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Abstract

The problem of irreversibly harvesting from a general one dimen-
sional (Wiener-Poisson) jump diffusion population model is studied.
For a wide class of models, including stochastic generalizations of the
logistic model earlier studied by Lungu & @ksendal (1997) and Alvarez
& Shepp (1998), the optimal strategy is a downwards local time reflec-
tion at a trigger level z*. Both these works find that this trigger level is
higher than of the corresponding deterministic problem; we show that
this property depends crucially upon the uncertainty being Brownian.
Furthermore, we give conditions under which jump uncertainty also
increases z* compared to the deterministic model.
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0 Introduction

The problem of optimally harvesting a population has been widely studied.
The canonical example is asking how to get the most out of a logistic growth
model. This paper is strongly inspired by two papers studying stochastic
versions of the logistic growth models. Lungu & @ksendal [1] assume the
process to follow the It6 (non-anticipative) stochastic differential equation

dX; = Xy(K — Xy) - (rdt + 0, dBy) (1a)

if not harvested. This is maybe the most straightforward generalization to a
stochastic model, merely adding (a constant factor o times) white noise to
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the (constant, positive) growth factor r; here, B is standard Brownian motion
and the positive constant K is the carrying capacity of the environment. In
this model, volatility is largest when growth rate is. An alternative model is
the Verhulst-Pearl model, where the population if not harvested follows

d/Yt = T/Yt(BY - /Yt) dt ‘I‘ UVP‘/YL‘ dBt - /Yt— . dNt (1b)

In this model, studied by e.g. Alvarez & Shepp [2] and later by Myhre [3],
relative uncertainty is constant. In particular, the uncertainty may drive
the population across the carrying capacity K (which is defined as the value
where the drift term changes from positive to negative sign). N, is a Poisson
process, i.e. it has unit jumps and constant jump intensity, and the popula-
tion (or the opportunity to harvest it) will disappear completely and forever
at first jump time. This term is only implicit in their model. Yet another
model is

d)(t = T‘(Xt — A) (I( — /Yt) dt + U'()(t) dBt7 (1C)

studied by Lande, Engen and Sather [4] in a less rigorous setting. We merely
make a note that this process has negative drift at 0, and should only be
used as a model up to the first time the process hits 0. Our model (2) below
may be extended to cover the case (1c) if the coefficient 5 is allowed to be
unbounded at 0, and while this case is not covered by our Section 3, Section 4
will still apply.

As a model of a real life economy the shortcomings are severe, as we do
assume full information, total control of the amount harvested, no risk aver-
sion (but we do have a (constant) discount rate p to cope with intertemporal
trade-off) and infinite time horizon. [2] point out that the model does not
take into account the value of preserving a species and is therefore objec-
tionable from an environmentalistic point of view (shared by this author).
However, the model might still be of interest, and one key result of this paper
is that even in this simple model, behavior towards risk depends on how un-
certainty is modeled: Both [2] and [1] find that the optimal strategy is a local
time downwards reflection at a trigger level z*, and [4] is also dedicated to
problems with this kind of solution. All three works find that z* > 2§ where
the latter is the optimal trigger value in the deterministic case o = 0. We
shall see that this property (usually) holds in the continuous case, but not
necessarily in a jump diffusion model. While it is obvious that that an un-
compensated jump term may lower z* — like in the model (1b) above, where
the jump to zero intensity has the same effect as an increased discounting
rate — we emphasize that we will instead be introducing a pure jump mar-
tingale to the model. Pure jump martingales may be regarded as a modeling
alternative to the Brownian motion, at least if the jumps are small, and we
shall see that the phenomena might have qualitatively different implications.
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1 The model.

Assume given a filtered probability space (2, &, {J;}s>0, P) satisfying the
usual conditions. The population is assumed to be an adapted process X
following a stochastic differential equation to be defined in (2) below. X will
be driven by a standard Brownian motion B and by a centered integer-valued
random measure M governing jumps. Due to mathematical convenience we
will allow the jump intensity ¢ to be state-dependent, meaning that we do
not at this point follow the usual setup with Poisson random jumps (which
will however be useful at the end of Section 3); if population at time ¢~ is at
level z, then the intensity of a jump by a factor z € 7 (Borel set) is ¢(z, 7),
with ¢(z,{0}) = 0. The population is now assumed to follow the dynamics

dX, = X,— - (ﬁ(Xt)dt + o (Xy)dB; + /

[_1700)

zM(dt,dz)) —dH;  (2)

where H is our control, interpreted as the total amount harvested up to time
t, chosen from the class of admissible controls H to be defined in a moment.
Let P be the probability law of the time-space process (¢, X) starting at
(to, Xt,) = (to, z). Define H to be the class of F-predictable, left-continuous
non-decreasing functions such that P ”-a.s. we have H;, = 0 and X; > 0
for all t > to. We assume H # @.

