Multiparameter fractional Brownian motion and quasi-linear stochastic partial differential equations

Bernt Øksendal^{1,2} Tusheng Zhang^{3,4}

February 16, 2000

Abstract

We develop a multiparameter white noise theory for fractional Brownian motion with Hurst multiparameter $H = (H_1, \ldots, H_d) \in (\frac{1}{2}, 1)^d$. The theory is used to solve the linear and a quasi-linear heat equation driven by multiparameter fractional white noise. It is proved that for some values of H (depending on the dimension) the solution has a jointly continuous version in t and x.

1 Introduction

Recall that if 0 < H < 1 then the (1-parameter) fractional Brownian motion with Hurst parameter H is the Gaussian process $B_H(t) = B_H(t, \omega)$; $t \in \mathbf{R}$, $\omega \in \Omega$ satisfying

(1.1)
$$B_H(0) = E[B_H(t)] = 0$$
 for all $t \in \mathbf{R}$

and

(1.2)
$$E[B_H(s)B_H(t)] = \frac{1}{2}\{|s|^{2H} + |t|^{2H} - |s-t|^{2H}\} \quad \text{for all } s, t \in \mathbf{R} .$$

Here E denotes the expectation with respect to the probability law P for $\{B_H(t,\omega)\}_{t\in\mathbf{R},\omega\in\Omega}$, where (Ω,\mathcal{F}) is a measurable space.

If $H = \frac{1}{2}$ then $B_H(t)$ coincides with the standard Brownian motion B(t). Much of the recent interest in fractional Brownian motion stems from its property that if $H > \frac{1}{2}$ then $B_H(t)$ has a long range dependence, in the sense that

$$\sum_{n=1}^{\infty} E[B_H(1)(B_H(n+1) - B_H(n))] = \infty.$$

¹ Dept. of Mathematics, University of Oslo, P. O. Box 1053 Blindern, N–0316 Oslo, Norway. email: oksendal@math.uio.no

² Norwegian School of Economics and Business Administration, Helleveien 30, N-5045 Bergen, Norway.

³ Dept. of Mathematics, Agder College, N–4684 Kristiansand, Norway.

⁴ Dept. of Mathematics, Cornell University, Ithaca, NY 14853–4201, USA. email: tusheng@math.cornell.edu

Moreover, for any $H \in (0,1)$ and $\alpha > 0$ the law of $\{B_H(\alpha t)\}_{t \in \mathbf{R}}$ is the same as the law of $\{\alpha^H B_H(t)\}_{t \in \mathbf{R}}$, i.e. $B_H(t)$ is H-self-similar.

For more information on 1-parameter fractional Brownian motion see e.g. [MV], [NVV] and the references therein.

Recently a stochastic calculus based on Itô-type of integration with respect to $B_H(t)$ has been constructed for $H > \frac{1}{2}$ [DHP]. Subsequently a corresponding fractional white noise theory has been developed [HØ], and this has been used to study the corresponding fractional models in mathematical finance [HØ], [HØS].

As in [H1], [H2] and [HØZ] we define d-parameter fractional Brownian motion $B_H(x)$; $x = (x_1, \ldots, x_d) \in \mathbf{R}^d$ with Hurst parameter $H = (H_1, \ldots, H_d) \in (0, 1)^d$ as a Gaussian process on \mathbf{R}^d with mean

(1.3)
$$E[B_H(x)] = 0 \quad \text{for all } x \in \mathbf{R}^d$$

and covariance

(1.4)
$$E[B_H(x)B_H(y)] = \left(\frac{1}{2}\right)^d \prod_{i=1}^d (|x_i|^{2H_i} + |y_i|^{2H_i} - |x_i - y_i|^{2H_i})$$

We also assume that

(1.5)
$$B_H(0) = 0$$
 a.s.

From now on we will assume that

(1.6)
$$\frac{1}{2} < H_i < 1$$
 for $i = 1, \dots, d$.

The purpose of this paper is to extend the fractional white noise theory to the multiparameter case and use this theory to study the linear and quasilinear heat equation with a fractional white noise force.

2 Multiparameter fractional white noise

In this section we outline how the multiparameter white noise theory for standard Brownian motion (see e.g. [HKPS], [H \emptyset UZ] or [K]) can be extended to fractional Brownian motion. In the 1-parameter case such an extension was presented in [H \emptyset]. The following outline will follow the introduction in [H \emptyset Z] closely.

Fix a parameter dimension $d \in \mathbf{N}$ and a Hurst parameter

(2.1)
$$H = (H_1, \dots, H_d) \in (\frac{1}{2}, 1)^d.$$

Define

(2.2)
$$\varphi(x,y) = \varphi_H(x,y) = \prod_{i=1}^d H_i (2H_i - 1) |x_i - y_i|^{2H_i - 2}$$

for $x = (x_1, \dots, x_d) \in \mathbf{R}^d$, $y = (y_1, \dots, y_d) \in \mathbf{R}^d$. Let $L^2_{\varphi}(\mathbf{R}^d)$ be the space of measurable functions $f \colon \mathbf{R}^d \to \mathbf{R}$ satisfying

(2.3)
$$|f|_{\varphi}^{2} := \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} f(x)f(y)\varphi(x,y)dx \, dy < \infty$$

where $dx = dx_1 \dots dx_d$ and $dy = dy_1 \dots dy_d$ denotes Lebesgue measure. Then $L^2_{\varphi}(\mathbf{R}^d)$ is a separable Hilbert space with the inner product

(2.4)
$$(f,g)_{\varphi} = \int_{\mathbf{R}^d} \int_{\mathbf{R}^d} f(x)g(y)\varphi(x,y)dx \, dy \; ; \qquad f,g \in L_{\varphi}^2(\mathbf{R}^d) \; .$$

In fact, we have (see [HØ, Lemma 2.1] for the case d = 1):

Lemma 2.1 For $f \in L^2_{\varphi}(\mathbf{R}^d)$ and $u = (u_1, \dots, u_d) \in \mathbf{R}^d$ define

(2.5)
$$\Gamma_{\varphi} f(u) = \int_{u_1}^{\infty} \cdots \int_{u_d}^{\infty} f(x_1, \dots, x_d) \prod_{i=1}^d c_{H_i} (x_i - u_i)^{H_i - 3/2} dx_1 \dots dx_d ,$$

where

(2.6)
$$c_{H_i} = \sqrt{\frac{H_i(2H_i - 1) \cdot \Gamma(\frac{3}{2} - H_i)}{\Gamma(H_i - \frac{1}{2}) \cdot \Gamma(2 - 2H_i)}} \; ; \qquad i = 1, \dots, d \; .$$

Then Γ_{φ} is an isometry from $L_{\varphi}^{2}(\mathbf{R}^{d})$ into $L^{2}(\mathbf{R}^{d})$.

