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Abstract
Machine learning is a powerful technology which has revolutionised the analysis of large and
complex datasets. This makes machine learning particularly suitable for dissecting
high-dimensional sequencing datasets. With the rapid technological advances in
high-throughput sequencing, we’ve gained the capacity to explore large repertoires of adaptive
immune receptors. These immune receptors are of interest as they facilitate the targeted
recognition of antigens such as viruses, bacteria or cancer cells. Furthermore, immune
receptors play a crucial role in maintaining immunological memory. Thus, the repertoire of
immune receptors in an individual is a highly personal recording of their disease status.
Researchers have turned to machine learning to address two main applications within this data
domain: predicting the antigen binding status of individual immune receptors, and predicting the
disease status of an individual based on her or his immune receptor repertoire.

Much is still unknown about the underlying mechanisms determining antigen recognition, and
while machine learning holds tremendous potential, its use also comes with challenges.
Research conducted by different groups may vary in their underlying domain assumptions,
evaluation criteria for method performance, and selected datasets. Robust, standardised and
fully reproducible workflows need to be in place to determine the optimal machine learning
model for a given study. Transparency and interpretability of models are of critical importance to
ensure that the learned patterns represent true biological signals rather than artefacts. And the
rapid growth of immune repertoire datasets furthermore underlines the need for computational
efficiency.

This thesis introduces new computational methods to assist in the analysis of the immune
receptor-antigen binding and immune repertoire-disease status prediction problems. The first
paper presents immuneML, a platform for the machine learning based analysis of adaptive
immune receptors and repertoires. This platform can be used for the comparative evaluation of
predictive models for either immune receptor or repertoire classification, accelerating the
development of such models. The second paper introduces CompAIRR, a tool for the ultra-fast
and efficient computation of overlap between immune repertoires. CompAIRR has been used to
speed up various computational analyses of immune repertoires, including several machine
learning models in immuneML. The final paper describes an investigation of how well the
antigen binding status of immune receptors can be predicted by the presence of short motifs.
Improving our understanding of how the performance of simple, straightforward prediction rules
can help guide the development of domain specific machine learning algorithms.
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Sammendrag
Maskinlæring er en kraftig teknologi som har revolusjonert analysen av store og komplekse
datasett. Dette gjør maskinlæring spesielt egnet for dissekering av høydimensjonale
sekvenseringsdatasett. Med de raske teknologiske fremskrittene innen
high-throughput-sekvensering, har vi fått kapasiteten til å utforske store repertoarer av adaptive
immunreseptorer. Disse immunreseptorene er av interesse da de letter målrettet gjenkjennelse
av antigener som virus, bakterier eller kreftceller. Videre spiller immunreseptorer en avgjørende
rolle for å opprettholde immunologisk hukommelse. Repertoaret av immunreseptorer hos et
individ er således en svært personlig registrering av sykdomsstatusen deres. Forskere har vendt
seg til maskinlæring for å adressere to hovedapplikasjoner innenfor dette datadomenet: å forutsi
antigenbindingsstatusen til individuelle immunreseptorer, og forutsi sykdomsstatusen til et
individ basert på deres immunreseptorrepertoar.

Mye er fortsatt ukjent om de underliggende mekanismene som bestemmer antigengjenkjenning,
og selv om maskinlæring har et enormt potensial, kommer bruken også med utfordringer.
Forskning utført av ulike grupper kan variere i deres underliggende domeneforutsetninger,
evalueringskriterier for metodeytelse og utvalgte datasett. Robuste, standardiserte og fullt
reproduserbare arbeidsflyter må være på plass for å bestemme den optimale
maskinlæringsmodellen for en gitt studie. Åpenhet og tolkning av modeller er av avgjørende
betydning for å sikre at de lærte mønstrene representerer ekte biologiske signaler i stedet for
spuriøse korrelasjoner. Og den raske veksten av immunrepertoardatasett understreker
dessuten behovet for beregningseffektivitet.

Denne oppgaven introduserer nye beregningsmetoder for å bistå i analysen av
immunreseptor-antigenbinding og immunrepertoar-sykdomsstatus prediksjonsproblemer. Den
første artikkelen presenterer immuneML, en plattform for maskinlæringsbasert analyse av
adaptive immunreseptorer og -repertoarer. Denne plattformen kan brukes til komparativ
evaluering av prediktive modeller for enten immunreseptor- eller repertoarklassifisering, og
akselererer utviklingen av slike modeller. Den andre artikkelen introduserer CompAIRR, et
verktøy for ultrarask og effektiv beregning av overlapping mellom immunrepertoarer. CompAIRR
har blitt brukt til å fremskynde ulike beregningsanalyser av immunrepertoarer, inkludert flere
maskinlæringsmodeller i immuneML. Den endelige artikkelen beskriver en undersøkelse av hvor
godt antigenbindingsstatusen til immunreseptorer kan forutsies ved tilstedeværelse av korte
motiver. Å forbedre vår forståelse av hvordan ytelsen til enkle, greie prediksjonsregler kan
hjelpe til med å lede utviklingen av domenespesifikke maskinlæringsalgoritmer.
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Preface

Introduction
Machine learning (ML) is a subfield of artificial intelligence which concerns the development of
self-learning algorithms. Often relying heavily on statistics and mathematical optimisation, ML
algorithms can be used to find patterns in data, distinguish groups and make predictions. While
artificial intelligence was already an active field of research in the 1950s, initial computational
limitations hampered its development and resulted in a loss of interest. However, the recent
increase in available data and computational power, as well as technological breakthroughs
have resurrected a new interest in this field, in particular in ML algorithms known as deep
learning methods. Nowadays, ML algorithms are used in a wide variety of applications, ranging
from practical everyday settings to cutting-edge research.

The rekindled interest in ML has revolutionised the analysis of large and complex datasets,
including biomedical data. Through the application of ML, we have gained unprecedented
insight into biological processes, and accelerated developments in healthcare. Some of the
recent breakthroughs include the prediction of 3D protein structures, the discovery of new
drugs, vaccine design and the predictive diagnostics for a large range of diseases. One
particular type of biomedical data that has recently seen benefits from ML-based analysis is
adaptive immune receptors (AIRs). AIRs are produced by B and T cells, and serve as our
immune system’s tool to recognise, neutralise and remember potentially harmful foreign
substances or cancer cells. The human body produces a large variety of AIRs, known as the
AIR repertoire (AIRR), which provides protection against an immeasurable number of different
antigens. While AIRs are highly diverse, most of this diversity only occurs within a small region
at the tip of the AIR that makes contact with the antigen. This makes AIRs an excellent subject
for ML-based classification, by aiming to learn a mapping between this short, information-dense
subsequence of the AIR, and its potential antigen target(s). Such classification models could
accelerate in silico drug development.

Furthermore, the AIRR continually changes over the course of a person’s lifetime in response to
exposure to different antigens. This makes the AIRR a highly valuable resource of health
information, as infectious diseases, autoimmune diseases or cancer can potentially leave a
traceable mark. Recent developments in high-throughput sequencing have for the first time
enabled us to sequence substantial portions of AIRRs from large patient cohorts. This offers
another opportunity for ML-based classification of adaptive immune data: predicting the disease
status of an individual based on their AIRR. An improved understanding of how disease signals
may appear as learnable patterns in the AIRR may enable the creation of a universal diagnostic
tool.
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The complex biology of AIR(R) data warrants the development of domain specific ML
methodology for the prediction of AIR-antigen binding and AIRR disease status. Some models
have already been developed for this purpose throughout the last decade. However, to be truly
useful, it is crucial to understand the individual strengths and weaknesses of models, and
ensure that the learned predictive patterns represent true biological markers rather than
artefacts. Understanding which ML methods are best for a given AIR(R) study is not trivial, as
methods are often evaluated based on different criteria, using different datasets. Transparent
evaluation of methods, reproducibility, and interpretability of results are vital for the progression
of the AIR(R)-ML field. Moreover, as dataset sizes are rapidly growing, computational efficiency
becomes more important. To address these challenges, this thesis introduces several
computational methods to support the ML-based analysis of AIR(R) data. The foundation of this
thesis is a software platform for the comparative evaluation of AIR(R)-ML classifiers.
Furthermore, a component for the ultra-fast and efficient comparison of AIRRs has been
developed and used to speed up several applications. Lastly, a method was developed to
analyse the antigen binding capabilities of AIRs based on the presence of short motifs.
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Background
This thesis concerns the computational, and specifically ML-based analysis of AIR and AIRR
data. The background is structured as follows: first, an overview is given of the research
challenges being faced in this thesis – the biology of AIR(R)s, including factors that contribute to
the complexity of AIR-antigen binding and the composition of AIRRs. Thereafter, methodological
aspects are introduced, covering the relevant ML concepts. Lastly, a review is given of the
previous efforts of predicting AIR-antigen binding and AIRR disease status, as well as the
benchmarking thereof.

The adaptive immune system
The adaptive immune system is a highly complex system that provides targeted protection
against foreign threats and cancers, as well as maintaining an immunological memory that
ensures a quick response upon re-exposure to the same substance. Two key cell types make
up the adaptive immune system: B and T cells. Both B and T cells are leukocytes (white blood
cells), which play a critical role in the identification and destruction of infectious agents, such as
viruses and bacteria, or cancer cells. Specifically, any substance that is recognised by the
adaptive immune system and able to elicit an immune response is called an antigen. Antigens
can be bound by the B and T cell receptors (BCRs and TCRs) expressed on the surface of the
cell. These BCRs and TCRs are collectively referred to as AIRs, whereas the repertoire of AIRs
present in an individual is called immune repertoire or AIRR.

Whereas B cells recognise free-floating antigens in the blood, T cells are responsible for the
cell-mediated immune response. For recognition by T cells, antigens must be presented on a
major histocompatibility complex (MHC) molecule, which allows a cell to present small protein
fragments originating from within the cell to be expressed on its surface [1]. This way, T cells
can detect whether antigens are present inside other cells, and subsequently signal for these
cells to go into pre-programmed cell death or stimulate other immune cells. B cells do not
require antigens to be presented on MHC, and are furthermore able to excrete BCRs, which are
in their secreted form known as antibodies. Free-floating antibodies play a crucial role in the
neutralisation of antigens, by binding to their surface. Antibodies may furthermore agglomerate
antigens together, making these antigens an easier target for destruction by phagocytosis [2].
Moreover, antigen-bound antibodies can activate the complement system, leading to direct
destruction of the cell walls of foreign cells (e.g., bacterial cells), as well as sending chemical
signals to attract more immune cells to the area [2,3].

B or T cells typically express many copies of only one identical AIR. Upon antigen recognition, a
B or T cell transitions from its naive state to an activated state. These activated cells rapidly
proliferate in order to multiply the number of cells carrying AIRs that are specific to the same
antigen [2]. This process is referred to as clonal expansion. All B and T cells derived from the
same progenitor cell are said to belong to the same clone. When proliferating, activated B cells
undergo a process called somatic hypermutation (SHM), during which the DNA encoding the
immune receptor chains is duplicated with an extremely high mutation rate [4]. Most mutations
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occur in the regions that are likely to be in contact with the antigen [5]. The resulting daughter
cells express AIRs with slight variations in binding affinity to the target antigen, and those with
the strongest affinity will also receive the strongest activation signal, contributing to affinity
maturation [6]. Some fraction of the activated B and T cells differentiate into long-lived memory
cells. These memory cells may survive in the body for many decades, even without re-exposure
to the same antigen [7]. When being re-exposed to the same antigen, memory B and T cells
enable a quick and strong secondary immune response.

Adaptive immune receptors

BCRs and TCRs share a structural similarity, as they are created in a similar generational
process. All AIRs consist of two chains that are paired together (Figure 1). In TCRs, these
chains are most often α and β chains, or less commonly γ and δ chains, whereas BCRs typically
consist of heavy and light chains, or alternatively heavy and kappa chains. Each of these two
chains consists of a constant and a variable region. Within each variable region there are three
complementarity-determining regions (CDRs), which are protruding loops that may be in contact
with the antigen. The CDRs are flanked by more conserved framework regions (FRs) to
maintain the structure of the AIR.

Figure 1: example of a T and B cell receptor. Both types of receptors consist of two chains, here shown
are TCR α and β chains, and BCR heavy and light chains. The CDRs in the variable region mediate
antigen binding, whereas the constant region provides structural stability. The variability of the tip of the
AIR is a result of the AIR chain genes being produced in a process called V(D)J recombination (Figure 2).
While TCRs are always membrane-bound, BCRs may either be membrane bound or secreted in the form
of antibodies. Figure modified from: Backhaus [8] and Calis and Rosenberg [9]. An earlier version of this
figure originally appeared in my master’s thesis [10].
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Generation of AIR genes through V(D)J recombination
As the total space of antigens is potentially infinite, a large diversity of AIRs is needed in order
to provide a broad protection against different antigens. To ensure a broad AIR diversity, the
genes encoding the two AIR chains are created in a partially stochastic process called V(D)J
recombination (Figure 2) [11]. A multitude of different variable (V), diversity (D) and joining (J)
gene segments are encoded in the DNA. When a TCR β or BCR heavy chain gene is created, a
randomly chosen pair of D and J gene segments are first recombined, followed by a V gene
segment. As the intermediate regions between the gene segments are spliced out, few
additional nucleotides may be removed at the ends of the gene segments, and random new
nucleotides may be inserted [11]. The TCR α and BCR light chains are created in a similar
process, with the exception of a lacking D gene segment. The initial diversity of immune
receptor chains is thus ensured in two different ways: combinatorial diversity results from the
recombination of different gene segments, and junctional diversity is created by the random
deletion and insertion of nucleotides at the gene segment junctions [12]. As AIRs consist of two
separate chains, a third source of diversity is through the pairing of different α/β or heavy/light
chains. The total potential diversity of the TCR repertoire has been estimated to be around 1015

[13]. For BCRs, the naive repertoire is considered to be around 1012, but after SHM could
contain up to 1018 unique receptors [14]. In addition to the V, optional D and J segments, the AIR
chain gene contains a constant (C) gene segment, which encodes a structural part of the AIR.
Different C segments may be used to create antibodies with different immunological
functionalities [15].

Due to AIRs being created in a chain of stochastic events, each AIR has a different probability of
being generated by a developing immune cell [16,17]. Biases in V(D)J recombination cause
certain gene segments to be used preferentially over others, or to be subject to preferential
gene segment pairing [18,19]. Random insertions/deletions or SHM occur at biased rates as
well. Furthermore, the specific set of gene segments present in the genome may differ across
individuals [20], and individual-specific V(D)J recombination biases have been observed [21,22].
As a consequence, the same AIR may have a different probability of being generated by
different individuals.

Although B and T cells usually express a single type of AIR resulting from one V(D)J
rearrangement for each chain, exceptions exist. Since humans are diploid organisms, it is
possible to create up to two V(D)J rearrangements per receptor chain locus in a B or T cell.
Having a second opportunity to create a receptor chain gene is advantageous, since many
rearrangements fail to create a productive in-frame sequence [23]. Rearrangement is usually
halted after a productive receptor chain gene is produced. However, it is occasionally possible
for a cell to produce and express multiple productive chains (‘dual’ chains) [24,25], which may
result in one immune cell expressing multiple receptors with different antigen specificities.
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Figure 2 V(D)J recombination of the TCR and BCR genes. V(D)J recombination is a two-step process:
first, a D and J gene segment are imperfectly recombined, followed by a V gene segment. Random
nucleotide insertions and deletions may occur at the junction sites between gene segments, creating
junctional diversity. Only the TCR β and BCR heavy chains contain a D gene segment, for TCR α and
BCR light chains, the D segment is omitted and the V and J segments are recombined directly. The
genomic location where additional C segments for the BCR heavy and TCR β chains may appear is
marked with an asterisk (*). Figure modified from: Backhaus [8]. An earlier version of this figure originally
appeared in my master’s thesis [10].

Antigen presentation by the major histocompatibility complex
MHC molecules mediate cellular immunity by presenting antigen fragments to TCRs. There are
two antigen-presenting subgroups of MHC molecules: MHC classes I and II. All nucleated cells
as well as platelets express MHC class I, while MHC class II is presented only on so-called
professional antigen-presenting cells, which are able to ingest antigens through phagocytosis
[2]. In either case, small protein fragments (peptides) are bound to the MHC molecule and
subsequently expressed on the surface of the cell [26]. This allows the MHC expressing cell to
communicate to other cells what kinds of proteins are present inside. MHC class I is primarily
used to express fragments of proteins circulating freely in the cellular fluid. Peptides that are
commonly found in healthy cells are usually not recognised by T cells, as such self-reactive T
cells are eliminated during maturation [27]. However, peptides expressed by infected or
cancerous cells may be recognised by cytotoxic T cells, which will signal to the dysregulated cell
to go into apoptosis. The MHC class II pathway instead concerns the expression of peptides
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from phagocytosed antigens, activating T helper cells, which further stimulate and regulate other
immune cells [26].

The human variant of MHC is sometimes referred to as the human leukocyte antigen (HLA)
complex. Both for MHC classes I and II, there exist several different HLA subtypes. The ability
for a given TCR to bind to a peptide is dependent on the specific HLA subtype [28]. This
concept is called MHC restriction [29]. MHC restriction complicates AIRR research, as identical
TCRs may have different antigen binding capabilities across individuals with different HLA
subtypes. The HLA subtype furthermore restricts what peptides can be presented, thereby
further shaping the TCR repertoire [26]. For MHC class II, certain HLA subtypes are associated
with higher risk of developing autoimmune diseases such as celiac disease [30] and type 1
diabetes [31].

Immune receptor-antigen binding
AIRs bind to antigens in 3D space. Antigen binding specificity is determined by the 3D shape of
the AIR CDRs, as well as biophysicochemical interactions [32,33]. The part of the antigen that is
recognised by the AIR is called the epitope [34], whereas the amino acids inside the AIR that
make contact with the epitope are called the paratope [35]. Paratopes usually involve short
stretches of contiguous amino acids in the CDR3, but may occasionally contain few gap
positions [36–38].

The CDR3 of the BCR heavy or TCR β chain is the most variable region of the AIR. This is due
to this CDR3 being located at the junction of the V, D and J gene segments, whereas the BCR
light or TCR α chains do not utilise the D gene segment. While all of the 6 AIR CDRs may be in
contact with the antigen, the CDR3 of the antibody heavy chain or TCR β chain is considered to
be the most important CDR for determining antigen binding [39,40]. Analyses of AIR-antigen
crystal structures have shown that the CDR3 is nearly always in contact with the antigen
[36–38,41], whereas this is not necessarily true for the other CDRs.

Despite the overall similarity in the structure and function of BCRs and TCRs, there are some
crucial differences in how they recognise antigens. Since TCRs recognise peptides presented
on MHC, their epitopes (or at least, the peptide portion within the epitope) are necessarily linear.
Contrary, BCR epitopes are usually confirmational, meaning they are composed of several
components that are physically close in 3D space, but may be far apart in the amino acid
sequence of the antigen [34]. The TCR does not only recognise the presented antigen fragment,
but recognises the peptide-MHC (pMHC). Typically, the TCR CDR3s are in contact with the
peptide, whereas CDRs 1 and 2 contact the MHC [28]. For BCRs, all CDRs can be involved in
antigen contact [38].

AIRs are not specific to an individual epitope, but are highly cross-reactive and can bind many
different epitopes [42–44]. Similarly, an epitope can be bound by many different AIRs.
AIR-antigen binding can be experimentally tested, but depending on the experimental setup, the
exact epitope information may remain unknown, for example when the antigen target for BCRs
carries multiple epitopes [45]. Furthermore, AIR-antigen binding is not a binary value. Instead,
the affinity of the AIR-antigen interaction describes the binding strength of an individual AIR

11



paratope, whereas the avidity is the total antigen binding strength of a BCR, which carries two
identical paratopes [2]. However, even when an antigen target of an AIR is known, its affinity or
avidity is not always experimentally verified. In practice, AIRs are often simply labelled as
‘binders’ to a particular target, whereas non-binding is often not explicitly confirmed [46].

