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Abstract
We present a white noise calculus for d-parameter fractional Brownian motion
B (z,w); z € RY, w € Q with general d-dimensional Hurst parameter H = (Hy, ... , Hy)

€ (0,1)4. As an illustration we solve the Poisson problem AU(z) = —Wy(z); = € D,

U = 0 on 0D, where the potential Wy (z) is d-parameter fractional white noise given

by Wy (x) = g;f%(ii, and D C R? is a given bounded smooth domain.

1 Introduction

Recall that a I-parameter fractional Brownian motion (fBm) with Hurst parameter H €
(0,1) is a Gaussian stochastic process By (t) = Bu(t,w); t € R, w € 2 on a filtered proba-
bility space (9, F, ]:t(H), P) with the mean

(1.1) E[By(t))=Buy(0)=0  forall teR
and covariance

(1.2) E[By(s)Bu(t)] = 3{|s* + [t — |s —¢|*"}  forall s,t€R,

where E denotes expectation with respect to P. Note that if H = 1 then By(t) coincides
with the classical Brownian motion.

For any H € (0,1) the process By(t) is H-self-similar, in the sense that the law of
{By(at)}ier is the same as the law of {aff By (t)}ier for all a > 0.

One of the reasons of the interest of fractional Brownian motion is that it can be used to
model random phenomena with memory.

For example, if % < H < 1 then By(t) has a long range dependence, in the sense that

(1.3) > E[By(1)(Bu(n+1) — By(n))] = oc .
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In this case the process is persistent, in the sense that high values have a tendency to be
followed by an increase and low values by a decrease. This type of behavior is often observed
in the levels of rivers, the characters of solar activity, the widths of consecutive annual rings
and in the values of log returns in finance.

Similarly, if 0 < H < % then

(1.4) E[By(1)(Br(n+1) — Bg(n))] < 0

and the process is anti-persistent, in the sense that high values have a tendency to be fol-
lowed by a decrease and low values by an increase. This feature makes the process natural
for turbulence modeling. Indeed, fractional Brownian motion was first introduced by Kol-
mogorov in 1940 (see [Ko]), in connection with turbulence studies. In 1968 the process was
reintroduced by Mandelbrot and van Ness [MvN], who gave the process its current name
and suggested a number of applications.

For more information on 1-parameter fractional Brownian motion we refer to the book
by Shiryaev [S] and the references therein.

There is a natural generalization of fBm to the multi-parameter case:

Fix a parameter dimension d € N and a Hurst parameter H = (Hy, Hs, ... ,Hy) € (0,1)%.
Then we define the d-parameter fractional Brownian motion (or fractional Brownian field)
By(x1,...,24); = (1,... ,24) € R? as the Gaussian process (field) with mean

(1.5) E[Bu(z)]=Bu(0)=0 for all x € R?

and covariance

d
(1.6)  E[Bu(z)Bu()] = ()" [ (™ + lwil* = |a; — ws*™)  for all z,y € RY.
i=1
These stochastic processes have been suggested in the modeling of the shape of mountain
ranges (d = 2), the density of clouds (d = 3) and many other quantities. We refer to [AF]
and [M] for more examples of modeling by multi-parameter fBm.

A stochastic calculus for 1-parameter fBm based on the Wick-Ito integral was con-
structed by [DHP] in the case % < H < 1. This was generalized to a fractional white noise
calculus in [HO)], still for the case % < H <1. Subsequently this 1-dimensional theory was
extended (with certain restrictions) to be valid for all Hurst coefficients H € (0, 1) by [EvdH].

A multi-parameter fractional white noise calculus was developed in [H1], [H2] and subse-
quently in [HOZ1] and [@DZ], where it was used to solve certain stochastic partial differential
equations driven by multi-parameter fractional white noise Wy (z). However, the presenta-
tion in all these papers was based on the assumption that H = (Hy,... ,Hy) € (%, 1),

The purpose of this paper is to give a survey of the multi-parameter fractional white
noise theory valid for all Hurst parameters H € (0,1)? as presented in [H@Z2]. Such a
theory is constructed by making a synthesis of the 1-parameter approach of [EvdH] and
the multi-parameter approach of [H1], [H2], [HOZ1] and [JZ]. The theory is illustrated by
solving explicitly the stochastic fractional Poisson equation

(1.7) AU(z) = ~Wy(z); x€DCR?
(1.8) u(z) =0; x € 0D
where D is a given bounded domain in R? with smooth boundary 9D and Wy (z) = g;f%(zi

is d-parameter fractional white noise.