Proof. For $f, g \in L^2_{\varphi}(\mathbf{R}^d)$ we have

$$(\Gamma_{\varphi}(f), \Gamma_{\varphi}(g))_{L^{2}(\mathbf{R}^{d})}$$

$$= \int_{\mathbf{R}^{d}} \left(\int_{u_{i}}^{\infty} \cdots \int_{u_{d}}^{\infty} f(x) \prod_{i=1}^{d} c_{H_{i}}(x_{i} - u_{i})^{H_{i} - 3/2} dx \right)$$

$$\cdot \left(\int_{u_{1}}^{\infty} \cdots \int_{u_{d}}^{\infty} g(y) \prod_{i=1}^{d} c_{H_{i}}(y_{i} - u_{i})^{H_{i} - 3/2} dy \right) du_{1} \dots du_{d}$$

$$= \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} f(x)g(y) \left(\prod_{i=1}^{d} \int_{-\infty}^{x_{i} \wedge y_{i}} c_{H_{i}}^{2}(x_{i} - u_{i})^{H_{i} - 3/2} (y_{i} - u_{i})^{H_{i} - 3/2} du_{i} \right) dx dy$$

$$= \int_{\mathbf{R}^{d}} \int_{\mathbf{R}^{d}} f(x)g(y)\varphi(x, y) dx dy ,$$

where we have used the fact that (see e.g. [GN, p. 404])

(2.7)
$$\int_{-\infty}^{x_i \wedge y_i} c_{H_i}^2 (x_i - u_i)^{H_i - 3/2} (y_i - u_i)^{H_i - 3/2} du_i = H_i (2H_i - 1) |x_i - y_i|^{2H_i - 2}.$$

Let $\mathcal{S}(\mathbf{R}^d)$ be the Schwartz space of rapidly decreasing smooth functions on \mathbf{R}^d . The dual of $\mathcal{S}(\mathbf{R}^d)$, the space of tempered distributions, is denoted by $\mathcal{S}'(\mathbf{R}^d)$. The functional

$$f \to \exp(-\frac{1}{2}|f|_{\varphi}^2); \qquad f \in \mathcal{S}(\mathbf{R}^d)$$

is positive definite on $\mathcal{S}(\mathbf{R}^d)$, so by the Bochner-Minlos theorem there exists a probability measure μ_{φ} on $\mathcal{S}'(\mathbf{R}^d)$ such that

(2.8)
$$\int_{\mathcal{S}'(\mathbf{R}^d)} e^{i\langle \omega, f \rangle} d\mu_{\varphi}(\omega) = e^{-\frac{1}{2}|f|_{\varphi}^2} ; \qquad f \in \mathcal{S}(\mathbf{R}^d)$$

where $\langle \omega, f \rangle$ denotes the action of $\omega \in \Omega$: $= \mathcal{S}'(\mathbf{R}^d)$ on $f \in \mathcal{S}(\mathbf{R}^d)$. From (2.8) one can deduce that if $f_n \in \mathcal{S}(\mathbf{R}^d)$ and $f_n \to f$ in $L^2_{\varphi}(\mathbf{R}^d)$ then

(2.9)
$$\langle \omega, f \rangle := \lim_{n \to \infty} \langle \omega, f_n \rangle$$
 exists in $L^2(\mu_{\varphi})$

and defines a Gaussian random variable. Moreover,

$$(2.10) E[\langle \cdot, f \rangle] = 0$$

and

(2.11)
$$E[\langle \cdot, f \rangle \langle \cdot, g \rangle] = (f, g)_{\varphi} \quad \text{for } f, g \in L_{\varphi}^{2}(\mathbf{R}^{d}) .$$

Here, and in the following, $E[\cdot] = E_{\mu_{\varphi}}[\cdot]$ denotes the expectation with respect to μ_{φ} . In particular, we may define

(2.12)
$$\widetilde{B}_H(x) = \langle \omega, \mathcal{X}_{[0,x]}(\cdot) \rangle \; ; \qquad x = (x_1, \dots, x_d) \in \mathbf{R}^d$$

where

$$\mathcal{X}_{[0,x]}(y) = \prod_{i=1}^{d} \mathcal{X}_{[0,x_i]}(y_i)$$
 for $y = (y_1, \dots, y_d) \in \mathbf{R}^d$

and

$$\mathcal{X}_{[0,x_i]}(y_i) = \begin{cases} 1 & \text{if } 0 \le y_i \le x_i \\ -1 & \text{if } x_i \le y_i \le 0, \text{ except } x_i = y_i = 0 \\ 0 & \text{otherwise} \end{cases}$$

Using (2.10)–(2.11) and Kolmogorov's criterion, we see that $\widetilde{B}_H(x)$; $x \in \mathbf{R}^d$ is a Gaussian process and it has a continuous version. Furthermore, we see that

$$E[B_H(x)] = 0$$

and

(2.13)
$$E[B_H(x)B_H(y)] = (\frac{1}{2})^d \prod_{i=1}^d (|x_i|^{2H_i} + |y|^{2H_i} - |x_i - y_i|^{2H_i}).$$

Therefore $B_H(x)$; $x \in \mathbf{R}^d$ is a d-parameter fractional Brownian motion with Hurst parameter $H = (H_1, \ldots, H_d) \in (\frac{1}{2}, 1)^d$ (see (1.3)–(1.5)). It is this version of $B_H(x)$ we will use from now on.

Let $f \in L^2_{\varphi}(\mathbf{R}^d)$. The stochastic integral of f with respect to the fractional Brownian motion $B_H(x)$ is the Gaussian random variable on Ω defined by

(2.14)
$$\int_{\mathbf{R}^d} f(x)dB_H(x) = \int_{\mathbf{R}^d} f(x)dB_H(x,\omega) = \langle \omega, f \rangle .$$

Note that this is a natural definition from the point of view of Riemann sums:

If f_n is a simple integrand of the form

$$f_n(x) = \sum_{j=1}^{N_n} a_j^{(n)} \mathcal{X}_{(-\infty, y_j)}(x)$$

then (2.13) gives

$$\int_{\mathbf{R}^d} f_n(x)dB_H(x) = \langle \omega, f_n \rangle = \sum_{j=1}^{N_n} a_j^{(n)} B_H(y_j)$$

and if $f_n \to f$ in $L^2_{\varphi}(\mathbf{R}^d)$ then by (2.9) we have, as desired, that

$$\int_{\mathbf{R}^d} f_n(x) dB_H(x) = \langle \omega, f_n \rangle \to \langle \omega, f \rangle = \int_{\mathbf{R}^d} f(x) dB_H(x) .$$

Note that from (2.14) and (2.11) we have the fractional Ito isometry

(2.15)
$$E\left[\left(\int_{\mathbf{R}^d} f(x)dB_H(x)\right)^2\right] = |f|_{\varphi}^2 \quad \text{for } f \in L_{\varphi}^2(\mathbf{R}^d) .$$

As in $[H\emptyset Z]$ we now proceed in analogy with $[H\emptyset UZ]$ (as done in $[H\emptyset]$ in the 1-parameter case) to obtain a multiparameter fractional chaos expansion:

Let

$$h_n(t) = (-1)^n e^{t^2/2} \frac{d^n}{dt^n} (e^{-t^2/2}) ; \qquad t \in \mathbf{R} , \quad n = 0, 1, 2, \dots$$

be the standard Hermite polynomials and let

(2.16)
$$\widetilde{h}_n(t) = \pi^{-1/4} ((n-1)!)^{-1/2} h_{n-1}(\sqrt{2}t) e^{-t^2/2}; \qquad n = 1, 2, \dots$$

be the Hermite functions. Let $\mathbf{N} = \{1, 2, \dots\}$. For $\alpha \in \mathbf{N}^d$ let $\eta_{\alpha}(x) = \prod_{i=1}^d \widetilde{h}_{\alpha_i}(x_i)$. Then $\{\eta_{\alpha}\}_{{\alpha} \in \mathbf{N}^d}$ constitutes an orthonormal basis of $L^2(\mathbf{R}^d)$. Therefore

$$e_{\alpha}(x) := \Gamma_{\varphi}^{-1}(\eta_{\alpha})(x) ; \qquad \alpha \in \mathbf{N}^{d} , \quad x \in \mathbf{R}^{d}$$

constitutes an orthonormal basis of $L^2_{\varphi}(\mathbf{R}^d)$. From now on we let $\{\alpha^{(i)}\}_{i=1}^{\infty}$ be a fixed ordering of \mathbf{N}^d with the property that

$$i < j \Rightarrow |\alpha^{(i)}| \le |\alpha^{(j)}|$$

and we write

(2.17)
$$e_n(x) := e_{\alpha^{(n)}}(x)$$
. (See (2.2.7) in [HØUZ])

Then just as in $[H\emptyset, Lemma 3.1]$ we can prove

Lemma 2.2 There exists a locally bounded function C(x) on \mathbb{R}^d such that

$$\left| \int_{\mathbf{R}^d} e_n(y) \varphi(x, y) dy \right| \le C(x) \prod_{i=1}^d (\alpha_i^{(n)})^{1/6}$$

