΛ∆x
denote the characteristic functions of Λ and Λ∆x respectively.
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Then the following computations and estimates apply for all t ∈ [0, T ]:

(χα(x, t))t = −MαχΛ(x, t)

(χα(x, t))x = −(sign(x))αχΛ(x, t)

D+K(x, t) = −αD+(|x|)
|D+χα| ≤ αχΛ∆x

∫

R

|D−D+(χα)(x, t)|dx = 4α

∫

R

|D+χα(x, t)− (χα)x|dx ≤ 4∆xα

∫

R

χΛ(x, t)dx =
2

α
∫

R

χΛ∆x
(x, t)dx =

2

α
+ 4∆x

∫

R

χα(x, t)dx = 2(L−Mt) +
1

α
∫ T

0

∫

R

χαdxdt = (2L−MT )T +
T

α

The proof of these statements are left to the reader. The next task is to find
out what type of inequality we may obtain from (3.24) with this choice of test
function ϕ. Consider the first term on the left in (3.24). Let us split it into
positive and negative parts.

∫∫

Π2
T

|uj − u|(ϕt + ϕs)dX

=

∫∫

Π2
T

|uj − u|ωα0
(t− ν)χαωdX −

∫∫

Π2
T

|uj − u|ωα0
(t− τ)χαωdX

−
∫∫

Π2
T

Mα|uj − u|χΛχ
α0ωdX := δ1 + δ2 + δ3.

Consider the second term in (3.24). We add and subtract to obtain

∫∫

Π2
T

signε(A(uj)−A(u))(f(uj)− f(u))(D+ϕ+ ϕy)dX =

∫∫

Π2
T

signε(A(uj)−A(u))(f(uj)− f(u))(ϕx + ϕy)dX

+

∫∫

Π2
T

signε(A(uj)−A(u))(f(uj)− f(u))(D+ϕ− ϕx)dX

=: β1 + β2. (3.25)

Observe that

δ3 + β1 =
∫∫

Π2
T

α [signε(A(uj)−A(u))(−sign(x))(f(uj)− f(u))−M |uj − u|]χΛχ
α0ωdX
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≤
∫∫

Π2
T

α (|f(uj)− f(u)| −M |uj − u|)χΛχ
α0ωdX.

Since M ≥ ‖f‖Lip we have δ3 + β1 ≤ 0. By (3.24)

∫∫

Π2
T

|uj − u|ωα0
(t− ν)χαωdX + β2

+

∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + γ3

≥
∫∫

Π2
T

|uj − u|ωα0
(t− τ)χαωdX

− (δ3 + β1) + γ1 + γ2 + ℜ.

It follows that

∫∫

Π2
T

|uj − u|ωα0
(t− ν)χαωdX + β2 + |γ1|+ |γ2|+ γ3

+

∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + |ℜ|

≥
∫∫

Π2
T

|uj − u|ωα0
(t− τ)χαωdX. (3.26)

3.3 Finding the rate of convergence

The subject of this section is to show how and at which speed the “unwanted“
terms in (3.26) tend to zero as the small parameters ∆x, α, α0, ε, r and r0 van-
ish. Note that ∆x and η are the parameters which define the approximations
while the other parameters can be picked freely in order to optimize the rate of
convergence.

In these computations we let C denote a generic constant. By constant it
is meant that it does not depend on the small variables but it might depend
on L,M and T . Similarly we let Γ = Γ(∆x, η, α, α0, r, r0) denote a generic
function with the property that it is locally bounded, positive and increasing in
each variable. Note that given Γ1 and Γ2 we can always pick Γ = max{Γ1,Γ2}.
That is, taking the maximum of two increasing functions we obtain an increasing
function. Thus we may work with this class of functions in a similar way as with
constants. The following simple computation should be kept in mind while
simplifying the expressions below. Given two positive functions f and g we
have

Γ1f + Γ2g ≤ Γf + Γg = Γ(g + f)

We are going to need some more elementary results.
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Lemma 3.3. The following estimates apply:

|D±(ωr(x − y))| ≤ ‖ω′‖L∞(R)
1

r2
χ{|x−y|≤r+∆x} (3.27)

|(ωr(x− y))x| ≤ ‖ω′‖L∞(R)
1

r2
χ{|x−y|≤r} (3.28)

|(ωr(x− y))xx| ≤ ‖ω′′‖L∞(R)
1

r3
χ{|x−y|≤r} (3.29)

|D±ωr − (ωr)x| ≤ ‖ω′′‖L∞(R)
∆x

2r3
χ{|x−y|≤r+∆x} (3.30)

Proof. The proof of these statements are elementary computations. To show
(3.27) note that

supp(D+ωr(x− y)) ⊂ {(x, y) | |x− y| ≤ r +∆x}

Now, consider ωr as a function of one variable. By the mean value inequality
‖D+ωr‖L∞(R) ≤ ‖(ωr)

′‖L∞(R). Differentiating gives

|ω′
r(σ)| = | 1

r2
ω′(

σ

r
)| ≤ 1

r2
‖ω′‖L∞(R).

The proof of (3.28) and (3.29) are similar. The proof of (3.30) follows by the
Taylor expansion of ωr.

We start by considering the term β2 defined in (3.25).

Estimate 3.1.

|β2| ≤ Γ(∆x, α, r)

(

∆x

r2α

(

1 +
∆x

r

))

.

Proof. Since both ‖uj‖L∞(R) ≤ ‖u0‖L∞(R) and ‖u‖L∞(R) ≤ ‖u0‖L∞(R) it follows
by the Lipschitz continuity of f that |f(uj) − f(u)| is bounded independently
of η and ∆x. We need to estimate ‖D+ϕ − ϕx‖L1(Π2

T
). Differentiating and

comparing terms we obtain

D+ϕ− ϕx = (D+Ψ−Ψx)ωrωr0 +Ψ(D+ωr − (ωr)x)ωr0 + (Ψ∆x −Ψ)D+ωrωr0 .