2 Multiparameter fractional Brownian motion

We start by recalling the standard white noise construction of multiparameter classical Brow-
nian motion B(z); x € R%. We refer to [HKPS], [HOUZ] and [Ku] for more details. Our
presentation here will follow the presentation in [HOZ2] closely.

Let S = S(R?) be the Schwartz space of rapidly decreasing smooth functions on R?
and let © := &'(RY) be its dual, usually called the space of tempered distributions. By the
Bochner-Minlos theorem there exists a probability measure p on the Borel o-algebra B(£2)
such that

(2.1) (/éwmw@%:eﬂﬂ% f e SR
Q

where (w, f) = w(f) denotes the action of w € Q = S§'(R?) applied to f € S(R?) and
1f1I? = [ea lf(z)Pdz = || f]|3. () From (2.1) one can deduce that

(2.2) E,{w,f)]=0  forall feS(R?
where E,, denotes the expectation with respect to p. Moreover, we have the isometry

(2.3) Eul(w, fYw. o)l = (f.9)r2@ay;  f.g€SRY).

Using this isometry we can extend the definition of (w, f) € L?(u) from S(R?) to L?(R?) as
follows:

(w, f) = hm <w fn)  (limit in L?(u))

when f, € S(RY), f, — f € L*(RY) (limit in L*(R?)).

In particular, we can now define, for z = (zy,... ,z4) € R%,
(2.4) B(z) = B(z,w) = (w, Xog(-)); weQ
where
(2.5) Xo21(y H Xio,2,] (Vi) fory = (y1,...,yq4) € R?
and

I if 0<y; <y
(2.6) Xozg(yi) = =1 if z; <y; <0, except x; = y; =0

0 otherwise

By Kolmogorov’s continuity theorem the process {B(z)} has a continuous version which we
will denote by {B(z)}. By (2.1)-(2.3) it follows that {B(z)} is a Gaussian process with
mean

(2.7) E[B(z)] = B(0) = 0



and covariance (using (2.3))

(d
i=1
_ _ ) d
(2.8)  EB@)BW)] = (Xoa), Xoa))r2wa) = § [T(=2) A (=gs) if 21, 9: < 0 for all
i=1
0 otherwise

\

Therefore { B(x)},cra is a d-parameter Brownian motion.

We now use this Brownian motion to construct d-parameter fractional Brownian motion
By (x) for all Hurst parameters H = (Hy,... , Hy) € (0,1)%. We do this by extending the
procedure of [EvdH] to the d-dimensional case, as follows:

For 0 < H; <1 put

™

29)  K; =k [2F(H %)005(2(@- - ))]1, k; = sin(rH,)T(2H,; + 1)

N[

and if g € S(RY), z = (zy,... ,z4) € RY, define m;g(-) : R — R by

(z—te()—g(x) .
(2.10) m;g(x) = { 9(x) if Hj=3
Kjfg(zl,...,ijl,tgti‘+1‘;...,md)dt lf % < HJ < 1
R \:vj—t\Q
where
(2.11) e¥) =(0,0,...,1,...,0), the j’th unit vector.
Then define
(2.12) Mpgf(z) = mi(ma(...(mg1(maf))...))(x); fES(]Rd) )

Note that if f(z) = fi(z1)... fa(zq) =: (f1 ® -+ ® fq)(x) is a tensor product, then

d
(2.13) My f () = | [(M; £)(x;)
7=1
where
Kjg —f](w]t_;z;—j @lgr 0 < Hj<1
(2.14) My, fi(z;) = < fi(z;) ; Hj=3
K [ LG o lem<
R [t— 13\2 J

Therefore, if

Fol©):=i(6) = [ oa)ins €= (6. &) R,



denotes the Fourier transform of g, we have by (2.13)

(2.15) My f(¢ HMHfJ &) = Hk:|sy|“H )

and

(Hk 515) A

My maps S(R?) into L*(R?) N C*°(R?). For more information see [EvdH, Appendix].

