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Abstract
For many arctic species, the spatial (re-)colonization patterns after the last Pleistocene 
glaciation have been described. However, the temporal aspects of their colonization 
are largely missing. Did one route prevail early, while another was more important 
later? The high Arctic archipelago Svalbard represents a good model system to ad-
dress timeframe of postglacial plant colonization. Svalbard was almost fully glaciated 
during last glacial maximum and (re-)colonization of vascular plants began in early 
Holocene. Early Holocene climatic optimum (HCO) supported an expanded establish-
ment of a partly thermophilic vegetation. Today, we find remnants of this vegetation 
in sheltered regions referred to as “Arctic biodiversity hotspots”. The oldest record 
of postglacial plant colonization to Svalbard is found in Ringhorndalen-Flatøyrdalen. 
Even though thermophilic species could establish also later in Holocene, only HCO 
was favorable for vast colonization, and only hotspots offered stable conditions for 
thermophilic populations throughout Holocene. Thus, these relic populations may 
reflect colonization patterns of HCO. We investigate whether the colonization di-
rection of thermophilic plants (Arnica angustifolia, Campanula uniflora, Pinguicula 
alpina, Tofieldia pusilla, and Vaccinium uliginosum ssp. microphyllum) in Ringhorndalen-
Flatøyrdalen was uniform and different from later colonization events in other locali-
ties and non-thermophilic plants (Arenaria humifusa, Bistorta vivipara, Juncus biglumis, 
Oxyria digyna, and Silene acaulis). We analyzed plastid haplotypes of the 10 taxa from 
Ringhorndalen-Flatøyrdalen, from later-colonized localities in Svalbard, and from pu-
tative source regions outside Svalbard. Only rare and thermophilic taxa Campanula 
uniflora and Vaccinium uliginosum ssp. microphyllum provided results suggesting at 
least two colonization events from different source regions. Tofieldia pusilla and all the 
non-thermophilic plants showed no clear phylogeographically differentiation within 
Svalbard. Two of the thermophilic species showed no sequence variation. Based on 
the results, a uniform colonization direction to Svalbard in early Holocene is not prob-
able; several source areas and dispersal directions were contemporarily involved.
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1  |  INTRODUCTION

The distribution of current Arctic plant diversity is a result of cli-
matic changes during Pleistocene (2.5–0.01 Mya) when vast areas of 
the Arctic were recurrently fully glaciated (Ehlers & Gibbard, 2007). 
Due to glaciations, distribution ranges were shifted and fragmented. 
During interglacials, ranges were (re-)established by colonization 
from various refugia along the ice margins. The last wave of (re-)col-
onization started after the last glacial maximum (LGM; 26.5 to 19 
kya depending on site; Dyke, 2004; Hughes et al., 2016; Young & 
Briner, 2015), and in some regions, deglaciation and colonization are 
still ongoing (Figure 1). The spatial patterns of the post-Pleistocene 
recolonization have been thoroughly described; the temporal aspect 
of Holocene colonization is, however, largely missing (but see Ikeda 
et al., 2017). Did colonization routes change through time? Did one 
direction prevail at the beginning of the colonization, while another 
was more important later? Connecting available knowledge about 
Pleistocene glacial history, Holocene colonization patterns, and an-
cient and recent vegetation composition may shed light on temporal 
variation during (re-)colonization.

In general, the current plant diversity in a given Arctic region 
is strongly related to the level of climatic stability in the region 
throughout the Pleistocene. Glacial refugia served as the most sta-
ble areas; the majority of them were however only temporary or only 
of local importance (summarized in e.g., Abbott & Brochmann, 2003 
or Hewitt, 2004). One of the most stable Arctic regions is the area 
around the Bering Strait, called Beringia (Hultén, 1937). During glaci-
ations, the Bering Strait was dry land connecting continents through 
a land bridge, whereas the surrounding areas remained unglaciated. 
Thus, Beringia served as an important Arctic refugium and biodi-
versity source throughout the Pleistocene (Hultén,  1937). Today, 
Beringia is characterized by high species richness, high levels of 
endemism, high levels of genetic diversity and ancestral genotypes 
(Abbott & Brochmann, 2003; DeChaine, 2008; Yurtsev, 1982).

In contrast to Beringia, the high Arctic archipelago Svalbard 
(74°20′–80°50′ N, 10°30′–33°30′ E, Figure 2), situated at the north-
ernmost fringe of the Atlantic Ocean, was heavily glaciated (e.g., 
Hughes et al.,  2016; Landvik et al.,  1998), and the current flora 
largely colonized the archipelago during Holocene (ca. 10 kya – 
present). Thus, the current biodiversity of Svalbard, from gene to 
ecosystem level, is comparatively low (Eidesen, Ehrich, et al., 2013). 
This pattern is further reinforced by its remote location, surrounded 
by vast oceans which represent major dispersal barriers (Eidesen, 
Ehrich, et al., 2013). In Svalbard, natural dispersal and establishment 
of new plant species is likely an ongoing process (Alsos et al., 2007; 
Coulson, 2015; Ware et al., 2012) which depends on many biotic and 
abiotic factors (Figure 3). The fact that Svalbard has a set timeframe 
for colonization, and any colonization event must happen from a 

distant source area leading to some level of funder effect, has made 
Svalbard a perfect area to study postglacial colonization by long-
distance dispersal (LDD; Alsos et al., 2007).

Several phylogeographical studies concerning plant coloni-
zation of Svalbard during Holocene have been published in the 
last decades (e.g., Abbott et al.,  1995; Alsos, Ehrich, et al.,  2015; 
Alsos, Ware, et al., 2015; Alsos et al., 2007; Birkeland et al., 2017; 
Gabrielsen et al., 1997; Westergaard et al., 2010, 2011). The current 
flora clearly originated from several source regions (i.e., not in the 
meaning of a refugium, but in the meaning of a land deglaciated ear-
lier than Svalbard serving as the last steppingstone before colonizing 
Svalbard). Siberia has been the most important source region despite 
being the most distant one (Alsos et al., 2007). This is probably a con-
sequence of Taimyr and Yamalo-Nenets regions remaining largely 
unglaciated during LGM and at the same time keeping connection 
with Svalbard by sea ice for a long period (CLIMAP Project, 1981). 
A western pathway of colonization is also shown to be an important 
source of propagules, while colonization from southern source re-
gions such as Scandinavia appears less common (Alsos et al., 2007). 
We assume that all these source localities for the Svalbard flora 
were situated along the northern coasts of Siberia, Scandinavia, 
Greenland, and Canada which are suggested to be partly unglaci-
ated at the end of the last glaciation (Briner et al.,  2016; Hughes 
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F IGURE  1 Last glaciation maximum (LGM) and dispersal 
pathways in Svalbard. Dark gray – LGM glacier extent; green – area 
of Beringia (Hultén, 1937); blue – position of Svalbard; orange – 
dispersal source areas for Svalbard; arrows thickness corresponds 
with importance of the source area (Alsos et al., 2007).
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et al., 2016; Young & Briner, 2015). This northern route along the 
coast represents the shortest and probably easiest way where plants 
could spread directly over sea ice (Figure 1).

