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ABsTRACT. In this article we classify all the smooth 3-folds of P® with an
apparent 4-tuple point provided that the family of its 4-secant lines is an irre-
ducible (first order) congruence. This is sufficient to conclude the classification
of all the smooth codimension two varieties of P™ with one apparent (n — 1)-
point and with irreducible family of (n — 1)-secant lines.

INTRODUCTION

A congruence of lines in P” is a family of lines of dimension n — 1, and its
order is the number of lines passing through a general point of P”. A codimension
two subvariety of P” is said to have q apparent (n — 1)-tuple points if its general
projection from a point to a hyperplane has ¢ (n — 1)-tuple points as singularities.

In an our previous work, [De 00] we proved that the degree of these varieties
is bounded by (n — 1)?, and we observed that this implies that they cannot be
complete intersections. By an A. Holme and M. Schneider’s result, [HS85], this
implies also that in order to classify the smooth ones, we can stop up to dimension
three.

In this paper we give a partial result towards this classification, i.e. we restrict
ourselves to the case in which the family of the (n — 1)-secant lines is in fact an
irreducible first order congruence.

This article is structured as follows: after giving, in Section 1, the basic defi-
nitions, we redo some general results about first order congruences in P™ given in
[De 00] for the sake of completeness. In particular, after giving the central definition
of fundamental d-loci, we show how to obtain the degree bound for the fundamental
(n — 2)-locus of a congruence.

In Section 2, we give two general examples of congruences in P™: the first one
is that of linear congruences, i.e. the congruences which come out from general
linear sections of the Grassmannians; the second one is that of congruences given
by the (n — 1)-secant lines of the varieties given by the degeneracy locus of a
general map ¢ € Hom(@?,&n_l), (’)I?,?f)(l)). Of these two examples we calculate the
minimal free resolution of the ideal sheaf of their focal locus and of the congruences
themselves. We study these examples because they give us all the congruences of
our classification but one (i.e. case (4b) of Theorem 0.1).

In Section 3 we prove two multiple point formulae: the 4-tuple point formula
for a smooth 3-fold of P5 and the formula which gives the number of 4-secant lines
to a smooth surface of P* passing through a general point of the surface itself.
Strangely enough, the 4-tuple point formula for the 3-folds—which is actually an
application of S. Kleiman’s multiple point formulae of maps (see [Kle81])—it seems
to have been unknown, at least in modern times (see for example [BSS95]). With
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this formula, E. Mezzetti has been able to exclude the only degree 12 smooth 3-fold
of P5 for which the existence was uncertain (see [Ede94]). T must say that after the
proof of this formula, I realized that the same was obtained by S. Kwak in [Kwa01],
but with other methods, i.e. through the monoidal construction.

The irreducible congruences of order one of P® which are given by the 4-secant
lines of a smooth 3-fold are classified in Section 4. By the results of Section 2 and
what we said above, we obtain the following complete list, where d is the degree of
the smooth codimension two variety X, 7 its sectional genus and, if dimX =3, S
is its general hyperplane section; finally, H and K are the hyperplane and canonical
divisor classes, respectively (and X; is referred to the classification given in [DP95]):

Theorem 0.1. The smooth codimension two subvarieties of P™ for which the family
of their (n — 1)-secant lines is an irreducible first order congruence are
(1) for n =2 a point, and the congruence is a pencil of lines;
(2) for n = 3 the twisted cubic, and the congruence is the Veronese surface and
has bidegree (1,3) (for more details, see Subsection 2.2);
(3) for n =4 we have the following possibilities:
(a) a (projected) Veronese surface, which is rational, with d = 4, = = 0;
in this case we have a linear congruence, which has bidegree (1,2) (see
Subsection 2.1);
(b) a Bordiga surface, which is rational, with d = 6, = = 3; the congruence
is smooth and has bidegree (1,8) (see Subsection 2.2);
(4) for n =5 we have the following possibilities:
(a) the Palatini scroll, which is rational with d = 7, = = 4, x(0s) =
X(Ox) =1 (case Xs); in this case we have a linear congruence, which
has 3-degree (1,3,2) (see Subsection 2.1);
(b) a non rational scroll, P1-bundle over a minimal K3 surface of P® via
K+ H| (case X11); d =9, 7 =8, x(0s) = x(Ox) = 2; the congru-
ence, has 3-degree (1,7,13);
(c) a log-general type rational 3-fold, linked with a (4,4) complete inter-
section to a Bordiga 3-fold (case X15); d = 10, m = 11, x(Os) = 5,
x(Ox) = 1, the congruence is smooth (see Subsection 2.2) and has
3-degree (1, 15,20).
Vice versa the (n — 1)-secant lines of any of the above varieties generate a first
order congruence.

