THE CONNES-MARCOLLI GL-SYSTEM
MASTER THESIS

Bjarte D. Berntsen

Fifteen years ago Bost and Connes constructed a C*—dynamical system
with the Calois group G(Q*/Q) as symmetry group and with phase tran-
sition related to properties of L-functions . Since then there have been nu-
merous , and only partially succesful , attempts to generalize the system to
arbitrary number fields . A few years ago , in order to extend that con-
struction to imaginary quadratic feilds , Connes and Marcolli constructed a
GLy—system , an analogue of the BC-system with Q* replaced by GLy(Q).
They classified the KM Sg—states of the system for 3 > 2. Later Laca ,
Larsen and Neshveyev classified the K M Sz—states for all 3 # 0, 1.

1. Proper Gruppevirkning og Gruppoide
C--Algebraer

Let G be a group and X be a set. A Group action on a set X is a
homomorphism p from the group G to the group Homeo(X) of all home-
omorphisms from X to itself ( Aut(X)). Thus to each g € G is associated
a homeomorphism p(g) : X — X , which for notational simplicity we write
simply as g : X — X.With this notation for the map :

GxX — X
(9,2) — gz

with conditions :

(e,x) — ex = x,VaeX (1)
(9, (hx)) = (gh)x, VeeX, Vg, heG

are equivalent to requiring p to be a homomorphism.
Under these conditions , we say that X is a left G-set and we have a left

group action by G on X. Similarly , one can define a right action by letting
the elements of the group act on the space from the right instead.
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We consider cases where the group G is countable and X is a locally
compact second countable topological space.

A continous map f : X — Y is called proper if for every compact K C Y
, the space f~1(K) is also compact. Accordingly , an action of G on X is
called proper if the map :

GxX — XxX (2)

(9.2) — (g2, 7)
is proper. Then the space G/X , where points are identitied by the equiva-
lence relation of laying on the same G- orbit {Gx} is Hausdorff. Assume that
G is a discrete group. Consider G x X . The space X , which is a G-space

is called the unit space of G x X. G x X has the product topology and the
two maps , called the source map (s) and the range map (r) :

SR : GxX-—-X
s(g,x) F— @

r(g,r) — gz

define a law of composition : ((g,y), (h,1))e(G x X)? — (g,y) - (h, z)eG x
X , where :

(G x X)?:={((g,9), (h,2))e(G x X) x (G x X)|r(h,z) = s(g,y) = y}

We see that the product on G x X are defined by the formula :

(9, hx)(h,x) = (gh, z)

In this way Gx X becomes a groupoid (called the transformation groupoid)
, since every element has an inverse :

(g:2)" = (9" g2)

G x X has stabilizer subgroup G, ={geG|gr = =} If G has stabilizer
subgroup equal to {e} for every x in X is equivalent to saying that the action
of G on X is free i.e. an action whitout fixpoints for other elements of GG
than the identity.



The set C.(GxX) of all continous functions on GxX with compact sup-
port has a structure of involutive algebra given by :

(fixfo)(gx) = > filgh™ ha)fa(h, )

heG

flg,2) = (fl(g,2)™) = (flg ", 92))

, where (g,x)™! = (g7!,gx) Let Cy(X) be the algebra of continous functions
on X that vanish at infinity. The product in Cy(X) is the usual pointwise
product.
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If the restriction of the action to a subgroup I' of GG is free and proper
, we can introduce a new groupoid : I'\G' xr X by taking the quotient of
G x X by the action of I' x I defined by :

(1, 72) (9, %) = (11973 "+ 72)

The unit space of '\G' xr X is I'\X , and the product is induced from
that on G x X. If the action of I' is proper but not free , the quotient
space I'\G xr X is no longer a groupoid , since the composition of classes
using representatives will in general depend on the choice of representatives.
Nevertheless , the same formulas for convolution and involution as in the
groupoid case give us a well -defined algebra. To see this , consider the space
C.(I'\G xr X) of continous compactly supported functions on I'\G xr X. The
elements can be considered as (I' x I') -INVARIANT functions on G x X.
The convolution of two such functions are defined accordingly :

1. (1.1)
(fr=fo)(g,x) = Y filgh™" ha)fo(h, x).

hel'\G
To see that the convolution is well-defined :

Assume the support of f; is contained in (I' x T")({g;} x U;) , where
g; € G and U; is a compact subset of X.(i=1,2). Let {v4,....,7,,} be the set
of elements v € I" such that vg,U, NU; # (). This set is finite since the action

of T" is assumed to be proper.

If fo(h,x) # 0, then there exist v € I" such that hy~t € I'gy and vz € Us.
Since the number of v “s such that yz € U, is finite , the above sum must be
finite. If furthermore f1(gh™', hx) # 0, then gh™! = %191%_1 for some v, 7,



, since (gh™1, hx) is

contained in the support of f; . We can replace h by another representa-
tive of the right coset T'h . If we replace h by v,h , then gh™! = ~v,g1 € T'gy,
and also hx € U;. If now hy™! = g, with ¥ € T', we get ha = Jgoyx € g2Us.

Hence 4 must be equal to v, , for some i, and therefore g € I'g1h = I'g1v,927.
Thus the support of fi * f is contained in U;(I' x I')({g17,92} x Uz). Thus
the set of representatives vg; giving a nonzero contribution to the above sum
are finite and independent of the choice of v € I'. The support of f; * fo is

contained in a compact set , so f1* fo € C.(I'\G xr X)) , and the latter space
becomes a well-defined algebra. The convolution is also associative :

(fix(fax f3))(g,2) = Z filgt™ tz)(f2* f3)(t, ) Z filgt™ ta) fo(th™, ha) f3(h, ©)
pve LheT\G

((frxfo)x fa)(gox) = D (frxfo)(gh™ ha)fa(h,x) = D filgh™ " tha) fo(t, ha) fs(h,
hem\G Hhel\G

1. (1.2) Define also an involution on C.(I'\G xr X) by :

f(g,2) = f(g,2)™") = flg ™", 92)
If the support of f is contained in (I' x I')({go} x U) for go € G and

compact U C X , then the support of f* is contained in :

(T xT)({go} x U)) ™ = (T x I)({go} x U)~" = (T x T)({go "} x 9oU) ,

which is a compact set in (I'\G xr X) and therefore f* € C.(I'\G xr X) for
every f € C.(I'\G xr X).

For each x € X | define a representation :

1. (1.3)
me : C.(I\G xpr X) — B(*(T\Q))
mo(f)orn = Y flgh™ ha)dr,
gel\G



Here 6ry denotes the characteristic function of the coset I'g . Consider
dry as a one of the unit basis vectors in the (standard) orthonormal basis

{6Fg}g6F\G’ fOI' lz(F\G) .

Lemma 1 1.1 For each f € C.(I'\G xr X) the operators m,(f) , x € X ,

are uniformly bounded.

Proof. For ¢,,¢&, € I*(T\G) we have :

(ma(f) - €n8)l < D [flgh™ ha)| - [€1(R)] - €2(9)]

g,hel\G
< | D> fer )|l mP ] | Y [fgh T k)] - 1€s(g))
g,hel\G g,heT\G

(Applying Hglders inequality.)
Thus if we denote by || f||; the quantity :

max sup Z |f(gh_1,h$)}, sup Z |f(gh_1,hx)| )

zeX,heG gel\G@ re€X,geG hel\G

we get||m,(f)]] < || f]l; for any @ € X, so it suffices to show that || f;|| is
finite. Replacing x by h™'z and g by gh in the first supremum above , we
see that this supremum equals :

1170 = sup > 1f(g, )]

gel'\G
As f*(hg™, gz) = (f((hg™, g2) )" = (f(gh~*, hg~"gx))* = (f(gh™, ha)"
, we see that f(gh™' hz) = (f*(hg™',gz))*. Then the second supremum
must be equal to | /], Therefore [[£], = max { [, 1"l }. Now

the claim is that || f]|;, is finite for every f € C.(I'\G xp X). If this claim is
true , the Lemma is proved.

Proof of Claim :

We may assume without loss of generality that the support of f is con-
tained in (I' x I')({go} x U) for some gy € G , and compact U C X. Since
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the action of I' is proper , there exists n € N such that the sets v,U |,
i = 1,...,n + 1 have trivial intersection for any different v,,.....,;v,,; € I.
Now if f(g,x) # 0 for some g and x,there exists v € T" such that gy~! € T'gy
and yx € U. Since the number of 75 such that vx € U is at most n , we see
that for each z € X the sum in the definition of || f[|; , is finite .

