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Abstract

Let T be a free ergodic measure-preserving action of an abelian group G on (X, u). The
crossed product algebra Ry = L® (X, u) x G has two distinguished masas, the image Cp of
L (X, p) and the algebra Sy generated by the image of G. We conjecture that conjugacy

of the singular masas Spay and Sy for weakly mixing actions 70 and T(?) of different

groups implies that the groups are isomorphic and the actions are conjugate with respect
to this 1somorphism. Our main result supporting this conjecture is that the conclusion
is true under the additional assumption that the isomorphism v: Rpay — Ry such that
¥(Spy) = Spee) has the property that the Cartan subalgebras 4(Crp)) and Cp) of Ry are
inner conjugate. We discuss a stronger conjecture about the structure of the automorphism
group Aut(Rrp,St), and a weaker one about entropy as a conjugacy invariant. We study
also the Pukanszky and some related invariants of S7, and show that they have a simple
interpretation in terms of the spectral theory of the action T'. It follows that essentially all
values of the Pukanszky invariant are realized by the masas St, and there exist non-conjugate
singular masas with the same Pukanszky invariant.

1 Introduction

It is well-known that if one has a Lebesgue space (X, ) with a free ergodic measure-preserving
action T of an abelian group G, then the crossed product algebra Rt = L*(X, ) X G is the
hyperfinite factor with two distinguished maximal abelian subalgebras (masas), the image Cr of
L*°(X, ) and the masa St generated by the canonical unitaries in R7 implementing the action.
It is the purpose of the present work to investigate how much information about the system
(X, 1, T) can be extracted from properties of the masas Ct and St.

In Section 2 we formulate our main conjecture that for weakly mixing actions the masas St
determine the actions up to an isomorphism of the groups. Here we also give a short proof of
the singularity of S, a result due to Nielsen [Ni], and more generally describe the normalizer
of St for arbitrary actions, which is a result of Packer [P1].

Apparently the only conjugacy invariant of singular masas which has been effectively used
over the years, is the invariant of Pukanszky [P]. It arises as a spectral invariant of two com-
muting representations of a masa A C M on B(L?*(M)) coming from the left and right actions
of A on M. It is not surprising that for the masas St this invariant is closely related to spectral
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properties of the action 7. This fact has two consequences. On one hand, we have a lot of
actions with different Pukanszky invariants. On the other hand, for most interesting systems
such as Bernoullian systems, the invariant gives us nothing. This is described in Section 3.

In Section 4 we prove the main result supporting our conjecture. Namely, for weakly mixing
actions the pair consisting of the masa St and the inner conjugacy class of C'r is an invariant of
the action. In fact if Aut(Rr,S7) denotes the subgroup of v € Aut(Rr) such that v(S7) = St,
we prove a stronger result describing the subgroup of Aut(Rr, St) consisting of automorphisms
such that v(Cr) and C7 are inner conjugate. We conjecture that this subgroup is actually the
whole group Aut(R7, S7). One test for our conjecture is to prove that this subgroup is closed,
and we are able to do this under slightly stronger assumptions than weak mixing.

The group of inner automorphisms defined by unitaries in St is not always closed, and this
gives us the possibility of constructing non-conjugate singular masas with the same Pukanszky
invariant.

Finally in Section 5, which is independent of the others, we consider a weaker conjecture
stating that the entropy of the action is a conjugacy invariant for S7. We prove that if Sp) and
St(2) are conjugate and under this conjugacy the canonical generators of these algebras coincide
on a small projection, then the entropies of the actions coincide. The proof is an application of
the theory of non-commutative entropy.

Acknowledgement. The authors are indebted to J. Packer, S. Popa and A. Vershik for helpful
discussions.

2 Preliminaries on crossed products

Let G be a countable abelian group, g — T, € Aut(X,p) a free ergodic measure-preserving
action of G on a Lebesgue space (X, ). Consider the corresponding action g — a, on L™ (X, p),
ay(f) = foT_,, and the crossed product algebra L>(X, ) X, G, which will be denoted by Rt
throughout the paper. Let g — v, be the canonical homomorphism of GG into the unitary group
of Rr. We denote by St the abelian subalgebra of Rt generated by v,, g € G. The algebra
L*°(X, 1) considered as a subalgebra of Rt will be denoted by C'r.

To fix notations, the unitary on L?(Y,v) associated with an invertible non-singular transfor-
mation S of a measure space (Y, v) will be denoted by ug, usf = (dS*I//d.I/)l/Qf 0S5, and the
corresponding automorphism of L (Y, v) will be denoted by ag, as(f) = f o S~!. For a given
action T we shall usually suppress T in such notations, so we write u, and o, instead of ur,
and ar,.

We shall usually consider Ry in its standard representation on L%(X, u) ® LQ(G, A), where
G is the dual group and A is its Haar measure. The elements of the group G considered as
functions on G define two types of operators on LQ(@), the operator m, of multiplication by g,
(mgf)(x) = (x,9)f(x), and the projection e, onto the one-dimensional space Cg. Then the
representation 7 of Ry on L2(X)® L2((G) is given by

T(v) = 1@ my, (f) =Y a,(f) @ e, for f € L7(X).

Then R is in its standard form with the tracial vector £ = 1. The modular involution .J is

given by
J:qug@eg: (Zug@)e_g) j, (2.1)
g

g



where .J is the usual complex conjugation on L2(X x ). Indeed, since (1® e,)& = 0 for g # 0,

Jr(vgf)§ = '{”(Ug)(f @ eg)§ = J(f @ mge)§ = J(f @ egmy)§ = j(“gf ® egmy)§
= '](O‘g(f) & egmg)f = (0‘9(7) & e—gm—g)é= = 71'(77);)5-

In particular,

Jr(f)] =Ffal, I (vg)J = uy @ my. (2.2)

Hence Ry is the fixed point subalgebra of L>(X)® B(L2(()) for the action g — a, ® Ad m;
of G (see [S, Corollary 19.13]).