Therefore

‖D+ϕ− ϕx‖L1(Π2
T
) ≤

∫

ΠT

|D+Ψ−Ψx|dxdt +
∫∫

Π2
T

Ψ|D+ωr − (ωr)x|ωr0dX

+

∫∫

Π2
T

|Ψ∆x −Ψ||D+ωr|ωr0dX.
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We can now consider each of these terms.
∫

ΠT

|D+Ψ−Ψx|dxdt ≤
∫

ΠT

χα0 |D+χα − (χα)x|dxdt ≤ C∆xα.

∫∫

Π2
T

Ψ|D+ωr − (ωr)x|ωr0dX ≤ C
∆x

r3

∫∫

Π2
T

Ψχ{|x−y|≤r+∆x}ωr0dX

≤ C
∆x

r3
(r +∆x)

∫

ΠT

Ψdxdt ≤ C
∆x

r3
(r +∆x)

(

1 +
1

α

)

.

∫∫

Π2
T

|Ψ∆x −Ψ||D+ωr|ωr0dX | ≤ ∆x

∫∫

Π2
T

|D+Ψ||D+ωr|ωr0dX |

≤ C
α∆x

r2

∫∫

Π2
T

χα0χΛ∆x
χ{|x−y|≤r+∆x}ωr0dX

≤ C
α∆x

r2
(r +∆x)

(

1

α
+∆x

)

.

Collecting all the terms we obtain

‖D+ϕ− ϕx‖L1(Π2
T
)

≤ C

(

∆xα+
∆x

r2α

(

1 +
∆x

r

)

(1 + α) +
∆x

r2

(

1 +
∆x

r

)

(1 + α∆x)

)

.

The result follows by this inequality.

Let us consider the double derivative term (3.12). Before doing the compu-
tations below, observe that D+D− = D−D+.

Estimate 3.2.

|(3.12)| ≤ Cα+ Γ(∆x, α)

(

∆x

r2

(

1 +
∆x

r

))

.

Proof. Observe that

D−D+(ϕ) = D−(Ψ∆xD+ω +D+Ψω)

= D+Ψ(D+ω)−∆x +Ψ∆xD−D+ω

+D−D+Ψω−∆x +D+ΨD−ω,

2D+(ϕ)y = −D+Ψ(ω)∆x
x +ΨD+(ω)y −D+Ψωx −Ψ∆xD+ωx,

ϕyy = −Ψ(ωx)y.

By Leibniz rule

D−D+ϕ+ 2D+ϕy + ϕyy = D−D+Ψω−∆x +D+(Ψ(D−ω − ωx))

+ Ψ(D+ω − ωx)y +D+Ψ(D−ω − ω∆x
x ). (3.31)

Let us estimate each term separately. First note that |A(uj)−A(u)|ε is bounded
independently of η and ∆x. Hence

|
∫∫

Π2
T

|A(uj)−A(u)|εD−D+Ψω−∆x
r ωr0dX | ≤ Cα.
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The next two terms can be estimated using integration by parts.

∫∫

Π2
T

|A(uj)−A(u)|εD+(Ψ(D−ωr − (ωr)x))ωr0dX

= −
∫∫

Π2
T

D−|A(uj)−A(u)|εΨ(D−ωr − (ωr)x)ωr0dX

= −
∫∫

Π2
T

signε(A(ξj)−A(u))(D−A(uj))Ψ(D−ωr − (ωr)x)ωr0dX

for some ξj ∈ int(uj−1, uj). Recall that ‖D−A(uj)‖L1(ΠT ) and ‖A(u)y‖L1(ΠT )

is bounded independently of η and ∆x. Applying lemma 3.3 it follows that

∫∫

Π2
T

|D−A(uj)|Ψ|D−ωr − (ωr)x|ωr0dX

≤ C
∆x

r3
(r +∆x)

∫

ΠT

Ψ|D−A(uj)|dxdt ≤ C
∆x

r3
(r +∆x).

Similarly

|
∫∫

Π2
T

|A(uj)−A(u)|εΨ(D+ωr − (ωr)x)yωr0dX | ≤ C
∆x

r3
(r +∆x).

To estimate the term associated with the last term on the right of (3.31) we
split it the following way:

∫∫

Π2
T

|A(uj)−A(u)|εD+Ψ(D−ωr − (ωr)
∆x
x )ωr0dX

=

∫∫

Π2
T

|A(uj)−A(u)|εD+Ψ(D−ωr − (ωr)x)ωr0dX

−∆x

∫∫

Π2
T

|A(uj)−A(u)|εD+Ψ(D+ωr)xωr0dX.

Now,

|
∫∫

Π2
T

|A(uj)−A(u)|εD+Ψ(D−ωr − (ωr)x)ωr0dX |

≤ C∆x
α

r3
(r +∆x)(

1

α
+∆x)

and

∆x|
∫∫

Π2
T

|A(uj)−A(u)|εD+ΨD+(ωr)xωr0dx|

≤ C∆x
α

r3
(r +∆x)(

1

α
+∆x).

The result follows by collecting all the terms.

Estimate 3.3.

|γ1|+ |γ2| ≤ Γ(α, r)

(

ε

αηr

(

1 +
∆x

r

))

.
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Proof. We start with the term γ1. Consider the integral

I =

∫ uj

u

sign′ε(A(z)−A(u))(f(z)− f(u))A′(z)dz.

By the mean value theorem |A(z)−A(u)| ≥ η|z − u|. Let K = ‖f‖Lip, then

|f(z)− f(u)| ≤ K|z − u| ≤ K

η
|(A(z)− A(u)|.