To see that 7, is a representation , one has to check :

) me(f) = (ma(f))
[’L) ﬂ—l‘(fl*fQ) = Wx(fl)'ﬂ—x(fZ)

mo(f) - Orn =Y flgh™' ha)-dry

gel\G

Consider f € Co(I'\G xr X). As f = 3" 1\ f(s,2) - Ors observe that
the vector ¢ = dr. in [*(I'\G) is both cyclic and tracial for operators in

B(*(I\G))
(Ugbre,0e) = lifg=e,0else,

therefore , for all g; € G we have :
<U91U926Fe’5Fe> - <Ug1U925Fe,5Fe>

(7 (f)6rn, ) = > flgh™ ha)(Org, ore) = f(th™", ha)

gel\G

similarly ,

(80, 7o (F)0r) = F*(ht 1, t2) = F(th™, ha).

Hence
T (f)" =7 (f").

1) Can checked similarly to associativity of the convolution. m

But let me see this from another perspective :

For each € X , f can be thought of as a vector in [*(T\G) ) . Let U,
be the unitary operator on [>(I'\G) defined by U,dr, = drp,-1. Expanding
on the cyclic and tracial vector dr. gives :

f=0Y_ flg,2)U;)bre.

gel\G



For each # € X , f can be thought of as a vector in I*(T'\G) ) , expanding
its adjoint on the cyclic and tracial vector . gives :

=0 U (g.2))ore = >, Ug(f*(9,2)UsUgdre = D Ug(f*(g,2))U; g1

geMG geT\G gelM\G

Proof. Let f; and f> be two functions in C.(I'\G xp X). Then , for arbitrary
h eT\G :

(mo(frx f2))orn = D (frx fo)(gh ' ha)-Srg= Y Y fulgh 't™!,tha) - fo(t, he) - or,

gel\G gel\G teT'\G

= > ) Unfilgt ' tha) - fo(t,ha) - 0rg = > Y Unfi(gt™ tha) - U,
ge\G tel'\G ge\G tel'\G

= Z Z Unfr(gt™" the) - Uy - fo(th™, ha) - 6py = Z Z Unfr(gt™*,t
gEN\G tel\G teT\G gel'\G

= > Un(me(f))Uf - 611 - fo(th™ hx) = (ma(f1) - 72(f2)) - Or
teM\G

so u) is checked in this way of thinking . Hence 7, is a representation for
every (fixed) z € X. m

Definition 2 We denote by C}(I'\G xr X) the completion of C.(I'\G xr X)
in the norm defined by the representation :

(Brexms) : Co(T\G xr X) — B(®,exl*(T\G)

, that is ,
11 = sup [lm=(f)]]
zeX

Remark 3 As we observed above , for every s € G and its associated unitary
U, € B(I*(T\Q)) such that Uor, = drps—1 , [ € Co(T\G x1 X) and 7, the

representation defined above , we have

Usﬂ'x(f)U; = Wsz(f)-
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Proof. Observe first that , for every ¢ , s and h in I'\G , we have :

Us’ﬂx(f)U; : 5Fh = Wx(f) : 5I‘hs = Us . Z f(gs_lh_1> hS.fIZ’ 5Fg Z U f S

gel\G gel\G

> flgsth Tt hsa) dpger = TN F(Ih Y hsa) - Oy

gel\G 1eT\G

Usﬂx(f)U;'(Srh = Z f hSﬂ? - Orh Zﬂsx(f)'(srh-

geM\G
Hence
Usﬂx(f)Us* = st(f)
Therefore
|72 (O = ll7se ()]
,and so m
Remark 4
£l = sup [|7.(f)l
zeG\X

Closely related is the notion of a C*—dynamical system (A, G, «) , where
Ais a C*-algebra, GG a locally compact group and « is a homomorphism from
G into Aut(A). A covariant representation of ( A, G , «) is a pair (7, U) ,
where 7 is a *_representation of A on a Hilbertspace H and

s+— U,
is a unitary representation of G on the same H such that :
Ust(A)U; = m(as(A)) ,

forall a€ A, sedq.

Denote by «a, the automorphism «(g) for g in G. The Cross Product ,
Ax,G of a C*-algebra A and a group G is the universal C*-algebra generated
by A and unitaries v, , g €G such that :

1) vgav, = ay(a)

2) g —— w, is a homomorphism , g € G
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If G is countable and discrete , the space C.(A, G) of continous compactly
supported A-valued functions on G is the algebra of all finite sums :

f:ZAt'Ut
teG

with coefficients in A.
One defines a C*-norm by :

I/l = supllo(f)]

, as o runs over all *-representations of C.(A, G).
The supremum is always bounded by :

£l = A
teG

The supremum is always taken over a nonempty family of representations
because certain representations can be explicitly constructed. Let m be any
*_representation of A on a Hilbertspace H.Then one can always construct
the representation :

7 : Ax,G— B(H®IP*G)=B(H)B(*(Q))
) = 7y (a)(€®d)
() ®n) = §®gn ,

for £ € H and g,h € G.

Due to constuction , this representation is covariant :

(vg) - (@) - (W(vg))" (€@ 0n) = T(vg) - T(a)(§ ® Ig-1n) = T(vg)(h-14(a)€ @ Fg-11)

(vg) - (a) - W(vg)" = (g (A))

The Reduced Cross-Product , A X, G is defined to be : = (A X,
G))/Ker(w) , where 7 is any faithful representation of A.

The functions f € C.(T'\G xr X) can be considered as (I x I')-invariant
functions on G' x X . Define an action of G on C.(I'\G xr X) by :

ay(f) = f(h, (g_lx))'
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Define for each g € G the following unitaries v, on C.(I'\G xr X) :

vef(s,x) = [f(s9,9 'x)
f(s,2)v; = f(s,2)vg = f(sg”t, x)
For these
vef(s,2)vy = f(s,97")

and as we have seen , Co(I"'\X) can be considered as a subalgebra of
C.(I'\G xr X)) , so we have a C*—dynamical system (Co(I'\X), G, o).
Now , for each x € X , define a map :

T+ Co(D\G xr X) %o G — B(*(P\G) ® I*(G)) = BI*(T\G)) ® B(*(G))
T2(f)(0rn ® bg) = Tal0g-1(f))0rn ® dy
T2 (Vg)(0r ® 0p) = Oy @ Ogp,
By the calculation above , this representation is covariant for any Hilbertspace

H to which Cy(I'\X) C C.(I'\G xr X) can be represented on, so also for
[>(T'\G). With U; the unitary operator defined above , observe that :

(Usmo(fU;@1)(ER65) = (m5x(f)@1)(ER65) = (o (f))@1)(ER0,) = 7o (f)(ER05)
, for f € Cy(T\X) C C.(T\G xr X) and € € I*(T'\G) . Then we have :

T(f)E®d,) = Wx(agfl(f»(f ® dg) = (Ugﬂx(f)Ug*)g ® 6y = (Uy @ 1)(m(f) ® 1)(Ug* ®1)(¢ &
T2(0g)(§®0n) = (L®uvg)(§®n) =& dgn

and we get :

Fo(00) - FalF) - (R (00)) Ore @) = ) - FalF) - (o)) (51 @ 50)

7o (f) - (1®v))(0r @ 0p)
-7 (f) (0 ® 69‘1h) =(1® Ug)(Ug—lh ® 1)(m(f)
(Ug1p 7o (f)Up-14 @ 1) (611 @ 64-1p,)
Ta(ap-14(f)) ® 1)(0r ® 01) = (ma(ap-1(g(f))) @ 1)(6ry
(g (f)) (s ® )

[
e N a Y aN
—_ = =
®¥ K &
S <
Q Q@ s}
S— N

e

—~

=N

From this we conclude that 7, , for every 2 € X, U, = (1®w,) and hence
also (@pex7,) := 7, U is a covariant representation of (Co(T'\X), G, a).(Co(T'\ X)
can be considered as a subalgebra of C.(I'\G xr X). The embedding : X —

G x X,z — (e,x). In this way I'\X is an open subset of I'\G xpr X |
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and then the algebra Cy(I'\ X) is a subalgebra of C*(I'\G xr X).) Then , by
the Universal Property of the Crossed Product , there exists a representation
o of Co(T\X) xo G into C*(7(Co(T\ X)), U,, g € G) obtained by setting
U(f) = ﬁ'(f(S,l’)) U, for = f(s,x) - 0ps = f(5>$) Uy - Ore-

Observe that || f| 1= sup,cx 172 ()l = sup,ex [72(ag(f)]] = sup,ex [7=(f(- g7 )|

by replacing x by gz , since for every x € X : |7, (f)|| = HUgm(f)Ug* ,
where U, is the unitary operator on I?(I'\G) : Uy0rp, = dppg-1. Therefore ,
and since |7, (f)|| = ||7=(f)|| , for every x € X , i conclude that the kernel of

the representation 7, is isomorphic to G , since s — «a; is a homomorphism

and ker7 = () ker7, = [ G=G.

zeX reX
By the universal property of C*(7(Co(T'\X)),U,, g € G) := A, there is
a Homomorphism H from this algebra onto Co(I'\X) x, G taking 7(f) €
B(®.ex(Co, @ P(T\G) @ 1*(G))) to f € Co(I'\X) and U, to U;.

