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Abstract

The stochastic integral representation for an arbitrary random
variable in a standard L2-space is considered in a case of a general
L2-continuous martingale as integrator. In relation to this, a certain
stochastic derivative is defined. Through this derivative it can be seen
whether the random variable admits the above type integral repre-
sentation. In any case, it is shown that this derivative determines
the integrand in the stochastic integral which serves as the best L2-
approximation to the random variable considered. For a general Levy
process as integrator some specification of the suggested stochastic
derivative is given; in this way, for Wiener process, the known Clark-
Ocone formula is derived.

Key-words: non-anticipating integration, stochastic derivative, in-
tegral representation, Levy processes, Clark-Ocone formula.

Some preliminaries. We are to recall the Ito type non-anticipating
integration scheme in the L2-space

H = L2(Ω, A, P )

of real random variables ξ:

‖ξ‖ = (E|ξ|2)1/2 ,

involving as integrator a general H-continuous martingale ηt, 0 ≤ t ≤ T ,
with respect to an arbitrary filtration

At, 0 ≤ t ≤ T .
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The integrands are considered as elements of a certain functional L2-space of
measurable stochastic functions

ϕ = ϕ(ω, t) , (ω, t) ∈ Ω × (0, T ]

with a norm

‖ϕ‖L2 =
(∫∫

Ω×(0,T ]

|ϕ|2 P (dω)×d[η]t(ω)
)1/2

=
(
E

∫ T

0

|ϕ|2 d[η]t

)1/2

given by means of a product type measure

P (dω) × d[η]t(ω)

associated with a stochastic function [η]t, 0 ≤ t ≤ T , having monotone
right-continuous trajectories such that

E(∆[η]|At) = E(|∆η|2|At)

for the increments ∆[η] and ∆η on intervals

∆ = (t, t + ∆t] ⊆ (0, T ] .

In particular, for the Levy process ηt, 0 ≤ t ≤ T , as integrator (Eηt = 0,
Eη2

t = σ2t), the deterministic function

[η]t = σ2t, 0 ≤ t ≤ T,

is applicable.

For simple functions ϕh:

ϕh =
∑
∆

ϕh 1∆(s), 0 ≤ s ≤ T,

having their permanent At-measurable values ϕh ∈ H on the h-partition
intervals

∆ = (t, t + ∆t] :
∑

∆ = (0, T ] (∆t ≤ h),

the stochastic integrals are defined as∫ T

0

ϕh dηs
def
=

∑
∆

ϕh · ∆η
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with summation over the partition intervals; here, it is assumed that

E
(
ϕh∆η

)2

= E
(
|ϕh|2 · E(|∆η|2|At)

)
=

E
(
|ϕh|2 · E(∆[η]|At)

)
= E

∫
∆

|ϕh|2 d[η]s < ∞ ,

which gives

E
( ∫ T

0

ϕh dηs

)2

= E

∫ T

0

|ϕh|2d[η]s .

And, in general, the integrands ϕ are identified as limits

ϕ = lim
h→0

ϕh(1)

in the involved functional L2-space: ‖ϕ−ϕh‖L2 −→ 0, for appropriate simple
functions ϕh; the corresponding stochastic integrals are defined as limits∫ T

0

ϕ dηs = lim
h→0

∫ T

0

ϕh dηs(2)

in H, with

‖
∫ T

0

ϕ dηs‖ = ‖ϕ‖L2 .

According to the simple functions structure, the integrands can be char-
acterized in the above functional L2-space as functions ϕ on the product
Ω × (0, T ] which are measurable with respect to the σ-algebra generated by
all rectangles of form A × (t, t + ∆t], with A ∈ At (note, the above rect-
angles constitute the so-called semi-ring and their indicators constitute a
complete system in the L2-subspace of functions, measurable with respect
to the σ-algebra generated). In a case of Levy process as integrator, this
characterization can be simplified by identification of the integrands as the
stochastic functions ϕ, having At-measurable values ϕt, 0 ≤ t ≤ T :∫ T

0

‖ϕ‖2dt < ∞ .