Additional to the size and position of available source regions, 
understanding characteristics of putative dispersal vectors may in-
form about both temporal and spatial aspects of long-distance plant 
migration routes (e.g., Muñoz et al., 2004; Nathan, 2006; Robledo-
Arnuncio et al., 2014; Sauer, 1988). Plant colonization of Svalbard is 
dependent on LDD by chance (Carlquist, 1981) which may be aided 
by various dispersal vectors, such as wind, sea ice (Alsos, Ehrich, 
et al., 2015), and driftwood (e.g., Dyke et al., 1997; Eggertsson, 1994). 

These vectors are influenced by oceanographic currents and wind 
patterns which may change through time (Dyke et al., 1997; Moros 
et al., 2004; Tremblay et al., 1997). Even at present, west and north 
coasts of Svalbard are influenced by different sea currents (Loeng & 
Drinkwater, 2007). Thus, the importance of different dispersal vec-
tors has likely shifted during Holocene which again may have influ-
enced the level of dispersal from different source areas over time.

Colonization is not only dependent on dispersal from source re-
gions; suitable establishment conditions in sink regions are of equal 
or even higher importance (Alsos et al.,  2007; Figure  3). During 
Holocene, the climatic conditions in Svalbard changed drastically 

F IGURE  2 Map of Svalbard and its 
position in the Arctic. Ringhorndalen-
Flatøyrdalen hotspot is highlighted by the 
red point.

F IGURE  3 Dispersal and establishment network. Factors associated with dispersal and establishment are connected to each of the 
aspects by full line. Dashed lines show dependence of individual factors on each other.
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(Farnsworth et al., 2020; Mangerud & Svendsen, 2018; Figure 4). 
The warmest and most favorable climatic conditions occurred 
just after deglaciation. This period is called the Holocene climatic 
optimum (HCO). The peak of HCO in Svalbard, with the average 
July temperature 6°C higher than today, has been dated to 10.2–
9.2 cal. kya (Alsos et al., 2016; Birks, 1991; Birks et al., 1994; Hald 
et al., 2004; Hyvärinen, 1970; Mangerud & Svendsen, 2018; Miller 
et al.,  2010; Salvigsen et al.,  1992; Salvigsen & Høgvard,  2006; 
Svendsen & Mangerud,  1997). Other regions of the Arctic ex-
perienced HCO later (Bezrukova et al.,  2011; Blyakharchuk & 
Sulerzhitsky, 1999; de Vernal et al., 2005; Gajewski, 2015). During 
HCO, the glacial extent was at its minimum, and large areas were 
available for colonization. After HCO, there was a cooler pe-
riod followed by a slight warming, less intense than the first one 
(Mangerud & Svendsen, 2018). After 6 cal. kya, the climate grad-
ually cooled toward the present temperatures. This climatic pro-
gression was the main factor controlling population establishment 
possibilities in Svalbard; that is, thermophilic species had optimal 
conditions for vast establishment only during the most favorable 
periods (Alsos et al., 2016; Voldstad et al., 2020). A recent study, 
which mapped time of plant colonization in Fennoscandia based 
on sedaDNA, showed that adaptation to temperature had the 
highest relative predictive power to estimate time of colonization 
(Alsos et al.,  2022). Thus, we assume that even though popula-
tions of thermophilic species could have established occasionally 
in certain locations during the whole Holocene, most of them have 
established when climatic conditions in the locality allowed it. We 
further assume that populations in climatically stable hotspots 

could have persisted to present day while populations in less sta-
ble localities most likely disappeared during colder periods. On the 
contrary, more cold-tolerant species could manage to establish 
and survive anytime during Holocene.

In our study, we focus on Ringhorndalen-Flatøyrdalen area 
(Figure  2), the most diverse and isolated biodiversity hotspot in 
Svalbard (Birkeland et al., 2017; Eidesen, Strømmen, et al., 2013; 
Elvebakk & Nilsen, 2002, 2016). It hosts 124 vascular plants spe-
cies out of 204 taxa recorded from Svalbard with some of them 
having the only known location in Svalbard here (Pinguicula alpina, 
Luzula spicata, Erigeron uniflorus, Draba aff. oblongata, Festuca ovina, 
and Calamagrostis purpurascens; Eidesen, Strømmen, et al.,  2013; 
Eidesen et al., 2018; Elvebakk & Nilsen, 2002, 2016). This area is 
one of four Svalbard hotspots where conditions for plant growth 
become more favorable than average resulting in higher produc-
tivity and/or species diversity (Elvebakk,  2005; Walker,  1995). 
Ringhorndalen-Flatøyrdalen shows evidence of early postglacial 
colonization with stable and favorable environmental conditions 
throughout Holocene offering suitable conditions for relic ther-
mophilic vegetation from the HCO (Voldstad et al., 2020). Recent 
evidence suggests that this area was opened for colonization as 
early as 12.0 kya (Voldstad et al., 2020), which is earlier than other 
investigated localities (Figure 4; summarized by Alsos et al., 2016; 
Bernardová & Košnar,  2012; Hyvärinen,  1970). We aim to utilize 
the specific features of this locality and compare the genetic com-
position of populations in Ringhorndalen-Flatøyrdalen with other 
populations in Svalbard, and putative source populations outside 
Svalbard.