The adaptive immune receptor repertoire

The AIRR is shaped by the immune responses an individual has experienced throughout their
lifetime, and therefore contains a wealth of information about their health [47]. Changes in the
AIRR could potentially be used as biomarkers for past and ongoing infections, and may be used
to diagnose infectious diseases, autoimmune diseases or cancer long before clinical symptoms
appear [48], [49]. Apart from being a natural diagnostic, the disease-associated AIRs within an
AIRR also effectively function as therapeutics against infectious agents, and may be a valuable
resource for the development of therapeutic drugs like monoclonal antibodies [50,51].

Immune repertoire diversity and overlap
While the potential diversity of AIRs is enormous (1015 for TCRs [13], 1018 for BCRs [14]), the
number of unique AIRs in the human body is several orders of magnitude smaller, with
estimates around 108 – 1010 [52–54]. The clonal counts within an AIRR (number of cells
belonging to the same clone) follow a heavy-tailed frequency distribution, meaning that the vast
majority of clones have a very low clonal count, and only a small minority of highly abundant
clones exist [55–57]. This poses challenges in AIRR research, as low-frequency clones are
unlikely to appear consistently across multiple biological samples, even when taken from the
same individual. Our ability to observe AIRR overlap is thus highly dependent on sample size
[58,59]. Many analytical strategies for quantifying AIRR diversity and overlap have been
borrowed from ecological studies of biodiversity [55,60–64]. However, since the clonal
frequency distributions tend to be more extreme than species frequency distributions, the
degree of undersampling is much greater in AIRR data than in species frequency data [60].

The fraction of so-called public AIRs occurring in the AIRRs of multiple individuals is thought to
be around 1% [14,65,66], whereas the rest of the AIRs are private. Despite only a small fraction
of the AIRR being public, the overlap is still high compared to the expected overlap based on
the total potential diversity and actual AIRR size [58]. The presence of public AIRs can be
explained by several different processes, including convergent recombination and convergent
selection [67,68]. Convergent recombination refers to the fact that certain AIRs have a higher
generation probability than others. Such ‘common’ AIRs may be created many times
independently within and across individuals, and therefore likely to show up in AIRR sequencing
experiments [67]–[71]. Conversely, convergent selection is the process where the same AIR is
abundantly present in multiple individuals due to the presence of a common antigen
[36,67,68,72]. Knowledge about the V(D)J recombination probabilities can thus help identify
those AIRs in a repertoire that are actively involved in an immune response, for example by
identifying AIRs that are more abundantly present than expected by their recombination
probability [67], or by identifying clusters AIRs with more high similarity neighbours than
expected by chance [73].
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Immune repertoire sequencing and data sharing
Recent developments in high-throughput sequencing technologies have allowed researchers for
the first time to investigate the complexity and diversity of the AIRR at a large scale [74].
Generally, AIRR sequencing (AIRR-seq) can be divided into bulk sequencing and single-cell
sequencing [75]. Single-cell sequencing allows for a more detailed investigation of not only the
frequency distribution of AIRs, but also additional per-cell transcriptomic information [75,76].
However, these techniques are significantly less high-throughput and more expensive than
so-called ‘bulk’ sequencing. Therefore, bulk sequencing still tends to be the more commonly
used sequencing method for AIRRs [77]. Because the two chains encoding each AIR are
encoded on separate genomic loci, it is impossible to retain the chain pairing information when
bulk sequencing is used [78]. Therefore, bulk sequencing datasets often contain exclusively
TCR β or BCR heavy chain sequences. Single-cell sequencing can be used to maintain the
pairing between the two AIR chains, as the individually sequenced loci can be traced back to
the same cell.

Software like MiXCR [79] is typically used to translate a set of raw sequencing reads into a set
of quantitated clonotypes. A clonotype is then represented as a CDR3 amino acid sequence
combined with a V and J gene annotation (either for a single chain or for both paired chains)
and clonal count. Such a representation of AIRR data can be used to share AIRR datasets for
various computational analyses, and the AIRR community has defined a standardised format for
such data [80]. Datasets can be shared and queried through several different databases. VDJdb
[81,82] and McPAS-TCR [83] both contain TCRs annotated with their cognate antigen. The
immune epitope database (IEDB) [84–87] is an epitope-centric database, but contains a
collection of curated epitope-specific AIR sequences as well. The iReceptor platform [88]
contains a collection of BCR and TCR repertoire datasets from various repositories, which may
be annotated with immunological status.

Machine learning
The field of ML concerns self-learning algorithms which can be used to find patterns in datasets,
and use these learned patterns to categorise or make predictions about items in new datasets.
While the term ‘machine learning’ was already coined in the late fifties [89], ML research has
had a tremendous boost throughout recent decades [90]. In particular, the development of
methods to feasibly train so-called ‘deep’ neural networks have enabled us to construct
methods for a wide range of complex prediction tasks, ranging from everyday applications such
as personalised content recommendations and voice assistants, to the discovery of new drugs
and analysis of medical data. ML has become an integral part of modern day life, and
bioinformatics sequence analysis has been shaped by the rise of ML as well [91–94].

The purpose of this chapter is to provide a general introduction to ML, outline the terminology,
and discuss some specific ML concepts that are relevant to AIRR research. An in-depth
description of specific ML algorithms is out of scope for this thesis. For such technical details
about ML, I kindly refer you to the books ‘Deep Learning’ [95] and ‘The Elements of Statistical
Learning’ [96].
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Supervised and unsupervised machine learning

Two of the main subcategories of ML are supervised and unsupervised learning [95,96]. Both
supervised and unsupervised learning can be used to analyse a dataset consisting of examples.
Supervised learning involves training ML models using labelled data, in order to make
predictions for new data. The labels represent the outcome that we would like to be able to
predict with a trained ML model. For instance, a dataset could consist of many AIRs, which are
the examples, and the label could represent the antigen binding status of each AIR to an
antigen of interest. Classification is a type of supervised learning where the labels are
categorical values (classes), whereas regression aims to predict continuous numeric values.
Depending on the particular ML algorithm, classification may be defined as a binary problem or
a multi-class classification problem if more than two classes are present.

Unsupervised learning can be used to find relationships and patterns in data without any
particular target label. Clustering is a form of unsupervised learning, which places relatively
similar examples together in clusters [97]. Typically, a type of similarity metric is defined to
compute the distance between various examples in the dataset. Note that although the
unsupervised learning algorithm does not make use of labels, these labels may still be used to
evaluate the performance of the algorithm afterwards [98]. One can for instance compute how
often the examples in a dataset are clustered together with other examples that share the same
label.

Multiple instance learning

Multiple instance learning (MIL) is a special case of supervised learning where each example
(named bag) consists of a set of instances, and a label is provided for the entire bag. The class
of a bag is dependent on one or several instances inside it. While MIL was originally formalised
for the prediction of drug activity [99], it has since been used for a wide range of applications
[100], including the classification of AIRRs [37,101–103]. In this case, the AIRRs are considered
to be bags and the AIRs within are the instances.

Traditionally, MIL functions under the standard assumption that in order for a bag to be positive,
it must contain at least one positive instance. These positive instances are called witnesses,
and the proportion of positive instances in a bag is the witness rate. Under this assumption, the
negative bags contain only negative instances. As long as one positive instance is found, the
bag can be correctly classified as positive, and it is thus not necessary to identify all positive
instances. Alternatively, the collective MIL assumption states that more than one instance is
needed to identify a positive bag. For example, if the bag label relies on a combination,
distribution or accumulation of positive instances [100,104].

Carbonneau et al. [100] propose to categorise the different challenges related to MIL into four
groups: prediction level, bag composition, data distribution and label ambiguity. Prediction level
refers to whether the objects of classification are the bags or the instances within. Instance level
classification is very challenging, since labels are only available on the bag level. Under the
standard MIL assumption, a perfect bag classifier may not be able to classify every instance
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correctly, whereas a perfect instance classifier also classifies the bags correctly. Secondly, bag
composition describes the witness rate and possible relations between instances in a bag. A
higher witness rate results in an easier classification problem. However, in some cases the
witness rate of the negative bags is not zero, thereby adding an extra source of noise.
Furthermore, the presumed instance labels may be dependent on meaningful relations between
instances in a bag. For AIRR data for example, an AIR may be more likely to be part of an
active immune response when a cluster of highly similar AIRs is found [73]. Thirdly, both positive
and negative instances follow some kind of data distribution. In the simplest scenario, the
positive instances could all bear some degree of similarity to each other, and thus all cluster
together. Alternatively, there could be many highly dissimilar clusters of positive instances,
making it more challenging to learn the defining features of a positive instance. The distribution
of the negative data may not be clearly defined, and some methods therefore only use an
internal model of positive instances. Finally, the label may be ambiguous, for example due to
noisy label definitions or instances that do not fall into clearly defined categories.

Training supervised machine learning models

A supervised ML model can be viewed as a function mapping a vector of input values to a
predicted output value: f(x) → ŷ, where ŷ aims to approximate the true label y [95]. The
behaviour of this function is determined by a set of internal parameters (sometimes called
weights). When training a supervised ML model, the goal is to find a set of values for these
internal parameters that make the function predict output values that are as close to the true
target labels (y) as possible. A loss function can be defined to represent how close the predicted
value was to the actual value. For example, for numeric values, a simple loss function could be
the square of the difference between actual and predicted: (y – ŷ)2. The aggregated loss
function for a set of training data is called the cost function.

Since the parameter space can be extremely large, it is not feasible to test out every possible
combination of parameters to find the optimal parameter set for the model. Optimisation
algorithms can be used to explore the parameter space in a more computationally efficient
manner. One of the most commonly used optimisation algorithms in modern ML for minimising
the cost function is stochastic gradient descent (SGD) [95]. With SGD, the model parameters
are usually initialised with some random values. At each step, the gradient (slope) of the cost
function is computed based on the training data or a random subset thereof. The parameters of
the model are then nudged a small step in the direction where the gradient has the steepest
descent, i.e., the direction that minimises the cost function. This process is repeated many
iterations until the algorithm converges. The learning rate determines how much the model
parameters can be changed at each iteration of SGD. A faster learning rate may help the model
converge faster, but a too fast learning rate causes the model parameters to be changed too
much, potentially overshooting the minimum of the cost function. SGD does not guarantee to
find the global minimum of the cost function, but is very likely to at least converge to a local
minimum [105]. For the ML model, this means it may not be possible to find the overall optimal
set of parameters, but a comparatively good set of parameters is usually found.
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Aside from the internal parameters of the model, which are optimised during training, the model
also has hyperparameters. Whereas the model parameters directly determine the output of the
model, hyperparameters define the type of ML model and control the learning process. For
example, when defining a neural network, there are several hyperparameters that need to be
set in order to define the architecture of the network, such as the number of hidden layers or the
number of nodes per hidden layer. The learning rate of SGD is a hyperparameter as well.

Encoding data for machine learning

ML models require the examples in the dataset to be represented in a numerical form.
Translating raw data into such a numerical form is called an encoding. Encoded data consists of
a vector of feature values, which are typically binary or floating point values. For example, an
amino acid sequence (such as a CDR3 sequence) can be translated into a numerical
representation through one-hot encoding. Since there are 20 amino acids in total, a one-hot
encoding entails translating each amino acid to a vector consisting of 19 zeroes and a single
one, where the position of the one is unique for each amino acid. Another type of encoding
commonly used for biological sequences is k-mer frequency based encoding [106]. K-mers are
subsequences of length k, and k-mer based encodings represent a sequence, or set of
sequences, by the relative frequency of each possible k-mer (given some value k) occurring in
the example. An encoded dataset is typically represented as a design matrix where each row
corresponds to one example, and each column corresponds to one feature [96]. The choice of
the type of encoding is of equal importance to the performance of the model as the choice of ML
algorithm. Similarly to ML algorithms, encodings too have hyperparameters, such as for
example the size of k for k-mer based encodings.

Performance evaluation and selection of machine learning models

To assess the overall performance of an ML model, a performance metric is computed.
Examples of such performance metrics are the root mean squared error for regression, or
accuracy for classification problems. However, for an ML model to be truly useful it should not
only have a high performance on the same data it was trained on, but generalise to new,
unseen data. The ability for an ML model to generalise can be tested by using a held out test
set. The examples in the training and test data are typically assumed to be independent and
identically distributed (IID) [95]. Identically distributed refers to the data being drawn from the
same underlying data-generating process, whereas independent means that examples are
independently drawn from the underlying distribution, and the presence of one example thus
does not imply any information about which other examples are present in a dataset. The test
set performance provides an estimate of the performance of the model on other unseen IID
data.

When training an ML model, there is a balance between underfitting and overfitting (Figure 3).
An underfitted model has not (yet) learned the patterns in the data, resulting in poor
performance on the training set. If the model that is being trained is too simple, it will not be able
to learn the patterns of interest in the data, no matter how much training data is supplied. In this
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case, the capacity of the model to learn the underlying function of interest can be increased by
for example increasing the number of model parameters [95]. Contrary, an overfitted model may
have excellent performance on the training set, but generalises poorly to new data. Overfitting
can occur when an ML model is trained for too long, or when a too complex model (too high
capacity) is used. In these cases, the model ‘memorises’ properties of the training data that are
not representative of other IID data. Overfitting is tightly linked to the concept of bias-variance
tradeoff [95]. The two sources of error in a predictive model are bias and variance. The bias
relates to the assumptions made by the model. A model with high bias will produce an average
prediction that differs substantially from the target prediction. Variance on the other hand relates
to how different the model predictions are as a consequence of fluctuations in the training set.
Underfitted models have high bias, whereas overfitted models have high variance.

Figure 3: The bias-variance tradeoff. The generalisation error of a model can be decomposed into two
sources of reducible error: bias and variance. As the capacity of the model increases, the bias tends to
decrease while the variance tends to increase. Underfitting happens when the capacity of the model is too
low to learn the patterns of interest, whereas a model with a too high capacity is prone to overfitting.
Figure modified from: Goodfellow and Bengio [95].

Regularisation
To combat overfitting, a wide variety of different regularisation techniques can be applied [95].
Regularisation refers to any modification we can make to the ML algorithm to improve
generalisation to new data, without trying to improve the performance on the training data.
Applying regularisation also causes the learned solutions to be simpler. For example, some
regularisation techniques introduce a weight penalty to the cost function, meaning that large
weights are penalised. As a result, the trained models tend to learn smaller parameter values.
Some parameters may even be entirely reduced to zero, effectively removing the influence from
associated features to the model prediction. This penalty term serves as a hyperparameter that
determines the degree of parameter shrinkage.

Another form of regularisation which aims to combat overfitting due to overtraining is early
stopping using a validation set. This validation set is independent from the training and test sets,
and allows for the generalisation error to be estimated without consulting the test data.
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Throughout training, the performance on the validation set is tracked, and once the validation
error starts to increase compared to the training error, training is halted.

In a similar manner, validation sets can be used to compare the performance of models trained
with different hyperparameters, in order to select the optimal hyperparameters for the model.
Since hyperparameters often control the learning process of an ML algorithm, their optimal
values cannot be estimated from the training set, as this is likely to result in choosing
hyperparameters that maximise overfitting to the training data. While the model parameters are
not directly estimated using the validation set, it is important to note that because the validation
set is used to select the hyperparameters, the performance on this set is an overly optimistic
estimate of the true performance of the model on new data [95]. A separate test set should be
used for this purpose.

Cross-validation and nested cross-validation
When splitting a dataset into subsets for training and testing, the majority of the data is typically
used for training, and a rule of thumb is to set aside around 20% of the entire dataset for testing.
However, if the total number of examples in the dataset is small, the performance results
obtained on such a test set may be statistically uncertain. One possible solution for this problem
is to repeat training and testing of ML models several times, using different partitions of the data
as test sets, such that an average test error can be computed across all test sets. This strategy
is called cross-validation [95]. A commonly used variant is k-fold cross-validation, where the
total dataset is split into k subsets (for example 5), and each subset is used as a test set once,
while all other k–1 subsets are used as training data. With k-fold cross-validation, each example
is guaranteed to occur in the test set exactly once. Alternatively, data splitting can be done by
selecting a fixed percentage of random examples as test data. If the dataset is particularly
small, leave-one-out cross-validation can be used, in which case a single example is used as a
test set for each iteration.

Cross-validation is appropriate when evaluating the performance of individual models with a
preselected set of hyperparameters. However, when hyperparameters should be optimised in
addition, standard cross-validation can lead to overoptimistic results, as the selected optimal
hyperparameters may be biased towards the test set. To overcome this issue, nested
cross-validation should be used instead, which consists of an inner “selection” loop, and an
outer “assessment” loop. In the selection loop, the training data is split further into several
training and validation sets. After training models with a range of different parameters on each
training set, the optimal hyperparameters are determined based on the validation set
performance. Using these optimal hyperparameters, a new model is trained using data from the
combined training and validation set. In the assessment loop, the performance of all retrained
models is evaluated on the test sets. By separating the hyperparameter selection from
performance assessment, a nearly unbiased estimate of the model performance can be
obtained [107].
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Machine learning analysis of immune receptor and repertoire data
AIRR sequencing datasets can be large, containing hundreds of thousands or even millions of
sequences per individual. Furthermore, the underlying mechanisms determining the antigen
binding capabilities of individual AIRs are not yet thoroughly understood [47,108]. ML is
particularly well-suited to analyse such large and highly complex datasets. Broadly, the field of
AIR(R)-ML can be divided into making predictions about individual AIRs, or making predictions
on the full AIRR. In principle, ML can be used to predict any property of an AIR or AIRR as long
as a suitable labelled dataset is available. But most typically, the goal is to learn whether AIRs
bind to a particular antigen target of interest, or predicting the immunological (disease) status of
an individual based on their AIRR. ML can thereby further the development of therapeutics [51]
and diagnostics [109].

Predicting antigen binding of immune receptors

The AIR-antigen binding prediction problem can be formulated in a variety of different ways.
While AIR-antigen binding is technically defined by binding affinity (a continuous value), in
practice it is usually treated as a classification task. This can be specified as a binary
classification task, where binders need to be distinguished from non-binders, or a multi-label
classification task where the most probable target is predicted from a multitude of epitopes
[110]. The definition of negative data in a binary classification task furthermore has a large
impact on what can be learned. For instance, one could learn to distinguish AIRs that bind to
two different targets (one versus one), or retrieve the binding AIRs from a pool of mixed
specificity background AIRs (one versus many) [111].

Both supervised and unsupervised learning methods have been applied to the AIR-antigen
binding problem [112]. Unsupervised methods aim to cluster sequences together in order to find
shared-specificity clusters. One of the challenges in predicting AIR-antigen binding is however
that AIR specificity is not solely defined by overall sequence similarity, as highly dissimilar
sequences have also been observed to bind to the same target [36,108,113]. Supervised
methods on the other hand aim to learn a more refined decision boundary between AIRs
belonging to different classes. Some of the key methods that have been developed for
unsupervised or supervised prediction of AIR specificity are described in the next two sections.

Unsupervised clustering of immune receptors
In the absence of epitope specificity information for each individual AIR in a dataset, clustering
of AIR sequences can be done in order to identify shared specificity clusters within a set of AIRs
[108]. The inference of antigen binding specificity through unsupervised clustering has primarily
been applied to TCR rather than BCR data. TCRs may be easier to cluster due to the absence
of SHM. BCR clustering is instead often used for the prediction of clonal lineages [114].