Recall [D] that a maximal abelian subalgebra A, or masa, of a von Neumann algebra M
is called regular if its normalizer N(A) consisting of unitaries v € M such that uAu* = A
generates M as a von Neumann algebra, and singular if the normalizer consists only of unitaries
in A. If A is regular and there exists a faithful normal conditional expectation of M onto A
then A is called Cartan [F'M].

Since the action T is free and ergodic, the algebras C'r and St are maximal abelian in Rrp.
The algebra Cr is Cartan. Nielsen [Ni] was the first who noticed that if the action is weakly
mixing (i.e. the only eigenfunctions are constants) then S is singular (see [P2, SS] for different
proofs). More generally, the normalizer N (S7) always depends only on the discrete part of the
spectrum [P1] (see also [H]). We shall first give a short proof of this result.

Theorem 2.1 Let L (X) be the subalgebra of L°°(X) generated by the eigenfunctions of the
action o. Then the von Neumann algebra N (St) generated by N (St) is LG (X) Xo G.

Proof. If w € Cr is an eigenfunction, a,4(u) = (x, g)u for some x € G, then since the action is
ergodic, u is a unitary. It is in the normalizer of St, uv,u* = (x, —g)v,. Thus L§°(X) X, G C
N(ST).

Conversely, let w € N(S7). Then Adu defines an automorphism of Sz which corresponds
to a measurable transformation o of (. Consider Ry in the Hilbert space L%(X) @ L*(() as

~

above. Then the operator v = u(1 ® u}) commutes with 1 ® L>(G), hence it belongs to
(L=(X) @ B(LX(G)) N (1@ L= (G) = L=(X) © L=(G),

Thus v is given by a measurable family {v¢}, s of unitaries in L°°(X). Since u € Ry and v
commutes with 1 ® m,, we have

U= (a; @ Adm})(u) = (ay @ Addmy)(v) (e, @ Admy)(1® uy) = (ay @ 1)(v) (1@ myu,my).
Hence v = (a, ® 1)(v)(1 ® mju,myu;). The operator u,m u} is the operator of multiplication
by the function g o 0~!. Thus for almost all £ € G

vy = <ZU_1(€),g>ozg(vg).

We see that for almost all £ the unitary v lies in L (X ), which means that v € L3 (X)® L>(G).
Thus

u=v(1®u) € (L§°(X) ® B(L*(G))) N Rr = (L (X) @ B(L*(G))"®*™ = Lg* (X) %0 6.

|
Remark. The proof works without any modifications in the case when a locally compact
separable abelian group acts ergodically on a von Neumann algebra with separable predual.

All the Cartan algebras C'r are conjugate by a well-known result of Dye [Dy], so the position
of C'r inside Rp does not contain any information about the original action. On the other hand,
the relative position of C'r and St defines the action. More precisely, we have



Proposition 2.2 Let g — T;i) € Aut(X;, ;) be a free measure-preserving action of a countable
abelian group G;, i = 1,2. Suppose there exists an isomorphism v: Rpay — Rp@) such that
Y(Stm) = Sy and y(Cray) = Cre). Then there exist an isomorphism S: (X1, p1) — (Xg, p2)

of measure spaces and a group isomorphism 3: Go — G such that Tf) = STﬁ(};)S_l for g € Gs.

Proof. The result follows easily from the fact that the only unitaries in St which normalize Cr
are the scalar multiples of v,, g € . Indeed, if v € St normalizes Cr and v = Eg a4vg,
a, € C, is its Fourier series then for arbitrary z € Cr the equality va = a(z)v for z € Cr,
where @ = Adwv, implies aj0,(z) = aza(z) for all g € G. Thus oy = a if a; # 0. Since
the action is free, this means that a, # 0 for a unique g, and v = a,v,. Hence if we have an
isomorphism v as in the formulation of the proposition, then there exist an isomorphism g of
G onto (i1 and a character x € (i such that y(vg(,)) = (X, 9)v, for g € Go. Then for z € Cp
and g € Gy we have y(ag(,)(z)) = 7(vg(g)avy g)) = vyy(®)v; = ay(y(x)). So for S we can take
the transformation implementing the isomorphism v of Cpy onto Cpz).
|
This observation leads to the following question. How much information about the system is
contained in the algebra S7? If the spectrum is purely discrete then St is a Cartan subalgebra,
so in this case we get no information.

Conjecture. For weakly mixing systems the algebra St determines the system completely. In
other words, the assumption v(Cpa)) = Cr in Proposition 2.2 is redundant.

3 Spectral invariants

One approach to the problem of conjugacy of masas in a Ilj-factor, initiated in the work of
Pukanszky [P] is to consider together with a masa A C M its conjugate JA.J, where J is
the modular involution associated with a tracial vector &, and then to consider the conjugacy
problem for such pairs in B(L?(M)). We thus identify A with an algebra L>°(Y,v) and consider
a direct integral decomposition of the representation ¢ @ b — aJb*J of the C*-tensor product
algebra A ® A. Thus we obtain a measure class [7] on Y x Y and a measurable field of Hilbert
spaces {Hy y}(zy)eyxy such that [n] is invariant with respect to the flip (z,y) = (y, z), its left
(and right) projection onto Y is [v], and

52
LQ(M) = Hyydn(z,y),
Y xY

see [FM] for details. Let m(z,y) = dim H, , be the multiplicity function. Note that m(z,z) =1
and the subspace fﬁaxy H, .dn(z, ) is identified with AL. Indeed, ¢ € L?(M) lives on the
diagonal A(Y) C Y xVY if and only if a¢ = Ja*J¢ for all @ € A. Since A is maximal abelian, this
is equivalent to { € AL. In particular, the projection e4 = [A£] corresponds to the characteristic
function of A(Y'), so it belongs to AV JAJ (see [Pol]).

