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Abstract

We prove an existence and uniqueness result for a general class of
backward stochastic partial differential equations. This is a type of
equations which appear as adjoint equations in the maximum principle
approach to optimal control of systems described by stochastic partial
differential equations.
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1 Introduction

Let B;,t > 0 be an m-dimensional Brownian motion on a filtered probability
space (2, F,F;, P). Fix T' > 0 and let n(w) be an Fr-measurable random
variable. Let

b:[0, 7] x R* x R"™™ — R"

be a given vector field. Consider the problem to find two F;-adapted processes
p(t) € R", q(t) € R such that

dp(t) = b(t.p(t).a(t))dt + (t)dBe.t € (0.T) (L1)
p(T) = n a.s.

This is a backward stochastic (ordinary) differential equation (BSDE). It is
called backward because it is the terminal value p(T") = 7 that is given, not
the initial value p(0). Still p(t) is required to be F;-adapted. In general this
is only possible if we also are free to choose ¢(t) ( in an Fi-adapted way).
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The theory of BSDEs is now well developed. See e.g. [EPQ], [MY], [PP]
and [YZ] and the references therein.
There are many applications of this theory. Examples include the follow-
ing:
(i) The problem of finding a replicating portfolio of a given contingent

claim in a complete financial market can be transformed into a problem
of solving a BSDE.

(ii) The maximum principle method for solving a stochastic control prob-
lem involves a BSDE for the adjoint processes p(t), q(t).

For more information about these and other applications of BSDEs we refer
to [EPQ] and [YZ] and refences therein.

The purpose of this paper is to study backward stochastic partial differ-
ential equations (BSPDEs). They are defined in a similar way as BSDEs,
but with the basic equation being a stochastic partial differential equation
rather than a stochastic ordinary differential equation. More precisely, we
will study a class of BSPDEs which includes the following:

dY (t,z) = AY (t,z)dt + b(t,z, Y (t,x), Z(t,x))dt
+ Z(t,x)dBy, (t,z) € (0,T) x R" (1.3)
Y(T,z) = ¢(w, ) (1.4)

Here dY (t, ) denotes the Ito differential with respect to ¢, while A is a partial
differential operator with respect to x.

The function b : [0, 7] x R" x R x R — R is given and so is the terminal
value function ¢(w,x). We assume that ¢(w,x) is Fr-measurable for all x
and that

E] - d(w, z)*dr] < oo, (1.5)

where F denotes expectation with respect to P. We are seeking the two
processes Y (t,x) and Z(t,z) such that (1.3) and (1.4) hold. The processes
Y (t,x) and Z(t,x) are assumed to be Fi-adapted, i.e., Y(¢t,2) and Z(t,x)
are JF;-measurable for all z € R and we also require that

E[/R /OT{Y(t,m)2+Z(t,x)2}dtdx] < 0. (1.6)

Equations of this type are of interest because they appear as adjoint equations
in a maximum principle approach to optimal control of stochastic partial
differential equations. See [B1] and [@)] for details.

Example 1.1 Consider the following BSPDE:

dY (t,z) = —3AY (t,z)dt + Z(t,z)dBy, (t,z) € (0,T) x R" (1.7)
Y(T,z) = ¢(w,x) (1.8)



Here AY (t,z) = Y"1, PV (1) s the Laplacian with respect to z applied to

Bz?
Y, and ¢(w, x) satisfies E[ [, ¢(w,z)*dz] < oo.
In this simple case, we are able to find the solution explicitly. We first
use the It6 representation theorem to write, for almost all x,

T
b(w,x) = hz) + / o(s,2,0)dB, (1.9)

0

where

h(z) = E[¢(-, z)], (1.10)

g(s,z,-) is Fs-measurable for all s,z and

T

E[/Rn/ g(s, z,-)*dsdz] < oc. (1.11)

Let

@@ = [ i wep -5 My, 120 (a2

be the transition operator for Brownian motion defined for all measurable
f: R"™ — R such that the integral converges. Then it is well known that

2 (Quf @) = $A(@u (@) s
Now define
Y(tz)= QTt(/Otg(s, . w)dB, + h("))
= /0 t(QTftg(s, - w))(2)dB; + (Qr_¢h)(x) (1.14)
Then

dY(t,z) = [ /0 t—%A(QT_tg(s,-,w))(:E)st—%AQT_th(-)(x) dt (1.15)

+ (Qr—1g(t, - w))(z)d B (1.16)
= —2AY(t,z)dt + Z(t, 2)dB;, (1.17)

where
Z(t,x) = (QTftg(tﬂ ,w))(:c) (1'18)

Hence the processes Y (t,x), Z(t,z) given by (1.14) and (1.18) solve the
BSPDE (1.7)—(1.8).



