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Abstract

We develop a multiparameter white noise theory for fractional Brownian motion
with Hurst multiparameter H = (Hy,...,Hy) € (3,1)%. The theory is used to
solve the linear and a quasi-linear heat equation driven by multiparameter fractional
white noise. It is proved that for some values of H (depending on the dimension)
the solution has a jointly continuous version in ¢ and .

1 Introduction

Recall that if 0 < H < 1 then the (I-parameter) fractional Brownian motion with Hurst
parameter H is the Gaussian process By (t) = By(t,w); t € R, w € Q satisfying

(1.1) Bp(0) = E[Br(t)] =0 forallt € R
and
(1.2) E[By(s)Bu(t)] = ${|s|*" + [t —|s — )"}  foralls,t€R.

Here E denotes the expectation with respect to the probability law P for
{Bu(t,w)}ter wea, where (2, F) is a measurable space.

If H = 1 then By(t) coincides with the standard Brownian motion B(t). Much of the
recent interest in fractional Brownian motion stems from its property that if H > % then
By (t) has a long range dependence, in the sense that

> E[Bu(1)(Bu(n+1) — Bu(n))] = oo .
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Moreover, for any H € (0,1) and o > 0 the law of { By (at)}icr is the same as the law of
{af By (t) }ier, i.e. By(t) is H-self-similar.

For more information on 1-parameter fractional Brownian motion see e.g. [MV], [NVV]
and the references therein.

Recently a stochastic calculus based on Ito-type of integration with respect to By (t)
has been constructed for H > £ [DHP]. Subsequently a corresponding fractional white
noise theory has been developed [HQ], and this has been used to study the corresponding
fractional models in mathematical finance [HQ|, [HOS].

As in [H1], [H2] and [HOZ] we define d-parameter fractional Brownian motion By(x);
x = (z1,...,2q4) € R with Hurst parameter H = (Hy,... ,Hy) € (0,1)% as a Gaussian
process on R? with mean

(1.3) E[By(x)] =0 for all z € R?

and covariance

d
(1.4) E[Bu(z)Bu(y)] = ()" [ [z + 1wl = |2 — wa*™)
i=1
We also assume that
(1.5) Bg(0) =0 as.
From now on we will assume that
(1.6) s<H; <1 fori=1,...,d.

The purpose of this paper is to extend the fractional white noise theory to the multipa-
rameter case and use this theory to study the linear and quasilinear heat equation with a
fractional white noise force.

2 Multiparameter fractional white noise

In this section we outline how the multiparameter white noise theory for standard Brow-
nian motion (see e.g. [HKPS|, [HOUZ] or [K]) can be extended to fractional Brownian
motion. In the 1-parameter case such an extension was presented in [H@]. The following
outline will follow the introduction in [HOZ] closely.

Fix a parameter dimension d € N and a Hurst parameter

(21) H:(H17 aHd) S (%,1)d
Define
d
(2.2) o(x,y) = eu(r,y) = HHi(2Hi N



for z = (z1,... ,74) € RY, y = (y1,... ,54) € RL
Let L?D(Rd) be the space of measurable functions f: RY — R satisfying

(2.3) |f|§, //f o(x,y)dr dy < oo

R? RY

where dx = dx; ...dxg and dy = dy, . .. dy, denotes Lebesgue measure.
Then pr(Rd) is a separable Hilbert space with the inner product

(2.4) t//j o(z,y)dr dy ; f.9e LL(RY).

R? R4

In fact, we have (see [H®, Lemma 2.1] for the case d = 1):

Lemma 2.1 For f € LZ(RY) and u = (uy,... ,uq) € R define

00 oo d
(25) F@f(u) = / . / f(l‘l, . 7$d) H CH; (ZL’Z — Ui)Hi_g/Qd(L’l s dl’d y

where

(2.6) (%:¢MQm_UF@ ) i=1,....d.

D(H; —3)-T(2—2H;) °
Then T, is an isometry from L%(RY) into L*(R).

Proof. For f,g € L%(R“) we have

Ri ;g i=1
0 [oe) d
( 9@) T en, (i — w)™ > dy)du, . . . du
I Joofn-or-a.
4 TNV
://f(x)g(y)(H / % (xl—uZ)Hl 3/2(% ul)Hz 3/2duz>da:dy
R R4 =1
://ﬂmm>@mmw,
R¢ R4



where we have used the fact that (see e.g. [GN, p. 404])

TiNY;
(27) / C?{Z(l‘z - Ui)Hz‘*?)/Q(yi - Ui)Hi*i’»/Qdui — H’L(ZHZ _ 1)|xZ . yi‘2H,'72 .