F IGURE  4 Environmental conditions in Svalbard and the Arctic during Holocene. The time scale spans from 14 kya until recent. 
Blue line – extent of glaciation in Svalbard (Farnsworth et al., 2020); red line – average summer temperature in Svalbard (Mangerud & 
Svendsen, 2018); orange – timeframe of potential thermophilic species establishment; green – timeframe of potential non-thermophilic 
species establishment (the sizes of the establishment timeframes illustrate our hypothesis); asterisk – vegetation age datings (summarized 
by Bernardová & Košnar, 2012; Hyvärinen, 1970; Alsos et al., 2016); red asterisk – vegetation age in Ringhorndalen (Voldstad et al., 2020); 
in maps: gray – glacier extent (Dyke, 2004; Farnsworth et al., 2020; Hughes et al., 2016), red – temperature higher than today (Davis et al., 
2003; Edwards et al., 2001; Velichko et al., 2002; Zhang et al., 2010), question marks – uncertainty about temperature.
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As this area was opened early for colonization and remained 
stable, it has kept the biodiversity of early established thermophilic 
populations throughout HCO and the cooler periods too. Thus, cur-
rent genetic signatures of hotspot thermophilic species most likely 
represent descendants from lineages colonizing Svalbard before or 
during the HCO. Their current fragmented distribution ranges re-
strict gene flow among populations within Svalbard. Thermophilic 
species in hotspots in general, and in the early deglaciated area 
Ringhorndalen-Flatøyrdalen in particular, might therefore reveal 
information about source area(s) or dispersal vectors important in 
early Holocene.

To validate the expected pattern of rare, thermophilic species 
in the Ringhorndalen-Flatøyrdalen area, we built a comparative 
dataset of common, non-thermophilic species in Svalbard. We pre-
dict that non-thermophilic species show little temporal correlation, 
higher levels of genetic diversity, and genetic mixture, with lineages 
originating from several source areas compared to rare thermophilic 
species. Moreover, since non-thermophilic species are widely distrib-
uted and less limited by temperature for successful establishment, 
we expect higher gene flow within Svalbard. Thus, we do not expect 
to find clear genetic differences between populations of common, 
non-thermophilic species from the Ringhorndalen-Flatøyrdalen area 
and other localities.

We predict that if populations of thermophilic species in 
Ringhorndalen-Flatøyrdalen show a coherent direction of dispersal, 
whereas other localities colonized later and less thermophilic spe-
cies show a larger mixture, main direction of dispersal have likely 
changed through time. More specifically, we predict that (1) if source 
regions and/or direction of dispersal are coherent among thermo-
philic species in Ringhorndalen-Flatøyrdalen, but not coherent 
among other hotspot areas in Svalbard, there was one dominating 
source/direction of dispersal in early Holocene, but a shift in source/
direction occurred before the end of the HCO; (2) if source regions 
and/or direction of dispersal are coherent among thermophilic spe-
cies in Ringhorndalen-Flatøyrdalen and the other hotspot localities, 
there was one dominating source/direction until the end of the 
HCO; (3) if there is no coherent pattern among thermophilic species, 
several sources/direction of dispersal were contributing already at 
an early stage of colonization.

To evaluate these predictions, we used a comparative phy-
logeographic approach including 10 species: five thermophilic 
(Arnica angustifolia, Campanula uniflora, Pinguicula alpina, Tofieldia 
pusilla, Vaccinium uliginosum ssp. microphyllum) and five non-
thermophilic species (Arenaria humifusa, Bistorta vivipara, Juncus 
biglumis, Oxyria digyna, and Silene acaulis) with wide distributions 
outside Svalbard. For six species, we compiled previously published 
large-scale phylogeographies based on haplotype diversity (se-
quences of non-coding plastid DNA regions; Allen et al., 2012; Alsos 
et al.,  2005; Eidesen, Alsos, et al.,  2007; Gussarova et al.,  2015; 
Marr et al.,  2013; Schönswetter et al.,  2007; Wang et al.,  2016; 
Westergaard et al., 2011) with additional samples from Svalbard and 
Ringhorndalen-Flatøyrdalen. For four species, we built large-scale 
phylogeographies from scratch.

2  | MATERIALS AND METHODS

2.1  |  Selection of species

We selected 10 taxa, five thermophilic and five non-thermophilic, 
based on the following criteria: wide Arctic distribution range 
(several possible source areas for colonization of Svalbard), avail-
ability of phylogeographic data (only phylogeographies based on 
plastid DNA haplotype data were chosen to enable extension of 
dataset), and presence of species in Ringhorndalen-Flatøyrdalen 
area. Taxa with available phylogeographies meeting these crite-
ria included five non-thermophilic (Arenaria humifusa Wahlenb. 
in Westergaard et al.,  2011; Bistorta vivipara (L.) Delarbre in Marr 
et al., 2013; Juncus biglumis L. in Schönswetter et al., 2007; Oxyria 
digyna (L.) Hill. in Allen et al.,  2012; Wang et al.,  2016; and Silene 
acaulis (L.) Jacq. in Gussarova et al.,  2015) and one thermophilic 
subspecies (Vaccinium uliginosum L. ssp. microphyllum (Lange) Tolm., 
Alsos et al.,  2005; Eidesen, Alsos, et al.,  2007). Data for these six 
taxa were downloaded from GenBank (https://www.ncbi.nlm.nih.
gov/). For Arenaria humifusa, sequences with accession numbers 
HM772095, HM772096, HM772106 – HM772108 were used, for 
Bistarta vivipara JX853580.1-JX853609.1 were used, for Juncus 
biglumis AM085712.1-AM085736.1 were used, for Oxyria digyna 
JQ080918.1-JQ080962.1 and KR003612.1-KR003628.1 were 
used, and for Vaccinium uliginosum DQ073105-DQ073326 and 
EF502102-EF502167.

Selection of the other four thermophilic species without avail-
able phylogeographies based on plastid DNA haplotypes (Arnica 
angustifolia Vahl, Campanula uniflora L., Pinguicula alpina L., Tofieldia 
pusilla (Michx.) Pers.) was based on the same distribution criteria and 
the availability of silica samples (from Ringhorndalen-Flatøyrdalen 
area and from Svalbard in general).

