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1
Introduction

Contents
1.1 Optimization with infinite time horizon . . . . . . . . . . 7

1.2 Optimization with controlled outphasing . . . . . . . . . 9

1.3 Solving Problem 1.3 . . . . . . . . . . . . . . . . . . . . . . 14

This project is based on a model for a pasture – livestock system and an optimization
problem described in [2], where the owner of the livestock wants to maximize his
utility from consumption given an infinite time horizon. Our approach is to study
the same model, but we change the optimization problem to a problem where we
optimize by controlled outphasing of the livestock. In this chapter, we will first
give a brief overview the model and results in [2]. We then outline the problem we
discuss further in this project.

1.1 Optimization with infinite time horizon

In [2], Brekke et al. consider a common pasture owned by N herders. Let us denote
the total plant biomass available to grazing at time t by x(t) and the animal biomass
owned by herder number i by yi(t). The livestock of herder number i follows the
dynamics

y′i(t) = h(t, x(t))yi(t)− ci(t) (1.1)

for i = 1, . . . , N . The function h is bounded and increasing in x, and describes the
growth rate of the livestock given its response to the food available and the natural
mortality rate. (This h will later be referred to as the natural growth rate.) In
addition, the herder is free to harvest a suitable amount of his livestock at every
time t, described by the consumption rate ci. ci : [0,∞) → [0,∞) is a positive
function such that yc(t) = y(t) ≥ 0, ∀t. We let the total amount of animal biomass

7



8 Chapter 1. Introduction

be denoted by

Y (t) =
N∑
i=1

yi(t).

The plant biomass follows the dynamics

x′(t) = g(t, x(t), Y (t))x(t)− kh(t, x(t))Y (t). (1.2)

The function g is bounded, decreasing in x and increasing in Y , and describes the
growth rate of animal biomass in the absence of grazing. h is defined as above and
k > 0 is a constant. As pointed out in [5], p. 8, the effect of grazing is two-folded:
on one hand it reduces the plant biomass by the term kh(t, x(t)), but it also has a
positive effect on the plant growth rate, for example by stimulating regrowth. The
dynamics of the complete pasture – livestock system is described by

x′(t) = g(t, x(t), Y (t))x(t)− kh(t, x(t))Y (t) (1.3)
Y ′(t) = h(t, x(t))Y (t)− ĉ(t), (1.4)

where ĉ(t) =
∑N

i=1 ci(t).

Every herder wishes to maximize his utility, given by

Ji(ci) = E

(∫ ∞
0

ui(ci(t))e
−δtdt

)
(1.5)

where δ > 0 is a discount rate common to all the herders, and ui : [0,∞) → R
are given utility functions1. The herders are assumed to have an infinite planning
horizon. Brekke et al. concentrate on the special case where ui(ci) = ln(ci), and
discuss both individual and cooperative optimization. In the following, we will only
consider the case of individual optimization, i.e., a scenario where every herder
is only interested in maximizing his own profit and is unable and/or unwilling to
cooperate with the other herders. For a discussion on the cooperative case, see [2]
and [5].

We can sum up the individual optimization problem of Brekke et al. the following
way:

Problem 1.1 (The individual optimization problem of Brekke et al.) We
want to maximize

Ji(ci) = E

(∫ ∞
0

ln(ci(t))e
−δtdt

)
, (1.6)

subject to the differential equations

x′(t) = g(t, x(t), Y (t))x(t)− kh(t, x(t))Y (t) (1.7)
y′i(t) = h(t, x(t))yi(t)− ci(t) (1.8)

1A precise definition is given in Chapter 2.2.
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and the boundary conditions

x(0) = x0 > 0 (1.9)
yi(0) = yi0 > 0. (1.10)

In the case of individual optimization, the amount of animal biomass owned by
herder number i is low relative to the total biomass owned by all the herders and we
can assume that the effect of the individual herder on the ecosystem is neglectable.
Further, we assume that the dynamics of x are beyond the herder’s control. Hence,
h will also be beyond the herder’s control. In [1], Brekke et al. show that given a
very general, possibly stochastic, h, it is optimal to harvest a constant fraction of
the livestock, given by

λ∗ =
c∗i (t)

yi(t)
= δ.

Hence, the optimal consumption for the individual herder is

c∗i (t) = δyi(t). (1.11)

Brekke et al. conclude that systems of this kind are likely to experience limit cycles
when all N herders follow the optimization strategy described above. For more
details, see [1], [2] and [5].

1.2 Optimization with controlled outphasing

In this project, we will consider an alternative scenario for individual optimization.
We use the same model as in Chapter 1.1, but we assume that the herder wants to
phase out the production at a finite time τ . This τ is not fixed, but has to be chosen
to maximize

Ji(ci, τ) = E

(∫ τ

0

ui(ci(t))e
−δtdt

)
, (1.12)

where
τ = inf{t ≥ 0 : yi(t) ≤ 0}.

In this scenario of controlled outphasing, our task is to describe the maximizing τ
and ci.

In other words, we want to solve the following optimization problem:

Problem 1.2 (The general optimization problem) Maximize

Ji(ci, τ) = E

(∫ τ

0

ui(ci(t))e
−δtdt

)
, (1.13)

where
τ = inf{t ≥ 0 : yi(t) ≤ 0},
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subject to the differential equations

x′(t) = g(t, x(t), Y (t))x(t)− kh(t, x(t))Y (t) (1.14)
y′i(t) = h(t, x(t))yi(t)− ci(t) (1.15)

and the boundary conditions

x(0) = x0 > 0 (1.16)
x(τ) ≥ 0 (1.17)
yi(0) = yi0 > 0 (1.18)
yi(τ) = 0. (1.19)

To be able to solve Problem 1.2 analytically, we make some simplifications and
further assumptions in the model described in Chapter 1.1. First of all, we restrict
our analysis to the deterministic case, i.e., we let h, g, ci be deterministic functions.
Further, we assume that

c1 = c2 = . . . = cN

and
u1 = u2 = . . . = uN ,

i.e., that all N herders have the same consumption rate and utility function. For
notational simplicity, we set

c := ci

and
u := ui.

Let yi(0) = yi0 > 0 be given, and assume that

y10 = y20 = . . . = yN0

i.e., that we have the same initial condition on yi for all i. We set

y0 := yi0.

Then, from the theory of ordinary deterministic differential equations, we have

y1 = y2 = . . . = yN .

We set
y := yi

for notational simplicity. With these assumptions on c, y, we see that the total
amount of animal biomass can be expressed in the following way:

Y (t) = Ny(t).

We can then rewrite the dynamics of x:

x′(t) = g(t, x(t), y(t))x(t)− kNh(t, x(t))y(t). (1.20)

Before we formulate a simplified version of the optimization Problem 1.2, we make
some remarks:
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Remark 1.1 We have that u is a utility function (a precise definition of u will be
given in Chapter 2.2). In addition, we assume that u ∈ C2. 4

Remark 1.2 To be able to use standard methods to solve the differential equations,
we let h, g depend on t only. Let h be a continuous function such that h(t) < δ − ε,
∀t ≥ 0,∀ε ∈ (0, δ). Further assume that H(t) =

∫ t
0
h(s)ds is monotonous, i.e.,

strictly increasing or strictly decreasing, for t ≥ 0. Let g be a bounded and contin-
uous function. We recall that k > 0. 4

Remark 1.3 We define x(t) = (x(t), y(t)) and assume that there exists a constant
d ∈ (0,∞) such that

‖ x(t) ‖≤ d,∀t.