Also, to characterize the functional L2-subspace of all integrands, one can
consider the complete system of a particular form integrands

ϕ · 1(σ,τ ](t), 0 ≤ t ≤ T,
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having Aσ-measurable values ϕ on random intervals (σ, τ ] with stopping times
σ, τ (0 ≤ σ < τ ≤ T ):

‖ϕ 1(σ,τ ]‖2
L2

= E
[
|ϕ|2

(
[η]τ − [η]σ

)]
< ∞ ,

∫ T

0

ϕ1(σ,τ ] dηs = ϕ (ητ − ησ) .

Note, in the (1)-(2) integration scheme any h-partitions (h → 0) can be
applied thanks to the H-continuity of the integrator:

‖∆η‖ −→ 0, ∆t → 0,

for the increments ∆η = ηt+∆t − ηt in H; in particular one always can apply
the monotone h-partitions, having increasing sets of partition points (with
h → 0) which altogether represent some dense set {t} on the considered
interval (0, T ].

The following questions seem to be of general interest. Whether a random
variable

ξ ∈ H

admits representation by the (2)-type stochastic integral, and, in any case,
how the best integral approximation to ξ:

ξ̂ =

∫ T

0

ϕ dηs(3)

can be determined; here ξ̂ is meant to be the projection of ξ onto the subspace
H(η) of all stochastic integrals with the considered integrator ηt, 0 ≤ t ≤ T .
To be more precise the latter question is how the above integrand ϕ can be
determined through the corresponding (1)-type simple integrands ϕh.

And, regarding these questions, it also seems of interest to consider a more
general case with the subspace H(η) of random variables ξ̂ in H, admitting
the stochastic integral representation of a form

ξ̂ =
n∑

k=1

∫ T

0

ϕk dηk
s(4)

- with respect to some system of the orthogonal martingales

ηk
t , 0 ≤ t ≤ T (k = 1, . . . , n)
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as integrators (including the case n = ∞).

For illustration, we refer to the known Black-Scholes type Markets where
for the pre-considered desirable gain ξ, the corresponding achievable gain ξ̂,
as the ”best” approximation to ξ, should be determined through the (4)-type
representation - cf. [3], [4].

We can answer to the above questions as follows.

Stochastic derivatives and L2-approximations with stochastic in-
tegrals. With no loss of generality, we can assume that the considered H-
continuous martingale ηt, 0 ≤ t ≤ T , does not degenerate, having non-zero
increments

∆η = ηt+∆t − ηt

on all intervals
∆ = (t, t + ∆t] ⊆ (0, T ] .

For the random variable ξ ∈ H, let us define its stochastic derivative Dξ
with respect to the integrator ηt, 0 ≤ t ≤ T , as

Dξ
def
= lim

h→0
E

(
ξ

∆η

‖∆η‖2
t

|At

)
(5)

- to be more precise,

Dξ = lim
h→0

∑
∆

E
(
ξ

∆η

‖∆η‖2
t

|At

)
1∆(s), 0 ≤ s ≤ T,

being as the (1)-type limit ϕ = Dξ of the simple functions ϕh with their
values

ϕh = E
(
ξ

∆η

‖∆η‖2
t

|At

)
(6)

on the h-partition intervals ∆ = (t, t + ∆t], where

‖∆η‖2
t = E

(
|∆η|2|At

)
- cf. [1], [2], [8].

Theorem. Stochastic derivative (5) − (6) is well defined for any ξ ∈ H,
and ξ admits unique integral representation

ξ = ξ0 +

∫ T

0

Dξ dηs(7)
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through its derivative Dξ and the corresponding ξ0 ∈ H:

Dξ0 = 0.