2.1.1  |  Thermophilic species

The five thermophilic species (Arnica angustifolia, Campanula uni-
flora, Pinguicula alpina, Tofieldia pusilla, Vaccinium uliginosum ssp. mi-
crophyllum) are rather rare with scattered occurrences in Svalbard. 
They typically are found in favorable, stable, and warmer sites, 
but have different habitat preferences (Table  1). Campanula uni-
flora, Pinguicula alpina, and Tofieldia pusilla are red-listed as Near 
Threatened, and Vaccinium uliginosum ssp. microphyllum as Critically 
Endangered (https://svalb​ardfl​ora.no).

2.1.2  |  Non-thermophilic species

Four out of five non-thermophilic species are widely distributed 
in Svalbard (Bistorta vivipara, Juncus biglumis, Oxyria digyna, and 
Silene acaulis), but have different dispersal adaptations (Table  1). 
Arenaria humifusa is not regarded as thermophilic but is rare in 
Svalbard and red-listed as Vulnerable (https://svalb​ardfl​ora.no). 
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Ringhorndalen-Flatøyrdalen is one of the few locations it is found 
in Svalbard.

2.2  |  Sampling of material

Samples for DNA sequencing of all species were either collected 
in the field by us, extracted from herbarium vouchers, or obtained 
from private collections (Table  S1). Specifically, samples from 
Ringhorndalen were collected in years 2015 and 2019 during field 
camps. Samples from Kongsfjorden and Krossfjorden were collected 
in summer 2020 during a field camp. In the field, we collected green 
leaf material into silica-gel for fast drying of the tissue. We collected 
1–5 individuals per taxon, always at least 5 m apart.

Samples from the other Svalbard localities and from the rest 
of the Arctic were obtained from herbarium collections in Natural 
History Museum in Oslo (O), Arctic University Museum of Norway 
(TROM), Canadian Museum of Nature (CAN), and Natural History 
Museum of Denmark (C). Samples of Tofieldia pusilla from Europe 
were obtained from private collection of Siri Birkeland.

2.3  | DNA extraction and sequencing

DNA was extracted from dry leaf material using DNeasy Plant Mini 
Kit (Qiagen) following the standard protocol. For each species, one 
to three individuals from Ringhorndalen-Flatøyrdalen population 
were sequenced; one individual per population was sequenced for 
the other localities. For species with existing phylogeographical 
dataset, regions used in the original study were sequenced (Allen 
et al., 2012; Alsos et al., 2005; Eidesen, Alsos, et al., 2007; Gussarova 
et al.,  2015; Marr et al.,  2013; Schönswetter et al.,  2007; Wang 
et al., 2016; Westergaard et al., 2011). For the other species, eight 
different plastid non-coding regions were tested to search for vari-
able regions: rps16-trnQ, rpl32-trnL (Shaw et al.,  2007), psbA-trnH 
(Sang et al.,  1997), petB-petD (Löhne & Borsch,  2005), trnL-trnF 
(Taberlet et al., 1991), trnS-trnG (Shaw et al., 2005), trnT-trnL (Cronn 
et al., 2002), and ycf4-cemA (Ekenäs et al., 2007).

For 25 μL PCR reaction, we used 0.2 μL DreamTaq polymerase 
(5  U/μL; Thermo Scientific), 0.5  μL dNTPs (10 mM), 0.5  μL of 
each primer (10  μL), 2.0  μL MgCl2 (25 mM), 2.5  μL 10× PCR buf-
fer, and 3.0 μL template DNA. PCR cycling was performed with a 
Mastercycler X50 (Eppendorf) with specific parameters for each 
primer pair (Table 2). Sequencing was performed by Eurofins genom-
ics (Germany) and stored in GenBank (Table S1).

2.4  |  Statistical analyses

For each species, a matrix containing complete sequences for all 
variable regions was prepared. We further refer to these combined 
datasets of selected non-coding chloroplast regions as “haplotype(s)” 
and clusters of closely related haplotypes as “haplotype lineage(s).” TA
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Species with no variability in all tested regions were not included in 
further analyses of sequence data.

Alignments of new sequences and downloaded sequences 
from GenBank were made by online MAFFT v.7 (Katoh et al., 2018; 
Kuraku et al.,  2013; https://mafft.cbrc.jp/align​ment/serve​r/) using 
default Auto setting and manually adjusted when necessary.

Newly obtained sequences of the taxa with published phy-
logeographies were evaluated only on basis of the alignment. 
Haplotype separation and visualization of the new datasets (i.e., 
Campanula uniflora and Tofieldia pusilla) were performed using R 
version 4.1.2 (R Core Team,  2013). Parsimony analyses to pro-
duce haplotype networks were carried out by “haplotypes” R-
package (Caner, 2020) (we used single indel coding method). NJ 
network was performed by “phangorn” R-package (Schliep, 2011; 
Schliep et al., 2017) using hamming distance. Maps of haplotype 
distributions were performed using “ggplot2” (Wickham,  2016), 
“sp” (Pebesma & Bivand,  2005), and “rworldmap” R-packages 
(South, 2011). Species distribution maps of all tested species were 
taken from Hultén and Fries (1986) and updated according to maps 
published together with their phylogeographies (Allen et al., 2012; 
Alsos et al.,  2005; Eidesen, Alsos, et al.,  2007; Gussarova 
et al.,  2015; Marr et al.,  2013; Schönswetter et al.,  2007; Wang 
et al., 2016; Westergaard et al., 2011).