This is a reasonable restriction to make on x: it is reasonable to assume that the
pasture, and hence the amount of plant biomass, x, is limited. If we had an infinitely
large livestock, this would not make any sense; first of all, it is an unlikely scenario
given the limited food supply. Furthermore, we remember that we are aiming to
maximize the herder’s profit, not the herder’s amount of livestock. It would certainly
be profitabe to harvest the livestock before the size of the herd reach infinity. 4

Remark 1.4 a)We let τ vary in a closed interval [0, T ], where 0 < T < ∞, but
still sufficiently large. b)We let ci : [0, T ] → [0, K], where 0 < K < ∞, but still
sufficiently large. We now give a short argument for this "closing" of the intervals:
a)We show that the utility ∫ T1

T

u(c(t))e−δtdt

will be very small when T is large enough. We have T1 > T , and typically, T1 =∞.
From the definition of u in Chapter 2.2, we know that u(c) ≤ µc, for some constant
µ. We observe that we have

c(t) = −y′(t) + h(t)y(t)

from equation (1.15). Further, solving (1.15) with the initial condition (1.18), we
obtain

y(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c(s)ds

)
,

which implies that, for all t,
y(t)e−H(t) ≤ y0.

We recall that
h(t) < δ − ε,∀t,

and hence
δt−H(t) ≥ εt,∀t.
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We are now ready to estimate the utility:

∫ T1

T

u(c(t))e−δtdt ≤ µ

∫ T1

T

c(t)e−δtdt

= µ

∫ T1

T

(−y′(t) + h(t)y(t))e−δtdt

= µ

∫ T1

T

(−y′(t)e−H(t) + h(t)e−H(t)y(t))e−δt+H(t)dt

= µ

∫ T1

T

−(y(t)e−H(t))′e−δt+H(t)dt

≤ µe−εT
∫ T1

T

−(y(t)e−H(t))′dt

= µe−εT [(y(T )e−H(T ))− (y(T1)e
−H(T1))]

≤ µe−εT (y(T )e−H(T ))

≤ µe−εTy0.

From the estimate above, we see that the utility in the interval [T, T1] is neglectable
when T is large. Hence, we can restrict the interval that τ varies in to [0, T ] without
losing any utility of significance when T is sufficiently large.

b)We proceed by showing that when K is big enough, it does not pay off to allow
controls c that take on values larger than K. We let

εK = sup

{
u(c)

c
: c > K

}
,

and observe that limC→∞ εK = 0. Given a control c, let

cK(t) =

{
c(t) if c(t) ≤ K
K otherwise

We will show that, by chosing K large enough, we can get the difference

∫ T

0

u(c(t))e−δtdt−
∫ T

0

u(cK(t))e
−δtdt
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as small as we want:∫ T

0

u(c(t))e−δtdt−
∫ T

0

u(cK(t))e
−δtdt ≤

∫
{c(t)>K}

u(c(t))e−δtdt

≤ εK

∫
{c(t)>K}

c(t)e−δtdt

≤ εK

∫ T

0

c(t)e−δtdt

= εK

∫ T

0

(−y′(t) + h(t)y(t))e−δtdt

= εK

∫ T

0

(−y′(t)e−H(t)

+ h(t)e−H(t)y(t))e−δt+H(t)dt

≤ εK

∫ T

0

−(y(t)e−H(t))′dt

= εK [y0 − y(T )e−H(T )]

≤ εKy0.

We have limK→∞ εKy0 = 0. Hence, we can let c vary in [0, K] without losing any
utility of significance. 4

Now, we are finally ready to state our version of Problem 1.2:

Problem 1.3 (A simplified version of the optimization problem) We want
to maximize

J(c, τ) =

∫ τ

0

u(c(t))e−δtdt (1.21)

τ = inf{t ≥ 0 | y(t) ≤ 0}, (1.22)

subject to the differential equations

x′(t) = g(t)x(t)− kNh(t)y(t) (1.23)
y′(t) = h(t)y(t)− c(t) (1.24)

and the boundary conditions

x(0) = x0 > 0 (1.25)
x(τ) ≥ 0 (1.26)
y(0) = y0 > 0 (1.27)
y(τ) = 0. (1.28)
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1.3 Solving Problem 1.3
In the following chapters, we will show that it is possible to solve Problem 1.3. We
have chosen the following approach:

Before we actually begin solving the problem, we will present the essential theoretical
background in Chapter 2. Then, in Chapter 3, we simplify Problem 1.3 further by
omitting equation (1.23). This way, we assume that there is always food available
for the livestock. We show that we can find a unique solution for this simplified
problem and we describe this solution. In Chapter 4, we go back to Problem 1.3. As
it turns out, solving this problem generally is quite difficult. However, we use the
results from Chapter 3 to find a solution to Problem 1.3 when x(τ ∗) > 0, ∀τ ∗. We
also consider what we need to know about the initial condition x0 to make sure that
we always have x(τ ∗) > 0. The last chapter gives a brief discussion on the possible
advantages of choosing our optimization strategy over the optimization strategy of
Brekke et al.
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Contents
2.1 Control theory – a very brief introduction . . . . . . . . 15
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In this chapter, we will first place Problem 1.3 in a general control theoretical con-
text. This will be done by presenting the main concepts from control theory and
by outlining a general control problem. For a more detailed and general introduc-
tion to the subject, see [3] and [6]. In the second part of the chapter, we will give
a definition of utility functions, based on a definition in [4], but with some more
conditions added. This definition will be used throughout the project.

2.1 Control theory – a very brief introduction
Definition 2.1 (Control functions and control space) Let t ∈ [t0, t1], where
t0 is fixed and t1 is allowed to vary in a closed interval [t0, T ], t0 < T < ∞. Let
c1, . . . , cr be piecewise continuous functions and let [c1(t), . . . , cr(t)] ∈ U ⊆ Rr, where
U is closed and bounded. The functions c1, . . . , cr are called control functions. The
set U is called the control space.

Remark 2.1 In the following, we will let r = 1 and U = [0, K], where 0 < K <∞.
4

Definition 2.2 (The state of the system) Let x(t) = (x1(t), x2(t), ..., xn(t)) be
a vector function in Rn and let the dynamics of x(t) be described by

x′1(t) = f1(x(t), c(t), t)

x′2(t) = f2(x(t), c(t), t)
...

x′n(t) = fn(x(t), c(t), t), (2.1)

15
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where fi(x(t), c(t), t) and ∂fi(x(t),c(t),t)
∂xj

are continuous with respect to all the n + 2

variables for i, j = 1, . . . , n. x(t) is called the state of the system (2.1) at time t.

Let us assume that the state of the system is known at the initial time t0, i.e., that
we are given

x1(t0) = x10
x2(t0) = x20

...
xn(t0) = xn0 . (2.2)

As the initial value of x is given, we will have a unique solution to the system (2.1).
Further assume that we want the state of the system to hit a certain surface R at the
terminal time t1. More precisely, we want x(t1) to satisfy the following transversality
conditions:

Rj(x(t1), t1) ≥ 0, j = 1, . . . , k′,

Rj(x(t1), t1) = 0, j = k′ + 1, . . . , k. (2.3)

We assume that the Rj’s are C1-functions.

Definition 2.3 (Admissible triple) If t1 ∈ [t0, T ], c(t) ∈ U is any piecewise con-
tinuous function and x(t) is a continuously differentiable function such that (2.1), (2.2)
and (2.3) are satisfied, we call (t1, c(t),x(t)) an admissible triple. A pair (c(t),x(t))
that is such that (t1, c(t),x(t)) is an admissible triple, is called an admissible pair.

The optimal control problem can be formulated in the following way:

Problem 2.1 (The optimal control problem) Let the function f0 be such that
f0(x(t), c(t), t) and ∂f0(x(t),c(t),t)

∂xj
are continuous with respect to all the n+2 variables.

We want to find an admissible triple (t1, c(t),x(t)) such that the criterion functional
J , defined as

J(c, t1) =

∫ t1

t0

f0(x(t), c(t), t)dt, (2.4)

is maximized subject to the differential equations in (2.1), the initial conditions
in (2.2) and the transversality conditions in (2.3). We denote this optimal triple by
(t∗1, c

∗(t),x∗(t)), where c∗(t),x∗(t) are defined on [t0, t
∗
1].