Observe that sign(uj − u)(A(z) − A(u)) = |A(z) − A(u)| for all z ∈ int(uj , u).
Let σ(z) = |A(z)−A(u)|. Then σ′(z) = sign(uj − u)A′(z). Recalling that sign′ε
is symmetric we can make a change of variables.

|I| ≤ K

η
|
∫ uj

u

sign′ε(A(z)−A(u))|A(z) −A(u)|A′(z)dz|

≤ K

η
|
∫ σ(uj)

0

sign′ε(σ)(A(z) −A(u))dσ|

≤ K

η

∫ ε

0

sign′ε(σ)σdσ = K
ε

η

(

1− 2

π

)

.

To finish the estimate we need a bound on ‖D+ϕ‖L1(Π2
T
). Note that

|D+ϕ| ≤ αχΛ∆x
χα0ωrωr0 +Ψ∆x 1

r2
χ|x−y|≤r+∆xωr0 (3.32)

and so

∫∫

Π2
T

|D+ϕ|dX ≤ α

∫

ΠT

χΛ∆x
χα0dxdt+

r +∆x

r2

∫

ΠT

Ψ∆xdxdt

≤ C

(

(1 + ∆xα) +
1

αr
(1 +

∆x

r
)(1 + α)

)

. (3.33)

Therefore

|γ1| ≤ C

(

ε

αηr
(1 + α+ αr) +

ε∆x

ηαr2
(1 + r + α2r2)

)

.

|γ2| is estimated in the same way. Just note that |ϕy| ≤ C 1
r2Ψχ|x−y|≤rωr0 so

∫∫

Π2
T

|ϕy|dX ≤ C

r

∫

ΠT

Ψdxdt ≤ C

rα
(1 + α) .

Hence
|γ2| ≤ C

ε

ηαr
(1 + α) .

Estimate 3.4.

|γ3| ≤ Γ(α, r)

(

∆x

r

(

1 +
∆x

r

))

.
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Proof. Since F is Lipschitz in each variable F ′
2(z) is bounded. Hence

|
∫ uj+1

uj

signε(A(z)−A(u))F ′
2(z)dz| ≤ C∆x|D+uj|.

Now, ‖D+uj(·, t)‖L1(R) ≤ C which is independent of ∆x since |uj(·, t)|BV ≤
|u0j |BV ≤ |u0|BV by lemma(5.1). We use (3.32) to obtain the following inequal-
ity:

∫∫

Π2
T

|D+uj ||D+ϕ|dX

≤ α

∫

ΠT

|D+uj|χΛ∆x
dxdt + C

r +∆x

r2

∫

ΠT

|D+uj|Ψ∆xdxdt.

Hence

|γ3| ≤ C∆x

(

α+
1

r
+

∆x

r2

)

≤ C
∆x

r

(

(1 + αr) +
∆x

r
(1 + αr)

)

.

We are now left with the terms contained in ℜ.

Estimate 3.5.

|ℜ| ≤ Γ(α, r, r0)

(

ε

r0ηα
+

(

∆x

εr
+

∆x

αr

)(

1 +
∆x

r

))

Proof. We start by the first term and continue until we have reached the end.

(3.13) Note that |A(z)−A(u)| ≥ η|z − u| and

signε(A(z)−A(u)) = sign(uj − u)signε(|A(z)−A(u)|)

for all z ∈ int(u, uj). Let ζ(z) =
πη
2ε |z − u|. Then we have

||uj − u| − ψε(uj , u)| =
∫ uj

u

sign(uj − u)− signε(A(z)−A(u))dz

= sign(uj − u)

∫ uj

u

1− signε(|A(z)−A(u)|)dz

≤ sign(uj − u)

∫ uj

u

1− signε(η|z − u|)dz

=
2ε

πη

∫ ζ(uj)

0

(1 − sin(ζ))χζ≤π/2dζ ≤
ε

η

Consider ‖ϕt‖L1(Π2
T
). First differentiate to obtain

∫∫

Π2
T

|ϕt|dX ≤
∫

ΠT

|Ψt|dxdt+
∫∫

Π2
T

Ψωr|(ωr0)t|dX.

We may now estimate each of these terms.
∫∫

Π2
T

Ψωr|(ωr0)t|dX ≤ C
1

r0

∫

ΠT

Ψdxdt ≤ C

r0

(

1 +
1

α

)

,
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∫

ΠT

|Ψt|dxdt ≤
∫

ΠT

|(χα0)t|χαdxdt+

∫

ΠT

χα0 |(χα)t|dxdt

χα0

(ν,τ)(t) = Hα0
(t−ν)−Hα0

(t−τ) ≤
∫ T

0

∫ (L+1/α)

−(L+1/α)

(ωα0
(t−ν)+ωα0

(t−τ))dxdt

+Mα

∫

ΠT

χα0χΛdxdt ≤ 4

(

L+
1

α

)

+ 2MT.

It follows that

‖ϕt‖L1(Π2
T
) ≤

C

r0α
(1 + r0)(1 + α).

Hence
|(3.13)| ≤ Γ(α, r0)

ε

r0ηα

(3.14) This term may be estimated as (3.13). Note that |ϕs| = Ψωr|(ωr0)t| and
thus by the above computations

|(3.14)| ≤ Γ(α)
ε

r0ηα
.

(3.15) This term cancels with the term (3.16). To see this we rewrite (3.16)
according to the following equalities:

sign′ε(A(uj)−A(u))A(u)yD
+A(uj) = −

(

signε(A(uj)−A(u))D+A(uj)
)

y

= −(D+|A(uj)−A(u)|ε)y
+(signε(A(θj)−A(u))− signε(A(uj)−A(u)))yD

+A(uj).

and

sign′ε(A(τj)−A(u))D+A(uj)A(u)y = D+signε(A(uj)−A(u))A(u)y

= −(D+|A(uj)−A(u)|ε)y.