—00 O

Let S(R?) be the Schwartz space of rapidly decreasing smooth functions on R?. The
dual of S(RY), the space of tempered distributions, is denoted by &’(R?). The functional

f—exp(=5lfI5):  feSMRY)

is positive definite on S(R?), so by the Bochner-Minlos theorem there exists a probability
measure p, on &'(R?) such that

(2.5) [ et = p e smY

S'(R%)

where (w, f) denotes the action of w € Q: = S§'(R%) on f € S(RY). From (2.8) one can
deduce that if f, € S(R?) and f,, — f in L2(R?) then

(2.9) (w, f): = lim (w, f,) exists in L% ()

n—oo

and defines a Gaussian random variable. Moreover,

(2.10) E[(-f)]=0

and

(2.11) Bl Ol =(f.9)y  for fge LL(RY).

Here, and in the following, E[-] = E,,_[] denotes the expectation with respect to fi,.

In particular, we may define
(2.12) Bu(z) = (W, Xou());  z=(x1,...,24) € R

where

d
Xoa(y) = [ [ Xowa(wi)  for y=(y1,... ,ya) € R’
=1

and

Xz (yi) = 9 =1 if x; <y; <0, except x; =y; =0

0 otherwise



Using (2.10)—(2.11) and Kolmogorov’s criterion, we see that By (z); z € R is a Gaussian
process and it has a continuous version. Furthermore, we see that

E[By(r)] =0
and
(2.13) ElBu() Bu(y)] = (1) T] (™ + o™ = fos = ")

Therefore By (z); x € R? is a d-parameter fractional Brownian motion with Hurst pa-
rameter H = (Hi,... ,Hq) € (3,1)% (see (1.3)—(1.5)). It is this version of By(z) we will
use from now on.

Let f € Li(Rd). The stochastic integral of f with respect to the fractional Brownian
motion By(z) is the Gaussian random variable on € defined by

(2.14) / F(2)dBa (s / F(2)dBr(r,w) = (o, f)

Note that this is a natural definition from the point of view of Riemann sums:
If f, is a simple integrand of the form

Ny,
=> " a" X ey (@)
j=1

then (2.13) gives

Nn

/MM&mzmm=Z$%m>

=1

and if f, — f in L2(R?) then by (2.9) we have, as desired, that
[ £@dBu() = . ) (w.£) = [ @)aButo).
d Rd

Note that from (2.14) and (2.11) we have the fractional Ito isometry

(2.15) /f )dBy(z }:|f|§ for feL2(RY).

As in [HOZ] we now proceed in analogy with [HOUZ| (as done in [HQ] in the 1-
parameter case) to obtain a multiparameter fractional chaos expansion:



Let

2 d 2
ha(t) = (— 1)"t/2dtn(e*t/2); teR, n=0,1,2,...

be the standard Hermite polynomials and let
(2.16) ho(t) = 7 V4 ((n = D) PRy (V20)e 2 n=1,2,. ..

he,(x;). Then

—

be the Hermite functions. Let N = {1,2,...}. For a € N? let n,(x) =

=1

{Na tacna constitutes an orthonormal basis of L*(R%). Therefore
ea(r): =T (na)(z); aeN?, zeR

constitutes an orthonormal basis of L2(R?). From now on we let {a(?}2; be a fixed
ordering of N with the property that

i<j=la? <oV
and we write
(2.17) en(x): =eym(z) . (See (2.2.7) in [HOUZ])
Then just as in [HO, Lemma 3.1] we can prove

Lemma 2.2 There exists a locally bounded function C(x) on R? such that

d
‘/en :zrydy’<(] H (n)y1/6
=1

Let J = (NN). denote the set of all (finite) multi-indices o = (ay,... ,q,) with
a; € Ng: = NU{0}. Then if a = (aq, ... ,an) € J we define
(2.18) Ha(w) = ha, (W, €1)) -~ ha,, (W, €m)) -

In particular, if we put
D =1(0,0,...,1) (the 7’th unit vector)
then by (2.14) we get
(2.19) Hoo (@) = b (w0, €2)) = (w, e5) = / e:(x)d By (x)
Rd

As is well-known in a more general context (see e.g. [J, Theorem 2.6]) we have the
following Wiener-Ito6 chaos expansion theorem (see also [DHP] and [HQ)):
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Theorem 2.3 Let F € L*(pu,). Then there exist constants ¢, € R for a € J, such that

(2.20) F(w) = Z CaHa(w) (convergence in L*(u,)) .
acJ

Moreover, we have the isometry,

(2.21) 132y = D oled
acJ
where a! = aqlag! .. ay! if a = (aq,... ;o) € J.

