
THE CONNES-MARCOLLI GL2-SYSTEM
MASTER THESIS

Bjarte D. Berntsen

Fifteen years ago Bost and Connes constructed a Cdynamical system
with the Calois group G(Qab/Q) as symmetry group and with phase tran-
sition related to properties of L-functions . Since then there have been nu-
merous , and only partially succesful , attempts to generalize the system to
arbitrary number fields . A few years ago , in order to extend that con-
struction to imaginary quadratic feilds , Connes and Marcolli constructed a
GL2system , an analogue of the BC-system with Q replaced by GL2(Q).
They classified the KMSstates of the system for  > 2. Later Laca ,
Larsen and Neshveyev classified the KMSstates for all  = 0, 1.

1. Proper Gruppevirkning og Gruppoide
C-Algebraer

Let G be a group and X be a set. A Group action on a set X is a
homomorphism  from the group G to the group Homeo(X) of all home-
omorphisms from X to itself ( Aut(X)). Thus to each g  G is associated
a homeomorphism (g) : X  X , which for notational simplicity we write
simply as g : X  X.With this notation for the map :

GX  X

(g, x)  gx

with conditions :

(e, x)  ex = x, xX (1)

(g, (hx)) = (gh)x, xX, g, hG

are equivalent to requiring  to be a homomorphism.

Under these conditions , we say that X is a left G-set and we have a left
group action by G on X. Similarly , one can define a right action by letting
the elements of the group act on the space from the right instead.
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We consider cases where the group G is countable and X is a locally
compact second countable topological space.
A continous map f : X  Y is called proper if for every compact K  Y

, the space f1(K) is also compact. Accordingly , an action of G on X is
called proper if the map :

GX  X X (2)

(g, x)  (gx, x)

is proper. Then the space G/X , where points are identitied by the equiva-
lence relation of laying on the same G- orbit {Gx} is Hausdor. Assume that
G is a discrete group. Consider G X . The space X , which is a G-space
is called the unit space of GX. GX has the product topology and the
two maps , called the source map (s) and the range map (r) :

S,R : GX  X

s(g, x)  x

r(g, x)  gx

define a law of composition : ((g, y), (h, x))(GX)2  (g, y) ·(h, x)G
X , where :

(GX)2 := {((g, y), (h, x))(GX) (GX)| r(h, x) = s(g, y) = y}

We see that the product on GX are defined by the formula :

(g, hx)(h, x) = (gh, x)

In this wayGX becomes a groupoid (called the transformation groupoid)
, since every element has an inverse :

(g, x)1 = (g1, gx)

G  X has stabilizer subgroup Gx ={gG| gx = x} If G has stabilizer
subgroup equal to {e} for every x in X is equivalent to saying that the action
of G on X is free i.e. an action whitout fixpoints for other elements of G
than the identity.
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The set Cc(GX) of all continous functions on GX with compact sup-
port has a structure of involutive algebra given by :

(f1  f2)(g, x) =


hG

f1(gh
1, hx)f2(h, x)

f (g, x) = (f((g, x)1)̄)̄ = (f(g1, gx))̄

, where (g,x)1 = (g1,gx) Let C0(X) be the algebra of continous functions
on X that vanish at infinity. The product in C0(X) is the usual pointwise
product.

If the restriction of the action to a subgroup  of G is free and proper
, we can introduce a new groupoid : \G  X by taking the quotient of
GX by the action of   defined by :

(1, 2)(g, x) = (1g
1
2 , 2x)

The unit space of \G  X is \X , and the product is induced from
that on G  X. If the action of  is proper but not free , the quotient
space \G  X is no longer a groupoid , since the composition of classes
using representatives will in general depend on the choice of representatives.
Nevertheless , the same formulas for convolution and involution as in the
groupoid case give us a well -defined algebra. To see this , consider the space
Cc(\GX) of continous compactly supported functions on \GX. The
elements can be considered as (  ) -INVARIANT functions on G  X.
The convolution of two such functions are defined accordingly :

1. (1.1)
(f1  f2)(g, x) =



h\G

f1(gh
1, hx)f2(h, x).

To see that the convolution is well-defined :

Assume the support of fi is contained in (  )({gi}  Ui) , where
gi  G and Ui is a compact subset of X.(i=1,2). Let {1, ...., n} be the set
of elements    such that g2U2 U1 = .This set is finite since the action

of  is assumed to be proper.
If f2(h, x) = 0 , then there exist    such that h1  g2 and x  U2.

Since the number of ´s such that x  U2 is finite , the above sum must be
finite. If furthermore f1(gh1, hx) = 0 , then gh1 = ag1

1
b for some a, b
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, since (gh1, hx) is
contained in the support of f1 . We can replace h by another representa-

tive of the right coset h . If we replace h by bh , then gh
1 = ag1  g1,

and also hx  U1. If now h1 = ̃g2 with ̃   , we get hx = ̃g2x  ̃g2U2.

Hence ̃ must be equal to i , for some i , and therefore g  g1h = g1ig2.
Thus the support of f1  f2 is contained in i( )({g1ig2} U2). Thus
the set of representatives gi giving a nonzero contribution to the above sum
are finite and independent of the choice of   . The support of f1  f2 is

contained in a compact set , so f1 f2  Cc(\GX) , and the latter space
becomes a well-defined algebra. The convolution is also associative :

(f1  (f2  f3))(g, x) =


t\G

f1(gt
1, tx)(f2  f3)(t, x) =



t,h\G

f1(gt
1, tx)f2(th

1, hx)f3(h, x)

((f1  f2)  f3)(g, x) =


h\G

(f1  f2)(gh1, hx)f3(h, x) =


t,h\G

f1(gh
1t1, thx)f2(t, hx)f3(h, x) =tth1



t,h\G

f1(gt
1, tx)f2(th

1, hx)f3(h, x)

1. (1.2) Define also an involution on Cc(\G X) by :

f (g, x) = f((g, x)1)̄ = f(g1, gx)̄

If the support of f is contained in (  )({g0}  U) for g0  G and
compact U  X , then the support of f  is contained in :

(( )({g0} U))1 = ( )({g0} U)1 = ( )({g10 } g0U) ,

which is a compact set in (\GX) and therefore f   Cc(\GX) for
every f  Cc(\G X).

For each x  X , define a representation :

1. (1.3)

x : Cc(\G X)  B(l2(\G))

x(f)h =


g\G

f(gh1, hx)g

4



Here g denotes the characteristic function of the coset g . Consider
g as a one of the unit basis vectors in the (standard) orthonormal basis
{g}g\G for l2(\G) .

Lemma 1 1.1 For each f  Cc(\G X) the operators x(f) , x  X ,

are uniformly bounded.

Proof. For 1, 2  l2(\G) we have :

|x(f) · 1, 2| 


g,h\G

f(gh1, hx)
 · |1(h)| · |2(g)|








g,h\G

f(gh1, hx)
 · |1(h)|

2





1
2

·






g,h\G

f(gh1, hx)
 · |2(g)|

2





1
2

.

(Applying Hølders inequality.)
Thus if we denote by fI the quantity :

max




 sup
xX,hG



g\G

f(gh1, hx)
 , sup
xX,gG



h\G

f(gh1, hx)





 ,

we getx(f)  fI for any x  X, so it suces to show that fI is
finite. Replacing x by h1x and g by gh in the first supremum above , we
see that this supremum equals :

fI,s := sup
xX



g\G

|f(g, x)|

As f (hg1, gx) = (f((hg1, gx)1)) = (f(gh1, hg1gx)) = (f(gh1, hx)

, we see that f(gh1, hx) = (f (hg1, gx)). Then the second supremum

must be equal to f I,s. Therefore fI = max

fI,s , f

I,s

. Now ,

the claim is that fI,s is finite for every f  Cc(\G X). If this claim is
true , the Lemma is proved.
Proof of Claim :
We may assume without loss of generality that the support of f is con-

tained in (  )({g0}  U) for some g0  G , and compact U  X. Since
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the action of  is proper , there exists n  N such that the sets iU ,
i = 1, ....., n + 1 have trivial intersection for any dierent 1, ....., n+1  .
Now if f(g, x) = 0 for some g and x,there exists    such that g1  g0
and x  U. Since the number of ́s such that x  U is at most n , we see
that for each x  X the sum in the definition of fI,s is finite .
To see that x is a representation , one has to check :

) x(f
) = (x(f))



) x(f1  f2) = x(f1) · x(f2)

x(f) · h =


g\G

f(gh1, hx) · g

Consider f  Cc(\G  X). As f =


s\G f(s, x) · s observe that
the vector  = e in l2(\G) is both cyclic and tracial for operators in
B(l2(\G))

Uge, e = 1 if g = e , 0 else ,

therefore , for all gi  G we have :

Ug1Ug2e, e = Ug1Ug2e, e

)

(x(f)h, t) =


g\G

f(gh1, hx)(g, t) = f(th
1, hx)

similarly ,

(h, x(f
)t) = f

(ht1, tx)̄ = f(th1, hx).