Hence

(

sign′ε(A(τj)−A(u))− sign′ε(A(uj)− A(u))
)

A(u)yD
+A(uj)

= (signε(A(uj)−A(u))− signε(A(θj)−A(u)))yD
+A(uj). (3.34)

By (3.34) and integration by parts the two terms cancels.

(3.17) To estimate this term note that |sign′ε(z)| ≤ C
ε . So by the mean value

inequality we obtain

|signε(A(uj)−A(u))− signε(A(θj)−A(u))| ≤ C
∆x

ε
|D+A(uj)| (3.35)

since θj ∈ int(uj , uj+1). We are left with a similar computation as in
estimate 3.4. Hence

|(3.17)| ≤ C
∆x

ε

(

α+
1

r
+

∆x

r2

)

≤ Γ(α, r)
∆x

εr

(

1 +
∆x

r

)

.
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(3.18) Let us first split (3.18) according to the following equality:

sign′ε(A(uj)−A(u))ϕ− sign′ε(A(τj)−A(u))ϕ∆x

= sign′ε(A(uj)−A(u))(ϕ − ϕ∆x)

+
(

sign′ε(A(uj)−A(u))− sign′ε(A(τj)−A(u))
)

ϕ∆x. (3.36)

The first term on the right gives rise to the term

∫∫

Π2
T

sign′ε(A(uj)−A(u))(ϕ − ϕ∆x)(A(u)y)
2dX

= ∆x

∫∫

Π2
T

signε(A(uj)−A(u))A(u)yD
+ϕdX.

Recall that A(u)y is bounded independently of ∆x and η, and hence we
may use (3.33) to obtain

|
∫∫

Π2
T

sign′ε(A(uj)−A(u))(ϕ − ϕ∆x)(A(u)y)
2dX |

≤ Γ(α, r)

(

∆x

αr

(

1 +
∆x

r

))

.

We now consider the second term on the right of (3.36). We would like
to use equation (3.34), but the factor D+A(uj) is missing. The key is to
observe that whenever D+A(uj) = 0 we have uj = uj+1. It follows since
both τj and θj belongs to int(uj , uj+1) that

(

sign′ε(A(τj)−A(u))− sign′ε(A(uj)− A(u))
)

A(u)y

=
(

signε(A(uj)−A(u))− signε(A(θj)−A(u))
)

y
. (3.37)

Using this equation and partial integration we obtain

∫∫

Π2
T

(

sign′ε(A(uj)−A(u))− sign′ε(A(τj)−A(u))
)

(A(u)y)
2ϕ∆xdX =

∫∫

Π2
T

(signε(A(θj)−A(u))− signε(A(uj)−A(u))) (A(u)yϕ
∆x)ydX.

We may now apply (3.35). Since D+A(uj) is bounded and both A(u)yy
and A(u)y is in L1(ΠT ) it follows that

∫∫

Π2
T

|D+A(uj)||A(u)yyϕ∆x +A(u)yϕ
∆x
y |dX ≤ C

(

1

r
+ 1

)

.

Hence

|(3.18)| ≤ Γ(α, r, r0)

(

∆x

αr

(

1 +
∆x

r

))

+ Γ(r)
∆x

εr
.

The result now follows by

|ℜ| ≤ |(3.13)|+ |(3.14)|+ |(3.17)|+ |(3.18)|.
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Let us turn back to inequality (3.26). Define κ by

κµ(f) :=

∫∫

Π2
T

f(x, t, y, s)ωα0
(t− µ)χα(x, t)ωr(x− y)ωr0(t− s)dX.

By the triangle inequality we have

|uj(x, t) − u(y, s)| ≤ |uj(x, t)− u(x, t)|+ |u(x, t)− u(y, t)|+ |u(y, t)− u(y, s)|,
|uj(x, t)− u(x, t)| ≤ |uj(x, t)− u(y, s)|+ |u(y, s)− u(y, t)|+ |u(y, t)− u(x, t)|.

Recall that |u(·, s)|BV is bounded independently of η, s and ∆x. Using lemma
5.2 and the L1 Lipschitz continuity of u in the time variable we get the following
bounds:

κµ(|u(x, t)− u(y, t)|) ≤ Cr and κµ(|u(y, s)− u(y, t)|) ≤ Cr0.

It follows that

κν(|uj(x, t) − u(y, s)|) ≤ κν(|uj(x, t) − u(x, t)|) + C(r + r0),

κτ (|uj(x, t) − u(x, t)|) ≤ κτ (|uj(x, t) − u(y, s)|) + C(r + r0).
(3.38)

We add C(r+r0) to both sides of (3.26). Using the inequalities (3.38) we obtain

κν(|uj(x, t)− u(x, t)|) + 2C(r + r0) + β2 + |γ1|+ |γ2|+ γ3

+

∫∫

Π2
T

|A(uj)−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + |ℜ|

≥ κτ (|uj(x, t)− u(x, t)|).

Combining all the estimates we get the following inequality:

κτ (|uj(x, t) − u(x, t)|) ≤ κν(|uj(x, t)− u(x, t)|) + C(r + r0 + α)

+ Γ(α,∆x, r, r0)

(

ε

αηr
+

ε

αηr0
+

∆x

r2α
+

∆x

εr

)(

1 +
∆x

r

)

.

Observe that we might let α0 go to zero. Since

κµ(|uj(x, t)− u(x, t)|) →
∫

|uj(x, µ)− u(x, µ)|χα(x, µ)dx

as α0 → 0, we obtain

∫ Lr(τ)

Ll(τ)

|uj(x, τ) − u(x, τ)|dx ≤
∫

R

|uj(x, ν) − u(x, ν)|dx

+ C(r + r0 + α) + Γ(α,∆x, r, r0)

(

ε

αηr
+

ε

αηr0
+

∆x

r2α
+

∆x

εr

)(

1 +
∆x

r

)

.

