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Abstract

While it is common knowledge that portfolio separation in a continuous-time lognormal
market is due to the basic properties of the normal distribution, the usual exposition
found in text books relies on dynamic programming and therefore invokes It6 stochastic
calculus. Khanna & Kulldorff (1999) gives a rigorous proof which essentially reduces
to the elementary properties assuming a risk free asset exists, an assumption we drop.
Further simplifications are given, and generalizations to (symmetric and non-symmetric)
a-stable driving noise.
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0 Introduction

This paper concerns the portfolio optimization problem for a small agent in a frictionless
continuous-time market where the assets are geometric stable-like additive (i.e. independent
increment) processes. The concept of portfolio separtion should be well known; from Tobin
(1958), generalizations have gone either in the direction of characterizing the preferences which
admit separation (Cass & Stiglitz (1970), discrete time, if the utility function is smooth) or a
characterization in terms of distributions (Ross (1978), discrete time.) In a complete lognormal
diffusion market, two fund separation was obtained by Merton (1971) by means of dynamic
programming. Instead of minimizing variance given mean, Khanna & Kulldorff (1999) choose
to maximize mean given the variance, and are by remarkably simple methods able to remove
the risk aversion and completeness assumption and also allow for “no short sale” constraints on
a subset of the portfolios, as well as incomplete markets; they do however assume the existence
of a risk free asset. This paper will remove this latter assumption and a few others, and allow
for a-stable laws as well. A reference discrete reference is Fama (1965) (the symmetric case
only.) We shall see that there are cases admitting separation if all noise sources have the same
skewness and short sale is disallowed.
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The outline of the paper is as follows: Section 1 gives a heuristic exposition of the lognormal
diffusion market, semple enough for undergraduate level if one assumes a rough understanding
of continuous-time stochastic processes. In Section 2 we make the argument rigorous under
quite general conditions. Going through through the key properties, we will see that part of
the results carry over to the case where noise is a-stable: Two fund separation in the presence
of risk-free asset is given in Section 3. Other generalizations, including cases of one fund
separation, are given in Section 4. Finally we will see that we may have 2 fund separation
if components are dependent in the non-Gaussian case as well; although this is a substantial
generalization of Theorem 3.1, it is left to the end to keep the exposition simple.

Throughout the paper, boldface symbols denote vectors. We will also suppress time-dependence
of the parameters and choice variables. We will also implicite assume all distributional prop-
erties to hold jointly in the variables.

1 The geometric Brownian market.

Consider consumption-portfolio optimization in a market with n risky assets {S5;} each satis-
fying the (nonanticipative) stochastic differential equation

dS;(t) = S;(t)[u; dt + o7 dX(2)] (1)

where in this Section X is a Wiener process, i.e. continuous-time random walk with multinor-
mal independent increments and covariance matrix RB. We shall treat both the case where a
safe money market exists and the case where it does not; assume for the moment that there
is an asset So(t) = 1 for all ¢, i.e. we assume that we work with discounted figures. (With
reference to the title: If one only knows the non-discounted asset dynamics, then one needs
to invoke the It6 formula without second order term.) We form a portfolio from the assets:
If at time ¢ one has &;(¢) units of asset ¢, then the market value is > &;(¢)S;(¢). In discrete
time, the self financing condition says that the change in the market value of the portfolio
should come from changes in the prices of the assets, i.e. that change in wealth should be
S &) (Si(t+ h) — Si(t)) for b > 0. The analogous requirement is taken as a definition of a
self-financing portfolio in our continuous-time setting, i.e. wealth fluctuating as )" & (¢)dS;(¢);
however, from our wealth we will also deduct an amount for consumption. Letting C'(t) be
(discounted) cumulative net consumption up to time ¢ and assume that the portfolio is self-
financing apart from the consumption, we have that wealth at time ¢ is Y (¢) = >~ &;5;(¢), and
developing according to

dY (t) = zn:&(t) dS;(t) — dC(t)
)
=) &GOS dt + o dX(1)] = dC(1) = u' [pdt + X dX ()] - dC(2)

where X has rows {0, }; write M := Y RX" for the volatility matrix. Our control u represents
the value invested in each risky asset, and the amount invested in the safe asset is then equal
toY —u'1.