In order to find clusters of TCRs with a high likelihood of sharing antigen specificity, Glanville et
al. [36] developed GLIPH, which clusters TCRs based on the similarity of the CDR3 in the TCR
β chain. Furthermore, HLA restriction can be predicted based on the identified clusters. GLIPH
employs two complementary strategies to cluster sequences: local and global similarity-based
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clusters. Global similarity clusters are defined as a sequence containing a single flexible amino
acid. Contrary, local similarity clusters are only required to share a single contiguous k-mer,
which is intended to capture the paratope within the CDR3. The first version of GLIPH was
known to suffer from the so-called ‘small-world’ effect when too large datasets were analysed.
An improved version of the algorithm, GLIPH2, was introduced later by Huang et al. [115], which
was designed to be able to process larger datasets.

Dash et al. [116] developed TCRdist, which serves as a direct distance metric between paired
α-β chain TCR sequences. TCRdist does not only take the CDR3 sequence information into
account, but also CDR1 and CDR2, as well as an additional variable loop which was identified
between CDR2 and CDR3. Still, a higher weight was given to the CDR3 compared to the other
CDRs, due to its important role in antigen binding. By using several sets of TCRs with known
specificity, TCRdist could be used as a distance metric for a nearest-neighbour classifier, where
the TCR specificity is predicted to match the specificity of the set with most similar receptors.
Mayer-Blackwell et al. [117] improved upon the TCRdist algorithm and introduced TCRdist3,
where the key new feature is the use of meta-clonotypes. These meta-clonotypes are defined
by a centroid TCR, a TCRdist radius around this centroid, and optionally a CDR3 motif.
Meta-clonotypes can be used to search for same-specificity TCRs in bulk TCR repertoires,
which may be used as biomarkers for antigen-specific immune responses similarly to the
specificity clusters found by GLIPH and GLIPH2.

As TCR clustering is increasingly applied to larger datasets, not only the biological similarity of
the AIRs but also the efficiency of clustering algorithms needs to be prioritised. The TCR CDR3
clustering tool iSMART [118] was developed as a faster alternative to GLIPH and TCRdist.
However, iSMART was outperformed in running time by GLIPH2 [115,119]. ClusTCR is an
ultrafast TCR clustering tool which implements a multi-step algorithm where TCRs are first
divided into superclusters based on physicochemical properties, which are later refined to more
accurate specificity groups [119]. ClusTCR was shown to run 50 times faster than GLIPH2 on a
dataset of 1 million TCRs. In their study, Valkiers et al. [119] assessed the quality of the
produced specificity clusters based on a multitude of metrics, and found that no individual TCR
clustering algorithm distinctly outperformed all others, as each algorithm had its own
advantages. GIANA is another computationally efficient TCR clustering tool which outperformed
GLIPH2 in speed (approximately 10 times faster), but was not directly benchmarked against
ClusTCR [120].

The success of TCR CDR3 similarity-based clustering methods inspired the development of
TCRMatch, which was not designed as a clustering algorithm itself, but rather assigns CDR3
sequences a putative epitope based on the existence of a similar TCR in the IEDB [121].

Supervised methods for predicting antigen specificity
One of the early applications of deep learning to predict the antigen binding capabilities of TCRs
was the method DeepTCR [103]. In order to learn meaningful features of TCRs, DeepTCR
employs variational autoencoders (VAEs). These VAEs learn a function which first maps each
input TCR to a latent representation of this TCR in a dimensionality reduced space (encoder),
and then reconstructs the original TCR from this latent representation (decoder). Thus, the
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latent representation contains informative features of the TCR, but in a compressed format. The
trained ‘encoder’ part of the network is then used to compute latent TCR representations. These
latent representations are used as a starting point for unsupervised clustering and used as an
input for ML models predicting TCR-antigen binding.

In order to train deep learning models to predict antibodies binding to a breast cancer
associated antigen, Mason et al. [113] designed a large mutagenesis-based antibody dataset
containing over 10.000 binders and 25.000 non-binders. This dataset was created in a two-step
process. First, a previously developed therapeutic antibody was mutated in 10 positions
throughout the heavy chain CDR3 in order to find out which mutated variants retained their
ability to bind. Next, the mutagenesis dataset was created by sampling from the distribution of
positional amino acids that tended to occur among the binders. This resulted in a large dataset
of sequences varying exclusively across the 10 positions in the CDR3, while the rest of the
antibody was kept constant. Mason et al. trained a variety of different ML models, ranging from
shallow models such as logistic regression or k-nearest neighbours, to deep learning models
like long short-term memory recurrent neural networks (LSTM-RNN) and convolutional neural
networks (CNNs). The CNN-based models outperformed all other models.

All supervised and unsupervised specificity prediction methods discussed up to this point
exclusively focus on the TCR sequences, without taking additional information about the
properties of the epitope in account. Contrary to this, some ML methods have been developed
which incorporate epitope sequence information. Examples of this include: NetTCR, which uses
a shallow one-dimensional CNN [122,123]; ERGO, which uses LSTM and autoencoders
[124,125]; ImRex, which creates image-like interaction maps between TCR and epitope
sequences that are classified using a two-dimensional CNN [126]; and TITAN, a bimodal neural
network [127]. Rather than treating the epitope as a binary binding versus non-binding label,
these models aim to learn the underlying interactions between TCR and its target. The
underlying thought is that such a model may be able to generalise to be able to predict whether
TCRs bind to novel, unseen epitopes. However, a lack of representative data, and in particular
an underrepresentation of the variety of different epitopes, is often reported to be the main
challenge for this prediction task [112,122,127], as well as poor quality of the existing data [123].
Furthermore, constructing an appropriate set of negative (non-binding) examples of
TCR-epitope pairs is not trivial, yet is crucial for the model performance [46].

Another way to incorporate epitope information into AIR-antigen binding prediction is by
considering 3D structural data of AIRs bound to their cognate epitope. Akbar et al. [38] showed
that antibody-antigen binding adheres to a limited set of structural paratope-epitope interaction
motifs, suggesting that antibody-antigen binding in 3D space adheres to learnable rules. Several
methods for AIR-antigen binding prediction based on 3D structural data have been created
[128,129]. It should however be noted that the number of 3D crystal structures of antigen-bound
AIRs remains very limited, as the experimental methods for collecting such data are
low-throughput, time consuming and expensive [38,130,131].
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Predicting disease status for immune repertoires

Since any immunological response leaves a unique mark on the AIRR, it has been suggested
that AIRR-seq data could be used as a universal diagnostic test for infectious diseases,
autoimmune diseases or cancer [109]. Using a single blood test, a variety of different immune
states could potentially be identified [132]. One of the main challenges of ML-based AIRR
diagnostics has been the massive diversity and lack of overlap between AIRRs [47]. Other
challenges include technological artefacts and confounding factors that may hamper the ability
of the ML model to learn the correct disease-related signals [47,133,134].

To avoid the issue of lack of overlap between AIRR samples, some of the early approaches for
the ML-based classification of AIRRs instead relied on AIR sequence-independent features to
make predictions about immunological status. For example, the clonal frequency distribution of
an AIRR can be described by diversity profiles, which have been used as features for ML
classification into healthy, vaccinated and infected categories [135]. Here, diversity refers to
Hill-based diversity metrics [136], which have been commonly used in biodiversity studies and
were later introduced in AIRR research [60]. Such diversity metrics rely on a weighting
parameter α, and by computing the diversity for a range of different α values, a profile can be
constructed. The size of the diversity profile is determined by the number of α values, rather
than the number of clonotypes in the repertoire, thus allowing for direct comparison between
clonal frequency distributions even if the number of clones differs [135]. Other works have
computed k-mer frequency distributions of AIRRs and used these as a basis for AIRR
classification. Even if AIRRs do not share any public AIRs in their entirety, it may be possible to
find shared k-mers that are associated with a particular immunological status [137–139].

As only a fraction of the AIRs inside an AIRR are responsive to the antigens associated with the
disease of interest, AIRR classification can be viewed as a classical MIL problem [140], [141],
where the AIRR is a bag and the instances are the AIRs within. In particular, the AIRR MIL
problem is challenging due to the very large number of instances and a low witness rate.
Furthermore, it is possible for there to be disease-associated (antigen binding) AIRs present in a
healthy AIRR, for example if these AIRs are cross-reactive with another epitope.

Emerson et al. [72] sequenced 786 TCR β repertoires with either positive or negative serostatus
for cytomegalovirus (CMV), which is still one of the largest AIRR-seq datasets to date. The large
dataset size, both in terms of number of individuals and per-repertoire sampling depth, allowed
for the development of a MIL classifier relying on public TCRs. They built a probabilistic model
that detects public TCRs which are associated with CMV positive serostatus, and classify new
repertoires based on the relative abundance of such CMV-associated TCRs. This method could
also be used to predict the HLA alleles of subjects. An independent study furthermore
exemplified the high generalisability of the CMV-associated TCR β sequences, by successfully
classifying the CMV serostatus of a new cohort of 33 individuals [142]. It should be noted that
because this method relies on the presence of public disease-associated sequences, it is highly
dependent on a sufficient sampling depth, number of AIRRs, as well as a high fraction of
disease-responsive AIRs. CMV is known to induce a particularly strong immune response, thus
leaving a clear mark on the AIRR [143], which may not be the case for other diseases.
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In order not to rely on public full AIR sequences, Ostmeyer et al. [37] developed a MIL method
which classifies TCR repertoires based on the presence of one or few tumour-associated
k-mers (subsequences of length k). Here, instead of considering full AIRs to be instances in the
MIL setting, k-mers are treated as instances. Since many different AIRs could share the same
k-mer, there naturally exists a larger number of public k-mers compared to public AIRs. K-mer
length 4 was chosen as it corresponds to the length of the paratope in a set of 3D crystal
structures of TCRs contacting peptide-presenting MHC. The k-mers in this study are
represented by their biophysicochemical properties, such that amino acids with comparable
properties are considered synonymous. A modified logistic regression model is used which is
modified such that it requires the k-mers to occur at least once in every tumour TCR repertoire,
and be absent from all healthy repertoires. In a later study [102], the method was updated to
consider k-mers containing a single gap position, and applied to a new cancer dataset. While
the method obtained a high classification accuracy (93-95% when assessed with patient-holdout
cross-validation), it should be noted that the dataset sizes were small, and the method
performed notably worse in a later benchmark [101].

The deep learning model DeepRC was developed to classify AIRRs, and internally uses a
transformer-like attention mechanism to learn the importance of the individual AIRs within [101].
This importance can be represented as a weight per AIR, which are not only used by the model
to make predictions, but also improve interpretability. DeepRC outcompeted both Ostmeyer [37]
and Emerson [72] MIL models on simulated data as well as the experimental CMV dataset.

The previously mentioned tool DeepTCR supports in addition to receptor-level classification also
repertoire-level classification through a MIL approach [103]. Here, the same VAE-based latent
TCR representation is used to represent each of the TCRs in the repertoire, and an attention
mechanism is used to infer the important subset of TCRs to classify the repertoire. In the
original study, DeepTCR was not used as a disease classifier, but rather to classify in vivo
repertoires derived from T cells that were cultured together with antigens, in order to learn
antigen-specific signatures. In a later study, DeepTCRs MIL classifier was furthermore shown to
be able to classify severity of SARS-CoV-2 infection based on TCR repertoires [144].

Benchmarking of ML methods using simulated data

While few large experimental AIRR datasets exist, simulated datasets should be considered
equally important for the benchmarking of computational methods [145]. Besides being able to
simulate datasets of unconstrained size, the benefit of simulated data is that the ground truth
signals can be defined, which are unknown for experimental data. Knowledge of ground truth
signals allows us to benchmark not only the predictive performance of ML models, but also
investigate whether the learned predictive patterns match the signal we intended the model to
learn. Furthermore, with simulated data the parameters of the ground truth signal can be
controlled, allowing us to benchmark ML models over a range of different immune signal
complexities [146]. This makes it possible to test the limits of what different types of ML methods
can learn given different parameterisations of the ground truth signal.
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Immune signals
In AIR(R)-ML, the term immune signal is used to denote the set of features that defines the
immunological status of an AIRR, or the antigen binding status of an AIR [47]. This immune
signal is the ultimate underlying pattern that we aim to learn through ML. However, the shape
and complexity of the immune signal are still not fully understood. We know that AIR-antigen
binding is largely determined by the BCR heavy or TCR β chain CDR3 [39,40], and takes place
in 3D space [32,33]. Yet more research is needed to better understand what types of patterns in
the CDR3 amino acid sequence are most clearly associated with antigen binding status when
structural information is not available, and the degree of dependency on other properties of the
AIR besides the CDR3.

The AIRs present in an AIRR are selected and clonally expanded over the course of an
individual’s lifetime in response to the immunological events that the individual has experienced.
It can therefore be assumed that at the AIRR level, the immune signal presents itself in a subset
of disease-associated AIRs. These AIRs may be characterised by their ability to bind to one of
multiple disease-related antigens, although the particular antigens need not be known. The
degree of clonal expansion of individual AIRs, and the presence of clusters of highly similar
AIRs could thus be part of an AIRR-level immune signal [73]. Furthermore, the genetic
background of an individual shapes their AIRR to a large degree. For example, MHC restriction
or personal biases in V(D)J recombination contribute to a large degree to which AIRs are likely
to be present in an individual’s repertoire [133]. This may result in differences in the immune
signal across different individuals. An improved understanding of immune signals can help us
create more realistic simulations and therefore better benchmarking of ML models, as well as
inspire us to design feature encodings and ML architecture that better capture the immune
signal.

Methods for the simulation of immune receptors and repertoires
Simulation of AIRs can be done by modelling the V(D)J recombination events. For this purpose,
IGoR was developed [16], which learns the V(D)J recombination and SHM statistics from
unproductive genomic rearrangements in AIRR-seq data. Since these sequences do not
produce a functional AIR, they represent the distribution of AIR sequences prior to selective
pressure. In practice, AIRR data is typically analysed at the amino acid rather than the
nucleotide level. OLGA was later developed as a faster alternative to IGoR [17]. OLGA directly
predicts the recombination events based on amino acid sequences, rather than nucleotide
sequences, thus being more computationally efficient as one amino acid sequence could be
derived from many potential nucleotide sequences. Both IGoR and OLGA can be used to
simulate new AIR sequences, as well as to compute the generation probabilities of existing
AIRs [16,17]. These models can be further extended to simulate AIRs which have undergone
selective pressure. Software tools SONIA and soNNia internally use IGoR, and add a second
component for modelling antigen binding selection using a linear model and deep neural
network, respectively [147,148]. To calibrate these models, distributions of unproductive (and
thus unselected) sequences are compared to the productive sequences in a given AIRR
dataset.
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Besides aiming to simulate AIRs according to their observed distributions in AIRR datasets,
several other simulation tools have been developed for the benchmarking of specific
computational methods. IgSimulator simulates both antibody repertoires and the sequencing
reads derived from them, in order to benchmark the reconstruction of antibody repertoires from
raw sequencing data [149]. AbSim simulates the evolution of clonal lineages in antibody
repertoires to test clonal lineage reconstruction methods [150]. immuneSIM provides a broad
and flexible framework where the user has full control over the parameters shaping the
antigen-inexperienced repertoire, and allows for the implanting of sequence motifs to represent
disease status [151]. This allows for immuneSIM to be used for a range of different
benchmarking use cases, most notably, for ML-based prediction of immunological status
represented by ground truth sequence motifs. To benchmark ML methods for the prediction of
antibody-antigen binding based on 3D structural data, the Absolut! software can be used to
generate synthetic antibody-antigen complexes [131]. These synthetic complexes are based on
a simplified lattice structure, and provide ground truth information about the epitope, paratope
and binding affinity, according to this lattice structure model.
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Present work

Research aims and context
The application of ML methods for the prediction of AIR-antigen binding status or the disease
status of an AIRR has shown promising results. Nevertheless, the field of AIR(R)-ML is also
subject to challenges. Independently developed models are not consistently benchmarked
against each other, and reproducibility of studies is not always achievable. Differences in
performance evaluation strategies, along with a lack of interoperability between tools further
complicate the comparison of ML model performance results. The underlying signals
determining the antigen binding status of AIRs or disease status of an AIRR are highly complex
and not yet thoroughly understood. Therefore, not only the development of ML models with a
good prediction performance is of interest, but understanding the underlying signals learned by
the models is of equal importance. Furthermore, with the increase of available data,
computational efficiency can become a bottleneck. The overall aim of this thesis is to provide
new computational methods to aid the ML-based analysis of AIR(R) data. Three sub-goals are
defined as follows:

Developing a platform for the machine learning analysis of adaptive immune receptors
and repertoires. While AIR(R)-ML methods have been proposed, they have often been
developed under different domain assumptions, and their performance is presented using
different evaluation strategies or datasets, hampering our understanding of which method is
ideal for a given study. New AIR(R)-ML methods should be benchmarked against a wide variety
of competing or baseline methods using both experimental and simulated datasets, but this can
be a challenging and time consuming task. Paper 1 therefore presents immuneML, a platform
implementing all functionality needed for the thorough evaluation and comparison of AIR(R)-ML
models.

Developing an ultra-fast tool for the comparison of sets of adaptive immune receptors.
Many computational applications of AIR(R) data, including AIR(R)-ML, involve computing the
number of matching sequences between AIRRs or large sets of reference AIRs from databases.
Advancements in high-throughput sequencing have resulted in a rapid increase in the number
and sizes of AIRR datasets, yet previously developed methods for quantifying overlap between
AIRRs scale poorly with increasing dataset sizes. Paper 2 therefore introduces CompAIRR, an
ultra-fast tool for computing exact or approximate sequence matches across AIRRs.

Investigating the ability of short motifs to distinguish antigen binding from non-binding
antibodies. Several AIR studies have been performed under the implicit or explicit assumption
that AIR-antigen binding is largely determined by the presence of a short motif in the CDR3. In
order to directly examine this assumption, Paper 3 introduces a method for the discovery of
short motifs that are highly predictive of antigen binding. This method is applied to an antibody
binder/non-binder dataset, to investigate to what extent antigen binding can be predicted using
a set of short CDR3 motifs.
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Paper summaries

Paper 1: The immuneML ecosystem for machine learning analysis of
adaptive immune receptor repertoires

While there already exist ML software packages such as scikit-learn [152], PyTorch [153] and
Tensorflow [154], they provide functionalities for general ML usage. As ML is increasingly
applied in (biological) sciences, domain-tailored ML platforms for genomics [155], biomedicine
[156] and chemistry [157] have been created. The complex biology of AIRR data has inspired
the development of domain specific ML methods to predict the antigen binding status of AIRs or
immune status of AIRRs [47]. However, these studies differ in the datasets that are used, ML
method evaluation strategies and domain assumptions, hampering our ability to evaluate which
methodology is optimal for a given prediction task. Paper 1 presents immuneML, an open
source platform for the ML-based analysis of AIR and AIRR data.

immuneML implements all steps of the AIR(R)-ML process, such as data preprocessing and
encoding, training and evaluation of ML models, and interpretability analysis. The immuneML
platform is extensible, such that AIR(R)-ML researchers can easily integrate their own methods
into the platform and re-use standard workflows such as nested cross-validation for ML method
hyperparameter optimisation and comparison. To benchmark new methodology, a set of
baseline ML methods are already provided, as well as various previously published ML methods
for AIR and AIRR classification [37], [72], [101], [117], [135]. Furthermore, immuneML can
simulate benchmarking datasets with implanted ground truth signals, and provide various
graphical reports that can be used to investigate properties of data or of trained ML models.
immuneML is available both as a python package and through a Galaxy web interface. All
analysis details are specified in a YAML specification file, which is compatible with both the
command line and Galaxy interface, ensuring reproducibility and shareability of analyses.