We conjecture that the congruences whose pure fundamental locus (see Definition
1.1 below) is a smooth codimension two variety are the families of (n — 1)-secant
lines of the varieties of Theorem 0.1.

Acknowledgements. 1 would like to thank Kristian Ranestad, Fyodor L. Zak and
Jon Eivind Vatne for interesting comments and remarks.

1. NOTATIONS, DEFINITIONS AND GENERAL RESULTS

We will work with schemes and varieties over the complex field C. By wariety
we mean a reduced and irreducible algebraic C-scheme. More information about
general results and references about families of lines, focal diagrams and congru-
ences can be found in [De 01] or [De 99]. Besides, we refer to [GH78] for notations
about Schubert cycles and to [Ful84] for the definitions and results of intersection
theory. Here we recall that a congruence of lines of P™ is a flat family (A, B, p) of
lines of P™ obtained by the desingularization of a subvariety B’ of dimension n — 1
of the Grassmannian G(1,n) of lines of P”. p is the restriction of the projection
p1: B xP" = B to A, while we will denote the restriction of py : B x P® — P"
by f. Ay := p~1(b), (b € B) will be an element of the family and f(Ay) =: A(b) is
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a line of P™. We can summarise all these notations in the following two diagrams:
the first one defines the family

A= (Hin) —2  Hi, 2 pr
PJV PIJ(
B _Y . p C G(1,n),

where Hi , C G(1,n) x P” is the incidence variety and 4 is the desingularization
map, and the second one explains the notation for the elements of the family

Ay CA LEEP2 S A(b) = f(A)

d
be B.

A point y € P" is called fundamental if its fibre has dimension greater than the
dimension of the general one. The fundamental locus is the set of the fundamental
points. The subscheme of the foci of the first order V' C A is the scheme of ram-
ification points of f. The locus of the first order foci, or, simply, the focal locus,
® := f(V) C P", is the set of the branch points of f. In this article, as we did in
[De 01], we will endow this locus with the scheme structure given by considering it
as the scheme-theoretic image of V under f (see, for example, [Har77]).

To a congruence is associated a sequence of degrees or (v+ 1)-degree (aq, ..., a,)
if we write .
[B] = Zaio(n—1—z’)i
i=0
—where we put v = ["r);l]fas a linear combination of Schubert cycles of the

Grassmannian; in partimﬂar, the order ag is the number of lines of B passing
through a general point of P”. The fundamental locus is contained in the focal
locus and the two loci coincide in the case of a first order congruence, i.e. through
a focal point there will pass infinitely many lines of the congruence. An important
result—independent of order and class—is the following (see also [De 01]):

Proposition 1.1. On every line A(b) of the family, the focal locus ® either co-
incides with the whole A(b)—in which case A(b) is called focal line—or is a zero
dimensional scheme of A(b) of length at least n — 1. Moreover, if A is a first order
congruence, this zero dimensional scheme has length exactly n — 1.

Proof. Let A : Tipxpu/pny), — NA/BX]PTL be the global characteristic map for the
family A (see [CS89]). From the focal diagram (diagram (3) of [CS89]) one gets
that the subscheme of the foci of the first order V' is the degeneracy locus of A. If
we restrict the map A to a fibre Ay = A(b), we obtain the characteristic map of the
family relative to b:

A(b) : Ty ® OA(b) S NA(b)/HPn

gl gl
OX(_ES — OA(b)(l)n_l.

From the preceding isomorphisms, the map A(b) can be seen as an (n—1) x (n—1)-
matrix with linear entries on A(b); so the focal locus on A(b) is given by the vanishing
of the determinant of this matrix, and our claim follows.

Concerning the first order congruences, we observe that a fundamental point P
is a focal point for every line A(b) which contains it, since the characteristic map
relative to it, A(b), drops rank in P. d
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From now on we will consider only first order congruences.