Let $\mathcal{J} = (\mathbf{N}_0^{\mathbf{N}})_c$ denote the set of all (finite) multi-indices $\alpha = (\alpha_1, \dots, \alpha_m)$ with $\alpha_i \in \mathbf{N}_0$: $= \mathbf{N} \cup \{0\}$. Then if $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathcal{J}$ we define

(2.18)
$$\mathcal{H}_{\alpha}(\omega) = h_{\alpha_1}(\langle \omega, e_1 \rangle) \cdots h_{\alpha_m}(\langle \omega, e_m \rangle) .$$

In particular, if we put

$$\varepsilon^{(i)} = (0, 0, \dots, 1)$$
 (the *i*'th unit vector)

then by (2.14) we get

(2.19)
$$\mathcal{H}_{\varepsilon^{(i)}}(\omega) = h_1(\langle \omega, e_i \rangle) = \langle \omega, e_i \rangle = \int_{\mathbf{R}^d} e_i(x) dB_H(x) .$$

As is well-known in a more general context (see e.g. [J, Theorem 2.6]) we have the following Wiener-Itô chaos expansion theorem (see also [DHP] and $[H\emptyset]$):

Theorem 2.3 Let $F \in L^2(\mu_{\varphi})$. Then there exist constants $c_{\alpha} \in \mathbf{R}$ for $\alpha \in \mathcal{J}$, such that

(2.20)
$$F(\omega) = \sum_{\alpha \in \mathcal{I}} c_{\alpha} \mathcal{H}_{\alpha}(\omega) \qquad (convergence in L^{2}(\mu_{\varphi})).$$

Moreover, we have the isometry,

(2.21)
$$||F||_{L^2(\mu_{\varphi})}^2 = \sum_{\alpha \in \mathcal{J}} \alpha! c_{\alpha}^2$$

where $\alpha! = \alpha_1! \alpha_2! \dots \alpha_m!$ if $\alpha = (\alpha_1, \dots, \alpha_m) \in \mathcal{J}$.

Example 2.4 If $F(\omega) = \langle \omega, f \rangle$ for some $f \in L^2_{\varphi}(\mathbf{R}^d)$, then F has the expansion

(2.22)
$$F(\omega) = \left\langle \omega, \sum_{i=1}^{\infty} (f, e_i)_{\varphi} e_i \right\rangle = \sum_{i=1}^{\infty} (f, e_i)_{\varphi} \mathcal{H}_{\varepsilon^{(i)}}(\omega) .$$

In particular, for d-parameter fractional Brownian motion we get, by (2.12),

(2.23)
$$B_{H}(x) = \langle \omega, \mathcal{X}_{[0,x]}(\cdot) \rangle = \sum_{i=1}^{\infty} (\mathcal{X}_{[0,x]}, e_{i})_{\varphi} \mathcal{H}_{\varepsilon^{(i)}}(\omega)$$
$$= \sum_{i=1}^{\infty} \left[\int_{0}^{x} \left(\int_{\mathbf{R}^{d}} e_{i}(v) \varphi(u, v) dv \right) du \right] \mathcal{H}_{\varepsilon^{(i)}}(\omega) ,$$

where
$$\int_{0}^{x} = \int_{0}^{x_d} \cdots \int_{0}^{x_1} \quad and \quad \int_{0}^{x_i} = -\int_{x_i}^{0} \quad if \quad x_i < 0.$$

Next we proceed as in [HØUZ] to define the multiparameter fractional Hida test function space $(S)_H$ and distribution space $(S)_H^*$:

Definition 2.5 a) (The multiparameter fractional Hida test function spaces) For $k \in \mathbb{N}$ define $(S)_{H,k}$ to be the space of all

(2.24)
$$\psi(\omega) = \sum_{\alpha \in \mathcal{I}} a_{\alpha} \mathcal{H}_{\alpha}(\omega) \in L^{2}(\mu_{\varphi})$$

such that

(2.25)
$$\|\psi\|_{H,k}^2 := \sum_{\alpha \in \mathcal{J}} \alpha! a_\alpha^2 (2\mathbf{N})^{k\alpha} < \infty$$

where

$$(2\mathbf{N})^{\gamma} = \prod_{j} (2j)^{\gamma_j} \quad if \quad \gamma = (\gamma_1, \dots, \gamma_m) \in \mathcal{J}.$$

Define $(S)_H = \bigcap_{k=1}^{\infty} (S)_{H,k}$ with the projective topology.

b) (The multiparameter fractional Hida distribution spaces) For $q \in \mathbb{N}$ let $(\mathcal{S})_{H,-q}^*$ be the space of all formal expansions

(2.26)
$$G(\omega) = \sum_{\beta \in \mathcal{I}} b_{\beta} \mathcal{H}_{\alpha}(\omega)$$

such that

(2.27)
$$||G||_{H,-q}^2 : = \sum_{\beta \in \mathcal{I}} \beta! b_{\beta}^2 (2\mathbf{N})^{-q\beta} < \infty .$$

Define

$$(\mathcal{S})_H^* = \bigcup_{q=1}^{\infty} (\mathcal{S})_{H,-q}^*$$

with the inductive topology. Then $(S)_H^*$ becomes the dual of $(S)_H$ when the action of $G \in (S)_H^*$ given by (2.26) on $\psi \in (S)_H$ given by (2.24) is defined by

(2.28)
$$\langle\!\langle G, \psi \rangle\!\rangle = \sum_{\alpha \in \mathcal{I}} \alpha! a_{\alpha} b_{\alpha} .$$

Example 2.6 (Multiparameter fractional white noise) Define, for $y \in \mathbf{R}^d$

(2.29)
$$W_H(y) = \sum_{i=1}^{\infty} \left[\int_{\mathbf{R}^d} e_i(v) \varphi(y, v) dv \right] \mathcal{H}_{\varepsilon^{(i)}}(\omega)$$

Then as in [HØ, Example 3.6] we obtain that $W_H(y) \in (\mathcal{S})_H^*$ for all y. Moreover, $W_H(y)$ is integrable in $(\mathcal{S})_H^*$ for $0 \le y_i \le x_i$; $i = 1, \ldots, d$, and

(2.30)
$$\int_{0}^{x} W_{H}(y)dy = \sum_{i=1}^{\infty} \left[\int_{0}^{x} \left(\int_{\mathbf{R}^{d}} e_{i}(v)\varphi(y,v)dv \right) dy \right] \mathcal{H}_{\varepsilon(i)}(\omega) = B_{H}(x) ,$$

by (2.23). Therefore $B_H(x)$ is differentiable with respect to x in $(\mathcal{S})_H^*$ and we have

(2.31)
$$\frac{\partial^d}{\partial x_1 \dots \partial x_d} B_H(x) = W_H(x) \quad \text{in} \quad (\mathcal{S})_H^*.$$

This justifies the name (multiparameter) fractional white noise for $W_H(x)$.