The applicability of immuneML is shown in three use cases. (i) Firstly, it is demonstrated that
immuneML can be used to reproduce the AIRR CMV status prediction study by Emerson et al.
[72]. In order to do this, the proposed probabilistic binary classifier was re-implemented and
integrated into immuneML. Since the success of this method is highly dependent on dataset
size, it is shown how immuneML can be used to automatically repeat the classification task with
a smaller number of AIRRs in order to assess the robustness of a classifier. (ii) Secondly, the
extensibility of the platform is demonstrated by integrating a new deep learning method for
classifying paired chain AIRs. The new method is benchmarked against a shallow baseline ML
method as well as TCRdist3, and learned motifs are compared to motifs learned by TCRdist3
and GLIPH2, to show that newly integrated methods can easily be compared to
already-available methods. (iii) And thirdly, it is shown that immuneML can be used for
large-scale benchmarking of ML methods. For this use case, the immuneML simulation
functionality is used to implant ground truth motifs into a set of synthetic AIRRs generated by
OLGA [17] to simulate disease signals with varying complexity. Several different encodings and
ML methods are benchmarked for the prediction of these simulated diseases, and it is shown
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how graphical analysis reports can be used to get additional insight into how well the learned
patterns overlap with the implanted ground truth motifs.

Paper 2: CompAIRR: ultra-fast comparison of adaptive immune receptor
repertoires by exact and approximate sequence matching

In Paper 2 we present CompAIRR, an ultra-fast tool for identifying (nearly) identical AIRs across
large AIR sets such as AIRRs. Computing overlap between AIRRs is a computational process
that is part of almost any AIRR analysis. However, all-against-all AIR matching can be
computationally expensive as the number of comparisons grows rapidly with larger AIRR
datasets. As our sequencing technologies are becoming more high-throughput, the speed and
memory efficiency of AIRR analysis algorithms become increasingly important.

Prior to CompAIRR, several computational suites (immunarch [158], immuneREF [159] and
VDJtools [160]) already provided functionality for counting overlapping AIRs across AIRRs.
However, these tools internally rely on straightforward implementations that do not scale well to
large datasets. Furthermore, previously available implementations allowed AIRR overlap to be
computed exclusively based on identical AIR sequence matches. Since similar AIRs are often
thought to have similar antigen binding capabilities, identifying near-identical AIRs could be of
interest as they may be involved in immune responses to the same antigen. CompAIRR is
currently the only available tool for near-identical matching of AIRs at a large scale, by allowing
a user-defined Hamming distance and up to 1 insertion or deletion.

To showcase the speed and efficiency of CompAIRR, we benchmarked its exact AIR overlap
functionalities against the implementations provided by immunarch, immuneREF and VDJtools.
On a large synthetic dataset consisting of 10.000 repertoires of 100.000 sequences each,
CompAIRR finished in approximately 17 minutes while the fastest alternative tool took 10 days
to complete the task. Moreover, the maximum memory usage of CompAIRR was consistently
lower than ⅓ of the memory usage of each of the other tools.

CompAIRR is designed to have a flexible interface for easy integration into other tools or
computational pipelines. As a proof of concept, CompAIRR was integrated into immuneML to
speed up the computation of two encodings for ML, but it may in the future be used to improve
the speed and memory efficiency of a much wider variety of use cases.

Paper 3: Predictability of antigen binding based on short motifs in the
antibody CDRH3

While the exact rules determining antibody-antigen binding are unknown, one of the proposed
assumptions is that AIR-antigen binding is determined by the presence of a short motif within
the antibody heavy chain CDR3. Some studies have created AIR(R) classification or clustering
models that are explicitly built on this assumption [36], [37], [102], [115], and the same
assumption is reflected in the simulation of AIRR datasets by implanting k-mers into ‘diseased’
repertoires [146], [151], [159]. Paper 3 presents a methodology for identifying short motifs with
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high precision in determining antigen binding and high generalisability to unseen test data. This
methodology is used to analyse to what degree antigen binding is driven by the presence of
such short motifs, regardless of the remaining amino acids in the CDR3. We use a previously
published combinatorial mutagenesis dataset of HER2 binders and non-binders (Mason
dataset) [113], as well as a second dataset (Mehta dataset) that aims to reproduce the
sequence distribution of the former dataset.

Within the context of this study, a short motif is defined as a combination of 2–5 amino acids that
occur at specific positions in the CDR3 sequence, and may be separated by gaps. Given a
user-defined precision cutoff on the training data (e.g., 0.8 or 0.9) for predicting antigen binding
by motif presence, the method can be used to learn a recall threshold above which the motifs
are likely to retain a relatively high precision on separate validation data. A final set of antigen
binding motifs is then learned using the combined training and validation data, by applying the
predefined precision and learned recall thresholds, and the performance of these motifs is
evaluated on previously unseen test data.

The method is first validated using two simulated datasets. The first simulated dataset contains
ground truth motifs which determine the antigen binding status of a sequence: if any of these
motifs is present, the sequence is labelled to be a binder. Thus, in such a simulated dataset, the
ground truth motifs have a perfect precision. We show that our method is able to recover these
ground truth motifs as long as they occur with sufficient abundance in the dataset, and that all of
the learned motifs overlap with at least one ground truth motif. In the second simulated dataset
no ground truth motifs are implanted and a random antigen binding status is assigned, making it
impossible to accurately predict antigen binding status through the presence of motifs. This
dataset is used to show that our methodology correctly concludes that no generalisable
high-precision motif exists in such simulated data.

Next, the method is applied to the Mason dataset, and it is shown that the learned motifs not
only retain high precision on the held out test set (25% of the Mason dataset), but also on the
independently generated Mehta dataset. The learned motifs consisted of 3–5 amino acids and
spanned across the entirety of the sequence length. They occurred in highly variable sets of
sequences, confirming that the presence of the motif itself rather than overall sequence
similarity was predictive of antigen binding in these CDR3 sequences. It should be noted that
many of the high-precision motifs identified by our method were dispersed, containing multiple
gaps, whereas previous methods have often used contiguous k-mers [36], [37], [102], [115].

Finally, we constructed simple motif-based classifiers which predict a sequence to be a binder if
it contains any of the set of motifs of interest. Using such a simple classifier, we were able to
obtain a classification performance on the Mason test set that was nearly as good as the CNN
designed for this dataset by Mason et al. [113], and even slightly outperformed this CNN on the
Mehta dataset.
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Discussion
This thesis is based on three papers. Paper 1 introduces the AIR(R)-ML platform immuneML,
which forms the computational foundation of the work presented in this thesis. CompAIRR,
introduced in Paper 2, is an ultra-fast tool for the computation of overlap between sets of AIRs,
which has been integrated into several workflows to increase speed and reduce memory usage.
Paper 3 presents a new computational methodology for the discovery of short motifs that are
highly predictive of antigen binding.

Coherence between the computational tools and analyses
introduced in this thesis
While the three papers comprising this thesis stand on their own, immuneML serves as the
computational foundation for all the work presented in this thesis. The modularity of the
immuneML platform makes it easily extensible, allowing many of the existing components to be
reused for different use cases. The basic modular components in immuneML are: dataset types,
preprocessing steps, encodings, ML methods, graphical analysis reports and data simulation
steps. These components represent the basic building blocks of an analysis and can be used to
execute a variety of instructions. The most important instruction is the training and evaluation of
ML strategies through nested cross-validation. Other instructions include applying previously
trained models to new data, exploratory analysis of (encoded) datasets through reports, or
simulation of data with ground-truth disease signals.

CompAIRR was designed to be a dependency-free tool with flexible output format, making it
easy to integrate into other tools in order to speed up core components. CompAIRR has been
integrated into immuneML in order to speed up two encodings for AIRR classification, one ML
method for AIR classification, and several related analysis reports. These AIRR classification
components are the encoding for the method introduced by Emerson et al. [72] as well as a
pairwise AIRR distance encoding for k-nearest neighbours classification. For these encodings,
both the original version and a faster CompAIRR-based version are now available. The
CompAIRR-based AIR classifier is a simple baseline method which classifies a sequence as
positive if at least one similar sequence has been observed in the training data, where similarity
is defined by a given Hamming distance. Such baseline methods are important for the
benchmarking of AIR classification models, as it provides an estimate of the a priori difficulty of
the classification problem and the true generalisation power of the classifier [161], and has been
used for this purpose in Paper 3.

The computational analyses in Paper 3 were included in immuneML in the form of new
encodings, ML methods and reports. For the motif encoding, a sequence dataset labelled with
antigen binding status should be provided, and an efficient algorithm is used to search for every
motif exceeding a given precision and recall threshold. This encoding is accompanied with an
analysis report for calibrating these recall thresholds given a user-defined precision threshold.
The encoding can also be used in combination with baseline ML methods such as logistic
regression, or with the new ML method which classifies a sequence as positive if it contains any
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of the learned set of motifs. This ML method can furthermore be parameterised to search for a
reduced set of motifs which retains high classification accuracy. Additionally, the previously
published CNN by Mason et al. [113] was introduced as a new ML method in the immuneML
platform as part of this work, as well as several analysis reports providing additional insight into
the sequence distribution of the datasets or learned motifs.

Using the immuneML codebase as a foundation for the work presented in Paper 3 enabled the
re-use of existing workflows for importing data, constructing a dataset object, performing
exploratory data analyses, training ML models, optimising their hyperparameters and evaluating
their performance. All figures shown in Paper 3 have been created using immuneML reports.
The immuneML report interface is highly flexible and can be used to represent any
compartmentalised analysis, ranging from plotting basic dataset statistics to complex multi-step
analyses such as determining the optimal motif recall thresholds. Representing each
sub-analysis as an immuneML report creates a natural organisation and readability of the code,
yet also contributes to computational efficiency because intermediate results that are used by
multiple encodings or reports can be retrieved through caching. Lastly, a major advantage of this
immuneML integration is that every result can easily be reproduced since all parameters are
stored in a YAML file.

Possibilities for extending the immuneML platform
Since the release of immuneML in 2021, the code base has been continuously updated to
incorporate bug fixes, implement performance enhancements, and add few new reports and
encodings. This section discusses several potential larger extensions that could be made to the
immuneML platform. Some of these topics have been preliminarily explored by master students
[162]–[167], but no official implementations have resulted from this.

While immuneML supports both AIR and AIRR classifiers, most of its current functionalities are
aimed at AIRRs. The platform could be extended in several ways to improve the support for AIR
classifiers. Firstly, since the predicted target in immuneML is assumed to be a categorical label,
any epitope sequence information is always ignored. Yet many state-of-the-art AIR classifiers
incorporate both AIR and epitope sequence information [122]–[127], and these methods
currently cannot be directly integrated into the platform. Classification of AIR-epitope sequence
pairs would require a new dataset type to be defined inside immuneML. Apart from serving as a
common platform for the comparison of AIR-epitope classifiers, immuneML could be equipped
with additional features aimed specifically at this new dataset type. For instance, since the
definition of negative data examples is particularly challenging for this prediction problem [46],
immuneML could provide functionality to supplement a set of binder examples with non-binder
examples according to different strategies for generating negative data. This would allow
researchers to not only benchmark their ML method against competing methods, but also to
automatically map how each method performs using a range of differently defined negative
datasets.

Another potential dataset extension in this line would be support for 3D AIR-antigen structural
data. The number of experimental AIR-antigen 3D structures is currently still limited, but
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simulated data such as those generated by Absolut! [131] could kickstart the development of
relevant methodology. Since flat AIR sequences can be extracted from 3D structural data,
support for both data types within one platform could allow the direct comparison of ML models
using either the structural or sequence-based representation of the same dataset. This could
help us investigate what the additional value of the 3D structure is, and to what extent correct
classifications can already be made using sequence information alone.

immuneML is equipped with a series of reports which assist in the understanding and
interpretability of results. Some of these reports can be used to investigate general qualities of
datasets, such as showing the distribution of sequence lengths or the per-position amino acid
frequency distribution of CDR3 sequences in a dataset. Other reports provide explainability of
trained ML models, like logo plots of CNN kernels, or bar plots displaying the coefficients of
logistic regression and support vector machine models. However, these interpretability reports
are specific to individual ML models or encodings. The more recently published pipeline
DECODE [168] presents a model-agnostic approach for interpreting the behaviour of ML
models for AIR classification. Based on the positive and negative predictions by a given model,
DECODE constructs sets of logical if-then rules aiming to represent the underlying model.
Downstream analysis and visualisation of such learned rules can provide insight into the
decision process of a model. Furthermore, the model-agnostic nature of these rules creates
opportunities for an interpretable comparison between ML models with entirely unrelated
architectures. Currently, immuneML and DECODE fulfil complementary roles, and relatively few
code changes would be needed to allow trained immuneML models to be imported into the
DECODE pipeline. A streamlined integration allowing the user to automatically run
DECODE-based interpretability analysis of immuneML models could be an invaluable
enhancement to both platforms. DECODE focuses on interpretability of AIR classifiers, and
integration with immuneML highlights the need for similar model-agnostic interpretability
analyses on the AIRR level.

Other possible extensions include, but are not limited to, implementing the possibility to build
regression models for the prediction of numeric values such as antigen binding affinity, adding
functionalities for clustering, or generative modelling of data. As the number of different
functionalities of the platform grows, it is important to consider its usability. While immuneML is
extensively documented both in written and video form, additional guidance may be needed to
help the user navigate the provided resources.

Ongoing developments in the simulation of AIRR datasets
Simulated datasets are of crucial importance for the benchmarking of AIR(R)-ML models, as
they allow insight into how well the learned discriminatory patterns align with the ground truth
immune signals. For this reason, immuneML provides instructions allowing the user to simulate
synthetic immune signals into a given baseline AIRR datasets by implanting (gapped) k-mers
into a fraction of the AIRRs.

Kanduri et al. [146] used immuneML to profile the baseline performance of classic ML models
on such simulated AIRR data. This study provides a reference benchmark outlining the
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scenarios where such baseline ML models are already able to classify the data with high
accuracy, and what the impact of different simulation parameters is on the ML method
performance. Here, AIRR datasets are simulated by generating sets of synthetic AIR sequences
using OLGA [17], followed by implanting k-mers using immuneML in order to simulate immune
states. The simulated immune signals varied in k-mer size and complexity (e.g., gaps), number
of different k-mers and abundance (witness rate). Other dataset-defining parameters that were
varied include the AIRR size, number of AIRRs, balance between positive and negative AIRRs
and negative class noise. It was found that the AIRR size was a more important factor for the
predictive performance of methods than the number of AIRRs. Furthermore, ML methods
performed better when their parameterisations were compatible with those of the ground truth
signal. This exemplifies the importance of explicitly stating what assumptions are made about
the immune signal, and tailoring ML methodology to capture such signals.

Despite the usefulness of the k-mer implanting simulation strategy to create transparent
benchmarking datasets, the resulting immune signals are not realistic. New insights have
uncovered limitations and potential artefacts associated with this simulation strategy, and new
simulation strategies are being developed accordingly to address these issues.

By introducing a k-mer into an existing sequence, the natural dependencies within the sequence
may be disrupted. This could result in a sequence that would be highly unlikely or even
impossible to create through V(D)J recombination. ML models trained on such simulated data
may then learn to discriminate between healthy and diseased AIRRs based on the absence of
natural sequence patterns, rather than the presence of ground truth k-mers. To avoid disrupting
natural sequence dependencies when simulating disease-associated AIRs, a new simulation
platform named LIgO has been developed [169]. LIgO is at its core powered by immuneML. It
contains a broad extension of the immuneML simulation component, with a comparable YAML
interface. Rather than implanting immune signals into AIRs, LIgO uses the immune signal as a
criterion to filter a pool of natural or generated AIRs, and keeps only those containing the
immune signal. This process is called rejection sampling. While rejection sampling is more
computationally intensive than implanting, the natural properties of AIRs are preserved. In LIgO,
the immune signal can be defined as the presence of a k-mer, but far more complex definitions
of immune signals are supported as well.

While LIgO concerns the simulation of AIRs with natural-like properties, there also exists a
natural relationship between the generation probability of an AIR and how often this AIR is
expected to be present in an AIRR dataset. Convergent selection may result in
disease-associated AIRs that are more abundantly present in an AIRR dataset than expected
based on their generation probabilities alone. Such AIRs appear as outliers when comparing
their generation probability to their occurrence rate, which can be used as the basis for
identifying AIRs active in an immune response [67]. However, naive simulation strategies where
either k-mers or full AIR sequences are inserted into AIRRs leads to a greater number of
outliers, as well as more extreme outliers, than observed in experimental AIRR datasets [170].
Thus, implanting k-mers or AIRs without regard for their generation probabilities creates
artefacts which may give an unfair advantage to generation probability-aware AIRR classifiers.
To overcome this, the AIRR simulation platform simAIRR has been developed to simulate AIRR
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datasets with a more realistic degree of AIR sharing across AIRRs [170]. simAIRR internally
relies on CompAIRR to compute models of AIR sharing across AIRRs.

LIgO and simAIRR address complementary needs for the simulation of realistic AIRR datasets.
While LIgO produces more realistic sets of AIRs sharing an immune signal, simAIRR ensures a
more realistic distribution of disease-associated AIRs across AIRRs. Furthermore, the
methodology and findings presented in Paper 3 (and potential future extensions thereof) can be
used to inform the immune signal definition to be used by LIgO. As these projects have
proceeded in parallel, future work may be needed to ensure a streamlined integration of these
different tools into a single digital workspace.

Using CompAIRR to speed up TCRMatch
CompAIRR has been designed to have a flexible tool output, in order for it to be used in a wide
variety of different applications. The integration of CompAIRR can improve the speed and
memory usage of any use case relying on matching AIRs across large sets. Besides its
integration in immuneML and simAIRR, CompAIRR has been used in several yet-to-be
published projects.

In an ongoing collaboration with the Peters lab at the La Jolla Institute for Immunology (LJI) in
San Diego, a pipeline has been created integrating CompAIRR and TCRMatch. TCRMatch is a
tool for matching TCRs to curated TCR-epitope pairs that are available in the IEDB [121]. The
purpose of integrating CompAIRR into this pipeline is to reduce the running time and memory
usage of TCRMatch. Previously, the TCRMatch functionalities have been demonstrated using
several tens of thousands of TCRs, yet this new pipeline broadens the scope of TCRMatch to
being able to scan large-scale TCR repertoire datasets for similar sequences in the IEDB. In this
pipeline, CompAIRR is first used to pre-filter the IEDB reference TCRs based on a Hamming
distance cutoff (for example 1 or 2) to the query sequences. Then, TCRMatch is used to
compute a more refined similarity score between the query sequences and the reduced version
of the IEDB. A visual report has been implemented to guide the user in choosing an optimal
Hamming distance threshold for their desired TCRMatch similarity score. The vast majority of
sequence pairs in the IEDB with a TCRMatch score above 0.97 (the default threshold) are
retained with a Hamming distance of 1, and all such sequence pairs fall within a Hamming
distance of 2. Thus, the pipeline allows the users to recover (nearly) all high-similarity matches
using only a fraction of the time and memory compared to using stand-alone TCRMatch. This
pipeline opens up new opportunities for exploratory analyses of large-scale AIRR datasets
guided by knowledge of curated AIRs.

Opportunities and challenges for exploring antigen binding motifs
With the methodology presented in Paper 3, we aimed to investigate to what extent antigen
binding was determined by the presence of a short motif in the CDR3. To the best of our
knowledge, this is the first study aiming to directly quantify the degree to which AIR-antigen
binding is determined by the presence of a short motif in the CDR3, regardless of the remaining
positions. While Glanville et al. explored the clustering of TCRs using local motifs in the CDR3
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[36], the used dataset contained at most only 739 TCRs binding to the same target. These
TCRs were obtained from blood samples and exhibited high similarity, obscuring the distinction
between motifs that are shared due to convergent V(D)J recombination and genuine indicators
of antigen binding.