Example 2.4 If F(w) = (w, f) for some f € LZ(R?), then F has the expansion

o [e.e]

(2.22) F(w) = <w, S ei)wei> =3 (foe) oo ) -

i=1 i=1
In particular, for d-parameter fractional Brownian motion we get, by (2.12),

o

By(x) = (w, Xoa(-) = Y (Xoa, €i)pHeto ()
(2.23) e =1
= g {/ </ei(v)<p(u,v)dv>du] H. (W),

=1

0 R4

x Tq x1 T; 0
where /:// and /:—/ if x; <0
0 0 0 0 z;

Next we proceed as in [HOUZ] to define the multiparameter fractional Hida test func-

*

tion space (S)g and distribution space (S)3:

Definition 2.5 a) (The multiparameter fractional Hida test function spaces) For k € N
define (S)mx to be the space of all

(2.24) bw) = 3 aHa(w) € L2(u,)
aeJ
such that
(2.25) [9ll7,: =) alal(2N)¥ < oo
aEJ
where

Ny =J[@)"  if y=(n. ) €T

J



o0

Define (S)u = () (S)ux with the projective topology.
k=1

b) (The multiparameter fractional Hida distribution spaces)
For g € N let (S) _, be the space of all formal expansions

(2.26) Gw) = bsHa(w)

BeJ
such that
(2.27) Gy = BIBZRN) " < o0

BeJ
Define
(S)ir = U(S)in—
q=1

with the inductive topology. Then (S)3 becomes the dual of (S)g when the action of
G € (8)}; given by (2.26) on ¢ € (S)y given by (2.24) is defined by

(2.28) (Go) = alagb, .

aceJ

Example 2.6 (Multiparameter fractional white noise)
Define, for y € R?

(2.29) Wats) = 3 | [ esthetv i o

=1 R4

Then as in [HO, Example 3.6] we obtain that Wy (y) € (S)j; for all y. Moreover, Wy (y)
is integrable in (S)%; for 0 <y; < z;;i=1,...,d, and

(2:30) / Wi (y)dy = f { / ([ oot onts)dy| o) = Bute).

Rd
by (2.23). Therefore By (x) is differentiable with respect to x in (S)}; and we have

8d

By (z) = Wy(x) in (S)y .

This justifies the name (multiparameter) fractional white noise for Wy (z).

The Wick product is defined just as in [HOUZ] and [HO|:



Definition 2.7 Suppose F'(w) = ) aoHa(w) and G(w) = > bgHg(w) both belong to
acJ BeJ
(S)3- Then we define their Wick product (F o G)(w) by

(2.32) (Fo@)(w) = Z aabgHosp(w) = Z < Z aabg)’hfy(w) :
a,ped v€J  at+B=y

Example 2.8 a) ([HQ, Example 3.9]) If f,g € L2(R") then

(2:33) (R[deH> o (/gdBH) _ (R[deH) - (P{[gdBH) ~(fg)s

Rd
b) ([HO, Example 3.10]) If f € L2(R?) then
exp°(<w, f>) = Z _<w7 f><>n

|
— n.

converges in (S)j; and is given by

(2.34) exp®({w, f)) = exp((w, f) = 51f13) -

We now use multiparameter fractional white noise to define integration with respect
to multiparameter fractional Brownian motion, just as in [H@, Definition 3.11] for the
1-parameter case:

Definition 2.9 Suppose Y : R — (8)% is a given function such that Y (x) o Wg(x) is
integrable in (8)% for v € R Then we define the multiparameter fractional stochastic
integral (of Ito type) of Y (x) by

(2.35) / Y (2)dBy (z) = / Y () o Wi (z)dz

R4 R4

Remark 2.10 If H = % this definition gives an extension of the Ito-Skorohod integral.
See [HOUZ, Section 2.5] for more details.