The usual argument is now to minimize variance for given mean, and this will lead to two
fund separation. However, variance minimization assumes implicitely risk aversion, which is
in fact unneccessary if the agents prefer more to less, as pointed out by Khanna & Kulldorff
(1999). We shall instead maximize mean for given variance. In the next Section we will make
the argument rigorous, but let us for the moment proceed heuristically. Up to now, we have
not specified whether the agent is free to choose u. Let us assume that u is required to belong
to some given closed set U. The mean-variance optimization problem now becomes:

maxu g subject to u' Mu = Q.

uel
Let us say that a Q > 0 is attainable if there is some u € U such that u' Mu = . Since
we might have a constrained market, absence of arbitrage does not imply that the volatility
matrix is invertible; arbitrage-freeness is simply the condition that @ = 0 implies u' p = 0.
A particulary convenient class of constraints is if U is a cone with vertex at 0, which may be
obtained by forbidding short sale on some subportfolios, some of or all of the assets, the latter
corresponding to U being the first orthant — or even on some subportfolio, corresponding to
a cone with vertex at 0.) To push it even further, if U is merely a family of half-lines from
the origin, then we have, with one exception, at worst two fund separation: if there is no
arbitrage, find the f* € U which solves the maximization problem for () = 1 and just scale.
The exception is if the market does admit arbitrage: Since we have not assumed risk aversion,

a non-risk averse agent may require three funds, namely the arbitrage, the bank, and the “best
risky fund” £*.

Other interesting U’s are the ones generated by linear constraints. If U = {u; u'A < ¢}
(componentwise inequality), then the first order Kuhn-Tucker condition for optimality is
AMu = p — AX and if A\g # 0 and the volatility matrix is invertible, we immediately have
(2 + rank(A)) fund separation. Furthermore, M~'X/)g has interpretations both as shadow
prices on the constraints and positions in the funds needed to satisfy them. In particular,
we immediately recover the classical case of two fund separation assuming that there is no
risk-free asset, by taking A = 1 and ¢ = 1; while two fund separation then is a consequence
of requiring u'1 = 1, the cases with inequality are also worth mentioning, as they allow for
different interest rates for borrowing and lending (see Example 4.7). We merely mention that
further generalizations are straightforward, the maybe most noteworthy is that we may al-
low for non-traded income whos law does not depend on the asset prices, or even driven by
X. Note that ¢ does not affect the funds (except for degeneracies) and may then be individual.

Mean-variance efficiency can easily seen to be optimal (under conditions we will make pre-
cise in the next Section) through the following argument: Consider an arbitrary strategy
(C,u). Let Q@ = u' Mu and let u* maximize drift given that volatility is . The additional
drift is then immediately consumed, so that we form a consumption process C* such that
dC* = dC + (u* — u)T g dt. Then there exists a standard Brownian motion X such that

wTYdX ~ QdX ~ u¥dX (3a)

where “~” denotes conincidence in law. Therefore the process Y * corresponding to the strategy
(C*, u*) satisfies

dY* = uTpdt + v X dX - dC* ~ uTpdt — (u* — ) pdt + v ¥ dX — dC =dY, (3b)



i.e. one can have more consumption and the same wealth, up to coinciding probability law.