The triple (Y, [n], m) is a conjugacy invariant for the pair (A,.J) in the following sense. If
A C M and B C N are masas then a unitary U: L?(M) — L?(N) such that UAU* = B and
UJyU* = Jy exists if and only if there exists an isomorphism F: (Y4, [v4]) — (YB,[vB]) such
that (I X F).([na]) = [n] and mpo (F x F)) = my4. Indeed, the fact that U defines F’ follows by
definition. Conversely, for given I’ we can suppose without loss of generality that 14 is invariant
with respect to the flip and (F'X F).(n4) = ng. Then there exists a measurable field of unitaries



ﬁzw:HxA’y — H}]?(x) Fly)’ and we can define the unitary U = fngA (NJLydnA(m,y). It has the

property UAU* = B. We want to modify U in a way such that the condition UJyU* = Jy is
also satisfied. Note that .Jas is given by a measurable field of anti-unitaries Jﬁy: Hﬁy — Hﬁr such
that .]y%x.]f’y =1, and~ analogously Jy defines a measurable field {Jf:y}z’y. We can easily arrange

(NJLI.];‘J = .]g(z) F(I)Ur7r. Outside of the diagonal we choose a measurable subset Z C Y4 X Y4

which meets every two-point set {(z,y), (y,z)} only once. Then we define

_—— Us.y ] if (z,y) € A(Y4)U Z,
v J}]?(y%F(I)UwaA otherwise.

b ‘/L‘7y

Then Uy@.]ﬁy = Jg(z%F(y)Ur’y, so for U = fngA Upydna(z,y) we have UJy = JnU.

A rougher invariant is the set P(A) C NU {oo} of essential values of the multiplicity func-
tion mon (Y xY)\A(Y), which was introduced by Pukanszky [P] (we rather use the definition of
Popa [Pol]). In other words, P(A) is the set of n such that the type I algebra (AV.JAJ)' (1—e4)
has a non-zero component of type I,. This invariant solves a weaker conjugacy problem:
P(A) = P(B) if and only if there exists a unitary U such that U(AV JyrAJpy)U* = BV Iy BJy
and Ue U* = ep.

Return to our masas St in Rr. As above, consider R7 acting on LQ(X X G) with the
modular involution given by (2.1) and (2.2). For the construction of the triple (Yr,[nr], mr)

for the masa St it is natural to take Yr = . Let pr and nr be the spectral measure and the
multiplicity function of the representation g — u,, so that

LA(X) = /G@ Hydur(£).

Following [H] we have a direct integral decomposition
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LA(X xG)y= [ Hpyd\l)dur(l),
GXxG
with respect to which v, = 1 ® m, corresponds to the function ({1, £2) —+ g(¢1), while Jv;J =
U_g ® my correspondsAto £€17€2A) — g(£103). Hence if we define 57 as the image of the measure
Ax g under the map Gx G — G x G, ({1, £3) — (£1,£102), then with respect to the decomposition
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LQ(X X G) = / R Hélgd’r/T(EhKQ)
GxG

the operator v, corresponds to the function ({1, £2) — g(¢1), while Jv;.J corresponds to (£, {3)
g(f2). This is the decomposition we are looking for. Thus we have proved the following (see

also [H]).

Proposition 3.1 The triple (Y, [n7], mr) associated with the masa St in Ry is given by Yr =
G, [ fdyr = ff(ﬁl,flg)d)\(ﬁl)d;m(fg), mr (1, 0y) = nr(f1fy), where ur and ny are the spectral

measure and the multiplicity function for the representation g — u, of G. [ |

Corollary 3.2 The Pukanszky invariant P(ST) is the set of essential values of the multiplicity
function ny on G\{e}. ]



This corollary is also obvious from
SrVJISrd ={u, | g€ GY' @ L®(G), es, =p1 @1,

where p; € B(L?(X)) is the projection onto the constants.

Pukanszky introduced his invariant to construct a countable family of non-conjugate singular
masas in the hyperfinite Il;-factor. For each n € N he constructed a singular masa A with
P(A) = {n}. Thanks to advances in the spectral theory of dynamical systems [KL] we now
know much more.

Corollary 3.3 For any subset EY of N containing 1 there exists a weakly mizing automorphism T
such that P(St) = E. |

If the spectrum of the representation g — u, is Lebesgue, i.e. the spectral measure pr is
equivalent to the Haar measure A on G\{e}, then [p7] = [A x Al on (G' x G)\A(G). Hence if
we have two such systems then any measurable isomorphism F: (Gl, M]) — (Gg, [A2]) has the
property (F' X F')«([npm)]) = [9p@]. Thus we have

Corollary 3.4 Let g — T;Z) € Aut(X;, u;) be a free ergodic measure-preserving action of a
countable abelian group G;, 1 = 1,2. Suppose these actions have homogeneous Lebesgue spectra
of the same multiplicity. Then for any *-isomorphism v:Spa) — Sy there exists a unitary
U: L*(Rpay) — L?(Ryp) such that UaU* = y(a) for a € Spay and UJpayU* = Jpe). [ ]

It is clear, however, that in order to be extended to an isomorphism of R;x) on Ry, v has
to be at least trace-preserving. But even this is not always enough, see Section 5. Thus for
such system as Bernoulli shifts, which have countably multiple Lebesgue spectra, the invariant
(Y1, [nr], mr) does not contain any useful information.

4 The isomorphism problem

As a partial result towards a proof of our conjecture we have

Theorem 4.1 Let g — T;i) € Aut(X;, p;) be a weakly mizing free measure-preserving action of
a countable abelian group G;, i = 1,2. Suppose there erists an isomorphism v: Rpa) — Ry
such that v(Spw)) = Spe and such that the Cartan algebras v(Cypa)) and Cpwy are inner

conjugate in Rp@y. Then there exist an isomorphism S: (X1, 1) — (X2, p2) of measure spaces

and a group isomorphism (3: Gy — G4 such that T;Q) = STﬁ(};)S_l for g € Gy.

We shall also describe explicitly all possible isomorphisms + as in the theorem. In other
words, for a weakly mixing free measure-preserving action T of a countable abelian group G on
(X, 1) we shall compute the group Aut(Rz, St |Cr) consisting of all automorphisms v of Rr
with the properties v(S7) = St, and the masas v(Cr) and Cr are inner conjugate.