Remark 2.2 The optimal triple will later be referred to as the optimal solution of
the problem.

Definition 2.4 (The optimal value function) The optimal value function V is
defined to be

V (t0,x0,x(t1)) = sup

{∫ t1

t0

f0(x(t), c(t), t)dt : (t1, c(t),x(t)) admissible
}
.
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V is defined only for those triples (t0,x0,x(t1)) for which admissible triples exist. If
an optimal triple exists for a given triple (t0,x0,x(t1)), then

V (t0,x0,x(t1)) <∞

and
V (t0,x0,x(t1)) = J∗,

where

J∗ = J(c∗, t∗1) =

∫ t∗1

t0

f0(x
∗(t), c∗(t), t)dt.

We observe that Problem 1.3 is just a special case of Problem 2.1. In order to find a
solution for Problem 2.1, one possible strategy is to first use Pontryagin’s principle,
a result that provides necessary condition for optimality, to find a candidate for
the optimal solution, and then prove that the solution actually exists using the
Filippov-Cesari existence theorem. We present the theorems below:

Theorem 2.1 (Pontryagin’s principle, [6], p. 180) Let (x∗(t), c∗(t), t∗1) be an
optimal solution for Problem 2.1. Then, with t1 = t∗1, we have the following:
There exist constants p0, γ1, . . . , γk and a continuous and piecewise continuously dif-
ferentiable vector function p(t) = (p1(t), . . . , pn(t)) such that for all t ∈ [t0, T ]:

(1) (p0, γ1, . . . , γk) 6= (0, . . . , 0);

(2) c∗(t) maximizes the Hamiltonian, H(x∗(t), c(t),p(t), t), for c ∈ U , i.e.,

H(x∗(t), c∗(t),p(t), t) ≥ H(x∗(t), c(t),p(t), t),∀c ∈ U. (2.5)

The Hamiltonian is defined as

H(x, c,p, t) = p0f0(x, c, t) +
n∑
j=1

pjfj(x, c, t); (2.6)

(3) Except at the points of discontinuity of c∗(t), we have, for j = 1, . . . , n:

p′j(t) =
−∂H∗

∂xj
(2.7)

where
∂H∗

∂xj
=
∂H(x∗(t), c∗(t),p(t), t)

∂xj
;

(4) p0 = 1 or p0 = 0;

(5) The following transversality conditions are satisfied for j = 1, . . . , n:

pj(t
∗
1) =

k∑
l=1

γl
∂Rl(x

∗(t∗1), t
∗
1)

∂xj
(2.8)

where we have
γl ≥ 0 (= 0 if Rl(x

∗(t∗1), t
∗
1) > 0)

for l = 1, . . . , k′, and γl is a constant (also possibly negative) for l = k′+1, . . . , k;
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(6)

H(x∗(t∗1), c
∗(t∗1),p(t

∗
1), t

∗
1) +

k∑
l=1

γl
∂Rl(x

∗(t∗1), t
∗
1)

∂t
= 0 if t∗1 ∈ (t0, T ) (2.9)

≥ 0 if t∗1 = T (2.10)

If t∗1 = t0, we have

sup
c∈U

H(x0, c,p(t
∗
1), t

∗
1) +

k∑
l=1

γl
∂Rl(x0, t0)

∂t
≤ 0. (2.11)

Before we present our existence result, we define the set N(x, U, t) ∈ Rn+1:

N(x, U, t) := {(f0(x, c, t) + β, f1(x, c, t), f2(x, c, t), . . . , fn(x, c, t)) : β ≤ 0, c ∈ U}

Theorem 2.2 (Filippov-Cesari existence, [6], p. 145) We consider
Problem 2.1. Assume that [t0, T ] is a bounded interval and that t1 varies in [t0, T ].
Further, assume that:

(a) There exists an admissible pair (x(t), c(t)).

(b) N(x, U, t) is convex for each (x, t).

(c) U is closed and bounded.

(d) There exists a number b such that ‖ x ‖≤ b, ∀t ∈ [t0, T ] and all admissible pairs
(x(t), c(t)).

Then there exists an optimal, measurable control c∗(t).

2.2 Utility functions
Definition 2.5 A utility function is a concave, non-decreasing, continuous and dif-
ferentiable function u : R→ [−∞,∞) satisfying:

• The half-line
dom(u) := {x ∈ R : u(x) > −∞}

is a non-empty subset of [0,∞).

• u′ is continuous, positive and strictly decreasing on the interior of dom(u),
and

lim
x→∞

u′(x) = 0
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We set
x := inf{x ∈ R : u(x) > −∞}

so that x ∈ [0,∞) and either dom(u) = [x,∞) or dom(u) = (x,∞). We define

u′(x+) := lim
x→x+

u′(x)

so that u′(x+) ∈ (0,∞].

• We assume u(x) < 0 and that there exists an x0 such that u(x) > 0,∀x > x0.

With u a utility function and x as above, one can show that the strictly decreasing,
continuous and surjective function

u′ : (x,∞)→ (0, u′(x+))

has a strictly decreasing, continuous and surjective inverse

(u′)−1 : (0, u′(x+))→ (x,∞).

In order to have (u′)−1 defined, finite and continuous on (0,∞], we set (u′)−1(y) = x
for y ∈ [u′(x+),∞], and we set

u′((u′)−1)(y) =

{
y if y ∈ (0, u′(x+))
u′(x+) if y ∈ [u′(x+),∞]

(2.12)

(u′)−1(u′)(x) = x, for x ∈ (x,∞). (2.13)

Remark 2.3 We will assume x = 0 throughout this project. 4

Example 2.1 Examples of common utility functions satisfying the above condi-
tions are:
• Logarithmic utility:

u(x) =

{
lnx if x ∈ (0,∞)
−∞ if x ∈ [−∞, 0]

We have x = 0 and dom (u) = (x,∞).
• Power utility:

u(x) =

{
xp

p
− 1 if x ∈ [0,∞)

−∞ if x ∈ [−∞, 0)

where p ∈ (0, 1). We have x = 0 and dom (u) = [x,∞). ♥
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In this chapter, we will simplify Problem 1.3 by omitting the differential equa-
tion (1.23). Given this simplification, we will first show that we can find a unique
candidate for an optimal solution of the problem, and compute this explicitly in two
examples. Then we will show the existence of the optimal solution.

3.1 The simplified version of Problem 1.3
Problem 3.1 (The simplified version of Problem 1.3) We want to
maximize

J(c, τ) =

∫ τ

0

u(c(t))e−δtdt (3.1)

τ = inf{t ≥ 0 | y(t) ≤ 0}, (3.2)

subject to the differential equation

y′(t) = h(t)y(t)− c(t) (3.3)

with boundary conditions

y(0) = y0 > 0 (3.4)
y(τ) = 0. (3.5)

21
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The conditions on τ, h and c are the same as in Chapter 1.2. We assume that
y(t) ≤ d̃, ∀t, where d̃ <∞ is a positive constant.

3.2 Finding candidates for an optimal solution
Let us assume that we have found an optimal solution (y∗, c∗, τ ∗) for Problem 3.1.
We now use Theorem 2.1 to determine the optimal solution. We observe that we
have R(y(τ), τ) = y(τ).

