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Abstract

The stochastic integral representation for an arbitrary random
variable in a standard Leo-space is considered in a case of a general
Lo-continuous martingale as integrator. In relation to this, a certain
stochastic derivative is defined. Through this derivative it can be seen
whether the random variable admits the above type integral repre-
sentation. In any case, it is shown that this derivative determines
the integrand in the stochastic integral which serves as the best Lo-
approrimation to the random variable considered. For a general Levy
process as integrator some specification of the suggested stochastic
derivative is given; in this way, for Wiener process, the known Clark-
Ocone formula is derived.
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Some preliminaries. We are to recall the Ito type non-anticipating
integration scheme in the Lo-space

H = Ly(Q,2, P)
of real random variables &:
lell = (Blel)2,

involving as integrator a general H -continuous martingale n,, 0 <t < T,
with respect to an arbitrary filtration

A, 0<t<T.



The integrands are considered as elements of a certain functional Ly-space of
measurable stochastic functions

0 =p(w,t), (w,t) € Q2 x (0,T]

with a norm

el = ([ 16l Pasxaaie)) = (# ek )"

given by means of a product type measure
P(dw) x dln]i(w)

associated with a stochastic function [n];, 0 < ¢ < T, having monotone
right-continuous trajectories such that

E(A[]|%) = E(|An*|2%)
for the increments A[n] and An on intervals
A= (t,t+ At] C (0,7].

In particular, for the Levy process n,, 0 < t < T, as integrator (En, = 0,
En? = 0?t), the deterministic function

[n]: = o?t, 0<t<T,

is applicable.

For simple functions o":

"= MIa(s),  0<s<T,
A

having their permanent 2,-measurable values ¢" € H on the h-partition
intervals

A=(tt+At]: > A=(0T) (At < h),

the stochastic integrals are defined as

T
def
/ Prdn, = > " Ay
0

A



with summation over the partition intervals; here, it is assumed that
2
B(san) = B(1¢"- B(lAn20)) =
B(6" P BAR)) = E [ 16 dil. <,

T 9 T
([ ) =E [ 1P
0 0

And, in general, the integrands o are identified as limits

which gives

1 = lim ¢"

(1) p = lim

in the involved functional Ly-space: ||¢ —¢"||z, — 0, for appropriate simple
functions ©"; the corresponding stochastic integrals are defined as limits

T T
(2) /¢m=M/wm
0 h—0 0

in H, with

T
|| / odnll = ol
0

According to the simple functions structure, the integrands can be char-
acterized in the above functional Ls-space as functions ¢ on the product
Q2 x (0,T] which are measurable with respect to the o-algebra generated by
all rectangles of form A x (t,t + At], with A € 2; (note, the above rect-
angles constitute the so-called semi-ring and their indicators constitute a
complete system in the Lo-subspace of functions, measurable with respect
to the o-algebra generated). In a case of Levy process as integrator, this
characterization can be simplified by identification of the integrands as the
stochastic functions ¢, having 2(;-measurable values ¢;, 0 <t < T

T
/ ||g0||2dt < 00.
0

Also, to characterize the functional Lo-subspace of all integrands, one can
consider the complete system of a particular form integrands

® - 1(0,7](t)7 0 <t< T7



having ,-measurable values ¢ on random intervals (o, 7| with stopping times
o71(0<o<7<T):

e Loaill, = B [l (fnle = [1o)] < o0,

T
/ Olodns = ¢ (N —1n0).
0

Note, in the (1)-(2) integration scheme any h-partitions (b — 0) can be
applied thanks to the H-continuity of the integrator:

||An|| — 0, At — 0,

for the increments An = n,.a; — 7 in H; in particular one always can apply
the monotone h-partitions, having increasing sets of partition points (with
h — 0) which altogether represent some dense set {t} on the considered
interval (0, 7.

The following questions seem to be of general interest. Whether a random

variable
¢ e H

admits representation by the (2)-type stochastic integral, and, in any case,
how the best integral approximation to &:

R T
(3) €=/0 @ dn,s

can be determined; here é is meant to be the projection of £ onto the subspace
H(n) of all stochastic integrals with the considered integrator n,, 0 <t < T
To be more precise the latter question is how the above integrand ¢ can be
determined through the corresponding (1)-type simple integrands "

And, regarding these questions, it also seems of interest to consider a more
general case with the subspace H(n) of random variables £ in H, admitting
the stochastic integral representation of a form

A n T k
(4) £ = dn!
kz:/ogokn

- with respect to some system of the orthogonal martingales

n,  0<t<T (k=1,...,n)



as integrators (including the case n = 00).

For illustration, we refer to the known Black-Scholes type Markets where
for the pre-considered desirable gain &, the corresponding achievable gain é ,
as the "best” approximation to £, should be determined through the (4)-type
representation - cf. [3], [4].

We can answer to the above questions as follows.