2 The assumptions needed, and a-stable random variables.

We shall see what assumptions we need for the argument of the previous Section. But first,
let us note that we do not assume existence of an optimal strategy. In return, we have to stick
to a slightly weaker concept of portfolio separation:

2.1 Definition (m fund separation).

We shall say that we have m fund separation if there exist m funds independent of wealth
such that for each admissible (consumption, portfolio) pair there is one which is preferred and
whose portfolio consists of the m funds. A

2.2 Assumptions.

e Predictability. The strategies should be predictable (that is, non-anticipative) and
admit unique (weak) solution to (2).

e Greed. Preferences are assumed to form a partial ordering on the (wealth, consumption)
pairs such that (Y*,C*) is preferred to (Y, C) if

(Y*,C") ~ (Y, C—}—/ cdt) for some predictable ¢ > 0.

e Consumption must not covariate with X, i.e., in terms of [t6 differentials, we must
have dC'dX = 0 for (3) to hold. In many applications one may want to restrict the class
of admissible consumption strategies even further, for example assuming finite variation,
lower boundedness or nonnegativity; we then have to assume that for any admissible C'
then any C' 4 [ cdt for predictable nonnegative ¢ is also admissible.

e Existence of some admissible strategy.

e Probability distributions must permit the construction (3). In Section 1, we used
the property that the zero-mean normal distributions constitute a one parameter family
which is closed not only under convolution, but under arbitrary linear combinations
as well. The symmetric a-stable distributions share this property. If we only require
positive linear combinations, then also the skew stable distributions may be treated.
Unfortunately, dependence between non-Gaussian stable variables is not characterized
nicely through a covariance matrix, as used in Section 1. Through Sections 3 and 4 we
will therefore assume that X has independent components, corresponding to formally
taking R to be the identity, while we will treat dependent components in Section 5.

The coinciding law argument (3) can now be repeated in an entirely rigorous manner; under
these quite mild regularity assumptions, every agent is a mean-variance optimizer in the
Gaussian case. The non-Gaussian stable random variables have infinite variance, but the
main principle will work nevertheless. For completeness, let us recall the basic properties:



2.3 Independent a-stable random variables.

A stable real r.v. Z is one for which for two independent copies Z; and Z, of Z, and any two
positive numbers a; and as, there exist numbers ¢ > 0 and aq such that ag+a1 Z1+as 729 ~ aZ.
The law is strictly stable if one can take ag = 0. The stable laws form a four parameter family
Sa(o, B, ). The number a always satisfies a® = af + af for some index of stability o € (0, 2]
(unique unless Z is constant). & > 0 (except = 0 for the constant) is called the scale param-
eter; 7 /o has scale parameter 1. u € R is called the location parameter; Z — u has location
parameter zero. § € [—1, 1] the skewness parameter; ag + a1/ has skewness Fsign a;. Only
the Gaussian is independent of # and will be taken to have 3 = 0 by convention. Then the
law is symmetric around p (i.e. 7 — p ~ p— Z) iff § = 0; beware, however, that u equals the
expectation only iff & > 1; in fact, E[|Z|’] = oo iff p > « except for the Gaussian. Indeed, if
a < 1 = 14|, the r.v. is supported by the half-line (—oo, u) if § = —1 and (u,00) if g = 1.
Different parametrizations do exist, we refer to chapter 1 of Samorodnitsky & Taqqu (1994).

For our purposes, we can and will assume all nondegenerate real r.v.’s to have unity scale
parameter and be located at 0. Now fix a common «; then an arbitrary linear combination
of independent a-stable r.v.’s is a-stable. Indeed, if Z; are independent S, (1, 3;,0), then the
scalar product v Z is distributed

2 v B

0l

2
Sa(HfUHo“ ) _;ﬁzvi 10g|vll 'X{a:l})7 (4)

where the signed power v<®> equals |v|*sign v and ||v||s := (3|v;|*)'/* is only a quasi-norm

for & < 1. In particular, except for the skew 1-stable case where the “scaling parameter”
actually does more than just “scaling”, a stable r.v. minus its location is strictly stable.

In Section 1, we assumed the driving noise X in (1) to be a Gaussian additive process. Let
us make the following generalization (weakened further in Section 5): X is assumed to be a
vector of i.i.d. stable additive processes with zero location and unity scale parameter. That is,
the A-time increments of any component X; are i.i.d. Sa(hl/a, £,0). We remark that by (4)
an S, (1, B, 0) r.v. with |8g| < 8 may be written as linear combination of two independent
S« (1, 3,0) variables; however, by the assumptions we will make on the portfolio constraints
this apparent generalization is of little interest.