We now construct d-parameter fractional Brownian motion By (z) with Hurst parameter
H = (Hy,...,Hy) € (0,1)¢ as follows:

First define

(2.16) By(z) = By(z,w) = (w, Mu(Xioa ()
with Xjg4(-) as in (2.5)-(2.6). Then By () is a Gaussian process with mean
(2.17) E[By(z)] = By(0) = 0

and covariance (using (2.13) and [EvdH, (1.13)])

PLBu(@)Ba)] = | | Mu(Xo(2) Mo (Ko ()
= /d H MHzX[O,m,](Zz) : H MH]. X[O,yj}(zj)dzl . dZd
RY ;5 j=1
= H/ M, Xpo,o,)(t) - M, Xio,y,) (t)dt
(2.18) =(3) dH{Ix 25 4 [y 21— oy — g2} zy e RY.

By Kolmogorov’s continuity theorem we get that { By (2)} has a continuous version, which we
denote by { By (z)}. From (2.17), (2.18) we conclude that By (z) is a d-parameter fractional
Brownian motion with Hurst parameter H = (H,,... , Hy) € (0,1)4.

If f is a simple (deterministic) function of the form

N
z) = Zan[O,yw‘)](l’) ; r e R?
j=1

for some a; € R, y¥) € R? and N € N, then we define its integral with respect to By by

2)dBy(z Z a; By (y



Note that by (2.16) this coincides with (w, My f), and we have the isometry

B[( [, @iBu()) ] = Bl M £ = M f e

By linearity and completeness we can therefore extend the definition of this integral to all
g € L% (RY), where

(2.19) Ly (RY) = {g:R" = R |lg]| ;2 ) = [Mn9g]| gy < o0} -

Then it follows from (2.16) that
(2.20) (w, My g) = / g(z)dBy(z)  forall g€ L% (RY).
R4

Moreover, if f,g € L% (R?) then we have the isometry

B[( [, r@asu@)( [ ote)aBu())] = Bl M), Mug)]

(2.21) = (Mnuf, Mug)2wey = (f, 9) 13, ®2) -

3 Multiparameter fractional white noise calculus

With the processes By (x) constructed in Section 2 as a starting point we proceed to develop
a d-parameter white noise theory as in [HOZ1] and [@Z], but modified according to the
I-parameter approach in [EvdH].

Let

2 d"
2
dtm

be the Hermite polynomials and let

ho(t) = (—1)%¢" 2 (%) n=0,1,2,...; teR

+2

((n— 1)!)7%hn_1(\/§t)ef7 ; n=12...; teR

=

(3.1) ho(t) =7

be the Hermite functions.
If a=(a,...,0q) € N (with N={1,2,...}) and z = (21, ... ,24) € R? define

(3:2) N0(2) = hoy (21) - - hay(Ta) = (hay @ -+ ® Do) (2)
and
(3:3) ea(®) = (Mp! hay)(@1) ... (Mj]! ha,)(wa) = (Mj'na) () -

Let {aP}2, be a fixed ordering of N with the property that, with |a®)| = ol 4.y ag),
(3.4) i<j= o <o,
Note that this implies that there exists a constant C' < oo such that

(3.5) la®| < Ck  forall k.



With a slight abuse of notation let us write

(3.6) M (%) = 1o () = Mye,(x)

and

(3.7) en() = ey (2) = My, (z) ; n=12...

