
THE CONNES-MARCOLLI GL2-SYSTEM
MASTER THESIS

Bjarte D. Berntsen

Fifteen years ago Bost and Connes constructed a Cdynamical system
with the Calois group G(Qab/Q) as symmetry group and with phase tran-
sition related to properties of L-functions . Since then there have been nu-
merous , and only partially succesful , attempts to generalize the system to
arbitrary number fields . A few years ago , in order to extend that con-
struction to imaginary quadratic feilds , Connes and Marcolli constructed a
GL2system , an analogue of the BC-system with Q replaced by GL2(Q).
They classified the KMSstates of the system for  > 2. Later Laca ,
Larsen and Neshveyev classified the KMSstates for all  = 0, 1.

1. Proper Gruppevirkning og Gruppoide
C-Algebraer

Let G be a group and X be a set. A Group action on a set X is a
homomorphism  from the group G to the group Homeo(X) of all home-
omorphisms from X to itself ( Aut(X)). Thus to each g  G is associated
a homeomorphism (g) : X  X , which for notational simplicity we write
simply as g : X  X.With this notation for the map :

GX  X

(g, x)  gx

with conditions :

(e, x)  ex = x, xX (1)

(g, (hx)) = (gh)x, xX, g, hG

are equivalent to requiring  to be a homomorphism.

Under these conditions , we say that X is a left G-set and we have a left
group action by G on X. Similarly , one can define a right action by letting
the elements of the group act on the space from the right instead.
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We consider cases where the group G is countable and X is a locally
compact second countable topological space.
A continous map f : X  Y is called proper if for every compact K  Y

, the space f1(K) is also compact. Accordingly , an action of G on X is
called proper if the map :

GX  X X (2)

(g, x)  (gx, x)

is proper. Then the space G/X , where points are identitied by the equiva-
lence relation of laying on the same G- orbit {Gx} is Hausdor. Assume that
G is a discrete group. Consider G X . The space X , which is a G-space
is called the unit space of GX. GX has the product topology and the
two maps , called the source map (s) and the range map (r) :

S,R : GX  X

s(g, x)  x

r(g, x)  gx

define a law of composition : ((g, y), (h, x))(GX)2  (g, y) ·(h, x)G
X , where :

(GX)2 := {((g, y), (h, x))(GX) (GX)| r(h, x) = s(g, y) = y}

We see that the product on GX are defined by the formula :

(g, hx)(h, x) = (gh, x)

In this wayGX becomes a groupoid (called the transformation groupoid)
, since every element has an inverse :

(g, x)1 = (g1, gx)

G  X has stabilizer subgroup Gx ={gG| gx = x} If G has stabilizer
subgroup equal to {e} for every x in X is equivalent to saying that the action
of G on X is free i.e. an action whitout fixpoints for other elements of G
than the identity.
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The set Cc(GX) of all continous functions on GX with compact sup-
port has a structure of involutive algebra given by :

(f1  f2)(g, x) =


hG

f1(gh
1, hx)f2(h, x)

f (g, x) = (f((g, x)1)̄)̄ = (f(g1, gx))̄

, where (g,x)1 = (g1,gx) Let C0(X) be the algebra of continous functions
on X that vanish at infinity. The product in C0(X) is the usual pointwise
product.

If the restriction of the action to a subgroup  of G is free and proper
, we can introduce a new groupoid : \G  X by taking the quotient of
GX by the action of   defined by :

(1, 2)(g, x) = (1g
1
2 , 2x)

The unit space of \G  X is \X , and the product is induced from
that on G  X. If the action of  is proper but not free , the quotient
space \G  X is no longer a groupoid , since the composition of classes
using representatives will in general depend on the choice of representatives.
Nevertheless , the same formulas for convolution and involution as in the
groupoid case give us a well -defined algebra. To see this , consider the space
Cc(\GX) of continous compactly supported functions on \GX. The
elements can be considered as (  ) -INVARIANT functions on G  X.
The convolution of two such functions are defined accordingly :

1. (1.1)
(f1  f2)(g, x) =



h\G

f1(gh
1, hx)f2(h, x).

To see that the convolution is well-defined :

Assume the support of fi is contained in (  )({gi}  Ui) , where
gi  G and Ui is a compact subset of X.(i=1,2). Let {1, ...., n} be the set
of elements    such that g2U2 U1 = .This set is finite since the action

of  is assumed to be proper.
If f2(h, x) = 0 , then there exist    such that h1  g2 and x  U2.

Since the number of ´s such that x  U2 is finite , the above sum must be
finite. If furthermore f1(gh1, hx) = 0 , then gh1 = ag1

1
b for some a, b
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, since (gh1, hx) is
contained in the support of f1 . We can replace h by another representa-

tive of the right coset h . If we replace h by bh , then gh
1 = ag1  g1,

and also hx  U1. If now h1 = ̃g2 with ̃   , we get hx = ̃g2x  ̃g2U2.

Hence ̃ must be equal to i , for some i , and therefore g  g1h = g1ig2.
Thus the support of f1  f2 is contained in i( )({g1ig2} U2). Thus
the set of representatives gi giving a nonzero contribution to the above sum
are finite and independent of the choice of   . The support of f1  f2 is

contained in a compact set , so f1 f2  Cc(\GX) , and the latter space
becomes a well-defined algebra. The convolution is also associative :

(f1  (f2  f3))(g, x) =


t\G

f1(gt
1, tx)(f2  f3)(t, x) =



t,h\G

f1(gt
1, tx)f2(th

1, hx)f3(h, x)

((f1  f2)  f3)(g, x) =


h\G

(f1  f2)(gh1, hx)f3(h, x) =


t,h\G

f1(gh
1t1, thx)f2(t, hx)f3(h, x) =tth1



t,h\G

f1(gt
1, tx)f2(th

1, hx)f3(h, x)

1. (1.2) Define also an involution on Cc(\G X) by :

f (g, x) = f((g, x)1)̄ = f(g1, gx)̄

If the support of f is contained in (  )({g0}  U) for g0  G and
compact U  X , then the support of f  is contained in :

(( )({g0} U))1 = ( )({g0} U)1 = ( )({g10 } g0U) ,

which is a compact set in (\GX) and therefore f   Cc(\GX) for
every f  Cc(\G X).

For each x  X , define a representation :

1. (1.3)

x : Cc(\G X)  B(l2(\G))

x(f)h =


g\G

f(gh1, hx)g
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Here g denotes the characteristic function of the coset g . Consider
g as a one of the unit basis vectors in the (standard) orthonormal basis
{g}g\G for l2(\G) .

Lemma 1 1.1 For each f  Cc(\G X) the operators x(f) , x  X ,

are uniformly bounded.

Proof. For 1, 2  l2(\G) we have :

|x(f) · 1, 2| 


g,h\G

f(gh1, hx)
 · |1(h)| · |2(g)|








g,h\G

f(gh1, hx)
 · |1(h)|

2





1
2

·






g,h\G

f(gh1, hx)
 · |2(g)|

2





1
2

.

(Applying Hølders inequality.)
Thus if we denote by fI the quantity :

max




 sup
xX,hG



g\G

f(gh1, hx)
 , sup
xX,gG



h\G

f(gh1, hx)





 ,

we getx(f)  fI for any x  X, so it suces to show that fI is
finite. Replacing x by h1x and g by gh in the first supremum above , we
see that this supremum equals :

fI,s := sup
xX



g\G

|f(g, x)|

As f (hg1, gx) = (f((hg1, gx)1)) = (f(gh1, hg1gx)) = (f(gh1, hx)

, we see that f(gh1, hx) = (f (hg1, gx)). Then the second supremum

must be equal to f I,s. Therefore fI = max

fI,s , f

I,s

. Now ,

the claim is that fI,s is finite for every f  Cc(\G X). If this claim is
true , the Lemma is proved.
Proof of Claim :
We may assume without loss of generality that the support of f is con-

tained in (  )({g0}  U) for some g0  G , and compact U  X. Since
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the action of  is proper , there exists n  N such that the sets iU ,
i = 1, ....., n + 1 have trivial intersection for any dierent 1, ....., n+1  .
Now if f(g, x) = 0 for some g and x,there exists    such that g1  g0
and x  U. Since the number of ́s such that x  U is at most n , we see
that for each x  X the sum in the definition of fI,s is finite .
To see that x is a representation , one has to check :

) x(f
) = (x(f))



) x(f1  f2) = x(f1) · x(f2)

x(f) · h =


g\G

f(gh1, hx) · g

Consider f  Cc(\G  X). As f =


s\G f(s, x) · s observe that
the vector  = e in l2(\G) is both cyclic and tracial for operators in
B(l2(\G))

Uge, e = 1 if g = e , 0 else ,

therefore , for all gi  G we have :

Ug1Ug2e, e = Ug1Ug2e, e

)

(x(f)h, t) =


g\G

f(gh1, hx)(g, t) = f(th
1, hx)

similarly ,

(h, x(f
)t) = f

(ht1, tx)̄ = f(th1, hx).