Let us pick a relation between the parameters. These are of course picked this
way to optimize the convergence rate in the final result. Let α = r = r0 =√
η, ε = α5 and ∆x = α7. Why we pick η this way will become clear below. As

Γ is increasing, and ∆x is assumed to be smaller than some constant there is a
constant C such that

‖uj(·, τ) − u(·, τ)‖L1(Ll(τ),Lr(τ)) ≤ ‖uj(·, ν)− u(·, ν)‖L1(R) + Cα.
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Recall that r0 < ν. Let us pick ν = 2r0. Then the L1 Lipschitz continuity of
both uj and u combined with lemma 5.1 implies that

‖uj(·, ν)− u(·, ν)‖L1(R) ≤
‖uj(·, ν)− uj(·, 0)‖L1(R) + ‖uj(·, 0)− u(·, 0)‖L1(R) + ‖u(·, 0)− u(·, ν)‖L1(R)

≤ C(r0 +∆x).

Therefore
‖uj(·, τ) − u(·, τ)‖L1(Ll(τ),Lr(τ)) ≤ Cα.

Let u = uη and uj = uηj and u denote the solution to (1.1). Then recall that

‖u(·, τ)− uη(·, τ)‖L1(R) ≤ C
√
η.

Using the triangle inequality we get

‖u(·, τ)− uηj (·, τ)‖L1(Ll(τ),Lr(τ)) ≤ C(
√
η + α) = C

7
√
∆x.

This finishes the proof.
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4 An error estimate for the fully discrete ap-

proximation

The subject of this chapter is to obtain a similar result for the fully discrete
approximation defined in section 2.2. The approach is exactly the same as for
the semidiscrete approximation, and so the task is to track down the differences
and the dependency on the discretization parameter ∆t. Let {unj } satisfy the
implicit monotone scheme (2.10) with A = Aη. That is

{

D−
t u

n
j +D−

x F (u
n
j , u

n
j+1) = D−

xD
+
x A

η(unj ), (j, n) ∈ Z× N,
u0j =

∫

Ij
u0(x)dx, j ∈ Z.

Let xj = j∆x and tn = n∆t. Then define the squares

Cn
j =

{

(xj−1/2, xj+1/2]× (tn−1/2, tn+1/2] if (j, n) ∈ Z× N,
(xj−1/2, xj+1/2]× [0,∆t/2] if j ∈ Z and n = 0.

The discrete approximation is the stepfunction also denoted by unj . That is

unj (x, t) =
∑

j

∞
∑

n=0

unj χCn
j
(x, t).

Let us first state the result.

Theorem 4.1. Suppose that u is the entropy solution to (1.1) and that unj is the

discrete approximation defined by (2.10) with A = Aη where η = (∆x)
2
7 . If u0

satisfies (i) and (ii) from section 3, then there exists a constant C independent
of ∆x and ∆t such that

‖u(·, t)− unj (·, t)‖L1(Ll(t),Lr(t)) ≤ Cmax{ 7
√
∆x,

3
√
∆t}. t ∈ (0, T )

where Ll(t) = −L+Mt,Lr(t) = L−Mt, M ≥ ‖f‖Lip and L ≥MT +∆x.

The proof of this statement is provided in the rest of this chapter. It is
very similar to the proof of theorem 3.1. In order to avoid repeating the steps
already done in chapter 3, the approach is to give corresponding terms the same
name and take the results obtained by merely interchanging uj with unj for
granted. Define τnj and θnj analogous to the sequences defined in lemma 3.1.
Let u = u(y, s) be the viscous approximation defined by (1.2). We may rewrite
the continuous equation as in section 3.1.1. Next, we want to reformulate (2.10)
in a similar way as done in section 3.1.2 with the semidiscrete approximation.
Using the Taylor series of ψε(·, c) we obtain

D−
t ψε(u

n
j , c) = ψ′

ε(u
n
j , c)D

−
t u

n
j − ∆t

2
ψ′′
ε (ζ

n
j , c)(D

−
t u

n
j )

2 (4.1)

for some ζnj ∈ int(unj , u
n−1
j ). Multiply (2.10) with ψ′

ε(u
n
j , c)ϕ and integrate in

time and space. Using (4.1) we get
∫

ΠT

D−
t ψε(u

n
j , c)ϕ+ ψ′

ε(u
n
j , c)D

−
x F (u

n
j , u

n
j+1)ϕdxdt

=

∫

ΠT

ψ′
ε(u

n
j , c)D

−
xD

+
x A(u

n
j )ϕdxdt

−
∫

ΠT

∆t

2
ψ′′
ε (ζ

n
j , c)(D

−
t u

n
j )

2ϕdxdt.
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Except for the last term on the right, this equation is very similar to (3.6). By
the same manipulations as in section 3.1.2 we obtain a similar equation. Adding
up the two equations we get

∫∫

Π2
T

|unj − u|(D+
t ϕ+ ϕs)− (ψ′

ε(u
n
j , c)D

−
x F (u

n
j , u

n
j+1) + q(u, c)y)ϕdX (4.2)

=

∫∫

Π2
T

sign′ε(A(τ
n
j )−A(u))

(

D+
x (A(u

n
j )−A(u)y

)2
ϕ∆xdX (4.3)

−
∫∫

Π2
T

|A(unj )−A(u)|ε(D−
xD

+
x ϕ+ 2D+

x ϕy + ϕyy)dX (4.4)

+

∫∫

Π2
T

(|unj − u| − ψε(u
n
j , u))D

+
t ϕdX (4.5)