(The point is that . . . . the composed map C.(I'\G xr X) —
Co(T'\X) X4, G extends to an isomorphism : CH(I'\GxrX) — Co(I'\ X)X, G
. I will import a diagram above here to clarify this . )

C¥(T'\G xr X) is the completion of C.(I'\G xr X) with respect to the
norm defined by the representation m = (@ex7z) , || fI| = supgex [|172(f)]l2
. Then by the first iso thm , C}(I'\G xr X) = Cy(I'\G) X, G.

For the special case when I' = {e} , we have the following :

Claim 5 C!(G x X) is isomorphic to Co(X) Xar G.
Proof. For each x € X | define a map :
I, : C.GxX)— B(I*G)®PQ)) = B(I*G)® B(*G))

IL(f)(6n®6y) = mu(ag-1(f))0n ® g
HI<U9>((5Z (024 5h> = 5[ X 5gh

where a,(f)(z) = f(g7'z) , for f € Co(X) .
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Lemma 6 1.2
There exists a conditional expectation

E:CHI\G xp X) — Co(T\X)

such that :
E(f)(x) = fle,x)
for f € C.(I'\G xr X) .
Proof. If B C A are C*—Algebraes , a map E : A — B is called a Condi-
tional Expectation if : 1) E is a projection onto B.i.e. (E(x) =z , Vx € B)

w) E is B=bilinear : E(zy) = E(x)y and E(yx) = yE(x) , for all x € A,
y € B and w) E is Positive.

For each x € X define a state w, on C}(I'\G xr X) by :
wz(a) = (m(a) - or, dr).
Then the function E(a) on X defined by :
E(a)(z) = ws(a)

is bounded by |lal|. As E(f)(x) = f(e,x) , for f € C(T\G xr X) (
since wy(f) = (72(f)or,0r) = X erg f(s,2) - drs,0re) = fle,z) ), we
conclude that E(a) € Co(I'\X) for every a € C¥(I'\G xr X).Thus E is such
a conditional expectation. m

The Boxproduct X

Let Y C X be a I'-invariant clopen subset (I'Y C Y').Then the charac-
teristic function 1p\y of the set I'\Y is an element of the multiplier Algebra
of C¥(I'\G xr X). See this by using the embedding X — G x X , z — (e, 2)
, to consider T'\ X as an open subset of I'\G xr X , and then the algebra
Co(I'\X) as a subalgebra of C(I'\G xr X).

Denote by I'\G Kr Y the quotient of the space :

{(9.2) ,g€G 2€Y ,greY}

e by the action of I' x I :
(71:72) (9, ) = (11972 1, 72)
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Then
]_F\yCC(F\G Xr X) ].F\y = CC(F\G &1’* Y)

Therefore the algebra 1p\y C (I'\G xpr X )1y , which we denote C; (I'\GXp
Y') is a completion of the algebra of compactly supported functions on I'\ GX
Y with convolution product given by :

(hxR)gy)= D filgh™ hy)- falh,y)

heT\G:hyeY

and involution :

[ (g.y)=flg " 9y)

Observe that m,(1r\y) is the projection onto the subspace I*(T'\G,) ,
where the subset G, of G is defined by :

G,={9€G|lgreY}

Then , for f € C.(I'\GXr Y) and h € G, we have :

Wx(f)(th = Z f(gh_17 hﬂf)érg

gEF\Gz

Soif x ¢ GY , m.(f) = 0 in particular. We saw above that the represen-
tations 7, and 7y, are unitarily equivalent for any g € G.Therefore we can
conclude that C*(I'\G KrY) is the completion of C.(I'\GXrY) in the norm

If[I' = sup [z, (f)]] -
yey

Hecke Pairs

Consider the algebra C(I'\G xr X). Our next goal is to show that under
an extra assumtion on the pair (G,T") , the multiplier algebra contains other
interessting elements in addition to the I'-invariant functions on X.

The pair (G, T) is called a Hecke pair if I and gT'g~" are commensurable
for any ¢ € G. That (I',gl'g™!) are commensurable means that I'(gT'g~!

13



C I' is a subgroup of finite index. Equivalently , every double coset of I"
contains finitely many right ( and left ) cosets of I' | i.e. :

Rr(g) == [I\I'gl'| < oo,
for any g € G.

If (G,T') is a Hecke pair , the space H(G,I") of finitely supported functions
on I'\G/T is a x-algebra with product :

(frxf)lg) = D filgh™)falh),

hel\G

and involution : B
flg9)=rlg™).
We can consider the functions f € H(G,I") as bounded operators on the
Hilbertspace [?(I'\G) represented as :

forn= > flgh™)-org

gel\G

The corresponding completion is called the reduced Hecke C*-algebra of
(G,T") and denoted by C}(G,TI'). Denote by [g] the characteristic function of
the double coset I'gl', considered as an element of the Hecke algebra.

The elements of H(G,I") may be considered as continous functions on
['\G xr X. Although these functions are not compactly supported in general
, the formulas defining the x—algebra structure and the regular representation
of H(G,T") coincide with (1.2)-(1.4).

Moreover , the convolution of an element of H(G,T") with a compactly
supported function on T'\G xp X gives a compactly supported function
: If fi = [¢g1] , and the support of fo € C.(I'\G xr X) is contained in
(' x I')({g2} x U) for a compact U C X , then the support of fi * fs is
contained in (I" x I') (g1 'g2 x U). Since I'\T'g1"gs is finite , we see that fi * fo
is compactly supported on I'\G' xp X. Therefore , we have :

Lemma 7 1.3
If (G,T) is a Hecke pair , then the reduced Hecke C*—algebra C¥(G,T)
is contained in the multiplier algebra of the C*—algebra C}(I'\G xr X).
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2. Dynamics and KMS-states

Assume as above that we have an action of G on X such that the action
of ' C G is proper , and Y C X is a I-invariant ( I'Y C Y') clopen set.
Assume now that we are given a homomorphism :

N:G—R: = (0,+00)

such that I' is contained in the kernel of N. We define a one-parameter
group of automorphisms of C;(I'\G xr X) by :

oi(f)(g,z) = N(9)" - f(g,)

, for f € C.(I'\G xr X). More precisely : We denote by N the selfadjoint
operator on [*(T'\G) defined by :

N - drg = N(g) - ory

Since N is selfadjoint ( easy to check) , then by applying functional calculus
for bounded operators on Hilbertspace with f;(z) = 2% , the operator N
€ B(I*(T'\G)) is unitary , implementing the dynamics o, spatially by its
associated unitary operator (®,ex N%) on (Brex?(T\G)).

In other words , o o
m.(0y(a)) = N (a) N~

for all z € X . See this by considering the operatoraction as represented on

ZQ(F\G) :
Wm(Ut(f)) “Orp = Z at(f)(gh_l, hx) : 5F9

gel\G

= D N(gh™)"- f(gh™' ha) -org = > N(g)"N(h™")" f(gh™", he) - br,
gel\G gel\G

= > N(g)"N(h) " f(gh™" ha)-org = Y N(g9)"f(gh™" ha)N (k)™ - br,
gel\G gel\G

= > NUf(gh™ ha)N(h) ™" - 6rg = N'mo(f)N " - 1.
geM\G

A semifinite o—invariant weight ¢ is called a 0 — KM Sz—weight if , or
equivalently , it satisfies the 0 — KM S condition at inverse temperatures
g eRif:

plaa”) = @(aiga(a) oiga(a)),
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for any o—analytic element a.( An element is called o—analytic if the
map R — CHT'\G xr X) , t — o(a) extends to an analytic map C —
Cx(T\G xr X) . Amap f:C — CfT'\G xr X) is called analytic if p o f is
an analytic function for any ¢ € (C*(I'\G xr X))*.)
If ¢ is finite , then the K M S—condition is equivalent to
p(ry) = p(yois(r)) ,

for any o—analytic z,y. This follows from

o(yois(z)) = @(Ufiﬁm(y)ffiﬁﬂ(%)) = <P(Ui5/2(y*)*<7¢6/2(f))
and the identity :

vy = (" aky?) —(a—y Yoy iy oty ) —ile—iy") a—iy")).