Hence
x(f)

 = x(f
).

) Can checked similarly to associativity of the convolution.

But let me see this from another perspective :
For each x  X , f can be thought of as a vector in l2(\G) ) . Let Ug

be the unitary operator on l2(\G) defined by Ugh = hg1 . Expanding
on the cyclic and tracial vector e gives :

f = (


g\G

f(g, x)Ug )e.

6



For each x  X , f can be thought of as a vector in l2(\G) ) , expanding
its adjoint on the cyclic and tracial vector e gives :

f  = (


g\G

Ug(f
(g, x)))e =



g\G

Ug(f
(g, x)UgUge =



g\G

Ug(f
(g, x))Ug g1

Proof. Let f1 and f2 be two functions in Cc(\GX). Then , for arbitrary
h  \G :

(x(f1  f2))h =


g\G

(f1  f2)(gh1, hx) · g =


g\G



t\G

f1(gh
1t1, thx) · f2(t, hx) · g

=


g\G



t\G

Uhf1(gt
1, thx) · f2(t, hx) · g =



g\G



t\G

Uhf1(gt
1, thx) · U1h · f2(th1, hx) · g

=


g\G



t\G

Uhf1(gt
1, thx) · Uh · f2(th

1, hx) · g =


t\G



g\G

Uhf1(gt
1, thx) · Uh · f2(th

1, hx) · g

=


t\G

Uh(hx(f1))U

h · t · f2(th

1, hx) = (x(f1) · x(f2)) · h

so ) is checked in this way of thinking . Hence x is a representation for
every (fixed) x  X.

Definition 2 We denote by Cr (\GX) the completion of Cc(\GX)

in the norm defined by the representation :

(xXx) : Cc(\G X) B(xX l2(\G)

, that is ,
f = sup

xX
x(f)

Remark 3 As we observed above , for every s  G and its associated unitary
Us  B(l2(\G)) such that Ush = hs1 , f  Cc(\G  X) and x the
representation defined above , we have

Usx(f)U

s = sx(f).
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Proof. Observe first that , for every g , s and h in \G , we have :

Usx(f)U

s · h = x(f) · hs = Us ·



g\G

f(gs1h1, hsx) · g =


g\G

Us · f(gs1h1, hsx) · g



g\G

f(gs1h1, hsx) · gs1 = gl=gs1


l\G

f(lh1, hsx) · l



Usx(f)U

s · h =



g\G

f(gh1, hsx) · h = sx(f) · h .

Hence

Usx(f)U

s = sx(f)

Therefore
x(f) = sx(f)

, and so

Remark 4
f = sup

xG\X
x(f)

Closely related is the notion of a Cdynamical system (A,G,) , where
A is a C-algebra, G a locally compact group and  is a homomorphism from
G into Aut(A). A covariant representation of ( A, G , ) is a pair (, U) ,
where  is a *-representation of A on a Hilbertspace H and

s  Us

is a unitary representation of G on the same H such that :

Us(A)U

s = (s(A)) ,

for all a  A , s  G.
Denote by g the automorphism (g) for g in G. The Cross Product ,

AG of a C-algebra A and a group G is the universal C-algebra generated
by A and unitaries vg , g G such that :

1) vgav

g = g(a)

2) g  vg is a homomorphism , g  G
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If G is countable and discrete , the space Cc(A,G) of continous compactly
supported A-valued functions on G is the algebra of all finite sums :

f =


tG

At · vt

with coecients in A.
One defines a C-norm by :

f = sup

(f)

, as  runs over all *-representations of Cc(A,G).
The supremum is always bounded by :

f1 =


tG

At

The supremum is always taken over a nonempty family of representations
because certain representations can be explicitly constructed. Let  be any
*-representation of A on a Hilbertspace H.Then one can always construct
the representation :

̃ : A G B(H  l2(G) = B(H)̄B(l2(G))
̃(a)(  g) = (1g (a))(  g)
̃(vg)(  h) =   gh ,

for   H and g, h  G.

Due to constuction , this representation is covariant :

̃(vg) · ̃(a) · (̃(vg))(  h) = ̃(vg) · ̃(a)(  g1h) = ̃(vg)(h1g(a)  g1h)
= (h1g(a))(  h) = ̃(g(a))(  h)

hence
̃(vg) · ̃(a) · ̃(vg) = ̃(g(A))

The Reduced Cross-Product , A r G is defined to be : = (A 
G))/Ker(̃) , where  is any faithful representation of A.

The functions f  Cc(\G X) can be considered as ( )-invariant
functions on GX . Define an action of G on Cc(\G X) by :

g(f) = f(h, (g
1x)).
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Define for each g  G the following unitaries vg on Cc(\G X) :

vgf(s, x) = f(sg, g1x)

f(s, x)vg = f(s, x)vg1 = f(sg
1, x)

For these
vgf(s, x)v


g = f(s, g

1x) ,

and as we have seen , C0(\X) can be considered as a subalgebra of
Cc(\G X) , so we have a Cdynamical system (C0(\X), G,).
Now , for each x  X , define a map :

̃x : Cc(\G X) G B(l2(\G) l2(G))  B(l2(\G))B(l2(G))
̃x(f)(h  g) = x(g1(f))h  g
̃x(vg)(l  h) = l  gh

By the calculation above , this representation is covariant for any Hilbertspace
H to which C0(\X)  Cc(\G  X) can be represented on, so also for
l2(\G). With Us the unitary operator defined above , observe that :

(Usx(f)U

s1)(s) = (sx(f)1)(s) = (x(

1
s (f))1)(s) = ̃x(f)(s)

, for f  C0(\X)  Cc(\G X) and   l2(\G) . Then we have :

̃x(f)(  g) = x(g1(f))(  g) = (Ugx(f)Ug )  g = (Ug  1)(x(f) 1)(U

g  1)(  g)

̃x(vg)(  h) = (1 vg)(  h) =   gh

and we get :

̃x(vg) · ̃x(f) · (̃x(vg))(l  h) = ̃x(vg) · ̃x(f) · (̃x(vg))(l  h)
= (1 vg) · ̃x(f) · (1 vg)(l  h)
= (1 vg) · ̃x(f)(l  g1h) = (1 vg)(Ug1h  1)(x(f) 1)(Uh1g  1)(l  g1h)
= (1 vg) · (Ug1hx(f)Uh1g  1)(l  g1h)
= (x(h1g(f)) 1)(l  h) = (x(h1(g(f))) 1)(l  h)
= ̃x(g(f))(l  h)

From this we conclude that ̃x , for every x  X, Ũg = (1 vg) and hence
also (xX ̃x) := ̃ , Ũ is a covariant representation of (C0(\X), G,).(C0(\X)
can be considered as a subalgebra of Cc(\GX). The embedding : X 
G  X , x  (e, x). In this way \X is an open subset of \G  X ,
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and then the algebra C0(\X) is a subalgebra of Cr (\GX).) Then , by
the Universal Property of the Crossed Product , there exists a representation
 of C0(\X)  G into C(̃(C0(\X)), Ũg, g  G) obtained by setting
(f) = ̃(f(s, x)) · Ũs , for f = f(s, x) · s = f(s, x) · Us · e.

Observe that f := supxX x(f) = supxX x(g(f) = supxX x(f(·, g1x)
by replacing x by gx , since for every x  X : gx(f) =

Ugx(f)Ug
 ,

where Ug is the unitary operator on l2(\G) : Ugh = hg1 . Therefore ,
and since x(f) = ̃x(f) , for every x  X , i conclude that the kernel of
the representation ̃x is isomorphic to G , since s  s is a homomorphism
and ker ̃ =


xX

ker ̃x =

xX

G = G.