Hence
x(f)

 = x(f
).

) Can checked similarly to associativity of the convolution.

But let me see this from another perspective :
For each x  X , f can be thought of as a vector in l2(\G) ) . Let Ug

be the unitary operator on l2(\G) defined by Ugh = hg1 . Expanding
on the cyclic and tracial vector e gives :

f = (


g\G

f(g, x)Ug )e.
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For each x  X , f can be thought of as a vector in l2(\G) ) , expanding
its adjoint on the cyclic and tracial vector e gives :

f  = (


g\G

Ug(f
(g, x)))e =



g\G

Ug(f
(g, x)UgUge =



g\G

Ug(f
(g, x))Ug g1

Proof. Let f1 and f2 be two functions in Cc(\GX). Then , for arbitrary
h  \G :

(x(f1  f2))h =


g\G

(f1  f2)(gh1, hx) · g =


g\G



t\G

f1(gh
1t1, thx) · f2(t, hx) · g

=


g\G



t\G

Uhf1(gt
1, thx) · f2(t, hx) · g =



g\G



t\G

Uhf1(gt
1, thx) · U1h · f2(th1, hx) · g

=


g\G



t\G

Uhf1(gt
1, thx) · Uh · f2(th

1, hx) · g =


t\G



g\G

Uhf1(gt
1, thx) · Uh · f2(th

1, hx) · g

=


t\G

Uh(hx(f1))U

h · t · f2(th

1, hx) = (x(f1) · x(f2)) · h

so ) is checked in this way of thinking . Hence x is a representation for
every (fixed) x  X.

Definition 2 We denote by Cr (\GX) the completion of Cc(\GX)

in the norm defined by the representation :

(xXx) : Cc(\G X) B(xX l2(\G)

, that is ,
f = sup

xX
x(f)

Remark 3 As we observed above , for every s  G and its associated unitary
Us  B(l2(\G)) such that Ush = hs1 , f  Cc(\G  X) and x the
representation defined above , we have

Usx(f)U

s = sx(f).
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Proof. Observe first that , for every g , s and h in \G , we have :

Usx(f)U

s · h = x(f) · hs = Us ·



g\G

f(gs1h1, hsx) · g =


g\G

Us · f(gs1h1, hsx) · g



g\G

f(gs1h1, hsx) · gs1 = gl=gs1


l\G

f(lh1, hsx) · l



Usx(f)U

s · h =



g\G

f(gh1, hsx) · h = sx(f) · h .

Hence

Usx(f)U

s = sx(f)

Therefore
x(f) = sx(f)

, and so

Remark 4
f = sup

xG\X
x(f)

Closely related is the notion of a Cdynamical system (A,G,) , where
A is a C-algebra, G a locally compact group and  is a homomorphism from
G into Aut(A). A covariant representation of ( A, G , ) is a pair (, U) ,
where  is a *-representation of A on a Hilbertspace H and

s  Us

is a unitary representation of G on the same H such that :

Us(A)U

s = (s(A)) ,

for all a  A , s  G.
Denote by g the automorphism (g) for g in G. The Cross Product ,

AG of a C-algebra A and a group G is the universal C-algebra generated
by A and unitaries vg , g G such that :

1) vgav

g = g(a)

2) g  vg is a homomorphism , g  G
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If G is countable and discrete , the space Cc(A,G) of continous compactly
supported A-valued functions on G is the algebra of all finite sums :

f =


tG

At · vt

with coecients in A.
One defines a C-norm by :

f = sup

(f)

, as  runs over all *-representations of Cc(A,G).
The supremum is always bounded by :

f1 =


tG

At

The supremum is always taken over a nonempty family of representations
because certain representations can be explicitly constructed. Let  be any
*-representation of A on a Hilbertspace H.Then one can always construct
the representation :

̃ : A G B(H  l2(G) = B(H)̄B(l2(G))
̃(a)(  g) = (1g (a))(  g)
̃(vg)(  h) =   gh ,

for   H and g, h  G.

Due to constuction , this representation is covariant :

̃(vg) · ̃(a) · (̃(vg))(  h) = ̃(vg) · ̃(a)(  g1h) = ̃(vg)(h1g(a)  g1h)
= (h1g(a))(  h) = ̃(g(a))(  h)

hence
̃(vg) · ̃(a) · ̃(vg) = ̃(g(A))

The Reduced Cross-Product , A r G is defined to be : = (A 
G))/Ker(̃) , where  is any faithful representation of A.

The functions f  Cc(\G X) can be considered as ( )-invariant
functions on GX . Define an action of G on Cc(\G X) by :

g(f) = f(h, (g
1x)).
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Define for each g  G the following unitaries vg on Cc(\G X) :

vgf(s, x) = f(sg, g1x)

f(s, x)vg = f(s, x)vg1 = f(sg
1, x)

For these
vgf(s, x)v


g = f(s, g

1x) ,

and as we have seen , C0(\X) can be considered as a subalgebra of
Cc(\G X) , so we have a Cdynamical system (C0(\X), G,).
Now , for each x  X , define a map :

̃x : Cc(\G X) G B(l2(\G) l2(G))  B(l2(\G))B(l2(G))
̃x(f)(h  g) = x(g1(f))h  g
̃x(vg)(l  h) = l  gh

By the calculation above , this representation is covariant for any Hilbertspace
H to which C0(\X)  Cc(\G  X) can be represented on, so also for
l2(\G). With Us the unitary operator defined above , observe that :

(Usx(f)U

s1)(s) = (sx(f)1)(s) = (x(

1
s (f))1)(s) = ̃x(f)(s)

, for f  C0(\X)  Cc(\G X) and   l2(\G) . Then we have :

̃x(f)(  g) = x(g1(f))(  g) = (Ugx(f)Ug )  g = (Ug  1)(x(f) 1)(U

g  1)(  g)

̃x(vg)(  h) = (1 vg)(  h) =   gh

and we get :

̃x(vg) · ̃x(f) · (̃x(vg))(l  h) = ̃x(vg) · ̃x(f) · (̃x(vg))(l  h)
= (1 vg) · ̃x(f) · (1 vg)(l  h)
= (1 vg) · ̃x(f)(l  g1h) = (1 vg)(Ug1h  1)(x(f) 1)(Uh1g  1)(l  g1h)
= (1 vg) · (Ug1hx(f)Uh1g  1)(l  g1h)
= (x(h1g(f)) 1)(l  h) = (x(h1(g(f))) 1)(l  h)
= ̃x(g(f))(l  h)

From this we conclude that ̃x , for every x  X, Ũg = (1 vg) and hence
also (xX ̃x) := ̃ , Ũ is a covariant representation of (C0(\X), G,).(C0(\X)
can be considered as a subalgebra of Cc(\GX). The embedding : X 
G  X , x  (e, x). In this way \X is an open subset of \G  X ,
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and then the algebra C0(\X) is a subalgebra of Cr (\GX).) Then , by
the Universal Property of the Crossed Product , there exists a representation
 of C0(\X)  G into C(̃(C0(\X)), Ũg, g  G) obtained by setting
(f) = ̃(f(s, x)) · Ũs , for f = f(s, x) · s = f(s, x) · Us · e.

Observe that f := supxX x(f) = supxX x(g(f) = supxX x(f(·, g1x)
by replacing x by gx , since for every x  X : gx(f) =

Ugx(f)Ug
 ,

where Ug is the unitary operator on l2(\G) : Ugh = hg1 . Therefore ,
and since x(f) = ̃x(f) , for every x  X , i conclude that the kernel of
the representation ̃x is isomorphic to G , since s  s is a homomorphism
and ker ̃ =


xX

ker ̃x =

xX

G = G.

