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Abstract

For a wide class of models concerning the optimal harvesting of a natural resource, an
expected profit maximizer will not deplete the resource completely if its relative growth
rate is strictly greater than the discount rate. This well-known principle is extended to
preferences with durability in consumption, and which are risk averse (or linear) suffi-
ciently close to zero, as long as immediate depletion yields finite utility.
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Introduction.

It is well known that if the relative growth rate of a resource is (uniformly) less than of money
(i.e. the economic discount rate), then a profit maximizer will deplete the resource completely
and immediately if this is possible and costless. Thus, from a conservationist point of view,
high interest rate is a «bad» as it represent less value of saving for future times and may lead
to the extinction of populations and entire species and the irrecoverable loss of non-renewable
natural resources. There are many generalizations to models with uncertainty, see e.g. [LO],
[AS] and [A], all of whom find that when maximizing expected total discounted harvest, the
presence of uncertainty will lead one to wait for a higher population (i.e. the opposite effect
of the discounting term). However, they do all consider Brownian (Gaussian) noise, and as
pointed out by the author in [F], this choice of probability distribution is crucial as introducing
qualitatively different zero-mean noises may in fact lead to downwards reflection at popula-
tions lower than in ; however, the non-depletion criterion remains, as it is shown that one will
not immediately deplete the population completely if relative growth rate at zero exceeds the
(constant) discount rate, just as in the Gaussian (or deterministic) case.

The object of this paper is to show that the same criterion will imply that complete depletion
cannot be optimal, under a quite general class of preferences. It turns out that in this respect,
linear utility still is the «worst case» among the risk averse, which is not & priori obvious as
consumption now is certain while future consumption is not. We assume a setting where a
single harvester completely and cost free controls the irreversible harvesting of the resource
and posesses the relevant information on population size and relative growth rate at 0.
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The preferences.

With preferences represented by a utility function of the consumption rate, there might not
be any substitute to consumption at a given time (i.e. a non-degenerate time interval I).
For example, if utility at zero is —oo, then not consuming in I will yield the worst possible
outcome. In a more realistic setting, a positive portion consumed should keep the agent
satisfied at least for some short time interval, and consumption at two close points in time
should be considered close substitutes. A theory for such kinds of preferences was developed
by [HHK] in the deterministic case, and by [HH] under uncertainty. In this paper, we shall
assume that the direct utility rate does not directly depend on consumption from harvesting,
though this may be obtained as a limiting case. Instead, we shall consider utility depending
on a process R representing present and (decaying) memory of past consumption. For our
purposes, we choose to model R such that if ¢ > 7, where 7 is last time of consumption, then

R(t) = F(t,7) - R(tT).

Thus, consumption at time 7 is «forgotten» according to the decay function F, which is
assumed to be of the form F(t,7) = exp{— f:p(s) ds}. The motivation of the exponential
form is that we want R to behave in some sense regularly also at times 71 for which there is
no consumption (i.e. R continuous at 71);if ¢ > 71 > 7, we require

R(t) = F(t,m) -R(Tf_) =F(t,n) - F(r,7) - R(rT),

which together with the assumptions that /' is continuous and satisfies F'(¢,¢) = 1 imply that F
represents exponential decay. The decay coefficient p will usually be thought of as positive; we
shall assume weaker conditions, see below. This far, we have not yet specified how consumption
affects R. The intuitive is to assume that R increases as the amount harvested less the amount
forgotten, i.e. dR = —pRdt +dH. However, in some settings it is more convenient to assume
dR = —pRdt 4+ pdH;if p then tends to oo, then R(#) will tend to dH/d¢ if the latter exists,
i.e., we obtain the classical case as a limit as memory fades infinitely fast. For a flexible
formulation, which also may incorporate future technological development in harvesting the
resource, we shall assume that for some &, we have

dR(t) = —p(t) R(t) dt + k(t) dH (1) (1)

with initial value k(0)r. Of course, one may want to harvest immediately; assuming H(07) = 0
without loss of generality, we have R(07) = £(0)(r + H(0T)). Note that if k is a constant
times the efficiency of the technology, then the quantity v := &’/k to appear below, has a nice
economic interpretation as the relative improvement rate of the technology. We assume that

!/

p, kand v := % all continuous at 0, with £(0) > 0. (2)

We then assume that direct utility rate at time ¢ is Y (¢, R(t)), where T defined on (R*)?
satisfies

t — Y(t,r) is continuous for small enough ¢ > 0 (3)

r— T(t,r) is a difference between convex functions. (4)

We write Y/ and T for the almost everywhere defined two first derivatives with respect to r.
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The optimal control problem.