Consensus ML trees were found for all variable taxa (it means all 
except of Arnica angustifolia and Pinguicula alpina). For the ML phy-
logeny analyses, only one variable sequenced region per species was 
chosen and sequences of the closest dated relative taxa were down-
loaded from GenBank. The ML trees were time-calibrated according 
to published dated phylogenies (except for Juncus biglumis for which 
any calibrated phylogeny of Cyperaceae is missing). Since we could 
not infer age of most recent haplotypes, the tips were set to 0. Thus, 
the age in the calibrated trees was underestimated. For Arenaria 
humifusa, we used rps16-trnQ region and Scleranthus perennis 
MT094069.1 as a dated outgroup (Frajman et al., 2009). For Bistorta 
vivipara and Oxyria digyna, we used psbA-trnH and Fagopyrum dibotrys 
EU554044.1 as a dated outgroup (Fan et al., 2013). For Campanula 
uniflora, we used rpl32-trnL and Platycodon grandifloras NC_035624.1 
as a dated outgroup (Crowl et al., 2014; Park et al., 2006). For Silene 
acaulis, we used rpl32-trnL region and Dianthus leucophoeniceus 
OU862945.1 as a dated outgroup (Rautenberg et al., 2012, 2010). 
For Tofieldia pusilla, we used trnL-trnF region and Harperocallis flava 
AB451606.1 as a dated outgroup (Eguchi & Tamura,  2016). For 
Vaccinium uliginosum ssp. microphyllum, we used trnL-trnF region 
and Andromeda polifolia JF801624.1 as a dated outgroup (Schwery 
et al.,  2015). For the non-calibrated phylogeny of Juncus biglumis, 
we chose trnL-trnF region and Juncus castaneus AY437954.1 as an 
outgroup. For all datasets, we estimated the best evolution model 
by ModelFinder (Kalyaanamoorthy et al., 2017) implemented in IQ-
TREE 2.1.3 (Nguyen et al., 2015). The best ML tree search was per-
formed by IQ-TREE 2.1.3 (Nguyen et al., 2015) with implemented 
fast branch test SH-aLRT (Guindon et al., 2010), ultrafast bootstrap 
(Hoang et al., 2018), and with UFBoot as a protection from overesti-
mating branch support.

3  |  RESULTS

We obtained in total 429 new sequences (GenBank: 
OP004939-OP005425) originating from eight plastid non-coding 
regions (Table S1).

3.1  |  Thermophilic species

For Vaccinium uliginosum ssp. microphyllum, already existing data 
from previous phylogeographies were utilized (Alsos et al.,  2005; 
Eidesen, Alsos, et al.,  2007), and only additional samples from 
Ringhorndalen-Flatøyrdalen were sequenced. The formerly se-
quenced populations from Svalbard were all from localities in central 
Spitsbergen (Figure 5e) and contained widespread Arctic haplotype 
C (Figure  S1a). The population in Ringhorndalen-Flatøyrdalen se-
quenced in this study contained haplotype E, a new haplotype for 
Svalbard. This haplotype was documented only in eastern Canada 
and Greenland in the former studies (Alsos et al.,  2005; Eidesen, 
Alsos, et al.,  2007). According to dated ML tree (evolution model 
BIC = F81 + F), diversification of Vaccinium uliginosum is dated 2.87 
Mya, haplotype C is dated 190 kya (with low BS support) and is an-
cestral to haplotype E (Figure S2d).

For Arnica angustifolia, Campanula uniflora, Pinguicula alpina, and 
Tofieldia pusilla, new datasets across the Arctic were gathered and 
analyzed. No haplotype variability was found in Arnica angustifolia 
and Pinguicula alpina (Figure  5a,c); the species are discussed fur-
ther solely on the basis of their distribution. The new datasets for 
Tofieldia pusilla and Campanula uniflora were analyzed further.

In Tofieldia pusilla, variability was found in chloroplast regions 
petB-petD, trnL-trnF, trnS-trnG, and trnT-trnL. For these regions, 26 
samples from the entire Arctic distribution were sequenced. The 
complete matrix of all four regions was 3572 bp long and included 
27 variable positions (including indels). The nucleotide frequencies 
of the matrix were A = 0.3934, C = 0.1311, G = 0.1459, T = 0.3296. 
In total, 18 individual haplotypes were described (Table S2) in four 
related clusters – Europe, Beringia, Siberia, and Greenland–Canada 
(Figure 6a,b). All Svalbard samples belong to the European cluster. 
These clusters were confirmed by NJ split network (Figure 6c), ML 
phylogenetic tree (evolution model BIC = GTR + I + G), however, dis-
covered only two groups (with low support) which were divided 2.18 
Mya – Europe group (223.7 ky old) and Greenland-America-Siberia 
group (186.9 ky old; Figure 6d). In the tree, the Svalbard clade was 
well supported.

In Campanula uniflora, variability was found in regions rpl32-trnL, 
trnL-trnF, trnS-trnG, and trnT-trnL. For these four regions, 35 sam-
ples from the entire Arctic distribution were sequenced. The com-
plete matrix of all four regions was 2806 bp long, and it included nine 
variable positions (including indels). The nucleotide frequencies of 
the matrix were A = 0.3457, C = 0.1609, G = 0.1575, T = 0.3359. 
In total, eight individual haplotypes were described (Table S3). Two 
haplotypes were found in Beringia, two haplotypes were found in 
N Canada, one haplotype was widespread in the East Canadian 

 20457758, 2023, 3, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.9892 by U

niversity O
f O

slo, W
iley O

nline L
ibrary on [12/01/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense

https://mafft.cbrc.jp/alignment/server/


    | 9 of 18BROŽOVÁ et al.

– Greenland – N Atlantic region (including Svalbard), and one rare 
haplotype lineage was restricted to Svalbard and Novaya Zemlya 
(Figure 7a,b). In Svalbard, this rare haplotype lineage was found in 
Ringhorndalen-Flatøyrdalen and Kongsfjorden (Figure 7a). The cal-
ibrated phylogeny (evolution model BIC = TVM + F + G4) suggested 
a rather recent diversification of Campanula uniflora (Figure 7c). A 
227.4 ky old haplotype from central Canadian Arctic (haplotype D) 
was placed at the base. Most of the Canadian/European/Greenlandic 
haplotypes were estimated to be 23.6 ky old. Two youngest clades 
(with low support) were composed of Beringian samples (haplotype 
C; 3.9 ky old) and samples from Svalbard and Novaya Zemlya (haplo-
type F + G; 3.3 ky old).

3.2  | Non-thermophilic species

For all non-thermophilic species, we aligned new sequences to 
existing haplotype data (Allen et al., 2012; Gussarova et al., 2015; 
Marr et al.,  2013; Schönswetter et al.,  2007; Wang et al.,  2016; 
Westergaard et al.,  2011). In all cases, the new samples from 
Ringhorndalen-Flatøyrdalen were aligned to the only (or the most 
common) haplotype present in Svalbard (Figures 5f–j, S1).