3 The linear heat equation driven by fractional white
noise

In this section we illustrate the theory above by applying it to the linear stochastic
fractional heat equation

(3.1) %—(t](t,x) = LAU(t, ) + Wy(t, z) ; te(0,00), ze€DCR"
(3.2) U(0,2) =0; reD
(3.3) Ut,z)=0; t>0, z€dD



Here Wy (t, z) is the fractional white noise with Hurst parameter H = (Hy, Hy,... ,H,) €

n
3, D)L A=Y aa_; is the Laplace operator, D C R" is a bounded open set with smooth
i=1 7

boundary 0D, 0 < T < oo is a constant. We are looking for a solution U : [0, 00) X D —
(8)j; which is continuously differentiable in (¢, z) and twice continuously differentiable in
z, i.e. belongs to C*?((0,00) x D;(S)%), and which satisfies (3.1) in the strong sense (as
an (S)j-valued function).

Based on the corresponding solution in the deterministic case (with Wy (t, z) replaced
by a bounded deterministic function) it is natural to guess that the solution will be

t

(3.4) Ut x) = / / Wit(s, 1)Go_ (, y)dy ds

0 D
where Gy_4(z,y) is the Green function for the heat operator & — 1A, It is well-known
[D] that G is smooth in (0,7") x D and that
—n/2 [z =yl .
(3.5) Gulz,y) ~u™?exp | — 5 in (0,00) X D,
u

where the notation X ~ Y means that
1
6X§Y§C’X in (0,00) x D,

for some positive constant C' < oo depending only on D. B
We use this to verify that U(t,z) € Sy, for all (¢, z) € [0,00) X D:
Using (2.29) we see that the expansion of U(t,z) is

t
00

vta) = [ [Grdan X | [ entorptun o] o @dyas

k=1 Ln

(3.6) = ) bt 2 How (W)
k=1

(3.7) be(t,z) = b (t,x) = /t/ Gi—s(z,y) [/ek(v)go(y,v)dv} dy ds

R”

In the following C' denote constants, not necessarily the same from place to place. From

10



Lemma 2.2 and (3.7) we obtain that

d
(3.8) by (t, )| < C H 5y Vﬁ//Gts(x,y)dyds

=Visz d
! < C’H(afk))l/ﬁ/(/s /% exp( )(58)”/2dz)ds
=1 0 Rn
d
= C [T

k=1
0 d 0 d+3
3.9 < O(t a3 -1 < ST kB2 < 00 for g > —— |
(3.9) _();H(l)<)_; (2k) q 3

Here we used the fact |a®)| < k, which is the consequence of the special order. Hence
U(t,z) € (S)y_, for all ¢ > 43 for all ¢, .

In fact, this estimate also shows that U (¢, ) is uniformly continuous as a function from
[0,T] x D into (S)% for any T < oo and that U(t, ) satisfies (3.2) and (3.3). Moreover,
by the properties of G;_s(x,y) we get from (3.4) that

W t,5) — AU (t5) = //Wm(g-a)at (o, y)dy ds + Wi(1,2)

(3.10) =Wy(t,x), so U(t,x) satisfies (3.1) also .

In the standard white noise case (H; = 3 for all i) the same solution formula (3.4) holds.
In this case we see that the solution U (¢, z) belongs to L*(u1) (u being the standard white
noise measure) iff

(3.11) E,[U*(t,z)] = // G? (z,y)dyds < oo .

11



Now, if D C (—%R, %R)” and we put F' = [—R, R]",

t

t
2 -n 2y2
G; (z,y)dsdy ~ sThexp | ——— dy ds
0D 0 D
t

Hence
(3.12) EJU*tz)] <oo+==n=1.

Next, consider the fractional case % < H; < 1 for all <. Then

t t
B o) = [ [ [ [ Goro)Giste2yotrs.p. e dsdy dz
0 0 DD

t t
—yl? — .2
- ////r—n/QS—n/QeXp <_|:C 5ry| )eXp (_!:c (582| )
00 DD

(3.13) |r— 5\2H°_2 H |y — zi|2Hi_2dy1 cdypdzy ... dz, drds .
i=1

Choose 1 < ¢ < p < oo such that % + % = 1. By the Holder inequality we have

n lr (iR 2 2

2 2 Y Y o
| I/ / exp (—m 5 bl - i 5 il ) lyi — Zi|2Hl 2dyi dz;
i—1 /3R J3R r s

n

3R |$z - yi|2 3R P|9Ci - Zi|2 r
<ILf,, oo (FF520 ) and [ [, o (-2570)
2

1=1%Y 2

1R 1/q
2 .
' |:/ |yl B Zi|q(2Hl 2) dzz:| }
iR

2

(3.14) ~ (;)W[(g)n/z}w if q(2H; —2) > —1.