Stochastic derivatives and L,-approximations with stochastic in-
tegrals. With no loss of generality, we can assume that the considered H-
continuous martingale 7;, 0 < ¢t < T', does not degenerate, having non-zero
increments

An = Ni+At — Mt

on all intervals

A = (t,t+ Al C (0,T].

For the random variable £ € H, let us define its stochastic derivative D&
with respect to the integrator n;, 0 <t < T, as

. An
D def 1 E
(5) ¢ & lim B¢ ™ )

- to be more precise,
D¢ hmZE( A |2l>1() 0<s<T
= A >~o x4,
iy 27 g™

being as the (1)-type limit ¢ = D¢ of the simple functions " with their
values

A
"= B¢
(6) o = By, i)
on the h-partition intervals A = (¢,t + At], where
|Anl? = B(|ank,)

~of. [1], 2], [8].

Theorem. Stochastic derivative (5) — (6) is well defined for any € € H,
and & admits unique integral representation

T
7 = &0 DE dn,
(7) ¢ £+/0 ¢dn



through its derivative DE and the corresponding £° € H :
DE° = 0.
Proof. With the monotone h-partitions, for the subspace
H(n) € H
of all (3)-type stochastic integrals, we have

®) H(n) = lim >~ H(An)

as the limit of the indicated orthogonal sums with their components H(An)
as subspaces of the corresponding variables in H of a form

wAna

with the 2A;-measurable multiplicators v for the increments An on the h-
partition intervals A = (¢,t 4+ At]. A projection of & onto H(An) is

" A,
with the multiplicator ¢ = "
An
h
P = B¢ oI
1An][7)

- cf. (6). Indeed,
Ele" - Ap|* < o0

since

" P E(An[*124) < B(S*A),

and the following relation

E((& — ¢"An)(pAn)|A,) = pE(EAD|A,) — " E(|An*|24,) = 0

implies the orthogonality condition

E(& — ¢"An) (vAn) = 0.

Hence, projections of £ onto the (8) pre-limit orthogonal sums are

T
> MAn= / ! dn
A 0

6



where the integrands " are the simple functions with the values 1 = ¢" on
the intervals A = (¢,¢+ At], and these simple functions are exactly the same
as in the limit formula (5)-(6). Of course, the (3)-form projection & of & onto
the subspace H(n) of all integrals is represented by some particular integral

being a limit
. T T
fzi/ ¢mk=1m{/ o dn,s
0 h—0 0

in H, and here the integrand ¢ is the (1)-type limit of the simple functions

o", according to
T T
1] wdn— [ et dnd = e = ¢l
0 0

Thus in representaiton (7) with the integrand ¢ = D¢, the difference

3 25—/0Ts0d773

is orthogonal to H(n) and according to what was already shown, D&% = 0.
The proof is over.

We are to stress that representation (7) leads to the (3)-type integral
approximation to £ as
T
¢~ [ pean.
0

A more general result is as follows.

Corollary. For the orthogonal martingales
nr, 0<t<T, (k=1,2,...)

and the subspace H(n) of the (4)-type variables in H, the projection & of &

onto H(n) is
© T
=3 | ek,
k=1"0

with the integrands

. AnF
(9) ‘;Dk—]llli% E(fw@h), (k—l,?,...)

as the stochastic derivatives with respect to the corresponding integrators - cf.

(5)-(6).



Of course, in particular situations the suggested stochastic derivative ad-
mits particular specifications. For illustration we consider the following ex-
amples.

Stochastic derivatives with respect to Levy processes as integra-
tors. As usual, let’s assume that the filtration 2;, 0 < ¢ < T, is generated
by the very integrator 7;, 0 < ¢t < T (note, in this case, the filtration is
continuous).

Ezample (derivatives with respect to Wiener process). Let ny, 0 <t < T
be Wiener process with a diffusion coefficient o2.

A tipical simple situation can be as follows: the random variable £ is
Normal (jointly with 7, 0 < ¢ < T'), having its correlation

Efnn O§t§T7

with the integrator; then the stochastic derivative can be specified as

1 d

(10) D¢ = ——E&n, 0<t<T (ae.).
o dt

Indeed, the projection & on the subspace H (1) admits representation (3) with
the deterministic integrand ¢ = DE and

t

T
E¢n, = E(/ sodm-nt> = 02/ pds, 0<t<T.
0 0

In another typical situation, the random variable

5 = F(nt17"‘777tn>

is a function of the variables n;,, ..., n,:
0=t < t1 < ... <t, <T.
Here, ¢ can be treated as the corresponding function

(11) 5 = f(AntU"'?Antn)a

of the increments

Any = =, (G=1,...,m),



for

f(xl,...,ajn F(xy,... le (x1,...,2,) € R™

Suppose f(z1,...,x,) is a smooth function of (z1,...,x,) € R™, such that
its derivatives of order k (k = 0, 1,2) satisfy majorant conditions of a form

8 kf| CH elz;[?

for any € > 0 and an appropriate constant C'. Then the stochastic derivative
can be specified as follows:

ZE(

A proof requires a few elementary steps.