By the universal property of C(̃(C0(\X)), Ũg, g  G) := A , there is
a Homomorphism H from this algebra onto C0(\X)  G taking ̃(f) 
B(xX(Cx  l2(\G) l2(G))) to f  C0(\X) and Ũg to Ug .

(The point is that . . . . the composed map Cc(\G  X) 
C0(\X)rG extends to an isomorphism : Cr (\GX) C0(\X)rG
. I will import a diagram above here to clarify this . )
Cr (\G  X) is the completion of Cc(\G  X) with respect to the

norm defined by the representation  = (xXx) , f = supxX x(f)l2
. Then by the first iso thm , Cr (\G X)  C0(\G)r G.

For the special case when  = {e} , we have the following :

Claim 5 Cr (GX) is isomorphic to C0(X)r G.

Proof. For each x  X , define a map :

x : Cc(GX) B(l2(G) l2(G))  B(l2(G))B(l2(G))
x(f)(h  g) = x(g1(f))h  g
x(vg)(l  h) = l  gh

where g(f)(x) = f(g1x) , for f  C0(X) .
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Lemma 6 1.2
There exists a conditional expectation

E : Cr (\G X) C0(\X)

such that :
E(f)(x) = f(e, x) ,

for f  Cc(\G X) .
Proof. If B  A are CAlgebraes , a map E : A  B is called a Condi-
tional Expectation if : ) E is a projection onto B.i.e. (E(x) = x , x  B)
) E is Bbilinear : E(xy) = E(x)y and E(yx) = yE(x) , for all x  A ,
y  B and ) E is Positive.
For each x  X define a state x on Cr (\G X) by :

x(a) = (x(a) · , ).

Then the function E(a) on X defined by :

E(a)(x) = x(a)

is bounded by a. As E(f)(x) = f(e, x) , for f  Cc(\G  X) (
since x(f) = (x(f), ) = (


s\G f(s, x) · s, e) = f(e, x) ) , we

conclude that E(a)  C0(\X) for every a  Cr (\G X).Thus E is such
a conditional expectation.

The Boxproduct 

Let Y  X be a -invariant clopen subset (Y  Y ).Then the charac-
teristic function 1\Y of the set \Y is an element of the multiplier Algebra
of Cr (\GX). See this by using the embedding X  GX , x  (e, x)
, to consider \X as an open subset of \G  X , and then the algebra
C0(\X) as a subalgebra of Cr (\G X).

Denote by \G Y the quotient of the space :

{(g, x) , g  G , x  Y , gx  Y }

• by the action of   :

(1, 2)(g, x) = (1g
1
2 , 2x)
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Then
1\YCc(\G X)1\Y = Cc(\G Y ).

Therefore the algebra 1\YCr (\GX)1\Y , which we denoteCr (\G
Y ) is a completion of the algebra of compactly supported functions on\G
Y with convolution product given by :

(f1  f2)(g, y) =


h\G:hyY

f1(gh
1, hy) · f2(h, y)

,
and involution :

f (g, y) = f(g1, gy)̄

Observe that x(1\Y ) is the projection onto the subspace l2(\Gx) ,
where the subset Gx of G is defined by :

Gx = {g  G| gx  Y }

Then , for f  Cc(\G Y ) and h  Gx we have :

x(f)h =


g\Gx

f(gh1, hx)g

So if x / GY , x(f) = 0 in particular. We saw above that the represen-
tations x and gx are unitarily equivalent for any g  G.Therefore we can
conclude that Cr (\G Y ) is the completion of Cc(\G Y ) in the norm

f = sup
yY

y(f) .

Hecke Pairs

Consider the algebra Cr (\GX). Our next goal is to show that under
an extra assumtion on the pair (G,) , the multiplier algebra contains other
interessting elements in addition to the -invariant functions on X.

The pair (G,) is called a Hecke pair if  and gg1 are commensurable
for any g  G. That (, gg1) are commensurable means that 


gg1
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  is a subgroup of finite index. Equivalently , every double coset of 
contains finitely many right ( and left ) cosets of  , i.e. :

R(g) := |\g| < ,

for any g  G.

If (G,) is a Hecke pair , the spaceH(G,) of finitely supported functions
on \G/ is a -algebra with product :

(f1  f2)(g) =


h\G

f1(gh
1)f2(h),

and involution :
f (g) = f(g1)̄.

We can consider the functions f  H(G,) as bounded operators on the
Hilbertspace l2(\G) represented as :

f · h =


g\G

f(gh1) · g

The corresponding completion is called the reduced Hecke C-algebra of
(G,) and denoted by Cr (G,). Denote by [g] the characteristic function of
the double coset g, considered as an element of the Hecke algebra.

The elements of H(G,) may be considered as continous functions on
\GX. Although these functions are not compactly supported in general
, the formulas defining the algebra structure and the regular representation
of H(G,) coincide with (1.2)-(1.4).
Moreover , the convolution of an element of H(G,) with a compactly

supported function on \G  X gives a compactly supported function
: If f1 = [g1] , and the support of f2  Cc(\G  X) is contained in
(  )({g2}  U) for a compact U  X , then the support of f1  f2 is
contained in ()(g1g2U). Since \g1g2 is finite , we see that f1  f2
is compactly supported on \G X. Therefore , we have :

Lemma 7 1.3
If (G,) is a Hecke pair , then the reduced Hecke Calgebra Cr (G,)

is contained in the multiplier algebra of the Calgebra Cr (\G X).
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2. Dynamics and KMS-states

Assume as above that we have an action of G on X such that the action
of   G is proper , and Y  X is a -invariant ( Y  Y ) clopen set.
Assume now that we are given a homomorphism :

N : G R+ = (0,+)

such that  is contained in the kernel of N. We define a one-parameter
group of automorphisms of Cr (\G X) by :

t(f)(g, x) = N(g)
it · f(g, x)

, for f  Cc(\GX). More precisely : We denote by N̄ the selfadjoint
operator on l2(\G) defined by :

N̄ · g = N(g) · g

Since N̄ is selfadjoint ( easy to check) , then by applying functional calculus
for bounded operators on Hilbertspace with ft(z) = z

it , the operator N̄ it

 B(l2(\G)) is unitary , implementing the dynamics t spatially by its
associated unitary operator (xXN̄ it) on (xX l2(\G)).

In other words ,
x(t(a)) = N̄

itx(a)N̄
it

for all x  X . See this by considering the operatoraction as represented on
l2(\G) :

x(t(f)) · h =


g\G

t(f)(gh
1, hx) · g

=


g\G

N(gh1)it · f(gh1, hx) · g =


g\G

N(g)itN(h1)itf(gh1, hx) · g

=


g\G

N(g)itN(h)itf(gh1, hx) · g =


g\G

N(g)itf(gh1, hx)N(h)it · g

=


g\G

N̄ itf(gh1, hx)N(h)it · g = N̄ itx(f)N̄
it · h.

A semifinite invariant weight  is called a  KMSweight if , or
equivalently , it satisfies the   KMS condition at inverse temperatures
  R if :

(aa) = (i/2(a)
i/2(a)),
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for any analytic element a.( An element is called analytic if the
map R  Cr (\G  X) , t  t(a) extends to an analytic map C 
Cr (\G X) . A map f : C Cr (\G X) is called analytic if   f is
an analytic function for any   (Cr (\G X)).)
If  is finite , then the KMScondition is equivalent to

(xy) = (yi(x)) ,

for any analytic x, y. This follows from

(yi(x)) = (i/2(y)i/2(x)) = (i/2(y
)i/2(x))

and the identity :

xy =
1

4
((x+y)(x+y)(xy)(xy)+i(x+iy)(x+iy)i(xiy)(xiy)).

The following result will be the basis of our analysis of KMSweights.

Proposition 8 2.1 Assume the action of G on X is an action without fix-
points (free action) , so that in particular \G  Y is a genuine groupoid.
Then for any   R , there exists a one-to-one correspondence between
KMS weights  on Cr (\GY ) with domain of definition containing
Cc(\Y ) Radon measures µ on Y such that

µ(gZ) = N(g)µ(Z)

,
for every g  G and every compact subset Z  Y such that gZ  Y.