The stable distributions are precisely the ones obtainable from the generalized central limit
theorem. For this reason, they are frequently considered heavy-tailed alternatives to the
Gaussian. A careful note is appropriate though: While the solution to the geometric SDE (1)
is lognormal if X follows the normal distribution, the solution is not log-stable in the non-
Gaussian stable case. The empirical works by Mandelbrot and Fama on estimating « in log
returns (see the collection Mandelbrot (1997), chapters E1, E14 and E16) do not justify (1).
Works have been done on stable absolute returns as well, though: Mantegna (1991) estimates
a-values ranging from 1.00 4+ 0.04 to 1.40 + 0.04 for daily differences in Sectorial indices over
ten or fifteen year periods on the Milan stock exchange, and 1.16 4+ 0.02 for the M.I.B. index,
assuming symmetric stability (i.e. g = § = 0). Janici et al. (1997) treat the problem of
pricing options on assets following (1) with symmetric noise, to explain the smile effect.



Warning.

The geometric process (1) will change sign (unless totally skewed to the right or o = 2), and
will therefore violate limited liability. We emphasize that we do not assume limited liability,
and we arguably have a theoretical shortcoming to the model if intended to model stocks. On
the other hand, it makes the model better suited for insurance liabilities. The non-Gaussian
stable laws have tails asymptotically like |z| ™%, a property they share with the loggamma and
Pareto distributions. The a-stable laws may therefore be an alternative to these for a < 2.
In fact, from Kagan (1997) we have data indicating that the magnitude of earthquakes (hence
possibly related insurance claims) have sufficiently heavy power tails.

We will also need a convention on what happens when at changes of sign, as we are soon to
allow nonnegativity constraints on the value invested in a risky asset. In an insurance market,
a major negative jump corresponds to a claim against the portfolio, and has to be paid out
immediately from the insurer’s holdings — and then the insurance contract continues to develop
with the same dynamics as before (recall that the states {S;} are not present in the wealth
dynamics (2)). Small fluctuations, on the other hand, may be interpreted as diffusion-alike
changes in the value of the contract.

Arguably, this interpretation is somewhat troublesome if there is no risk free asset and, say,
consumption required to be nonnegative; imposing a nonnegative amount invested in each
asset with nowhere to borrow makes the problem ill-posed at first time wealth is negative,
which it will be for some parameter values. On the other hand, if the problem considered
is assumed terminated at the first time no admissible strategy exists, our analysis will still
be valid. Furthermore, let us note that C is net consumption, including income from other
sources independent of (the a-stable part of) the market, for example from labour or stochas-
tic sources not following the particular stable law, and may therefore cover losses from this
particular asset market. A

With the above reservation, we shall refer to nonnegativity constraints on the amount invested
in an asset as forbidding short sale.

3 Portfolio separation, a-stable case, risk free asset exists.

The main arguments of Sections 1 and 2 carry over, and will frequently give rise to portfolio
separation. For technical reasons, we may want to use v := YTu to rewrite the wealth
dynamics into

dY (t) = o' pdt + v dX(t) — dC(¢)

and pose restrictions in terms of V := XTU on v instead of U. If

Either 3 =0 or both «a # 1 and V contained in the first orthant, (5)
then all admissible portfolios will preserve skewness and the location-scale optimization prob-
lem

sup ' p subject to  ||v||, =Q (6)
uelU



is sufficient to grant coinciding law. Assuming there is no arbitrage, we may choose f to
maximize 1 u subject to £ € U and || XTf]|, = 1 to get:

3.1 Theorem: Two fund separation.

Consider problem (6) with U being a closed family of half-lines from 0 and such that (5) holds.
Then u* = Qf is optimal for all attainable Q > 0. O