First of all, for the intervals A = (¢,¢t + At] from the monotone h-
partitions, > A = (0,T]: At < h, such that

A77t17 ey Antn)|913) 1(ti—1,ti](s>7 0 S S S T.

i1 <t < t+ At < t;,
let us consider the difference
Af = f(o..,Any,...) — f(...,An, — An,...).

We see that An = n,ar — 1 is independent of the events of the o-algebra 2,
and the variable f(..., An, — An,...), taken alltogether, and therefore

Elf(...;Anp, — An, ... )An|2] = E[f(.... Ay, — An,...)|20]EAn = 0.

Hence, with ||An||? = ||An||? = 02At, we have

Fepmp®) = F(Armp).

Now, we apply Taylor approximations as follows

0 0?
Af_@ fl.o Ay, —An,...)-An = Wf[...,(Anti—An)—i—QAn,...](An)Q

i
and

2

0 0
fl..,An,—An,...) = wf[ oy (Any,—An)+0An, ... ]-An

0
f( y At ) 9.’13‘1

(91‘2-




where 0 < 6 < 1. Then, thanks to the majorant conditions, we see that

0 2 3
FCo Ay = An, ) (A2 < Clle?™ ™ AnP|| = O(h?)

AfAn —
|AfAR s

and

0 0 2 1
g f s D)= 5 (o A=)l < Clled A | = O(h).

Hence, we have

fing 15 (€ e 2) = B (£ B )2 =0

The next step is to consider the stochastic function in H

¢—2E<

which is uniformly H-continuous on the open intervals (t;_1,t;), with

Ant17 AR 7A77tn>’m8) ]‘(ti_l,ti}(s) O S S S T7

T
| el dtal, = ol < oo
0

Let us write ¢ for the ¢ values at the end points ¢ of the h-partition intervals
A = (t,t+ At]; clearly, the corresponding simple functions o™ with the above
permanent values on the intervals A converge to the function ¢ in the sense
that

lim 0" — ¢|z, = 0

- cf. (1). As it was shown in the first step, for every partition point ¢, we
have

lim E( Tanl? |mt> - ( 0 f(...,Antz.,...)mt),

h—0 (9(13Z

and this shows that the above simple functions ¢" are exactly the same as
(5)-(6); thus

D¢ = ¢
- cf. (12). The proof is over.

Clearly, coming back from f(An,,...,An,) to F(ny,...,m,), we are
just to modify representation (12) as

(13) DF (s, -, ZE( ml,---,ntn)!?l)lmtz( ), 0<s<T,

10



which gives the known Clark-Ocone formula for the integrand ¢ = D¢ in the
stochastic integral representation

T
5 = / @dns
0

Ezample (derivatives with respect to “jumping” Levy processes). Let ny,
0 <t <T, be the ”jumping” process with homogeneous independent incre-
ments:

_ct. [6], [7].

o0

Ee™A1 = exp {At/ (e —1— wx)G(dx)}

o0

for the increments An on intervals A = (t,t + At] C (0,7]. Suppose the
”jump” measure G(dz) has moments

(14) or = / *G(dz), k=1,2,...
that is An has semi-invariants opyAt, k = 1,2,..., with 0y = 0 for FAnp =
o1 At = 0. Similar to (11), let us consider

5 = f(Ant1?"'7A77tn>

for certain kind analitical functions f(z1,...,x,) of (z1,...,2,) € R" in
particular, satisfying majorant conditions of the polynomial type:

kfl <CH1+|93|’”““) (k=0,1,...).

j=1

o

Then the stochastic derivative admits the following specification:

Opt1 1
(15) D¢ Z k? <a kf(Antl,...,Antn)|m5>1(ti7hti](s), 0<s<T.

(0}

To show it, we can apply the same elementary technique as in the case of
Wiener process - cf. (11), etc. At first, let f be polynomial. Then, for every
monotone h-partition point t : ¢, 1 < t < t + At < t;, considering a finite
Taylor expansion

Af = f(o..,Any,...)— f(..,Amp, —An,...) =

(An)*

ak

11



we see that A
. 7
1 E(A 2{) _
ny E\AT = TanE

L E(An)k+11 B
— M AP ( k:f< A = Ay ) =

_ Z"Zl L (a e Dl

- thanks to a general relation between moments and semi-invarians:

A A (k+1)
B =3 a3, g o
q=1 k14 +kg=k+1 7 j=1

with the internal sum over all integer solutions of the equation
q
ki =k+1  (k>2)
j=1

- cf. [5], plus the fact that, according to the majorant conditions

8’“ oF
< ClI(L+ |An™s+) [Ap| || = O(h?) .

Note, representation (15) holds for the analytical function f such that it
satisfies the applied majorant conditions and, for every fixed point ¢:

ti1 <t<t (izl,...,n),

the series

E(A k+1 ak
(16) S B i = )]
k=1

converge uniformly with respect to At — 0.

12
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