Namely , such a measure µ is invariant , so it determines a measure  on
\Y such that :



Y

f(y)dµ(y) =



\Y






yp1({t})

f(y)



 d(t)

for f  Cc(Y ) , where p : Y  \Y is the quotient map , and the associated
weight  is given by

(a) =



\Y
E(a)(x)d(x) ,

where E is the conditional expectation from Lemma 1.2.
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Proof. For  = {e} the result is well-known , see e.g. [19, Proposition II.5.4]
. For arbitrary  , a way to argue is as follows :
Since the action of  on Y is free , the quotient space \G  Y is an

etale groupoid. In fact it is an etale equivalence relation on \Y , or an
r-discrete principial groupoid in the terminology of [19] .To veryfy this , we
have to check that the isotropy group of every point in \Y is trivial , that
is , if g  G is such that gy  Y and p(gy) = p(y) , for some y  Y ,
then (g, y) belongs to the (  ) - orbit of (e, y). But on the other hand
, if p(gy) = p(y) , there exist    such that gy = y. Then g = e ,
since the action of G is free , and therefore (g, y) = (1, e)(e, y). Then by
[19,Proposition 11.5.4] ,
KMSweights with domain of definition containing Cc(\Y ) on the

Calgebra Cr (\G  Y ) of the etale equivalence relation are in ono-to-
one correspondence with Radon measures  on \Y with Radon-Nikodym
cocycle (p(y), p(gy))  N(g).
This means that :
If we assume Y0 is an open subset of Y such that the map p : Y  \Y

is injective on Y0 , and g  G is such that gY0  Y. Define an injective map

g̃ : p(Y0) p(gY0)

by g̃(p(y))  p(gy)

for y  Y0 , and let g̃ be the push-forward of the measure  under the map
g̃ , which again means that : g̃(Z) = (g̃1(Z)) , for Z  p(gY0). Then :

dg̃

d
= N(g) on p(gY0).

Therefore ; if we denote by µ the invariant measure on Y corresponding
to  via (2.2 below) , then to say that the Radon-Nikodym cocycle of  is
(p(y), p(gy))  N(g) is the same as saying that µ satisfies : µ(gZ) =
N(g)µ(Z) , for every g  G and every compact subset Z  Y such that
gZ  Y.( the scaling condition).

Recall that a Radon measure on Y is a Borel measure which is finite
on compact sets , outer regular (*) on all Borel sets , and inner regular(**)
on all open sets. Then , by The Riesz Representation Theorem , for each
positive linear functional , and hence also for each  KMSweight with
domain of definition containing Cc(\Y ) on the Calgebra Cr (\G Y )
, there exist an unique Radon measure  on \Y such that (f) =


f d ,

for f  Cc(\Y ) ,  a  KMSweight. This establishes the one-to-one
correspondence above.
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The next lemma is about extension of the Radon measure µ from Y to
GY :

Lemma 9 2.2. If µ is a measure on Y as in Proposition 2.1 , then it extends
uniquely to a Radon measure on GY  X satisfying (2.1) for Z  GY and
g  G.

Proof. We can choose Borel subsets Yi  Y and elements gi  G such that
GY = ig1i Yi , where  denotes disjoint union. There is only one choice
for a measure extending µ and satisfying (2.1) on GY , namely , for a Borel
subset Z  GY let

µ(Z) =


i

N(gi)
µ(giZ  Yi).

To show that µ(Z) is independent of any choices and that the extension
satisfies (2.1) , assume GY = jhjZj for some hj  G and Borel Zj  Y. Let
g  G. Then :



i

N(gi)
µ(gigZ  Yi) =



i

N(gi)
 ·


j

µ(gigZ  Yi  gigh1j Zj)

=


i

N(gi)
 ·


j

N(gigh
1
j )

µ(hjZ)  hjg1g1i Yi  Zj)

= N(g)


j

N(hj)



i

µ(hjZ  hjg1g1i Yi  Zj)

= N(g)


j

N(hj)
µ(hjZ  Zj).

Taking g = e we see that the extension of µ to GY is well-defined. But
then for arbitrary g the above identity reads as :

µ(gZ) = N(g)µ(Z).

Lemma 10 2.4. Let Y0 be a invariant Borel subset of Y such that :
(ı) if gY0 Y0 =  for some g  G , then g   ;
(ıı) for any y  Y , there exists g  G such that gy  Y0.
Then any invariant Borel measure on Y0 extends uniquely to a Borel

measure on Y satisfying the scaling condition from Proposition 2.1.
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Proof. Let µ0 be a invariant measure on Y0. Since the assumptions imply

that Y is a disjoint union of translates of Y0 by representatives of the right
cosets of  , that is , Y = h:\G(h1Y0  Y ) , there is only one choice for a
measure µ extending µ0 and satisfying Proposition 2.1 , namely ,

µ(Z) =


h:\G

N(h)µ0(hZ  Y0).

Since µ0 is invariant , µ(Z) is independent of the choice of represen-
tatives , so all we need to check is that Proposition 2.1 holds : Let g  G.
Then

µ(gZ) =


h:\G

N(h)µ0(hgZY0) = N(g)



h:\G

N(hg)µ0(hgZY0) = N(g)
µ(Z) ,

which proves the Lemma.

Although the condition for a measure  on \Y to define a KMS-weight is
easier to formulate in terms of the corresponding  invariant measure on Y
, it will also be important to work directly with . For this we introduce the
following operators on functions on \X. We shall often consider functions
on \X as invariant functions on X.

Definition 11 2.5. Let G act on a set X and suppose (G,) is a Hecke pair.
The Hecke operator associated to g  G is the operator Tg on invariant
functions on X defined by :

(Tgf)(x) =
1

R(g)



l  \g (finite)

f(lx).

Clearly Tgf is again invariant. Recall that [g1] denotes the charac-
teristic function of the double coset g1 considered as an element of the
Hecke algebra. The map :


g1

 R(g)Tg

is a representation of the Hecke algebraH(G,) on the space of invariant
functions.
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Notice that for X = G , this is exactly the way we defined the regular
representation of H(G,) on l2(\G) : For f  H(G,) , considered as
operator on l2(\G) , we defined its action by :

f · h =


l  \G

f(lh1) · l

Indeed , for f = [g1] , using the regular representation ( on l2(\G) )
we get :


g1

· h =



l\G


g1

(lh1) · l =



l\G

g1(lh
1) · l

so ([g1] · h)(s) = 1 , if sh1  g1  s  g1h and = 0
otherwise.
On the other hand ,
using the representation  : Cr (G,)  B(l2(\G)) defined as above by

[g1]  R(g)Tg , we get :

(

g1

) · h(s) = R(g)Tg(h)(s) =



l  \g

h(ls) ,

so (([g1]) · h)(s) = {1 , if h  gs  s  g1h ,and = 0
otherwise.
By decomposing an arbitraryX into Gorbits one can obtain that [g1] 

R(g)Tg is a representation without any computations.

The following three lemmas will be our main computational tools :

Lemma 12 2.6. Suppose µ is as in Proposition 2.1 and that  is the measure
on \Y determined by (2.2). Assume further that Y = X , the action
of G on X is free and that (G,) is a Hecke pair with modular function
(g) :=

R(g
1)

R(g)
. Then for any positive measurable function f on \X and

g  G , we have :


\X
Tgf d = (g) ·N(g) ·



\X
f d.

Proof. Let us first prove the following claim :
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Claim 13 There exist a neigbourhood U of x such that the sets hU are dis-
joint for dierent h in g1. Fix a point x  X. Choose representatives
h1, h2, ...., hn of the right cosets contained in g1. Since the action of
 is Proper , there exist a neighbourhood U of x such that if hiU hjU = 
for some i, j and    then hix = hjx. But since the action of G is free ,
the latter equality is possible only when hi = hj , so that i = j and  = e.
Thus hiU hjU =  if i = j or  = e. Since g1 = nk=1hk , this proves
the claim.

Proof. We conclude from the claim that the set g1U is a disjoint union
of the sets hU , h  g1. So we can write :



h:\g

1h1U = 1g1U =


h:\g1

1hU ,

Denoting by p : X  \X the quotient map , we can rewrite the above
in terms of functions on \X as

R(g)Tg(1p(U)) = 1p(g1U) =


h : \g1

1p(hU).