Recall (see ['M]) that any automorphism S of the orbit equivalence relation defined by the
action of G extends canonically to an automorphism ag of Rr. Such an automorphism leaves St
invariant if and only if there exists an automorphism 3 of G such that 7,5 = STg(,). Denote
by I(T") the group of all such transformations S. For S € I(T), ag is defined by the equalities
as(f) = foS7! for f € O = L™(X, ), as(v,) = vz-1(,) for g € G. Consider also the dual



action o of G on Rr, oy (f) = f for f € Cr, 0, (vy) = (X, —g)vs. The group of automorphisms
of the form oy, 0 as (x € G and S € I(T)) is the intersection of the groups Aut(Rr,Cr) and
Aut(Rr,St). It turns out that up to inner automorphisms defined by unitaries in St such
automorphisms exhaust the whole group Aut(Rz, S7|Cr).

Theorem 4.2 The group Aut(Rr,St|Crt) of automorphisms ~ of Ry for which v(St) = St,
and v(Ct) and Ct are inner conjugate, consists of elements of the form Adw o o, o ag, where

we Sr,xe @, Sell).

We conjecture that in fact this theorem gives the description of the group Aut(Rz, St).

It is well-known that all Cartan subalgebras of the hyperfinite I1;-factor are conjugate [CFS],
so they are approximately inner conjugate in an appropriate sense. It is known also that if the
L?-distance between the unit balls of two Cartan subalgebras is less than one, then they are
inner conjugate [Po2, Po3]. However, there exists an uncountable family of Cartan subalgebras,
no two of which are inner conjugate [P1].

We shall first prove that Theorem 4.1 follows from Theorem 4.2. Consider the group G =
G1 X Gz and its action T"on (X, u) = (X1 X Xg, i1 X pi2), Tigrg2) = T;ll) X Tg). Then Rt can be
identified with Ry ® Ry in such a way that Cr = Cpy @ Cpa) = vy, @vgy,. Consider
the automorphism 4 of Rrp,

U(g1,92)

F(a®b) =771(b) ®7(a).
By Theorem 4.2, ¥ must be of the form Ad w o oy 0 ag with w € St, x = (x1,x2) € G1 x Gy
and S € I(T). Let 3 € Aut(G) be such that T,5 = S'Té(g). Since 42 = id, we have 3% = id.
Define the homomorphism f: Gy — G as the composition of the map g, — B(O,gg) with the
projection G X G — G'1, and 3': G1 — G2 as the composition of the map g1 — B(g1,0) with
the projection Gy x G — G3. Fix g2 € G3. Then §(0,92) = (5(g2), h) for some h € G3. We
have

7 vg) @1 =F(1 @ vg,) = (x1, =B(92) (X2, —)vp(g,) @ V-

It follows that A = 0, that is B(O,gg) = (B(g2),0). Analogously $(g1,0) = (0, (g1)). Thus
B(g1,92) = (B(g2), 5 (g1)). Since 3?2 = id, we conclude that # = B~'. Then the identity
1,5 = STB(g) is rewritten in terms of the actions on L™ (X; x X3) as

(ag, @ ag,) 0 ag = ag o (ag(y,) @ ag-1(,))-

Letting g, = 0 we see that for f € L= (X;)

((ag, ® Noag)(f@1) = (ago (1@ ag1,))(f@ 1) = ag(fO 1),

so that ag(L*°(X1) ®1) C L (X1 X X32)*1®1 =1® L*°(X,). Analogously az(1® L*(X3)) C
L*(X1) ® 1. It follows that
ag(L7(X1)®1)=1® L¥(X;3) and ag(1® L7 (X)) = L>(X;)® 1.

S

Hence there exist isomorphisms S:(Xy, p1) — (Xo, pr2) and S": (X, p2) — (Xy, p1) such that
for almost all (21, z2) we have S(z1,z3) = (S'zq, Sz1). The identity (T;ll) X Tg(f))g S(T ((g2)

Tﬁ(Q_)l(gl)) implies that Tg(z)S ST(E&)

Now we turn to the proof of Theorem 4.2. The proof will be given in a series of lemmas. Let

Y € Aut(RT, ST | CT).



Lemma 4.3 The automorphism v can be implemented by a unitary U on L?(Rr) such that
UJCrJU* = JCrJ, where J is the modular involution.

Proof. Let U be the canonical implementation of ~ commuting with J. From the assumption
that Cr and v(Cr) are inner conjugate we can choose u € Ry such that uCru* = v(Cr). Then
we can take U = Ju*JU.

|

Representing Ry on L*(X)®L?(G) as usual, so that JCrJ = L=(X)®1 and St = 10 L (G)

(see (2.2)), we conclude that Ad U defines measure-preserving transformations S; of X and o

~

of G. Then W = U(us, ® u;) commutes with L*(X)® 1 and 1® L*(G), hence it is a unitary
in L°(X x (). For £ € G denote by wy the function in L>(X) defined by wy(z) = W (z,£).

Since U defines an automorphism of Rr, for f € L°°(X) the element Un(f)U* must by (2.2)
commute with uj, @ mj.

Lemma 4.4 With the above notations, for ¢ € L*(G, L*(X)) = L*(X) ® L*(G) we have

(UR(NHU)(0) = _(as, 0 ag)(f) /<U‘1(€)0_1(€1)79>‘wWZC(€1)d/\(f1)7

g€G G

((un @ my)Ur (FYU(ug, @ ma)C) ()

= Ylanoas ca)(f) [, BYET o™ (6), (e, )N,

9€G G

The above series are meaningless for fixed £ and should be considered as series of functions in

LA(X x G).
Proof. Note that (W()(£) = weC(f), ((1 ® my)()(€) = (£,9)C(£). The operator uye uy is

the projection onto the one-dimensional space spanned by the function u,g € L?((), so for

fe LG,

(ugequs f)(£) = (ueg)(f) - (f, ucg) = /é<0_1(f)0‘1(€1)7g)f(ﬁl)d/\(ﬁl)-

Hence ((1® uyequ’)C)(f) = /G<U_1(€)U—1(K1),g)(j(ﬁl)d)\(ﬁl). Now we compute:

(Un (U = (W(US1 ® uo) (Z%(f)@)e—g) (us, ®U§)W*C) (€)

= Z(W((Ozsl o Oég)(f) @ Uae—gu;)W*C)(o

we(es, 0 o) (f) / (0™ (O)o=1(lr), —g) (W*C) (£r)dA(6r)

G

>
>

(as, 0 0,) (/) /G (@ T @0 (tr), gywews, C(01) AN (£y),



and

((un @ mi)Ur (YU (uj, @ ma)C) (£)

— @ hyun(Ur (/U (4}, @ mp)O)(0)

= {@hyun Y (as, 0 0g)(f) /G (@ T W0 (01), gywe, ((uf, © my)C) (6)dA ()
= {@hyunY (as, 0 0g)(f) /G<a—1<z>a—1<z1>,g>wzwzuz<zl,h>c<e1>dwl>
= Y(onoas, 0a,)(/) /G (1, by (@00 (61), g)on (e, )C(62)AA(E)).