The Wick product is defined just as in $[H\emptyset UZ]$ and $[H\emptyset]$:

Definition 2.7 Suppose $F(\omega) = \sum_{\alpha \in \mathcal{J}} a_{\alpha} \mathcal{H}_{\alpha}(\omega)$ and $G(\omega) = \sum_{\beta \in \mathcal{J}} b_{\beta} \mathcal{H}_{\beta}(\omega)$ both belong to $(\mathcal{S})_{H}^{*}$. Then we define their Wick product $(F \diamond G)(\omega)$ by

$$(2.32) (F \diamond G)(\omega) = \sum_{\alpha,\beta \in \mathcal{J}} a_{\alpha} b_{\beta} \mathcal{H}_{\alpha+\beta}(\omega) = \sum_{\gamma \in \mathcal{J}} \Big(\sum_{\alpha+\beta=\gamma} a_{\alpha} b_{\beta} \Big) \mathcal{H}_{\gamma}(\omega) .$$

Example 2.8 a) ([HØ, Example 3.9]) If $f, g \in L^2_{\varphi}(\mathbf{R}^d)$ then

(2.33)
$$\left(\int_{\mathbf{R}^d} f \, dB_H \right) \diamond \left(\int_{\mathbf{R}^d} g \, dB_H \right) = \left(\int_{\mathbf{R}^d} f \, dB_H \right) \cdot \left(\int_{\mathbf{R}^d} g \, dB_H \right) - (f, g)_{\varphi} .$$

b) ([HØ, Example 3.10]) If $f \in L^2_{\varphi}(\mathbf{R}^d)$ then

$$\exp^{\diamond}(\langle \omega, f \rangle) \colon = \sum_{n=1}^{\infty} \frac{1}{n!} \langle \omega, f \rangle^{\diamond n}$$

converges in $(\mathcal{S})_H^*$ and is given by

(2.34)
$$\exp^{\diamond}(\langle \omega, f \rangle) = \exp(\langle \omega, f \rangle - \frac{1}{2}|f|_{\omega}^{2}).$$

We now use multiparameter fractional white noise to define integration with respect to multiparameter fractional Brownian motion, just as in $[H\emptyset, Definition 3.11]$ for the 1-parameter case:

Definition 2.9 Suppose $Y : \mathbf{R}^d \to (\mathcal{S})_H^*$ is a given function such that $Y(x) \diamond W_H(x)$ is integrable in $(\mathcal{S})_H^*$ for $x \in \mathbf{R}^d$. Then we define the multiparameter fractional stochastic integral (of Itô type) of Y(x) by

(2.35)
$$\int_{\mathbf{R}^d} Y(x)dB_H(x) = \int_{\mathbf{R}^d} Y(x) \diamond W_H(x)dx.$$

Remark 2.10 If $H = \frac{1}{2}$ this definition gives an extension of the Itô-Skorohod integral. See [HØUZ, Section 2.5] for more details.

3 The linear heat equation driven by fractional white noise

In this section we illustrate the theory above by applying it to the linear stochastic fractional heat equation

(3.1)
$$\frac{\partial U}{\partial t}(t,x) = \frac{1}{2}\Delta U(t,x) + W_H(t,x); \qquad t \in (0,\infty), \quad x \in D \subset \mathbf{R}^n$$

(3.2)
$$U(0,x) = 0$$
; $x \in D$

(3.3)
$$U(t,x) = 0; t \ge 0, x \in \partial D$$

Here $W_H(t,x)$ is the fractional white noise with Hurst parameter $H=(H_0,H_1,\ldots,H_n)\in (\frac{1}{2},1)^{n+1}$, $\Delta=\sum_{i=1}^n\frac{\partial^2}{\partial x_i^2}$ is the Laplace operator, $D\subset\mathbf{R}^n$ is a bounded open set with smooth boundary ∂D , $0\leq T\leq\infty$ is a constant. We are looking for a solution $U:[0,\infty)\times\bar{D}\to (\mathcal{S})_H^*$ which is continuously differentiable in (t,x) and twice continuously differentiable in x, i.e. belongs to $C^{1,2}((0,\infty)\times D;(\mathcal{S})_H^*)$, and which satisfies (3.1) in the strong sense (as an $(\mathcal{S})_H^*$ -valued function).

Based on the corresponding solution in the deterministic case (with $W_H(t,x)$ replaced by a bounded deterministic function) it is natural to guess that the solution will be

(3.4)
$$U(t,x) = \int_{0}^{t} \int_{D} W_{H}(s,y) G_{t-s}(x,y) dy ds$$

where $G_{t-s}(x,y)$ is the Green function for the heat operator $\frac{\partial}{\partial t} - \frac{1}{2}\Delta$. It is well-known [D] that G is smooth in $(0,T) \times D$ and that

(3.5)
$$G_u(x,y) \sim u^{-n/2} \exp\left(-\frac{|x-y|^2}{\delta u}\right) \quad \text{in } (0,\infty) \times D,$$

where the notation $X \sim Y$ means that

$$\frac{1}{C}X \le Y \le CX \quad \text{in } (0, \infty) \times D ,$$

for some positive constant $C < \infty$ depending only on D.

We use this to verify that $U(t,x) \in \mathcal{S}_H^*$ for all $(t,x) \in [0,\infty) \times \bar{D}$: Using (2.29) we see that the expansion of U(t,x) is

$$U(t,x) = \int_{0}^{t} \int_{D} G_{t-s}(x,y) \sum_{k=1}^{\infty} \left[\int_{\mathbf{R}^{n}} e_{k}(v) \varphi(y,v) dv \right] \mathcal{H}_{\varepsilon^{(k)}}(\omega) dy ds$$

$$= \sum_{k=1}^{\infty} b_{k}(t,x) \mathcal{H}_{\varepsilon^{(k)}}(\omega) ,$$
(3.6)

where

(3.7)
$$b_k(t,x) = b_{\varepsilon^{(k)}}(t,x) = \int_0^t \int_D G_{t-s}(x,y) \left[\int_{\mathbb{R}^n} e_k(v) \varphi(y,v) dv \right] dy ds$$

In the following C denote constants, not necessarily the same from place to place. From

Lemma 2.2 and (3.7) we obtain that

$$|b_{k}(t,x)| \leq C \prod_{i=1}^{d} (\alpha_{i}^{(k)})^{1/6} \int_{0}^{t} \int_{D} G_{t-s}(x,y) dy \, ds$$

$$\leq C \prod_{i=1}^{d} (\alpha_{i}^{(k)})^{1/6} \int_{0}^{t} \left(\int_{\mathbf{R}^{n}} s^{-n/2} \exp\left(-\frac{y^{2}}{\delta s}\right) dy \right) ds$$

$$\stackrel{y=\sqrt{\delta s} z}{\leq} C \prod_{i=1}^{d} (\alpha_{i}^{(k)})^{1/6} \int_{0}^{t} \left(\int_{\mathbf{R}^{n}} s^{-n/2} \exp(-z^{2}) (\delta s)^{n/2} dz \right) ds$$

$$= C \prod_{i=1}^{d} (\alpha_{i}^{(k)})^{1/6} t .$$

Therefore

$$\sum_{k=1}^{\infty} b_k^2(t, x) (2\mathbf{N})^{-q\varepsilon^{(k)}}$$
(3.9)
$$\leq C(t) \sum_{k=1}^{\infty} \prod_{i=1}^{d} (\alpha_i^{(k)})^{1/3} (2k)^{-q} \leq \sum_{k=1}^{\infty} k^{d/3} (2k)^{-q} < \infty \quad \text{for } q > \frac{d+3}{3}.$$

Here we used the fact $|\alpha^{(k)}| \leq k$, which is the consequence of the special order. Hence $U(t,x) \in (\mathcal{S})_{H,-q}^*$ for all $q > \frac{d+3}{3}$, for all t,x.