+

∫∫

Π2
T

(|u− unj | − ψε(u, u
n
j ))ϕsdX (4.6)

+

∫∫

Π2
T

[

signε(A(u
n
j )− A(u))−

signε(A(θ
n
j )−A(u))

]

D+
x A(u

n
j )ϕ

∆x
y dX (4.7)

+

∫∫

Π2
T

[

sign′ε(A(τ
n
j )−A(u))−

sign′ε(A(u
n
j )−A(u))

]

A(u)yD
+
x A(u

n
j )ϕ

∆xdX (4.8)

+

∫∫

Π2
T

[

signε(A(u
n
j )− A(u))−

signε(A(θ
n
j )−A(u))

]

D+
x A(u

n
j )D

+
x ϕdX (4.9)

+

∫∫

Π2
T

[

sign′ε(A(u
n
j )− A(u))ϕ−

sign′ε(A(τ
n
j )−A(u))ϕ∆x

]

(A(u)y)
2dX (4.10)

+

∫∫

Π2
T

∆t

2
ψ′′
ε (ζ

n
j , u)(D

−
t u

n
j )

2ϕdX. (4.11)

4.1 Obtaining the inequality

Let us chose ϕ in the same way as in section 3.2 with one minor exception.
Since we are using difference quotients instead of the ordinary derivative in the
variable t, we do not need ϕ to be smooth in this variable. Hence we use χ[ν,τ ](t)
instead of χα0(t). Note that

D+
t χ[ν,τ ](t) = δ∆t(t− ν)− δ∆t(t− τ) where δ∆t(t) :=

1

∆t
χ[−∆t,0](t).

Introduce the numerical entropy flux

Qc
ε(u

n
j , u

n
j+1) = qε(u

n
j , c) +

∫ un
j+1

un
j

ψ′
ε(z, c)F

′
2(z)dz,

and let
ℜ := (4.5) + · · ·+ (4.10).
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Removing the positive terms on the right hand side and applying lemma 2.5 we
obtain the inequality

∫∫

Π2
T

|unj − u|(D+
t ϕ+ ϕs)− (D−

x Q
u
ε (u

n
j , u

n
j+1) + qε(u, u

n
j )y)ϕdX

+

∫∫

Π2
T

|A(unj )−A(u)|ε(D−
xD

+
x ϕ+ 2D+

x ϕy + ϕyy)dX ≥ ℜ. (4.12)

Consider the term including the numerical entropy flux. We do the same compu-
tations as in the semidiscrete case and defines γ1, γ2 and γ3 as in (3.21),(3.22)
and (3.23). The inequality corresponding to (3.24) then takes the following
form:

∫∫

Π2
T

|unj − u|(D+
t ϕ+ ϕs)dX

+

∫∫

Π2
T

signε(A(u
n
j )−A(u))(f(unj )− f(u))(D+

x ϕ+ ϕy)dX

+

∫∫

Π2
T

|A(unj )−A(u)|ε(D−
xD

+
x ϕ+ 2D+

x ϕy + ϕyy)dX + γ3

≥ γ1 + γ2 + ℜ. (4.13)

Consider the first term on the left in (4.13).

∫∫

Π2
T

|unj − u|(D+
t ϕ+ ϕs)dX

=

∫∫

Π2
T

|unj − u|(D+
t Ψω

∆t +Ψ(D+
t ω − ωt))dX

=

∫∫

Π2
T

|unj − u|D+
t ΨωdX +∆t

∫∫

Π2
T

|unj − u|D+
t ΨD

+
t ωdX

+

∫∫

Π2
T

|unj − u|Ψ(D+
t ω − ωt)dX =: T1 + ζ1 + ζ2.

Using Leibniz rule we obtain:

T1 =

∫∫

Π2
T

|unj − u|χα
t χ[ν,τ ]ωdX +

∫∫

Π2
T

|unj − u|(D+
t χ

α − χα
t )χ[ν,τ ]ωdX

+

∫∫

Π2
T

|unj − u|χαD+
t χ[ν,τ ]ωdX +∆t

∫∫

Π2
T

|uj − u|D+
t χ

αD+
t χ[ν,τ ]dX

=: δ3 + ζ3 + T2 + ζ4.

Furthermore

T2 =

∫∫

Π2
T

|unj − u|χαδ∆t(t− ν)ωdX −
∫∫

Π2
T

|unj − u|χαδ∆t(t− τ)ωdX.
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The terms β1 and β2 are defined as in (3.25). Collecting these computations we
obtain the inequality

∫∫

Π2
T

|unj − u|χαδ∆t(t− ν)ωdX + β2 +

4
∑

k=1

ζk

+

∫∫

Π2
T

|A(unj )−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + γ3

≥
∫∫

Π2
T

|unj − u|χαδ∆t(t− τ)ωdX

− (δ3 + β1) + γ1 + γ2 + ℜ.

As M ≥ ‖f‖Lip it follows that δ3 + β1 ≤ 0. Hence

∫∫

Π2
T

|unj − u|χαδ∆t(t− ν)ωdX + β2 + |γ1|+ |γ2|+ γ3 +

4
∑

k=1

ζk

+

∫∫

Π2
T

|A(unj )−A(u)|ε(D−D+ϕ+ 2D+ϕy + ϕyy)dX + |ℜ|

≥
∫∫

Π2
T

|unj − u|χαδ∆t(t− τ)ωdX. (4.14)

4.2 Finding the rate of convergence

Comparing (4.14) with (3.26) it is clear that there are only some minor changes.
We consider these and take the results obtained by merely interchanging uj with
unj for granted. Note that interchanging χα0 with χ[ν,τ ] amounts to taking the
limit α0 → 0. One may therefore apply the Lebesgue dominated convergence
theorem to ensure that this interchange does not cause any problems. First
consider some useful elementary estimates.