It will be useful to split up the jump term: Let ¢ = § + ¢ + ¢ where § is
supported by RY, § is supported by (—1,0) and ¢ by point {—1}. With
abuse of notation, we shall denote ¢(z,{—1}) by ¢(z).

We make the following regularity assumptions on the coefficients:

ASSUMPTION

Point 0 is a trap for X, i.e., if the solution of (2) is not a priori unique at
z = 0; apart from this, the coefficients 3, 62 and ¢ are assumed to admit
uniqueness and local existence of a weak solution to (2). We assume that for
all x > 0,dz — ¢ = aa—wq(m,dz) and dz — ¢" := (%)Qq(m,dz) are signed
measures integrating z A z2. A

Let E = E" be expectation wrt. P%%, We assume one wants to maximize
total discounted expected harvest defined as follows:

JH = E[/ e Ptd Hy (3)
[0,7)

and if it exists, an optimal admissible H* such that

®(tg,z) = J7T = I—SI]éI‘;{JH 4)
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In (3), p > 0 is a constant discount rate. T has the interpretation of being
the first time the population hits 0, but for technical reasons we assume

T := lim inf{t > to; X¢ ¢ (0,y)}. (5)

y/'oo

By the Markov property, we can without loss of generality assume to = 0,
and W := e’ ®(tg, z) will be a function of z only. Clearly, ¥(0) = 0.

2 Sufficient conditions and properties of the value

function.
Define
Qu(o) = [ ($la+ 20) - bla) = 500/ (0)g(z,d) (62)
and
Lp(e) = —p(a) + 2B (2) + 3207 (@)0"(2) + Qb(z).  (6D)

For functions ¢ € C? vanishing at 0 and with sublinear growth (cf. Proposi-
tion 2), (L — p) coincides with the generator of the process X when dH = 0.
For completeness, we state a verification theorem:

THEOREM 1 (Sufficient conditions).
Suppose we can find a nonnegative ¥ € C?((0,00)) such that for all z > 0,

max{L, 1 -} <O0. (7)
Then
> WU, (8)
Suppose in addition that (0) = 0 and
max{L#, 1 -} = 0. (9)

Define the non-intervention region D as D := {z > 0; ¥'(z) > 1} and
assume that there exists an z* >€ (0, 00) such that

D =10,z%). (10)
Define the control H by
Ha = L7 + Z max (0, X, — 2%) (11)
s€[0,t]

where L= is the local time of X at z*. Then
=y (12)

and H* := H is optimal.
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Proof. The proofis standard; assuming 0 < ¢ € C? and (7) and an arbitrary
control H, the Ité6 formula yields

P > E[e™y(X)]+ E[/ e "'d Hy] (13)

[077)

and (8) follows. To prove (12), note that using H* we get equality in (13).
Since D is assumed bounded, E[e™?7%(X +)] — 0 and the conclusion follows.
O

Remark. Note that (super)optimality holds if we instead of twice continuous
differentiability assume 2 > 0 to be a viscosity (super)solution of (9). A

Let us consider the following extreme cases:

PROPOSITION 2.

If for some ¢ > 0 we have f — p > € everywhere, then ¥ = 0o except at
x = 0. If on the other hand z(3(z) — p) < pF everywhere for some I’ > 0,
then U < z + F, with equality if ' = 0.

Proof. In the former case, use [t6’s formula to get
i expf—pr) = sexp{—p}Vrexp [ (5(X) - p)ds). (10
to

where Y is an exponential martingale with Y;, = 1. Now take expectation
and let 7 grow. In the latter case, we immediately have superoptimality, and
if 1 (z) = z is superoptimal then it is also optimal. O

Note that the Markovian nature of the coefficients is not really needed here.

One frequently finds control problems which has finite value function but no
optimal control, and this is no exception: An example is to let 8 € (0,1)

and A > 0 and assume 3 = ;j&fe
it is easy to see that no optimal strategy exists, as waiting is always better;
however, ¥ (z) = z+ Az? is superoptimal. We shall see in Proposition 7 that

the condition that g < p at some positive finite z is quite crucial. This is

p and for simplicity ¢ = 0 = ¢q. Then

hardly a restrictive assumption in real world population models, though.

A converse to Theorem 1 is:

PROPOSITION 3.
W is a viscosity solution to (9) on each interval I on which W is continuous.