Now let J = ( gT) denote the set of all finite sequences a = (ay,... ,an) with a; € Ny =
NU{0},m=1,2,... Then if a = (ay,... ,an) € J we define

(3-8) Ha(w) = hay (W, 1)) - - P, (@5 1m)) -

In particular, note that by (2.19) we have

oo (@) = ha((w, 1)) = {w,m5) = / ni(2)dB(z)

(3.9) = Mye;(x)dB(x) = (w, Mye;) :/ ei(x)dBy () ; i=1,2,...
R4

RrRd

We recall the following well-known result:

Theorem 3.1 (The chaos expansion theorem)
Every F € L*(u) can be written on the form

(3.10) F(w) =) caHa(w)

acg

where ¢, € R. Moreover, we have the isometry

(3.11) IF )2 = Y alcl

acJ

where al = ajlag!. . ay! if a = (aq, ... ,am).
Note that if f € S(R?) then My f € L*(R?). Moreover, if f, g € S(R?) then

(3.12) (9, My f)r2may = (9, Mu f)r2may = (Mug, f)r2ma) -

Therefore, since the action of w € Q = S§'(R?) extends to L?(R?) by (2.3), we can extend
the definition of the operator My from S(R?) to S'(R?) by setting

(3.13) (Mpw, f) = (w,Muf);  f€SMR), weSR).
We now define

(3.14) Li(p) ={G:Q = R;Go My e L*(n)}

and

(3.15) 1G22 ) = IIG o Mullfay  for G € Li(u) .



Example 3.2 The chaos expansion of classical Brownian motion B(z) € L?(u) is

(3.16) B(:E) w X[O m] Z X[O:z 77k 2 Rd)<w 77kf> Z (/ nk(y)dy> -H&.(k) (w) s
k=1 k=1 -

where in general we put

(3.17) / y)dy = / / y)dyy . .. dyq ; r=(11,...,14) €ER?.

Hence by (2.16) the chaos expansion of fractional Brownian motion By (z) € L% (u) is

(3.18) By(z) = (w, MgXjo2)) = (Mpw, Xjoa) = i(?([o o] ek)Lz ®a){(Mpw, ex)
k=1
= i(MHX[O 25 Tk ) £2(Re) (W5 Tk i (X021, Mumr) 12 ma)yHoe (w)
1 k=1
(3.19) = i / Mpmi(y Hg(k) (W) -
Similarly, if f € L% (R?) then by (2.19)
820 [ FB() = M f) = o ) = 3 (e F Moo )
k=1

Next we define the d-parameter Hida test function and distribution spaces (S) and (S)*,
respectively:

Definition 3.3
a) For k =1,2,... let (S)® be the set of G € L?(u) with expansion

= anH

such that

(3.21) G Fsym =D al (2N

where

(3.22) (2N)P = (2- 1)1 (2-2)%2...2m)P~  if B=(Bi,....Bm) €T

The space of Hida test functions, (S), is defined by

(3.23) (S) = ﬂ(S)(k), equipped with the projective topology.
k=1



b) For ¢ =1,2,... let (8) be the set of all formal expansions

G = Z CaHa(w)

such that

(3.24) |Gl sy-0 =Y _ ol 2 (2N)™ < oo .

The space of Hida distributions, (S)*, is defined by

(3.25) (S)" = U(S)(_q), equipped with the inductive topology.
q=1

Note that with this definition we have

(3.26) (S) C L*(u) C (S)*.

Example 3.4 Define fractional white noise, Wy (x), by

(3.27) Wi(z) =Y Mym(z)How(w);  zeR?,
k=1

Then Wy (z) € (S)* because in this case, by (3.3) and (3.5),

(Mpmy,)? () (2N) ="

I
NE

Z alc (2N)

o k=1
= Z(MH (k)il (k)) (1’1) Ce (MH *) ila((ik))g(xd)(Qk)_q
k=1 “d
oo Ha(k) o) 4
2 J 2d
< ZCl(H (al?)i—— )(Qk;)—q <Y (207 < oo
k=1 j=1 k=1

for g > %d + 1 (C} is a constant). Here we have used the estimate

T

(3.28) |MH]/~1n(t)| < Cyns 7 forallt (Cy constant)

from Section 3 of [EvdH].
Note that from (3.27) and (3.19) we have that

ad
0xy...0%4

This justifies the name fractional white noise for the process Wy (x).

(3.29) Byu(z) = Wg(z)  (in (8)*) for all z € RY .