We instead chose to work with mutagenesis-based datasets. This choice allowed for a more
precise investigation of the decision boundary between binders and non-binders, as both groups
originate from highly similar distributions. The resulting dataset contains a large variety of
binders, but highly similar non-binders are represented as well. Such highly similar non-binders
may remain unobserved in blood-derived AIR datasets, as the cells carrying these AIRs do not
receive the same stimuli for proliferation. The sequences in the Mason and Mehta datasets are
intentionally created to follow a highly skewed positional amino acid frequency distribution.
Across the 10 heavy chain CDR3 positions that were mutated, some positions permit a lot of
variability, whereas others are almost entirely fixed to one or few amino acids. This skewing was
necessary to produce a sufficiently large number of different binder examples. However, it also
introduces challenges for the interpretation of the results presented in Paper 3.

Even though the binder/non-binder status of a sequence is independent of the distribution the
sequence was derived from, the sequence distribution does influence performance metrics such
as precision and recall for a given motif. This means the high-precision, high-recall motifs
learned on the Mason dataset may not be equally indicative of HER2 binding in an antibody
dataset derived from a different distribution (e.g., experimental data generated through a
different protocol, or combined datasets from a database). In an attempt to correct for the
skewed positional amino acid distribution when computing motif performance metrics, an
example weighting approach was initially explored. The goal was to estimate what the precision
or recall of a given motif would be on a set of sequences drawn from a different (uniform, rather
than skewed) positional amino acid frequency distribution. This was done by relative
up-weighting of sequences containing ‘rare’ amino acids and down-weighting sequences with
‘common’ amino acid usage when computing performance metrics. While this approach was
successful on simple simulated datasets, the up-weighting of ‘rare’ sequences in experimental
datasets led to unstable results, possibly due to an amplification of noise. It should be noted that
generalisability of classification criteria across data from different distributions is a universal
problem in ML [171], and future investigations are needed to better understand how to combine
or translate results between different AIR(R) datasets.

Despite the motifs themselves not necessarily generalising to different data distributions, the
investigation and proposed methodology can still be used to investigate the properties of the
immune signal (e.g., the shape and size). Naturally, the method can be extended to include a
larger variety of motif definitions. Comparing the number of motifs found under different
definitions, as well as the predictive performances of these different sets of motifs, could give an
indication of which definition best captures the immune signal. Such investigations may help us
design better AIR(R) classifiers in the future, both in performance and interpretability.

The two ways in which the motif definition can be modified are the alphabet and the positions.
The alphabet could be updated to allow for synonymous amino acids according to
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biophysicochemical similarity, or it could include ‘negative’ amino acids, which match anything
except a particular amino acid (group). One could also define a new motif type which is
position-independent, and thus able to capture the same amino acid subsequence occurring
across different positions in the CDR3. The benefit of position-independent motifs is that they
can be searched for across CDR3 sequences of different lengths without prior alignment.
Another way to introduce flexibility in the motif positions is to allow the length of the gap to vary.
The motif alphabet could be extended with relatively few changes from the current
implementation, for instance by introducing a set of special characters that represent groups of
synonymous amino acids. Updating the motif positions is however not trivial. The total number
of possible motifs is enormous, and the large majority of theoretically possible motifs do not
occur in any sequence in the dataset. An efficient algorithm was implemented to find all
candidate motifs that occur in a sufficient number of true positive (binder) sequences. The space
of candidate motifs is explored by recursively extending each motif with only those
position-specific amino acids that occur in a sufficient number of binders. By introducing any
type of flexibility in the motif form, this trick for efficiently traversing the motif space can no
longer be applied, as multiple amino acids in different positions need to be considered.

Conclusion
ML has transformed the analysis of large and highly complex datasets, including the analysis of
AIR(R) data. AIRs are vital for the targeted recognition of antigens and maintaining
immunological memory, and ML-based analysis of AIR(R) data could significantly accelerate the
development of therapeutic drugs and diagnostic tests. To support such AIR(R)-ML analyses,
several new computational tools have been introduced in this thesis.

The immuneML platform was created to simplify the development of new AIR(R)-ML methods,
by providing a single, extensible platform supporting the comparative evaluation and
introspection of such ML models. Researchers can integrate their new methodology into the
platform and benefit from the already implemented workflows for ML model training and
hyperparameter optimization, and easily benchmark their new ML method against a range of
readily available methods. Furthermore, the YAML analysis specification allows for easy sharing
of reproducible analysis workflows with collaborators, and can be executed both on the
command line and Galaxy web interfaces.

While CompAIRR functions as a stand-alone tool for rapid computation of overlap between
AIRRs, its flexibility allows it to be integrated in a wide variety of different workflows. CompAIRR
has been used to speed up several AIR(R)-ML classifiers in immuneML, calibrating models of
AIR sharing for simAIRR, and pre-filtering the IEDB when computing TCRMatch similarity
scores. Any large-scale AIRR analysis which internally relies on computing (near) identical AIR
matches can potentially benefit from integrating CompAIRR to improve speed or reduce
memory usage.

The computational methodology presented in Paper 3 can be used to directly investigate the
degree to which antigen binding can be predicted based on the presence of short motifs in the
AIR CDR3. The method employs an efficient algorithm to search for motifs which have high
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precision in predicting antigen binding, yet also a sufficiently high recall to ensure
generalisability to unseen data. We were able to find antibody CDR3 motifs that were highly
predictive of HER2 binding, which generalised well to an independently generated antibody
dataset. We found that many of the learned motifs were highly dispersed in nature, containing
multiple gaps. This indicates that the field of AIR(R)-ML may benefit from developing
architectures capable of capturing such gapped motifs. As more large experimental AIR-antigen
binding datasets become available, it could serve as a foundation for the analysis of immune
signals in the form of antigen binding motifs.
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T-cell receptors (TCRs) and B-cell receptors (BCRs), which 
are collectively known as adaptive immune receptor (AIR) 
repertoires (AIRRs), recognize antigens and record infor-

mation on past and ongoing immune responses1–4. AIRR-encoded 
information is particularly useful for the repertoire-based predic-
tion and analysis of immune states (for example, health, disease, 
infection, vaccination) in relation to other metadata such as major 
histocompatibility complex (MHC)5–7, age7,8 and sex9. Together, 
this information shapes the foundation for AIRR-based diag-
nostics6,10–14. Similarly, sequence-based prediction of antigen and 
epitope binding is of fundamental importance for AIR-based ther-
apeutics discovery and engineering15–27. In this Article, the term 
AIRR signifies both AIRs and AIRRs (a collection of AIRs) unless 
specified otherwise.

Machine learning (ML) has recently taken centre stage in the 
biological sciences because it allows the detection, recovery and rec-
reation of high-complexity biological information from large-scale 
biological data28–31. AIRRs have complex biology with specialized 
research questions, such as immune state and receptor-specificity 
prediction, that warrant domain-specific ML analysis15. Briefly, 
(1) ~108–1010 distinct AIRs exist in a given individual at any one 
time32–34, with little overlap among individuals, necessitating encod-
ings that allow the detection of predictive patterns. These shared 
patterns may correspond to full-length AIRs6, subsequences or16 
alternative AIR representations11,12,17,18,22,35–37. (2) In repertoire-based 
ML, the patterns relevant to any immune state may be as rare as 
one antigen-binding AIR per million lymphocytes in a repertoire38, 
translating to a very low rate of relevant sequences per repertoire 
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Adaptive immune receptor repertoires (AIRR) are key targets for biomedical research as they record past and ongoing adap-
tive immune responses. The capacity of machine learning (ML) to identify complex discriminative sequence patterns renders 
it an ideal approach for AIRR-based diagnostic and therapeutic discovery. So far, widespread adoption of AIRR ML has been 
inhibited by a lack of reproducibility, transparency and interoperability. immuneML (immuneml.uio.no) addresses these con-
cerns by implementing each step of the AIRR ML process in an extensible, open-source software ecosystem that is based on 
fully specified and shareable workflows. To facilitate widespread user adoption, immuneML is available as a command-line 
tool and through an intuitive Galaxy web interface, and extensive documentation of workflows is provided. We demonstrate 
the broad applicability of immuneML by (1) reproducing a large-scale study on immune state prediction, (2) developing, 
integrating and applying a novel deep learning method for antigen specificity prediction and (3) showcasing streamlined 
interpretability-focused benchmarking of AIRR ML.
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(low witness rate)11,39,40. (3) In sequence-based ML, the enormous 
diversity of antigen recognition combined with polyreactivity 
points to complex high-order statistical dependencies in the short 
sequence known to be the main determinant of antigen recognition 
(complementarity-determining region 3, CDR3)1,16.

Tailored ML frameworks and platforms that account for the 
idiosyncrasies of the underlying data have been published for 
applications in genomics41,42, proteomics43,44, biomedicine45 and 
chemistry46. Their creation recognizes the infeasibility of defining, 
implementing and training appropriate ML models by relying solely 
on generic ML frameworks such as scikit-learn47 or PyTorch48. The 
lack of a standardized framework for AIRR ML has led to heteroge-
neity in terms of technical solutions, domain assumptions and user 
interaction options, hampering transparent comparative evalua-
tion and the ability to explore and select the ML methodology most 
appropriate for a given study15.

Results
Overview of immuneML. Here, we present immuneML, an 
open-source collaborative ecosystem for AIRR ML (Fig. 1). 
immuneML enables the ML study of both experimental and 
synthetic AIRR-seq data that are labelled on the repertoire level 
(for example, immune state, sex, age or any other metadata) or 
sequence level (for example, antigen binding), all the way from 
preprocessing to model training and model interpretation. It 
natively implements model selection and assessment procedures 
such as nested cross-validation to ensure robustness in selecting 
the ML model. immuneML may be operated either via the com-
mand line or the Galaxy web interface49, which offers an intuitive 
user interface that promotes collaboration and reusability through 
shareable analysis histories. To expedite analyses, immuneML may 
also be deployed via cloud services such as Amazon Web Services 
(AWS) and Google Cloud, or on a local server when there are data 
privacy concerns. Computational reproducibility and transpar-
ency are achieved by shareable specification files, which include 
all analysis details (Supplementary Fig. 1). immuneML’s compli-
ance with AIRR community software and sequence annotation 
standards50,51 ensures straightforward integration with third-party 
tools for AIRR data preprocessing and downstream analysis of 
AIRR ML results. For example, immuneML is fully compatible 
with the sequencing read processing and annotation suite MiXCR52 
and the Immcantation53,54 and immunarch55 frameworks for AIRR 
data analysis. AIRR data from the AIRR Data Commons56 through 
the iReceptor Gateway57, as well as the epitope-specific TCR 
database VDJdb58 may be directly downloaded into the immun-
eML Galaxy environment. immuneML is also integrated with 
the AIRR-specific attention-based multiple-instance learning 
ML method DeepRC39 and the TCR-specific clustering method 
TCRdist17, and is compatible with GLIPH259.

To get started with immuneML, we refer the reader to Box 1. To 
demonstrate immuneML’s capabilities for performing AIRR ML, we 
provide an overview of the main features of the platform and then 
highlight three orthogonal use cases: (1) we reproduce the cytomeg-
alovirus (CMV) serostatus prediction study of Emerson et al.6 inside 
immuneML and examine the robustness of the approach, showing 
one way of using immuneML for repertoire-based immune state 
prediction, (2) we apply a new custom convolutional neural net-
work (CNN) for the sequence-based task of antigen-binding pre-
diction based on paired-chain TCR data and (3) we show the use of 
immuneML for benchmarking AIRR ML methods.

immuneML allows read-in of experimental single- and 
paired-chain data from offline and online sources, as well 
as the generation of synthetic data for ML benchmarking. 
Experimental data may be read-in directly if they comply with the 
major formats used for AIRR-seq data V(D)J annotation: AIRR-C 

standard-conforming50, MIXCR52, 10x Genomics60, Adaptive 
Biotechnologies ImmunoSEQ6,61 or VDJdb formats58. The AIRR-C 
format compatibility ensures that synthetic data generated by 
immuneSIM62 can also be imported, as can synthetic data generated 
by IGoR63 and OLGA64. Moreover, immuneML can be configured 
to read in data from any custom tabular format. To facilitate access 
to large-scale AIRR-seq data repositories, we provide Galaxy49 tools 
for downloading data from the AIRR Data Commons56 via the iRe-
ceptor Gateway57 and from VDJdb58 into the Galaxy environment 
for subsequent ML analysis. Furthermore, immuneML has built-in 
capacities for complex synthetic AIRR data generation to satisfy  
the need for ground-truth data in the context of ML method  
benchmarking. Finally, read-in data may be filtered by clone count, 
metadata and chain.

immuneML supports multiple ML frameworks and allows the 
interpretation of ML models. immuneML supports two major ML 
platforms to ensure flexibility—scikit-learn47 and PyTorch48— and 
is therefore compliant with all ML methods inside these platforms. 
immuneML features scikit-learn implementations such as logistic 
regression, support vector machine and random forest. In addition, 
we provide AIRR-adapted ML methods. Specifically, for repertoire 
classification, immuneML includes a custom implementation of the 
method published by Emerson et al.6, as well as the attention-based 
deep learning method DeepRC39. For paired-chain sequence-based 
prediction, immuneML includes a custom-implemented 
CNN-based deep learning method, integrates with TCRdist17 and 
is compatible with GLIPH259. immuneML also includes several 
encodings that are commonly used for AIRR data, such as k-mer 
frequency decomposition, one-hot encoding (where each position 
in the sequence is represented by a vector of zeros except one entry 
containing 1, the denoting appropriate amino acid or nucleotide), 
encoding via the presence of disease-associated sequences, and rep-
ertoire distances. For the full overview of analysis components, see 
Supplementary Table 1.

A variety of tabular and graphical analysis reports may be auto-
matically generated during an analysis, providing details about the 
encoded data (for example, feature value distributions), the ML 
model (for example, interpretability reports) and the prediction 
accuracy (a variety of performance metrics across training, valida-
tion and test sets). The trained models can also be exported and 
used in future analyses.

immuneML facilitates the reproducibility, interoperability and 
transparency of ML models. immuneML draws on a broad range 
of techniques and design choices to ensure that it meets the latest 
expectations with regard to usability, reproducibility, interoperabil-
ity, extensibility and transparency65–68 (Fig. 1).

Usability is achieved by a range of installation and usage options, 
catering to novices and experts, and to small and large-scale analy-
ses. A Galaxy web interface49 allows users to run analyses without 
the need for any installation and without requiring any skills in 
programming or command-line operations. Its availability through 
GitHub, pip and Docker streamlines usage at scales ranging from 
laptops to high-performance infrastructures such as Google Cloud 
and AWS (docs.immuneml.uio.no/latest/installation/cloud.html).

Reproducibility is ensured by leveraging the Galaxy frame-
work49, which enables sharing of users’ analysis histories, including 
the data and parameters, so that they can be independently repro-
duced. If working outside Galaxy, reproducibility is ensured by 
shareable analysis specification (YAML) files. YAML specification 
files produced in the Galaxy web interface can also be downloaded 
to seamlessly switch between Galaxy and command-line operation. 
Note that here we are referring to reproducibility in the sense of 
repeating a computational analysis in its exact form, also referred 
to as methods reproducibility69, although the YAML files are also 
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well suited to exploring the extent to which results are affected by 
modifications of analysis parameters.

Interoperability is ensured by supporting data import from mul-
tiple sources and export to AIRR-C format (MiAIRR standard) for 
post-analysis by third-party tools that are AIRR-compliant50.

The extensibility of immuneML, signifying straightforward 
inclusion of new ML methods, encodings, reports and preprocess-
ing, is ensured by its modular design (Supplementary Fig. 2). The 
code is open source and available on GitHub (Box 2). The docu-
mentation details step-by-step developer tutorials for immuneML 
extension (docs.immuneml.uio.no/latest/developer_docs.html).

Transparency is established by (1) a YAML analysis specification 
in which the assumptions of the AIRR ML analysis are explicitly 
defined, and default parameter settings are exported; (2) separate 
immunologist-centric Galaxy user interfaces that translate param-
eters and assumptions of the ML process to aspects of immune 

receptors that immunologists may better relate to (Supplementary 
Fig. 3) and (3) making the underlying data for each analysis report 
available for further inspection by the user.

Use case 1—reproduction of a published study inside immun-
eML. To show how a typical AIRR ML analysis may be performed 
within immuneML, we reproduced a previously published study by 
Emerson et al. on the TCRβ-repertoire-based classification of indi-
viduals into CMV seropositive and seronegative6 (Fig. 2a). Using 
the standard interface of immuneML, we set up a repertoire clas-
sification analysis using tenfold cross-validation on cohort 1 of 563 
patients to choose optimal hyperparameters for immuneML’s native 
implementation of the statistical classifier introduced by Emerson 
and colleagues6. We then retrained the classifier on the complete 
cohort 1 and tested it on a second cohort (cohort 2) of 120 patients, 
as described in the original publication (Methods).
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Fig. 1 | Overview of immuneML. a,b, The main immuneML application areas are sequence- and repertoire-based classification of AIRRs with application 
to immunodiagnostics and therapeutics research (a) and the development of AIRR-based methods (b). We present three use cases belonging to these 
application areas (use cases 1–3). c–e, The immuneML core is composed of three pillars: AIRR-seq data input and filtering (c), ML (d) and interpretability 
analysis (e). Each of these pillars has different modules that may be interconnected to build an immuneML workflow. f, immuneML uses a specification 
file (YAML) that is customizable and allows full reproducibility and shareability with collaborators or the broader research community. An overview of 
immuneML analyses is given in Supplementary Fig. 1. g, immuneML may be operated via the Galaxy web interface or the command line. h, All immuneML 
modules are extendable. Documentation for developers is available online. i, immuneML is available as a Python package, a Docker image and may be 
deployed to cloud frameworks (for example, AWS, Google Cloud). 3-mer, amino acid sequence of length three; LR, logistic regression; RF, random forest; 
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NATURE MACHINE INTELLIGENCE | VOL 3 | NOVEMBER 2021 | 936–944 | www.nature.com/natmachintell938



ARTICLESNATURE MACHINE INTELLIGENCE

immuneML exports classifier details, such as a list of 
immune-status-associated sequences for each classifier created dur-
ing cross-validation, as well as a performance overview using the 
metrics of choice. We replicated the predictive performance achieved 
by Emerson et al.6, finding 143 of the same CMV-associated TCRs 
(out of 164) reported in the original study.

We then used the built-in robustness analysis of immun-
eML to explore how the classification accuracy and the set of 
immune-status-associated sequences varied when learning classi-
fiers were based on smaller subsets of repertoires (Fig. 2a,b). While 
the exact set of learned immune-status-associated sequences varied 
across subsampled data of sizes close to the full dataset, the clas-
sification accuracy was nonetheless consistently high (>0.85) as 
long as the number of training repertoires was 400 or higher (below 
this, classification accuracy on the separate test sets deteriorated 
sharply) (Fig. 2b,c).

Use case 2—extending immuneML with a deep learning com-
ponent for antigen-specificity prediction based on paired-chain 
(single-immune-cell) data. To illustrate the extensibility of the 
immuneML platform, we added a new CNN component for 

predicting antigen specificity based on paired-chain AIR data. 
The ML task was to discover motifs in the two receptor chains 
(sequences) and to exploit the presence of these motifs to predict 
whether the receptor would bind the antigen. As the immuneML 
platform provides comprehensive functionality for parsing and 
encoding paired-chain data, hyperparameter optimization and 
presenting results, the only development step needed was to add 
the code for the CNN-based method itself (Supplementary Fig. 5). 
Briefly, the added CNN consisted of a set of kernels for each chain 
that act as motif detectors, a vector representation of the receptor 
obtained by combining all kernel activations and a fully connected 
layer that predicts whether the receptor would bind the antigen or 
not. Furthermore, we show how to run analyses with the added 
component and compare its results with those of alternative mod-
els, such as a logistic regression model based on 3-mer frequencies 
and a k-nearest neighbour classifier relying on TCRdist17 as the 
distance metric (available directly from immuneML through the 
tcrdist3 package70). We also show that the motifs can be recov-
ered from the CNN model, the logistic regression, TCRdist and 
GLIPH259 (Fig. 2d).