Substituted into (3.13) this gives

t t

_n_1 _
(3.15) B0, < 0) [ [ H - o aras
00
< 00 if n<2—p.
p—1

12



Combined with the requirement ¢(2H; —2) > —1 we obtain from this that

for 1<i<n.

1
E, [U%(t,z)] < if n< ]

i
We summarize what we have proved:

Theorem 3.1 a) For any space dimension n there is a unique strong solution U(t,z) :
[0,00) x D — (8)3; of the fractional heat equation (3.1)-(3.3). The solution is given by

t

(3.16) Ult,x) = // Wy (s,y)Gi—s(z,y)dyds .

0
It belongs to CH2((0,00) x D — (S)%) N C([0,00) x D — (S)%).

b) If H = (Hy, Hy,... ,H,) € (1 1)n+1 and

2
1 :
(3.17) H;y>1—— for i=1,2...,n
n
then U(t,z) € L*(uy,) for allt >0, z € D.
c) In particular, for all H € (3,1)" we have
(3.18) U(t,x) € L*(u,) if n<2.

Remark 3.2 Note that condition (3.17) is sharp at H; = 3, in the sense that if we let

H; — % for i = 1,... ,n then (3.17) reduces to the condition n = 1 which we found for
the standard white noise case (3.12).

Remark 3.3 In [H1] (and more generally in [H2]) the heat equation with a fractional
white noise potential is studied:

)
a—;‘(t,x) = Au(t,z) +ult,z)oWy(t,z): xR, t>0.

There it is shown that if H = (Ho, Hy,... ,H,) with H; € (3,1) for i =0,1,... ,n and

2

H +Hy+---+ H, S
vHHy 4 Hy > - ey

then u(t,xz) € L*(py,) for all ¢, .

13



4 The quasilinear stochastic fractional heat equation
Let f: R — R be a function satisfying

(4.1) lf(x) = fly)] < L|z — vy for all z,y € R

(4.2) |f(x)] < M(1+ |z|) forall z € R,

where L and M are constants.

In this section we consider the following quasi-linear generalization of equation (3.1)-
(3.3):

(4.3) %—(t](t,x) — IAU(t,2) + f(U(La) + Wa(tia);  £>0, 2 R”
(4.4) U(0,x) = Up(x) ; reR"

where Uy(x) is a given bounded deterministic function on R™.
We say that U(t, z) is a solution of (4.3)—(4.4) if

/U(t,:c)go(x)dx—/Uo(sc)go(x)dx
(4.5) :%// s, 1) Ap(z d:cds—i—//f (s,2))p(x)dz ds

0 R" 0 R"™

// 2)dBi (s, 7)

0 R"”

for all ¢ € C5°(R").
As in Walsh [W] we can show that U(t,x) solves (4.5) if and only if it satisfies the
following integral equation

U(t,x) = / Un(y)Gol(, y)dy + / [ UG)Geta)dyds

0 R"
(4.6) / / Gl y)dBu(s,y) |
0 R"
where

lz —y|

(4.7) Gy_s(z,y) = (2m(t — 5)) ™2 exp < T 2t—s)

); s<t,reR"
is the Green function for the heat operator % — %A in (0,00) x R™.

14



For the proof of our main result, we need the following two lemmas. Let 0 < o < 1.
Define, for u > 0,

(1.9 o) = [y Zzeap(~5)a:

_1(-1
Lemma 4.1 Assume p > t—. Then g(u,y) < C(1+u 21 p)), where C' is a constant
independent of y and u.

Proof. In the proof, we will use C' to denote a generic constant independent of y and
u. First,note that

W= [ = e ¥ N R ¥
g\u,y) = Yy —z —=exrp(—5—)az y—z| T —=exp(—=—)dz
lz—y|<1 \/ﬂ 2u |z—y|>1 \/E 2u

By Holder inequality,

p—1

wsfie] [ -ra]”[ [ (-]}

|z—y|<1 |z—y|<1

(4.9) < O +u 707

Let F(y1,vy2, ... ,Yn) denote a function on R™.