Let us now restate the conditions (1)-(6) from Theorem 2.1 for Problem 3.1:

(1) (p0, γ) 6= (0, 0);

(2) c∗(t) maximizes the Hamiltonian, H(y∗(t), c(t), p(t), t), for c ∈ [0, K], i.e.,

H(y∗(t), c∗(t), p(t), t) ≥ H(y∗(t), c(t), p(t), t),∀c ∈ [0, K]. (3.6)

The Hamiltonian in this case is

H(y(t), c(t), p(t), t) = p0u(c(t))e
−δt + p(t)[h(t)y(t)− c(t)]; (3.7)

(3) Except at the points of discontinuity of c∗(t), we have

p′(t) =
−∂H∗

∂y
(3.8)

where
∂H∗

∂y
=
∂H(y∗(t), c∗(t), p(t), t)

∂y
;

(4) p0 = 1 or p0 = 0;

(5) The following transversality condition is satisfied:

p(τ ∗) = γ
∂R(y∗(τ ∗), τ ∗)

∂y
= γ (3.9)

where γ is a constant (also possibly negative);

(6)

H(y∗(τ ∗), c∗(t∗1), p(τ
∗), τ ∗) = 0 if τ ∗ ∈ (0, T ) (3.10)

≥ 0 if τ ∗ = T (3.11)

If τ ∗ = 0, we have
sup
c∈U

H(y0, c, p(τ
∗), τ ∗) ≤ 0. (3.12)
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In the remaining part of the chapter, we will use the conditions above to find
p0, p(t), c

∗, τ ∗, γ.

We observe that solving the differential equation (3.3) with the initial condition (3.4),
we find, using standard methods:

y∗(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c∗(s)ds

)
(3.13)

where H(t) =
∫ t
0
h(s)ds.

To find p(t), we begin by solving the differential equation

p′(t) = −∂H
∗

∂y
= −p(t)h(t).

Using standard methods, we get that

p(t) = Ce−H(t)

where C is a constant. To determine C, we use the transversality condition from
(5),

p(τ ∗) = γ.

This implies that C = γeH(τ∗), and hence

p(t) = γeH(τ∗)−H(t). (3.14)

We observe that the sign of p(t) only depends on the sign of γ. We will consider an
interpretation of p(τ ∗) in order to determine the sign of γ. As we have already seen,
in our case condition (5) is

p(τ ∗) =
γ∂R(y(τ ∗), τ ∗)

∂y
= γ.

We have that τ is a free terminal time, τ ∈ [t0, T ], and that the initial time t0,
the initial state y(t0) = y0 and the terminal state y(τ) = yτ are fixed. As we saw
in Chapter 2.1, we define the optimal value function V associated with the triple
(t0, y0, yτ ) as

V (t0, y0, yτ ) = sup

{∫ τ

t0

u(c(t))e−δtdt : (y(t), c(t), τ) admissible
}
.

According to [6], p. 215, Theorem 3.11, the value function V (t0, y0, yτ ) is defined
and differentiable with respect to yτ , and we have

−p(τ ∗) = ∂V (t0, y0, yτ∗)

∂yτ∗
.
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In other words, we can say that −p(τ ∗) measures the change in the value function
given a certain change in the desired terminal value of y. In our case, V will be
a decreasing function with respect to yτ . This is because u is non-decreasing and
we must assume that consumption is non-decreasing as the amount of lifestock to
consume increases. Hence, we have

∂V (t0, y0, yτ∗)

∂yτ∗
≤ 0 (3.15)

From the discussion above, we see that we can rewrite condition (5) as

∂V (t0, y0, yτ∗)

∂yτ∗
= −γ. (3.16)

From (3.15) and (3.16), we conclude that γ ≥ 0.

To determine c∗(t), we use condition (2) from Theorem 2.1. We know that c∗(t)
maximizes

p0u(c(t))e
−δt + p(t)[h(t)y∗(t)− c(t)].

In other words, we need c∗ such that

f(c) = p0u(c)e
−δt − p(t)c

is maximized.

First assume p0 = 1. We observe that p0u(c)e−δt is concave in c and that the second
term is linear (and hence concave) in c. Therefore, f is concave in c as well, and
thus we can use standard methods to find the maximizing c. We differentiate f(c)
and set f ′(c) = 0:

u′(c(t))e−δt − p(t) = 0

u′(c(t)) = e−δtp(t)

c∗(t) = (u′)−1(γeH(τ∗)+δt−H(t)). (3.17)

With p0 = 1, we observe that

c∗(τ ∗) = (u′)−1(γeδτ
∗
). (3.18)

Further, we observe that, given the definition of (u′)−1 in section 2.2, we must have
γ > 0 if p0 = 1.

Now assume p0 = 0. Then c∗(t) will maximize

d(c(t)) = −p(t)c(t).



3.2 Finding candidates for an optimal solution 25

If γ = 0, and hence p(t) = 0, the equation above will provide no information
concerning c∗. So, we assume γ > 0, and we get

c∗ = 0. (3.19)

Let us now determine the value of p0. From the beginning of this chapter, we had

y∗(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c∗(s)ds

)
,

given the initial condition y∗(0) = y0. However, if we use the terminal condition

y∗(τ ∗) = 0

instead, we get

y∗(t) = eH(t)

(∫ τ∗

0

e−H(s)c∗(s)ds−
∫ t

0

e−H(s)c∗(s)ds

)
.

Hence,

y0 =

∫ τ∗

0

e−H(s)c∗(s)ds. (3.20)

Now assume p0 = 0. From (3.19), we have that c∗(t) = 0. But from (3.20), we will
then get

y0 = 0

which is a contradiction as we assumed y0 > 0. Hence, we must have p0 = 1.

Before considering condition (6), we make a remark:

Remark 3.1 We assume that τ ∗ ∈ (0, T ): If τ ∗ = 0, the production is terminated
before it is started, and J(c, τ ∗) = 0. We assume that the herder is not this unlucky.
As we can choose T arbitrarily large, we can also assume that we always have τ ∗ < T .
4

Thus, from condition (6),

u(c∗(τ ∗))e−δτ
∗
+ p(τ ∗)[h(τ ∗)y∗(τ ∗)− c∗(τ ∗)] = 0. (3.21)

Using that p(τ ∗) = γ, y∗(τ ∗) = 0, we simplify (3.21) to

u(c∗(τ ∗))e−δτ
∗ − γc∗(τ ∗) = 0. (3.22)

So far, we have been able to find the following expressions for c∗(t),

c∗(t) = (u′)−1(γeH(τ∗)+δt−H(t))
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and y∗(t),

y∗(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c∗(s)ds

)
.

Observing the equations above, it is obvious that in order to find a candidate for
the optimal solution we need to determine τ ∗ and γ. We will do this by showing
that the system of equations generated from (3.22), (3.18) and (3.20), i.e.,

u(c∗(τ ∗))e−δτ
∗ − γc∗(τ ∗) = 0

c∗(τ ∗) = (u′)−1(γeδτ
∗
)

y0 =
∫ τ∗
0
e−H(s)c∗(s)ds

has a unique solution (τ ∗, γ) for the functions u defined in Chapter 2.2. Before
moving on in the general case, we consider a special case where we can find (τ ∗, γ),
and hence our candidate for an optimal solution, by direct computation.

3.2.1 Interlude: Finding an optimal solution in a special case

Let u(c) = ln c. Inserting (3.18) in (3.22), we get

ln

(
1

γeδτ∗

)
e−δτ

∗
= e−δτ

∗

ln(γeδτ
∗
) = −1

⇔
γ = e−δτ

∗−1 (3.23)

We remember that we have γ > 0. Solving (3.23) for τ ∗, we obtain

τ ∗ =
−(1 + ln γ)

δ
. (3.24)

From (3.24), we see that we need γ < e−1 in order to have τ ∗ > 0. In other words,
we have

0 < γ < e−1.

Considering equation (3.20), we get the following:

y0 =

∫ τ∗

0

e−H(s)

γeH(τ∗)−H(s)+δs
ds

=
e−H(τ∗)

γ

∫ τ∗

0

e−δsds

= −e
−H(τ∗)

γδ
[e−δτ

∗ − 1]

⇔
γ =

e−H(τ∗)

δy0
[1− e−δτ∗ ]. (3.25)
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If we insert (3.23) in (3.25), we get that

e−δτ
∗−1 =

e−H(τ∗)

δy0
[1− e−δτ∗ ]

or
e−H(τ∗)+δτ∗+1

δy0
[1− e−δτ∗ ] = 1. (3.26)

For notational simplicity, let

f(t) =
e−H(t)+δt+1

δy0
[1− e−δt].