It follows that

R(g)



\X
Tg(1p(U)) d =



h : \g1

(p(hU)) =


h : \g1

µ(hU) = R(g
1)N(g)(p(U)).

In other words , the identity in the lemma holds for f = 1p(U). Since this
is true for any x and suciently small neigbourhood U of x , we get the
result.

Notice that by applying the above lemma to the characteristic function
of X , we get the following :

If a group G acts freely on a space X with a Ginvariant measure µ , and
 is an almost normal subgroup of G ( that is , (G,) is a Hecke pair ) such
that the action of  on X is Proper and 0 < µ(\X) < , then (g) = 1
for any g  G. The same is true if we assume that the action of G on (X,µ)
is only essentially free.

Lemma 14 2.7. Suppose µ is as in Proposition 2.1 and  is the measure on
\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,) is a Hecke pair. Assume further that Y0 is a invariant measurable
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subset of Y such that if gY0Y0 =  for some g  G , then g  . Then for
any g  G such that gY0  Y , measurable Z  \Y0 and positive measurable
function f on \Y , we have :



gZ

f d = N(g)R(g)



Z

Tgf d ,

where gZ = p(gp1(Z)) and p : X  \X is the quotient map. In
particular , (gZ) = N(g) ·R(g) · (Z).

Proof. Suppose Z  \Y0 is measurable , and choose U  Y0 measurable
such that Z = p(U) and p is injective on U. For g  G let h1, ...., hn be
representatives of the right cosets contained in g. Then we claim :

Claim 15 The quotient map of  , p , is injective on h1U, ......., hnU , and
the images under p of these sets are disjoint.

Proof. Assume p(hix) = p(hjy) for some i, j and x, y  U , so that
hix = hjy for some   . Since U  Y0 , our assumption on Y0 implies
that h1j hi  . But then , since p is injective on U , we get x = y ,and
since the action of  is free , we conclude that h1j hi = e. It follows that
i = j and hix = hjy which proves the claim.

Proof. Furthermore , the union of the disjoint sets p(h1U) , ........, p(hnU)
is the set gZ = p(g p1(Z)).Hence , since   kerN , N(hi) = N(g) for
i = 1, ......, n ,



gZ

f d =
n

i=1



hiU

fp dµ = N(g)
n

i=1



U

f(p(hi)) dµ = N(g)
R(g)



Z

Tgf d.

The last assertion of the lemma , that (gZ) = N(g) · R(g) · (Z)
follows by taking f = 1gZ and observing that in this case (Tgf)(z) = 1 , for
z  Z.

For the next lemma , we introduce the following notation.

Definition 16 2.8. If   R and S is a subsemigroup of G containing  ,
then we define

S,() :=


s:\S

N(s) =


s : \S/

N(s)R(s).
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Lemma 17 2.9. Suppose µ is as in Proposition 2.1 and  is the measure on
\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,) is a Hecke pair. Assume further that Y0 is a measurable invariant
subset of Y , and S a subsemigroup of G containing  such that :
() if gY0  Y0 =  for some g  G then g   ;
() sSsY0 is a subset of Y of full measure ;
() S,() <.
Let HS be the subspace of Sinvariant functions in L2(\Y, ) , that is ,

functions f such that f(y) = f(sy) for all s  S and a.a. y  Y . Then :
(1) if f  HS then f

2
2 = S,()


\Y0

|f(t)|2 d(t) ;
(2) the orthogonal projection P : L2(\Y, d)  HS is given by

Pf |Sy= S,()
1



s : \S/

N(s)R(s)(Tsf)(y) ,

(2.3)
for y  Y0.

Proof. By condition () the sets sY0 are disjoint for s in dierent double
cosets of . Since the union of such sets is the whole space Y (modulo a set of
measure zero) , by Lemma 2.7 applied to Z = \Y0 for any f  L2(\Y, d)
we get :

f22 =


s : \S/



sZ

|f |2 d =


s\S/

N(s)R(s)



\Y0
Ts(|f |

2)d.

(2.4)
Since Ts(|f |

2) = |f |2 for f  HS , this gives (1) .
To prove (2) , denote by T the operator on L2(\Y, d) defined by the

asserted formula for P. To see that it is well-defined , notice first that the
summation in the right hand side of (2.3) is finite for f in the subspace
of L2functions supported on a finite collection of sets of the form p(sY0)
, s  S , which is a dense subspace of L2(\Y, d). Thus the function Tf is
well-defined for f in this subspace and , putting s = S,()

1N(s)R(s)
and using (2.4) twice , we get :

Tf22 = S,()


\Y0
|Tf |2 d  S,()



\Y0






s\S/

sTs(|f |
2)



 d = f22 .

It follows that T extends to a well-defined contraction. Since Tf = f for
f  HS , we conclude that T = P.
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3. THE CONNES-MARCOLLI SYSTEM

Consider the group G = GL+2 (Q) of invertible 2 by 2 matrices with ratio-
nal coecients and positive determinant , and its subgroup  = SL2(Z). For
a prime number p consider the field Qp of padic numbers and its compact
subring Zp of padic integers. We denote by Af the space of finite adeles
of Q , that is , the restricted product of the fields of Qp with respect to
Zp ; Af := {(ap)pP|ap  Qpp, ap  Zp for all suciently large p} and by
Ẑ =


p

Zp = {(ap)pP | ap  Zp} its maximal compact subring . The field

Q is a subfield of Qp since Qp is a closure of Q in the p-norm (if q = pn a
b

, (p  a , p  b) , then qp = p
n ) . Therefore GL+2 (Q) can be considered

as a subgroup of GL2(Qp). In particular , we have an action of GL+2 (Q) on
Mat2(Qp) by matrix-multiplication on the left.

Moreover , we have the following diagonal embedding of Q into Af :

Q  Qp
a  (ap)pP  Af

for every a  Q ,

a =
n

m
=

n
pk11 · , , , , · p

ki
i

 ,

where we assume n andm  Z with gcd(n,m) = 1 ( n andm are relatively
prime ) and kj  1. Then a / Zp if p = pi for some i , so a / Ẑ =


pP

Zp.

Contrary a  Zp if p = pi for any i .From this we see that for any a  Q ,
eventually , for p  P large enough a  Zp . Hence the map : a  (ap)pP
embeds Q diagonally into Af . Extending this on the matrix entries , we get
an embedding of GL+2 (Q) into GL2(Af ) , and thus an action of GL+2 (Q) on
Mat2(Af ).
In addition GL+2 (Q) acts by Møbius transformations on the upper half-

planeH. Therefore we have an action of GL+2 (Q) onHMat2(Af ) such that

for g =

a b
c d


,   H and m = (mp)p Mat2(Af ) ,

g( , (mp)p) = (
a + b

c + d
, (gmp)p).
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Note that the action of SL2(Z) is proper , since already the action of
SL2(Z) on H is proper.

The GL2system of Connes and Marcolli is now defined as follows :

Definition 18 3.1. The Connes-Marcolli algebra is the Calgebra A =
Cr (\G  Y ) , where G = GL+2 (Q) ,  = SL2(Z) , G acts diagonally on
X = H Mat2(Af ) , and Y = H Mat2(Z) . The dynamics  on A is
defined by the homomorphism N : GL+2 (Q) R+ , N(g) = det(g).