Lemma 4.2 Let h = (hy, ha,... ,h,) with h; >0, 1 <i < n. Asume that F' and all its
partial derivatives of first order are integrable with respect to the Lebesgue measure. Then

N R > ([[5tm amfas

Proof. Observe that

n

F(y—h) = F(y) :Z(F(yl»--- Y15 Yi — iy Yirr — hia, oo Yn — i)

=1

_F yla"' 73/2 15 Yi, Yit1 — hiJrlu"' y Yn _hn>>

(4.11) = Z/

Integrating the equation (4.11), we get

-5 Yi-1, 2, Yi41 — hi-i-lv cee s Yn — hn)dZ

15



[ 1w =1~ Py

< Z / dyy - dyi—1dyiy1 - - - dyn
Z.:1[{77,71

Yi
oF
'/dyi / ‘83/- (yh Y1, 2, Vi1 — Rig1, o Yn — hn)dZ
R yi—h; '
= Z / dyy - dy;—1dyiy1 - - - dyn
i=lpn_
aF z+h;

'/dZ 8— (ylv'" s Yio1s 25 Yir1 — N1, - 7yn_hn) / dy;

Yi
R z

- OF

Our main result is the following:

Theorem 4.3 Let H = (Hy, Hy, ..., H,) € (5,1)""" with
1 .
H >1—-— for 1=1,2,... ,n.
n

Then there exists a unique L*(p,)-valued random field solution U(t,z); t >0, z € R™ of
(4.3)=(4.4). Moreover, the solution has a jointly continuous version in (t,z) if Hy > %.

Proof. Define

(4.12) Vita) = [ [ Gow)dBu(s.n) .

0 R"

Dividing R into regions {z;|z — y| < 1} and {z;|z — y| > 1}, we see that a slight
modification of the arguments in Section 4 gives that £, [V?(t,x)] < 0o, so V(t,z) exists
as an ordinary random field. The existence of the solution now follows by usual Picard
iteration: Define

(4.13) Uo(t, z) = Up(x)

and iteratively

16



(414)  Upalto) = / Un(y) Gz, y)dy

+// fU;(s,y)Gi—s(x,y)dyds + V(t,x) ; j=0,1,2,...

0 R"™

Then by (4.2) Uj(t,x) € Ly for all j. We have

Uya(t,2) — Uj(t,2) / J U@ .9) = FUAs )G )y s

0 R"

and therefore by (4.1), if t € [0,T7,

Eu |Uja(t, @) = Uj(t, )]

gLEWK//W $,9) = Ui (s,9)|Grs(, y)dyd‘S)z]

0 R"

<L(//Gt oz y)dde) [//W 5,9) = Uj-1(8,9)PGi—s(z, y)dyds}

0 R" 0 R"
t

<Cy / sup E[|U (s, ) — Uy1 (s, y))ds

- < C’J // / sup |U1(s y) UO(Sy?/)P]dsdsj_l,,,dSl

< ATC’T— for some constants A, Cr .

(4)!

It follows that the sequence {U;(t, 7) }32, of random fields converges in L*(p1,) to arandom
field U(t, ). Letting k — oo in (4.10) we see that U(t, z) is a solution of (4.3)—(4.4). The
uniqueness follows from the Gronwall inequality. It is not difficult to see that both

[ UwGiwpay  and / [ UGG s

R” 0 R"

are jointly continuous in (£, x). So to finish the proof of the theorem it suffices to prove
that V'(¢,z) has a jointly continuous version.
To this end, consider for h € R
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t+h

V(t+h,x)=V(t,z) = //Gt-i—h—s(xay)dBH(S)y)

t R
(4.15) +//(Gt+h_s(as,y) — Gy_s(x,y))dBg(s,y)
0 R»

By the estimate in (3.15) it follows that

t+h t+h

B|| [ [ Gerseanisutsn| | <€ [0

t Rn t

(4.16) <coptot

To estimate the second term on the right hand side of (4.15), we use (2.15) and proceed
as follows:

B| / [Gerese) =~ Goeston)aBu(s.)F]