Use case 3—ML methods benchmarking on ground-truth syn-
thetic data. Given the current rise in AIRR ML applications, the 
ability of method developers and practitioners to efficiently bench-
mark the variety of available approaches is becoming crucial1,15,62. 
Owing to the limited current availability of high-resolution labelled 
experimental data, rigorous benchmarking relies on a combination 
of experimental and simulated ground-truth data. The immuneML 
platform natively supports both the generation of synthetic data 
for benchmarking purposes and the efficient comparative bench-
marking of multiple methodologies based on synthetic (as well 
as experimental) data. To exhibit the efficiency with which such 
benchmarking can be performed within the immuneML frame-
work, we simulated 2,000 human IgH repertoires consisting of 105 
CDR3 amino acid sequences each using the OLGA framework64, 
and implanted sequence motifs reflecting five different immune 

Box 1 | Getting started with immuneML

Visit the project website at immuneml.uio.no. immuneML may 
be used (1) online via the Galaxy web interface (galaxy.im-
muneml.uio.no), (2) through a Docker container or (3) from the 
command line by installing and running immuneML as a Py-
thon package. Detailed instructions for each of these options are 
available in the immuneML documentation: docs.immuneml.
uio.no/latest/installation.html.

Getting started—web interface
•	 For immunologists, we recommend the Quickstart guide 

based on simpli!ed interfaces for training ML models: docs.
immuneml.uio.no/latest/quickstart/galaxy_simple.html. 
Explanations of the relevant ML concepts can be found in 
the documentation (sequence classi!cation docs.immuneml.
uio.no/latest/galaxy/galaxy_simple_receptors.html and rep-
ertoire classi!cation docs.immuneml.uio.no/latest/galaxy/
galaxy_simple_repertoires.html)

•	 Alternatively, to have full control over all details of the anal-
ysis, see the YAML-based Galaxy Quickstart guide: docs.
immuneml.uio.no/latest/quickstart/galaxy_yaml.html.

•	 For guidance on how to use each immuneML Galaxy tool, 
see the immuneML and Galaxy documentation (docs.
immuneml.uio.no/latest/galaxy.html) and the list of pub-
lished example Galaxy histories (galaxy.immuneml.uio.no/
histories/list_published).

Getting started—command-line interface

•	 For the command-line Quickstart guide, see docs.immuneml.
uio.no/latest/quickstart/cli_yaml.html.

•	 For detailed examples of analyses that can be performed 
with immuneML, see the tutorials (docs.immuneml.uio.no/
latest/tutorials.html), use case examples (docs.immuneml.
uio.no/latest/usecases.html) and all of the supported analy-
sis options in the YAML speci!cation documentation (docs.
immuneml.uio.no/latest/speci!cation.html).

For any questions, contact us at contact@immuneml.uio.
no, visit the troubleshooting page in the documentation (docs.
immuneml.uio.no/latest/troubleshooting.html) or open an issue 
on our GitHub repository (github.com/uio-bmi/immuneML/
issues).

Box 2 | How to contribute to immuneML

"ere are multiple avenues for contributing to and extending 
immuneML:
•	 ML work#ows for speci!c research questions can be shared 

on galaxy.immuneml.uio.no, which allows other researchers 
to use them directly in their own data analysis.

•	 Questions, enhancements or encountered bugs can be 
reported as issues via the immuneML GitHub (github.com/
uio-bmi/immuneML/issues).

•	 To improve or extend the immuneML platform, the source 
code can be obtained from GitHub at github.com/uio-bmi/
immuneML. "e immuneML codebase is described in the 
immuneML developer documentation docs.immuneml.uio.
no/latest/developer_docs.html, along with tutorials on how 
to add new ML methods, encodings and report components 
to the platform. A new ML method could initially be devel-
oped as a separate component and subsequently integrated 
into immuneML to bene!t from available immuneML func-
tionalities related to importing datasets from di$erent for-
mats, using various data representations, benchmarking 
against existing methods and robustly assessing the perfor-
mance—all through a convenient user interface.

•	 We encourage developers to contribute their improvements 
and extensions to the community, either by making their 
own versions public or by submitting their contributions as 
GitHub ‘pull requests’ to the main immuneML codebase.
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events of varying complexity (Fig. 2g and Supplementary Table 
2). We examined the classification accuracy of three assessed ML 
methods (Fig. 2h) and used a native immuneML report to exam-
ine the overlap between ground-truth implanted motifs and learned 
model features (Fig. 2i and Supplementary Fig. 6).

Discussion
We have presented immuneML, a collaborative and open-source 
platform for transparent AIRR ML that is accessible both via the 
command line and via an intuitive Galaxy web interface49. immun-
eML supports the analysis of both BCR and TCR repertoires, 

a b c

d e f

g h i

Use case 1: replication of emerson et al. 2017: CMV status prediction from TCRβ repertoires with robustness assessment on subsampled datasets

683 CMV+ 
and CMV–

subjects with
~2 × 105

TCRβ sequences 

Robustness assessment: subsampled datasets

Emerson et al.6 2017 study replication

Subsampled datasets
(400, 200, 100, 
and 50 subjects)

Cohort 1 (training):
566 subjects

Cohort 2 (test):
120 subjects

and disease-associated
TCRβ sequences 

Emerson et al.6

TCRαβ immune
receptor dataset

+
+
–
–
+
–
+
+
+
–
–
+
–
+
+
+
–
–
+
–
+

Epitope-specific data: 
VDJdb
naive receptors: 
immuneACCESS

GLIPH2 (Huang et al.59)
Inferred

specificity 
groups

CNN for specificity prediction

positionposition positionposition

CATTA

CA T
R

β

AT
K

α

...

Receptor representation
Fully connected
neural network

classifier

TCRdist (Dash et al.17)

kNN 
classifier

Pairwise TCRαβ 
distances

Logistic regression with 3-mers

Logistic regression 3-mers

Immune
event 1

Immune 
event 2

Immune
event 3

Immune
event 4

Immune
event 5

B
al

an
ce

d 
ac

cu
ra

cy

ML method

3-m
er encoding

4-m
er encoding

Increasing immune event
complexity

Overlap between features and ground truth motifs

N
um

be
r 

of
 C

M
V

-a
ss

oc
ia

te
d 

T
C

R
β s

eq
ue

nc
es

logreg NLI

GNL
SSI

SIR

AGG

GGG
RSS

SYE

TGK

SSN
SSY

SAR

Alpha chain Beta chain
most relevant

3-mers

CNN

Alpha kernel 33 Beta kernel 23
example 
kernels

TCRdist

Alpha chain motif Beta chain motif
example
motifs

GLIPH2 %RSNQ

%YSNQ

IG%Y

RST
example 

motifs

NA
Beta chain motifs

2,000 IgH repertoires 
of 105 CDR3 amino 

acid sequences,
generated by OLGA

(Sethna et al.64)

3-mer and 
4-mer 

encoding

Simulate five immune events

Benchmarking ML methods and encodings

CAT

CAT
CST

C     AT

LR SVM RF
...

Motif

Training Validation Test

Model
selection and 

training

Best ML 
model

(for the split)

Performance
estimate

(for the split)

Average
performance

estimate

Nested cross-validation

Dataset

LR R
F

S
V

M LR R
F

S
V

M LR R
F

S
V

M LR R
F

S
V

M LR R
F

S
V

M

1.0

0.5

0
1.0

0.5

0 0 1 2 3

–0.2

0

0.2

0.4

0.6

0.8

C
oe

ffc
ie

nt
 v

al
ue

5.0
4.0
3.0
2.0
1.0

–1.0 A S S I R S S Y E O Y
0

5.0

1

1 201

1

2

2

3

3
4

0

2
3
4

4.0
3.0
2.0
1.0

–1.0 A S S I G GS Y TY
0

1.0

1.0
False positive rate

False positive rate

Classifier

Classifier

Classifier

Classifier

Classifier

C
oe

ffi
ci

en
ts

T
ru

e 
po

si
tiv

e 
ra

te

T
ru

e 
po

si
tiv

e 
ra

te

0.8

0.8

Baseline (AUC = 0.50)
Full dataset (AUC = 0.92)
400 subjects (AUC = 0.86)
200 subjects (AUC = 0.51)
100 subjects (AUC = 0.46)
50 subjects (AUC = 0.56)

logreg (AUROC = 0.92)
CNN (AUROC = 0.86)
TCRdist (AUROC = 0.91)
Baseline (AUROC = 0.50)

0.6

0.6

0.4

0.4

0.2

0.2

0

1.0

1.0

0.8

0.8

0.6

0.6

0.4

0.4

0.2

0.2

0

0

0

500

1,000

1,500

2,000

2,500

Full dataset 400 subjects 200 subjects 100 subjects 50 subjects

0057
242

530

3,000

3,500

0

Fig. 2 | Use cases demonstrating ML model training, benchmarking and platform extension. Use cases 1–3 exemplify immuneML usage. a–c, Use case 1 is 
the reproduction of a published study6 . a, The task consisted of distinguishing between TCRβ repertoires from CMV seropositive and seronegative individuals, 
as well as identifying TCRβ sequences that are associated with CMV status. b, We assessed the robustness of the statistical approach, measured by the 
predictive performance, as a function of decreasing dataset size: fewer repertoires (400, 200, 100 and 50) led to decreased prediction accuracy (AUROC: 
0.86–0.46). c, Fewer CMV-associated TCRβ sequences were found with fewer subject (with almost none found in datasets of 100 and 50 subjects). d–f, For 
use case 2, we developed a new ML method for antigen-specificity prediction on paired-chain T-cell receptor data using a CNN architecture. d, The task here 
was antigen-binding prediction. The method separately detected motifs in paired chains and combined the motif scores (corresponding to kernel activations) 
to obtain the receptor representation, which was then used as input to a classifier. e, We compared the CNN method with the TCRdist-based k-nearest 
neighbour classifier and logistic regression on a dataset consisting of epitope-specific and naive TCRαβ sequences (assumed to be non-epitope-specific). 
For epitope-specific sequences, we used Epstein–Barr-virus-specific TCRαβ sequences binding to the GILGFVFTL epitope. f, The motifs recovered by CNN, 
TCRdist and GLIPH2 among the epitope-specific sequences. g–i, In use case 3, we show how ground-truth synthetic data can be used to benchmark AIRR 
ML methods. The dataset consisted of 2,000 immune repertoires generated by OLGA64. Using immuneML, five immune events of increasing complexity 
were simulated by implanting synthetic signals into the OLGA-generated repertoires. g, This dataset was used to benchmark three different ML methods 
in combination with two encodings (3-mer and 4-mer encoding) inside immuneML, showing the classification performance with a standard deviation that 
dropped as the immune event complexity increased. h, The quality of the ML models was assessed by comparing the feature coefficient sizes with how well 
these features represented the ground-truth signals. i, Models with a good classification performance were in fact able to recover the ground-truth signals. 
The overlap was calculated from a logistic regression model for immune event 3. Error bars in h represent the standard deviation.
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with single or paired chains, at the sequence (receptor) and rep-
ertoire level. It accepts experimental data in a variety of formats 
and includes native support for generating synthetic AIRR data to 
benchmark the performance of AIRR ML approaches. As a flexible 
platform for tailoring AIRR ML analyses, immuneML features a 
broad selection of modular software components for data import, 
feature encoding, ML and performance assessment (Supplementary 
Table 1). The platform can easily be extended with new encodings, 
ML methods and analytical reports by the research community. 
immuneML supports all major standards in the AIRR field, uses 
YAML analysis specification files for transparency and scales from 
local machines to the cloud. Throughout the platform develop-
ment phase, we have tried to adhere to best practices of software 
engineering to improve software extensibility and maintainability. 
With the field of ML maturing, we see such aspects connected to the 
longevity and interoperability of ML functionality as increasingly 
deserving of attention. Extensive documentation for both users and 
contributors is available (docs.immuneml.uio.no).

immuneML caters to a variety of user groups and usage con-
texts. The Galaxy web tools make sophisticated ML-based 
receptor-specificity and repertoire immune-state prediction acces-
sible to immunologists and clinicians through intuitive, graphical 
interfaces. The diversity of custom preprocessing and encoding 
used in published AIRR ML studies hinders their comparison 
and reproducibility. In contrast, the YAML-based specification 
of analyses on the command line or through Galaxy improves 
the potential for collaboration, transparency and reproducibility 
of AIRR ML for experienced bioinformaticians and data scien-
tists. The integrated support for AIRR data simulation and sys-
tematic ML method benchmarking helps method users to select 
those approaches most appropriate to their analytical setting, and 
to assists method developers in effectively evaluating ML-related 
methodological ideas.

From a developer perspective, the impressive sophistication of 
generic ML frameworks such as TensorFlow71 and PyTorch48 may 
suggest that these frameworks would suffice as a starting point for 
AIRR ML method development. These frameworks are, however, 
limited to the specification of ML methods on generic data repre-
sentations—meaning that it is up to every AIRR ML developer to 
implement (reinvent) all remaining parts of a full AIRR workflow, 
including data read-in, preprocessing, hyperparameter optimiza-
tion strategies, interpretability and presentation of results. The 
fact that the immuneML architecture builds on top of frameworks 
such as PyTorch underlines the breadth of additional functional-
ity needed for robust ML development and execution in the AIRR 
domain. For ML researchers, the rich support for integrating novel 
ML components within existing code for data processing, hyper-
parameter optimization and performance assessment could greatly 
accelerate method development.

The current version of immuneML includes a set of components 
mainly focused on supervised ML, but the platform is also suitable 
for the community to extend it with components for settings such 
as unsupervised learning72 or generative receptor modelling15,20,73. 
We also aim to improve the general support for model introspec-
tion, particularly with regards to supporting causal interpretations 
for discovering and alleviating technical biases or challenges related 
to the study design74.

In conclusion, immuneML enables the transition from AIRR 
ML method set-up representing a bona fide research project to 
being at the fingertips of immunologists and clinicians. AIRR ML 
method developers can also focus on the implementation of com-
ponents reflecting their unique research contribution, relying on 
existing immuneML functionality for the entire remaining compu-
tational process. immuneML facilitates the increased adoption of 
AIRR-based diagnostics and therapeutics discovery by supporting 
the accelerated development of AIRR ML methods.

Methods
immuneML availability. immuneML can be used (1) as a web tool through 
the Galaxy web interface (galaxy.immuneml.uio.no), (2) from a command-line 
interface, (3) through Docker (registry.hub.docker.com/r/milenapavlovic/
immuneml), (4) via cloud services such as Google Cloud (cloud.google.
com) through Docker integration or (5) as a Python library (pypi.org/project/
immuneML). It is also deposited on Zenodo at https://doi.org/10.5281/
zenodo.5118741 (ref. 75).

immuneML analysis specification. immuneML analyses are specified using 
a YAML specification file (Supplementary Fig. 1), which allows streamlined 
specification of full analyses based on an external domain-specific language for 
AIRR ML76. When using Galaxy, the user may choose to provide a specification 
file directly or use a graphical interface that compiles the specification for the 
user. When used as a command-line interface tool, locally or in the cloud, 
with or without Docker, the specification file is provided by the user. Examples 
of specification files and detailed documentation on how to create them are 
available at docs.immuneml.uio.no/latest/tutorials/how_to_specify_an_analysis_
with_yaml.html.

immuneML supports different types of instruction: (1) training and assessment 
of ML models, (2) applications of trained ML models, (3) exploratory data analysis 
and (4) generation of synthetic AIRR datasets. Tutorials detailing these instructions 
are available at docs.immuneml.uio.no/latest/tutorials.html.

immuneML public server. the immuneML Galaxy web interface is available at 
galaxy.immuneml.uio.no. In addition to core immuneML components, the Galaxy 
instance includes interfaces towards the VDJdb58 database and the iReceptor 
Gateway57. The documentation for the Galaxy immuneML tools is available at 
docs.immuneml.uio.no/latest/galaxy.html.

immuneML architecture. immuneML has a modular architecture that can easily 
be extended (Supplementary Fig. 2). In particular, we have implemented glass-box 
extensibility mechanisms77, which enable the creation of customized code to 
implement new functionalities (encodings, ML methods, reports) that might be 
needed by users. Such extensibility mechanisms allow users to adapt immuneML 
to their specific cases without the need to understand the complexity of the 
immuneML code. As an example, immuneML orchestrates the exploration (grid 
search) of alternative components for data processing, encodings and ML method 
hyperparameters on data subsets for the inner splits of a nested cross-validation, 
allowing newly developed components for either of these parts (data processing, 
encoding, ML method) to be selected in competition with existing components 
as part of an unbiased hyperparameter selection and prediction performance 
estimation. For tutorials on how to add a new ML method, encoding, or an 
analysis report, see the developer documentation: docs.immuneml.uio.no/latest/
developer_docs.html.

Use cases. Use case 1—reproduction of a published study inside immuneML. We 
reproduced the study by Emerson and colleagues using a custom implementation 
of the encoding and classi!er described in the original publication6. Out of the 
786 subjects listed in the original study, we removed 103 subjects (1 with missing 
repertoire data, 25 with unknown CMV status, 3 with negative template counts 
for some of the sequences, and the rest with no template count information, all 
of which occurred in cohort 1), and performed the analysis on the remaining 
683 subjects. We achieved comparable results to the original publication, as 
shown in Supplementary Fig. 4. Supplementary Table 3 shows TCRβ receptor 
sequences inferred to be CMV-associated, comparing them to those published 
by Emerson et al.

In addition to reproducing the study by Emerson et al., we retrained the 
classifier on datasets consisting of 400, 200, 100 and 50 TCRβ repertoires 
randomly subsampled from cohort 1 and cohort 2. We show how the 
performance and the overlap of CMV-associated sequences changes with 
such reductions of dataset size (Fig. 2b,c). While most of the results are 
consistent within the subsampled dataset size, in Fig. 2b, a less stringent P value 
threshold was selected during the hyperparameter optimization for one of the 
cross-validation splits for the dataset of 400 subjects, resulting in a higher number 
of CMV-associated sequences.

The YAML specification files for this use case are available in the immuneML 
documentation under use case examples: docs.immuneml.uio.no/latest/usecases/
emerson_reproduction.html. The complete collection of results produced by 
immuneML, as well as the subsampled datasets, can be found in the NIRD research 
data archive78.

Use case 2—extending immuneML with a deep learning component for antigen 
specificity prediction based on paired-chain (single-immune-cell) data. To 
demonstrate the ease of extensibility for the platform, we added a CNN-based 
receptor-specificity prediction ML method to the platform (Supplementary 
Fig. 5). Detailed instructions for adding such a new component to immuneML 
can be found in the developer documentation: docs.immuneml.uio.no/latest/
developer_docs/how_to_add_new_ML_method.html. We subsequently ran  
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the added component through the standard immuneML model training 
interface, comparing its predictive performance with TCRdist17,70 and logistic 
regression across three datasets. We also recovered motifs from the kernels  
of the neural network by limiting the values of the kernels similar to 
Ploenzke and Irizarry79, and from the hierarchical clustering based on 
TCRdist distance, and compared these recovered motifs with the motifs 
extracted by GLIPH259 on the same datasets. Each dataset included a set of 
epitope-specific TCR#β receptors downloaded from VDJdb and a set of naive, 
randomly paired TCR#β receptors from the peripheral blood samples of four 
healthy donors80. Epitope-specific datasets were specific to cytomegalovirus 
(KLGGALQAK epitope, with 13,000 paired TCR#β receptors), Influenza A 
(GILGFVFTL epitope, with 2,000 paired TCR#β receptors) and Epstein–Barr 
virus (AVFDRKSDAK epitope, with 1,700 paired TCR#β receptors). Dataset 
details are summarized in Supplementary Table 4. The code for creating 
the datasets and YAML specifications describing the analysis can be found 
in the immuneML documentation: docs.immuneml.uio.no/latest/usecases/
extendability_use_case.html. The three datasets of epitope-specific receptors 
and the complete collection of kernel visualizations produced by immuneML,  
as well as the results produced by GLIPH2, have been stored in the NIRD 
research data archive81.