In the general case it is not possible to find explicit solutions of a BSPDE.
However, in Section 3 we will prove an existence and uniqueness result for a
general class of such equations. We will achieve this by regarding the BSPDE
of type (1.3)—(1.4) as a special case of a backward stochastic evolution equa-
tion for Hilbert space valued processes. This, in turn, is studied by taking
finite dimensional projections and then taking the limit. This is the well
known Galerkin approximation method which has been used by several au-
thors in other connections. See e.g. [Bl], [B2] and [P]. We also refer readers
to [PZ] for the general theory of stochastic evolution equations on Hilbert
spaces.

The rest of the paper is organized as follows: In Section 2 we give the
precise framework. The main result and its proof are given in Section 3.

2 Framework

Let V', H be two separable Hilbert spaces such that V' is continuously, densely
imbedded in H. Identifying H with its dual we have

VCH=H"CV", (2.1)

where V* stands for the topological dual of V. Let A be a bounded linear
operator from V' to V* satisfying the following coercivity hypothesis: There
exist constants a > 0 and A > 0 such that

2({Au,u) + Muly, > al|u|[} forall u € V, (2.2)

where (Au,u) = Au(u) denotes the action of Au € V* onu € V.

Remark that A is generally not bounded as an operator from H into H.
Let K be another separable Hilbert space. Let {B;,t > 0} be a cylin-
drical Brownian motion with covariance space K on a probability space
(Q,F,P), ie., for any k € K (B k) is a real valued-Brownian motion
with E[(B;, k)?] = t|k|%. Denote by F; = o(Bs,s < t) the natural, com-
pleted filteration generated by {B;,t > 0}. Recall that a linear operator
S from K into H is called Hilbert-Schmidt if Y .7, [Sk;|3, < oo for some
orthonormal basis {k;,i > 1} of K. Ly(K, H) will denote the Hilbert space
of Hilbert-Schmidt operators from K into H equipped with the inner prod-
uct (S1,90) py(rm) = D ogoq(Siki, Soki). Let b(t,y,z,w) be a measurable
mapping from [0,7] X H X Ly(K, H) x  into H such that b(t,y, z,w) is F;-
adapted,i.e., b(t,y, z,-) is Fi-measurable for all ¢, y, z. Suppose we are given
an Fr -measurable, H-valued random variable ¢(w). We are looking for two
Fi-adapted processes Y;, Z; with values in H and Lo(K, H), respectively, such
that the following backward stochastic evolution equation holds:

dY; = AYydt+b(t,Y;, Z;)dt + Z;dB;,t € (0,T) (2.3)
Yr = ¢(w) as. (2.4)



From now on we assume that the following, (2.5) and (2.6), hold:
There exists a constant ¢ < oo such that

b(t, y1, 21)(w) = b(t, y2, 22) (W) < cllyr — wolu + |21 — 2|Lk,m)  (2.5)
for all (t,y,2) € [0,T] x H x Ly(K, H).

E[/OT b(£,0,0)[2,dt] < 0o (2.6)

3 Results

We now state and prove the main result of this paper.

Theorem 3.1 Assume that E[|¢|}] < oc. Then there exists an unique
H x Ly(K, H)-valued progressively measurable process (Y, Zy) such that

. T T
(i) E[fo |7 dt] < OOvE[fo |Zt|i2(K,H)dt] < Q.
(ii) ¢ = Yi+ [T AYids + [T b(s,Ys, Zo)ds + [T ZdBy; 0<t<T.

Proof. We will complete the proof by three steps.

Step 1. Assume that b(t,y, z,w) = b(t,w) is independent of y and z, and
T
E[fy |b(t)]3dt] < oo.

Ezistence of solution.