In fact, this estimate also shows that U(t,x) is uniformly continuous as a function from

In fact, this estimate also shows that U(t,x) is uniformly continuous as a function from $[0,T] \times \bar{D}$ into $(\mathcal{S})_H^*$ for any $T < \infty$ and that U(t,x) satisfies (3.2) and (3.3). Moreover, by the properties of $G_{t-s}(x,y)$ we get from (3.4) that

$$\frac{\partial U}{\partial t}(t,x) - \Delta U(t,x) = \int_{0}^{t} \int_{D} W_{H}(s,y) \left(\frac{\partial}{\partial t} - \Delta\right) G_{t-s}(x,y) dy ds + W_{H}(t,x)$$
(3.10)
$$= W_{H}(t,x) , \text{ so } U(t,x) \text{ satisfies (3.1) also .}$$

In the standard white noise case $(H_i = \frac{1}{2} \text{ for all } i)$ the same solution formula (3.4) holds. In this case we see that the solution U(t,x) belongs to $L^2(\mu)$ (μ being the standard white noise measure) iff

(3.11)
$$E_{\mu}[U^{2}(t,x)] = \int_{0}^{t} \int_{D} G_{t-s}^{2}(x,y)dy \, ds < \infty.$$

Now, if $D \subset (-\frac{1}{2}R, \frac{1}{2}R)^n$ and we put $F = [-R, R]^n$,

$$\int_{0}^{t} \int_{D} G_{t-s}^{2}(x,y) ds \, dy \sim \int_{0}^{t} \int_{D} s^{-n} \exp\left(-\frac{2y^{2}}{\delta s}\right) dy \, ds$$
$$\sim \int_{0}^{t} \left(\int_{F/\sqrt{s}} s^{-n/2} \exp\left(-\frac{2z^{2}}{\delta}\right) dz\right) ds.$$

Hence

$$(3.12) E_{\mu}[U^2(t,x)] < \infty \iff n=1.$$

Next, consider the fractional case $\frac{1}{2} < H_i < 1$ for all i. Then

$$E_{\mu_{\varphi}}[U^{2}(t,x)] = \int_{0}^{t} \int_{0}^{t} \int_{D} \int_{D} G_{t-r}(x,y) G_{t-s}(x,z) \varphi(r,s,y,z) dr \, ds \, dy \, dz$$

$$\sim \int_{0}^{t} \int_{0}^{t} \int_{D} \int_{D} r^{-n/2} s^{-n/2} \exp\left(-\frac{|x-y|^{2}}{\delta r}\right) \exp\left(-\frac{|x-z|^{2}}{\delta s}\right)$$

$$\cdot |r-s|^{2H_{0}-2} \prod_{i=1}^{n} |y_{i}-z_{i}|^{2H_{i}-2} dy_{1} \dots dy_{n} dz_{1} \dots dz_{n} \, dr \, ds .$$
(3.13)

Choose $1 < q < p < \infty$ such that $\frac{1}{p} + \frac{1}{q} = 1$. By the Hölder inequality we have

$$\prod_{i=1}^{n} \int_{\frac{1}{2}R}^{\frac{1}{2}R} \int_{\frac{1}{2}R}^{\frac{1}{2}R} \exp\left(-\frac{|x_{i}-y_{i}|^{2}}{\delta r} - \frac{|x_{i}-z_{i}|^{2}}{\delta s}\right) |y_{i}-z_{i}|^{2H_{i}-2} dy_{i} dz_{i}$$

$$\leq \prod_{i=1}^{n} \int_{\frac{1}{2}R}^{\frac{1}{2}R} \exp\left(-\frac{|x_{i}-y_{i}|^{2}}{\delta r}\right) dy_{i} \left\{ \left[\int_{\frac{1}{2}R}^{\frac{1}{2}R} \exp\left(-\frac{p|x_{i}-z_{i}|^{2}}{\delta s}\right) dz_{i}\right]^{1/p} \cdot \left[\int_{\frac{1}{2}R}^{\frac{1}{2}R} |y_{i}-z_{i}|^{q(2H_{i}-2)} dz_{i}\right]^{1/q} \right\}$$

$$\sim \left(\frac{r}{p}\right)^{n/2} \left[\left(\frac{s}{p}\right)^{n/2}\right]^{1/p} \quad \text{if} \quad q(2H_{i}-2) > -1.$$

Substituted into (3.13) this gives

(3.15)
$$E_{\mu_{\varphi}}[U^{2}(t,x)] \leq C(p) \int_{0}^{t} \int_{0}^{t} (s)^{-\frac{n}{2}(1-\frac{1}{p})} |r-s|^{2H_{0}-2} dr \, ds$$
$$< \infty \qquad \text{if} \quad n < \frac{2p}{p-1} \, .$$

Combined with the requirement $q(2H_i - 2) > -1$ we obtain from this that

$$E_{\mu_{\varphi}}[U^2(t,x)] < \infty$$
 if $n < \frac{1}{1 - H_i}$ for $1 \le i \le n$.

We summarize what we have proved:

Theorem 3.1 a) For any space dimension n there is a unique strong solution U(t,x): $[0,\infty) \times D \to (\mathcal{S})_H^*$ of the fractional heat equation (3.1)–(3.3). The solution is given by

(3.16)
$$U(t,x) = \int_{0}^{t} \int_{D} W_{H}(s,y) G_{t-s}(x,y) dy ds.$$

It belongs to $C^{1,2}((0,\infty)\times D\to (S)_H^*)\cap C([0,\infty)\times \bar{D}\to (S)_H^*).$

b) If
$$H = (H_0, H_1, \dots, H_n) \in (\frac{1}{2}, 1)^{n+1}$$
 and

(3.17)
$$H_i > 1 - \frac{1}{n} \quad \text{for } i = 1, 2, \dots, n$$

then $U(t,x) \in L^2(\mu_{\varphi})$ for all $t \geq 0$, $x \in \bar{D}$.

c) In particular, for all $H \in (\frac{1}{2}, 1)^{d+1}$ we have

$$(3.18) U(t,x) \in L^2(\mu_{\varphi}) if n \leq 2.$$

Remark 3.2 Note that condition (3.17) is sharp at $H_i = \frac{1}{2}$, in the sense that if we let $H_i \to \frac{1}{2}$ for i = 1, ..., n then (3.17) reduces to the condition n = 1 which we found for the standard white noise case (3.12).

Remark 3.3 In [H1] (and more generally in [H2]) the heat equation with a *fractional* white noise potential is studied:

$$\frac{\partial u}{\partial t}(t,x) = \frac{1}{2}\Delta u(t,x) + u(t,x) \diamond W_H(t,x) ; \qquad x \in \mathbf{R}^n, \quad t > 0 .$$

There it is shown that if $H=(H_0,H_1,\ldots,H_n)$ with $H_i\in(\frac{1}{2},1)$ for $i=0,1,\ldots,n$ and

$$H_1 + H_2 + \dots + H_n > n - \frac{2}{2H_0 - 1}$$

then $u(t,x) \in L^2(\mu_{\varphi})$ for all t,x.

4 The quasilinear stochastic fractional heat equation

Let $f: \mathbf{R} \to \mathbf{R}$ be a function satisfying

(4.1)
$$|f(x) - f(y)| \le L|x - y| \qquad \text{for all } x, y \in \mathbf{R}$$

$$(4.2) |f(x)| \le M(1+|x|) \text{for all } x \in \mathbf{R} ,$$

where L and M are constants.

In this section we consider the following quasi-linear generalization of equation (3.1)–(3.3):

(4.3)
$$\frac{\partial U}{\partial t}(t,x) = \frac{1}{2}\Delta U(t,x) + f(U(t,x)) + W_H(t,x); \qquad t > 0, \ x \in \mathbf{R}^n$$

(4.4)
$$U(0,x) = U_0(x); \quad x \in \mathbf{R}^n$$

where $U_0(x)$ is a given bounded deterministic function on \mathbb{R}^n .

We say that U(t,x) is a solution of (4.3)–(4.4) if

$$\int_{\mathbf{R}^{n}} U(t,x)\varphi(x)dx - \int_{\mathbf{R}^{n}} U_{0}(x)\varphi(x)dx$$

$$= \frac{1}{2} \int_{0}^{t} \int_{\mathbf{R}^{n}} U(s,x)\Delta\varphi(x)dx ds + \int_{0}^{t} \int_{\mathbf{R}^{n}} f(U(s,x))\varphi(x)dx ds$$

$$+ \int_{0}^{t} \int_{\mathbf{R}^{n}} \varphi(x)dB_{H}(s,x)$$

for all $\varphi \in C_0^{\infty}(\mathbf{R}^n)$.