A central definition, introduced first in [De 01], is that of fundamental d-locus,
1.e. the subscheme of the fundamental locus of pure dimension d, with 0 < d < n—2,
which is met by the general line of the congruence. Let us see how these schemes
are constructed: the closed set

Sq = {(A(b),P) €A I'k(df(A(b))p)) < d}

has a natural subscheme structure, which is defined by a Fitting ideal, z.e. the ideal
generated by the (d+ 1)-minors of df (or, by the Fitting lemma, see [Eis95], by the
d-minors of A), see [Kle77]; in particular, S,_; = V. Let us define

Dgt1 = Sat1 \ Sd

with the scheme structure induced by Sg41. Finally, we consider the scheme-
theoretic image ®4 of Dgy1 in P? under f. The component of ®, of pure dimension
d (with the scheme structure induced by ®4) which is met by the general line of
the congruence is the fundamental d-locus.

These subschemes of the fundamental locus are particularly important, since
a first order congruence can be characterised as a component of the set of lines
which meet the fundamental d-loci a certain number of times, see the Classification

Theorem 3.2 of [De 01].

Definition 1.1. The union of the fundamental d-loci of F' is called pure funda-
mental locus, or, in what follows, simply fundamental locus and it is denoted by

F.
After this, we give the following theorem of [De 00]:

Theorem 1.2. If A is a first order congruence such that the pure fundamental
locus F is irreducible and coincides with the fundamental (n — 2)-locus; then

n—1
k
where m := deg(F)req and k is the geometric multiplicity (F)req in F.

<m<(n-1)%

Idea of the proof. First of all, we have that n — 1 < km by degree reasons, since
the congruence is given by lines which intersect F' in a zero dimensional scheme of

length n — 1.
To prove the other bound, we need of course more work. Let B be our con-
gruence, which has sequence of degrees (1,a1,...,a,). If TT is a (fixed) general

(n—2)-plane, we denote by Vi the scroll given by the lines of the congruence which
meet IT. Then by the Schubert calculus one can show that V17 is a hypersurface of
P™ of degree 1 + a;.

Moreover, if £ is a line of B not contained in Vi1 and P is a point of Vi N £, then
P is a focus for B, since at least two lines of the congruence pass through it.

Then, if TI' is another general (n — 2)-plane of P”, the complete intersection of
the hypersurfaces Vi1 and Vi is a (reducible) (n — 2)-dimensional scheme T' which
contains the focal locus F' and the (n — 2)-dimensional scroll ¥ given by the lines of
the congruence meeting IT and II', which has degree 1+ 2ay + a5 (actually, 1 + a1
in the case of P3; since this case can be treated analogously, we will suppose from
now on that n > 3).

In fact, if a point P of Vi N Vi does not belong to the scroll X, it belongs to
the fundamental locus. Indeed in this case

Petndt, where £ € Gr, £ € G, and £ £ 1
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—where G711 and Gy denote the subvarieties of the Grassmannian corresponding
to the two scrolls Vi1 and Vi, Since A is a first order congruence and P belongs to
two of the lines of A, it belongs to infinitely many ones.

Reciprocally, if P € F is a general focal point, the set of the lines of B through
P, xp, is a cone of dimension (at least) two, so its intersection with IT and IT' is
not empty and therefore P € Vip N V.

The degree of the scroll follows from the Schubert calculus.

Claim. The following formulae hold:

(1) (n—1)h=1+ay,

(2) (14 a1)* > h*m + 14 2a; + as,

where we denoted by h the algebraic multiplicity of (F)req on Vir.

Let us start proving relation (1). If we take a line A(b) of the congruence not
contained in F N Viy, then, intersecting A(b) with Vi1, we obtain a zero dimensional
scheme of length 1+4a1, since this is the degree of Vi1. ViNA(b) contains (F)reaNA(b)
with intersection multiplicity h, so the relation (1) is proved.

We recall that the degree of T is (1 + a;)?, and it contains F and the scroll X.
Actually, the fundamental (n — 2)-locus has geometric multiplicity in T equal to hZ.
The proof of this fact is the following: the intersection multiplicity i(((F)red, Vi1 -
Vir, P™) of F in Vi - Vi is equal to the geometric multiplicity of (F)req in T', but
i((F)rea, Vi - Viv, P*) = h?.

Finally, as we seen, the scroll ¥ has degree 1 + 2a; + as, so we get formula (2).