Set D(A) = {v;v € V;Av € H}. Then D(A) is a dense subspace of H.
Thus we can choose and fix an orthonormal basis {ej, ...e,,...} of H such
that e; € D(A). Set V,, = span(eq, e, ...,e,). Denote by P, the projection
operator from H into V,. Put A, = P,A. Then A, is a bounded linear
operator from V,, to V,,. For the cylindrical Brownian motion By, it is well
known that the following decomposition holds:

B, - fjﬁk (1)

where {ki, ko, ..., k;, ...} is an orthonormal basis of K, and 3!, = 1,2,3, ...
are independent standard Brownian motions. Set Bj = (3},...,3!"). De-
fine F}* = o(B?,s < t) completed by the probability measure P, and put
¢n = E[P,¢|F}] and b,(t) = E[P,b(t)|F}']. Consider the following backward

stochastic differential equation on the finite dimensional space V,:

dy;* = AY'dt + b,(t)dt + Z'dB; ; t<T (3.2)
Y7 = ¢p(w) as. (3.3)

As A, is a bounded linear operator from V,, to V,,, it follows by the results
of Pardoux and Peng [PP] that (3.2)—(3.3) admits a unique, continuous,
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Fp- adapted solution (Y;*,Z), where Y* € R* =2V, Z' € R" ® R" =
Ly(K,, Vy), K,, = span(ky, ko, ..., k). Next we are going to show that the
sequence (Y}, Z') admits a convergent subsequence. Using It6’s formula, we

find that

E[Y ()] = Elléuf] - 25 / (Y, Py AY™)ds]

—2E[/ <Y by(s) > ds] — E[/ 22 s, (34)

where |Z"|2 To(Kv) = Dige (220 7))? stands for the Hilbert-Schmidt norm.
It follows from (2.2) that

PV i) < Elloli) = oBL| V2 \ds] 4 ABL[ Y7

t
T
vl it + B o)~ B st 69
t
Hence,

T T
E[IY? ) + o / V7t + B[ 122
t

B0l + O+ 0BT [ ] + B[ o) ]

where Z? = Z"P,, and P, is the projection from K into K,, = span(ky, ..., k,).
Therefore,

FIVPR] < Fllo+ O DL st + B oad (30

Set Y;* = [ [Y*[%. Then (3.6) implies that

d (/\—I—l)tyn T
S oo+ B[ 6Bas) 67
t
Hence,
T T
/0 E[Y?[4]ds < C(E[\¢l3) + B / b(s) 3, ds)), (3.8)
where C' is an appropriate constant. This together with (3.5) yields that
T
sup{ [ BV lds} < oo (3.9)
n ()T
supf [ BV} 1ds) < o (3.10)
n ()T )
sup{ / B[ 272 e m)ds} < o (3.11)



For a separable Hilbert space L, we denote by M?([0,T], L) the Hilbert space
of progressively measurable, square integrable, L-valued processes equipped
with the inner product < a,b >y = E[fOT < ag, by >y dt]. By the weak
compactness of a Hilbert space, it follows from (3.10) and (3.11) that a
subsequence {ny, k > 1} can be selected so that Y k > 1 converges weakly
to some limit YV in M?([0,T],V), and Z™, k > 1 converges weakly to some
limit Z in M?([0, T, Ly(K, H)). Let us prove that ( a version of )(Y,7) is a
solution to the backward stochastic evolution equation (2.3) and (2.4). For
n > 1 > 1, we have that

= (AYP, e)dt + (bn(t), e)dt + (ZPd B, ;) (3.13)

Let h(t) be an absolutely continuous function from [0, 7] to R with A/(-) €
L*([0,T7]) and h(0) = 0. By the Itd formula,

(Y7, e)h(T) (3.14)
:i/Th@ﬂAﬁﬂeﬁﬁ41/Th@ﬂmﬁyeﬁﬁ (3.15)

T t T
+ / h(t)d( / ZMdB,, ;) + / (VR e (B)dt. (3.16)
0 0 0
Replacing n by ny in (3.16) and letting £ — oo to obtain
(¢, ei)h(T) (3.17)
T T
_ / h(t)(AY;, ) dt + / h(£) (b(2), e:)dt (3.18)
0 0

+/0Th(t)d</0t ZSdBS,6i>+/OT<Yt,ei)h’(t)dt. (3.19)