Hence, (3.26) can be rewritten as

f(τ ∗) = 1.

Lemma 3.1 Equation (3.26) has a unique solution τ ∗ ∈ (0, T ).

Proof: We need to show that there exists a τ ∗ ∈ (0, T ) such that

f(τ ∗) = 1

is satisfied. f is obviously continuous. We will use the intermediate value theorem
to show that a solution τ ∗ exists. We have f(0) = 0. As T can be arbitrarily large,
we consider limT→∞ f(T ). We want to show that

lim
T→∞

f(T ) =∞.

It is sufficient to show that δt−H(t)→∞, ∀t, i.e., that∫ t

0

(δ − h(s))ds

diverges. As we assumed h(t) < δ − ε, ∀t,∀ε ∈ (0, δ), we see that the integral
diverges. Hence limT→∞ f(T ) =∞. In other words, we have

f(0) < 1 < lim
T→∞

f(T ),

and the intermediate value theorem tells us that the desired τ ∗ exists. To show
that the τ ∗ in question is unique, we have to consider the monotonicity properties
of f . We consider the two factors of f separately. First, we observe that 1− e−δt is
strictly increasing as e−δt is strictly decreasing. Furthermore, we see that eδt−H(t)+1

δy0

is strictly increasing as we assumed h(t) < δ − ε and H monotonous. Thus, f is
strictly increasing and the τ ∗ that solves (3.26) is unique. �

Let us now consider a specific choice of h through some examples:
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Example 3.1 Let us now consider the special case where h(t) = α, ∀t, where α < δ
is a constant. Equation (3.26) will then give us

e(δ−α)τ
∗
[1− e−δτ∗ ] = δy0

e

⇔
e(δ−α)τ

∗ − e−ατ∗ = δy0
e
. (3.27)

For general α, we cannot solve (3.27) analytically. However, we observe that if we
set α = −δ, (3.27) becomes

e2δτ
∗ − eδτ∗ = δy0

e
⇔

(eδτ
∗
)2 − eδτ∗ = δy0

e
⇔

eδτ
∗
=

1 +
√

1 + 4δy0
e

2
⇔

τ ∗ =

ln

(
1+

√
1+

4δy0
e

2

)
δ

. (3.28)

Using (3.28) in (3.23), we get that

γ =
2

e

(
1 +

√
1 + 4δy0

e

) . (3.29)

We see that γ < e−1, as required. Using (3.28) and (3.29) in (3.17), we obtain the
optimal control in this special case:

c∗(t) =

1 +
√

1 + 4δy0
e

2

2

e−2δt+1. (3.30)

Further, inserting the optimal control from (3.30) in (3.13) and computing, we get
the following expression for y∗(t),

y∗(t) = e−δt

y0 −
e

(
1+

√
1+

4δy0
e

2

)2

δ

+ e−2δt
e

(
1+

√
1+

4δy0
e

2

)2

δ
. (3.31)

Using (3.28) in (3.31), we see that y∗(τ ∗) = 0, as was to be expected! ♥
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We note that the assumption that h(t) = −δ in Example 3.1 means that the natural
growth rate is negative, so we can interpret this either as the population having a
very high natural mortality rate, or that the response to the food is very low. Clearly,
this is an undesirable situation for the herder. Therefore, we will also consider a
situation where α > 0:

Example 3.2 As we commented on earlier, we cannot solve equation (3.27) ana-
lytically when α 6= −δ. However, let us rearrange (3.27):

e(δ−α)τ
∗ − e−ατ∗ − δy0

e
= 0. (3.32)

If we, for instance, let y0 = 1000, δ = 0.05, α = 0.02 and plot

e(δ−α)τ
∗ − e−ατ∗ − δy0

e

as a function of τ ∗, see Figure 3.1, we can read from the plot that (3.32) is satisfied
for approximately τ ∗ = 97.351.

Figure 3.1: e(δ−α)τ∗ − e−ατ∗ − δy0
e

plotted as a function of τ ∗ with y0 = 1000, δ =
0.05, α = 0.02.

Hence, we have
τ ∗ = 97.351 (3.33)

γ = 0.00283 (3.34)

c∗(t) = 50.42e−0.03t (3.35)

and
y∗(t) = 1008.54e−0.03t − 8.54e0.02t. (3.36)

In this case y∗(τ ∗) = −5.4809 6= 0. However, compared to the value of y0 the
deviation from 0 is quite small, so we can conclude that this inaccuracy is probably
due to the "approximate" nature of this example. ♥
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3.2.2 The optimal solution in the general case

We now show that we can find a unique solution (τ ∗, γ) of the system generated
by (3.22), (3.18) and (3.20) for general utility functions u. As mentioned in Sec-
tion 2.2, we will assume that x = 0, as this is the case for the most common utility
functions.

First we consider an auxiliary result:

Lemma 3.2 The equation
u(x)

x
= u′(x) (3.37)

has a unique solution x̂ ∈ (0,∞).

Proof: Set

g(x) =
u(x)

x
− u′(x).

We want to show that
g(x) = 0

has a unique solution x̂ ∈ (0,∞). Let us begin by showing that x̂ is unique if it
exists. First, recall that we assume u ∈ C2. We then rewrite g(x) slightly:

g(x) =
u(x)− xu′(x)

x

If g(x) = 0, we need v(x) := u(x) − xu′(x) = 0. Thus, it suffices to show that
v′(x) > 0, ∀x, as we then have at most one solution for the equation v(x) = 0. But
this follows from

v′(x) = u′(x)− u′(x)− xu′′(x) = −xu′′(x) > 0

as u is concave.

We move on to showing the existence of a solution of (3.37). As g is obviously
continuous, we will use the intermediate value theorem to prove this. Let us first
consider limx→0+ g(x). As u(0) < 0 and u′(x) > 0, ∀x, we have

lim
x→0+

g(x) < 0.

It is now sufficient to show that there exists x̃ such that g(x̃) ≥ 0. Let us assume
that for all x, we have

g(x) < 0. (3.38)

From Chapter 2.2, we know that there exists x0 such that u(x) > 0, ∀x > x0. Then,
by (3.38), we have ∀x > x0,

u(x)

x
< u′(x)
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⇔
u′(x)

u(x)
>

1

x
⇔

(lnu(x))′ > (lnx)′.

Letting a, b be such that x0 < a < b and integrating, we get∫ b

a

(lnu(t))′dt >

∫ b

a

(ln t)′dt

⇔
ln

(
u(b)

u(a)

)
> ln

(
b

a

)
⇔

u(b)

u(a)
>
b

a
⇔

u(b)

b
>
u(a)

a
.

As this holds for all a, b such that x0 < a < b, we see that on (x0,∞) the state-
ment (3.38) is equivalent to L(x) := u(x)

x
being strictly increasing. But if we con-

sider (3.38), we see that L(x) being strictly increasing on the entire interval (x0,∞)
contradicts the fact that u′(x) is strictly decreasing and that limx→∞ u

′(x) = 0.
Hence, we know that for some x̃ > x0, we will have g(x̃) ≥ 0, and the intermediate
value theorem guarantees the existence of a solution. �

Moving on to (3.22), (3.18) and (3.20), we see that by substituting (3.18) into (3.22),
(3.17) into (3.20) and rewriting (3.22) slightly, we obtain the following system of
equations:

u((u′)−1(γeδτ
∗
)) = γeδτ∗(u′)−1(γeδτ

∗
) (3.39)

y0 =

∫ τ∗

0

e−H(s)(u′)−1(γeH(τ∗)+δs−H(s))ds (3.40)

Set
x := (u′)−1(γeδτ

∗
).

Then we have
u′(x) = γeδτ

∗
.