Now, if we substitute formula (1) in formula (2), we obtain

(3) (n —1)%h%* — h*m — 1 — 2a; — as > 0,

and since —1 — 2a; — a» < 0, we deduce m < (n — 1)

A fundamental consequence of the preceding theorem is the following:

Theorem 1.3. If we have a first order congruence of P™ such that the fundamen-
tal locus I satisfies the hypothesis of the preceding theorem, then F cannot be a
complete intersection. If moreover F is smooth, then n <5.

Proof. In fact, by the preceding theorem deg(F) < (n — 1)?, therefore if it were
a complete intersection, it would be contained in a hypersurface V of degree less
than n — 1, and so every (n — 1)-secant line of F' would be contained in V.

If F' is smooth, since by [HS85] we know that Hartshorne’s conjecture is true in
codimension two up to degree (n — 1)(n + 5), then dim(F) < 3. d

2. GENERAL EXAMPLES OF FIRST ORDER CONGRUENCES

We give now two examples of first order congruences of lines of P”. Actually,
these examples gives us all the congruences of Theorem 0.1 but case 4b.

2.1. Linear sections of G(1,n). First of all, we will analyse the congruences which
come out from linear sections of the Grassmannian G(1,n), i.e. we will consider
the so called, classically, linear congruences.

We recall that the Schubert cycle which corresponds to a hyperplane section of
(the projective embedding of) the Grassmannian is o1, so the following technical
lemma gives us the formula for the general intersection of these special Schubert
cycles:
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Lemma 2.1. If £ <n —1 and we set k := [%], the following formula holds:

(SRR

—with the convention that (f;) =01 h<0.

Proof. Let us prove the lemma by induction: for £ = 1 it is obvious. Let us suppose
it is true for £ — 1; then, by inductive hypothesis

5!
£—2 £—2
i—
() (e
=0

where k' := [Zgl]. By Pieri’s formula, we have
o P O-(Z—i)i Hfl—1—1=1
—1-i)i " 01 = .
(E-1-i) O(e—i)i + O—1-i)(i+1) otherwise,

ie. if £ —1#2k"+ 1 and i # k', we obtain

-2 (=2)  (t-2 =2\ _ (t—1 -1
i i—2 i—1 i—3) "\ i i—2
while if i = k' = 52,

2k’ 2K’ B 2k + 1 2k +1
k! E—2) \k+1 E—1)
which follows from the formula

<5> (5)-C2)-0- =57

Theorem 2.2. If A is a congruence with sequence of degrees (aq, ..., a,) then B,
as a subvariety of the Pliicker embedding of the Grassmannian, has degree

deg(B) = i“i ((?) %) '

=0

b

O

Proof. Tt is a corollary of formulae (4) and (5). d

Corollary 2.3. An (n — 1)-linear section B of the Grassmannian of lines of P"
generates a first order congruence A with sequence of degrees

ey =0 (5 (20) - ((5)-69)

wn particular, as a subvariety of the Plicker embedding of the Grassmannian, this
1s a smooth congruence of degree

=5 ((5)-(23)"

This corollary gives us a first non-trivial example of a first order congruence.
Some general results about fundamental varieties of these congruences are given in
[BMO1]; in particular, it is proven that the focal locus is the degeneracy locus F of
a general morphism

(6) 60207 5 0p.(2)

of (coherent) sheaves on P™ and that F is smooth if dim(F) < 3. An improvement
of a result of [BMO1] is the following:
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Proposition 2.4. If F' is the focal locus of a general linear congruence of P", then
(1) if n is even, F is a rational variety;
(2) if n is odd, F has the structure of a scroll over a Pfaffian hypersurface 7

of degree (n+ 1)/2 contained in a P"~2.

Besides,

n?—3n+4

—

Proof. Tf we dualise the Eagon-Northcott complex applied to (6), we have the fol-

lowing exact sequence

deg(F) =

0= Opn(1—n) = Tpn(—2) -5 01 5 e (2) 5 0,
where w is the dualising sheaf of F'. Hunting in the sequence, we get
HO(P", w3 (2)) = HO(P™, 02" Y),
and so the map associated to the complete linear system |Kg + 2H|,
O\Kkpy2m P P — pr-2

is well defined. The fibre of ¢|g 4277 is given by the solutions a homogeneous
linear system of n 4+ 1 equations in n + 1 indeterminates. The matrix A associated
to this system is antisymmetric; therefore, if n is even, its determinant is zero and
has only one or infinitely many (projective) solutions; so, for dimensional reasons,
we get that ¢ g 425 is birational and F' is rational.