Use case 3—ML methods benchmarking on ground-truth synthetic data. To show 
the utility of immuneML for benchmarking AIRR ML methods, we constructed 
a synthetic AIR dataset with known implanted ground-truth signals and 
performed a benchmarking of ML methods and encodings inside immuneML. 
To create the dataset for this use case, 2,000 human IgH repertoires of 105  
CDR3 amino acid sequences were generated using OLGA64. Subsequently, 
immuneML was used to simulate five different immune events of varying 
complexity by implanting signals containing probabilistic 3-mer motifs 
(Supplementary Table 2). The signals of each immune event were implanted 
in 50% of the repertoires, without correlating the occurrence of different 
immune events. Signals were implanted in 0.1% of the CDRH3 sequences of 
the repertoires selected for immune event simulation. While signal rates down 
to one antigen-binding AIR per million lymphocytes have been reported for 
certain disease states38, we here chose a signal rate substantially higher than 
these most challenging cases to allow a demonstration of how benchmarking 
may be performed using basic ML approaches.

Using immuneML, three different ML methods (logistic regression, random 
forest and support vector machine) combined with two encodings (3-mer and 
4-mer frequency encoding) were benchmarked. Hyperparameter optimization 
was done through nested cross-validation. For the model assessment (outer) 
cross-validation loop, the 2,000 repertoires were randomly split into 70% training 
and 30% testing data, and this was repeated three times. In the model selection 
(inner) cross-validation loop, threefold cross-validation was used. The test set 
classification performances of the trained classifiers for each immune event are 
shown in Fig. 2h.

The immune signals implanted in this dataset were used to examine the ability 
of the ML methods to recover ground-truth motifs by comparing the coefficient 
value (logistic regression, support vector machine) or feature importance (random 
forest) of a given feature with the overlap between that feature and an implanted 
signal (Fig. 2i, Supplementary Fig. 6).

The bash script for generating the OLGA sequences, as well as the YAML 
specification files describing the simulation of immune events and benchmarking 
of ML methods, are available in the immuneML documentation under use case 
examples: docs.immuneml.uio.no/latest/usecases/benchmarking_use_case.html. 
The benchmarking dataset with simulated immune events as well as the complete 
collection of figures (for all cross-validation splits, immune events, ML methods 
and encodings) can be downloaded from the NIRD research data archive82.

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
All data for the analyses presented in the manuscript are openly available. The 
detailed result files for use cases 1–3 are available as zip files at https://doi.
org/10.11582/2021.00008 (ref. 78; use case 1), https://doi.org/10.11582/2021.00009 
(ref. 81; use case 2) and https://doi.org/10.11582/2021.00005 (ref. 82; use case 3). 
Input data for use case 1 was downloaded from https://doi.org/10.21417/B7001Z.

Code availability
The immuneML source code is openly available at Github (github.com/uio-bmi/
immuneML) under a free software license (AGPL-3.0). immuneML version 2.0.2 
has been deposited on Zenodo with https://doi.org/10.5281/zenodo.5118741 
(ref. 75). The immuneML Python package can be downloaded from pypi.org/
project/immuneML.
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Supplementary Figures

Supplementary Figure 1 | Overview of how immuneML analyses are specified. The YAML specification file describes the
analysis components, and what instructions should be performed using these components. The analysis components are datasets,
preprocessing, encoding, ML methods, analysis reports, and simulation-related components. Supplementary Table 1 contains a
complete list of all components that can be specified. Instructions include training and applying ML models, exploratory analysis,
and simulation of synthetic datasets. The results produced by the instructions can be navigated through an HTML summary page
generated by immuneML.
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Supplementary Figure 2 | immuneML architecture overview as UML (Unified Modeling Language) diagrams. (a)
High-level overview of the immuneML architecture showing the most important packages and their dependencies. The
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application programming interface (API) and domain-specific language (DSL) packages represent how the user can interact with
immuneML, either through the Galaxy web interface (API package) or when constructing YAML specification files (DSL
package). These packages invoke instructions, which map to different analyses that can be performed with immuneML, such as
training an ML model or simulating an AIRR dataset. In turn, instructions depend on specific components to perform the
analysis. (b) To extend the platform with new encodings, ML methods, or reports, users may investigate the corresponding
package and implement the functionalities as described by the appropriate abstract class. The added components could then be
used in different instructions according to their purpose. Developer tutorials are available at
docs.immuneml.uio.no/latest/developer_docs.html.
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Supplementary Figure 3 | An example of how a k-mer encoded AIR sequence may map the antibody 3D-structure. K-mers
are subsequences of length k. Through ML, we can learn, for example, which k-mers are important for determining antigen
specificity (color-coded in red). These k-mers may map to regions of the (CDR3) sequence that are in contact with the antigen.16

Protein Data Bank (PDB) ID of the 3D structure: 2DQC83. 3D visualization of the antibody-antigen structure was carried out in
Pymol84.
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Supplementary Figure 4 | Reproducing the CMV status prediction study by Emerson et al.6 (a) The overlap of the 164
disease-associated TCRβ sequences (V-TCRβaa-J) determined in the original study by Emerson et al., labeled “reference”, with
those determined by the optimal model as reproduced here with a p-value threshold of 0.001 (labeled “model”). (b) The overlap
percentage of disease-associated TCRβ sequences for the optimal model with the p-value threshold of 0.001 between different
data splits in 10-fold cross-validation (between 50% and 65% overlap). (c) The probability that a TCRβ sequence is
CMV-associated follows a beta distribution estimated separately for CMV positive and negative subjects, which is then used for
CMV status prediction of new subjects. (d) Area under the ROC curve (AUROC) over p-value thresholds in training data
(average AUROC over 10 cross-validation splits) and test data (AUROC in cohort 2).
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Supplementary Figure 5 | Extending immuneML with a new ML method (a) The architecture of the new convolutional
neural network (CNN) is shown together with expected input in the format of encoded paired-chain receptors and predictions and
trained model as output. (b) Adding a new method requires implementing an interface for the method and then it can reuse the
infrastructure (data model, encodings, nested cross-validation, visualizations) without any additional changes. (c) An example
usage where the method can be readily compared with other methods already available within the platform. Here, the area under
the ROC curve (AUROC) is shown on two datasets: CMV-specific (epitope: KLGGALQAK, left), and EBV-specific (epitope:
AVFDRKSDAK, right), for the CNN that was added (cnn), TCRdist-based k-nearest neighbors classifier (tcrdist) and logistic
regression on 3-mer frequencies (logreg).
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Supplementary Figure 6 | The model coefficients and motif recovery reports for the benchmarking use case. Repertoire
datasets are represented by 3-mer amino acid frequencies. Two immune events are shown: immune event 1 (a, b) is the simplest
event simulated by implanting a single 3-mer, while the immune event 5 (c, d) is the most complex one simulated by implanting
20 motifs consisting of a 3-mer with a 50% chance of having a gap and 50% chance of having a Hamming distance of 1. (a) The
25 largest coefficients of the logistic regression model, feature importances on random forest model, and coefficients of the
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support vector machine (SVM) model with a linear kernel. The highest value of the coefficients corresponds to the implanted
motif. (b) Coefficient values for the features depending on the overlap between the recovered features that overlap with the
implanted motif, measuring how well the recovered motifs correspond to the implanted motif, shown across the three ML
models. (c) The 25 largest coefficients and feature importances for the ML models trained on immune event 5. (d) Overlap of
recovered and implanted motifs for the ML models trained on immune event 5. Motif recovery for immune event 5 is less
effective than for immune event 1.
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Supplementary Tables

Supplementary Table 1 | Components for data import, encoding, ML methods, and reports included
in immuneML.

Component type Name Description

Data import AIRR Imports data in AIRR format.

Data import Generic
Fully configurable import class which can import data
from any tabular file.

Data import IGoR
Imports CDR3 sequences exported by IGoR63 when
running IGoR with the –CDR3 option specified

Data import IReceptor

Imports datasets from the AIRR Data Commons56

retrieved through the iReceptor Gateway57. This importer
automatically parses repertoire metadata as exported by the
iReceptor Gateway.

Data import ImmunoSEQRearrangement
Imports data from Adaptive Biotechnologies immunoSEQ
Analyzer85 rearrangement-level .tsv files.

Data import ImmunoSEQSample
Imports data from Adaptive Biotechnologies immunoSEQ
Analyzer85 sample-level .tsv files.

Data import MiXCR Imports data exported by MiXCR52.

Data import OLGA Imports data generated by OLGA64.

Data import Pickle
Imports data from pickle files previously exported by
immuneML.

Data import RandomReceptorDataset

Automatically generate a paired receptor dataset consisting
of random amino acids during runtime. This can be used
for testing or benchmarking.

Data import RandomRepertoireDataset

Automatically generate a repertoire dataset consisting of
random amino acids during runtime. This can be used for
testing or benchmarking.

Data import RandomSequenceDataset

Automatically generate a sequence dataset consisting of
random amino acids during runtime. This can be used for
testing or benchmarking.

Data import TenxGenomics

Imports files produced by 10x Genomics Cell Ranger
analysis pipeline60 named ‘Clonotype consensus
annotations (CSV)’.

Data import VDJdb Imports data from the VDJdb58

Preprocessing ChainRepertoireFilter

Removes repertoires from the dataset containing sequences
with illegal chain types, based on user-specified chain
types (e.g., TRB, IGH).
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Preprocessing ClonesPerRepertoireFilter

Removes all repertoires from the dataset which contain too
many or too few clonotypes based on user-specified
thresholds.

Preprocessing CountPerSequenceFilter

Removes all sequences from a repertoire which have a
sequence count value below the user-specified threshold,
or missing count values.

Preprocessing DuplicateSequenceFilter

Collapses all sequences in a repertoire which have the
same amino acid or nucleotide sequence and V and J
genes.

Preprocessing MetadataRepertoireFilter

Removes all repertoires from the dataset based on their
specified metadata (e.g., remove repertoires when age is
greater than a given threshold).

Preprocessing SubjectRepertoireCollector
Merges all repertoires in the dataset that have the same
subject identifier.

Encoding AtchleyKmer

Represents a repertoire through Atchley factors and
relative abundance of k-mers, as done by Ostmeyer and
colleagues 11.

Encoding Distance

Encodes a given repertoire dataset as a distance matrix,
where the pairwise distance between each of the
repertoires is calculated using a user-configurable distance
metric.

Encoding DeepRC
Prepare a repertoire dataset to be used with the DeepRC
classifier39.

Encoding EvennessProfile
Encodes a repertoire as its evenness profile described by
Greiff and colleagues86.

Encoding KmerFrequency

Encodes repertoires, sequences, or paired receptors by
frequencies of k-mers it contains. A k-mer is a sequence of
letters of length k into which an immune receptor sequence
can be decomposed.

Encoding MatchedReceptors
Takes a collection of paired reference receptors and counts
how often they occur in a repertoire dataset.

Encoding MatchedRegex
Takes a collection of regular expressions and counts how
often they occur in a repertoire dataset.

Encoding MatchedSequences
Takes a collection of reference sequences and counts how
often they occur in a repertoire dataset.

Encoding OneHot

One-hot encoding for repertoires, sequences or paired
receptors. Positional information of the characters in the
sequences may be included.

Encoding SequenceAbundance

Represents the repertoires as vectors where the first
element corresponds to the number of label-associated
clonotypes, and the second element is the total number of
unique clonotypes, as done by Emerson and colleagues6.
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Encoding TCRdist

Encodes a paired receptor dataset as a distance matrix
between all receptors, where the distance is computed
using tcrdist370.

Encoding Word2Vec

Encodes a repertoire dataset based on the vector
representations of k-mers in the sequences in a repertoire
from the context the k-mers appear in, using the Word2Vec
implementation from the gensim package87.

ML method AtchleyKmerMILClassifier
A multiple instance learning classifier using AtchleyKmer
encoding, replicating Ostmeyer et al.11.

ML method DeepRC
Internally uses the DeepRC method for repertoire
classification39.

ML method KNN
A wrapper for the scikit-learn KNeighborsClassifier
class47.

ML method LogisticRegression A wrapper for the scikit-learn LogisticRegression class47.

ML method
ProbabilisticBinaryClassifier

A classifier that predicts the class based on examples
encoded by the number of successful trials and the total
number of trials (SequenceAbundance encoding). It
models this ratio by one beta distribution per class and
predicts the class of the new examples using log-posterior
odds ratio with the threshold at 0, replicating Emerson et
al6.

ML method RandomForestClassifier
A wrapper for the scikit-learn RandomForestClassifier
class47.

ML method ReceptorCNN

A CNN that detects motifs using CNN kernels in each
chain of one-hot encoded paired receptors, combines the
kernel activations into a unique representation of the
receptor and uses this representation to predict the
antigen-binding.

ML method SVM A wrapper for scikit-learn SVC47.

ML method TCRdistClassifier

Implementation of a nearest neighbors classifier based on
TCR distances as presented in 17. This method is
implemented using the scikit-learn KNeighborsClassifier
with k determined at runtime from the training dataset size
and weights linearly scaled to decrease with the distance of
examples

Data report CytoscapeNetworkExporter

Exports paired receptors to .sif format such that they can
directly be imported as a network in Cytoscape88, to
visualize chain sharing between the different receptors in a
dataset.

Data report GLIPH2Exporter
Exports paired receptor data to GLIPH2 format so that it
can be directly used in GLIPH259.
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Data report ReceptorDatasetOverview
Plots a histogram of the lengths of AIRs per chain in a
Receptor Dataset.

Data report SequenceLengthDistribution
Plots a histogram of the lengths of the AIR sequences in an
AIRR dataset.

Encoding report DesignMatrixExporter
Exports the design matrix and related information of an
encoded dataset to csv files.

Encoding report FeatureDistribution

Plots the distribution of feature values for an encoded
dataset. Distributions may be grouped based on metadata
labels.

Encoding report FeatureValueBarplot
Plots a barplot of feature values for an encoded dataset.
Bars may be grouped based on metadata labels.

Encoding report Matches

Reports the number of matches found when encoding the
data using MatchedSequences, MatchedReceptors or
MatchedRegex.

Encoding report RelevantSequenceExporter
Exports the sequences that are extracted as label-associated
by the SequenceAbundance encoder.

ML model report Coefficients
Plot the coefficients or feature importance for a given ML
model.

ML model report ConfounderAnalysis

Plots the number of false positive and false negative
predictions made for the examples (repertoires or
receptors), grouped by the metadata.

ML model report DeepRCMotifDiscovery

Plots the contributions of input sequences and kernels to
trained DeepRC model39 with respect to the test dataset.
Contributions are computed using integrated gradients.

ML model report KernelSequenceLogo

Plots the kernels of the ReceptorCNN model as sequence
logos, as well as the weights in the final fully-connected
layer of the network associated with kernel outputs.

ML model report MotifSeedRecovery

Shows how well implanted motifs (simulated immune
events) are recovered by ML methods using
KmerFrequency encoding. This report plots the number of
amino acids that overlap between the feature and
implanted motif against the coefficient size of the
respective feature.

ML model report ROCCurve Plot the ROC curve of a trained ML model.

ML model report
SequenceAssociationLikelih
ood

Plots the beta distribution used as a prior for a class
assignment in ProbabilisticBinaryClassifier. The
distribution plotted shows the probability that a sequence is
associated with a given class for a label.

ML model report TCRdistMotifDiscovery

Discovers motifs in the clusters created by the TCRdist
classifier and creates logo plots for these motifs. This
report internally uses the tcrdist370 library.
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Train ML model
report CVFeaturePerformance

Plots the performance on the training and test datasets as a
function of a specific parameter (feature), where there are
multiple training or test datasets, it plots the average
performance for the given feature value.

Train ML model
report

DiseaseAssociatedSequence
CVOverlap

For disease-associated sequences discovered by
SequenceAbundanceEncoder and
ProbabilisticBinaryClassifier (implementing the CMV
study6), shows the overlap of the sequences across
cross-validation folds as a heatmap.

Train ML model
report

MLSettingsPerformance Plots the performance of each ML setting (a combination
of ML method, encoding, and optionally preprocessing).

Train ML model
report

ReferenceSequenceOverlap

Compares a list of disease-associated sequences produced
by the SequenceAbundance encoder to a list of reference
sequences, and creates a Venn diagram representing the
overlap.

Multi dataset report

DiseaseAssociatedSequence
Overlap

Creates a heatmap showing the overlap of
disease-associated sequences produced by
SequenceAbundance encoder between multiple datasets of
different sizes (different number of repertoires per dataset).

Multi dataset report PerformanceOverview
Creates a ROC plot and precision-recall plot for optimal
trained ML models on multiple datasets.
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Supplementary Table 2 | An overview of the settings for the five different simulated immune events.
The signal of one immune event can be composed of one or more k-mers (here: 3-mers). For the gapped
k-mers, a gap of length 1 was introduced with a 50% chance immediately before or after the middle
amino acid of the 3-mer. In the two most complex signals, there was a 50% chance that one of the amino
acids in the 3-mer was exchanged for a random different amino acid when implanting it in a sequence.
Each signal (corresponding to one immune event) is implanted in a different subset of the repertoires.
Corresponding results are shown in Figure 2G.

Immune event 3-mers count Gap length Hamming distance Repertoires with immune events

Immune event 1 1 0 0 1–1000

Immune event 2 20 0 0 1–500, 1001–1500

Immune event 3 20 0 or 1 (50% chance) 0
1–250, 501–750, 1001–1250,
1501–1750

Immune event 4 20 0 0 or 1 (50% chance) 501–1500

Immune event 5 20 0 or 1 (50% chance) 0 or 1 (50% chance) 251–750, 1251–1750
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Supplementary Table 3 | CMV-associated CDR3β sequences with V and J genes. These sequences
were determined by training the predictive model on cohort 1 in use case 1 when reproducing the study by
Emerson and colleagues6 that were also found in the original study. The full list of CMV-associated
sequences (including the non-overlapping ones) is available in the NIRD research data archive78.