Lemma 4.5 Let g — P, € Aut(X, 1) be a free measure-preserving action of G, @ € Aut(X, p),
H a Hilbert space, a, and b, maps from X to H such that

(i) the vectors ay(z), g € G, are mutually orthogonal for almost all z € X ;

(ii) 32, llag(z)[|* is finite and non-zero for almost all x;

and the same conditions hold for {b,},. Suppose for all f € L*°(X) and almost all z € X

Y (agoap,)(f(@)ay(x) =) ap,(f)(x)b(x).

g

Then Q is in the full group generated by P,, g € G, and if g(z) € G is such that Q 'z = Py
then ay(z) = bypg(zy(z) for all g € G and almost all z € X.

Proof. let Xo = {z € X|Q 'z ¢ Pgz, Pya # z for g # 0}. There exists a countable family
{X}ier of measurable subsets of X such that for arbitrary finite subset I’ of G’ and almost all
r € Xg there exists + € I such that z € X;, the sets P, X;, g € F', are mutually disjoint and
Q 'z ¢ UyerP,X;. Indeed, first note that choosing an arbitrary Q- and P,-invariant norm-
separable weakly dense C*-subalgebra A of L°°(X), we can identify the measure space (X, i)
with the spectrum of A. Thus without loss of generality we can suppose that X is a compact
metric space and () and P, are homeomorphisms. Moreover, by regularity of the measure it
is enough to prove the assertion for arbitrary compact subset K of Xy. But then for fixed F
we can consider for each z € K a neighborhood U, such that P,U,, ¢ € F, are disjoint,
Q™ 'U,N P,U, = @ for g € I, and then choose a finite subcovering from {U,},exk-

Consider the countable set F C L (X) consisting of characteristic functions of the sets X,
¢ € I, and all their translations under the action of G'. For almost all z € Xy and all f € F the
assumptions of the lemma are satisfied. Let z € Xy be such a point. Fix h € GG. For arbitrary
finite subset I’ of G, h € F, there exists f € F such that ap,(f)(z) = 1, ap,(f)(z) = 0 for
g € F\{h} and (ag o ap,)(f)(z) =0for g € F. Then

1Br@)l| = [Y_(aqoar,)(f)(@)ay(z) = Y ap, (f)(x)by(z)

9&F g¢F

1/2 1/2
Zag(w)Q) +(Z|Ibg(9€)2) :

9¢r g¢F

IN



It follows that bj(z) = 0. But this contradicts the assumption , ||bx(2)||* > 0. Hence the
set X has zero measure. Thus () is indeed in the full group generated by F,.

Let Q 'z = P_y(zyz. In the same way as above (or by referring to the Rokhlin lemma)
we can find a countable collection F of characteristic functions such that for almost all z € X
and arbitrary finite /' C G, 0 € I/, there exists f € F such that f(z) = 1, ap,(f)(z) = 0 for
g € I'\{0}. Then

gy (@) = bo(x) = Y ap, (f)(@)by(x) = Y (agoap,)(f)(z)ay(x),

9¢F g¢F—g(x)

and we conclude that a_g,)(z) = bo(z). Replacing f by ap, (f) in the formulation of the lemma
we see that its assumptions are also satisfied for the collections {a,_1}, and {b,_p},, so that

O—g(z)—h r(z) = bop(z).

Fix h € G and apply Lemma 4.5 to P, = SiT,57', Q =Ty, H = L&),

ay(2)(0) = /G@l,h><a—1<f>a-1(e1>,g>ah<wwz><:c>dx<zl>
by(2)(6) = /G<o—1<f>a—1<f1>,g><w[wz><z>dum

To see that the assumptions of the lemma are satisfied, note that up to the factor £ —
(€, hYyay(w;)(x) the series Y., @g(z) is the Fourier series of the function £ — (£, h)ap(w})(z)
with respect to the orthonormal basis {#;6},ec-

Thus by Lemmas 4.4 and 4.5 we conclude that there exists g(h,z) such that T_pz =
S1T_yn, )Sl_lx and ay(z) = byyg(no)(z), that is

/é (071 (1), 9) (@, Byan(wewy,) (@) = (=T ()0~ (€1), g(h, @) (wavy, ) (@) ) dA(fr) =

Since the functions u,g = (£ — (07 (¢1),9)), g € G, form an orthonormal basis of L2(G), we
conclude that for almost all (z, /¢, (;)

an(wew,) (@) = (€0, B (€)™ (1), g b, 2)) (we, ) (2). (1.1)

Lemma 4.6 There exists a continuous automorphism og of G and X € G such that o) =
x0o () for almost all £.