If instead n is odd, det A 1is, in general, not zero, and so its Pfaffian defines a
hypersurface Z of degree (n+1)/2 and the fibres of |k, 425 are Pl’s. We observe
that the Eagon-Northcott gives in fact a locally free resolution of the ideal sheaf of
F:

0— 02" D1 = n) 0=m), Qpa(3—n) = Opx — O — 0.
From this we get the Hilbert polynomial of 7', and in particular, after some com-
putations, the degree. d

Remark. In low dimension and with a general section, we have that (see [BMO01] for
details) if n = 3, F' is the union of two skew lines, if n = 4, F' is a smooth projected
Veronese surface and if n = 5, F is a (rational) 3-fold of degree seven, which is a
scroll over a cubic surface in P3. Tt is also known as Palatini scroll (see [Ott92]).

Clearly, we can say more about the congruence B:

Proposition 2.5. If B is a linear congruence of P", then its ideal sheaf has the
following resolution:

(7) 0= 8ym™Q(2—n) = (88D g Sym" "' Q(2—n) —
= (A2((8)8 1)) @ Sym™ 202 —n) — - -
e AM((S(2 = 1)) Y)Y 5 Og 1y — O =0,

where Q and 8 are the quotient sheaf and the universal subsheaf of G(1,n), respec-
tively (hence tk(Q) =n — 1 and rk(S) = 2).

Proof. For proving this, we see that the map ¢ of (6) gives rise to a map
f o N (S*)@(n—l)

where f is obtained by considering the dual of ¢ twisted by one and then pulled
back to the incidence variety and finally pushed it forward to G(1,n). Now we
apply the Eagon-Northcott complex to f € Homo,, (9, (8*)®@(=1)) getting—
after tensorizing by Og (1,n)(2 — n)—the resolution above. d
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2.2. Matrices of type (n — 1) x n with linear entries. Let us consider a gen-

eral morphism ¢ € Hom((’)gin_l), (’)E‘,?:)(l)), whose minors vanish in the expected

codimension two. In this case, F := V(¢)—the degeneracy locus of ¢—is a locally
Cohen-Macaulay subscheme, the Eagon-Northcott complex is exact (see [BET5])
and gives a free resolution of our ideal sheaf:

8) 0= 020V (—n) 25 021 (1 — n) = Op. — OF — 0.

Then—for example—from the Hilbert polynomial we get

() aeg(r) = (3)
(10) m(F) =1+ 2”3_ ! (Z)

where 7(F) is the sectional genus of F. Tt is easy to prove that:

Proposition 2.6. F is rational, and if n < 5 it is smooth. Besides, the adjunction
map @k 41| evhibits F' as the blow-up of P*=2 in a scheme Z of degree (”;1) and
sectional genus %(2n —5)(n+ 1) — 1. In particular, if n = 4, F' is a rational sextic

which 1s the blow-up of the plane in 10 points, i.e. a Bordiga surface.

Proof. The smoothness is a consequence of Bertini type theorems. For proving that
F 1s rational, we can apply the standard argument used in the proof of Proposi-
tion 2.4 to get that the fibre of ¢ x4 17| is given by the solutions of a homogeneous
linear system of n equations in n + 1 indeterminates, whose matrix has maximal
rank if ¢ is general, and then it has only one (projective) solution; so, ¢|x, 4| is
birational and F' is rational. Besides, ¢|k . m| has (at least) one dimensional fibres

on the degeneracy locus 7 of the map ® : (’)E?f_g — Oﬁ?ﬁfjl)(l), i.€. P|Kp+H| gives

F as the blow-up of P*~? in Z. As usual, Eagon-Northcott gives a free resolution

of Z:
0= 020 ,(—n—1) — (’)If,f’_‘jl)(—n) - Opn-—2 —= Oz =0,

from which we obtain the degree and the sectional genus of 7. d

With this, we prove that

Theorem 2.7. The (n — 1)-secant lines of the variety F defined as above form a
first order congruence of lines B of P™. The congruence B is smooth for general ¢.