By the universal property of C(̃(C0(\X)), Ũg, g  G) := A , there is
a Homomorphism H from this algebra onto C0(\X)  G taking ̃(f) 
B(xX(Cx  l2(\G) l2(G))) to f  C0(\X) and Ũg to Ug .

(The point is that . . . . the composed map Cc(\G  X) 
C0(\X)rG extends to an isomorphism : Cr (\GX) C0(\X)rG
. I will import a diagram above here to clarify this . )
Cr (\G  X) is the completion of Cc(\G  X) with respect to the

norm defined by the representation  = (xXx) , f = supxX x(f)l2
. Then by the first iso thm , Cr (\G X)  C0(\G)r G.

For the special case when  = {e} , we have the following :

Claim 5 Cr (GX) is isomorphic to C0(X)r G.

Proof. For each x  X , define a map :

x : Cc(GX) B(l2(G) l2(G))  B(l2(G))B(l2(G))
x(f)(h  g) = x(g1(f))h  g
x(vg)(l  h) = l  gh

where g(f)(x) = f(g1x) , for f  C0(X) .
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Lemma 6 1.2
There exists a conditional expectation

E : Cr (\G X) C0(\X)

such that :
E(f)(x) = f(e, x) ,

for f  Cc(\G X) .
Proof. If B  A are CAlgebraes , a map E : A  B is called a Condi-
tional Expectation if : ) E is a projection onto B.i.e. (E(x) = x , x  B)
) E is Bbilinear : E(xy) = E(x)y and E(yx) = yE(x) , for all x  A ,
y  B and ) E is Positive.
For each x  X define a state x on Cr (\G X) by :

x(a) = (x(a) · , ).

Then the function E(a) on X defined by :

E(a)(x) = x(a)

is bounded by a. As E(f)(x) = f(e, x) , for f  Cc(\G  X) (
since x(f) = (x(f), ) = (


s\G f(s, x) · s, e) = f(e, x) ) , we

conclude that E(a)  C0(\X) for every a  Cr (\G X).Thus E is such
a conditional expectation.

The Boxproduct 

Let Y  X be a -invariant clopen subset (Y  Y ).Then the charac-
teristic function 1\Y of the set \Y is an element of the multiplier Algebra
of Cr (\GX). See this by using the embedding X  GX , x  (e, x)
, to consider \X as an open subset of \G  X , and then the algebra
C0(\X) as a subalgebra of Cr (\G X).

Denote by \G Y the quotient of the space :

{(g, x) , g  G , x  Y , gx  Y }

• by the action of   :

(1, 2)(g, x) = (1g
1
2 , 2x)

12



Then
1\YCc(\G X)1\Y = Cc(\G Y ).

Therefore the algebra 1\YCr (\GX)1\Y , which we denoteCr (\G
Y ) is a completion of the algebra of compactly supported functions on\G
Y with convolution product given by :

(f1  f2)(g, y) =


h\G:hyY

f1(gh
1, hy) · f2(h, y)

,
and involution :

f (g, y) = f(g1, gy)̄

Observe that x(1\Y ) is the projection onto the subspace l2(\Gx) ,
where the subset Gx of G is defined by :

Gx = {g  G| gx  Y }

Then , for f  Cc(\G Y ) and h  Gx we have :

x(f)h =


g\Gx

f(gh1, hx)g

So if x / GY , x(f) = 0 in particular. We saw above that the represen-
tations x and gx are unitarily equivalent for any g  G.Therefore we can
conclude that Cr (\G Y ) is the completion of Cc(\G Y ) in the norm

f = sup
yY

y(f) .

Hecke Pairs

Consider the algebra Cr (\GX). Our next goal is to show that under
an extra assumtion on the pair (G,) , the multiplier algebra contains other
interessting elements in addition to the -invariant functions on X.

The pair (G,) is called a Hecke pair if  and gg1 are commensurable
for any g  G. That (, gg1) are commensurable means that 


gg1
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  is a subgroup of finite index. Equivalently , every double coset of 
contains finitely many right ( and left ) cosets of  , i.e. :

R(g) := |\g| < ,

for any g  G.

If (G,) is a Hecke pair , the spaceH(G,) of finitely supported functions
on \G/ is a -algebra with product :

(f1  f2)(g) =


h\G

f1(gh
1)f2(h),

and involution :
f (g) = f(g1)̄.

We can consider the functions f  H(G,) as bounded operators on the
Hilbertspace l2(\G) represented as :

f · h =


g\G

f(gh1) · g

The corresponding completion is called the reduced Hecke C-algebra of
(G,) and denoted by Cr (G,). Denote by [g] the characteristic function of
the double coset g, considered as an element of the Hecke algebra.

The elements of H(G,) may be considered as continous functions on
\GX. Although these functions are not compactly supported in general
, the formulas defining the algebra structure and the regular representation
of H(G,) coincide with (1.2)-(1.4).
Moreover , the convolution of an element of H(G,) with a compactly

supported function on \G  X gives a compactly supported function
: If f1 = [g1] , and the support of f2  Cc(\G  X) is contained in
(  )({g2}  U) for a compact U  X , then the support of f1  f2 is
contained in ()(g1g2U). Since \g1g2 is finite , we see that f1  f2
is compactly supported on \G X. Therefore , we have :

Lemma 7 1.3
If (G,) is a Hecke pair , then the reduced Hecke Calgebra Cr (G,)

is contained in the multiplier algebra of the Calgebra Cr (\G X).
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2. Dynamics and KMS-states

Assume as above that we have an action of G on X such that the action
of   G is proper , and Y  X is a -invariant ( Y  Y ) clopen set.
Assume now that we are given a homomorphism :

N : G R+ = (0,+)

such that  is contained in the kernel of N. We define a one-parameter
group of automorphisms of Cr (\G X) by :

t(f)(g, x) = N(g)
it · f(g, x)

, for f  Cc(\GX). More precisely : We denote by N̄ the selfadjoint
operator on l2(\G) defined by :

N̄ · g = N(g) · g

Since N̄ is selfadjoint ( easy to check) , then by applying functional calculus
for bounded operators on Hilbertspace with ft(z) = z

it , the operator N̄ it

 B(l2(\G)) is unitary , implementing the dynamics t spatially by its
associated unitary operator (xXN̄ it) on (xX l2(\G)).

In other words ,
x(t(a)) = N̄

itx(a)N̄
it

for all x  X . See this by considering the operatoraction as represented on
l2(\G) :

x(t(f)) · h =


g\G

t(f)(gh
1, hx) · g

=


g\G

N(gh1)it · f(gh1, hx) · g =


g\G

N(g)itN(h1)itf(gh1, hx) · g

=


g\G

N(g)itN(h)itf(gh1, hx) · g =


g\G

N(g)itf(gh1, hx)N(h)it · g

=


g\G

N̄ itf(gh1, hx)N(h)it · g = N̄ itx(f)N̄
it · h.

A semifinite invariant weight  is called a  KMSweight if , or
equivalently , it satisfies the   KMS condition at inverse temperatures
  R if :

(aa) = (i/2(a)
i/2(a)),
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for any analytic element a.( An element is called analytic if the
map R  Cr (\G  X) , t  t(a) extends to an analytic map C 
Cr (\G X) . A map f : C Cr (\G X) is called analytic if   f is
an analytic function for any   (Cr (\G X)).)
If  is finite , then the KMScondition is equivalent to

(xy) = (yi(x)) ,

for any analytic x, y. This follows from

(yi(x)) = (i/2(y)i/2(x)) = (i/2(y
)i/2(x))

and the identity :

xy =
1

4
((x+y)(x+y)(xy)(xy)+i(x+iy)(x+iy)i(xiy)(xiy)).

The following result will be the basis of our analysis of KMSweights.

Proposition 8 2.1 Assume the action of G on X is an action without fix-
points (free action) , so that in particular \G  Y is a genuine groupoid.
Then for any   R , there exists a one-to-one correspondence between
KMS weights  on Cr (\GY ) with domain of definition containing
Cc(\Y ) Radon measures µ on Y such that

µ(gZ) = N(g)µ(Z)

,
for every g  G and every compact subset Z  Y such that gZ  Y.