Equation (3.39) then becomes
u(x) = xu′(x)

or
u(x)

x
= u′(x),

which we recognize as equation (3.37), From Lemma 3.2, we know that (3.37) has a
unique solution x̂ ∈ (x0,∞).
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Lemma 3.3 Given any τ ∗ > 0, we can find a unique γ that solves (3.39), i.e., for
any τ ∗ > 0, there exists a unique γ such that

x̂ = (u′)−1(γeδτ
∗
),

or, equivalently,
u′(x̂) = γeδτ

∗
(3.41)

is satisfied.

Proof: Remember that u′(x̂) is just a fixed positive number. As δ > 0 and τ ∗ > 0
are given, the constant A := eδτ

∗
> 1. The larger we choose τ ∗, the larger we will get

A. Thus, if it exists, we must have γ ∈ (0, u′(x̂)). Let us consider f(γ) := Aγ. As
f(γ) is continuously and strictly increasing, we see that given the above restrictions,
we can find a unique γ for any τ ∗ > 0 such that

u′(x̂) = γeδτ
∗
,

and we can write
γ = u′(x̂)e−δτ

∗
. (3.42)

�

Let us now move on to equation (3.40). Substituting (3.42) into (3.40), we get the
following equation

y0 =

∫ τ∗

0

e−H(s)(u′)−1(u′(x̂)eH(τ∗)−δτ∗+δs−H(s))ds. (3.43)

Lemma 3.4 We can find a unique solution τ ∗ of (3.43).

Proof: Set

ζ(τ ∗) =

∫ τ∗

0

e−H(s)(u′)−1(u′(x̂)eH(τ∗)−δτ∗+δs−H(s))ds.

We begin by making some observations about the integrand of ζ. Let s be fixed
and denote the integrand by κ(τ ∗). First, observe that, for any choice of s, we
have κ(τ ∗) > 0,∀τ ∗. We further observe that, as we assume h < δ − ε, the term
eH(τ∗)−δτ∗ will decrease strictly with respect to τ ∗. Moreover, we know that (u′)−1
is strictly decreasing with respect to z(τ ∗, s) = u′(x̂)eH(τ∗)−δτ∗+δs−H(s). This implies
that (u′)−1 and, hence, κ(τ ∗) are strictly increasing with respect to τ ∗. Furthermore,
we have

lim
τ∗→∞

(u′)−1(z(τ ∗, s)) =∞.

From the previous observations on κ and the definition of ζ, we see that ζ is strictly
increasing with respect to τ ∗. Moreover, we have

ζ(0) = 0.
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As we assume y0 > 0, to show that (3.43) has a unique solution τ ∗, it suffices to
show that

lim
τ∗→∞

ζ(τ ∗) =∞.

Let
I(τ ∗, s) := e−H(s)(u′)−1(z(τ ∗, s)).

Choose τ ∗ ∈ N. {I(τ ∗, s)}τ∗≥0 will then be a strictly increasing sequence. Set

Î := lim
τ∗→∞

I(τ ∗, s) =∞.

Then, by the monotone convergence theorem,

lim
τ∗→∞

ζ(τ ∗) = lim
τ∗→∞

∫ τ∗

0

I(τ ∗, s)ds =

∫ τ∗

0

Îds =∞.

Hence, we have a unique solution τ ∗ of (3.43). �

To sum up: We have shown that given any τ ∗, we can find a unique solution γ
of (3.39) and this γ can be expressed as a function of τ ∗. Using this expression for
γ, we showed that (3.40) has a unique solution τ ∗. Thus, we have shown that the
system of equations (3.39) and (3.40) has a unique solution (γ, τ ∗).

If we consider the expression for c∗, we see that if we can find (γ, τ ∗), we can also
find c∗, and ultimately y∗. Hence, we can find a candidate for the optimal solution
of Problem 3.1 in the general case.

3.3 Existence of an optimal solution

We now show the existence of an optimal solution using Theorem 2.2. We have to
make sure that the four conditions listed in the theorem are satisfied in our case.

Condition (a) is obviously satisfied, and so is (c) and (d), as we assume U = [0, K],
0 < K <∞ and that y(t) ≤ d, where d <∞ is a positive constant.

Condition (b) is satisfied by the following proposition:

Proposition 3.1 The set

N(y, U, t) := {(u(c(t))e−δt + β, h(t)y(t)− c(t)) : β ≤ 0, c ∈ U}

is convex in (y, t).

Proof: Fix (y, t) and let λ ∈ [0, 1], β1, β2 ≤ 0 and c1, c2 ∈ U . Let

v1 = (u(c1(t))e
−δt + β1, h(t)y(t)− c1(t))
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and
v2 = (u(c2(t))e

−δt + β2, h(t)y(t)− c2(t)).

We clearly have v1,v2 ∈ N(y, U, t). We want to show that

v3 = λv1 + (1− λ)v2 ∈ N(y, U, t)

for λ ∈ (0, 1). Let z1, z2 denote the components of the vector v3. We will show
that z1, z2 have the same shape as the first and second components of v1,v2. We
consider the first component,

z1 = λu(c1(t))e
−δt + λβ1 + (1− λ)u(c2(t))e−δt + (1− λ)β2.

Being a utility function, u is concave in c. This implies that

λu(c1(t))e
−δt + (1− λ)u(c2(t))e−δt ≤ e−δtu(λc1(t) + (1− λ)c2(t)).

Let c3 = λc1(t) + (1 − λ)c2(t). c3 is clearly a control contained in U . The latter
inequality implies

z1 ≤ e−δtu(c3) + λβ1 + (1− λ)β2.

Let β3 = z1 − e−δtu(c3). Then we have β3 ≤ λβ1 + (1− λ)β2 ≤ 0, as β1, β2 ≤ 0.

Considering the second component, we observe that

z2 = h(t)y(t)− (λc1(t) + (1− λ)c2(t)) = h(t)y(t)− c3

so z2 is of the desired form. Hence we have found c3 ∈ U and β3 ≤ 0 such that
v3 ∈ N(y, U, t), and we conclude that N(y, U, t) is indeed a convex set. �

As all of the conditions in Theorem 2.2 are satisfied, there exists an optimal solution
to Problem 3.1. This solution is the candidate we described in Chapter 3.2.



4
Finding a solution, part II: Problem 1.3

Contents
4.1 Recapitulation of Problem 1.3 . . . . . . . . . . . . . . . . 35

4.2 Finding candidates for an optimal solution . . . . . . . . 36

4.3 Existence of an optimal solution . . . . . . . . . . . . . . 41

4.1 Recapitulation of Problem 1.3
We now return to our original problem, Problem 1.3, which we restate to refresh
our memories: We want to maximize

J(c, τ) =

∫ τ

0

u(c(t))e−δtdt (4.1)

τ = inf{t ≥ 0 | y(t) ≤ 0}, (4.2)

subject to the differential equations

x′(t) = g(t)x(t)− kNh(t)y(t) (4.3)
y′(t) = h(t)y(t)− c(t), (4.4)

and to the boundary conditions

x(0) = x0 > 0 (4.5)
x(τ) ≥ 0 (4.6)
y(0) = y0 > 0 (4.7)
y(τ) = 0. (4.8)

To solve Problem 1.3, we first tried to apply Theorem 2.1 directly, as in Chapter 3.
However, this did not work out, as we were unable to find a way to determine the

35
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sign of p2(t). Thus, we changed our strategy to the following:

In Chapter 3 we solved Problem 1.3 given the extra condition that the amount
of food for the livestock was always sufficient. This extra condition could also be
formulated as

x(τ ∗) > 0,∀τ ∗.

We observe that R1(x(τ
∗), τ ∗) = x(τ ∗) and R2(x(τ

∗), τ ∗) = y(τ ∗) in Problem 1.3.
In other words, the extra condition from Chapter 3 can also be stated as

R1(x(τ
∗), τ ∗) > 0,∀τ ∗.