Proof. With the monotone h-partitions, for the subspace

H(η) ⊆ H

of all (3)-type stochastic integrals, we have

H(η) = lim
h→0

∑
⊕H(∆η)(8)

as the limit of the indicated orthogonal sums with their components H(∆η)
as subspaces of the corresponding variables in H of a form

ψ · ∆η ,

with the At-measurable multiplicators ψ for the increments ∆η on the h-
partition intervals ∆ = (t, t + ∆t]. A projection of ξ onto H(∆η) is

ϕh · ∆η ,

with the multiplicator ψ = ϕh:

ϕh = E
(
ξ

∆η

‖∆η‖2
t )
|At

)
- cf. (6). Indeed,

E|ϕh · ∆η|2 < ∞
since

|ϕh|2E(|∆η|2|At) ≤ E(ξ2|At) ,

and the following relation

E
(
(ξ − ϕh∆η)(ψ∆η)|At

)
= ψE(ξ∆η|At) − ψϕhE(|∆η|2|At) = 0

implies the orthogonality condition

E
(
ξ − ϕh∆η

)(
ψ∆η

)
= 0 .

Hence, projections of ξ onto the (8) pre-limit orthogonal sums are

∑
∆

ϕh∆η =

∫ T

0

ϕh dηs ,
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where the integrands ϕh are the simple functions with the values ψ = ϕh on
the intervals ∆ = (t, t+∆t], and these simple functions are exactly the same
as in the limit formula (5)-(6). Of course, the (3)-form projection ξ̂ of ξ onto
the subspace H(η) of all integrals is represented by some particular integral
being a limit

ξ̂ =

∫ T

0

ϕ dηs = lim
h→0

∫ T

0

ϕh dηs

in H, and here the integrand ϕ is the (1)-type limit of the simple functions
ϕh, according to

‖
∫ T

0

ϕ dηs −
∫ T

0

ϕh dηs‖ = ‖ϕ − ϕh‖L2 .

Thus in representaiton (7) with the integrand ϕ = Dξ, the difference

ξ0 = ξ −
∫ T

0

ϕ dηs

is orthogonal to H(η) and according to what was already shown, Dξ0 = 0.
The proof is over.

We are to stress that representation (7) leads to the (3)-type integral
approximation to ξ as

ξ̂ =

∫ T

0

Dξ dηs.

A more general result is as follows.

Corollary. For the orthogonal martingales

ηk
t , 0 ≤ t ≤ T, (k = 1, 2, . . . )

and the subspace H(η) of the (4)-type variables in H, the projection ξ̂ of ξ
onto H(η) is

ξ̂ =
∞∑

k=1

∫ T

0

ϕk dηk
s ,

with the integrands

ϕk = lim
h→0

E
(
ξ

∆ηk

‖∆ηk‖2
t

|At

)
, (k = 1, 2, . . . )(9)

as the stochastic derivatives with respect to the corresponding integrators - cf.
(5)-(6).
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Of course, in particular situations the suggested stochastic derivative ad-
mits particular specifications. For illustration we consider the following ex-
amples.

Stochastic derivatives with respect to Levy processes as integra-
tors. As usual, let’s assume that the filtration At, 0 ≤ t ≤ T , is generated
by the very integrator ηt, 0 ≤ t ≤ T (note, in this case, the filtration is
continuous).

Example (derivatives with respect to Wiener process). Let ηt, 0 ≤ t ≤ T
be Wiener process with a diffusion coefficient σ2.

A tipical simple situation can be as follows: the random variable ξ is
Normal (jointly with ηt, 0 ≤ t ≤ T ), having its correlation

E ξηt, 0 ≤ t ≤ T,

with the integrator; then the stochastic derivative can be specified as

Dξ =
1

σ2

d

dt
E ξηt, 0 ≤ t ≤ T (a.e.).(10)

Indeed, the projection ξ̂ on the subspace H(η) admits representation (3) with
the deterministic integrand ϕ = Dξ and

Eξηt = E
( ∫ T

0

ϕdηs · ηt

)
= σ2

∫ t

0

ϕ ds, 0 ≤ t ≤ T.

In another typical situation, the random variable

ξ = F (ηt1 , . . . , ηtn)

is a function of the variables ηt1 , . . . , ηtn :

0 = t0 < t1 < . . . < tn ≤ T.

Here, ξ can be treated as the corresponding function

ξ = f(∆ηt1 , . . . , ∆ηtn),(11)

of the increments

∆ηti = ηti − ηti−1
(i = 1, . . . , n) ,
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for

f(x1, . . . , xn)
def
= F (x1, . . . ,

n∑
i=1

xi), (x1, . . . , xn) ∈ Rn.