The following result will be the basis of our analysis of K M.S—weights.

Proposition 8 2.1 Assume the action of G on X is an action without fix-
points (free action) , so that in particular '\G Kr Y is a genuine groupoid.
Then for any § € R , there exists a one-to-one correspondence between
o — K MSs weights ¢ on C(I'\GXrY') with domain of definition containing
C.(T'\Y) Radon measures p on Y such that

w(gZ) = N(g) " u(Z)

2

for every g € G and every compact subset Z C Y such that gZ C Y.
Namely , such a measure p is I'—invariant , so it determines a measure v on
['\Y such that :

/Y F(w)duly) = /F\Y S S | avit)

yep~1({t})

for f € C.(Y) , where p: Y — T'\Y is the quotient map , and the associated
weight ¢ is given by

o= [ B@@dn) .
r\Y
where F is the conditional expectation from Lemma 1.2.
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Proof. For I' = {e} the result is well-known , see e.g. [19, Proposition 11.5.4]
. For arbitrary I' , a way to argue is as follows :

Since the action of I' on Y is free , the quotient space I'\G Xr Y is an
etale groupoid. In fact it is an etale equivalence relation on I'\Y | or an
r-discrete principial groupoid in the terminology of [19].To veryfy this , we
have to check that the isotropy group of every point in I'\Y is trivial , that
is , if ¢ € G is such that gy € Y and p(gy) = p(y) , for some y € Y ,
then (g,y) belongs to the (I' x T') - orbit of (e,y). But on the other hand
,if p(gy) = p(y) , there exist v € I" such that ygy = y. Then vg = e ,
since the action of G is free , and therefore (g,y) = (77!, ¢)(e,y). Then by
[19, Proposition 11.5.4] ,

o — K M Sg—weights with domain of definition containing C.(I"\Y") on the
C*—algebra C¥(I'\G X Y)) of the etale equivalence relation are in ono-to-
one correspondence with Radon measures v on I'\Y with Radon-Nikodym
cocycle (p(y), p(gy)) — N(g)”.

This means that :

If we assume Yj is an open subset of Y such that the map p: Y — I'\Y
is injective on Yy , and g € G is such that gYy C Y. Define an injective map

g : p(Yo) — p(gYo)
by g(p(y)) — plgy)

fory € Yy, and let g.v be the push-forward of the measure v under the map
g , which again means that : g,v(Z) =v(g *(2)) , for Z C p(gYs). Then :
Y~ N(9)® on plg¥).

Therefore ; if we denote by p the I'—invariant measure on Y corresponding
to v via (2.2 below) , then to say that the Radon-Nikodym cocycle of v is
(p(y),p(gy)) — N(g)? is the same as saying that p satisfies : u(g2) =
N(g)Pu(Z) , for every g € G and every compact subset Z C 'Y such that
gZ C Y.( the scaling condition).

Recall that a Radon measure on Y is a Borel measure which is finite
on compact sets , outer regular (*) on all Borel sets , and inner regular(**)
on all open sets. Then , by The Riesz Representation Theorem , for each
positive linear functional , and hence also for each 0 — KM Sz—weight with
domain of definition containing C.(I'\Y') on the C*—algebra C(I'\G Xr Y))
, there exist an unique Radon measure v on I'\Y such that o(f) = [ f dv,
for f € C.(T'\Y) , ¢ a 0 — KMSz—weight. This establishes the one-to-one
correspondence above. m
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The next lemma is about extension of the Radon measure y from Y to
GY :

Lemma 9 2.2. If i is a measure on'Y as in Proposition 2.1 , then it extends
uniquely to a Radon measure on GY C X satisfying (2.1) for Z C GY and
g€ (.

Proof. We can choose Borel subsets Y; C Y and elements g; € G such that
GY = U;g;'Y; , where U denotes disjoint union. There is only one choice

for a measure extending ;1 and satisfying (2.1) on GY , namely , for a Borel
subset Z C GY let

ZN 9)P (g Z NY;).

To show that p(Z) is independent of any choices and that the extension
satisfies (2.1) , assume GY = U;h;Z; for some h; € G and Borel Z; C Y. Let
g € G. Then :

> N(g:)’u(gigZnY;) = Z N(g:)® > nlgigZ NY; N gigh;* Z;)
( ] J

= Z N(g:)? - Z N(gigh; ") Pu(h; Z) N hig™ g, 'Y; N Z;)

= ﬂZN Z,uhZﬁth LY, N Z;)

= 5ZN u(h; Z N Z;).

Taking g = e we see that the extension of  to GY is well-defined. But
then for arbitrary g the above identity reads as :

u(gZ) = N(g)u(2).

Lemma 10 2.4. Let Yy be a I'—invariant Borel subset of Y such that :

(2) if gYo NYy # O for some g € G, then g€ T ;

(1) for any y € Y , there exists g € G such that gy € Yj.

Then any I'—invariant Borel measure on Yy extends uniquely to a Borel
measure on Y satisfying the scaling condition from Proposition 2.1.
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Proof. Let y, be a I'—invariant measure on Yj. Since the assumptions imply

that Y is a disjoint union of translates of Y by representatives of the right
cosets of I' | that is , Y = Lprg(h™ 'Yy NY) , there is only one choice for a
measure p extending p, and satisfying Proposition 2.1 , namely ,

w(2Z) = 3 N uo(hZ N Yo).
h:T\G

Since pi, is I'—invariant , ©(Z) is independent of the choice of represen-
tatives , so all we need to check is that Proposition 2.1 holds : Let g € G.
Then

w(gZ) = > N(h)’ue(hgZnYy) = N(9)™ Y N(hg)’po(hgZnYo) = N(g) P u(Z)
h:T\G h:T\G

which proves the Lemma. m

Although the condition for a measure v on I'\Y to define a KMS-weight is
easier to formulate in terms of the corresponding I'— invariant measure on Y
, it will also be important to work directly with v. For this we introduce the
following operators on functions on I'\ X. We shall often consider functions
on '\ X as I'—invariant functions on X.

Definition 11 2.5. Let G act on a set X and suppose (G,T') is a Hecke pair.
The Hecke operator associated to g € G is the operator T, on I'—invariant
functions on X defined by :

(T, f) () = — L)

RF (g) l € I\I'gl’ (finite)

Clearly T,f 1is again T—invariant. Recall that [g~'] denotes the charac-
teristic function of the double coset T'g~'T" considered as an element of the
Hecke algebra. The map :

[971} — RF(Q)TQ

is a representation of the Hecke algebra H(G,T') on the space of '—invariant
functions.
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Notice that for X = G , this is exactly the way we defined the regular
representation of H(G,T') on I*(\G) : For f € H(G,T') , considered as
operator on I*(T\G) , we defined its action by :

forn = Z FRTY) - oy

le\G

Indeed , for f = [g7'] , using the regular representation ( on I*>(T\G) )
we get :

[g7'] - 0rn = Z g7 (W) o = Z drg-1r(lh ™) - Ory

len\G len\G

so ([g7'] - 0rn)(s) = 1, if sh™ € Tg7'Tl' & s € T'¢g7'Th and = 0
otherwise.

On the other hand ,

using the representation o : C*(G,T) — B(I*(T\G)) defined as above by
lg7] = Rr(g)T, , we get :

o([g7']) - 6rn(s) = Rr(g)Ty(6rn)( Z Sra(ls)

1 € I\I'gl

so (o([g7Y]) - 0rn)(s) = {1, if h € Tgl's < s € Tg 'Th ,and = 0
otherwise.

By decomposing an arbitrary X into G—orbits one can obtain that [g7'] —
Rr(9)T, is a representation without any computations.

The following three lemmas will be our main computational tools :

Lemma 12 2.6. Suppose p is as in Proposition 2.1 and that v is the measure
on I'\Y determined by (2.2). Assume further that Y = X , the action
of G on X s free and that (G,T') is a Hecke pair with modular function

Ar(g) == %. Then for any positive measurable function f on T'\X and

g € G, we have :

ﬁwa@_AF ,/ f dv.