As in Walsh [W] we can show that U(t,x) solves (4.5) if and only if it satisfies the following integral equation

$$U(t,x) = \int_{\mathbf{R}^{n}} U_{0}(y)G_{t}(x,y)dy + \int_{0}^{t} \int_{\mathbf{R}^{n}} f(U(s,y))G_{t-s}(x,y)dy ds$$

$$+ \int_{0}^{t} \int_{\mathbf{R}^{n}} G_{t-s}(x,y)dB_{H}(s,y) ,$$
(4.6)

where

(4.7)
$$G_{t-s}(x,y) = (2\pi(t-s))^{-n/2} \exp\left(-\frac{|x-y|^2}{2(t-s)}\right); \quad s < t, \ x \in \mathbf{R}^n$$

is the Green function for the heat operator $\frac{\partial}{\partial t} - \frac{1}{2}\Delta$ in $(0, \infty) \times \mathbf{R}^n$.

For the proof of our main result, we need the following two lemmas. Let $0 < \alpha < 1$. Define, for u > 0,

(4.8)
$$g(u,y) = \int_{\mathbf{R}} |y - z|^{-\alpha} \frac{1}{\sqrt{u}} exp(-\frac{z^2}{2u}) dz$$

Lemma 4.1 Assume $p > \frac{1}{1-\alpha}$. Then $g(u,y) \leq C(1+u^{-\frac{1}{2}(1-\frac{1}{p})})$, where C is a constant independent of y and u.

Proof. In the proof, we will use C to denote a generic constant independent of y and u. First,note that

$$g(u,y) = \int_{|z-y| \le 1} |y-z|^{-\alpha} \frac{1}{\sqrt{u}} exp(-\frac{z^2}{2u}) dz + \int_{|z-y| > 1} |y-z|^{-\alpha} \frac{1}{\sqrt{u}} exp(-\frac{z^2}{2u}) dz$$

By Hölder inequality,

$$g(u,y) \le C \left\{ 1 + \left[\int_{|z-y| \le 1} |y-z|^{-\alpha \frac{p}{p-1}} dz \right]^{\frac{p-1}{p}} \left[\int_{|z-y| \le 1} \frac{1}{u^{\frac{1}{2}p}} \exp\left(-\frac{pz^2}{2u}\right) dz \right]^{\frac{1}{p}} \right\}$$

$$(4.9) \qquad \le C \left(1 + u^{-\frac{1}{2}(1 - \frac{1}{p})} \right)$$

Let $F(y_1, y_2, \ldots, y_n)$ denote a function on \mathbf{R}^n .

Lemma 4.2 Let $h = (h_1, h_2, ..., h_n)$ with $h_i \ge 0$, $1 \le i \le n$. Asume that F and all its partial derivatives of first order are integrable with respect to the Lebesgue measure. Then

$$(4.10) \qquad \int_{\mathbf{R}^n} |F(y-h) - F(y)| dy \le \sum_{i=1}^n \left(\int_{\mathbf{R}^n} \left| \frac{\partial F}{\partial y_i}(y_1, y_2, \dots, y_n) \right| dy \right) h_i$$

Proof. Observe that

$$F(y-h) - F(y) = \sum_{i=1}^{n} (F(y_1, \dots, y_{i-1}, y_i - h_i, y_{i+1} - h_{i+1}, \dots, y_n - h_n)$$

$$-F(y_1, \dots, y_{i-1}, y_i, y_{i+1} - h_{i+1}, \dots, y_n - h_n))$$

$$= \sum_{i=1}^{n} \int_{y_i - h_i}^{y_i} -\frac{\partial F}{\partial y_i} (y_1, \dots, y_{i-1}, z, y_{i+1} - h_{i+1}, \dots, y_n - h_n) dz$$

$$(4.11)$$

Integrating the equation (4.11), we get

$$\int_{\mathbf{R}^{n}} |F(y-h) - F(y)| dy$$

$$\leq \sum_{i=1}^{n} \int_{\mathbf{R}^{n-1}} dy_{1} \cdots dy_{i-1} dy_{i+1} \cdots dy_{n}$$

$$\cdot \int_{\mathbf{R}} dy_{i} \int_{y_{i}-h_{i}}^{y_{i}} \left| \frac{\partial F}{\partial y_{i}} \right| (y_{1}, \dots, y_{i-1}, z, y_{i+1} - h_{i+1}, \dots, y_{n} - h_{n}) dz$$

$$= \sum_{i=1}^{n} \int_{\mathbf{R}^{n-1}} dy_{1} \cdots dy_{i-1} dy_{i+1} \cdots dy_{n}$$

$$\cdot \int_{\mathbf{R}} dz \left| \frac{\partial F}{\partial y_{i}} \right| (y_{1}, \dots, y_{i-1}, z, y_{i+1} - h_{i+1}, \dots, y_{n} - h_{n}) \int_{z}^{z+h_{i}} dy_{i}$$

$$= \sum_{i=1}^{n} \left(\int_{\mathbf{R}^{n}} \left| \frac{\partial F}{\partial y_{i}} (y_{1}, y_{2}, \dots, y_{n}) \right| dy \right) h_{i}$$

Our main result is the following:

Theorem 4.3 Let $H = (H_0, H_1, \dots, H_n) \in (\frac{1}{2}, 1)^{n+1}$ with

$$H_i > 1 - \frac{1}{n}$$
 for $i = 1, 2, ..., n$.

Then there exists a unique $L^2(\mu_{\varphi})$ -valued random field solution U(t,x); $t \geq 0$, $x \in \mathbf{R}^n$ of (4.3)-(4.4). Moreover, the solution has a jointly continuous version in (t,x) if $H_0 > \frac{3}{4}$.

Proof. Define

(4.12)
$$V(t,x) = \int_{0}^{t} \int_{\mathbf{R}^{n}} G_{t-s}(x,y) dB_{H}(s,y) .$$

Dividing R into regions $\{z; |z-y| \leq 1\}$ and $\{z; |z-y| > 1\}$, we see that a slight modification of the arguments in Section 4 gives that $E_{\mu_{\varphi}}[V^2(t,x)] < \infty$, so V(t,x) exists as an ordinary random field. The existence of the solution now follows by usual Picard iteration: Define

$$(4.13) U_0(t,x) = U_0(x)$$

and iteratively

(4.14)
$$U_{j+1}(t,x) = \int_{\mathbf{R}^n} U_0(y)G_t(x,y)dy$$
$$+ \int_0^t \int_{\mathbf{R}^n} f(U_j(s,y))G_{t-s}(x,y)dy \, ds + V(t,x) \; ; \qquad j = 0, 1, 2, \dots$$

Then by (4.2) $U_j(t,x) \in L^2_{\mu_{\varphi}}$ for all j. We have

$$U_{j+1}(t,x) - U_j(t,x) = \int_0^t \int_{\mathbb{R}^n} [f(U_j(s,y)) - f(U_{j-1}(s,y))] G_{t-s}(x,y) dy ds$$

and therefore by (4.1), if $t \in [0, T]$,

$$E_{\mu_{\varphi}}[|U_{j+1}(t,x) - U_{j}(t,x)|^{2}]$$

$$\leq LE_{\mu_{\varphi}}\left[\left(\int_{0}^{t} \int_{\mathbf{R}^{n}}^{t} |U_{j}(s,y) - U_{j-1}(s,y)|G_{t-s}(x,y)dy\,ds\right)^{2}\right]$$

$$\leq L\left(\int_{0}^{t} \int_{\mathbf{R}^{n}}^{t} G_{t-s}(x,y)dy\,ds\right)E_{\mu_{\varphi}}\left[\int_{0}^{t} \int_{\mathbf{R}^{n}}^{t} |U_{j}(s,y) - U_{j-1}(s,y)|^{2}G_{t-s}(x,y)dy\,ds\right]$$

$$\leq C_{T}\int_{0}^{t} \sup_{y} E[|U_{j}(s,y) - U_{j-1}(s,y)|^{2}]ds$$

$$\leq \cdots \leq C_{T}^{j}\int_{0}^{t} \int_{0}^{s_{j-1}} \cdots \int_{0}^{s_{j-1}} \sup_{y} E[|U_{1}(s,y) - U_{0}(s,y)|^{2}]dsds_{j-1}\dots ds_{1}$$

$$\leq A_{T}C_{T}^{j}\frac{T^{j}}{(j)!} \qquad \text{for some constants } A_{T}, C_{T}.$$