From (3.16) to (3.19), we have used the fact that the linear mapping G from
M?([0, T, Ly(K, H)) into L?(2) defined by

T t > (T .
6(2) = [ wial[ ZaBe) =3 [ hie)zi). )i
0 0 = Jo
is continuous. So, the convergence of (3.16) to (3.19) takes place weakly in

L*(Q). Fix t € (0,T) and choose , for n > 1,

1, s>t 4+ =

hn(s) =1 —2(t+5-—5), t—5 <s<t+5

0, s<t—

With A(-) replaced by h,(-) in (3.19), it follows that

(0, €;) :/0 hn(5)<AYS,ei)ds+/0 hn(8)(b(s),e;)ds (3.20)
4 / " ha(s)d / SZudBu,ei)—i—% / t+lm<y;,e,->ds. (3.21)

2n



Sending n to infinity in (3.21) we get that
T T
(p,e;) = / (AYs,e;)ds —l—/ (b(s),e;)ds (3.22)
' T ' s
¢ 0

for almost all ¢ € [0, 7] ( with respect to Lebesgue measure).
As i is arbitrary, this implies that

T T T
¢:/ Aster/ b(s)ds+/ Z.dB, +Y,. (3.24)
t t t

for almost all ¢ € [0, 7] ( with respect to Lebesgue measure).
For t € [0,T], define

R T T T
Y, =¢— / AY,ds — / b(s)ds — / Z.dB,
t t t

Then we see that (Y;, Z;) also satisfies (ii) in the Theorem 3.1 with Y replaced
by Y for all ¢t € [0, T]. Hence, (Y}, Z;) is a solution to the equations (2.3) and
(2.4).

Uniqueness: o
Let (Y;, Z;) and (Y3, Z;) be two solutions of the equation (2.3). Then

T T
[ aw-vaas+ [(z-zoan+ vi-¥y =0 (325)
t t
Applying 1t6’s formula, we get
— T —
0= Y- Ty +2 [ (v~ Vo) (3.26)
T t B ~ T B
2 [ A VO Tlds+ [ 120 Zwmds (320)
t t

where M, = [\/(Z, — Z,)dB,. By (2.2),we get that

T

T
B[V, - Vi3] = —2 / Bl(A(Y, — Y2), Y, — V.)]ds — B / Ze— 242, e ]
t t
T B T _

<-a / E[||Y, — T3/ [2]ds + A / E[[Y, — ¥.[2]ds

Tt ) t
< [ EQY. - Vifids

t

By a Gronwall type inequality, it follows that E[|Y; —Y;|%] = 0, which proves
the uniqueness.



Step 2. Assume that b(t,y, 2)(w) = b(t, z)(w) is independent of y.
Set Z? = 0. Denote by (Y;*, Z") the unique solution of the backward
stochastic evolution equation:

dY = AYdt +b(t, 2 ")dt + Z'dB, (3.28)
Yi = ¢w). (3.29)

The existence of such a solution (Y;*, Z') has been proved in step 1. Putting
M} = [ Z"dB,, and by Ito’s formula we get that

0= \Yq’fﬂ — Yf‘\%{ (3.30)
T
— ‘Y;/n+1 - Y;nﬁq + 2/ <A(Y;n+1 - Y;n))y;n#»l - Y'Sn>ds (331)
. t
+ 2/ (b(t,Z") —b(t, Z" 1), Y —Y™")ds (3.32)
t

T T
2 [ oyt )+ [ 12 - 2 ends (339)
t t

In virtue of (2.2), for ¢ > 0,

T
BV = Y7l + B 120 = 220 (334
t
T
= —2B[ [ (A ¥, Y - Vs (3:35)
Tt
— 2B [ (bt 22) — bt 2V = Vs (3:36)
' T T
<AB[ et o vrfds) - aBl [V VIR (330)
t t

T 1 T
2B, 22) ~ bt 22 Vsl + SB[ VI =Y (338)
t t

1

50, Where ¢ is the Lipschitz constant in (2.5). It follows from

Choose ¢ <
(3.38) that

T T
BV — Y] + B / 120 = 202 ds) + 0| / Y~ YR ds]
t t

<O DEL W =Y + 3812 = 2 mds] (339)