Proof. Let us first prove the following claim : m
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Claim 13 There exist a neigbourhood U of x such that the sets hU are dis-
joint for different h in Tg™'T'. Fiz a point x € X. Choose representatives
hi, ha, ..., h, of the right T'—cosets contained in T'g~1T'. Since the action of
I' is Proper , there exist a neighbourhood U of x such that if h,U Nyh,;U # &
for some i,j and v € I' then h;x = vh;x. But since the action of G is free ,
the latter equality is possible only when h; = vh; , so that i = j and v = e.
Thus h;UNyh;U = @ ifi # j ory # e. Since Lg™'T' = UP_ Thy, , this proves
the claim.

Proof. We conclude from the claim that the set '¢7'I'U is a disjoint union
of the sets hU , h € I'g™'T". So we can write :

Y Lwrv=lrgerr = Y, lrw,

h:I\I'gT' h:IT\I'g—1I"

Denoting by p : X — I'\ X the quotient map , we can rewrite the above
in terms of functions on I'\ X as

Re(9)Ty (L)) = Lpwrg-1rvy = Z Lp(htr)-
h:IT\I'g—1I'

It follows that

Re(g) /F\XTgap(U)) =3 )= 3 pht) = Re(g )N () w(p(U)).

h:T\I'g—1T" h:T\I'g—1I"

In other words , the identity in the lemma holds for f = 1,). Since this
is true for any = and sufficiently small neigbourhood U of = , we get the
result. m

Notice that by applying the above lemma to the characteristic function
of X , we get the following :

If a group G acts freely on a space X with a G—invariant measure yu , and
[ is an almost normal subgroup of G ( that is, (G,I") is a Hecke pair ) such
that the action of I' on X is Proper and 0 < u(I'\X) < 0o , then Ar(g) =1
for any g € G. The same is true if we assume that the action of G on (X, )
is only essentially free.

Lemma 14 2.7. Suppose p is as in Proposition 2.1 and v is the measure on
I\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,T) is a Hecke pair. Assume further that Yy is a I'—invariant measurable
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subset of 'Y such that if gYoNYy # & for some g € G, then g € I'. Then for
any g € G such that gYy CY , measurable Z C T'\Yy and positive measurable
function f on T\Y , we have :

/ f dv = N(g)*Re(g) / T,f dv .
TgZ Z

where TgZ = p(Tgp~'(Z)) and p : X — T\X is the quotient map. In
particular , v(LgZ) = N(g)=" - Rr(g) - v(Z).

Proof. Suppose Z C I'\Y} is measurable , and choose U C Y, measurable
such that Z = p(U) and p is injective on U. For g € G let hq,....,h, be
representatives of the right I'—cosets contained in I'gI'. Then we claim : =

Claim 15 The quotient map of I' , p , is injective on hiU, ....... ,h, U, and
the images under p of these sets are disjoint.

Proof. Assume p(h;z) = p(h;y) for some 7,5 and z,y € U , so that
vhiz = h;y for some v € I'. Since U C Y}, , our assumption on Yj implies
that hj_lvhi € I'. But then , since p is injective on U , we get * = y ,and
since the action of I' is free , we conclude that h;lfyhi = e. It follows that
© = j and h;x = hjy which proves the claim. =

Proof. Furthermore , the union of the disjoint sets p(h,U) , ........ ,p(hp,U)
is the set ['¢gZ = p(T'g p~*(Z)).Hence , since I' C ker N , N(h;) = N(g) for
1=1,... ,N

fdv= Z/hU fop du = N(g)QZ/Uf(p(hi)) dp = N(g)~"Rr(g) /ZTgf dv.

I'gZ

The last assertion of the lemma , that v(I'gZ) = N(g9)™* - Rr(g) - v(2)
follows by taking f = 1p,7 and observing that in this case (7,f)(z) =1, for
z€Z. n

For the next lemma , we introduce the following notation.

Definition 16 2.8. If 5 € R and S is a subsemigroup of G containing I" |
then we define

Csr(B) =Y N(s)™= Y N(s)Re(s).

s:T\S s : T\S/T
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Lemma 17 2.9. Suppose p is as in Proposition 2.1 and v is the measure on
I\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,T') is a Hecke pair. Assume further that Yy is a measurable I'—invariant
subset of Y , and S a subsemigroup of G containing I such that :

() if Yo NYy # @ for some g € G then g € T

(11) UsessYy is a subset of Y of full measure ;

(1) Cor(8) < oo.

Let Hg be the subspace of S—invariant functions in L>(T\Y,v) , that is ,
functions f such that f(y) = f(sy) for alls € S and a.a. y €Y . Then :

(1) if f € Hs then | fI13 = Cor(8) fynyy £ d(d)

(2) the orthogonal projection P : L*(T\Y,dv) — Hg is given by

Pflsy=Csr(B)™" D N(s)"Re(s)(Tuf)(y) ,

s: T\S/T

(2.3)

fory e Y.

Proof. By condition (¢) the sets I'sY, are disjoint for s in different double
cosets of I'. Since the union of such sets is the whole space Y (modulo a set of
measure zero) , by Lemma 2.7 applied to Z = T'\Y, for any f € L*(T'\Y, dv)
we get :

5= 3 [ ifar= 3 NGRS [ TP

s:T\S/T sel'\S/T \Yo

(2.4)

Since T,(|f|°) = | f|? for f € Hg , this gives (1).

To prove (2) , denote by T the operator on L*(T'\Y,dv) defined by the
asserted formula for P. To see that it is well-defined , notice first that the
summation in the right hand side of (2.3) is finite for f in the subspace
of L?—functions supported on a finite collection of sets of the form p(sYp)
,s € S, which is a dense subspace of L?(I'\Y, dv). Thus the function T'f is
well-defined for f in this subspace and , putting a, = (gp(8) "' N(s) P Rr(s)
and using (2.4) twice , we get :

ITAIE = Cor(B) /

I'\Yp

TP dv < Corn(B) / S TP | v =If1

M\Yo \ ser\s/r

It follows that T" extends to a well-defined contraction. Since T'f = f for
f € Hg , we conclude that T'= P. m

23



3. THE CONNES-MARCOLLI SYSTEM

Consider the group G = GL3 (Q) of invertible 2 by 2 matrices with ratio-
nal coefficients and positive determinant , and its subgroup I' = SLs(Z). For
a prime number p consider the field Q, of p—adic numbers and its compact
subring Z, of p—adic integers. We denote by A, the space of finite adeles
of Q , that is , the restricted product of the fields of Q, with respect to
Zy ; Ay = {(ap)pep|a, € Q,Vp, a, € Z, for all sufficiently large p} and by

7 =112, = {(ap)pep | ap € Z,} its maximal compact subring . The field
P
Q is a subfield of Q, since Q, is a closure of Q in the p-norm (if ¢ = p"¢

, (pta,pth), then |qll, =p™™ ) . Therefore GL; (Q) can be considered

as a subgroup of GLy(Q,). In particular , we have an action of GL3 (Q) on
Mat»(Q,) by matrix-multiplication on the left.

Moreover , we have the following diagonal embedding of Q into Ay :

Q Cc
a — (ap)pep € Ay
for every a € Q ,

ﬁ n
m (pllﬂ'777)'p7ljci>’

where we assume n and m € Z with ged(n, m) = 1 ( n and m are relatively

prime ) and k; > 1. Then a ¢ Z, if p = p; for some i , 50 a ¢ Z = [[ Z,.
peP
Contrary a € Z, if p # p; for any ¢ .From this we see that for any a € Q ,

eventually , for p € P large enough a € Z, . Hence the map : a — (a,)pep
embeds QQ diagonally into A ;. Extending this on the matrix entries , we get
an embedding of GLj (Q) into GLa(Ay) , and thus an action of GLj (Q) on
M at2 (A f) .

In addition GLj (Q) acts by Mgbius transformations on the upper half-
plane H. Therefore we have an action of GL3 (Q) on Hx Mats(A ;) such that

forg= (¢ ) 7€ Handm = (m,), € Mana(A)).

at+b

m» (gmp)p)-

g(7, (myp)p) = (
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Note that the action of SLs(Z) is proper , since already the action of
SLy(Z) on H is proper.

The G'Ly—system of Connes and Marcolli is now defined as follows :

Definition 18 3.1. The Connes-Marcolli algebra is the C*—algebra A =
CrT\GXrY) , where G = GL; (Q) , T = SLy(Z) , G acts diagonally on
X = H x Maty(Ay) , and Y = H x Maty(Z) . The dynamics o on A is
defined by the homomorphism N : GL3 (Q) — R% , N(g) = det(g).