Notice that since \H is not compact , the algebra A is nonunital . By
[5, Lemma 1.28] , the action ofGL+2 (Q) onX\(H{0}) is free. Recall briefly
the reason : If for g  GL+2 (Q) gm = m for some prime number p  P ( P
denotes the set of all Prime numbers ) and nonzero m Mat2(Qp) , then the

spectrum of the matrix g contains 1 , and hence g =

a b
c d


, ( a, b, c, d  Q

and ad  bc > 0 ) is conjugate in GL+2 (Q) to an upper-triangular matrix (

by Linear Algebra ) : g̃‘ =

ã b̃

0 d̃


. But then g has no fixed points in

H , since the corresponding Møbius transformation for any upper triangular
matrix only has fixpoints in R̄ , but not in the upper halfplaneH . Note that
this actually implies that the action of GL+2 (Q) on HMat2(Qp) , where
Mat2(Qp) = Mat2(Qp) \ {0} , is free for any prime number p. Although
the action of GL+2 (Q) on H {0} is not free , this set can be ignored in the
analysis of KMSstates for  = 0. This is proved in [5 , Proposition 1.30] .
Again , recall briefly the reason :

Consider the action of G on X̃ = X\(H{0}) , put Ỹ = Y \(H{0}) 
X̃ , and then define I = Cr (\G Ỹ ) . Then I can be considered as an ideal
in A , and the quotient algebra A/I is isomorphic to Cr (\GH) . Now
, if  is a KMS state on A , the restriction |I := I canonically extends
to a KMSfunctional on the multiplier algebra of I in the following sense :
Consider the GNS-representation of I  A given by the triple (HI , I , I )
. Then , if we let I denote the multiplier algebra of I  A , the GNS
representation : I : I  B(HI ) canonically extends to  : I  B(HI ) ,
for if x  I , b  I , then

(b)I (x)I = (bx)I = I (bx)I

Now , if we check that the extension  is bounded on I as extension
of I from I to I , it is welldefined by the above equation. For this , let
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{ei} be an approximate unit in I with I (ei)  1 in the Strong Operator
Topology . Then we have :

(b)I (x)I = (bx)I = limi
I (beix)I = limi

I (bei)I (x)I

from which we conclude that :

(b)  lim
i

I (bei)
  lim

i
bei  b

Then what is called the canonical extension of I to ̃ on I is defined
accordingly ; again if 0  b  I , and 0  x  I :

̃(b) = ((b)I , I ) = limi
I(bei) = lim

i
((b)I (ei)I , I (ei)I ) = limi

I(eibei)

As I  A  I , ̃ is a (positive) KMSfunctional on A.But then ̃  
: For if a  A , 0  a , then evaluating

̃(a) = ((a)I , I ) = ((a)
1
2 I , (a)

1
2 I ) = limi

(I (ei)(a
1
2 )I , (a

1
2 )I )

= lim
i
(I (a

1
2 eia

1
2 )I , I )

The last equality since ei  1 in the strong operator topology. Then
further

̃(a) = lim
i
(I (a

1
2 eia

1
2 )I , I ) = limi

I(a
1
2 eia

1
2 ).

Now , since 0  ei  1 ,  i we have a
1
2 eia

1
2  a

1
2a

1
2 = a , and thus

I(a
1
2 eia

1
2 ) = (a

1
2 eia

1
2 )  (a).

Therefore
̃(a) = lim

i
I(a

1
2 eia

1
2 )  (a).

Thus we get a KMSfunctional ̃   on A. If ̃ =  then ( ̃) is a
positive nonzeroKMSfunctional on A which vanishes on I . It follows that
it factors through the canonical quotient map q : A A/I since it is constant
on equivalence classes . Hence we get a KMSstate on A/I  Cr (\G
H). By Lemma 1.3 the multiplier algebra of Cr (\G  H) contains the
reduced Hecke Calgebra Cr (G,). The latter algebra contains in turn the
Calgebra Z(G)/(Z(G)  ) , where Z(G) is the center of GL+2 (Q) , that
is , the group of scalar matrices. But since the dynamics scales nontrivially
some unitaries in this algebra , the algebra can not have any KMSstates
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for  = 0. This contradiction shows that  = ̃ , so that  is completely
determined by I .
Since the action of G on X̃ = H Mat2(Af )

 , where Mat2(Af )
 =

Mat2(Af )\ {0} , is free , we can apply Proposition 2.1 and conclude that
there is a one-to-one correspondence between KMSweights on I with do-
main of definition containing Cc(\Ỹ ) and measures µ on Ỹ = HMat2(Ẑ)

such that :
µ(gZ) = det(g)µ(Z)

if both Z and gZ are subsets of Ỹ . Then by Lemma 2.2 , we can uniquely
extend any such measure to a measure on X̃ = GỸ = HMat2(Af )

 such
that :

µ(gZ) = det(g)µ(Z)

, but now for all Z  X̃.

To get a state on I = Cr (\G Ỹ ) we need the normalization condition
µ(\Ỹ ) = 1 (that is , the invariant measure µ on Ỹ defines a probability
measure on \Ỹ ) . Note also that if  = 0 and we have a measure on
X = HMat2(Af ) with the same properties as above , thenHMat2(Af )



is a subset of full measure , since scalar matrices act trivially on H and so
H cannot support a measure scaled nontrivially by them.

Summarizing the above discussion we get the following :

Proposition 19 3.2.For  = 0 there is a one-to-one correspondence be-
tween KMSstates on the Connes-Marcholli system and invariant
measures µ on HMat2(Af ) such that :

µ(\H (Mat2(Ẑ))) = 1 and µ(gZ) = det(g)µ(Z)

for any g  GL+2 (Q) and compact Z  HMat2(Af ).

Denote by Mati2(Af ) the set of matrices m = (mp)p  Mat2(Af ) such
that det(mp) = 0 for every prime p. Notice that Mati2(Af ) is the set of
non-zero divisors in Mat2(Af ) . Our next goal is to show that if  = 0, 1
then H Mati2(Af ) is a subset of full measure for any measure µ as in
Proposition 3.2. First let us recall the following simple properties of the
Hecke pair (G,) = (GL+2 (Q), SL2(Z)) .
Put Mat+2 (Z) = GL

+
2 (Q) Mat2(Z) .
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Lemma 20 3.3. Every double coset of  in Mat+2 (Z) has an unique repre-

sentative of the form

a 0
0 d


with a , d  N and a | d . Furthermore

,

R


a 0
0 d


=
d

a


p prime :pa|d

(1 + p1) ,

and as representatives of the right cosets of  contained in 

a 0
0 d




we can take the matrices : 
ak am
0 al



with k, l  N and m  Z such that kl = d/a , 0  m  l and
gcd(k, l,m) = 1.
In particular , R(g) = R(g1) , for every g  GL+2 (Q).

Before the proof of the above Lemma , let us recall the following facts
from matrix factorization and elementary number theory taken from A. Krieg
:

Fact 1 ( Lemma )

Given 0 =

a
c


 Z2 , there exist U   satisfying :

U


a
c


=



0


,  = gcd(a, c).

Proof :

Wemay replace

a
c


by 1


·

a
c


 Z2 and therefore assume gcd(a, c) =

1 without restriction. Hence there exist b, d  Z such that ad bc = 1 . Now
choose

U =


a b
c d

1
=


d b
c a


 .

Fact 2 ( Proposition )
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GivenA Mat2(Z) , the right coset A contains an unique representative
of the form : 

a b
0 d


, a, d  N , 0  b < d .

This immediately leads to the

Fact 3 ( Corollary )

Given l  N the setM(l) = {A Mat2(Z) | detA = l} decomposes into
:

1(l) :=


dN , d|l

d

right cosets relative to  . A set of representatives is given by :

a b
0 d


, where d  N , d | l , 0  b < d and a =

l

d
.

And : In particular ( SL2(Z) , GL+2 (Q) ) is a Hecke pair .

Proof : The first part follows by applying the above Proposition . For the
second part ; Given A  GL+2 (Q) , choose   N such that A  Mat

+
2 (Z)

.The assertion follows from  (\A) =  (\A).

Fact 4 ( Proposition 2 )

Given A Mat+2 (Z) the right coset A contains an unique representative
of the form : 

a 0
c d


, a, d  N , 0  c < a .

Proof. (Omitted)

Fact 5 ( Observation )

Now , let (A) := gcd of the entries of A , whenever A is a non-zero
integral matrix . Then : (A)(B) | (AB) , holds for all A,B  Mat+2 (Z) .
Another well-known number theoretical assertion we need is :
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Fact 6

Let a, c, d  Z such that a = 0 and gcd(a, c, d) = 1 . Then there exist an
integer x  Z satisfying

gcd(a, c+ xd) = 1.

Proof. a) The uniqueness of the entries a , d in Lemma 3.3. follows from

the latter Observation . For the existence , we may assume (A) = 1 , since
A can otherwise be replaced by 1

(A)
·A . In view of Fact 4 ( Proposition 2

) , we may already suppose that A has the form :

a 0
c d


, a > 0 , d > 0 , gcd(a, c, d) = 1 .