Namely , such a measure µ is invariant , so it determines a measure  on
\Y such that :



Y

f(y)dµ(y) =



\Y






yp1({t})

f(y)



 d(t)

for f  Cc(Y ) , where p : Y  \Y is the quotient map , and the associated
weight  is given by

(a) =



\Y
E(a)(x)d(x) ,

where E is the conditional expectation from Lemma 1.2.
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Proof. For  = {e} the result is well-known , see e.g. [19, Proposition II.5.4]
. For arbitrary  , a way to argue is as follows :
Since the action of  on Y is free , the quotient space \G  Y is an

etale groupoid. In fact it is an etale equivalence relation on \Y , or an
r-discrete principial groupoid in the terminology of [19] .To veryfy this , we
have to check that the isotropy group of every point in \Y is trivial , that
is , if g  G is such that gy  Y and p(gy) = p(y) , for some y  Y ,
then (g, y) belongs to the (  ) - orbit of (e, y). But on the other hand
, if p(gy) = p(y) , there exist    such that gy = y. Then g = e ,
since the action of G is free , and therefore (g, y) = (1, e)(e, y). Then by
[19,Proposition 11.5.4] ,
KMSweights with domain of definition containing Cc(\Y ) on the

Calgebra Cr (\G  Y ) of the etale equivalence relation are in ono-to-
one correspondence with Radon measures  on \Y with Radon-Nikodym
cocycle (p(y), p(gy))  N(g).
This means that :
If we assume Y0 is an open subset of Y such that the map p : Y  \Y

is injective on Y0 , and g  G is such that gY0  Y. Define an injective map

g̃ : p(Y0) p(gY0)

by g̃(p(y))  p(gy)

for y  Y0 , and let g̃ be the push-forward of the measure  under the map
g̃ , which again means that : g̃(Z) = (g̃1(Z)) , for Z  p(gY0). Then :

dg̃

d
= N(g) on p(gY0).

Therefore ; if we denote by µ the invariant measure on Y corresponding
to  via (2.2 below) , then to say that the Radon-Nikodym cocycle of  is
(p(y), p(gy))  N(g) is the same as saying that µ satisfies : µ(gZ) =
N(g)µ(Z) , for every g  G and every compact subset Z  Y such that
gZ  Y.( the scaling condition).

Recall that a Radon measure on Y is a Borel measure which is finite
on compact sets , outer regular (*) on all Borel sets , and inner regular(**)
on all open sets. Then , by The Riesz Representation Theorem , for each
positive linear functional , and hence also for each  KMSweight with
domain of definition containing Cc(\Y ) on the Calgebra Cr (\G Y )
, there exist an unique Radon measure  on \Y such that (f) =


f d ,

for f  Cc(\Y ) ,  a  KMSweight. This establishes the one-to-one
correspondence above.
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The next lemma is about extension of the Radon measure µ from Y to
GY :

Lemma 9 2.2. If µ is a measure on Y as in Proposition 2.1 , then it extends
uniquely to a Radon measure on GY  X satisfying (2.1) for Z  GY and
g  G.

Proof. We can choose Borel subsets Yi  Y and elements gi  G such that
GY = ig1i Yi , where  denotes disjoint union. There is only one choice
for a measure extending µ and satisfying (2.1) on GY , namely , for a Borel
subset Z  GY let

µ(Z) =


i

N(gi)
µ(giZ  Yi).

To show that µ(Z) is independent of any choices and that the extension
satisfies (2.1) , assume GY = jhjZj for some hj  G and Borel Zj  Y. Let
g  G. Then :



i

N(gi)
µ(gigZ  Yi) =



i

N(gi)
 ·


j

µ(gigZ  Yi  gigh1j Zj)

=


i

N(gi)
 ·


j

N(gigh
1
j )

µ(hjZ)  hjg1g1i Yi  Zj)

= N(g)


j

N(hj)



i

µ(hjZ  hjg1g1i Yi  Zj)

= N(g)


j

N(hj)
µ(hjZ  Zj).

Taking g = e we see that the extension of µ to GY is well-defined. But
then for arbitrary g the above identity reads as :

µ(gZ) = N(g)µ(Z).

Lemma 10 2.4. Let Y0 be a invariant Borel subset of Y such that :
(ı) if gY0 Y0 =  for some g  G , then g   ;
(ıı) for any y  Y , there exists g  G such that gy  Y0.
Then any invariant Borel measure on Y0 extends uniquely to a Borel

measure on Y satisfying the scaling condition from Proposition 2.1.
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Proof. Let µ0 be a invariant measure on Y0. Since the assumptions imply

that Y is a disjoint union of translates of Y0 by representatives of the right
cosets of  , that is , Y = h:\G(h1Y0  Y ) , there is only one choice for a
measure µ extending µ0 and satisfying Proposition 2.1 , namely ,

µ(Z) =


h:\G

N(h)µ0(hZ  Y0).

Since µ0 is invariant , µ(Z) is independent of the choice of represen-
tatives , so all we need to check is that Proposition 2.1 holds : Let g  G.
Then

µ(gZ) =


h:\G

N(h)µ0(hgZY0) = N(g)



h:\G

N(hg)µ0(hgZY0) = N(g)
µ(Z) ,

which proves the Lemma.

Although the condition for a measure  on \Y to define a KMS-weight is
easier to formulate in terms of the corresponding  invariant measure on Y
, it will also be important to work directly with . For this we introduce the
following operators on functions on \X. We shall often consider functions
on \X as invariant functions on X.

Definition 11 2.5. Let G act on a set X and suppose (G,) is a Hecke pair.
The Hecke operator associated to g  G is the operator Tg on invariant
functions on X defined by :

(Tgf)(x) =
1

R(g)



l  \g (finite)

f(lx).

Clearly Tgf is again invariant. Recall that [g1] denotes the charac-
teristic function of the double coset g1 considered as an element of the
Hecke algebra. The map :


g1

 R(g)Tg

is a representation of the Hecke algebraH(G,) on the space of invariant
functions.
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Notice that for X = G , this is exactly the way we defined the regular
representation of H(G,) on l2(\G) : For f  H(G,) , considered as
operator on l2(\G) , we defined its action by :

f · h =


l  \G

f(lh1) · l

Indeed , for f = [g1] , using the regular representation ( on l2(\G) )
we get :


g1

· h =



l\G


g1

(lh1) · l =



l\G

g1(lh
1) · l

so ([g1] · h)(s) = 1 , if sh1  g1  s  g1h and = 0
otherwise.
On the other hand ,
using the representation  : Cr (G,)  B(l2(\G)) defined as above by

[g1]  R(g)Tg , we get :

(

g1

) · h(s) = R(g)Tg(h)(s) =



l  \g

h(ls) ,

so (([g1]) · h)(s) = {1 , if h  gs  s  g1h ,and = 0
otherwise.
By decomposing an arbitraryX into Gorbits one can obtain that [g1] 

R(g)Tg is a representation without any computations.

The following three lemmas will be our main computational tools :

Lemma 12 2.6. Suppose µ is as in Proposition 2.1 and that  is the measure
on \Y determined by (2.2). Assume further that Y = X , the action
of G on X is free and that (G,) is a Hecke pair with modular function
(g) :=

R(g
1)

R(g)
. Then for any positive measurable function f on \X and

g  G , we have :


\X
Tgf d = (g) ·N(g) ·



\X
f d.

Proof. Let us first prove the following claim :
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Claim 13 There exist a neigbourhood U of x such that the sets hU are dis-
joint for dierent h in g1. Fix a point x  X. Choose representatives
h1, h2, ...., hn of the right cosets contained in g1. Since the action of
 is Proper , there exist a neighbourhood U of x such that if hiU hjU = 
for some i, j and    then hix = hjx. But since the action of G is free ,
the latter equality is possible only when hi = hj , so that i = j and  = e.
Thus hiU hjU =  if i = j or  = e. Since g1 = nk=1hk , this proves
the claim.

Proof. We conclude from the claim that the set g1U is a disjoint union
of the sets hU , h  g1. So we can write :



h:\g

1h1U = 1g1U =


h:\g1

1hU ,

Denoting by p : X  \X the quotient map , we can rewrite the above
in terms of functions on \X as

R(g)Tg(1p(U)) = 1p(g1U) =


h : \g1

1p(hU).