Proof. Replace £ by o({f) and £; by o(¢1) in (4.1). Then we get

an (W)W e (@) = (@ (O)a (£1), ) (L1, g (hy 7)) (W (0w o)) (2)- (4.2)
Now substitute ££y for £ and {14, for £;. We get
@ (Wo (2,103 4,0, (%) = (0 (E2) 0 (0183), h) (01, g (R, 2)) (W, (02 W) 4, 1)) (). (4.3)

Multiplying (4.2) by the equation conjugate to (4.3) we see that for almost all (¢,¢1,{3) the
element w4/ W} ) \We(0,0,)W; 40,y 8 an eigenfunction with eigenvalue o(l)o(ly)o(brly)o(Lly).
Since the action is weakly mixing, we conclude that

o (thy)o (L) = o(lilz)o(fy)



(this is the only place where we use weak mixing instead of ergodicity). Hence there exists a

measurable map &o of G onto itself such that &o(f3) = o (€fy)o (£) for almost all (£, £3). Then for
almost all ({1, f2)

5’0(€1E2) = U(leg)a( ) = U(ﬁglgg)d(ggg)d(ﬁgg)d( ) = 5’0(£1)5’0(€2)

So &g is essentially a homomorphism, and since it is measurable, it coincides almost everywhere
with a continuous homomorphism ¢y. Choose a character £1 such that the equality og(f) =

o(l10)o(4y) holds for almost all £. Set x = o(€1)o¢(f1). Then o(f) = yoo({) for almost all £.
Since o is an invertible measure-preserving transformation, oy must be an automorphism.
|
Now we can rewrite (4.1) as

an(wewi,) (@) = (07, B oy (T1), 9(h, 2)) (wews, ) (). (1.4)

Lemma 4.7 Let {1 be such that (4.4) holds for almost all (z,£) € X x (. Then there exist a

A

unitary b in L*(G) and a measurable map e: X — G such that for almost all (z,{) we have

(weeywg, ) (x) = b(E)(L; e()).

For all h € G and almost all x € X we have

g(h,z) = Ble(z)) — Be(T-nz)) + B(h),
where 8 is the automorphism of G dual to og, i.e. (oo(£),9) = {,B(g)).

Proof. Denote we, w; by ve. Then by (4.4)

an(ve) (x) = (€, ) (05" (0), g (h, 2)) (ve) (2). (4.5)

Multiplying these identities for vy, vy, and vg&) we see that the function c¢(¢, (2) = vevy, 0222 is
G-invariant, so it is a constant. Thus we obtain a measurable symmetric (i.e. ¢({, {3) = ¢(l3,{))
2-cocycle on GG with values in T. Since G is abelian, any such a cocycle is a coboundary (see
e.g. [M]), (€, £y) = b(£)b(£3)b(£03). Then £ — b(£)v; is a measurable homomorphism of & into
the unitary group of L°°(X). By [M, Theorem 1] there exists a measurable map e: X — G such
that b(£)ve(z) = (£, e(x)).

Equation (4.5) implies that

(€, e(T_pz)) = (£, h)(og " (€), g (h, 2)){L, e(2)),

equivalently,
<€7 e(T—hx) —h+ ﬁ_l(g(h7 :C)) - e(.r)) =1,
from what the second assertion of the lemma follows.
Recall that Sy is the transformation of X defined by Ad UlLoo(X).
Lemma 4.8 Define a measurable map Sy of X onto itself by letting
5233 = SlT_ﬁ(e(x))Sl_lx.

Then Sy is invertible and measure-preserving. Its inverse is given by

S;lm = Te(x)x

11



Proof. Recall that g(h,z) was defined by the equality T_z = SlT_g(hw)Sl—lm. Since by
Lemma 4.7, g(—e(z),z) = —B(e(T,()z)), it follows that

S2Te(w)® = S1T_p(e(Tyye)) ST Te@)® = S1T_p(e(T,0y0))—o(—e(@)2) ST T = T

Hence S is essentially surjective. Since it is also one-to-one and measure-preserving on the
sets e"1({g}), we conclude that S; is invertible, measure-preserving and its inverse is given by
52_1:16 =Te@z)®.

The final step is -
Lemma 4.9 The mapping S = 52_151 has the property T,S = STpg,.
Proof. We compute:
STz = S7TUSyT e
= ST\ T_p(e(r_pa)) ST T-p
= Tl —s(he) ST 2
T_p)-pie() ST @
= T_ﬁ(h)Sfngm
= T_ﬁ(h)S_lac,
where in the fourth equality we used Lemma 4.7.
|

Summarizing the results of Lemmas 4.6-4.9, we can decompose U = W (ugs, ® u,) as follows.
First, by Lemma 4.7 for almost all (z,£), wy(z) = (£ly,e(z))wy, (2)b(£l1), so W is the product
of ' @1, vand 1® w, where v’ € L= (X), u'(z) = (I, e(2))wy, (z), v e L¥(X x G), v(z, () =
(4, e(z)), and w € L®(G), w(f) = b({f1). By Lemmas 4.8 and 4.9, us, = us,us. Finally
by Lemma 4.6, u, = A u,,, where A, is the operator of the left regular representation of G

~

on L?(G). Thus with v’ = v(us, @ 1) we have
U=(v®1)v(1®w)(us,us @1)(1Q Atg) = (¢ @ 1) (1 @ w) (1@ Ay)(us @ tgy)-

The unitaries '’ ® 1 and v’ both lie in the commutant R/.. This is obvious for «’® 1 and follows
for v’ from the formula

v = Z(pg ® 1)(“2 ® my),

where p, is the characteristic function of the set e~!({g}). Indeed, if z € e7!({g}) then S;'z =
T,z by Lemma 4.8, and hence for arbitrary ¢ € L?(X x () we have
)

((pg ® 1)(uy @ my)C)(x, £) = (£, 9)C(Tyw, £) = (£, e(x))C(Sy 2, £) = (V') (2, ).

Thus the automorphism 7 is implemented by the unitary (1 ® w)(1 ® Ay )(us ® ue,), 0 v =
Adwo oy oag, and the proof of Theorem 4.2 is complete.

From the definition of the group Aut(Rz, St | Cr) it is unclear whether it is a closed subgroup
of Aut(Rr,St) (in the topology of point-wise strong convergence). But if our conjecture that
this group coincides with Aut(R7, St) (which is stronger than our main conjecture in Section 2)
is true, then this group must be closed. We shall prove that it is closed under slightly stronger
assumptions than weak mixing.

Recall that an action T is called rigid if there exists a sequence {g,}, such that g, — oo
and u,4, — 1 strongly.

12



Proposition 4.10 Suppose T is a weakly mizing action which is not rigid. Then the group
Aut(R7, S| Cr) is closed in Aut(RT).