Notice that since I'\H is not compact , the algebra A is nonunital . By
[5, Lemma 1.28] , the action of GLj (Q) on X\ (Hx{0}) is free. Recall briefly
the reason : If for g € GL$ (Q) gm = m for some prime number p € P ( P
denotes the set of all Prime numbers ) and nonzero m € Maty(Q,) , then the
spectrum of the matrix g contains 1, and hence g = ( ch Z ) ,(a,b,e,d e Q
and ad — bc > 0 ) is conjugate in GL; (Q) to an upper-triangular matrix (
by Linear Algebra ) : §‘ = ( 8 2 ) . But then ¢ has no fixed points in
H , since the corresponding Mgbius transformation for any upper triangular
matrix only has fixpoints in R , but not in the upper halfplane H . Note that
this actually implies that the action of GL3 (Q) on Hx Maty(Q,)* , where
Mats(Q,)* = Mata(Q,) \ {0} , is free for any prime number p. Although
the action of GL (Q) on Hx {0} is not free , this set can be ignored in the
analysis of K M Sz—states for § # 0. This is proved in [5 , Proposition 1.30].

Again | recall briefly the reason :

Consider the action of G on X = X\(Hx {0}), put Y = Y\(Hx {0}) C
X , and then define [ = C*(T\GXpY) . Then I can be considered as an ideal
in A , and the quotient algebra A/I is isomorphic to C*(I'\G xr H) . Now
, if ¢ is a KM S state on A | the restriction ¢|; := ¢; canonically extends
to a K M S—functional on the multiplier algebra of I in the following sense :
Consider the GNS-representation of I C A given by the triple (H,,, 7, &, )

Then , if we let I, denote the multiplier algebra of I C A , the GNS
representation : m,, : I — B(H,,) canonically extends to 7 : [, — B(H,,) ,
forif x €l ,bel,, then

T(0)7g, (2)8y, = m(br)E,, = Ty, (b1)E,,

Now , if we check that the extension 7 is bounded on I, as extension
of m,, from I to I, , it is welldefined by the above equation. For this , let
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{e:} be an approximate unit in I with 7, (e;) /1 in the Strong Operator
Topology . Then we have :

T(b)y, (2)€,, = m(bx)E,, = lizm Ty, (beiz)§, = h{nﬂ—@[(bei)ﬂ-ipz(l‘)fsﬁ
from which we conclude that :
(D) < Tim [, (bes) || < lim [be; ]| < [|b]

Then what is called the canonical extension of ¢; to @ on I, is defined
accordingly ; again if 0 < bel, ,and0 <z € l:

p(0) = (m(b)E,, &) = limp(be;) = lim(m(b)7y, (€:)E,, T, (€1)S,,) = limpp(eibe;)

AsI Cc AC I, , @isa (positive) K M S—functional on A.But then ¢ < ¢
:Forifae A, 0<a, then evaluating

pla) = (m(a),,.&,) = (n(a)2E,,,m(a)2E,,) = lim(m,, (e;)m(a

, 11
= h;rn (my, (a%e;a2)E, €, )

N
N

)8o,rm(a2)E,,)

The last equality since e; " 1 in the strong operator topology. Then
further
).

1

pla) = lim (r, (abeiad)s,, &,,) = lim py(abea

[NIES

. . 11 11
Now , since 0 <e; <1,V i wehave az2e;a2 < a2a2 = a , and thus

N

pr(azea?) = plazeas) < p(a).

Therefore L
B(a) = lim p,(a>e,0%) < ola).

Thus we get a K M S—functional < o on A. If » # ¢ then (p—@)isa
positive nonzero K M S—functional on A which vanishes on [ . It follows that
it factors through the canonical quotient map g : A — A/I since it is constant
on equivalence classes . Hence we get a KM S—state on A/ = C*(I'\G xr
H). By Lemma 1.3 the multiplier algebra of C*(I'\G xr H) contains the
reduced Hecke C*—algebra C¥(G, I'). The latter algebra contains in turn the
C*—algebra Z(G)/(Z(G) NT) , where Z(G) is the center of GL3 (Q) , that
is , the group of scalar matrices. But since the dynamics scales nontrivially
some unitaries in this algebra , the algebra can not have any KM .Sz—states
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for § # 0. This contradiction shows that ¢ = @ , so that ¢ is completely
determined by ¢;.

Since the action of G on X = H x Maty(A;)* , where Maty(A;)* =
Maty(Af)\ {0} , is free , we can apply Proposition 2.1 and conclude that
there is a one-to-one correspondence between KM Sz—weights on I with do-
main of definition containing C,(I'\Y) and measures zon Y = Hx Maty(Z)*
such that :

w(9Z) = det(q) *u(Z)

if both Z and gZ are subsets of Y. Then by Lemma 2.2, we can uniquely
extend any such measure to a measure on X = GY = H x Maty(Af)* such
that :

ugZ) = det(g)™"nu(2)
. but now for all Z C X.

To get a state on [ = C*(I'\G X Y) we need the normalization condition
w(T\Y) = 1 (that is , the I'—invariant measure y on Y defines a probability
measure on I'\Y ) . Note also that if 5 # 0 and we have a measure on
X = Hx Maty(Ay) with the same properties as above , then Hx Maty(Af)*
is a subset of full measure , since scalar matrices act trivially on H and so
H cannot support a measure scaled nontrivially by them.

Summarizing the above discussion we get the following :

Proposition 19 3.2.For § # 0 there is a one-to-one correspondence be-
tween 0 — K M Sg—states on the Connes-Marcholli system and I'—invariant
measures jt on H x Maty(Ay) such that :

A

p(D\H x (Maty(2))) = 1 and p(9Z) = det(g) " u(2)
forany g € GL3(Q) and compact Z C Hx Maty(Ay).

Denote by Maty(Ay) the set of matrices m = (m,), € Matz(Ay) such
that det(m,) # 0 for every prime p. Notice that Math(Ay) is the set of
non-zero divisors in Maty(Ay) . Our next goal is to show that if 5 # 0,1
then Hx Maty(Ay) is a subset of full measure for any measure u as in
Proposition 3.2. First let us recall the following simple properties of the
Hecke pair (G,T') = (GL3 (Q), SLy(Z)) .

Put Mat3(Z) = GL3(Q) N Maty(Z) .
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Lemma 20 3.3. Every double coset of T in Mat3 (Z) has an unique repre-
sentative of the form ( 8 2 ) with a ,d € N and a | d . Furthermore

)

m(59)=5 T .

a p prime :pald

and as representatives of the right cosets of I' contained in I’ ( 8 2 ) r
ak am
0 «al

with k, | € N and m € Z such that kI = d/a , 0 < m <[ and

ged(k,l,m) = 1.
In particular , Rr(g) = Rr(gfl) , for every g € GL;(@)‘

we can take the matrices :

Before the proof of the above Lemma , let us recall the following facts
from matrix factorization and elementary number theory taken from A. Krieg

Fact 1 ( Lemma )

Given 0 # < CCL ) € 7Z* , there exist U € I satisfying :

U(Z):(g) 6 = ged(a, c).

We may replace CCL ) by %- < 2 ) € Z? and therefore assume ged(a, ¢) =

Proof :

1 without restriction. Hence there exist b, d € Z such that ad —bc =1 . Now
choose .
U:(“ b) :( ; _b)er.
c d —c a

Fact 2 ( Proposition )
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Given A € Maty(Z) , the right coset I'A contains an unique representative
of the form :

a b
<0 d) ,a,d € N, 0<b<d.

This immediately leads to the
Fact 3 ( Corollary )

Given ! € N theset M(I) = {A € Maty(Z) | det A= [} decomposes into

oi(l) == Z d

deN | dJl

right cosets relative to I' . A set of representatives is given by :

a b [
< S
<0d),whered€N,d|l,O_b<d and a g

And : In particular ( SLy(Z) ,GL; (Q) ) is a Hecke pair .

Proof : The first part follows by applying the above Proposition . For the
second part ; Given A € GL; (Q) , choose o € N such that «A € Mat; (Z)
.The assertion follows from § (I'\['AT') = # (I'\['aAT').