In Bistorta vivipara, the haplotype found in Ringhorndalen-
Flatøyrdalen was the same as registered in another location in 
Svalbard; this haplotype was found all around the Arctic except 
for NE Asia (Marr et al.,  2013). The Ringhorndalen-Flatøyrdalen 
population of Juncus biglumis was assigned to the “Arcto-alpine” 
lineage, which was the most common haplotype described previ-
ously in Svalbard and in Arctic and alpine regions of the northern 
hemisphere (Schönswetter et al., 2007). The Svalbard populations, 
including Ringhorndalen-Flatøyrdalen population, of Oxyria digyna 
contained haplotype B; this haplotype is dominating in Arcto-alpine 
areas of the Northern Atlantic (Allen et al., 2012). In Silene acaulis, 
the haplotype L dominating in the Northern Atlantic area was found 
in Ringhorndalen-Flatøyrdalen as well as in most of other Svalbard 
localities (another related European haplotype was found by previ-
ous study in Hornsund; Gussarova et al., 2015). All Svalbard samples 
of Arenaria humifusa were assigned to haplotype B, which domi-
nates in the Arctic of Europe, Greenland, and Canada (Westergaard 
et al., 2011).

The calibrated phylogenies suggested that all haplotypes (ex-
cept for old splits in Tofieldia pusilla and Vaccinium uliginosum ssp. 
microphyllum) were of recent origin. Svalbard haplotype of Arenaria 
humifusa was derived 12 kya (evolution model BIC = HKY + F + G4); 
Svalbard haplotype of Bistorta vivipara is very recent and haplotype 
of Oxyria digyna present in Svalbard is 90.9 ky old (both under evo-
lution model BIC =  TVM + F + I); haplotype of Silene acaulis exist-
ing in Svalbard is 14 ky old (evolution model BIC=K3Pu + F + G4). 
Topology of Juncus biglumis ML tree (evolution model BIC=F81 + F) 
is in agreement with the topology presented in Schönswetter 
et al. (2007).

4  | DISCUSSION

4.1  | No uniform colonization direction of 
Ringhorndalen-Flatøyrdalen or other hotspot areas

The aim of our study was to compare directions of dispersal of 
thermophilic and non-thermophilic populations in Ringhorndalen-
Flatøyrdalen and in later colonized areas in Svalbard. Results 
showed that thermophilic species did not colonize Ringhorndalen-
Flatøyrdalen or Svalbard in general in uniform direction of disper-
sal. Thus, we do not give strong evidence for a dominating direction 
of dispersal or dominant source region for colonization of Svalbard 
in early Holocene. On the contrary, our results show that thermo-
philic species in Ringhorndalen-Flatøyrdalen have several source 
regions and different direction of dispersal, since the haplotype 
of Vaccinium uliginosum ssp. microphyllum found in Ringhorndalen-
Flatøyrdalen is distributed westward from Svalbard, Tofieldia pusilla 
to the south, whereas the origin of Campanula uniflora populations in 
Ringhorndalen-Flatøyrdalen is unclear.

Further to this, our results from other locations in Svalbard also 
suggest that Svalbard has been colonized by thermophilic species 
on several occasions and from various directions. In Vaccinium 
uliginosum spp. microphyllum, we confirmed the presence of two 
haplotypes in Svalbard from two different locations. These two 
haplotypes have different Arctic distributions (Figure  5e). Thus, 
our findings support multiple colonization events from different 
directions in line with former findings based on AFLP data, which 
suggested colonization of Vaccinium uliginosum spp. microphyllum 
to Svalbard from both western and eastern source areas (Eidesen, 
Alsos, et al.,  2007). Another thermophilic species Campanula uni-
flora is somewhat unclear in this respect, but presence of two inde-
pendent lineages suggests also multiple colonization events; both 
lineages found in Svalbard probably originated from source regions 
west of Svalbard (discussed below; Figure 7b). Multiple colonization 
events were documented also in former studies. Two independent 
haplotype lineages arriving at Svalbard from different directions 
(east and south) were for example described in a rare thermophilic 
Euphrasia wettsteinii by Gussarova et al. (2012). The fact that the rare 
thermophilic species arrived in Svalbard from various directions im-
plies that migration routes from all directions were available early in 
Holocene and had rich species pool in the HCO when the establish-
ment conditions in Svalbard were optimal. Therefore, by that time 
LDD vectors from all directions might have been available to medi-
ate transport of the propagules. Estimation of which specific vector 
dominated in early Holocene would be in this case a pure guess. The 
only dispersal vector to hotspots which was certainly not partici-
pating in Svalbard plant colonization was humans. There is no sign 
of human impact on the archipelago until its discovery in 1596 by 
Willem Barentz (Kruse, 2016), and no archeological signs of settle-
ments were found around hotspots (Askeladden, https://www.kultu​
rminn​esok.no/).
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Despite of this variability of colonization direction, most thermo-
philic species in Svalbard show low levels of genetic diversity, sug-
gesting strong founder effect during colonization (Alsos et al., 2007; 
Birkeland et al., 2017). The low establishment and survival success 
has been explained by small size of Svalbard as the sink region and 
harsh conditions rather than by biotic factors such as competi-
tion and unavailability of a free niche (Alsos et al., 2007; Birkeland 
et al.,  2017). Interestingly, dispersal adaptations (Table  1) are of 
no importance in the LDD processes (Alsos, Ehrich, et al.,  2015, 

Nathan,  2006). Nevertheless, species traits related specifically 
to dependence of pollinators are shown to influence both post-
glacial colonization efficiency (Alsos, Ehrich, et al.,  2015; Eidesen 
et al., 2017) and genetic loss too. A comparative study of postglacial 
colonization of islands in the North Atlantic showed much stron-
ger founder effect for insect-pollinated mixed maters than wind-
pollinated outcrossing species (Alsos, Ehrich, et al.,  2015). In line 
with theory, the founder effect increased with dispersal distance 
and decreased with island size (Alsos, Ehrich, et al.,  2015), which 

F IGURE  5 Distribution of the studied species in the Arctic and in Svalbard and total distribution of haplotype/haplotype group registered 
in Svalbard (NB: distribution of other haplotypes outside Svalbard omitted). (a–e) thermophilic species; (f–j) non-thermophilic species. 
Red area – total distribution range in the Arctic; small black dots – total distribution in Svalbard; small dark-red dots – sampling published 
in previous studies (samples of haplotypes not found in Svalbard); colored dots – colors correspond with haplotypes found in this study. 
Distribution of individual species was taken from Hultén and Fries (1986) and corrected according to maps published in phylogeographies 
(Allen et al., 2012; Alsos et al., 2005; Eidesen, Alsos, et al., 2007; Gussarova et al., 2015; Marr et al., 2013; Schönswetter et al., 2007; Wang 
et al., 2016; Westergaard et al., 2011).
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was supported in a modeling study inferring available niches for 30 
species through time since LGM (Pellissier et al., 2016). Further, es-
tablishment of species typically pollinated by efficient pollinators, 
like bumble bees, is likely constrained by pollinator deficiency in 
former glaciated areas (Eidesen et al.,  2017). After the HCO, the 
founder effect was likely enhanced by bottle-necking due to loss of 
suitable localities and by genetic drift due to effective population 
sizes and reduced reproductive success. Thus, our revealed varia-
tion of source regions and dispersal direction among thermophilic 
species are probably an underestimate of the actual colonization 
pattern during HCO.