It follows that

R(g)



\X
Tg(1p(U)) d =



h : \g1

(p(hU)) =


h : \g1

µ(hU) = R(g
1)N(g)(p(U)).

In other words , the identity in the lemma holds for f = 1p(U). Since this
is true for any x and suciently small neigbourhood U of x , we get the
result.

Notice that by applying the above lemma to the characteristic function
of X , we get the following :

If a group G acts freely on a space X with a Ginvariant measure µ , and
 is an almost normal subgroup of G ( that is , (G,) is a Hecke pair ) such
that the action of  on X is Proper and 0 < µ(\X) < , then (g) = 1
for any g  G. The same is true if we assume that the action of G on (X,µ)
is only essentially free.

Lemma 14 2.7. Suppose µ is as in Proposition 2.1 and  is the measure on
\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,) is a Hecke pair. Assume further that Y0 is a invariant measurable
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subset of Y such that if gY0Y0 =  for some g  G , then g  . Then for
any g  G such that gY0  Y , measurable Z  \Y0 and positive measurable
function f on \Y , we have :



gZ

f d = N(g)R(g)



Z

Tgf d ,

where gZ = p(gp1(Z)) and p : X  \X is the quotient map. In
particular , (gZ) = N(g) ·R(g) · (Z).

Proof. Suppose Z  \Y0 is measurable , and choose U  Y0 measurable
such that Z = p(U) and p is injective on U. For g  G let h1, ...., hn be
representatives of the right cosets contained in g. Then we claim :

Claim 15 The quotient map of  , p , is injective on h1U, ......., hnU , and
the images under p of these sets are disjoint.

Proof. Assume p(hix) = p(hjy) for some i, j and x, y  U , so that
hix = hjy for some   . Since U  Y0 , our assumption on Y0 implies
that h1j hi  . But then , since p is injective on U , we get x = y ,and
since the action of  is free , we conclude that h1j hi = e. It follows that
i = j and hix = hjy which proves the claim.

Proof. Furthermore , the union of the disjoint sets p(h1U) , ........, p(hnU)
is the set gZ = p(g p1(Z)).Hence , since   kerN , N(hi) = N(g) for
i = 1, ......, n ,



gZ

f d =
n

i=1



hiU

fp dµ = N(g)
n

i=1



U

f(p(hi)) dµ = N(g)
R(g)



Z

Tgf d.

The last assertion of the lemma , that (gZ) = N(g) · R(g) · (Z)
follows by taking f = 1gZ and observing that in this case (Tgf)(z) = 1 , for
z  Z.

For the next lemma , we introduce the following notation.

Definition 16 2.8. If   R and S is a subsemigroup of G containing  ,
then we define

S,() :=


s:\S

N(s) =


s : \S/

N(s)R(s).
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Lemma 17 2.9. Suppose µ is as in Proposition 2.1 and  is the measure on
\Y determined by (2.2) . Assume that the action of G on X is free and that
(G,) is a Hecke pair. Assume further that Y0 is a measurable invariant
subset of Y , and S a subsemigroup of G containing  such that :
() if gY0  Y0 =  for some g  G then g   ;
() sSsY0 is a subset of Y of full measure ;
() S,() <.
Let HS be the subspace of Sinvariant functions in L2(\Y, ) , that is ,

functions f such that f(y) = f(sy) for all s  S and a.a. y  Y . Then :
(1) if f  HS then f

2
2 = S,()


\Y0

|f(t)|2 d(t) ;
(2) the orthogonal projection P : L2(\Y, d)  HS is given by

Pf |Sy= S,()
1



s : \S/

N(s)R(s)(Tsf)(y) ,

(2.3)
for y  Y0.

Proof. By condition () the sets sY0 are disjoint for s in dierent double
cosets of . Since the union of such sets is the whole space Y (modulo a set of
measure zero) , by Lemma 2.7 applied to Z = \Y0 for any f  L2(\Y, d)
we get :

f22 =


s : \S/



sZ

|f |2 d =


s\S/

N(s)R(s)



\Y0
Ts(|f |

2)d.

(2.4)
Since Ts(|f |

2) = |f |2 for f  HS , this gives (1) .
To prove (2) , denote by T the operator on L2(\Y, d) defined by the

asserted formula for P. To see that it is well-defined , notice first that the
summation in the right hand side of (2.3) is finite for f in the subspace
of L2functions supported on a finite collection of sets of the form p(sY0)
, s  S , which is a dense subspace of L2(\Y, d). Thus the function Tf is
well-defined for f in this subspace and , putting s = S,()

1N(s)R(s)
and using (2.4) twice , we get :

Tf22 = S,()


\Y0
|Tf |2 d  S,()



\Y0






s\S/

sTs(|f |
2)



 d = f22 .

It follows that T extends to a well-defined contraction. Since Tf = f for
f  HS , we conclude that T = P.
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3. THE CONNES-MARCOLLI SYSTEM

Consider the group G = GL+2 (Q) of invertible 2 by 2 matrices with ratio-
nal coecients and positive determinant , and its subgroup  = SL2(Z). For
a prime number p consider the field Qp of padic numbers and its compact
subring Zp of padic integers. We denote by Af the space of finite adeles
of Q , that is , the restricted product of the fields of Qp with respect to
Zp ; Af := {(ap)pP|ap  Qpp, ap  Zp for all suciently large p} and by
Ẑ =


p

Zp = {(ap)pP | ap  Zp} its maximal compact subring . The field

Q is a subfield of Qp since Qp is a closure of Q in the p-norm (if q = pn a
b

, (p  a , p  b) , then qp = p
n ) . Therefore GL+2 (Q) can be considered

as a subgroup of GL2(Qp). In particular , we have an action of GL+2 (Q) on
Mat2(Qp) by matrix-multiplication on the left.

Moreover , we have the following diagonal embedding of Q into Af :

Q  Qp
a  (ap)pP  Af

for every a  Q ,

a =
n

m
=

n
pk11 · , , , , · p

ki
i

 ,

where we assume n andm  Z with gcd(n,m) = 1 ( n andm are relatively
prime ) and kj  1. Then a / Zp if p = pi for some i , so a / Ẑ =


pP

Zp.

Contrary a  Zp if p = pi for any i .From this we see that for any a  Q ,
eventually , for p  P large enough a  Zp . Hence the map : a  (ap)pP
embeds Q diagonally into Af . Extending this on the matrix entries , we get
an embedding of GL+2 (Q) into GL2(Af ) , and thus an action of GL+2 (Q) on
Mat2(Af ).
In addition GL+2 (Q) acts by Møbius transformations on the upper half-

planeH. Therefore we have an action of GL+2 (Q) onHMat2(Af ) such that

for g =

a b
c d


,   H and m = (mp)p Mat2(Af ) ,

g( , (mp)p) = (
a + b

c + d
, (gmp)p).
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Note that the action of SL2(Z) is proper , since already the action of
SL2(Z) on H is proper.

The GL2system of Connes and Marcolli is now defined as follows :

Definition 18 3.1. The Connes-Marcolli algebra is the Calgebra A =
Cr (\G  Y ) , where G = GL+2 (Q) ,  = SL2(Z) , G acts diagonally on
X = H Mat2(Af ) , and Y = H Mat2(Z) . The dynamics  on A is
defined by the homomorphism N : GL+2 (Q) R+ , N(g) = det(g).