In this chapter, we will use the results from Chapter 3 to find a candidate for an
optimal solution to Problem 1.3 when R1(x(τ

∗), τ ∗) > 0. Then, we will discuss how
we can make sure that we always have R1(x(τ

∗), τ ∗) > 0. In the last part of the
chapter, we show the existence of an optimal solution using Theorem 2.2, just as we
did in Chapter 3.

4.2 Finding candidates for an optimal solution
Let us formalize the discussion above by using Theorem 2.1 as in Chapter 3.2. We
assume that we have an optimal solution (x∗, c∗, τ ∗) for Problem 1.3.

We first state the conditions in the theorem for Problem 1.3:

(1) (p0, γ1, γ2) 6= (0, 0, 0);

(2) c∗(t) maximizes the Hamiltonian, H(x∗(t), c(t),p(t), t), for c ∈ [0, K], i.e.,

H(x∗(t), c∗(t),p(t), t) ≥ H(x∗(t), c(t),p(t), t),∀c ∈ [0, K]. (4.9)

In this case, the Hamiltonian is

H(x(t), c(t),p(t), t) = p0u(c(t))e
−δt + p1(t)[g(t)x(t)− kNh(t)y(t)] + p2(t)[h(t)y(t)− c(t)];

(4.10)

(3) Except at the points of discontinuity of c∗(t), we have:

p′1(t) =
−∂H∗

∂x
(4.11)

p′2(t) =
−∂H∗

∂y
(4.12)

where
∂H∗

∂x
=
∂H(x∗(t), c∗(t),p(t), t)

∂x
;

(4) p0 = 1 or p0 = 0;
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(5) The following transversality conditions are satisfied:

p1(τ
∗) = γ1 (4.13)

p2(τ
∗) = γ2. (4.14)

where we have
γ1 ≥ 0 (= 0 if R1(x

∗(τ ∗), τ ∗) > 0)

and γ2 is a constant (also possibly negative);

(6)

H(x∗(τ ∗), c∗(τ ∗),p(τ ∗), τ ∗) = 0 if τ ∗ ∈ (0, T ) (4.15)
≥ 0 if τ ∗ = T (4.16)

If τ ∗ = 0, we have
sup
c∈U

H(x0, c,p(τ
∗), τ ∗) ≤ 0. (4.17)

As in Chapter 3, we use the conditions above to determine p0,p(t), c∗, τ ∗, γ1, γ2.

We observe that solving the differential equations (4.3), (4.4) with the initial condi-
tions (4.5), (4.7), we obtain, using standard methods:

y∗(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c∗(s)ds

)
(4.18)

and

x∗(t) = eG(t)

(
x0 − kN

∫ t

0

e−G(s)h(s)y∗(s)ds

)
, (4.19)

where H(t) =
∫ t
0
h(s)ds and G(t) =

∫ t
0
g(s)ds. From condition (3), we see that

p′1(t) = −p1(t)g(t),

and we get
p1(t) = C1e

−G(t), (4.20)

where C1 is a constant.

Moving on to p2, we see that

p′2(t) = h(t)[kNp1(t)− p2(t)]

and usingstandard methods and (4.20), we get

p2(t) = kNC1e
−H(t)

∫ t

0

h(s)eH(s)−G(s)ds+ C2e
−H(t), (4.21)
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where C2 is a constant.

To determine the constants C1 and C2, we use the transversality conditions in (5),

p1(τ
∗) = γ1 ≥ 0 (= 0 if x∗(τ ∗) > 0)

p2(τ
∗) = γ2.

From p1(τ
∗) = γ1 we get

γ1 = C1e
−G(τ∗)

so
C1 = γ1e

G(τ∗).

From p2(τ
∗) = γ2,

γ2 = kNγ1e
G(τ∗)−H(τ∗)

∫ τ∗

0

h(s)eH(s)−G(s)ds+ C2e
−H(τ∗)

and thus we have

C2 = eH(τ∗)γ2 − kNγ1eG(τ∗)

∫ τ∗

0

h(s)eH(s)−G(s)ds.

Hence,

p1(t) = γ1e
G(τ∗)−G(t) (4.22)

p2(t) = e−H(t)

[
γ2e

H(τ∗) − kNγ1eG(τ∗)

∫ τ∗

t

h(s)eH(s)−G(s)ds

]
. (4.23)

Let us now assume x(τ ∗) > 0, ∀τ ∗. Then, we know that γ1 = 0, and hence, C1 = 0.
Then

C2 = γ2e
H(τ∗)

and we get

p1(t) = 0 (4.24)
p2(t) = γ2e

H(τ∗)−H(t). (4.25)

We see that Problem 1.3 is reduced to Problem 3.1, which we discussed and solved
in Chapter 3. We observe that equation (4.25) "is" equation (3.14), where γ2 replaces
γ. Replacing (3.14) with (4.25), we conclude that γ2 ≥ 0 by the same argument
that we used to show that γ ≥ 0 in Chapter 3.2.

From (2), we know that c∗(t) maximizes

p0u(c(t))e
−δt + p1(t)[g(t)x

∗(t)− kNh(t)y∗(t)] + p2(t)[h(t)y
∗(t)− c(t)].

In other words, c∗ maximizes

p0u(c)e
−δt − p2(t)c,
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which is exactly the function we maximize in Chapter 3.2, and hence, by the same
strategy,

c∗(t) = (u′)−1(eH(τ∗)−H(t)+δt) (4.26)

when p0 = 1, and
c∗(t) = 0 (4.27)

when p0 = 0. As before, it follows that γ2 > 0.

We observe that c∗ and y∗ are the same as in Chapter 3, and we use the double
boundary condition on y∗ to obtain the equation

y0 =

∫ τ∗

0

e−H(s)c∗(s)ds

which we recognize as (3.20) from Chapter 3.2. Thus, we have p0 = 1 by the same
argument as in Chapter 3.2.

As in Chapter 3, we assume that τ ∗ ∈ (0, T ). Considering condition (6), we get

u(c∗(τ ∗))e−δτ
∗

+ p1(τ
∗)[g(τ ∗)x∗(τ ∗)− kNh(τ ∗)y∗(τ ∗)]

+ p2(τ
∗)[h(τ ∗)y∗(τ ∗)− c∗(τ ∗)] = 0 (4.28)

Using that p1(τ ∗) = γ1 = 0, p2(τ
∗) = γ2, y

∗(τ ∗) = 0, we simplify (4.28) to

u(c∗(τ ∗))e−δτ
∗ − γ2c∗(τ ∗) = 0. (4.29)

We recognize this equation as (3.22) from Chapter 3.2.

To sum up, so far we know that

c∗(t) = (u′)−1(eH(τ∗)−H(t)+δt)

y∗(t) = eH(t)

(
y0 −

∫ t

0

e−H(s)c∗(s)ds

)

x∗(t) = eG(t)

(
x0 − kN

∫ t

0

e−G(s)h(s)y∗(s)ds

)
,

and that we have the following equations to determine γ2, τ ∗:

u(c∗(τ ∗))e−δτ
∗ − γ2c∗(τ ∗) = 0

c∗(τ ∗) = (u′)−1(γeδτ
∗
)

y0 =
∫ τ∗
0
e−H(s)c∗(s)ds.

Replacing γ2 with γ, this is exactly the system we used to determine γ, τ ∗ in Chap-
ter 3.2. Hence, we can determine γ2, τ ∗ by the exact same argument as we used in
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Chapter 3.2, and find a candidate for the optimal solution.

In short: We can find a candidate for an optimal solution of Problem 1.3 as long
as we know that x(τ ∗) > 0,∀τ ∗.

The question is: How can we make sure that we always have x(τ ∗) > 0? Let us
once again consider the expression for x:

x∗(t) = eG(t)

(
x0 − kN

∫ t

0

e−G(s)h(s)y∗(s)ds

)
.