We assumed that the non-thermophilic species were pre-
disposed to establish widely throughout Holocene from various 
directions and source populations resulting in higher haplotype 
variability. On the contrary to our presumption, non-thermophilic 
species appeared to have uniform (or nearly uniform) haplotype 
composition in Svalbard and thermophilic species are more vari-
able. The opposite pattern of common species is probably de-
termined by high connectivity between populations of common 
species and rapid and recurrent colonization by the dominating 
haplotype in the area of the Arctic or North Atlantic. Higher haplo-
type variability in rare species might be result of low establishment 

F IGURE  6 Genetic structure of Tofieldia pusilla. (a) Haplotype distribution in the Arctic. Red area – total distribution range in the Arctic 
(according to Hultén & Fries, 1986), colored dots refer to samples and specific haplotype, small black dots – total distribution in Svalbard. 
(b) Haplotype network of Tofieldia pusilla based on 4 pDNA regions and 27 variable positions including indels. Letters correspond with 
haplotypes are described in Table S2. Lines represent the mutational pathway connecting the haplotypes; black dots represent number of 
mutations between haplotypes. The size of each circle is determined by the sample size. (c) Splitnet of Tofieldia pusilla based on 4 pDNA 
regions. Calculation based on hamming distances without indel treatment. The numbers on the branches are bootstrap support values. (d) 
Calibrated ML tree (log-likelihood = −2021.873) constructed from trnL-trnF region and Harperocallis flava AB451606.1 as a dated outgroup 
(Eguchi & Tamura, 2016). Values above nodes are estimated ages of splits (in My), values below nodes are UFBoot/BS support.
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ability and geographical isolation. In isolated populations origi-
nated from various source regions and carrying different genetic 
pattern, rare haplotypes are preserved and not outcompeted by 
prevailing haplotypes as happened in the non-thermophilic spe-
cies (Skrede et al., 2009). Also, adaptation to local ballistic disper-
sal in Campanula uniflora and Tofieldia pusilla (Table 1) enhances the 
effect of keeping chloroplast haplotype variability conserved in 
smaller populations. Therefore, even though we predicted differ-
ent pattern of haplotype composition of non-thermophilic species, 
we argue that our suggested framework on how to test temporal 

shift in colonization patterns on basis of genetic information kept 
in rare species can be used also for other (re-)colonized locations, 
when deglaciation history and historical climate records are avail-
able. Isolated populations with known timeframe of establishment 
keep undiluted genetic information from the colonization event 
and have the potential to answer a question about colonization 
processes better than widespread species.

The method we used (i.e., plastid haplotypes) did not provide 
high genetic resolution in most of the species; no level of variation 
was observed in Arnica angustifolia and Pinguicula alpina. This type of 

F IGURE  7 Genetic structure of Campanula uniflora. (a) Haplotype distribution in the Arctic. Red area – total distribution range in 
the Arctic (according to Hultén & Fries, 1986), colored dots refer to samples and specific haplotype, small black dots – total distribution 
in Svalbard. (b) Haplotype network of Campanula uniflora based on 4 pDNA regions and 9 variable positions including indels. Letters 
correspond with haplotypes described in Table S3. Lines represent the mutational pathway connecting the haplotypes; black dots 
represent number of mutations between haplotypes. The size of each circle is determined by the sample size. (c) Calibrated ML tree (log-
likelihood = −3924.749) constructed from rpl32-trnL region and with Platycodon grandifloras NC_035624.1 as a dated outgroup (Crowl 
et al., 2014; Park et al., 2006). Values above nodes are estimated ages of the splits (in My), and values below nodes are UFBoot/BS support.
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marker was chosen to be able to reuse available, published data, and 
for its ability to reconstruct maternal lineage pathways (dispersal 
by seeds or other propagules). Higher resolution of chloroplast sig-
nal might be provided by whole plastid sequencing or HybSeq with 
probes designed for large amount of selected plastid regions. Other 
genotyping methods or nuclear markers would provide better reso-
lution, and they would also tell more about actual genetic diversity 
of population isolation, but the information about dispersal would be 
overshadowed by information about gene flow.

4.2  | New phylogeographic datasets

We have presented new haplotype datasets for four Svalbard 
thermophilic species. Two of them, Arnica angustifolia and 
Pinguicula alpina, showed no haplotype variability in the sam-
pled regions of the Arctic (Figure 5a,c). Lack of haplotype diver-
sity in Arnica angustifolia may be a result of the predominantly 
apomictic nature of the species resulting in conserved genetic 
lineages (Wittzell, 1999). Facultative apomicts can harbor certain 
amount of genetic variability as a result of residual sexuality, but 
this affects mainly nuclear DNA (Hörandl & Paun, 2007; Trewick 
et al., 2004). Also, the observed decline of genetic variability might 
be ascribed to distribution to the northern latitudes. Low genetic 
diversity in the northern latitudes was also found in high Arctic 
populations of Arabis alpina with wide Arcto-alpine distribution 
(Alsos et al., 2007; Koch et al., 2006), and in high Arctic specialist 
Draba subcapitata (Skrede et al., 2009). It was accounted to recent 
postglacial expansion and to easier establishment in harsh condi-
tions and facilitation by populations with higher densities in high 
latitudes respectively. Pinguicula alpina, in contrast to Arnica an-
gustifolia, is an Arcto-alpine outcrosser pollinated by insects pre-
ferring open and wet habitats. The pollination strategy and habitat 
preferences could be a predisposition of high genetic differen-
tiation between isolated areas or localities as shown in the only 
studied closely related alpine species Pinguicula moranensis (Alcalá 
& Domínguez, 2012). Pinguicula moranensis, however, is found in 
tropical mountains with longer vegetation history than the Arctic 
has. Therefore, in case of Pinguicula alpina the low genetic vari-
ability we observed is probably a result of postglacial expansion 
in the Arctic areas. Larger sampling in alpine areas of Europe and 
Asia might shed light on history of the species.