CDR3β amino acid sequence TRBV gene TRBJ gene

ASSYPGETQY TRBV6-6 TRBJ2-5

ASSQVPGQGDNEQF TRBV14 TRBJ2-1

ASSSPGRSGANVLT TRBV28 TRBJ2-6

ASSLEGQQPQH TRBV28 TRBJ1-5

AWRGTGNSPLH TRBV30 TRBJ1-6

ASSGDRLYEQY TRBV2 TRBJ2-7

ASSPDRVGQETQY TRBV5-1 TRBJ2-5

ASRRGSSYEQY TRBV28 TRBJ2-7

ASSLIGVSSYNEQF TRBV7-9 TRBJ2-1

ASSISAGEAF TRBV19 TRBJ1-1

ASSTGTSGSYEQY TRBV6-1 TRBJ2-7

ASSPGDEQF TRBV25-1 TRBJ2-1

ASSLQGADTQY TRBV7-8 TRBJ2-3

ASSPAGLNTEAF TRBV19 TRBJ1-1

ASSPLSDTQY TRBV7-9 TRBJ2-3

ASSLVGDGYT TRBV7-8 TRBJ1-2

ASSSDRVGQETQY TRBV5-1 TRBJ2-5

ASSPNQETQY TRBV5-4 TRBJ2-5

ASSRGTGATDTQY TRBV19 TRBJ2-3

ASSALGGAGTGELF TRBV9 TRBJ2-2

ASMGGASYEQY TRBV27 TRBJ2-7

ASSAQGAYEQY TRBV9 TRBJ2-7

ASSPPSGLTDTQY TRBV28 TRBJ2-3

ASSQNRGQETQY TRBV14 TRBJ2-5

SVRDNYNQPQH TRBV29-1 TRBJ1-5

ASSLPSGLTDTQY TRBV28 TRBJ2-3

ASSVTGGTDTQY TRBV9 TRBJ2-3

ASSDRGNTGELF TRBV4-1 TRBJ2-2

ASSLTDTGELF TRBV11-2 TRBJ2-2

ASSGQGAYEQY TRBV9 TRBJ2-7

ASSLQGINQPQH TRBV5-6 TRBJ1-5

ASSLAGVDYEQY TRBV7-9 TRBJ2-7
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ASSLVAGGRETQY TRBV5-6 TRBJ2-5

ASSPSTGTEAF TRBV5-6 TRBJ1-1

ASSLRREKLF TRBV5-6 TRBJ1-4

ASSLQGYSNQPQH TRBV5-8 TRBJ1-5

ASSRNRGQETQY TRBV14 TRBJ2-5

ASSLGHRDSSYEQY TRBV5-1 TRBJ2-7

ASSTSGNTIY TRBV6-5 TRBJ1-3

ASSYGGEGYT TRBV6-5 TRBJ1-2

ASSPGSGANVLT TRBV19 TRBJ2-6

ASSLGAGNQPQH TRBV28 TRBJ1-5

ATSRGTVSYEQY TRBV15 TRBJ2-7

ASSRLAGGTDTQY TRBV7-3 TRBJ2-3

ASSIGPLEHNEQF TRBV19 TRBJ2-1

ASSAGQGVTYEQY TRBV9 TRBJ2-7

ASSLGDRAYNEQF TRBV5-6 TRBJ2-1

ASSPLGGTTEAF TRBV18 TRBJ1-1

ASRPTGYEQY TRBV6-1 TRBJ2-7

ASSLLWDQPQH TRBV5-5 TRBJ1-5

ASSTTGGDGYT TRBV19 TRBJ1-2

ASSLAPGATNEKLF TRBV7-6 TRBJ1-4

ASSSGQVQETQY TRBV11-2 TRBJ2-5

ASSFPGGETQY TRBV11-1 TRBJ2-5

AWSVSDLAKNIQY TRBV30 TRBJ2-4

ASSTGGAQPQH TRBV19 TRBJ1-5

ASSLGQGLAEAF TRBV5-1 TRBJ1-1

ASSVDGGRGTEAF TRBV9 TRBJ1-1

ASSPQRNTEAF TRBV4-3 TRBJ1-1

ASSFPTSGQETQY TRBV7-9 TRBJ2-5

ASSYNPYSNQPQH TRBV6-6 TRBJ1-5

ASSLNRGQETQY TRBV14 TRBJ2-5

ASTPGDEQF TRBV25-1 TRBJ2-1

ASSLGVGPYNEQF TRBV7-2 TRBJ2-1

ASSQNRAQETQY TRBV14 TRBJ2-5

ASSIEGNQPQH TRBV28 TRBJ1-5

SASDHEQY TRBV20-1 TRBJ2-7

ASSRLAASTDTQY TRBV7-3 TRBJ2-3

ASSPGDEQY TRBV25-1 TRBJ2-7
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ASGRDTYEQY TRBV2 TRBJ2-7

ASSEEGIQPQH TRBV2 TRBJ1-5

ASSRDRNYGYT TRBV6-4 TRBJ1-2

ASSRGRQETQY TRBV7-6 TRBJ2-5

ASSEARGGVEKLF TRBV6-1 TRBJ1-4

ASSEIPNTEAF TRBV6-4 TRBJ1-1

ASRGQGAGELF TRBV2 TRBJ2-2

ATSREGSGYEQY TRBV15 TRBJ2-7

ASSLEAEYEQY TRBV7-2 TRBJ2-7

ASSLRGSSYNEQF TRBV5-8 TRBJ2-1

ASSRNRAQETQY TRBV14 TRBJ2-5

ASSLGWTEAF TRBV5-1 TRBJ1-1

ASSYVRTGGNYGYT TRBV6-5 TRBJ1-2

ATSRDTQGSYGYT TRBV15 TRBJ1-2

SVRDNHNQPQH TRBV29-1 TRBJ1-5

ATSRDSQGSYGYT TRBV15 TRBJ1-2

ASSIRTNYYGYT TRBV19 TRBJ1-2

ASSLETYGYT TRBV5-6 TRBJ1-2

ATSRVAGETQY TRBV15 TRBJ2-5

ASRPQGNYGYT TRBV28 TRBJ1-2

ASSIWGLDTEAF TRBV19 TRBJ1-1

ASSSDSGGTDTQY TRBV7-3 TRBJ2-3

SVRDNFNQPQH TRBV29-1 TRBJ1-5

ASSLTGGNSGNTIY TRBV7-2 TRBJ1-3

SVEVRGTDTQY TRBV29-1 TRBJ2-3

ASSSGTGDEQY TRBV5-1 TRBJ2-7

ASSPRWQETQY TRBV27 TRBJ2-5

ASSEARTRAF TRBV6-1 TRBJ1-1

ASSVLAGPTDTQY TRBV9 TRBJ2-3

ASSEEAGGSGYT TRBV6-1 TRBJ1-2

ASRTDSGANVLT TRBV6-4 TRBJ2-6

ASSEAPSTSTDTQY TRBV2 TRBJ2-3

ASSRNRESNQPQH TRBV6-5 TRBJ1-5

ASNRDRGRYEQY TRBV6-1 TRBJ2-7

ASSLGASGSRTDTQY TRBV7-9 TRBJ2-3

ASSESGDPSSYEQY TRBV10-1 TRBJ2-7

ASSLGDRPDTQY TRBV11-2 TRBJ2-3
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ASSLQAGANEQF TRBV7-2 TRBJ2-1

ASRTGESGYT TRBV6-5 TRBJ1-2

ASRGQGWDEKLF TRBV6-5 TRBJ1-4

ASSWDRGTEAF TRBV6-5 TRBJ1-1

ASSHRDRNYEQY TRBV7-9 TRBJ2-7

ASSPSRNTEAF TRBV4-3 TRBJ1-1

ASSIQGYSNQPQH TRBV5-8 TRBJ1-5

ASSPGQEAGANVLT TRBV5-1 TRBJ2-6

ASSLVIGGDTEAF TRBV5-1 TRBJ1-1

ASSYGGLGSYEQY TRBV6-5 TRBJ2-7

ASSPPGQGSDTQY TRBV18 TRBJ2-3

SVEEDEGIYGYT TRBV29-1 TRBJ1-2

ASRSDSGANVLT TRBV6-4 TRBJ2-6

AISESQDRGHEQY TRBV10-3 TRBJ2-7

ASSLVASGRETQY TRBV5-6 TRBJ2-5

ASSSGQVYGYT TRBV5-6 TRBJ1-2

ASSQGRHTDTQY TRBV14 TRBJ2-3

ASSGLNEQF TRBV6-1 TRBJ2-1

ASRDWDYTDTQY TRBV2 TRBJ2-3

ASSSRGTGELF TRBV28 TRBJ2-2

ASSPISNEQF TRBV28 TRBJ2-1

ASSLGHRDPNTGELF TRBV5-1 TRBJ2-2

ASSLGIDTQY TRBV5-4 TRBJ2-3

ASSLEGQGFGYT TRBV5-1 TRBJ1-2

ASSPHRNTEAF TRBV4-3 TRBJ1-1

ASSESGHRNQPQH TRBV10-2 TRBJ1-5

ASSFHGFNQPQH TRBV5-6 TRBJ1-5

ASSEGARQPQH TRBV10-2 TRBJ1-5

ASSSRTGEETQY TRBV11-3 TRBJ2-5

ASSLEAENEQF TRBV7-2 TRBJ2-1

ASSLVAAGRETQY TRBV5-6 TRBJ2-5

ASSLAVLPTDTQY TRBV7-9 TRBJ2-3

ASSLGRGYEKLF TRBV5-6 TRBJ1-4

ASSWDRDNSPLH TRBV25-1 TRBJ1-6

ASRDRDRVNTEAF TRBV6-1 TRBJ1-1

ASSPTGGELF TRBV18 TRBJ2-2

ASSVETGGTEAF TRBV2 TRBJ1-1
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Supplementary Table 4 | Three epitope-specific datasets in the use case 2.

Dataset Number of
TCRαβ
receptors

Epitope Epitope
species

Data source:
epitope-specific
TCRs

Data
source:
naive
receptors

Organis
m

AVFDRKSDAK 3460 AVFDRKSDAK EBV VDJdb58: 10x
Genomics89 and
EBV study90

immuneAC
CESS:
randomly
paired
TCRαβ
CDR3 from
peripheral
blood of 4
healthy
donors
from
Heikkilä et
al.80

Human

GILGFVFTL 4090 GILGFVFTL Influenza
A

VDJdb58:
multiple
studies17,18,89,91–95

KLGGALQAK 27386 KLGGALQAK CMV VDJdb58: 10x
Genomics89
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Abstract

Motivation: Adaptive immune receptor (AIR) repertoires (AIRRs) record past immune encounters with exquisite spe-
cificity. Therefore, identifying identical or similar AIR sequences across individuals is a key step in AIRR analysis for
revealing convergent immune response patterns that may be exploited for diagnostics and therapy. Existing meth-
ods for quantifying AIRR overlap scale poorly with increasing dataset numbers and sizes. To address this limitation,
we developed CompAIRR, which enables ultra-fast computation of AIRR overlap, based on either exact or approxi-
mate sequence matching.

Results: CompAIRR improves computational speed 1000-fold relative to the state of the art and uses only one-third
of the memory: on the same machine, the exact pairwise AIRR overlap of 104 AIRRs with 105 sequences is found in
�17 min, while the fastest alternative tool requires 10 days. CompAIRR has been integrated with the machine learn-
ing ecosystem immuneML to speed up commonly used AIRR-based machine learning applications.

Availability and implementation: CompAIRR code and documentation are available at https://github.com/uio-bmi/
compairr. Docker images are available at https://hub.docker.com/r/torognes/compairr. The code to replicate the syn-
thetic datasets, scripts for benchmarking and creating figures, and all raw data underlying the figures are available
at https://github.com/uio-bmi/compairr-benchmarking.

Contact: geirksa@ifi.uio.no

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Adaptive immune receptor (AIR) repertoires (AIRRs) record past
immune encounters. High-throughput sequencing now enables
millions of AIR sequences to be determined at a cost that facili-
tates adaptive immunity-based association studies on large patient
cohorts (Emerson et al., 2017; Liu et al., 2019). It has been previ-
ously shown that shared immune states give rise to identical or
similar AIR sequences across individuals, enabling the use of
AIRR-seq for diagnostics and therapeutic research (Arnaout et al.,
2021; Greiff et al., 2020). Computation of cross-individual AIRR
intersections, i.e. the number of matching AIR sequences across
AIRRs, is thus a foundational computational task performed in
nearly all AIRR analyses. However, since the number of pairwise

AIRR comparisons grows asymptotically quadratically with the
number of AIRRs considered, where each pairwise AIRR com-
parison typically involves millions of individual AIRs, computa-
tional efficiency is crucial for performing AIR sequence matching
at scale.

We here present CompAIRR, a tool that allows to compute
AIRR intersections up to 1000-fold faster than current implementa-
tions (Nazarov et al., 2019; Shugay et al., 2015; Weber et al., 2022).
In contrast to existing tools, CompAIRR supports both exact and
approximate sequence matching between AIRs when determining
AIRR overlap. The CompAIRR implementation is available both as
a stand-alone command-line tool, and as a component integrated
with the machine learning ecosystem immuneML (Pavlovi�c et al.,
2021) (from immuneML version 2.1.0 onward) to accelerate the
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computation of AIRR similarity matrices, and to accelerate an
AIRR-based immune state classifier (Emerson et al., 2017) that is
implemented in the immuneML system (Supplementary Fig. S1).

2 CompAIRR description

CompAIRR is based on a sequence comparison strategy developed
for the nucleotide sequence clustering tool Swarm (Mahé et al.,
2022). A Bloom filter (Putze et al., 2010) and a hash table are used
to quickly look up similar AIR sequences across AIRR sets. For each
AIR sequence (nucleotide or amino acid), a 64-bit hash value is gen-
erated using a Zobrist hash function (Zobrist, 1970), a form of tabu-
lation hashing that can be computed very efficiently and updated
incrementally. When approximate matching is enabled, the hashes
of all possible variants of a query sequence (with 1–2 substitutions
or indels) are also generated. This search strategy identifies all
matching sequences without compromising on accuracy.
CompAIRR version 1.7.0 or later also supports a larger number of
substitutions by using a simpler all-versus-all algorithm. Matches
are optionally restricted by V and J gene. Multi-threading may be
enabled to further speed up comparisons (see Fig. 1d). For the com-
parison of n AIRRs, CompAIRR produces an n�n matrix where
each cell contains the sum of matching AIR frequencies with flexible
summary statistics (product, min, max, mean or ratio of the two
compared AIR frequencies), or the Morisita-Horn or Jaccard index
between AIRRs. Alternatively, CompAIRR can query n AIRRs
against m reference AIRs and produce an n�m sequence presence
table. While AIR matching is only supported at the single chain
level, two n�m sequence presence tables for complementary
(paired) AIR chains (single-cell data) can easily be merged. For the
analysis of a single AIRR, CompAIRR can perform single-linkage
clustering of AIRs. CompAIRR can optionally output the list of (ap-
proximately) matching AIRs as an AIRR-compliant TSV file, and
adheres to the AIRR standard for software tools (Vander Heiden
et al., 2018).

3 CompAIRR performance benchmarking

CompAIRR (1.3.1) was benchmarked against VDJtools (1.2.1)
(Shugay et al., 2015), immunarch (0.6.5) (Nazarov et al., 2019) and
immuneREF (0.5.0) (Weber et al., 2022) by calculating the pairwise
AIRR overlap of datasets ranging from 10 to 104 AIRRs. Each AIRR
consisted of 105 amino acid AIR sequences generated using OLGA
(1.2.2) (Sethna et al., 2019) with the default human IgH CDR3 model.
Figure 1b and c, respectively, shows the running time and maximum
RAM usage of each tool. CompAIRR is consistently faster, particularly
for large datasets: with 104 AIRRs of 105 sequences, CompAIRR ran
in 17 min while immunarch took 10days, immuneREF took 23 days
and VDJtools failed to complete due to memory constraints. The com-
putational complexity appears to have been reduced from approxi-
mately quadratic to almost linear. Furthermore, the maximum RAM
usage of CompAIRR is below one-third of that of competing tools.
The running time and memory usage as a function of the AIRR size
(104–106 sequences) is shown in Supplementary Figure S2.

In addition, Figure 1d shows how the CompAIRR running time
is affected by approximate sequence matching, which is not at all
supported by the existing tools. The benefit of multi-threading
becomes more apparent when the degree of sequence mismatching is
increased, since with exact matching the running time is dominated
by disk access (Supplementary Fig. S3).

4 Conclusion

The identification of shared AIRs across AIRRs from different indi-
viduals is a core computational task in AIRR analysis. We have here
presented CompAIRR, which calculates AIRR overlap up to 1000-
fold faster while its peak memory usage is below one third compared
to currently available tools. We validated that CompAIRR easily
scales to datasets of 104 AIRRs of 105 sequences each, which surpass
the largest available experimental datasets (Liu et al., 2019; Nolan
et al., 2020). Furthermore, a novel feature of CompAIRR is efficient

Fig. 1. Overview of CompAIRR features and performance. (a) CompAIRR has configurable AIR matching criteria and output formats. (b) CompAIRR calculates pairwise

AIRR overlap up to 1000-fold faster than currently available tools. (c) The maximum RAM usage of CompAIRR is below one-third of the most memory-efficient alternative.

(d) The CompAIRR running time increases when allowing more AIR sequence mismatches, but multithreading helps reduce this running time. (b–d) Data shown are mean

with error bars showing min/max values across three replicate runs. For the largest dataset, only CompAIRR was run three times, and VDJtools failed to run due to memory

limitations. Unless otherwise specified, datasets consist of 1000 AIRRs containing 105 OLGA-generated sequences (Sethna et al., 2019) (default human IgH CDR3 model)
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identification of approximately matching AIR sequences across
AIRRs or to reference databases, which may be a biologically mean-
ingful way to increase the number of matches between AIRRs when
the exact overlap is low (Supplementary Fig. S4).

Complementary to sequence-level clustering tools ClusTCR
(Valkiers et al., 2021) and GIANA (Zhang et al., 2021), or compari-
son of AIRR subsets (Yohannes et al., 2021), CompAIRR can be
used for ultrafast similarity-based comparison of complete AIRRs.
Due to flexible specification of summary statistics and output,
CompAIRR is easily integrated with any tool capable of reading in
either (i) a pairwise distance matrix containing cross-AIRR matches,
(ii) a matrix showing individual AIR presence in one or more AIRRs
or (iii) an AIRR-compliant TSV file containing (approximately)
matching AIRs between AIRRs. This allows accelerating a variety of
analyses where AIRR comparison is a core computational compo-
nent, including AIRR similarity (Weber et al., 2022) and clustering
(Rempała and Seweryn, 2013; Shugay et al., 2015), phylogenetic
clustering (Hoehn et al., 2022), graph analysis (Madi et al., 2017;
Miho et al., 2019; Pogorelyy et al., 2019) and immune state classifi-
cation (Emerson et al., 2017).
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Supplementary Material 

 

Supplementary Figure 1 | CompAIRR is integrated with immuneML to speed up core calculations of 
two different encodings. Firstly, CompAIRR accelerates the calculation of a Morisita-Horn (MH) distance 
matrix by calculating the sum of the products of overlapping AIR frequencies between AIRRs (left, 
highlighted in purple). This distance matrix can subsequently be used in combination with a k-nearest 
neighbors classifier. Secondly, calculating a sequence presence matrix with CompAIRR (right, highlighted 
in purple) speeds up an AIRR classification method (Emerson et al., 2017), which was replicated in the 
immuneML ecosystem (Pavlović et al., 2021) by a sequence abundance encoding (AIRR size and number 
of disease-associated AIRs per AIRR) and a probabilistic binary classifier.  



2 

 

Supplementary Figure 2 | Benchmarking of (a) running time and (b) maximum RAM usage as a 
function of the number of sequences per AIRR. Data shown are mean with error bars showing min/max 
values across three replicate runs. Datasets consist of 1000 OLGA-generated AIRRs (Sethna et al., 2019) 
(default human IgH CDR3 model). VDJtools failed to run on the dataset of 106 AIRRs due to memory 
limitations. 

 

 

 

Supplementary Figure 3 | Running time of CompAIRR analysis steps. Reading input and analyzing the 
AIRR overlap are the most computationally intensive steps. When exact sequence matching is used, reading 
input data takes a relatively large amount of the total running time. As a result, the benefit of multi-threading 
is more apparent when non-exact matching is used.  
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Supplementary Figure 4 | Number of matches with approximate sequence matching settings. The 
number of matching TCRβ AIR sequences between each combination of 710 AIRRs (Emerson et al., 2017) 
increases when less stringent sequence matching criteria are used. When no or few exact overlapping 
sequences are found across AIRRs, highly similar sequences may still be present. Medians are represented 
by rhombuses and their values are displayed above the violin plots. 
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