Fact 4 ( Proposition 2 )

Given A € Maty (Z) the right coset T'A contains an unique representative

of the form :
(a0>,a,d€N,0§c<a.
c d

Proof. (Omitted)
Fact 5 ( Observation )

Now , let 6(A) := ged of the entries of A , whenever A is a non-zero
integral matrix . Then : §(A)d(B) | 6(AB) , holds for all A, B € Mat3(Z) .
Another well-known number theoretical assertion we need is :
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Fact 6

Let a,c,d € Z such that a # 0 and ged(a, ¢,d) = 1 . Then there exist an
integer x € 7Z satisfying

ged(a, ¢+ xd) = 1.

Proof. a) The uniqueness of the entries a ,d in Lemma 3.3. follows from

the latter Observation . For the existence , we may assume §(A) =1 , since
A can otherwise be replaced by ﬁ - A . In view of Fact 4 ( Proposition 2

), we may already suppose that A has the form :

(CCL 2) ,a>0,d>0, ged(a,e,d)=1.

Next apply Fact 6 and determine x € Z with ged(a,c+ xd) =1 . The
entries of the first column of :

a=(ea) (e 0)=(laa)

are relatively prime . Due to the Lemma (Fact 1) , there exist U € T’
such that : _
- 1 b
vi= (g m )

NovvchooseV:(1 —1b) el toget:

0
T 1 b 1 —b a 0
owve (1 2Y(5 7= (5 0)erar
b) By the first part , it suffices to consider I' g 2 ) . Since a | d
a 0 i a .
o 4] € Mats (Z) and from Fact 2 , T’ 0 ) Posesses an unique

representative of the form ,a,de N and 0<b<d.

a b
0 d

Inwoke the Corollary ( Fact ) , second part above to get that a set of
representatives of the right cosets of I' contained in I" < g 2 ) I' is given by

(g 2) ,whered €N, d|l,0<b<d and a=1/d.
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This is equivalent to the statement which is to be proved here if : As
ald ,let g =phpk , (1 < k;). , we see that if p is a prime
such that pa | d , then p € {p1,p2,....,pn} , S0 by counting the number of

representatives of the form : b ) ,a,d €N and 0 < b<d and ad =1

a
0 d
such that d | [ , we get that it equals: ¢ []  (1+p~') . Therefore this
p prime : pald

ak am
0 al
€ N and m € Z such that kl = d/a and ged(k, [, m) = 1.

The last statement , that Rr(g) = Rr(g~?) for every g € GL3 (Q) follows
from the fact that for every g € GL3(Q) , there exist o € N such that ag €
Mat3 (Z) . Hence , since

set of representatives could be explicitly given as : ) , with &k,

g (T\Tgl') = ¢ (T'\T'agl)

-1
and < aok CZ? ) = ( 5:1 c?l ) - =, s0 in view of Fact 4 above we see

that : § (\I'gl') = § (T'\I'g~'T").
u

For a prime p put G, = GLj (Z[p~™']) € GL; (Q). Observe that if g € G,
then det(g) is a power of p , and if we multiply ¢ by a sufficiently large power

of g 2 , we get an element in Maty(Z) with determinant a power

of p. But by Lemma 3.3 the double coset of I' containing such an element
k

has a ( unique ) representative of the form : % ;3, ) , 0 <k <1l We

may therefore conclude that G, is the subgroup of GL3 (Q) generated by

I' and 10 . This since : T p 0 =" 10 I’ and if we set
0 p 01 0 p

(P 0 p O p O -1 1 4
g—(o pl)<01)weseethatf‘(01)f‘—l_li:0f‘ 0 p

1 .
_ P 0 1 3
and hence Igl’ = LI~ F((

0 p 0 p ) .As matrices of the form

< g 2 ) ,where a | d constitutes a basis for the double coset decomposition

of G, = GL (Z[p~']) € GL;(Q) , we get that I and < (1] g ) generates

G, . Furthermore , using the fact that a positive rational number is a power
of p if and only if it belongs to the group of units Z; of the ring Z, for
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all primes ¢ # p , we may also conclude that g € GLj (Q) belongs to G, if
and only if it belongs to GLs(Z,) for all g # p.

Lemma 21 3.4. We have GL2(Q,) = G,GLy(Z,).

Proof. Let r € GLy(Q,). Then rZ is a Z,—lattice in Q2 , that is , an
open compact Z,—submodule. By [22, Theorem V.2] there exist a subgroup
L = 7?7 of Q* , such that the closure of L in Q2 coincides with rZ2 , and the
closure of L in Qg is Zg forq#p.

Choose g € GL3(Q) such that gZ*> = L. Since gZ2 = rZZ , we have
g~'r € GLy(Zy). Since gZ? = Z; for q # p , we also have g € GLy(Z,) .

Hence g€ G). m

Lemma 22 3.5. Let p be a prime and 1, a I'—invariant measure on Hx Maty(Q,)
such that

(B {0)) = 0, (D\(HX Mats(Z,))) < 0 and p(97) = det(g) "1, (2)

forg € G, and Z C HxMaty(Q,). If B # 1, then the set (H x GLy(Q,))
is a subset of full measure in H x Maty(Q,).

Proof. Denote by 7 the measure on I'\(H x Mat»(Q,)) defined by the
['—invariant measure 1, . For a I'—invariant subset Z C Mat(Q,) , the set
HxZ is I'—invariant . We can thus define a measure v on the oc—algebra
of I'—invariant Borel subsets of Maty(Q,) by v(Z) = o(I'\(H x Z)) . Note
that since the action of I' on Maty(Q,) is not proper and , accordingly ,
the quotient space I'\Mat2(Q,) is quite bad , we do not want to consider
I'—invariant subsets of Mat2(Q,) as subsets of this quotient space and do
not try to define a measure on all Borel subsets of Maty(Q,) out of v .

If g € G, and f is a positive Borel I'—invariant function on Mats(Q,)
then by Lemma 2.6 applied to the function F : (7,m)+— f(m) on I'\(H x
Mat2(Q,)) we conclude that

/ T,f dv = / T,F dv = det(g)ﬁ/ F di = det(g)ﬂ/ f di
Mat(Qp) I\(Hx Mat2(Q)) I\(Hx Mat2(Qp)) Mat2(Qp)

By assumption we also have v(Maty(Z,)) < co. We have to show that
the measure of the set of nonzero singular matrices is zero.

We claim that the set of nonzero singular matrices with coefficients in Q,
is the disjoint union of the sets :

0 0
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This is proved in a standard way : given a nonzero singular matrix we use
multiplication by elements of GLy(Z,) on the right to get a matrix with zero
first column , and then multiplication by elements of SLs(Z,) on the left to
get the required form . To show that the sets do not intersect , observe that
the maximum of the p-adic valuations of the coefficient of a matrix does not
change under multiplication by elements g of GL2(Z,) on either side , since
if the maximum of the p-adic valuations should change , then such a g must
lie in GL3 (Z[p~']) . We saw above that this is equivalent to g € GLy(Z,)
for all ¢ # p. But then the coefficients of g ¢ Z, , which is a contradiction.

Consider the functions fy =1 , k € Z. For g = ( (1) »

that

0 ) :
1 | we claim

1 D
T fo = + .
aJo p+1f0 p+1f1

Indeed , since the action of G, commutes with the right action of GLy(Z,)
, the function T, fo is GL2(Z,)—invariant . fo =1 0 . As
SLa2(Zp) 0 1 GLa(Zyp)

Zo = uAeGLQ(Zp)SLQ(Zp) ( 8 (1) > A is the sum of right coset of ( 8 (1) ) A

with respect to SLs(Z,) . We have I’ ( (1) p(_] > I'=U7,Th;,so(T,fo)(z) =
jo (gg)zz 1 fo(hiz) does not depend on the choice of representatives h; € I'gI'.

n the other hand , the sets Z;, are clopen subsets of the set of singular
matrices (see * below) , so that the function f, is continous on this set .
But then T fj is also continous . Since f is right G Ly(Z,)—invariant , T, f;
is right GL9(Z,)—invariant . Furthermore fy is left GLo(Z,)—invariant and
hence also I'—invariant as I' C GLs(Z,).Therefore T}, f; is left I'—invariant .
As T is dense in SLy(Z,) , and T, fy is continous , we conclude that T, fy is
left SLo(Z,)—invariant since if 7, € I' and

then
(Tof)(yn) —n (Tof) ().
Hence T, f; is constant on the sets Zj, . So to prove the claim that T} fy =

. . . 0 0
]ﬁfo + 21 f1 it suffices to check it on the matrices : 0 P ) ke

1
.Sinceg:((l) p91>:<p0 p91)<§ (1]) , by Lemma 3.3 we can
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take the matrices

—1 —1

as representatives of the right cosets of I' contained in I'gI". Then

(3 8)- st (s 2 (0 B E (0 ) (3 8

0 npk—l

Since the matrices < 0 il ) and ( 0 b ) , 1 <n < p—1 belong

0
to Z,_1 , we see that

p

1
Tgf0|21 = m y Tgf0|Z0 = m and Tng|Zk =0 for k 7é 0, 1.

This is exactly what was claimed .
It follows from (3.1) that

1 p
BV(Z()) = mV(ZO) P T 1V<Z1)

-1

On the other hand , for g = ( pO p91 ) we get T, fr, = frs1 , so that

P~ Zy) = v(Zsa)-
If v(Zy) # 0 this implies that p~# is a solution of the quadratic equation
(p+ 1)z =1+pz?®,

Thus either p? = p~' or p™® = 1. Since B # 1 we get B = 0. But then
v(Zy) = v(Z,) for any k , and this contradicts v(Maty(Z,) < oo. The con-
tradiction shows that v(Zy) = 0 for any k , and we conclude that the measure
of the set of singular matrices is zero.