It follows that the sequence $\{U_j(t,x)\}_{j=1}^{\infty}$ of random fields converges in $L^2(\mu_{\varphi})$ to a random field U(t,x). Letting $k \to \infty$ in (4.10) we see that U(t,x) is a solution of (4.3)–(4.4). The uniqueness follows from the Gronwall inequality. It is not difficult to see that both

$$\int_{\mathbf{R}^n} U_o(y)G_t(x,y)dy \quad \text{and} \quad \int_0^t \int_{\mathbf{R}^n} f(U(s,y))G_{t-s}(x,y)dy ds$$

are jointly continuous in (t, x). So to finish the proof of the theorem it suffices to prove that V(t, x) has a jointly continuous version.

To this end, consider for $h \in \mathbf{R}$

$$V(t+h,x) - V(t,x) = \int_{t}^{t+h} \int_{\mathbf{R}^d} G_{t+h-s}(x,y) dB_H(s,y)$$

$$+ \int_{0}^{t} \int_{\mathbf{R}^n} (G_{t+h-s}(x,y) - G_{t-s}(x,y)) dB_H(s,y)$$
(4.15)

By the estimate in (3.15) it follows that

$$E\left[\left|\int_{t}^{t+h} \int_{\mathbf{R}^{n}} G_{t+h-s}(x,y) dB_{H}(s,y)\right|^{2}\right] \leq C \int_{t}^{t+h} (u-t)^{2H_{0}-2} du$$

$$\leq C h^{2H_{0}-1}.$$
(4.16)

To estimate the second term on the right hand side of (4.15), we use (2.15) and proceed as follows:

$$E\left[\left|\int_{0}^{\infty} \int_{\mathbf{R}^{n}}^{\infty} (G_{t+h-s}(x,y) - G_{t-s}(x,y))dB_{H}(s,y)\right|^{2}\right]$$

$$\leq C\int_{\mathbf{R}}^{\infty} \int_{\mathbf{R}^{n}}^{\infty} \left\{(t+h-r)^{-n/2} \exp\left(-\frac{|x-z|^{2}}{2(t+h-r)}\right)\right\}$$

$$-(t-r)^{-n/2} \exp\left(-\frac{|x-z|^{2}}{2(t-r)}\right)$$

$$\cdot \left\{(t+h-s)^{-n/2} \exp\left(-\frac{|x-y|^{2}}{2(t+h-s)}\right)\right\}$$

$$-(t-s)^{-n/2} \exp\left(-\frac{|x-y|^{2}}{2(t+h-s)}\right)$$

$$-(t-s)^{-n/2} \exp\left(-\frac{|x-y|^{2}}{2(t-r)}\right)$$

$$\cdot \prod_{i=1}^{n} |y_{i}-z_{i}|^{2H_{i}-2} dy dz\right] dr ds$$

$$\leq C\int_{\mathbf{R}}^{\infty} \int_{\mathbf{R}^{n}}^{\infty} \left\{(r+h)^{-n/2} \exp\left(-\frac{|z|^{2}}{2(r+h)}\right) - r^{-n/2} \exp\left(-\frac{|z|^{2}}{2r}\right)\right\}$$

$$\cdot \left\{(s+h)^{-n/2} \exp\left(-\frac{|y|^{2}}{2(s+h)}\right) - s^{-n/2} \exp\left(-\frac{|y|^{2}}{2s}\right)\right\}$$

$$\cdot \prod_{i=1}^{n} |y_{i}-z_{i}|^{2H_{i}-2} dy dz\right] dr ds$$

$$(4.18)$$

From (4.17) to (4.18), we first perform the change of variables: x - y = y', x - z = z', t - r = r', t - s = s' and then we change the name of y', z', r', s' back to y, z, r, s again for simplicitiy. (4.18) is further less than

$$C \int_{0}^{t} ds \int_{0}^{s} dr (s-r)^{2H_{0}-2} \cdot \left[\int_{\mathbf{R}^{n}} dy \int_{s}^{s+h} (-\frac{n}{2} v^{-\frac{n}{2}-1} \exp\left(-\frac{|y|^{2}}{2v}\right) + \frac{1}{2} v^{-\frac{n}{2}-2} |y|^{2} \exp\left(-\frac{|y|^{2}}{2v}\right)) dv \right] \cdot \left\{ (r+h)^{-n/2} \exp\left(-\frac{|z|^{2}}{2(r+h)}\right) - r^{-n/2} \exp\left(-\frac{|z|^{2}}{2r}\right) \right\} \cdot \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i}-2} dz \right]$$

$$\leq C \int_{0}^{t} ds \int_{0}^{s} dr (s-r)^{2H_{0}-2} \cdot \left[\int_{s}^{s+h} dv \int_{\mathbf{R}^{n}} dy (\frac{n}{2} v^{-\frac{n}{2}-1} \exp\left(-\frac{|y|^{2}}{2v}\right) + \frac{1}{2} v^{-\frac{n}{2}-2} |y|^{2} \exp\left(-\frac{|y|^{2}}{2v}\right) \right) \cdot \int_{\mathbf{R}^{n}} \left\{ (r+h)^{-n/2} \exp\left(-\frac{|z|^{2}}{2(r+h)}\right) + r^{-n/2} \exp\left(-\frac{|z|^{2}}{2r}\right) \right\}$$

$$(4.19) \cdot \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i}-2} dz \right]$$

Choose p > 1 such that

$$\frac{1}{2H_i - 1} for $i = 1, 2, \dots, n$.$$

This is possible since $H_i > 1 - \frac{1}{n}$ for i = 1, 2, ..., n. Then

$$\frac{2p}{p-1} > d$$
 and $\frac{p}{p-1}(2H_i - 2) > -1$, $i = 1, 2, \dots, n$

Now applying Lemma 4.1 repeatedly to this choice of p and to $\alpha = 2 - 2H_i$, we get

$$(4.19) \le C \int_{0}^{t} ds \int_{0}^{s} dr (s-r)^{2H_{0}-2} \cdot \int_{s}^{s+h} dv \frac{1}{v} \left(1 + Cr^{-\frac{1}{2}(1-\frac{1}{p})}\right)^{n}$$

$$\le C \int_{0}^{t} ds \int_{0}^{s} dr \int_{s}^{s+h} dv \frac{1}{v} \left(1 + r^{-\frac{n}{2}(1-\frac{1}{p})}\right) (s-r)^{2H_{0}-2}$$

Choose β such that $2-2H_0 < \beta < 1$. It follows that (4.20) is dominated by

$$C \int_{0}^{t} ds \int_{0}^{s} dr \frac{1}{s^{1-\beta}} \int_{s}^{s+h} dv \frac{1}{v^{\beta}} \left(1 + r^{-\frac{n}{2}(1-\frac{1}{p})}\right) (s-r)^{2H_{0}-2}$$

$$\leq Ch^{1-\beta} \int_{0}^{t} ds \int_{0}^{s} dr \frac{1}{s^{1-\beta}} r^{-\frac{n}{2}(1-\frac{1}{p})} (s-r)^{2H_{0}-2}$$

$$= Ch^{1-\beta} \int_{0}^{t} ds \frac{1}{s^{1-\beta}} \left[\int_{0}^{\frac{s}{2}} r^{-\frac{n}{2}(1-\frac{1}{p})} (s-r)^{2H_{0}-2} dr + \int_{\frac{s}{2}}^{s} r^{-\frac{n}{2}(1-\frac{1}{p})} (s-r)^{2H_{0}-2} dr \right]$$

$$\leq Ch^{1-\beta} \int_{0}^{t} \frac{1}{s^{1-\beta}} s^{1-\frac{n}{2}(1-\frac{1}{p})-(2-2H_{0})} ds \leq Ch^{1-\beta} .$$

$$(4.21)$$

On the other hand, for $k \in \mathbf{R}^n$ we have

$$V(t, x + k) - V(t, x) = \int_{0}^{t} \int_{\mathbf{R}^{n}} (G_{t-s}(x + k, y) - G_{t-s}(x, y)) dB_{H}(s, y)$$