Consider an agent who wants to maximize expected total utility from harvesting from a
population X. It turns out — see the «Concluding remarksy — that X may be a quite general
process. To simplify, we shall assume that X follows the It6 stochastic differential equation

dX (1) = X (1) - (B(X (1) dt + o (X (1)) dBt—i—/n(X(t‘),z)N(dt,dz)) —dH(t)  (5)

with initial value z. Here, B is a standard Brownian motion, N is compensated Poisson
measure with Lévy measure ¢ (i.e., dN = dN — dgdt where N([0,?], A) measures the number
of jumps whose amplitude is in the (Borel) set A\ {0}.) We assume

B lower semicontinuous at 0, 7 bounded near 0 and li{‘n zo?(z) =0 (6)
z\0
H is our control, the total harvested amount up to and including time ¢; of course, the
harvested process should remain nonnegative, so we assume

n>-1; noHst X(t7)— (H(tY)— H(t7)) < 0is admissible; 0 is a trap for X. (7)

A priori, the agent should be permitted to choose among a possibly quite large class of pre-
dictable (i.e. non-anticipating left continuous) non-decreasing harvesting processes satisfy-
ing (7). However, as the purpose of the paper is to give sufficient conditions that it is not
optimal to harvest everything at once, restricting the class of strategies will be convenient and
represents no loss of generality. Specifically, we shall consider the strategies H, where «most
of» the population is harvested immediately, and after a short deterministic time 7, the rest
is harvested. Therefore it suffices to assume that at time 0 one harvests H,(0%) = z — &
(where ¢ > 0 is small); we then let X = X¢ (starting from X (0%) = £) evolve until time 7,
when we harvest X¢(7). Our purpose is to give conditions under which the strategy Ho = §
described by choosing 7 = 0 or equivalently £ = 0, cannot be optimal. The performance to be
maximised is supposed to be

T
J(H) = Jp(H) = EI/O Y(t, R(t)) dt,

where T is a finite or infinite deterministic horizon. We want to use a weak optimality criterion,
namely «sporadically catching up,» i.e., H* is SCU-optimal if for all admissible H,

limsup (Jr(H*) — Jr(H)) > 0.
T—T

Also, we will consider the stronger «overtaking» criterion, i.e. H* is OT-optimal if for all
admissible H,
Jr(H*) — Jr(H) >0 for all large enough T < T.

We shall assume that B
|Jr(T)| <00 VT <T (8)

(if not, there is nothing to prove.) On the technical side, we assume that if p explodes in a
non-integrable manner, then

/T F2(t,0)|T"(t, F(t,0)(r + 2)k(0)) dt < 00 VT < T. 9)
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Non-optimality of immediate total depletion.

Let us state the result in a very general form:
THEOREM.
Assume (1) - (9). Consider
T
K(T) := (5(0) + p(0) + v(0)) / F(t,0) - Y'(t, (z 4+ 2)k(0) F(t,0)) dt = T'(0, (z + 2)k(0)).
0

If K(T) > 0 for all large enough T < TJ then Hy = i is not OT-optimal. If K is also bounded
away from 0 for all large enough T < T, then Hy = i is not SCU-optimal.

Proof. With the above described strategy H,, we have for each T < T,
Jr(H;) = / Yt (r+z—&)k(0)F(¢0))dt
0
T
+ / E[Y(t F(t,0){(r +2 — £)k(0) + XE(r)k(T)F(0, )} dt

where X¢ means the process when started at X (0%) = &, Assume first that T is C? in r.
Differentiating with respect to 7 and evaluating at 7 = 0% yields:

I (H)| =00, 2 = OR0) = T(0, (4 2)k(0)
£ [ [0+ 90) £ 50)P(0) Y0, Pt 0)(+ 2K0)
FEAQOF (LK) X F0) (4 2)k0)  (10)
+ [ (T PO+ 2 - €n(6,2)) - Y, P,0)(+ )
~ (. RO)F (0T, (r+ 2)F(1,0))) g(d2)] dr

If T merely satisfies (4), we approximate with r-smooth functions and (10) still holds, noting
that the integrands are defined d¢-almost everywhere. Now (10) vanishes for £ = 0, so we
divide by £ and pass to the limit inferior using (6), to get k(0) K (7). Now let T' grow, and the
conclusion follows. O

COROLLARY.

Assume T = oo and Y (t,r) = e~*u(r) with u concave on (0, (r+z)k(0)), and p constant and
> —6. If 3(0) > 6 —v(0), then K(T) is bounded away from 0 for all T large enough and thus
i is not SCU-optimal. In particular, if k is constant at 0, such as in the particular cases k = 1
and k = p, we recover the classical condition $(0) > 4.

Proof. Observe that the coefficient in front of the integral is positive, and that by concavity,
F(t,0)T(t, (r 4+ )k(0)F(t,0)) > e~?+)%/((r + 2)k(0)). Substitute this and calculate ex-

plicitely the overestimate, and note that it is increasing at infinity. O
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This also exhibits linear utility as «worst case». But even an expected profit maximizer will
not want to deplete the population immediately if growth at 0 exceeds the interest rate less
the «relative technological improvement rate» 7, just as in the case where R equals the harvest
rate itself. Rather than using concavity, we may sometimes want a stronger result for a given
utility function:

Example. In the setting of the Corollary, assume u to be CRRA, i.e. u/(z) = 27?7 for some
p > 0. Then if § < p(p — 1), then K(T) will tend to 400 as T does; if not, K(o0) > 0 if
B(0) > 6 —v(0) — pp, an improved estimate. A

Concluding remarks.

We remark that all coefficients may be time-dependent, even stochastic if independent of B
and N; obviously, under the appropriate uniformity conditions, non-depletion at time zero
extends to non-depletion at all future times as well. This may be extended even further; we
may achieve a similar (under)estimate on K if the process is regular enough to admit our
use of the Ité formula (i.e. semimartingale), and we have appropriate uniform bounds on the
coefficients at z = 0. In this way, we can allow for many interacting populations and processes
with memory or time-dependent coefficients.
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