Notice that since \H is not compact , the algebra A is nonunital . By
[5, Lemma 1.28] , the action ofGL+2 (Q) onX\(H{0}) is free. Recall briefly
the reason : If for g  GL+2 (Q) gm = m for some prime number p  P ( P
denotes the set of all Prime numbers ) and nonzero m Mat2(Qp) , then the

spectrum of the matrix g contains 1 , and hence g =

a b
c d


, ( a, b, c, d  Q

and ad  bc > 0 ) is conjugate in GL+2 (Q) to an upper-triangular matrix (

by Linear Algebra ) : g̃‘ =

ã b̃

0 d̃


. But then g has no fixed points in

H , since the corresponding Møbius transformation for any upper triangular
matrix only has fixpoints in R̄ , but not in the upper halfplaneH . Note that
this actually implies that the action of GL+2 (Q) on HMat2(Qp) , where
Mat2(Qp) = Mat2(Qp) \ {0} , is free for any prime number p. Although
the action of GL+2 (Q) on H {0} is not free , this set can be ignored in the
analysis of KMSstates for  = 0. This is proved in [5 , Proposition 1.30] .
Again , recall briefly the reason :

Consider the action of G on X̃ = X\(H{0}) , put Ỹ = Y \(H{0}) 
X̃ , and then define I = Cr (\G Ỹ ) . Then I can be considered as an ideal
in A , and the quotient algebra A/I is isomorphic to Cr (\GH) . Now
, if  is a KMS state on A , the restriction |I := I canonically extends
to a KMSfunctional on the multiplier algebra of I in the following sense :
Consider the GNS-representation of I  A given by the triple (HI , I , I )
. Then , if we let I denote the multiplier algebra of I  A , the GNS
representation : I : I  B(HI ) canonically extends to  : I  B(HI ) ,
for if x  I , b  I , then

(b)I (x)I = (bx)I = I (bx)I

Now , if we check that the extension  is bounded on I as extension
of I from I to I , it is welldefined by the above equation. For this , let
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{ei} be an approximate unit in I with I (ei)  1 in the Strong Operator
Topology . Then we have :

(b)I (x)I = (bx)I = limi
I (beix)I = limi

I (bei)I (x)I

from which we conclude that :

(b)  lim
i

I (bei)
  lim

i
bei  b

Then what is called the canonical extension of I to ̃ on I is defined
accordingly ; again if 0  b  I , and 0  x  I :

̃(b) = ((b)I , I ) = limi
I(bei) = lim

i
((b)I (ei)I , I (ei)I ) = limi

I(eibei)

As I  A  I , ̃ is a (positive) KMSfunctional on A.But then ̃  
: For if a  A , 0  a , then evaluating

̃(a) = ((a)I , I ) = ((a)
1
2 I , (a)

1
2 I ) = limi

(I (ei)(a
1
2 )I , (a

1
2 )I )

= lim
i
(I (a

1
2 eia

1
2 )I , I )

The last equality since ei  1 in the strong operator topology. Then
further

̃(a) = lim
i
(I (a

1
2 eia

1
2 )I , I ) = limi

I(a
1
2 eia

1
2 ).

Now , since 0  ei  1 ,  i we have a
1
2 eia

1
2  a

1
2a

1
2 = a , and thus

I(a
1
2 eia

1
2 ) = (a

1
2 eia

1
2 )  (a).

Therefore
̃(a) = lim

i
I(a

1
2 eia

1
2 )  (a).

Thus we get a KMSfunctional ̃   on A. If ̃ =  then ( ̃) is a
positive nonzeroKMSfunctional on A which vanishes on I . It follows that
it factors through the canonical quotient map q : A A/I since it is constant
on equivalence classes . Hence we get a KMSstate on A/I  Cr (\G
H). By Lemma 1.3 the multiplier algebra of Cr (\G  H) contains the
reduced Hecke Calgebra Cr (G,). The latter algebra contains in turn the
Calgebra Z(G)/(Z(G)  ) , where Z(G) is the center of GL+2 (Q) , that
is , the group of scalar matrices. But since the dynamics scales nontrivially
some unitaries in this algebra , the algebra can not have any KMSstates
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for  = 0. This contradiction shows that  = ̃ , so that  is completely
determined by I .
Since the action of G on X̃ = H Mat2(Af )

 , where Mat2(Af )
 =

Mat2(Af )\ {0} , is free , we can apply Proposition 2.1 and conclude that
there is a one-to-one correspondence between KMSweights on I with do-
main of definition containing Cc(\Ỹ ) and measures µ on Ỹ = HMat2(Ẑ)

such that :
µ(gZ) = det(g)µ(Z)

if both Z and gZ are subsets of Ỹ . Then by Lemma 2.2 , we can uniquely
extend any such measure to a measure on X̃ = GỸ = HMat2(Af )

 such
that :

µ(gZ) = det(g)µ(Z)

, but now for all Z  X̃.

To get a state on I = Cr (\G Ỹ ) we need the normalization condition
µ(\Ỹ ) = 1 (that is , the invariant measure µ on Ỹ defines a probability
measure on \Ỹ ) . Note also that if  = 0 and we have a measure on
X = HMat2(Af ) with the same properties as above , thenHMat2(Af )



is a subset of full measure , since scalar matrices act trivially on H and so
H cannot support a measure scaled nontrivially by them.

Summarizing the above discussion we get the following :

Proposition 19 3.2.For  = 0 there is a one-to-one correspondence be-
tween KMSstates on the Connes-Marcholli system and invariant
measures µ on HMat2(Af ) such that :

µ(\H (Mat2(Ẑ))) = 1 and µ(gZ) = det(g)µ(Z)

for any g  GL+2 (Q) and compact Z  HMat2(Af ).

Denote by Mati2(Af ) the set of matrices m = (mp)p  Mat2(Af ) such
that det(mp) = 0 for every prime p. Notice that Mati2(Af ) is the set of
non-zero divisors in Mat2(Af ) . Our next goal is to show that if  = 0, 1
then H Mati2(Af ) is a subset of full measure for any measure µ as in
Proposition 3.2. First let us recall the following simple properties of the
Hecke pair (G,) = (GL+2 (Q), SL2(Z)) .
Put Mat+2 (Z) = GL

+
2 (Q) Mat2(Z) .
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Lemma 20 3.3. Every double coset of  in Mat+2 (Z) has an unique repre-

sentative of the form

a 0
0 d


with a , d  N and a | d . Furthermore

,

R


a 0
0 d


=
d

a


p prime :pa|d

(1 + p1) ,

and as representatives of the right cosets of  contained in 

a 0
0 d




we can take the matrices : 
ak am
0 al



with k, l  N and m  Z such that kl = d/a , 0  m  l and
gcd(k, l,m) = 1.
In particular , R(g) = R(g1) , for every g  GL+2 (Q).

Before the proof of the above Lemma , let us recall the following facts
from matrix factorization and elementary number theory taken from A. Krieg
:

Fact 1 ( Lemma )

Given 0 =

a
c


 Z2 , there exist U   satisfying :

U


a
c


=



0


,  = gcd(a, c).

Proof :

Wemay replace

a
c


by 1


·

a
c


 Z2 and therefore assume gcd(a, c) =

1 without restriction. Hence there exist b, d  Z such that ad bc = 1 . Now
choose

U =


a b
c d

1
=


d b
c a


 .

Fact 2 ( Proposition )
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GivenA Mat2(Z) , the right coset A contains an unique representative
of the form : 

a b
0 d


, a, d  N , 0  b < d .

This immediately leads to the

Fact 3 ( Corollary )

Given l  N the setM(l) = {A Mat2(Z) | detA = l} decomposes into
:

1(l) :=


dN , d|l

d

right cosets relative to  . A set of representatives is given by :

a b
0 d


, where d  N , d | l , 0  b < d and a =

l

d
.

And : In particular ( SL2(Z) , GL+2 (Q) ) is a Hecke pair .

Proof : The first part follows by applying the above Proposition . For the
second part ; Given A  GL+2 (Q) , choose   N such that A  Mat

+
2 (Z)

.The assertion follows from  (\A) =  (\A).

Fact 4 ( Proposition 2 )

Given A Mat+2 (Z) the right coset A contains an unique representative
of the form : 

a 0
c d


, a, d  N , 0  c < a .

Proof. (Omitted)

Fact 5 ( Observation )

Now , let (A) := gcd of the entries of A , whenever A is a non-zero
integral matrix . Then : (A)(B) | (AB) , holds for all A,B  Mat+2 (Z) .
Another well-known number theoretical assertion we need is :
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Fact 6

Let a, c, d  Z such that a = 0 and gcd(a, c, d) = 1 . Then there exist an
integer x  Z satisfying

gcd(a, c+ xd) = 1.

Proof. a) The uniqueness of the entries a , d in Lemma 3.3. follows from

the latter Observation . For the existence , we may assume (A) = 1 , since
A can otherwise be replaced by 1

(A)
·A . In view of Fact 4 ( Proposition 2

) , we may already suppose that A has the form :

a 0
c d


, a > 0 , d > 0 , gcd(a, c, d) = 1 .