Next apply Fact 6 and determine x  Z with gcd(a, c+ xd) = 1 . The
entries of the first column of :

Ā =


a 0
c d


1 0
x 1


=


a 0

c+ xd d



are relatively prime . Due to the Lemma (Fact 1) , there exist U  
such that :

UĀ =


1 b̄
0 ad


.

Now choose V =


1 b̄
0 1


  to get :

UĀV =


1 b̄
0 ad


1 b̄
0 1


=


a 0
0 d


 A.

b) By the first part , it suces to consider 

a 0
0 d


. Since a | d

,


a 0
0 d


 Mat+2 (Z) and from Fact 2 , 


a 0
0 d


posesses an unique

representative of the form

a b
0 d


, a, d  N and 0  b < d .

Inwoke the Corollary ( Fact ) , second part above to get that a set of

representatives of the right cosets of  contained in 

a 0
0 d


 is given by


a b
0 d


, where d  N , d | l , 0  b < d and a = l/d .
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This is equivalent to the statement which is to be proved here if : As
a | d , let d

a
= pk11 ....p

kn
n . . . . . . . . , (1  ki). , we see that if p is a prime

such that pa | d , then p  {p1, p2, ...., pn} , so by counting the number of

representatives of the form :

a b
0 d


, a, d  N and 0  b < d and ad = l

such that d | l , we get that it equals : d
a


p prime : pa|d

(1+ p1) . Therefore this

set of representatives could be explicitly given as :

ak am
0 al


, with k, l

 N and m  Z such that kl = d/a and gcd(k, l,m) = 1.
The last statement , that R(g) = R(g1) for every g  GL+2 (Q) follows

from the fact that for every g  GL+2 (Q) , there exist   N such that g 
Mat+2 (Z) . Hence , since

 (\g) =  (\g)

and

ak am
0 al

1
=


ak 0
am al


· 1
a2kl

, so in view of Fact 4 above we see

that :  (\g) =  (\g1).

For a prime p put Gp = GL+2 (Z [p1])  GL
+
2 (Q). Observe that if g  Gp

then det(g) is a power of p , and if we multiply g by a suciently large power

of

p 0
0 p


, we get an element in Mat+2 (Z) with determinant a power

of p. But by Lemma 3.3 the double coset of  containing such an element

has a ( unique ) representative of the form :

pk 0
0 pl


, 0  k  l. We

may therefore conclude that Gp is the subgroup of GL+2 (Q) generated by

 and

1 0
0 p


. This since : 


p 0
0 1


 = 


1 0
0 p


 and if we set

g =


pl 0
0 pl


p 0
0 1


we see that 


p 0
0 1


 = p1i=0


1 i
0 p



and hence g = p1i=0(


pl 0
0 pl


1 i
0 p


) .As matrices of the form


a 0
0 d


,where a | d constitutes a basis for the double coset decomposition

of Gp = GL+2 (Z [p1])  GL
+
2 (Q) , we get that  and


1 0
0 p


generates

Gp . Furthermore , using the fact that a positive rational number is a power
of p if and only if it belongs to the group of units Zq of the ring Zq for
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all primes q = p , we may also conclude that g  GL+2 (Q) belongs to Gp if
and only if it belongs to GL2(Zq) for all q = p.

Lemma 21 3.4. We have GL2(Qp) = GpGL2(Zp).

Proof. Let r  GL2(Qp). Then rZ2p is a Zplattice in Q2p , that is , an
open compact Zpsubmodule. By [22, Theorem V.2] there exist a subgroup
L  Z2 of Q2 , such that the closure of L in Q2p coincides with rZ2p , and the
closure of L in Q2q is Z2q for q = p .
Choose g  GL+2 (Q) such that gZ2 = L. Since gZ2p = rZ2p , we have

g1r  GL2(Zp). Since gZ2q = Z2q for q = p , we also have g  GL2(Zq) .
Hence g  Gp.

Lemma 22 3.5. Let p be a prime and µp a invariant measure onHMat2(Qp)
such that

µp(H{0}) = 0 , µp(\(HMat2(Zp))) < and µp(gZ) = det(g)
µp(Z)

for g  Gp and Z  HMat2(Qp). If  = 1 , then the set (HGL2(Qp))
is a subset of full measure in HMat2(Qp).

Proof. Denote by ̃ the measure on \(H  Mat2(Qp)) defined by the
invariant measure µp . For a invariant subset Z  Mat2(Qp) , the set
HZ is invariant . We can thus define a measure  on the algebra
of invariant Borel subsets of Mat2(Qp) by (Z) = ̃(\(H Z)) . Note
that since the action of  on Mat2(Qp) is not proper and , accordingly ,
the quotient space \Mat2(Qp) is quite bad , we do not want to consider
invariant subsets of Mat2(Qp) as subsets of this quotient space and do
not try to define a measure on all Borel subsets of Mat2(Qp) out of  .
If g  Gp and f is a positive Borel invariant function on Mat2(Qp)

then by Lemma 2.6 applied to the function F : ( ,m)  f(m) on \(H
Mat2(Qp)) we conclude that



Mat2(Qp)
Tgf d =



\(HMat2(Qp))
TgF d̃ = det(g)





\(HMat2(Qp))
F d̃ = det(g)



Mat2(Qp)
f d

By assumption we also have (Mat2(Zp)) < . We have to show that
the measure of the set of nonzero singular matrices is zero.
We claim that the set of nonzero singular matrices with coecients inQp

is the disjoint union of the sets :

Zk = SL2(Zp)

0 0
0 pk


GL2(Zp) , k  Z.
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This is proved in a standard way : given a nonzero singular matrix we use
multiplication by elements of GL2(Zp) on the right to get a matrix with zero
first column , and then multiplication by elements of SL2(Zp) on the left to
get the required form . To show that the sets do not intersect , observe that
the maximum of the p-adic valuations of the coecient of a matrix does not
change under multiplication by elements g of GL2(Zp) on either side , since
if the maximum of the p-adic valuations should change , then such a g must
lie in GL+2 (Z [p1]) . We saw above that this is equivalent to g  GL2(Zq)
for all q = p. But then the coecients of g / Zp , which is a contradiction.

Consider the functions fk = 1Zk , k  Z. For g =

1 0
0 p1


we claim

that
Tgf0 =

1

p+ 1
f0 +

p

p+ 1
f1.

Indeed , since the action ofGp commutes with the right action ofGL2(Zp)
, the function Tgf0 is GL2(Zp)invariant . f0 = 1

SL2(Zp)



 0 0
0 1



GL2(Zp)
. As

Z0 = AGL2(Zp)SL2(Zp)

0 0
0 1


A is the sum of right coset of


0 0
0 1


A

with respect to SL2(Zp) .We have 

1 0
0 p1


 = ni=1hi , so (Tgf0)(x) =

1
R(g)

n
i=1 f0(hix) does not depend on the choice of representatives hi  g.

On the other hand , the sets Zk are clopen subsets of the set of singular
matrices (see * below) , so that the function f0 is continous on this set .
But then Tgf0 is also continous . Since f0 is right GL2(Zp)invariant , Tgf0
is right GL2(Zp)invariant . Furthermore f0 is left GL2(Zp)invariant and
hence also invariant as   GL2(Zp).Therefore Tgf0 is left invariant .
As  is dense in SL2(Zp) , and Tgf0 is continous , we conclude that Tgf0 is
left SL2(Zp)invariant since if n   and

n    SL2(Zp)

then
(Tgf)(nx)n (Tgf)(x).

Hence Tgf0 is constant on the sets Zk . So to prove the claim that Tgf0 =
1
p+1
f0 +

p
p+1
f1 , it suces to check it on the matrices :


0 0
0 pk


, k  Z

. Since g =

1 0
0 p1


=


p1 0
0 p1


p 0
0 1


, by Lemma 3.3 we can
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take the matrices

1 0
0 p1


,


p1 np1

0 1


, 0  n  p 1 ,

as representatives of the right cosets of  contained in g.Then

(Tgf0)


0 0
0 pk


=

1

p+ 1
f0(


1 0
0 p1


0 0
0 pk


)+

1

p+ 1

p1

n=0

f0(


p1 np1

0 1


0 0
0 pk


) =

1

p+ 1
f0


0 0
0 pk1


+

1

p+ 1

p1

n=0

f0


0 npk1

0 pk


.