Proof. For proving this, we see that the map ¢ gives rise, as we did in the proof of
Proposition 2.5, to a map

¢ O], = ()50

We can now apply the Eagon-Northcott complex to the morphism of coherent

sheaves on G(1,n), ¢ € ’i’{omoﬁ;(l’n)((’)g?1 ny: (8*)8(=1)) getting, since rk(S) = 2

N (S*)@(n—l)(g) N
= (N((87)P )
o ATT((8)B D) 5 Og g ay(n — 1) = Op(n — 1) = 0.

o2
(11) 0— 0@((17)@

We know that the image of B in the Chow ring of the Grassmannian is (see [GP82])
¢n—1(coker ¢); then we have to calculate ¢,_1(Zp(n — 1)). We can calculate this
Chern class by applying the Giambelli-Thom-Porteous formula: see [FP98]; we
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recall that this formula gives the class in the Chow ring of a degeneracy locus of a
map, as a polynomial in the Chern classes of the two bundles:

[Dn-1(9)] = Ani(c)

= a1 (O 5y — (87271

= ¢, 1 (8B,

—where D,,_1(¢) denotes the degeneracy locus of ¢ and A, _;(¢) is a Schur deter-
minant. To calculate this Chern class, fist of all, by the universal exact sequence of

the Grassmannian we get
(S) = (@)
but ¢;(Q) = oy, and then applying the formula which gives the inverse of a Chern

class, we obtain (recalling the Giambelli’s formula and that rk(S) = 2) ¢(S) =
1 — 01+ o011, and so

(12) (8% = (1 — gy + 011)" L

To see the order of the congruence B is therefore sufficient to find the coefficient
of op—1 in (12); it is not hard to see, by Pieri’s formula, that the only way to get
0n_1 is from the expansion of 07~ !; then, by formula (4) (or by Corollary 2.3) we
get that B is a first order congruence.

The fact that the family of the (n — 1)-secant lines of the variety F is indeed B,
can be seen intersecting by a sufficient number of general hy := Z?:l £y i A;—where

A1, ..., Ay, are the minors of order (n— 1) of the matrix ¢(—n)—in such a way that
for the general P € P™ we get a one dimensional scheme, z.e. A=1,...,n—1. B
is smooth as usual by Bertini type theorems. d

3. TWO MULTIPLE POINT FORMULAE

We will prove now the 4-tuple point formula for a smooth 3-fold X of P® and
the formula which gives the number of 4-secant lines to a surface S of P* passing
through a general point P € S.

In this and in the next section, we will denote by S a general hyperplane section
of the 3-fold X, by H and K the hyperplane and the canonical divisors of X. We
recall that the basic invariants of X are d := deg(X) = H?3, its sectional genus
T = %HQ(K + 2H) + 1, its Euler-Poincaré characteristic x(Ox) and the Euler-
Poincaré characteristic of S, x(Og), thank to the double point formulae for X and
S, which can be written as

K3 = —5d* + d(2m + 25) 4+ 24(m — 1) — 36x(Ox) — 24x(O5s),
1
H-K?= 5d(aj +1) = 9(m — 1) 4+ 6x(Ox)

(see for example [DP95]).
We start with the 4-tuple point formula. We refer to [Kle82] for the definitions
and results used in the proof.

Proposition 3.1. Let X be a smooth 3-fold of P°; if P € (P°\ X) is a point
through which there is a finite number q(X) of 4-secant lines of X, then the following
formula holds:

1 45,11

_ Lt L 1,1l 5o 9
q(X)_24d 4(1 —|—2d(12 7r)+d(27r—|—2x((95) 4)—1—

1 7

(13)
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Proof. Let us consider the projection mp : X — P* from the point P to a hy-
perplane. mp is practically 4-generic (see [Kle82] for the definition): in fact X is
smooth, and so mp 1s a local complete intersection; besides, if we restrict 7p to the
complementary set of the 4-tuple locus—which, by hypothesis, is finite—it becomes
a 4-generic map (see again [Kle82]). Since the codimension of of mp is one, we can
apply Kleiman’s 4-tuple point formula (for example, formula (28) of [K1e82]) even
if 7p has S_z-singularities, and from this we obtain formula (13). O

Next, we pass to prove the other formula.