Lemma 4.1. Let

Λ∆t = {(x, t)|(L −Mt)−∆t/M ≤ |x| ≤ (L−Mt) + 1/α+∆t/M}.

Then the following estimates apply:

|D+
t χ

α| ≤MαχΛ∆t
, (4.15)

|D+
t ωr0 | ≤ ‖ω′‖L∞(R)

1

r20
χ|s−t|≤r0+∆t, (4.16)

|D+
t ωr0 − (ωr0)t| ≤ ‖ω′′‖L∞(R)

∆t

2r20
χ|s−t|≤r0+∆t, (4.17)

∫

|D+
t χ

α − χα
t |dt ≤ 2∆tMαχ|x|≤L+1/α. (4.18)

Let us start by considering the terms {ζk}4k=1.

Estimate 4.1.
4

∑

k=1

|ζk| ≤ Γ(α, r0,∆t)
∆t

αr0

(

1 +
∆t

r0

)

.
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Proof. (ζ1) Recall that |unj − u| ∈ L∞(Π2
T ) and so

|ζ1| ≤ C∆t
1

r20
(r0 +∆t)‖D+

t Ψ‖L1(ΠT ).

Consider ‖D+
t Ψ‖L1(ΠT ). Using Leibniz rule we obtain two integrals that

may be estimated separately.
∫∫

ΠT

|D+
t χ

α(χ[ν,τ ])
∆t|dxdt ≤ T (M + 2α∆t),

∫∫

ΠT

χα|D+
t χ[ν,τ ]|dxdt ≤

∫ L+1/α

−L−1/α

∫ T

0

|D+
t χ[ν,τ ]|dtdx ≤ 4

(

L+
1

α

)

.

It follows that ‖D+
t Ψ‖L1(ΠT ) ≤ Γ(α,∆t) 1

α . Hence

|ζ1| ≤ Γ(α,∆t)
∆t

r0α

(

1 +
∆t

r0

)

.

(ζ2) By the above lemma
∫∫

Π2
T

|unj − u|Ψ(D+
t ω − ωt)dX ≤ C

∆t

r20
(r0 +∆t)

∫∫

ΠT

Ψdxdt.

Hence

|ζ2| ≤ Γ(α)
∆t

r0α

(

1 +
∆t

r0

)

.

(ζ3) This also follows by the above lemma.

|ζ3| ≤
∫∫

Π2
T

|unj − u||D+
t χ

α − χα
t |χ[ν,τ ]ωdX

≤ C

∫∫

ΠT

|D+
t χ

α − χα
t |dtdx ≤ Γ(α)∆t.

(ζ4) Consider the L1 norm of D+
t χ

αD+
t χ[ν,τ ].

‖D+
t χ

αD+
t χ[ν,τ ]‖L1(ΠT )

≤Mα

∫∫

ΠT

χΛ∆t
(δ∆t(t− ν) + δ∆t(t− τ))dxdt

≤ 4(M + α∆t).

Hence
|ζ4| ≤ Γ(α,∆t)∆t.

The proof follows by collecting all the terms.

Let us look at the terms in ℜ. Considering estimate 3.5 we observe that the
computations apply in this case as well with one exception. In the term (4.5)
we have exchanged ϕt with D

+
t ϕ so we need to find a bound on ‖D+

t ϕ‖L1(Π2
T
).

‖D+
t ϕ‖L1(Π2

T
) ≤ ‖D+

t Ψ‖L1(ΠT ) +
C

r20
(r0 +∆t)

∫

ΠT

Ψdxdt.
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By the above computations

‖D+
t ϕ‖L1(Π2

T
) ≤ Γ(α, r0)

1

r0α

(

1 +
∆t

r0

)

.

The above discussion implies the following result:

Estimate 4.2.

|ℜ| ≤ Γ(α, r, r0)

(

ε

r0ηα

(

1 +
∆t

r0

)

+

(

∆x

εr
+

∆x

αr

)(

1 +
∆x

r

))

.

Considering γ1, γ2, γ3, the double derivative term (4.4) and β2 we may apply
the same estimates as in the semidiscrete case with uj interchanged with unj .
Let

κµ(f) :=

∫∫

Π2
T

f(x, t, y, s)δ∆t(t− µ)χα(x, t)ωr(x− y)ωr0(t− s)dX.

By the same argument as in the semidiscrete case

κν(|unj (x, t) − u(x, t)|) + 2C(r + r0) + β2 + |γ1|+ |γ2|+ γ3 +

4
∑

k=1

ζk

+

∫∫

Π2
T

|A(unj )−A(u)|ε(D−
xD

+
x ϕ+ 2D+

x ϕy + ϕyy)dX + |ℜ|

≥ κτ (|unj (x, t)− u(x, t)|). (4.19)

Combining the estimates we get

κτ (|unj (x, t) − u(x, t)|) ≤ κν(|unj (x, t) − u(x, t)|) + C(r + r0 + α)

+ Γ(α,∆x, r, r0)

(

ε

αηr
+

ε

αηr0

(

1 +
∆t

r0

)

+
∆x

r2α
+

∆x

εr

)(

1 +
∆x

r

)

+ Γ(α, r0,∆t)
∆t

αr0

(

1 +
∆t

r0

)

.