We need, for all t,

x0 − kNe
∫ t

0

e−G(s)h(s)y∗(s)ds > 0 (4.30)

We want to find a condition on x0 which ensures that (4.30) is true. First observe
that if h(t) < 0,∀t, we have x∗(t) > 0,∀t. Let us consider the cases where h is not
necessarily negative for all t. Rearranging (4.30), it is obvious that we need

x0 > kNe

∫ t

0

e−G(s)h(s)y∗(s)ds. (4.31)

Remark 4.1 We observe that given the latter inequality, we could also assume that
we have a given initial value x0, and then find out how many herders that could use
the same pasture when the livestock follows this specific dynamics. This approach
would require that the integral be different from zero. 4

To make the conditions stated above a bit more concrete, we consider Examples 3.1
and 3.2 from Chapter 3.2.1, where we had u(c) = ln(c), once again:

Example 4.1 (Continuation of Example 3.1.) In Example 3.1, we assumed h(t) =
−δ. As δ > 0, we will always have x∗(t) > 0 for this h. ♥

But, we remember that a negative natural growth rate for the population was an
undesirable scenario for the herder. However, in Example 3.2, we considered a case
where h(t) = α > 0, ∀t:

Example 4.2 (Continuation of Example 3.2.) We assumed y0 = 1000,
δ = 0.05, α = 0.02. We remember that we obtained

τ ∗ = 97.351

γ = 0.00283

c∗(t) = 50.42e−0.03t

and
y∗(t) = 1008.54e−0.03t − 8.54e0.02t.



4.3 Existence of an optimal solution 41

We let g(t) = δ = 0.05,∀t, and insert the expression for y∗ in (4.30). We then get

x0 > kN0.02

∫ t

0

e−0.05sy∗(s)ds

⇔
x0 > 0.02kN

[
A

0.08
(1− e−0.08t) + B

0.03
(1− e−0.03t)

]
where A = 1008.54, B = −8.54. We set

φ(t) =
A

0.03
(1− e−0.03t) + B

0.05
(1− e−0.05t)

Differentiating, we get
φ′(t) = Ae−0.08t +Be−0.03t.

We set
φ′(t) = 0,

and solving the equation above, we obtain

t = 95.43

This is a maximum. Therefore, we must have

x0 > 0.02kNφ(95.43)

or
x0 > 246.64kN.

♥

4.3 Existence of an optimal solution
Again, we show the existence of an optimal solution using Theorem 2.2. As in
Chapter 3.3, condition (a) is obviously satisfied, and so is (c) and (d), as we assume
U = [0, K], 0 < K <∞, and that there exists a positive constant d <∞ such that
‖ x(t) ‖≤ d.

Condition (b) is satisfied by the following proposition:

Proposition 4.1 The set

N(x, U, t) :=
{
(u(c(t))e−δt + β, g(t)x(t)− kh(t)Y (t), h(t)y(t)− c(t)) : β ≤ 0, c ∈ U

}
is convex in (x, t).

Proof: Fix (x, t) and let λ ∈ [0, 1], β1, β2 ≤ 0 and c1, c2 ∈ U . Let

w1 = (u(c1(t))e
−δt + β1, g(t)x(t)− kh(t)Y (t), h(t)y(t)− c1(t))
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and
w2 = (u(c2(t))e

−δt + β2, g(t)x(t)− kh(t)Y (t), h(t)y(t)− c2(t)).

We clearly have w1,w2 ∈ N(x, U, t). We want to show that, for λ ∈ (0, 1),

w3 = λw1 + (1− λ)w2 ∈ N(x, U, t).

Let θ1, θ2, θ3 denote the components of the vectorw3. We want to show that θ1, θ2, θ3
have the same shape as the first, second and third components of w1,w2, respec-
tively. First, observe that θ2 does not depend on β or c, so θ2 will clearly have the
desired shape. We further observe that the first and third components of w1,w2 are
equal to the first and second components of v1,v2 from Section 3.3. We see that
θ1 = z1 and θ3 = z2, where z1, z2 are the components of the vector v3 in Section 3.3.
As shown in Section 3.3, z1, z2 have the desired shape, and we can construct c3, β3
such that v3 ∈ N(x, U, t). Hence, N(x, U, t) is a convex set. �

Hence, there exists an optimal solution of Problem 1.3 and this solution is the
candidate we have described in Chapter 4.2.
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Epilogue

Through Chapters 3 and 4, we have described a solution to Problem 1.3, and we
have considered some examples where we found the solution by computation. It
might be a natural question to ask whether a controlled outphasing strategy is to
prefer above a strategy with infinite planning horizon. In the following, we will give
a short discussion on this, based on the examples we considered in Chapters 3 and 4.

Let us first simplify the individual optimization problem of Brekke et al. from
Chapter 1.1 by making the same simplifications as we did to obtain Problem 1.3
from Problem 1.2. In other words, we are considering the following deterministic
optimization problem, where the conditions on h, g, c are the same as in Chapter 1.2:

Problem 5.1 (Brekke et al.’s problem, simplified version) We want to max-
imize

J(c) =

∫ ∞
0

ln(c(t))e−δtdt (5.1)

subject to the differential equations

x′(t) = g(t)x(t)− kNh(t)y(t) (5.2)
y′(t) = h(t)y(t)− c(t) (5.3)

and the boundary conditions

x(0) = x0 > 0 (5.4)
y(0) = y0 > 0. (5.5)

As we recall from Chapter 1.1, the optimal control for Problem 5.1 is

c∗(t) = δy(t).

Using this in equation (5.3), we get

y′(t)− (h(t)− δ)y(t) = 0,

43
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and using standard methods to solve this differential equation,

y∗(t) = y0e
H(t)−δt. (5.6)

Hence
c∗(t) = δy0e

H(t)−δt. (5.7)

Let us now consider the optimal value functions of Problem 1.3 and Problem 5.1,
respectively:

J(c∗, τ ∗) =

∫ τ∗

0

u(c∗(t))e−δtdt (5.8)

and
J(c∗) =

∫ ∞
0

ln(c∗(t))e−δtdt. (5.9)

We want to compare (5.8) and (5.9) with the parameters from Examples 3.1 and 3.2.
We recall that we let u(c) = ln(c) in both examples.

Let us first consider the situation from Example 3.1. Here we assume that h(t) = −δ,
and further that y0 = 1000 and δ = 0.05. Let us begin with the controlled outphasing
case. From the computations in Example 3.1, we obtain

τ ∗ = 31.446,

γ = 0.0764

and
c∗(t) = 62.8931e−0.1t.

We compute

J(c∗, 31.446) =

∫ 31.446

0

ln
(
62.8931e−0.1t

)
e−0.05tdt

=

∫ 31.446

0

(ln(62.8931)− 0.1t)e−0.05tdt

= 20 ln(62.8931)[1− e−0.05∗31.446]
+ 2[31.446e−0.05∗31.446 − 20(1− e−0.05∗31.446)]
= 46.99.

Turning to the infinite horizon case, we compute

J(c∗) =

∫ ∞
0

ln(50e−0.1t)e−0.05tdt

=

∫ ∞
0

(ln(50)− 0.1t)e−0.05tdt

= 20 ln(50)− 40

= 38.2405.
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Moving on to Example 3.2, we recall that we let h = α > 0, and that we let y0 =
1000, δ = 0.05, α = 0.02. In the controlled outphasing case we get, using the formulas
from Example 3.2:

τ ∗ = 97.351,

γ = 0.00283

and
c∗(t) = 50.42e−0.03t.

Again, we compute:

J(c∗, τ ∗) =

∫ 97.351

0

ln(50.42e−0.03t)e−0.05tdt = 66.3422.

In the infinite horizon case, we get

J(c∗) =

∫ ∞
0

ln(50e−0.03t)e−0.05tdt = 66.2405.

In both cases, we see that we get a larger utility in the controlled outphasing case.
Thus, these examples suggest that it is preferable for the herder to choose a con-
trolled outphasing strategy. However, more examples and perhaps also other choices
of u should be studied to be able to say anything about this in a more general con-
text.
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