Since the matrices

0 0
0 pk1


and


0 npk1

0 pk


, 1  n  p1 ,belong

to Zk1 , we see that

Tgf0|Z1 =
p

p+ 1
, Tgf0|Z0 =

1

p+ 1
and Tgf0|Zk = 0 for k = 0, 1.

This is exactly what was claimed .
It follows from (3.1) that

p(Z0) =
1

p+ 1
(Z0) +

p

p+ 1
(Z1).

On the other hand , for g =

p1 0
0 p1


we get Tgfk = fk+1 , so that

p2(Zk) = (Zk+1).

If (Z0) = 0 this implies that p is a solution of the quadratic equation

(p+ 1)x = 1 + px2 ,

Thus either p = p1 or p = 1. Since  = 1 we get  = 0. But then
(Zk) = (Z0) for any k , and this contradicts (Mat2(Zp) < . The con-
tradiction shows that (Z0) = 0 for any k , and we conclude that the measure
of the set of singular matrices is zero.
(*) To see that the sets Zk are clopen , define a function :

h : {nonzero singular matrices} R

pk

kZ

h(A) = max
i,j
ai,jp , for A = (ai,j) a nonzero singular matrix.

As h is a continous function and

Zk = SL2(Zp)

0 0
0 pk


GL2(Zp) = h1(


pk

) = h1((pk1, pk+1))
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, we see that the sets Zk are open .

On the other hand , for every k  Z the sets Zk = SL2(Zp)

0 0
0 pk


GL2(Zp)

is the image of the compact space SL2(Zp)  GL2(Zp) under the map :

(A,B) A


0 0
0 pk


B , and hence can be considered as closed sets .

We are now ready to show that for  = 0, 1 the setMat2(Af )\Mati2(Af )
of zero-divisors has measure zero .

Corollary 23 3.6. Assume  = 0, 1 and µ is a measure with properties
as in Proposition 3.2. Then H Mati2(Af ) is a subset of full measure in
HMat2(Af ).

Proof. Fix a prime p. First of all note that the set

{( ,m)  HMat2(Af ) | mp = 0}

has measure zero. Indeed , as we already remarked before Proposition
3.2 , the set H {0} has measure zero . So if our claim is not true , the set


( ,m)  HMat2(Ẑ) | mp = 0



has positive measure . Since the action of  on this set is free , there is
a subset U of positive measure such that U  U =  for    ,  = e.

Then for g =

p 0
0 p


the set Uk = gkU , k  Z still has the property

that Uk  Uk =  for    ,  = e , since g commutes with . As Uk is
contained in H Mat2(Ẑ) , it follows that µ(Uk)  1. On the other hand ,
µ(Uk) = p

2kµ(U). Letting k   if  > 0 and k  + if  < 0 , we
get a contradiction.
Consider now the restriction of µ to the set

HMat2(Qp)

q =p
Mat2(Zq) ,

and use the projection onto the first two factors to get a measure µp on
H  Mat2(Qp) . By the first part of the proof the set H  {0} has µp -
measure zero. Since the image of Gp in GL2(Qq) lies in GL2(Zq) for q = p ,
the scaling property of µ implies that

µp(gZ) = det(g)
1µp(Z) for Z  HMat2(Qp) , g  Gp.
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Since the action of  on HMat2(Qp) is free , the normalization con-
dition on µ implies that µp(\(H  Mat2(Zp)) = 1. Thus µp satisfies the
assumptions of Lemma 3.5. Hence HGL2(Qp) is a set of full µpmeasure.
This means that the set of points ( ,m)  H Mat2(Ẑ) with det(mp) = 0
has µmeasure zero. By taking the union of such sets for all primes p and
multiplying it by elements of GL+2 (Q) we get a set of measure zero , which
is the complement of the set HMati2(Af ).
To get further properties of a measure µ as above , let us recall the follow-

ing well-known computation . Denote by Sp the semigroup Gp Mat+2 (Z).
Alternatively , Sp is the of elements m Mat+2 (Z) with determinant a non-
negative power of p. Then from Lemma 3.3 we know that as representatives

of the right cosets of  in Sp we can take the matrices

pk m
0 pl


, 0  k, l

, 0  m < pl. Therefore

sp,() =


s\Sp

det(s) =


k,l=0

p(k+l)pl =

+ , if   1 , and (1 p)1(1 p+1)1 , if  > 1. (3.2)

Since  = GpGL2(Zp) , we can apply Lemma 2.7 to the groupGp acting
on HMat2(Af )

 and the set

Y0 = HGL2(Zp)

q =p
Mat2(Zq).

Then for any s  Sp we get

µ(\sY0) = det(s)R(s)µ(\Y0).

The sets sY0 are disjoint for s in dierent double cosets of  , and their
union is the set

HMati2(Zp)

q =p
Mat2(Zq) ,

where Mati2(Zp) =Mat2(Zp) GL2(Qp). By Corollary 3.6 the above set
is a subset of HMat2(Ẑ) of full measure for  = 0, 1. Therefore we obtain
:

1 =


s\Sp/

µ(\sY0) =


s\Sp/

det(s)R(s)µ(\Y0) = sp,()µ(\Y0). (3.3)

This gives a contradiction if  < 1. Thus for  < 1 ,  = 0 , there are no
KMSstates. On the other hand , for  > 1 we get :

µ(\Y0) = Sp,()
1 = (1 p)(1 p+1).
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Assuming now that  > 1 we can perform a similar computation for
any finite set of primes instead of just one prime . Given a finite set F
of primes consider the group GF generated by Gp for all p  F. Put also
SF =Mat

+
2 (Z)GF . Then SF is the set of matrices m Mat+2 (Z) such that

all prime divisors of det(m) belong to F. Let

YF = H



pF

GL2(Zp)






q /F

Mat2(Zq)


.

Then a computation similar to (3.2) and (3.3) yields :

SF ,() =

pF
(1p)1(1p+1)1 and µ(\YF ) =


pF
(1p)(1p+1). (3.4)

The intersection of the sets YF over all finite subsets F of prime numbers
is the set HGL2(Ẑ). So for  > 2 we get :

µ(\(HGL2(Ẑ))) =

p

(1 p)(1 p+1) = ()1(  1)1 ,

where  is the Riemann function . On the other hand , for   (1, 2]
we get µ(\(HGL2(Ẑ))) = 0.

Assume now that  > 2. In this case similarly to (3.2) we have

Mat+2 (Z),
() = ()(  1).

So analogously to (3.3) we get

µ(\Mat+2 (Z)(HGL2(Ẑ))) = Mat+2 (Z),
()µ(\(HGL2(Ẑ))) = 1.

We thus see that Mat+2 (Z)(H  GL2(Ẑ)) is a subset of H Mat2(Ẑ) of
full measure . Hence GL+2 (Q)(HGL2(Ẑ)) is a subset of HMat2(Af ) of
full measure . By Lemma 3.4 the set GL+2 (Q)(H  GL2(Ẑ)) is nothing but
HGL2(Af ).

To summarize , we have shown that for  > 2 the problem of finding all
measures µ on H Mat2(Af ) satisfying the conditions in Proposition 3.2
reduces to finding all measures on HGL2(Af ) such that

µ(gZ) = det(g)µ(Z) and µ(\(HGL2(Ẑ))) = ()1(  1)1.

By Lemma 2.4 any invariant measure onHGL2(Ẑ) extends uniquely
to a measure on H  GL2(Af ) satisfying the scaling condition . Thus we
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get a one-to-one correspondence between measures µ with properties as in
Proposition 3.2 and measures on \(HGL2(Ẑ) of total mass ()1( 
1)1. Clearly , extremal measures µ correspond to point masses .

We have thus recovered the following result of Connes and Marcolli [5 , Theorem 1.26 and Corollary 1.32]
.

Theorem 24 3.7. For the Connes-Marcolli GL2system we have :
() for   (, 0)  (0, 1) there are no KMSstates ;
() for  > 2 there is a one-to-one ane correspondence betweenKMSstates

and probability measures on \(HGL2(Ẑ)) ; in particular , extremalKMSstates
are in bijection with orbits in HGL2(Ẑ).
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