Proof. Also a standard proof; see e.g. Framstad, @Qksendal and Sulem [5],
proof of Theorem 3.2. U
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An easy consequence of Proposition 3 is the following important result:

THEOREM 4.
Suppose W(z) = z on some I = (0,z) # @. Then (z) < p on I.

Proof. ¥ must satisfy 0 > z(8(z) — p). O

Remark. This shows that if p < $(0), it is never optimal to harvest the
population to extinction. This is not the same as to say that the optimal
harvesting strategy will not indirectly lead to extinction; let for example
y > 0 be a trap of the process if uncontrolled, while for z < y the annihilation
intensity ¢ is positive. Then if we harvest any amount, the population will
almost surely become extinct in finite time. A

Even if the viscosity solution enables us to consider also nonsmooth can-
didates for the value function, smoothness is certainly a valuable property;
indeed, we should expect the value function to be smooth (if finite — Propo-
sition 2 is a counterexample):

PROPOSITION 5.

Assume there is an interval I > x* such that for I > x < z* intervention is
not optimal, but for I 5 xz > z* the optimal strategy H* hasdH* = (z —z*),
and that U is C' on I and C? around z*. Assume continuous coefficients at
z* and o(z*) #0. Then ¥ is C? at z as well.

Proof. Approaching from above and from below yields

pU) — 2 B(r) - QU()
Lo (e7)

U (z*7) = > 9" (z*t) = 0. (15)

and the claim follows since ¥ must be nonincreasing at z*, so ¥”(z*7) <0
as well. O

For a given 1, we shall define Q(z) := Q¥ (z). A couple of properties of @
will be useful. First, notice that we can write

aw=[ [ [ 1w dvdyea), (162)
r4zr Jy
the first two derivatives are then

Qu=[ | + " (w) dw dy ' (2, d2)
FrEr Y (16b)

+ [ (142 @+ 20) - (0) - 220" (0)) g(a,02)
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and

Q"(z) = //+ M (w) dwdy ¢"(z,dz)
r4zx Jy

3 Finding an optimal solution

In this section, we shall see that under suitable conditions, there is a value
function solving the quasi-variational inequality. In view of Proposition 2,
we shall throughout this section assume

B(z) > p for all small enough z > 0. (17)

Then as noted in the Introduction, the dynamics (1c) is not covered by this
section.

Assuming a slight bit more than (17) will imply that there is a solution which
is increasing and concave near 0:

PROPOSITION 6.

Assume that the coefficients and their first derivatives are bounded at 0.
Assume 1 is of sublinear growth at oo and not identically 0, that 1) solves
Ly = 0 near 0 and that 1(0) = 0. Then ¥'(0) = —¢"(0) = too if p < 5(0).
If3(0)—p =0 < §'(0), B”(0%) finite and x — [|z|q(x, dz) either is infinite for
some sequence z,, \, 0 or bounded as z \, 0, then ¢'(0)¢"(0) < 0. Finally, if
we allow $(0%) = +oo but 23" bounded, then we also have ¥'(0)%"(0) < 0.

Proof. To simplify, we note that the following arguments will also exclude
unbounded oscillations near 0, by considering arbitrary positive sequences
{z,} converging to 0:

Assume 9(0) = 0 # ¢’(0) to avoid the zero solution. In the case p < 3(0),
divide the HJB equation L¢y = 0 by z. Assume %" bounded near 0. By
I'Hoépital, sz0?(z)¢" (z) + @ tends to 0 and we arrive at the contradiction
0= (B(0) — p)¥'(0). So 29" (xz) — too. Then for small enough z and some
N >0, [¢"(z)| > ¥ implying ¥'(0) infinite and equal to —¢"(0). A similar
argument also yields the conclusion for the case 3(0%) = +o0.
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Assume now 3(0)—p = 0 < /(0) and 8”(0") finite. Divide the HJB equation
by z2. Assume first that ¢ and 9" are both bounded near 0. Then by (16),

=o2(0)9"(0) — lim (29" (z) [ z q(z,dz '(0) lim —p¥+afy’
0= 2(0)07(0) ~ lim (20"(x) [ = g(e,2)) +29'(0) fim L

= (p+ ()4 (0) + /(0) ~ lim (6"(a) [ = 9(z.42)).
(18)

If the integral term is infinite, we have a contradiction. If it is bounded, then
so is necessarily z1"'. Either z¢" tends to 0, in which case there is nothing
more to prove, or " is unbounded at 0. In that case, assume '(0) finite;
Consider once more the HJB equation divided by z2, to get

b
0=1lim (p — %/z q(z,dz)) + ﬁ%)lﬁ” (19)

Now the same argument as above for the integral yields a contradiction and
thus ¥'(0%) is infinite as well. Since ¥’ and " must have have opposite
signs, we are done. O