Suppose f(x1, . . . , xn) is a smooth function of (x1, . . . , xn) ∈ Rn, such that
its derivatives of order k (k = 0, 1, 2) satisfy majorant conditions of a form

| ∂k

∂xk
i

f | ≤ C
n∏

j=1

eε|xj |2

for any ε > 0 and an appropriate constant C. Then the stochastic derivative
can be specified as follows:

Dξ =
n∑

i=1

E
( ∂

∂xi

f(∆ηt1 , . . . , ∆ηtn)|As

)
1(ti−1,ti](s), 0 ≤ s ≤ T.(12)

A proof requires a few elementary steps.

First of all, for the intervals ∆ = (t, t + ∆t] from the monotone h-
partitions,

∑
∆ = (0, T ]: ∆t ≤ h, such that

ti−1 < t < t + ∆t ≤ ti ,

let us consider the difference

∆f = f(. . . , ∆ηti , . . . ) − f(. . . , ∆ηti − ∆η, . . . ) .

We see that ∆η = ηt+∆t − ηt is independent of the events of the σ-algebra At

and the variable f(. . . , ∆ηti − ∆η, . . . ), taken alltogether, and therefore

E[f(. . . , ∆ηti − ∆η, . . . )∆η|At] = E[f(. . . , ∆ηti − ∆η, . . . )|At]E∆η = 0 .

Hence, with ‖∆η‖2
t = ‖∆η‖2 = σ2∆t, we have

E
(
ξ

∆η

‖∆η‖2
t

|At

)
= E

(
∆f

∆η

‖∆η‖2
|At

)
.

Now, we apply Taylor approximations as follows

∆f− ∂

∂xi

f(. . . , ∆ηti−∆η, . . . )·∆η =
∂2

∂x2
i

f [. . . , (∆ηti−∆η)+θ∆η, . . . ](∆η)2

and

∂

∂xi

f(. . . , ∆ηti , . . . )−
∂

∂xi

f(. . . , ∆ηti−∆η, . . . ) =
∂2

∂x2
i

f [. . . , (∆ηti−∆η)+θ∆η, . . . ]·∆η
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where 0 ≤ θ ≤ 1. Then, thanks to the majorant conditions, we see that

‖∆f∆η − ∂

∂xi

f(. . . , ∆ηti − ∆η, . . . )(∆η)2‖ ≤ C‖eε|∆η|2|∆η|3‖ = O(h
3
2 )

and

‖ ∂

∂xi

f(. . . , ∆ηti , . . . )−
∂

∂xi

f(. . . , ∆ηti−∆η, . . . )‖ ≤ C‖eε|∆η|2 |∆η|‖ = O(h
1
2 ).

Hence, we have

lim
h→0

‖E
(
ξ

∆η

‖∆η‖2
t

|At

)
− E

( ∂

∂xi

f(. . . , ∆ηti , . . . )|At

)
‖ = 0.

The next step is to consider the stochastic function in H

ϕ :=
n∑

i=1

E
( ∂

∂xi

f(∆ηt1 , . . . , ∆ηtn)|As

)
1(ti−1,ti](s) 0 ≤ s ≤ T,

which is uniformly H-continuous on the open intervals (ti−1, ti), with∫ T

0

‖ϕ‖2 d[η]s = ‖ϕ‖2
L2

< ∞.

Let us write ϕh for the ϕ values at the end points t of the h-partition intervals
∆ = (t, t+∆t]; clearly, the corresponding simple functions ϕh with the above
permanent values on the intervals ∆ converge to the function ϕ in the sense
that

lim
h→0

‖ϕh − ϕ‖L2 = 0

- cf. (1). As it was shown in the first step, for every partition point t, we
have

lim
h→0

E
(
ξ

∆η

‖∆η‖2
t

|At

)
= E

( ∂

∂xi

f(. . . , ∆ηti , . . . )|At

)
,

and this shows that the above simple functions ϕh are exactly the same as
(5)-(6); thus

Dξ = ϕ

- cf. (12). The proof is over.