For a generalization to the case where X may have dependent components, see Section 5.
We make a few remarks: First, a third fund may be needed if there is arbitrage, just as in
the Gaussian case. Second, invertible Y does not in general imply absence of arbitrage, as
the X; may be a.s. positive (if @ < 1 and § = 1), in which case no greedy agent will want
to minimize scale given location (see Definition 4.3). In other words, drift maximization is
more crucial here than in the Gaussian setup; indeed, since the sample paths are no longer
continuous, agents with, say, concave utility function except convex in a bounded interval will
not necessarily blow up volatility to immediately reach the boundary of that wealth interval.
Third, let us remark some consequences for a < 1: Assume for simplicity that X is the iden-
tity. First, if @ =1 and V' is a union of orthants, then one shall only invest in one asset (the
one with highest drift, or highest negative drift if negative position allowed.) If @ < 1 then
the same holds if V' is the entire space, or if V is the first orthant and at least one of the 6;
are nonnegative (the “unit ball” is not a convex set.) Note also that symmetry is crucial for
o = 1; we shall treat the skew 1-stable case separately in the next Section.

Arguably, using v instead of u disguises the problem of preserving skewness. An alternative
to assuming V contained in the first orthant, is assuming 3’ having only nonnegative entries,
and U contained in the first orthant, i.e. forbidding short sale. This is the reason why we
cannot allow different skewnesses and write everything in terms of differences as mentioned
in 2.3, even though we do not (yet) assume the market to be complete.

4 Portfolio separation under inequality constraints.

In this Section, we shall assume Y invertible and thus square; if necessary, we may complete
the market by introducing ficional “dummy stocks” in which investment is forbidden through
imposing the zero position in (8). Writing @ = Y~y the dynamics become

dY =v'[@dt +dX] - dC. (7)
We then consider linear constraints of the form
V={v; vVE'A<()} (componentwise inequality) (8)
and note that this may or may not be interesting to the original setup.

As we saw above, the a@ < 1-laws may exhibit a non-diversification behavior. Let us first treat
the 1-stable case: If 3 = 0, we essentially have a linear programming problem, which may
separate into fewer vectors. For 3 # 0 (not covered by Theorem 3.1) we have the following:



4.1 Theorem: Skew 1-stable case.
Assume aw = 1, 3 # 0 and that V is the first orthant. Then we have 2 fund separation .

Proof. The Lagrangian to be maximized wrt. v; > 0is L = vie— 27r—5 > (’UZ' log vi) — v,
which if § > 0 has a unique maximum at
Q

T T
v =exp{—1-— %)\} f = mf where f; = exp{%ﬁi}. (9)

For 8 < 0, L is convex in v; and the optimal is to invest all in the asset with highest ;. O

We remark that the argument depends on the constraint being an inequality in v' 1. Other
constraints will yield an i-dependent factor in front of the corresponding multiplier in the
exponent. The approach does only admit generalizations if the constraints can be spanned by
a low number of vectors which consist of only zeros and ones.

As the 1-norm constraint is linear on the first orthant, it may define a plane parallell to a
linear constraint defining V'; a particular degenerate case is if 1 is an eigenvector of X' (i.e. all
assets equally volatile) and there is no safe asset, i.e. that u'1 =Y applies as a constraint;
then the no short sale constraint is the same for v as for the original u, and we have the
following:

4.2 Corollary: One fund separation if no risk free asset.

Let o = 1 and X be a constant times the identity. Suppose there is no risk free asset, and
that short sale is forbidden. If 3 # 0, then all agents have the same portfolio weights, the
portfolio given by (9) with the only attainable volatility Q; if 3 = 0, then one will invest only
in the asset with highest drift, hence the same holds if this asset is unique. O

If @ < 1, we can only obtain one fund separation among agents which share some particular
attitude towards risk. A risk averse agent is usually thought of as someone who will reject a
zero mean noise term independent of everything; here, however, mean does not exist:

4.3 Definition: Scale minimization.

Fix (o, #). An agent minimizing the scale parameter given skewness and drift, is then said to
be a scale minimizer. A
Warning.