In the continuous case or § = 0, we will proceed by finding a solution f to
the HJB equation Lf = 0, paste it C? with an affine function at a zero  for
f";if fis concave at 0, then one can choose # as a minimum point of f’. If
f'(2) > 0, the construction

f(min(z*, z))
fr(w)
yields a function which solves the integro-differential equation on [0, Z] and
has derivative > 1 (> 1 iff z < ). If there are positive jumps, it is much
more difficult to find candidates for the value function, and this is the reason
why the next result has a slightly ad hoc formulation. However, if § = 0 and
Proposition 6 applies, then we can in fact find apply the next Proposition.

But first, we define # and z by

= inf{z > 0; B(z) < p} (21a)
:=sup{z > z; fB(z) > p}. (21b)

Note that the assertion that & < oo is not part of the hypothesis of the next
Proposition:

P(z) = + max (0,2 — z*). (20)

8¢

8

PROPOSITION 7.

Assume (17), and that 1 vanishes at 0, increases at 0, is concave, affine for
x > & and solves the HIB equation Ly =0 forx < & (> 0.) If # < oo, then
T < & and ¥'(z) > 0 and furthermore L1 < 0 forz > z (< 00).
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Proof. By (16a) and concavity, @ < 0. Concavity also implies —pt(z)
< z9'(z) for all z > 0 (unless # is linear, which is a trivial case,) since
1 vanishes at 0. We therefore have

Ly (x) < 2(B(z) — p)¢'(z) + %96202(96)1#"(96) +Qu(z) < 2(8(x) - p)¢'(2)
(22)

for all z € (0,%). In particular, if # < oo we cannot have # < Z, and

therefore /' > 0 on (0, Z] and thus everywhere, and then the last claim also
follows. O

We will therefore without loss of generality assume ¥'(Z) = 1, and the prob-
lem is solved if we can show that Ly < 0 on (Z,z). Then we have the main
result of this section:

THEOREM 8.
Assume that T < o0o:

i) Optimality, z(3 — p) + @ eventually nonincreasing;:
If Proposition 7 applies and

F(B(2) - p) +Q(2) 2 2(B(z) - ) +Q2) Va2  (2)

then we have U = ¢ and the optimal continuation region is D = [0, z*)

=10, 7).

ii) Optimality, z(3 — p) + @ eventually concave:
If Proposition 7 applies and the coefficients are continuous at &, and
zf + @ is concave on (Z,%), then Ly < 0 and thus ¥ = @ and the
optimal continuation region is D = [0,z*) = [0,%). Note that Q is
concave at some x > & if x — § is nonincreasing (= () nondecreasing!)
and convex there, and ¢ is convex there.

iii) Optimality wrt. a possibly modified problem:

Assume that Proposition 7 applies and that 1 is not C* at &. Let the
nth derivative (") be discontinuous at & and assume in addition that
we either have o(z) # 0 and C"~? coefficients, or 3(z) — [ z ¢(Z,dz)
exists and is > 0 and C"~! coefficients. Then Ly < 0 for all small
enough > . Therefore, if § = 0 then we can construct a new problem
with value function v and optimal continuation region [0, %) by leaving
the coefficients unchanged on some right-open interval containing [0, Z]
and changing [ from there on.
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—
<
~—~
3
~—
|
—
<-
~_~
3
~—

Ly (2)
$)+p¢(i)+xﬁ( ) —28(%) + Q¥(z) — Qy(a) (24)
—p) = E(B(Z) - p) + Q¥(z) — QY (7).

Il ||
3
—
b
2 &
=~
SN

ii) Notice that
d I, d
LY(@) = (2(8 - p)¥'(2) + T-Qu(a)

1 1 (25)

+ (z8+ §($202)/)¢//($) + §$202¢///($)-
By the nonnegativity of the latter term at &7, we know that Lt has
nonpositive derivative at . Relaxing differentiability, we still have that
Le is either decreasing or has zero derivative; concavity on (z,z) will
then grant that Ly < 0. By (16¢), we have that if z — ¢ is convex and
nondecreasing at some z > & (where " = ¢” = 0), then @ is concave
there, as claimed.

iii) To prove the last assertion, let n be the smallest number such that the
nth derivative ¥(") is discontinuous at Z. Then necessarily n is odd and
P (E7) > 0 = (). If 0(&) # 0, differentiate n — 2 times to get

which is < 0 by assumption. If 6(Z) = 0 differentiate instead n—1 times
to get

() Lo - ()" )

(26b)
= -5(8(a) - [ za(e,d2)) -9 a)

which is < 0 by assumption. Finally, if § = 0 then we can change 3 at
x without affecting the quasi-variational inequality at values to the left
of z.