We revealed rather high haplotype variability in Tofieldia pusilla 
with 18 haplotypes distributed among four clearly defined geo-
graphic clusters (Figure  6a,b) –  Europe, Greenland and Canada, 
Beringia, and Siberia. Our results are in line with previously 
published AFLP data suggesting strong differentiation between 
clusters of Europe and Greenland, although they did not include 
samples from Siberia and North America (Birkeland et al., 2017). 
The four clusters are very well separated, but a stronger genetic 
differentiation seems to be present between Europe and the rest 
of the Arctic (Figure 6c,d). The split between the European cluster 
and the rest of the samples was dated 2.18 Mya which suggests 

division before Pleistocene. These main clusters most likely 
persisted in different refugia during several glaciations, where 
European refugia were separated from other refugia possibly lo-
cated in Beringia, and/or in Siberia, and/or in Arctic Canada. The 
data are not specific in this respect; neither networks nor cali-
brated phylogeny specify the ancestral population of this clade. 
However, based on previous knowledge, Beringia as the main 
Arctic refugium had the obvious potential to provide the most im-
portant shelter to this clade during Pleistocene. The further strong 
differentiation among non-European lineages (Figure 6b–d) sug-
gests recurrent fragmentation into separate smaller refugia during 
glacials; similar patterns of recurrent expansion were described 
for instance for Saxifraga rivularis (Westergaard et al.,  2010), or 
Cassiope tetragona (Eidesen, Carlsen, et al., 2007). Survival in sev-
eral separate refugia along the ice margins and fast recoloniza-
tion are supported by pollen records showing presence of Tofieldia 
pusilla in early deglaciated areas (ca. 12.0–14.4 kya) in Europe as 
well as in America (Cushing, 1967a, 1967b; Ralska-Jasiewiczowa & 
Rzetkowska, 1987; Whittington et al., 1996).

In Campanula uniflora, we discovered five haplotype lineages 
(Figure 7a,b). Calibrated phylogeny suggests that the ancestral pop-
ulation is found in central Canadian Arctic and has spread from there 
to Beringia, Siberia, and Europe. In Svalbard, we found two distinct 
haplotype lineages: a common haplotype lineage A + B and a rare 
lineage including haplotype F + G. The common lineage is widely dis-
tributed in Europe, Greenland, western Canada, and Novaya Zemlya. 
As pollen record suggests persistence of the species in European 
refugia (it has been recorded in newly deglaciated area of middle 
Norway 12.8–13.8 kya; Paus,  2021), we can assume that the pol-
len refers to the A + B common lineage which probably survived the 
glaciation in at least one European refugium. The rarer lineage F + G 
was only present in Svalbard and Novaya Zemlya (Figure 7b). This 
lineage has most likely originated recently (according to the cali-
brated phylogeny, Figure 7c) and has spread locally in the area of 
Svalbard and Novaya Zemlya. Due to low sampling, we cannot reject 
the possibility that the haplotype originated outside Svalbard and 
Novaya Zemlya, possibly in Canada where the haplotype diversity 
is the highest. Since the F + G lineage is not directly related to A + B 
lineage, the Canadian origin is in fact more plausible than origin in 
Svalbard. Spreading from Siberia is unlikely since the species distri-
bution does not include a large part of Siberia, and there are no pol-
len records of the species in this area either.

4.3  |  Contribution to the previously published 
phylogeographies

In this study, we have utilized existing haplotype datasets for 
non-thermophilic and one thermophilic taxa. Concerning non-
thermophilic species (Arenaria humifusa, Bistorta vivipara, Juncus 
biglumis, Oxyria digyna, and Silene acaulis), we found no additional 
haplotype variability comparing to the original studies. Also, there 
was no hotspot specificity found; all analyzed samples from hotspots 
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possessed the only (or the most common) plastid haplotype in 
Svalbard. These haplotypes are, moreover, the most common ones in 
the Arctic, or in the North-Atlantic region. The only exception from 
haplotype uniformity of common species was found in Juncus biglu-
mis in the original publication (Schönswetter et al., 2007). The unique 
haplotype was found on the southwest coast (Nottinghambukta), 
outside the biodiversity hotspots. Persistence of a rare haplotype 
within a uniform population was explained by belonging to differ-
ent ploidy level which is not homogenizing with other ploidy lev-
els (Schönswetter et al., 2007). Concerning the thermophilic taxon, 
we extended the previously published data of Vaccinium uliginosum 
(Alsos et al., 2005; Eidesen, Alsos, et al., 2007) as discussed above.

5  |  CONCLUSION

We combined the known history of the early colonized 
Ringhorndalen-Flatøyrdalen hotspot area in Svalbard with phylo-
geographic analyses of thermophilic and non-thermophilic species 
to evaluate whether a prevailing direction of colonization was pre-
sent before the cooling in mid-Holocene, as establishment of ther-
mophilic species is assumed to be promoted in this warmer period. 
Our framework suggesting rare species as a good model system to 
detect colonization events in specific timeframe appears to be well 
chosen; their haplotype diversity was conserved due to population 
isolation. High connectivity between local and source population of 
non-thermophilic species most likely excludes rare haplotypes due 
to homogenization and may explain the lower haplotype variation 
in Svalbard among non-thermophilic species. We found however no 
evidence of coherent colonization pattern or prevailing colonization 
direction of thermophilic species to the earliest available region in 
Svalbard (Ringhorndalen-Flatøyrdalen) or to Svalbard in general. 
Although the thermophilic taxa Campanula uniflora, Tofieldia pusilla, 
and Vaccinium uliginosum ssp. microphyllum most likely colonized 
Svalbard during early Holocene, our results suggest that these spe-
cies have arrived from different source regions, and they have dis-
persed and established more than once.
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