0 R"

<C / / Xio.y ()Xo (s)lr — s/
R R

([ {oor-oml -

R"R"

(5]
(58]

(4.17) : H ly; — ZZ-IQHFQdy dz} drds
i=1

<C / / Koo (r) X ()| — 772

([ leemre- ) e

{oren(-5g) e )

(4.18) : H ly; — ZZ-IQHFQdy dz} drds
i=1

18



From (4.17) to (4.18), we first perform the change of variables: © —y = ¢/, x — 2z = 2/,
t—r =1 t—s=s and then we change the name of ¢/, 2/, ', s’ back to v, z,r, s again
for simplicitiy. (4.18) is further less than

t S
C’/ds/dr(s—r)2H02
0o 0
s+h 2 2
: e N W _WE
{/dy/s ( 50 eXp( 5 ) + 5Y ly| exp " )dv
Rn
2 2
. h —n/2 _ L _.—n/2 _ ﬁ
{(7’+ ) exp( 0 ) r exp o

: H |yi — Zi|2Hi_2 d,z}
i=1

S

t
< C/ds/ dr(s — T)QHO_Q

0o 0
s+h 2 2
) n o _n_1 _ || 1, -2-2) 12 B Y|
[/g dv/ndy(2v 2 exp( —QU)—l—QU 2%y exp( oy )
2 2
) B)~"/2 _ 2| —n/2 B 2|
/n {(T +h) exp ( 2+ h) +r exp o

(4.19) : H ly; — 2|2 dz}
i=1

Choose p > 1 such that

<p<—"" fori=12,....n.
n—2
This is possible since H; > 1— % for i =1,2,... ,n. Then
2
P oy and 2 @H -2)>-1, i=12...n
p—1 p—1
Now applying Lemma 4.1 repeatedly to this choice of p and to o = 2 — 2H;, we get

t S
- sth _1_1)\ 7
(4.19) SC/ds/dr(s—r)y{O 2./ dv—(l—l—Cr s (1 p))
s v
0 0

! s sth _neq_1
(4.20) < C/ dS/ dr/ dv—(l—l—r 5(1 p)>(s—7")2H°_2
0 0 s v

19



Choose 3 such that 2 — 2H, < § < 1. It follows that (4.20) is dominated by
s+h

1 _nq_1
/ds/dr 5 /dvv_ﬂ<1+r 2 (1 ;1))><3_T)2H072

1 _mne_1
1-8 (1-3) 2Hy—2
< Ch /ds/ o H s e

0 0
t s

1 _mnq_ _n_1
:Chlﬁ/ l_ﬁ[/r 0 )<s—r)2H°2dr+/r 2070 (5 — p)2Ho-2qp
S
0 0

(4.21) < Ch'~ ﬁ/ L gmsa-p-eoam) g < Ch'™".

Q=

2
s1=6
0

On the other hand, for £ € R"™ we have

Vit x4 k) — V(ta) = //(Gts(x FE ) — Go (@ y))dBr(s,y)

Hence, by (4.7),
[|V(tx+k V(t, )

<C’//|r— s

[ (o) (520

fieor (ol E5) (- 52))

: ﬁ lyi — 2> 2 dy dz dr ds

oo () ()

-{3_"/2<eXp (— %) — exp (— ))}Hy dydz dr ds

<o fas farie— [ afe(o (- u) e (- )
[l ) ol )

20




Applying Lemma 4.1 and Lemma 4.2 we get

t s
(4.22) < C/ds/ dr(s — r)2H°‘2<1 n r‘%“—%))”
0 0
g 2
—n/2— Y
S o (1)
, : :

1 _ _n(_1
<C|k]/ds/ r—(s—r )2H0 2, ~50-3)
S2
< C|k’/d5_|:/ _T>2HO 27’n(1p)+/ dr(s_r)2H0—2T*%(1*;)

(4.23) §C|k;|/ SR < O, i Hy > 3
0

Combining the estimates (4.16), (4.21) and (4.23) we get, for some < 1,
E[[V(t+hx+h) = V(t,o)P] < Clh'" + k]

Since V(t + h,z + k) — V(t,z) is a Gaussian random variable with mean zero, it follows
that for any m > 1

< CulhP 4 |k|]™ < Cou[h =P + |K|]™ if m is big enough .

Hence by Kolmogorov’s theorem we conclude that V (¢, x) admits a jointly continuous
version. a
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