Clearly, coming back from f(∆ηt1 , . . . , ∆ηtn) to F (ηt1 , . . . , ηtn), we are
just to modify representation (12) as

DF (ηt1 , . . . , ηtn) =
n∑

i=1

E
( ∂

∂xi

F (ηt1 , . . . , ηtn)|As

)
1(0,ti](s), 0 ≤ s ≤ T,(13)
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which gives the known Clark-Ocone formula for the integrand ϕ = Dξ in the
stochastic integral representation

ξ =

∫ T

0

ϕdηs

-cf. [6], [7].

Example (derivatives with respect to ”jumping” Levy processes). Let ηt,
0 ≤ t ≤ T , be the ”jumping” process with homogeneous independent incre-
ments:

Eeiu∆η = exp
{

∆t

∫ ∞

−∞
(eiux − 1 − iux)G(dx)

}
for the increments ∆η on intervals ∆ = (t, t + ∆t] ⊆ (0, T ]. Suppose the
”jump” measure G(dx) has moments

σk =

∫ ∞

−∞
xkG(dx), k = 1, 2, . . .(14)

that is ∆η has semi-invariants σk∆t, k = 1, 2, . . . , with σ1 = 0 for E∆η =
σ1∆t = 0. Similar to (11), let us consider

ξ = f(∆ηt1 , . . . , ∆ηtn)

for certain kind analitical functions f(x1, . . . , xn) of (x1, . . . , xn) ∈ Rn, in
particular, satisfying majorant conditions of the polynomial type:

| ∂k

∂xk
i

f | ≤ C
n∏

j=1

(1 + |xj|mj,k) , (k = 0, 1, . . . ).

Then the stochastic derivative admits the following specification:

Dξ =
∞∑

k=1

σk+1

σ2

1

k!

n∑
i=1

E
( ∂k

∂xk
i

f(∆ηt1 , . . . , ∆ηtn)|As

)
1(ti−1,ti](s), 0≤s≤T.(15)

To show it, we can apply the same elementary technique as in the case of
Wiener process - cf. (11), etc. At first, let f be polynomial. Then, for every
monotone h-partition point t : ti−1 < t < t + ∆t ≤ ti, considering a finite
Taylor expansion

∆f = f(. . . , ∆ηti , . . . ) − f(. . . , ∆ηti − ∆η, . . . ) =

=
∑

k

∂k

∂xk
i

f(. . . , ∆ηti − ∆η, . . . )
(∆η)k

k!
,
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we see that

lim
h→0

E
(
∆f

∆η

‖∆η‖2
|At

)
=

= lim
h→0

∑
k

E(∆η)k+1

‖∆η‖2

1

k!
E

( ∂k

∂xk
i

f(. . . , ∆ηti − ∆η, . . . , )|At

)
=

=
∑

k

σk+1

σ2

1

k!
E

( ∂k

∂xk
i

f(. . . , ∆ηti , . . . )|At

)
- thanks to a general relation between moments and semi-invarians:

E(∆η)k+1 =
k+1∑
q=1

(∆t)q
∑

k1+···+kq=k+1

(k + 1)!

k1! . . . kq!

q∏
j=1

σkj
,

with the internal sum over all integer solutions of the equation

q∑
j=1

kj = k + 1 (kj ≥ 2),

- cf. [5], plus the fact that, according to the majorant conditions

‖ ∂k

∂xk
i

f(. . . , ∆ηti , . . . ) −
∂k

∂xk
i

f(. . . , ∆ηti − ∆η, . . . )‖ ≤

≤ C‖(1 + |∆η|mi,k+1) |∆η| ‖ = O(h
1
2 ) .

Note, representation (15) holds for the analytical function f such that it
satisfies the applied majorant conditions and, for every fixed point t:

ti−1 < t < ti (i = 1, . . . , n),

the series

∞∑
k=1

E(∆η)k+1

‖∆η‖2

1

k!
‖ ∂k

∂xk
i

f(. . . , ∆ηti − ∆η, . . . )‖(16)

converge uniformly with respect to ∆t → 0.
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