Proof. Suppose a sequence {ay,}, C Aut(R7,S7|C7r) converges to an automorphism «. By

Theorem 4.2, o, = oy, 0 Adw, o ag,. Passing to a subsequence we may suppose that the
—1

sequence {X,}, converges to a character x. Then {Adw, o as, }, converges to o " o @, so to
simplify the notations we may suppose that all characters y, are trivial.
Let f be a unitary generating C'r. Set
§ = inf - .
inf llag (f) = fll2
Since the action is not rigid, § > 0. Suppose for some n and m
[(Ad wy, 0 a5, ) (f) = (Adwm 0 a5, ) (f)]l2 < e
We assert that if ¢ < §2/4 then there exist ¢ € G and ¢ € T such that
= cwnuyllz < (26)/2 (4.6)

where vy, g € (&, are the canonical generators of St. Indeed, let v = w);, w,, v = Zg agv4, ay € C.
If E: Rt — Cr is the trace-preserving conditional expectation, then for arbitrary z € Cr we
have E(vav*) = 37 |ag|*ay(z), whence

g2 > |[(Adwyoas,)(f) — (Ad wy, 0 as,,)(f)]3

= 2(1 = Rer(vag,(f)v as, (7))
= 2(1 =Rer(F(vas,(f)v )as, (f7)))
= 23 la,*(1 - Rer((ay 0 as5,) (Fas, (F)).

g

Set Y = {g € G| 1—-Rer((ay0as,)(fas, (f) <e/2}. If g €Y then ||(ay 0 as,)(f) —
s ()12 < 212, Thus i gy # g, both lie in ¥ then [[(a, 0 s, ) (f) — (0, 0 a5,) (P2 < 2612
Since ay o ag, = as, o ag(,) for some automorphism 3, we get a contradiction if 2e1/2 < 6.
Hence the set Y consists of at most one point. On the other hand, we have

e’ > 2 |a,[*(1 - Re7((ag 0 a5, ) (flas, (/) = e Y |a, [,
g 9¢Y

so that EgﬁY lay|? < e. Tt follows that Y is non-empty. Hence it consists precisely of one
point g, and |a,|? > 1 — . Then with ¢ = a,/|a,| we have

[wn = cwnmug|l = [[v = evyll3 =D lan]® + |ag — ¢ = 2(1 = |ay|) < 2.
h#g

It follows that passing to a subsequence we may suppose that for each n > 2 there exist
gn € G and ¢, € T such that

1
lenwnvg, — wp_1||2 < o
Then replacing w,, by ¢, ...cownvg, 4. 44, and S, by T_,,_ ;. 5, we still have a,, = Adw,, o

ag,, but now the sequence {w,}, converges strongly to a unitary w € Sr. Then a(Cr) =
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(Ad w)(Cr).
|
Note that the group Aut(Rr,Cr|S7) consisting of all automorphisms v € Aut(Rz,Cr)
such that v(S7) and St are inner conjugate, is never closed. Indeed, let ¢ € Z'(Rr,T) be a
T-valued 1-cocycle on the orbit equivalence relation Rr defined by T, and o. € Aut(Rr,Cr)
the corresponding automorphism [FM]. Then o.(S7) and St are inner conjugate if and only
if ¢ is cohomologous to the cocycle ¢, ¢, (z,T,z) = (x,g), for some x € G [P1] (this result
was proved in [P1] for actions with purely discrete spectrum, but with minor changes the proof
works for arbitrary ergodic actions; in our weakly mixing case using Theorem 4.2 and the fact
that if v € Aut(Ry,C7|S7) then Adu oy € Aut(Rr,S7|Cr) for some unitary u, it is easy
to obtain a more precise result: the group Aut(Rz,Cr|ST) consists of automorphisms of the
form o, 0 ag, where ¢ is a cocycle cohomologous to ¢, and S € I(T)[T], where [T] is the full
group generated by T, g € ). Since the equivalence relation is hyperfinite, any cocycle can be
approximated by coboundaries, so all automorphisms o, are in the closure of Aut(Rz,Cr|ST).
On the other hand, there always exist cocycles which are not cohomologous to cocycles c,,
because otherwise Z! (R, T) would be a continuous isomorphic image of the group G % I(X,T),
where I(X,T) is the factor of the unitary group of L°°(X) by the scalars (note that since the
action is weakly mixing, ¢, is not a coboundary for x € G\{e}), hence Z'(Rp, T) would be
topologically isomorphic to G x I(X,T), which would imply that the group of coboundaries is
closed.

If the action is rigid, it is still possible that Aut(Rz, S7|CT) is closed. However, as the
following result shows the group Int(S7) consisting of inner automorphisms of Ry defined by
unitaries in St is not closed in this case, which may indicate that we should consider systems
satisfying stronger mixing properties than weak mixing. Note that if an action is mixing then
it is not rigid.

Proposition 4.11 The following conditions are equivalent:
(i) the action T is rigid;

(ii) there exist non-trivial central sequences in St;

(iii) the subgroup Int(St) of Aut(Rr) is not closed.

Proof. The equivalence of (ii) and (iii) is well-known [C]. The implication (i)=-(ii) is obvious.
Suppose that the action is not rigid. Let {u,}, be a central sequence of unitaries in Sp. For
fixed n apply (4.6) to w, = u,, w, = 1, S, = S, = id. Then we conclude that there exist
¢, € T and g, € G such that ||u, — ¢,vy,||2 = 0 as n — oo. The sequence {v,, }, is central,
which is equivalent to the strong convergence u,4, — 1. Since the action is not rigid, this implies
that eventually g, = 0, so the central sequence {u,}, is trivial. Thus (ii) implies (i).
|
The following corollary is not surprising in view of Proposition 3.1 but is worth mentioning.

Corollary 4.12 There exist weakly mizing transformations T(Y) and T?) such that the singular
masas Spay and Spq) are not conjugate but their Pukanszky invariants coincide.