(*) To see that the sets Z are clopen , define a function :

h : {nonzero singular matrices} — R {pk}kez

h(A) = max|la;;l|, , for A= (a;;) anonzero singular matrix.
Z7J
As h is a continous function and
7. = SLo(7 0 0 GL —k fk 1 *k‘i’l
k= 2( p) Op 2 {p }—h ))
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, we see that the sets Z; are open .

On the other hand , for every k € Z the sets Z, = SLo(Z,) 00

0 pk ) GL?(ZP)
is the image of the compact space SLy(Z,) x GLy(Z,) under the map :

0 0
(AaB)_)A(O pk

) B, and hence can be considered as closed sets . m
We are now ready to show that for 8 # 0,1 the set Mato(A ;)\ Math(Ay)
of zero-divisors has measure zero .

Corollary 23 3.6. Assume 3 # 0,1 and i is a measure with properties
as in Proposition 3.2. Then H x Mat,(Ay) is a subset of full measure in
H x Matg(Af)

Proof. Fix a prime p. First of all note that the set
{(r,m) e HxMaty(Ay) | m, = 0}

has measure zero. Indeed , as we already remarked before Proposition
3.2 , the set H x {0} has measure zero . So if our claim is not true , the set

{hmweHmeﬂ%Xh%:O}

has positive measure . Since the action of I' on this set is free , there is
a subset U of positive measure such that YUNU = @ for y € I' | v # e.
p 0
0 p
that vU, NU, = @ for v € I' | v # e , since g commutes with ['. As Uy is
contained in H x Maty(Z) , it follows that u(U;) < 1. On the other hand ,
w(U) = p~2Pku(U). Letting k — —oc0 if 3 > 0 and k — +oo if 3 < 0, we
get a contradiction.

Consider now the restriction of y to the set

Then for g = < the set Uy = ¢*U , k € Z still has the property

H x Maty(Q,) x [[ Maty(Z,) ,
q#p

and use the projection onto the first two factors to get a measure y,, on
H x Maty(Q,) . By the first part of the proof the set H x {0} has p, -
measure zero. Since the image of G, in GLy(Q,) lies in GLo(Z,) for ¢ # p ,
the scaling property of p implies that

1,(92) = det(g) "', (2) for Z C H x Matz(Q,) , g € G,.
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Since the action of I" on H x Mats(Q,)* is free , the normalization con-
dition on g implies that p,(I'\(H x Maty(Z,)) = 1. Thus p, satisfies the
assumptions of Lemma 3.5. Hence H X G'L1(Q,) is a set of full y,—measure.
This means that the set of points (7,7m) € H x Maty(Z) with det(m,) = 0
has p—measure zero. By taking the union of such sets for all primes p and
multiplying it by elements of GL3 (Q) we get a set of measure zero , which
is the complement of the set Hx Maty(Ay). m

To get further properties of a measure p as above , let us recall the follow-
ing well-known computation . Denote by S, the semigroup G, N Mat; (Z).
Alternatively , S, is the of elements m € Mat] (Z) with determinant a non-
negative power of p. Then from Lemma 3.3 we know that as representatives

of the right cosets of I" in S, we can take the matrices ( % ZL ) 0<kkl

, 0 < m < pl. Therefore

[e.e]

Csp,r(ﬁ) = Z det(s)™" = Zp—ﬁ(kﬂ)pl _

sel\S, k,1=0
co,iff < 1,and (1—p ) A —p ™1 if3>1. (3.2)

Since I' = G,NGLy(Z,) , we can apply Lemma 2.7 to the group G, acting
on HxMaty(Ay)* and the set

Yo = H x GLy(Zy) x [ Maty(Z,).
q#p

Then for any s € S, we get
u(T\D'sYp) = det(s) 7 Rr(s)u(I'\Yo).

The sets ['sY} are disjoint for s in different double cosets of I' , and their
union is the set
H x Math(Z,) x [[ Mats(Z,) ,
q7#p
where Math(Z,) = Maty(Z,) N GLy(Q,). By Corollary 3.6 the above set
is a subset of H x Mats(Z) of full measure for 3 # 0, 1. Therefore we obtain

L= > wl\Is¥p)= Y det(s) “Ro(s)n(T\Yo) = (, r(B)u(T\Y0). (3.3)

s€l\Sp/T s€l\Sp/T

This gives a contradiction if § < 1. Thus for f < 1, 8 # 0 , there are no
K M Sg—states. On the other hand , for 8 > 1 we get :

u(T\Yy) = cs,r(8) ' =1 —pP)(1—p 7).
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Assuming now that § > 1 we can perform a similar computation for
any finite set of primes instead of just one prime . Given a finite set F'
of primes consider the group G'r generated by G, for all p € F. Put also
Sp = Mat$(Z)NGp. Then Sp is the set of matrices m € Mat3 (Z) such that
all prime divisors of det(m) belong to F. Let

Yy = Hx (H GL2<Z,,)> X (H Mat2(zq)> .

pEF q¢F
Then a computation similar to (3.2) and (3.3) yields :

Copr(B) = TT A=) A—p™" ) and p(T\Yr) = J] (1-p~7)(1-p~"). (3.4)

peEF peEF

The intersection of the sets Y over all finite subsets I’ of prime numbers

A

is the set H X GLy(Z). So for 5 > 2 we get :

p(M\(H x GLy(Z))) = [[(1—p )1 —p Py =((B) (B -1,

p

where ( is the Riemann (—function . On the other hand , for 3 € (1, 2]
we get u(I'\(H x GLy(Z))) = 0.

Assume now that 5 > 2. In this case similarly to (3.2) we have

CMat;(Z)I(B) = ((B)C(B = 1).

So analogously to (3.3) we get
p(D\Mat3 (Z)(H x GLy(2))) = Caarg 2,0 (B)n(T\(H x GLy(Z2))) = 1.

We thus see that Mat; (Z)(H x GLQQZ)) is a subset of H x Maty(Z) of
full measure . Hence GL3 (Q)(H x GLy(Z)) is a subset of H x Maty(Ay) of
full measure . By Lemma 3.4 the set GL3 (Q)(H x GLy(Z)) is nothing but
H x GL2(A.f)

To summarize , we have shown that for 5 > 2 the problem of finding all
measures ;1 on H x Maty(Ay) satisfying the conditions in Proposition 3.2
reduces to finding all measures on H x GLy(Ay) such that

u(9Z) = det(9)’pu(Z) and u(P\(H x GLy(2))) = ¢(8)7'¢(8 — 1)~

By Lemma 2.4 any I'—invariant measure on H x G Ly (Z) extends uniquely
to a measure on H x GLy(Ay) satisfying the scaling condition . Thus we
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get a one-to-one correspondence between measures fi with properties as in
Proposition 3.2 and measures on I'\(H x G Ly(Z) of total mass ((3)"1¢(8 —
1)~1. Clearly , extremal measures y correspond to point masses .

We have thus recovered the following result of Connes and Marcolli [5 , Theorem 1.26 and Cor

Theorem 24 3.7. For the Connes-Marcolli G Lo—system we have :

(v) for B e (—00,0)U(0,1) there are no KM Ss—states ;

(tt) for B > 2 there is a one-to-one affine correspondence between K M Sz— states
and probability measures on T\ (HxGLy(Z)) ; in particular , extremal K M Sz— states
are in bijection with T—orbits in H x G Ly(Z).
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