Proposition 3.2. Let S C P* be a smooth surface of degree d, sectional genus
m, hyperplane and canonical divisors H and K, respectively. Then the number of
4-secant lines h of S passing through a general point P € S 1s given by the formula

1 : 1
(14) h= o = 2@ 4 d(5 — 7) + A7+ 2(05) — 10,

3

Proof. h is actually equal to the number of triple points of the image of S under
the projection from P to a hyperplane. Therefore h can be obtained from the triple
point formula for a map f from a smooth surface to P3: we simply blow-up S in P
and then we compose the map which defines the blow-up g : Blp(S) — S with the
projection, i.e. f := m, o g. The triple point formula can be found in [Le 87|, and
it is, in our situation

(15) h = é(ci(ciﬁ —12d 4 44) + 4K? — 26, — 3HK (d — 8)),

where H = g*H — F is the strict transform of H—FE is the exceptional divisor of
the blow-up—, K = g* K + E the canonical divisor of Blp(S), d = H? and ¢ its
topological Euler-Poincaré characteristic. Clearly, we have that d=d-1,6 =
ca + 1, where ¢2 is the topological Euler-Poincaré characteristic of S, K2=K2-1
and HK = 2m —d — 1. Then, if we express the invariants of S in terms of the basic
invariants (d, 7, x(Og)), we get formula (14). O

Remark. We obtained the formulae with the help of S. Katz and A. Stremme’s
Maple package “Schubert”.
4. CONGRUENCES OF [P?

In this section we study the irreducible first order congruences B which are given
by the families of the 4-secant lines of smooth 3-folds X C P® (with the notations
for its invariants given in Section 3), proving Theorem 0.1. We need the following
preliminary result:

Lemma 4.1. The following formula holds:

1 9 . .
0=—-d"— —_3d3 —d* (7 — Q) - d(ﬁ — 117 — 2x(0s))+
(16) 8 . 1257 8 12
+ 571'2 — 771' — 17X(05) + 53
Proof. Formula (16) is formula (1), which is, in our situation,
(17) dh=14aq

(with the notations of the proof of Theorem 1.2). Now, h is the algebraic multiplicity
of the fundamental locus on the variety Vi1 of the lines of B which meet a general
3-plane II, z.e. if we fix P € X, there are h lines of B though it which meet II also.
The hyperplane PTI intersects X in a smooth surface S, and the h lines are exactly
the ones which are 4-secants to S. So h is given by formula (14).
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By definition, a; is the number of lines of B contained in a hyperplane H and
which meet a line £ C H, i.e. it is the degree of the hypersurface of the 4-secant
lines of S. But this is formula can be easily deduced from [Le 90] and it is

1 5 35 33, 1 25
(18) al = =d*—~d*+d* (= —m)+d(+T7+2x(O0s)— =)+ =T = =793 (Os)+12.
8 4 8 472 2
Substituting formulae (14) and (18) in (17), we get formula (16). O

Proof of Theorem 0.1. By Theorem 1.3, it is enough to consider the cases of P7
with n < 5.

By Theorem 1.2 (and by Castelnuovo’s bound) we get that in P3 the only con-
gruence is the one given by the secant lines of the twisted cubic.

In P*, again by Theorem 1.2, we obtain that the surfaces X we are looking for
have to satisfy 4 < deg(X) < 8, and since the smooth surfaces are classified up to
degree ten, see [DP95], if we apply the triple point formula (15) to them, we get
only the cases of the theorem.

Passing to the next case, since the smooth 3-folds of P® are classified up to degree
12 (see [BSS95]), we can check which of them have an apparent 4-tuple point, and
it turns out that are the ones of the list of the theorem. The three congruences are
indeed irreducible, since they satisfy formula (16) (and therefore there cannot exist
a component of order zero).

Next, from Theorem 1.2 we have to exclude the cases 13, 14 and 15. To do
this, we calculate the possible invariants of these 3-folds (see for example [BSS95])
and then we request that they have to satisfy ¢(X) = 1 in formula (13), and
equation (16); it turns out that there cannot exist 3-folds with these conditions.

Finally we can calculate the multidegree for the three congruences of P® (the
cases of P3 and P* can be easily deduced from Section 2; a; is from formula (18);
as is instead the number of 4-secant lines contained in a 3-dimensional linear space
G, i.e. the number of 4-secant lines of the smooth curve G N X, and this formula
is in [Le 82]:

1 53

17
1 2=—d*~d&* d?— —
(19)  a2=13 BED 2

1 5 7 13 1,
d+6—27rd +2d7r—27r+27r.

O

Remark. We performed the calculations in the last proof with the help of a simple
program in Maple.
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