Proof. The class of weakly mixing measure-preserving transformations with simple spectrum,
i.e. of spectral multiplicity one, contains both rigid and non-rigid transformations (e.g. certain
Gauss systems are rigid and have simple spectrum [CFS, Chapter 14], while Ornstein’s rank-
one transformations are mixing [Na, Chapter 16]). Since rigidity is a conjugacy invariant by
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Proposition 4.11, there exist transformations 7 and T such that Sty and Spa) are not
conjugate, while P(Spu)) = P(Spw) = {1}. ]

5 Entropy

A weak form of our conjecture would be to say that conjugacy of masas St for actions of
an abelian group G implies coincidence of the entropies. In this form the conjecture may hold
without any assumptions on the spectrum, since systems with purely discrete spectrum have zero
entropy. The main result of this section is a step towards the solution of this weaker problem.
While in the previous section we proved that if the conjecture is false then the isomorphism
v: Rpay = Ry for non-isomorphic systems sends Cpy far from Cipz), in this section we shall
prove that if the entropies are distinct, the images v(v,) of the canonical generators of Sy can
not coincide with the generators of S () even on small projections.

We shall consider only the case G = Z, since the theory of non-commutative entropy is not
well-developed for actions of general abelian (or amenable) groups, though in fact the result is
true for arbitrary abelian G.

Theorem 5.1 Let T ¢ Aut(X;, ;) be a measure-preserving transformation, i = 1,2. Denote
by v; the canonical generator of Spqy. Suppose there erists an isomorphism v: Rpa)y — Ry
such that v(Spa)) = Sy, and the unitary v (vi)vs has an eigenvalue. Then h(T™1) = h(T(?)),

The result will follow from

Proposition 5.2 LetT € Aut(X, i) be a measure-preserving transformation, v € St the canon-
ical generator. Then for any non-zero projection p € St we have H(Adv|,r,,) = h(T), where
H(Adwv|,Rr,p) is the entropy of Connes and Stgrmer [CS] of the inner automorphism Ad v| R,
computed with respect to the normalized trace 7, = 7(p) ™ 7| pRyp-

Proof of Theorem 5.1. By assumption, there exists # € T such that the spectral projection p
of the unitary v(v1)v; corresponding to the set {#} is non-zero. Then v(v1)p = fvyp. By
Proposition 5.2 we get

hTh) = H(Advily-1)R o v-1(p) = H(AdY(01)[pR,0)p)) = H(Ad v2|pR_;)p)) = A(T2).

|

To prove Proposition 5.2 consider a more general situation when we are given a finite injective

von Neumann algebra M with a fixed normal faithful trace 7 and a 7-preserving automorphism «.
For each projection p in the fixed point algebra M® we set

To(p) = 7(p) H (a|pMp).

Proposition 5.3 The mapping p — 7,(p) extends uniquely to a normal (possibly infinite) trace
To on M®, which is invariant with respect to all T-preserving automorphisms in Aut(M, M)
commuting with o.

Proof. To prove that the mapping extends to a normal trace it is enough to check that the
following three properties are satisfied: 7,(upu*) = 7,(p) for any unitary u in M, if p, 7 p
then 7,(pn) /* 7a(p), the mapping p — 7,(p) is finitely additive.
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The first property is a particular case of the last statement of the proposition. If § €
Aut(M, M“) commutes with @ and preserves the trace 7, then it defines an isomorphism of the
systems (pMp, 7, &) and (B(p) M B3(p), Ta(p), @), s0 their entropies coincide.

The second property follows from the well-known continuity properties of entropy:

Ta(Pn) = 7(pn) H (alpaMpn) = 7(p) H (&l pMpn4Cp—pn)) /" T(P)H (@lprrp) = Ta(p).

To prove the third one consider a finite family {p;}7_; of mutually orthogonal projections
in M and set p =3 _.p;. Let

B=pMpi+...4+p, Mp,.

By affinity of entropy,

7

HGols) = 0 S (o) = 7)™ Y 7

So in order to prove finite additivity it is enough to prove that H(a|,np) = H(a|g). The
trace-preserving conditional expectation F:pMp — B has the form

E(z) = pizp1 + ...+ pazpn.

It commutes with « and is of finite index, F(z) > %x for z € pMp, x > 0. Indeed, if we consider
pMp acting on some Hilbert space, then for a vector & we set & = p;€ and get

2
(2€,6) = Z( 2¢;, 21 1%;) <Z|rw1/25|r |21/ = (Zuwl/%u)
nZHm”?sH?—nZ epi€, pi€) = n(E(2)€, ).

IN

y [NS, Corollary 2], we conclude that H(a|,arp) = H(a|B).
|
Proof of Proposition 5.2. Consider the weight Taq4, on St corresponding to the automorphism
Ad v of Ry. Then we have to prove that Taq, = h(T)7|s,. By Proposition 5.3, the weight 7aq,
is invariant under the dual action. Since this action is ergodic on S, Taq, is a scalar multiple
of T|s,, Tadv = ¢ - T|s, for some ¢ € [0,400]. By definition of 7544, we have ¢ = H(Adv). But
by [GN, Vo3], H(Adv) = h(T), and the proof is complete.
|
The definition of the weight above leads to the following interesting problem in entropy
theory. Let A be an abelian subalgebra of a finite algebra M. For each unitary v € A consider
the weight 7, on A, which is the restriction of the weight 744, to A.

Problem. Find the connection between 7, and 74(,), where ¢ is a Borel mapping from T onto
itself.

Voiculescu’s approach to entropy using norm of commutators [Vol, Vo2] suggests that such
a connection exists at least when ¢ is smooth. More interesting is the case when u is a Haar
unitary and ¢ is an invertible transformation preserving Lebesgue measure, so that ¢(u) is
again Haar and generates the same algebra. Note also some resemblance of this problem to the
computation of entropy of Bogoliubov automorphisms [SV, N]. However, the correspondence
u +— 7, does not have nice continuity properties which makes the problem more difficult.
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Finally note that the problems studied in the paper can also be considered for topological
dynamical systems and C*-crossed products. In this setting isomorphism of crossed products
already implies that the systems have a non-trivial relationship. For example, for minimal
homeomorphisms of Cantor sets the crossed products are isomorphic if and only if the systems
are strongly orbit equivalent [GPS]. Since rotations are the only measure- and orientation-
preserving homeomorphisms of the circle, if 4 is an isomorphism of C'(X;) X Z onto C'(X3) X Z
which maps C*(v;) onto C*(vy) then y(v) = fvi', so the homeomorphisms have the same
topological entropy.
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