We now define the Wick product just as in [HOUZ], [HOZ1] and [DZ]:

Definition 3.5 Let F = Y a,Ha(w) and G = ) bgHs(w) be elements of (S)*. Then we
acd BeJ
define their Wick product, (F ¢ G)(w), by

)

(3.30) (FoQ)w)= Y aabgHa+ﬁ(w):Z( 3 aabﬁ)m(w).

a,BeT €T  a+B=vy
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Remark It is not hard to prove that FoG € (S)*. Moreover, if F, G € (S) then FoG € (S)
also.

Example 3.6
a) Let f,g € L% (R?). Then by (3.20)

( , deH> © (/d gdBH> > (Munj, f)r2@ay(Muti, 9) r2@ayHeo) 100
R R

7,k=1

= (i(MHﬁjaf)m(Rd)Hg(j)) . (i(Manag)m(Rd)Hg(k))

k=1

Mg

(MH%: f)L2(Rd) (MH77j7 9)L2(Rd)
1

<.
Il

= (/d deH (/Rd gdBH - 2 l(njvMHf)LQ(Rd)(nijHg)LQ(Rd)
= ([, dBu) - ([ 9dBu) = (M. Mug)roces

(3.31) = ([, ram2) - ( /R 9By ~ (f.9) 300 -

b) Similarly, by proceeding as in [HQ, Example 3.9] we obtain that if f € L2, (R?) then

- 1
(3.32) exp’( Z ﬁ
n=1

converges in (S)* and

(3:33) exp (@, £)) = exp((w. f) — 2. Fug @)

We now use multiparamter white noise and the Wick product to define integration of a
general class of processes with respect to By(x) as follows.

Definition 3.7 Let Y (z): R? — (S)* be such that Y (z) o Wy (x) is integrable in (S)* with
respect to Lebesque measure in R?. Then we define

/ Y (2)dBy(x) = / V() o Wi(z)dz
RrRd RrRd
We call this the Wick-1t6 integral with respect to By(z).

Remark Ifd=1and H = 1 this integral represents an extension of the Hitsuda-Skorohod
integral. See e.g. [HOUZ, Sectlon 2.5] for details.
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An example: The stochastic fractional Poisson equation

We now illustrate the use of the theory above by solving the Poisson equation with fractional
white noise heat source:

Let D C R? be a given bounded domain with smooth (C*) boundary. We want to find
U(-): D — (8)* such that

(3.34) AU(z) = —Wg(x) for x € D
(3.35) U(x) =0 for z € 0D
d
(where A = 1 ; 36;2 is the Laplacian operator) and such that U is continuous on the closure
D of D.
From classical potential theory we are led to the solution candidate
(3.36) Ur) = / Gz, y)Wr(y)dy = / G(z,y)dBp(y)
D D

where G is the classical Green function for the Laplacian.
We first verify that U(x) € (S)* for all x. To this end, consider the expansion of U(z):

Ua) = [ Gla) 3 Mmoo (@)

— Zak(x)HE(k) (w), where
k=1

(3.3 orla) = [ Glay) Muml)dy.
By the estimate (3.28) we have
(3.38) jag(w)] < Ck ¥ /D G(x,y)dy < Cyk ™,
and therefore
iai(m)@N)qsk < CF i (Qk)%(Qk)_q < 0o
k=1 k=1

for ¢ > % + 1. )

This proves that U(x) € (S)* and the same estimate gives that U : D — (S)* is contin-
uous.

The proof that AU(z) = =Wy () is identical to the proof given in [HOZ1, Section 3] and
is omitted. We conclude that U(z) given by (3.36) is indeed the solution of (3.34)-(3.35).

Thus we have:

Theorem 3.8 Let H = (Hy,... ,Hy) € (0,1)%. The stochastic fractional Poisson equation
(3.34)~(3.35) has a unique solution U(x) € (S)* given by

(3.39) U(z) = /D Glx,y)dBu(y) .

where G(z,y) is the classical Green function for the Laplacian.

In [HQZ2] conditions are given which ensure that U(z) € L?(u) for all z.
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