Next apply Fact 6 and determine x  Z with gcd(a, c+ xd) = 1 . The
entries of the first column of :

Ā =


a 0
c d


1 0
x 1


=


a 0

c+ xd d



are relatively prime . Due to the Lemma (Fact 1) , there exist U  
such that :

UĀ =


1 b̄
0 ad


.

Now choose V =


1 b̄
0 1


  to get :

UĀV =


1 b̄
0 ad


1 b̄
0 1


=


a 0
0 d


 A.

b) By the first part , it suces to consider 

a 0
0 d


. Since a | d

,


a 0
0 d


 Mat+2 (Z) and from Fact 2 , 


a 0
0 d


posesses an unique

representative of the form

a b
0 d


, a, d  N and 0  b < d .

Inwoke the Corollary ( Fact ) , second part above to get that a set of

representatives of the right cosets of  contained in 

a 0
0 d


 is given by


a b
0 d


, where d  N , d | l , 0  b < d and a = l/d .
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This is equivalent to the statement which is to be proved here if : As
a | d , let d

a
= pk11 ....p

kn
n . . . . . . . . , (1  ki). , we see that if p is a prime

such that pa | d , then p  {p1, p2, ...., pn} , so by counting the number of

representatives of the form :

a b
0 d


, a, d  N and 0  b < d and ad = l

such that d | l , we get that it equals : d
a


p prime : pa|d

(1+ p1) . Therefore this

set of representatives could be explicitly given as :

ak am
0 al


, with k, l

 N and m  Z such that kl = d/a and gcd(k, l,m) = 1.
The last statement , that R(g) = R(g1) for every g  GL+2 (Q) follows

from the fact that for every g  GL+2 (Q) , there exist   N such that g 
Mat+2 (Z) . Hence , since

 (\g) =  (\g)

and

ak am
0 al

1
=


ak 0
am al


· 1
a2kl

, so in view of Fact 4 above we see

that :  (\g) =  (\g1).

For a prime p put Gp = GL+2 (Z [p1])  GL
+
2 (Q). Observe that if g  Gp

then det(g) is a power of p , and if we multiply g by a suciently large power

of

p 0
0 p


, we get an element in Mat+2 (Z) with determinant a power

of p. But by Lemma 3.3 the double coset of  containing such an element

has a ( unique ) representative of the form :

pk 0
0 pl


, 0  k  l. We

may therefore conclude that Gp is the subgroup of GL+2 (Q) generated by

 and

1 0
0 p


. This since : 


p 0
0 1


 = 


1 0
0 p


 and if we set

g =


pl 0
0 pl


p 0
0 1


we see that 


p 0
0 1


 = p1i=0


1 i
0 p



and hence g = p1i=0(


pl 0
0 pl


1 i
0 p


) .As matrices of the form


a 0
0 d


,where a | d constitutes a basis for the double coset decomposition

of Gp = GL+2 (Z [p1])  GL
+
2 (Q) , we get that  and


1 0
0 p


generates

Gp . Furthermore , using the fact that a positive rational number is a power
of p if and only if it belongs to the group of units Zq of the ring Zq for
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all primes q = p , we may also conclude that g  GL+2 (Q) belongs to Gp if
and only if it belongs to GL2(Zq) for all q = p.

Lemma 21 3.4. We have GL2(Qp) = GpGL2(Zp).

Proof. Let r  GL2(Qp). Then rZ2p is a Zplattice in Q2p , that is , an
open compact Zpsubmodule. By [22, Theorem V.2] there exist a subgroup
L  Z2 of Q2 , such that the closure of L in Q2p coincides with rZ2p , and the
closure of L in Q2q is Z2q for q = p .
Choose g  GL+2 (Q) such that gZ2 = L. Since gZ2p = rZ2p , we have

g1r  GL2(Zp). Since gZ2q = Z2q for q = p , we also have g  GL2(Zq) .
Hence g  Gp.

Lemma 22 3.5. Let p be a prime and µp a invariant measure onHMat2(Qp)
such that

µp(H{0}) = 0 , µp(\(HMat2(Zp))) < and µp(gZ) = det(g)
µp(Z)

for g  Gp and Z  HMat2(Qp). If  = 1 , then the set (HGL2(Qp))
is a subset of full measure in HMat2(Qp).

Proof. Denote by ̃ the measure on \(H  Mat2(Qp)) defined by the
invariant measure µp . For a invariant subset Z  Mat2(Qp) , the set
HZ is invariant . We can thus define a measure  on the algebra
of invariant Borel subsets of Mat2(Qp) by (Z) = ̃(\(H Z)) . Note
that since the action of  on Mat2(Qp) is not proper and , accordingly ,
the quotient space \Mat2(Qp) is quite bad , we do not want to consider
invariant subsets of Mat2(Qp) as subsets of this quotient space and do
not try to define a measure on all Borel subsets of Mat2(Qp) out of  .
If g  Gp and f is a positive Borel invariant function on Mat2(Qp)

then by Lemma 2.6 applied to the function F : ( ,m)  f(m) on \(H
Mat2(Qp)) we conclude that



Mat2(Qp)
Tgf d =



\(HMat2(Qp))
TgF d̃ = det(g)





\(HMat2(Qp))
F d̃ = det(g)



Mat2(Qp)
f d

By assumption we also have (Mat2(Zp)) < . We have to show that
the measure of the set of nonzero singular matrices is zero.
We claim that the set of nonzero singular matrices with coecients inQp

is the disjoint union of the sets :

Zk = SL2(Zp)

0 0
0 pk


GL2(Zp) , k  Z.
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This is proved in a standard way : given a nonzero singular matrix we use
multiplication by elements of GL2(Zp) on the right to get a matrix with zero
first column , and then multiplication by elements of SL2(Zp) on the left to
get the required form . To show that the sets do not intersect , observe that
the maximum of the p-adic valuations of the coecient of a matrix does not
change under multiplication by elements g of GL2(Zp) on either side , since
if the maximum of the p-adic valuations should change , then such a g must
lie in GL+2 (Z [p1]) . We saw above that this is equivalent to g  GL2(Zq)
for all q = p. But then the coecients of g / Zp , which is a contradiction.

Consider the functions fk = 1Zk , k  Z. For g =

1 0
0 p1


we claim

that
Tgf0 =

1

p+ 1
f0 +

p

p+ 1
f1.

Indeed , since the action ofGp commutes with the right action ofGL2(Zp)
, the function Tgf0 is GL2(Zp)invariant . f0 = 1

SL2(Zp)



 0 0
0 1



GL2(Zp)
. As

Z0 = AGL2(Zp)SL2(Zp)

0 0
0 1


A is the sum of right coset of


0 0
0 1


A

with respect to SL2(Zp) .We have 

1 0
0 p1


 = ni=1hi , so (Tgf0)(x) =

1
R(g)

n
i=1 f0(hix) does not depend on the choice of representatives hi  g.

On the other hand , the sets Zk are clopen subsets of the set of singular
matrices (see * below) , so that the function f0 is continous on this set .
But then Tgf0 is also continous . Since f0 is right GL2(Zp)invariant , Tgf0
is right GL2(Zp)invariant . Furthermore f0 is left GL2(Zp)invariant and
hence also invariant as   GL2(Zp).Therefore Tgf0 is left invariant .
As  is dense in SL2(Zp) , and Tgf0 is continous , we conclude that Tgf0 is
left SL2(Zp)invariant since if n   and

n    SL2(Zp)

then
(Tgf)(nx)n (Tgf)(x).

Hence Tgf0 is constant on the sets Zk . So to prove the claim that Tgf0 =
1
p+1
f0 +

p
p+1
f1 , it suces to check it on the matrices :


0 0
0 pk


, k  Z

. Since g =

1 0
0 p1


=


p1 0
0 p1


p 0
0 1


, by Lemma 3.3 we can
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take the matrices

1 0
0 p1


,


p1 np1

0 1


, 0  n  p 1 ,

as representatives of the right cosets of  contained in g.Then

(Tgf0)


0 0
0 pk


=

1

p+ 1
f0(


1 0
0 p1


0 0
0 pk


)+

1

p+ 1

p1

n=0

f0(


p1 np1

0 1


0 0
0 pk


) =

1

p+ 1
f0


0 0
0 pk1


+

1

p+ 1

p1

n=0

f0


0 npk1

0 pk


.