Hence, by (4.7),

$$E[|V(t, x + k) - V(t, x)|^{2}]$$

$$\leq C \int_{0}^{t} \int_{0}^{t} |r - s|^{2H_{0} - 2}$$

$$\cdot \int_{\mathbf{R}^{n} \mathbf{R}^{n}} \left\{ (t - r)^{-n/2} \left(\exp\left(-\frac{|x + k - y|^{2}}{2(t - r)} \right) - \exp\left(-\frac{|x - y|^{2}}{2(t - r)} \right) \right) \right\}$$

$$\cdot \left\{ (t - s)^{-n/2} \left(\exp\left(-\frac{|x + k - z|^{2}}{2(t - s)} \right) - \exp\left(-\frac{|x - z|^{2}}{2(t - s)} \right) \right) \right\}$$

$$\cdot \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i} - 2} dy dz dr ds$$

$$\leq C \int_{0}^{t} \int_{0}^{t} |r - s|^{2H_{0} - 2} \int_{\mathbf{R}^{n} \mathbf{R}^{n}} \left\{ r^{-n/2} \left(\exp\left(-\frac{|y + k|^{2}}{2r} \right) - \exp\left(-\frac{|y|^{2}}{2r} \right) \right) \right\}$$

$$\cdot \left\{ s^{-n/2} \left(\exp\left(-\frac{|z + k|^{2}}{2s} \right) - \exp\left(-\frac{|z|^{2}}{2s} \right) \right) \right\} \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i} - 2} dy dz dr ds$$

$$\leq C \int_{0}^{t} ds \int_{0}^{s} dr (s - r)^{2H_{0} - 2} \int_{\mathbf{R}^{d}} dy \left| s^{-n/2} \left(\exp\left(-\frac{|y + k|^{2}}{2s} \right) - \exp\left(-\frac{|y|^{2}}{2s} \right) \right) \right|$$

$$\cdot \int_{\mathbf{R}^{n}} dz \left\{ r^{-n/2} \left(\exp\left(-\frac{|z + k|^{2}}{2r} \right) - \exp\left(-\frac{|z|^{2}}{2r} \right) \right) \right\} \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i} - 2}$$

$$(4.22) \qquad \cdot \int_{\mathbf{R}^{n}} dz \left\{ r^{-n/2} \left(\exp\left(-\frac{|z + k|^{2}}{2r} \right) - \exp\left(-\frac{|z|^{2}}{2r} \right) \right) \right\} \prod_{i=1}^{n} |y_{i} - z_{i}|^{2H_{i} - 2}$$

Applying Lemma 4.1 and Lemma 4.2 we get

$$(4.22) \leq C \int_{0}^{t} ds \int_{0}^{s} dr (s-r)^{2H_{0}-2} \left(1 + r^{-\frac{1}{2}(1-\frac{1}{p})}\right)^{n}$$

$$\cdot \sum_{i=1}^{n} |k_{i}| \int_{\mathbf{R}^{n}} s^{-n/2-1} \exp\left(-\frac{|y|^{2}}{2s}\right) |y_{i}| dy$$

$$\leq C|k| \int_{0}^{t} ds \int_{0}^{s} dr \frac{1}{s^{\frac{1}{2}}} (s-r)^{2H_{0}-2} r^{-\frac{n}{2}(1-\frac{1}{p})}$$

$$\leq C|k| \int_{0}^{t} ds \frac{1}{s^{\frac{1}{2}}} \left[\int_{0}^{\frac{s}{2}} dr (s-r)^{2H_{0}-2} r^{-\frac{n}{2}(1-\frac{1}{p})} + \int_{\frac{s}{2}}^{s} dr (s-r)^{2H_{0}-2} r^{-\frac{n}{2}(1-\frac{1}{p})} \right]$$

$$(4.23) \qquad \leq C|k| \int_{0}^{t} s^{2H_{0}-\frac{n}{2}(1-\frac{1}{p})-\frac{3}{2}} ds \leq C|k|, \quad \text{if} \quad H_{0} > \frac{3}{4}.$$

Combining the estimates (4.16), (4.21) and (4.23) we get, for some $\beta < 1$,

$$E[|V(t+h,x+h) - V(t,x)|^2] \le C[h^{1-\beta} + |k|].$$

Since V(t+h,x+k)-V(t,x) is a Gaussian random variable with mean zero, it follows that for any $m \ge 1$

$$E[|V(t+h,x+k) - V(t,x)|^{2m}] \le C_m E[|V(t+h,x+k) - V(t,x)|^2]^m$$

$$\le C_m [h^{1-\beta} + |k|]^m \le C_m [h^{1-\beta} + |k|]^m \quad \text{if } m \text{ is big enough }.$$

Hence by Kolmogorov's theorem we conclude that V(t,x) admits a jointly continuous version.

References

- [BG] F.E. Benth and H. Gjessing: A non-linear parabolic equation with noise. A reduction method. To appear in Potential Analysis.
- [D] E.B. Davis: Heat Kernels and Spectral Theory. Cambridge University Press 1989.
- [DHP] T. E. Duncan, Y. Hu and B. Pasik-Duncan: Stochastic calculus for fractional Brownian motion. I. Theory. To appear in SIAM Journal of Control and Optimization.
- [GN] G. Gripenberg and I. Norros: On the prediction of fractional Brownian motion. *J. Appl. Prob.* **33** (1996), 400–410.
- [H1] Y. Hu: Heat equation with fractional white noise potentials. Preprint 1998.

- [H2] Y. Hu: A class of stochastic partial differential equations driven by fractional white noise. Preprint 1999.
- [HKPS] T. Hida, H.-H. Kuo, J. Potthoff and L. Streit: White Noise Analysis. Kluwer 1993.
- [HØ] Y. Hu and B. Øksendal: Fractional white noise calculus and applications to finance. Preprint, Dept. of Mathematics, University of Oslo 1999.
- [HØUZ] H. Holden, B. Øksendal, J. Ubøe and T. Zhang: Stochastic Partial Differential Equations. Birkhäuser 1996.
- [HØS] Y. Hu, B. Øksendal and A. Sulem: Optimal portfolio in a fractional Black & Scholes market. Preprint, Dept. of Mathematics, University of Oslo 1999.
- [HØZ] Y. Hu, B. Øksendal and T. Zhang: Stochastic partial differential equations driven by multiparameter fractional white noise. Preprint, Dept. of Mathematics, University of Oslo 1999.
- [J] S. Janson: Gaussian Hilbert Spaces. Cambridge University Press 1997.
- [K] H.-H. Kuo: White Noise Distribution Theory. CRC Press 1996.
- [MV] B.B. Mandelbrot and J.W. Van Ness: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10 (1968), 422–437.
- [NVV] I. Norros, E. Valkeila and J. Virtamo: An elementary approach to a Girsanov formula and other analytic results on fractional Brownian motions. *Bernoulli* 5 (1999), 571–587.
- [W] J.B. Walsh: An introduction to stochastic partial differential equations. In R. Carmona, H. Kesten and J.B. Walsh (editors): École d'Été de Probabilités de Saint-Flour XIV-1984. Springer LNM 1180, pp. 265-437.