Let α = r = r0 =
√
η, ε = α5. Let α = max( 7

√
∆x, 3

√
∆t). Then α7 ≥ ∆x and

α3 ≥ ∆t. Recall that ∆x is less than some constant. We may assume that the
same applies to ∆t. Thus there exists a constant C such that

κτ (|unj (x, t)− u(x, t)|) ≤ κν(|unj (x, t) − u(x, t)|) + Cα. (4.20)

In the semidiscrete case we used the Lipschitz continuity of both uj and u to
finish the estimate. Since unj is piecewise constant in the time variable we need
a slightly different approach. Assume that µ = tn + ∆t/2 for some n ∈ N.
Observe that unj (x, t) does not depend on t for t ∈ (µ − ∆t, µ], so by the L1

Lipschitz continuity of u and the reversed triangle inequality

|κµ(|unj (x, t)− u(x, t)|χ(Ll(µ),Lr(µ))(x)) − ‖unj (·, µ)− u(·, µ)‖L1(Ll(µ),Lr(µ))|

≤ 1

∆t

∫ µ

µ−∆t

|‖unj (·, t)−u(·, t)‖L1(Ll(µ),Lr(µ))−‖unj (·, µ)−u(·, µ)‖L1(Ll(µ),Lr(µ))|dt

≤ 1

∆t

∫ µ

µ−∆t

‖u(·, t)− u(·, µ)‖L1(Ll(µ),Lr(µ))dt ≤ C∆t.
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Furthermore

|κµ(|unj (x, t)− u(x, t)|χ(Ll(µ),Lr(µ))(x)) − κµ(|unj (x, t)− u(x, t)|)| ≤ C∆t.

Assume that τ = tn + ∆t/2 and ν = tm +∆t/2 where n,m ∈ N. Then by the
above estimates and (4.20) we obtain:

‖unj (·, τ) − u(·, τ)‖L1(Ll(τ),Lr(τ)) ≤ ‖unj (·, ν)− u(·, ν)‖L1(R) + Cα.

The next observation provides a useful substitution for the lack of L1 Lipschitz
continuity.

‖unj (·, t)− unj (·, s)‖L1(R) ≤ C(|t− s|+∆t) t, s ≥ 0. (4.21)

This follows by observing that there exist integers p, q ≥ 0 such that |tp − t| ≤
∆t/2, |tq − s| ≤ ∆t/2, unj (·, t) = unj (·, tp) and unj (·, s) = unj (·, tq). By lemma 2.3

‖unj (·, t)− unj (·, s)‖L1(R) = ‖upj − uqj‖1 ≤ C(∆t|p− q|) ≤ C(|s− t|+∆t).

Recall that we assumed r0 < ν. Let ν be such that r0 < ν ≤ r0 + ∆t. By the
triangle inequality, (4.21), lemma 5.1 and the L1 Lipschitz continuity of u

‖unj (·, ν)− u(·, ν)‖L1(R) ≤ C(r0 +∆t+∆x). (4.22)

Hence
‖unj (·, τ) − u(·, τ)‖L1(Ll(τ),Lr(τ)) ≤ Cα.

By the same reasoning as we used to obtain (4.22) we may show that this
inequality applies to any τ ∈ (0, T ). The theorem now follows by (1.6) as in the
semidiscrete case.
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5 Appendix

Here I have collected some results which I decided not to include in the main
text. This is either because they are elementary results written down to convince
the author, or because they serve rather as background than as a part of the
proof.

Lemma 5.1. Let xj = j∆x and

u0j =
1

∆x

∫

Ij

u0(x)dx, Ij = (xj−1/2, xj+1/2).

Then

1. |u0j |BV ≤ |u0|BV

2. ‖u0j‖L∞ ≤ ‖u0‖L∞

3. ‖u0j − u0‖L1(R) ≤ 1
4 |u0|BV ∆x

Proof. Let

g(ξ) =

{

∫

R

|u0(x+ξ)−u0(x)|
|ξ| dx ξ 6= 0

0 ξ = 0

and note that |u0|BV = ‖g‖∞.

1.

∑

j

|u0j+1 − u0j | =
∑

j

1

∆x
|
∫

Ij+1

u0dx−
∫

Ij

u0dx|

=
∑

j

1

∆x
|
∫

Ij

(u0)∆x − u0dx| ≤
∑

j

∫

Ij

|(u0)∆x − u0|
∆x

dx

= g(∆x) ≤ |u0|BV

2. This is obvious.

3.

∫

R

|u0j − u0|dx =

∫

R

1

∆x
|
∫ ∆x/2

−∆x/2

u0(x+ ξ)− u0(x)dξ|dx

≤
∫

R

1

∆x

∫ ∆x/2

−∆x/2

|u0(x+ ξ)− u0(x)|dξdx

=
1

∆x

∫ ∆x/2

−∆x/2

|ξ|g(ξ)dξ ≤ ∆x

4
|u0|BV

Lemma 5.2. Let u ∈ BV (R) and ω be a mollifier. Then

∫∫

|u(x)− u(y)|ωr(x− y)dxdy ≤ (|u|BV )r.
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Proof. Let

g(ξ) =

{

∫

R

|u(x+ξ)−u(x)|
|ξ| dx ξ 6= 0

0 ξ = 0

and note that |u|BV = ‖g‖∞. Let x = y + ξ and observe that

∫∫

|u(x)− u(y)|ωr(x − y)dxdy =

∫∫

|u(y + ξ)− u(y)|ωr(ξ)dydξ

=

∫

|ξ|g(ξ)ωr(ξ)dξ ≤ (|u|BV )r

Lemma 5.3. Let f : R → R be Lipschitz continuous with lipschitz constant K.
Then

|
∫

R

f(t)δ∆t(t− µ)dt− f(µ)| ≤ K

2
∆t

for any µ ∈ R and δ∆t(t) =
1
∆tχ[−∆t,0](t).

Proof.

|
∫

R

f(t)δ∆t(t− µ)dt− f(µ)| = 1

∆t
|
∫ µ

µ−∆t

f(t)− f(µ)dt|

≤ K

∆t

∫ ∆t

0

tdt ≤ K

2
∆t.
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