Since the matrices

0 0
0 pk1


and


0 npk1

0 pk


, 1  n  p1 ,belong

to Zk1 , we see that

Tgf0|Z1 =
p

p+ 1
, Tgf0|Z0 =

1

p+ 1
and Tgf0|Zk = 0 for k = 0, 1.

This is exactly what was claimed .
It follows from (3.1) that

p(Z0) =
1

p+ 1
(Z0) +

p

p+ 1
(Z1).

On the other hand , for g =

p1 0
0 p1


we get Tgfk = fk+1 , so that

p2(Zk) = (Zk+1).

If (Z0) = 0 this implies that p is a solution of the quadratic equation

(p+ 1)x = 1 + px2 ,

Thus either p = p1 or p = 1. Since  = 1 we get  = 0. But then
(Zk) = (Z0) for any k , and this contradicts (Mat2(Zp) < . The con-
tradiction shows that (Z0) = 0 for any k , and we conclude that the measure
of the set of singular matrices is zero.
(*) To see that the sets Zk are clopen , define a function :

h : {nonzero singular matrices} R

pk

kZ

h(A) = max
i,j
ai,jp , for A = (ai,j) a nonzero singular matrix.

As h is a continous function and

Zk = SL2(Zp)

0 0
0 pk


GL2(Zp) = h1(


pk

) = h1((pk1, pk+1))
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, we see that the sets Zk are open .

On the other hand , for every k  Z the sets Zk = SL2(Zp)

0 0
0 pk


GL2(Zp)

is the image of the compact space SL2(Zp)  GL2(Zp) under the map :

(A,B) A


0 0
0 pk


B , and hence can be considered as closed sets .

We are now ready to show that for  = 0, 1 the setMat2(Af )\Mati2(Af )
of zero-divisors has measure zero .

Corollary 23 3.6. Assume  = 0, 1 and µ is a measure with properties
as in Proposition 3.2. Then H Mati2(Af ) is a subset of full measure in
HMat2(Af ).

Proof. Fix a prime p. First of all note that the set

{( ,m)  HMat2(Af ) | mp = 0}

has measure zero. Indeed , as we already remarked before Proposition
3.2 , the set H {0} has measure zero . So if our claim is not true , the set


( ,m)  HMat2(Ẑ) | mp = 0



has positive measure . Since the action of  on this set is free , there is
a subset U of positive measure such that U  U =  for    ,  = e.

Then for g =

p 0
0 p


the set Uk = gkU , k  Z still has the property

that Uk  Uk =  for    ,  = e , since g commutes with . As Uk is
contained in H Mat2(Ẑ) , it follows that µ(Uk)  1. On the other hand ,
µ(Uk) = p

2kµ(U). Letting k   if  > 0 and k  + if  < 0 , we
get a contradiction.
Consider now the restriction of µ to the set

HMat2(Qp)

q =p
Mat2(Zq) ,

and use the projection onto the first two factors to get a measure µp on
H  Mat2(Qp) . By the first part of the proof the set H  {0} has µp -
measure zero. Since the image of Gp in GL2(Qq) lies in GL2(Zq) for q = p ,
the scaling property of µ implies that

µp(gZ) = det(g)
1µp(Z) for Z  HMat2(Qp) , g  Gp.
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Since the action of  on HMat2(Qp) is free , the normalization con-
dition on µ implies that µp(\(H  Mat2(Zp)) = 1. Thus µp satisfies the
assumptions of Lemma 3.5. Hence HGL2(Qp) is a set of full µpmeasure.
This means that the set of points ( ,m)  H Mat2(Ẑ) with det(mp) = 0
has µmeasure zero. By taking the union of such sets for all primes p and
multiplying it by elements of GL+2 (Q) we get a set of measure zero , which
is the complement of the set HMati2(Af ).
To get further properties of a measure µ as above , let us recall the follow-

ing well-known computation . Denote by Sp the semigroup Gp Mat+2 (Z).
Alternatively , Sp is the of elements m Mat+2 (Z) with determinant a non-
negative power of p. Then from Lemma 3.3 we know that as representatives

of the right cosets of  in Sp we can take the matrices

pk m
0 pl


, 0  k, l

, 0  m < pl. Therefore

sp,() =


s\Sp

det(s) =


k,l=0

p(k+l)pl =

+ , if   1 , and (1 p)1(1 p+1)1 , if  > 1. (3.2)

Since  = GpGL2(Zp) , we can apply Lemma 2.7 to the groupGp acting
on HMat2(Af )

 and the set

Y0 = HGL2(Zp)

q =p
Mat2(Zq).

Then for any s  Sp we get

µ(\sY0) = det(s)R(s)µ(\Y0).

The sets sY0 are disjoint for s in dierent double cosets of  , and their
union is the set

HMati2(Zp)

q =p
Mat2(Zq) ,

where Mati2(Zp) =Mat2(Zp) GL2(Qp). By Corollary 3.6 the above set
is a subset of HMat2(Ẑ) of full measure for  = 0, 1. Therefore we obtain
:

1 =


s\Sp/

µ(\sY0) =


s\Sp/

det(s)R(s)µ(\Y0) = sp,()µ(\Y0). (3.3)

This gives a contradiction if  < 1. Thus for  < 1 ,  = 0 , there are no
KMSstates. On the other hand , for  > 1 we get :

µ(\Y0) = Sp,()
1 = (1 p)(1 p+1).
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Assuming now that  > 1 we can perform a similar computation for
any finite set of primes instead of just one prime . Given a finite set F
of primes consider the group GF generated by Gp for all p  F. Put also
SF =Mat

+
2 (Z)GF . Then SF is the set of matrices m Mat+2 (Z) such that

all prime divisors of det(m) belong to F. Let

YF = H



pF

GL2(Zp)






q /F

Mat2(Zq)


.

Then a computation similar to (3.2) and (3.3) yields :

SF ,() =

pF
(1p)1(1p+1)1 and µ(\YF ) =


pF
(1p)(1p+1). (3.4)

The intersection of the sets YF over all finite subsets F of prime numbers
is the set HGL2(Ẑ). So for  > 2 we get :

µ(\(HGL2(Ẑ))) =

p

(1 p)(1 p+1) = ()1(  1)1 ,

where  is the Riemann function . On the other hand , for   (1, 2]
we get µ(\(HGL2(Ẑ))) = 0.

Assume now that  > 2. In this case similarly to (3.2) we have

Mat+2 (Z),
() = ()(  1).

So analogously to (3.3) we get

µ(\Mat+2 (Z)(HGL2(Ẑ))) = Mat+2 (Z),
()µ(\(HGL2(Ẑ))) = 1.

We thus see that Mat+2 (Z)(H  GL2(Ẑ)) is a subset of H Mat2(Ẑ) of
full measure . Hence GL+2 (Q)(HGL2(Ẑ)) is a subset of HMat2(Af ) of
full measure . By Lemma 3.4 the set GL+2 (Q)(H  GL2(Ẑ)) is nothing but
HGL2(Af ).

To summarize , we have shown that for  > 2 the problem of finding all
measures µ on H Mat2(Af ) satisfying the conditions in Proposition 3.2
reduces to finding all measures on HGL2(Af ) such that

µ(gZ) = det(g)µ(Z) and µ(\(HGL2(Ẑ))) = ()1(  1)1.

By Lemma 2.4 any invariant measure onHGL2(Ẑ) extends uniquely
to a measure on H  GL2(Af ) satisfying the scaling condition . Thus we
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get a one-to-one correspondence between measures µ with properties as in
Proposition 3.2 and measures on \(HGL2(Ẑ) of total mass ()1( 
1)1. Clearly , extremal measures µ correspond to point masses .

We have thus recovered the following result of Connes and Marcolli [5 , Theorem 1.26 and Corollary 1.32]
.

Theorem 24 3.7. For the Connes-Marcolli GL2system we have :
() for   (, 0)  (0, 1) there are no KMSstates ;
() for  > 2 there is a one-to-one ane correspondence betweenKMSstates

and probability measures on \(HGL2(Ẑ)) ; in particular , extremalKMSstates
are in bijection with orbits in HGL2(Ẑ).
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