The definition should be interpreted («, §)-wise — a scale minimizer for & < 1 and g = 1, will
reject an arbitrage! For § = 0 the condition simply means replacing “zero mean” by “symmet-
ric around 07, while for § < 0 the condition is heuristically “weaker”; for § = —1 (and @ > 1),
it is reasonable to assume scale minimization, as other agents will give away arbitrages to the
market. A

In other words, assuming (5), a scale minimizer may instead of (6) be assumed to solve

inf ||v|la subjectto v'@=D. (10)
veVv



Since the condition v' @ = D is linear, it may be contained in the prescribed V. Solving (10)
for v, = v (D) for all D (including the negative!) for which it exists, we find that the solution
v* = v*(Q) of (6) can be chosen as v*(Q) = v.(D) + p(Q) with p(Q) L 0 being “pure
scale”. The canonical example is the well-known “one fund separation” in a market with i.i.d.
lognormal assets, which holds only among diversifyers, i.e. variance minimizers.

Scale minimization implies the following:

4.4 Lemma: Non-diversification under scale minimization, o < 1.

Let V satisfy (5) and (8), and assume o < 1. Then no scale minimizer will choose interior
solution except possibly v; = 0.

Proof. Suppose the contrary, and form the Lagrangian L = Y |v;|* —v' (A8 + X' AX). Then
(0/0v;)*L < 0 except at 0. O

Then it easily follows:

4.5 Theorem: One fund separation under scale minimization, o < 1.

Assume o < 1. Define V by the absence of risk free asset, intersected with the first orthant if
implied by (5). A scale minimizer may then choose the zero position in all assets except the
one with highest drift. O

We note that the one fund separation results presented in this Section do not satisfy the
necessary conditions of Ross (1978), Theorem 1, which implicitely assumes finite conditional
mean. We furthermore note that by a Hamilton-Jacobi-Bellman argument, it is not too diffi-
cult to see that one frequently will want to hold an infinite position when a < 1, unless the
appropriate constraints apply.

For a € (1,2), risk averse agents will be scale minimizers. Considering the Kuhn-Tucker con-
dition associated to (10), we have separation properties under certain restrictive assumptions
which nevertheless generalize the familiar Gaussian setup:

4.6 Theorem: The symmetric 1 + ﬁ-stable case.

Assume that 8 = 0, that ﬁ a natural odd number and that V' is given by (8). Then a risk
averse agent has m + 2 fund separation, where m is the number of independent vectors in
expanding the power

vf = ((Z71An)) ey (11)

k3

and solving to get u*T = v X1 = > A (£, O

Again, we make some remarks: If ﬁ is even, then the Kuhn-Tucker condition cannot deter-
mine the sign of the coordinates v;. Imposing nonnegativity or nonpositivity will require at
least as many funds as assets in (11) — a number possibly larger than the original number of
assets due to the augmentation with the “dummy” assets. However, in quite a few interesting

cases, say, we do not need that ﬁ is odd: If all drift terms are nonnegative and V is such



that given any admissible portfolios with a negative position in certain subset of the asset,
then forming a portfolio with the zero position in these assets (but not changing the others)
is still admissible, then a risk averse agent will do so if this subset is independent of the rest.

In those cases, all the v; automatically have the same sign, and we may allow for even ﬁ

4.7 Example.

In the Gaussian case, we made a remark on different interest rates for lending and borrowing
. This may be covered by introducing a constraint u'1 = K and for each K, the alternative
drift condition u' (p — 7(K)1) = D, i.e. u' u = D 4 Kr. Note that the funds do not depend
on the right hand sides, i.e. ¢, and therefore not on the chosen K, even though r may do.
Assume complete unconstrained market with X’ being the identity. The first order constraint
is then ufa_b = A Aou;. If ﬁ odd natural number, we have strong ﬁ—}—l fund separation
over risk averse agents. A

Instead of letting (K') be as in the examble, we may disallow for certain K’s (let r be infinite
there); in particular, we have covered the case where there is no borrowing — or where no risk
free asset exists (admit only the particular value K =Y). We summarize a genaralization of
this classical result:

4.8 Corollary: -*; fund separation if no risk free asset.

1
a—1
have —2< fund separation. O

Assume that —— is an odd natural number and that the only constraint is u'1 = Y. Then we