Hence,

d 1 T
- O [yt v a (3.40)
T
l n n
+ e(’\+s)tE[/ | Z8 = Z213 e iy ds) (3.41)
t
T
+ac D] [y - v (3.42)
t
T
1 n e
<3 120 = 227 ] (3.43)

From here, following a similar proof as in [PP] we will show that (Y, Z")
converges to some limit (V,Z) in the product space of M?([0,T],V) and
M2([0’ T]a LZ(Ka H))

Let 6 = A+ L. Integrating both sides in (3.43) we get that

T T T
B[ e - vifdsl+ B[ 120 - 20 emdsieae
0 0 ¢
T T
o [CE([ e - v dsietar
0 ¢
T T
< %/0 E[/ |20 — Z2 73 ey dis]e” dt (3.44)
t
In particular,
T T
| B 1200 = 220 sl
0 t
T T
<t [ B[ 1222 Rmddeta (349)
0 t
This implies that
T T
| B 120 = 22 e astear < (e
for some constant C'. Thus, it follows from (3.44) that
T 1
B[ vt - vrpds) < ()C (3.46)
0
Hence, we conclude from (3.39) that

T T
E[/o |Z?+1 - Zg‘i2(K,H)d5] < (%)ncﬁ + %E[/o \Zy — Zgil‘%g(K,H)dS]
(3.47)
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Using the above inequality repeatedly gives

T T
ﬂllﬂ“—zﬁwwﬂﬂé@ﬁowﬁ+ﬂlIﬂimmﬁo (3.48)

Combining (3.39) and (3.47) we have that

T 1 T
B[ IV = Y2IRds] < (30 + 008 + L[ |2 ymmdsl} (349

It follows now from (3.48) and (3.49) that the the sequence (Y}, Z}'),
n > 1 converges in M?([0,T],V)x M*([0,T], Lo(K, H)) to some limit (Y;, Z;).
Letting n — oo in (3.28), we see that (Y;, Z;) satisfies

T T T
Yt+/ Aster/ b(s,ZS)der/ Z,dB; = ¢ (3.50)
t t t

i.e., (Y3, Z;) is a solution to equation (2.3).

Uniqueness o
Let (Yy, Z;) , (Y3, Z;) be two solutions to (3.50). By Itd’s formula , as in
(3.27) we have

T
EIY;— Vil + B[ 12, ~ 2 (351)
T ! B B
_ —2E[/ < A(Y,=Y,).Y, =Y, > ds] (3.52)
Tt 3 B
_2E] / (b(t, Z) — b(t, Z)), Y — V.)ds] (3.53)
! T B T 3
<ABL[ Y.~ Vifydsl — aBL [ |1V, - YilFas (3.54)
tT 7 t r 7
3B 17— 2l e+ B[ V=Vl 655)
Consequently,
j— T —_
BNV~ Ti) < v+ OBL[ 1Y, - ifhds) (3.56)
t

By Gronwall’s inequality |, B
;=Y

which further implies Z, = Z, by (3.55).

11



Step 3. General case b(t, z,y)(w).
Let Y2 = 0. Define , for n > 1, (V"™ Z""!) to be the solution of the

equation:
A =AYt 4 b(t, Y, 20 de + 20N dB, (3.57)
Y o= ¢ (3.58)
The existence of (V;"*1, Z"™) is contained in step 2.
Similarly as in step 2 we can show that (V"™ Z!) converges to some

limit (Y;, Z;), and moreover (Y3, Z;) is the unique solution to equation (2.3).
We omit the details .

Example 3.2 Let H = L?(R%), and set

V = Hy(RY = {u € L*(R%); Vu € L*(R? — RY)}
Denote by a(z) = (a;;(z)) a matrix-valued function on R satisfing the uni-
form ellipticity condition:

—I; <a(x) <cly for some constant ¢ € (0, 00).
c

Let f(z) be a vector field on R? with f € LP(R?) for some p > d. Define
Au = —div(a(z)Vu(z)) + f(z) - Vu(z)

Then (2.2) is fulfilled for (H,V, A). Thus, for any choice of cylindrical Brow-
nian motion B, any drift coefficient b(¢,y, z,w) satisfying (2.5) and (2.6) and
terminal random variable ¢, the main result in Section 3 applies.
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