5 Non-Gaussian a-stable noise with dependent components.

We shall generalize Theorem 3.1 to the case where X is merely an a-stable vector process,
possibly with dependent components. We already know the Gaussian case, so assume a < 2.
For the results needed in this Section, we refer to Samorodnitsky & Taqqu (1994), Chapter
2, especially Example 2.3.4 and Theorem 2.4.3: If Z is an a-stable d-vector, its characteristic
function is determined by a finite spectral measure I' living on the unit sphere in R?, and a
constant vector z which in our model enters via the drift term in (2) and therefore is 0. Then
V1 Z is S, (0, 3, 1) with

7 =ov=( [IWsl" ras)", (12a)

2
H=Hv=—= /VTS log|[v's| I'(ds) “X{a=1} (12c)
and in the symmetric case (i.e. Z ~ —Z, implying I symmetric and thus gy = uy = 0 Vv),
the law of v Z depends only on (a and) oy via (12a). If we in the non-symmetric case ad
hoc assume o # 1 and V such that 3 is constant (analogous to (5)), then the law of vI Z is
determined by oy (and ). Indeed, {v; f, = B} is for fixed B a family of half-lines from

0. Then we can choose f* to maximize drift given oy = 1 and put u* = Qf* just as in
Theorem 3.1. We have thus:

10



5.1 Theorem: Two fund separation, dependent components.

Assume the dynamics follows (2), with X being a stable R-valued additive process with
spectral measure I'. Let V be a family of half-lines from the origin, and such that 3y given
by (12b) is constant on V; if @« = 1, assume in addition X symmetric. Then we have two fund
separation (three if there is arbitrage.)

6 Concluding remarks.

We make a remark to the assumption on the preferences: In the Gaussian case, it may be
replaced by the assumption that given consumptions coinciding in law, then Y™ is preferred
to Y if Y* > Y as. for some Y ~ Y. Then we can still maximize drift given variance,
and apply to well-known comparison theorems (see lkeda and Watanabe (1977), Theorem 1.1
for the result, and their Section 2 for an application to stochastic control.) However, in the
discontinuous case a0 < 2, this breaks down, as wealth can with positive probability jump by
a factor less than —1 (unless we have totally skewed laws or choose the zero portfolio), and
the elegant setup of Khanna & Kulldorff is then crucial, more than in their continuous setting.

The coefficients may be time-dependent or even stochastic if independent of everything. That
includes the stability index «, in which case X will be a so-called stable-like process. How-
ever, as Theorem 4.6 only admits discrete values, this generalization is most interesting in the
setting of Theorem 3.1. Note however that all X; are still supposed to have the same a and
(3; we can adapt the theory to the X; having different stability indices and skewnesses if X' is
invertible, by separating the market into independent groups of assets, each with common «

and f.

Khanna & Kulldorff note that also the number of stocks (i.e. the constrains U and V' in our
setting) may vary in time (even in a random manner, if independent of the driving noise); this
is of course correct if the investor is allowed to sell an asset which is about to disappear. Note
that as the stable laws have no atoms, we will almost surely not face the modelling dilemma
occurring when the process jumps to 0 and disappearing at the same time.

While a Lévy motion has no fixed discontinuity times, it is possible to admit this generaliza-
tion; assume that at a stopping time 7 independent of everything else we have with positive
probability of disontinuity, and the conditional distributions of {S;(7%) — S;(7)} given jump
is stable with common skewness and index of stability. Then the optimal portfolio at time 7
should be location-dispertion efficient, as in discrete time.

Finally, we note that we do not really need that X itself is stable, only all linear combinations
{v! dX}yev. However, the cases lost are few (though examples do exist) and not the most
interesting, as a must be < 1 and X cannot be infinitely divisible (i.e. cannot be a Lévy
process), and the linear combinations cannot all be strictly stable nor all symmetric. See
Samorodnitsky & Taqqu (1994), Theorem 2.1.5 and Section 2.2.
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