O

Note that if we remove the assumption # = oo, we can only conclude that
is superoptimal.

Just like in [1], real analyticity conditions may be used to express the solution
in terms of a series. To do so, let us re-write the process into the familiar
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Lévy representation except for the jump to zero term, which we leave as is.
For a compensated Poisson measure N with associated Lévy measure A, X
may be represented as

dX; = X, - (B(X0)dt + o (X,)dB, + / 0(X-, 2) N(dt,dz) — dM, ) — dH,
(27)

where M; = M (t,{—1}). We shall only treat the case § = 0, i.e. 7 € (—1,0).
Assume now that within some positive convergence radius, the coefficients
may be written as

=D piwd, o) =) g,
=0 =0
= Z nj(z)acj and q(z Z 4 2.
J=0

We may now adapt the Frobenius theory to find a solution with inductively
determined coefficients. Insert

=2 Zaﬂ:i, ag =1 (29)

(28)

=0
into the HJB equation to get
0= 5(L5w) (S va') + (S 0+ ) (Lo
=0 7=0 =0
( P‘|‘Zgﬁj (0 —1)(q; + 09)) )(Z‘%xl)
=0

+ (Zam?/ ((1 + n(z, z))9+i —1-n(z,z)(0+ 1)) A(dz)).
=0 50

Note first that the function 7 — (1 +n)%*" is analytic for n > —1, so for each
1 the integrand is the composition of analytic functions and may be written
as Y ;2o h;x?. The constant term determines 6 € (0, 1]:

0=+ 80+ (60— 1)(do + 60) + / (14 m0(2)° ~ 1~ B0(2)) A(d=)
(31)

(the right hand side is negative for # = 0 and equal to 3(0) — p for § = 1; in
particular, if # = 1 then a1 = —(p+ g0 + <o + [ n3(2)A(dz)) ™' - p (-ao, actu-
ally), and in accordance with Proposition 6, f is increasing and concave at 0.

The a; may now be found inductively. Then we have the following:
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THEOREM 9.
Assume (28) — (31) within some positive convergence radius, and that § = 0.
Assume f" has a zero. Then Theorem 8 point iii) applies.

Proof. Analytic functions are determined by their derivatives, so while the
coefficients are C* at z*, 9 is not, unless identically equal to = which is
impossible by (17). O

4 The effect of uncertainty

Having found (under suitable conditions) the value function in Section 3, we
shall throughout this section assume that it is optimal to reflect the process
downwards at z* and that the value function W is C? there. While this
regularity assumption is ad hoc, we know from Section 3 that it covers a
wide range of control problems. The author is aware that similar regularity
results are recently obtained by Alvarez [6] in the non-jump case.

In the continuous cases studied by [4], [2] and [1] they find that 2* > z}
(equal to argmax z(8 — p)); [3] later improves the bound to z* > 2§+ o, /r
for the case (1b). The relation z* > z§ may have the interpretation of one
being more careful under uncertainty. It turns out that jump uncertainty
may violate this property (at least apparently, see the Closing remarks for
an interpretation). However, it holds if the jump intensity is nonincreasing
in z. More generally, we have

PROPOSITION 10.

Assume U"'(z*7) exists and assume (for simplicity, admits generalizations)
coefficients differentiable at z*. If Q'(z*) > 0 (resp. > 0), then 0 > (resp.
>) B(z*) — p+ a*p'(2*); hence if z3 concave, then z* is no smaller (resp.
strictly greater) than in the deterministic case. If o(2*) = 0 and Q'(z*) < 0
(resp. < 0), then B(z*) — p+ 2*3'(2*) > 0 (resp > 0); hence if 23 concave,
then z* is no larger than (resp. strictly smaller than) in the deterministic
case.

Proof. Differentiate the equation LW = 0 and insert z*~:

_<x*(ﬁ($*) _ p))/ — %(ib*)ZUQ(iC*)\I}/”(ib*_) +Ql($*) Z Ql(iC*) (32)

with equality if o(2*) = 0. O

Note that as (32) lower bounds the derivative of ) + z(8 — p) at z*, it may
be potentially difficult to utilize point i) of Theorem 8.

Proposition 10 combined with Theorem 8 point iii) yields a main point of
this paper:
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META-THEOREM 11 (Behavior towards risk).

There is a wide class of problems for which the optimal solution is to harvest
at a lower level than the corresponding deterministic problem. Thus the
introduction of (Markov martingale) uncertainty may reduce the optimal
population.

While this may appear a bit counterintuitive at first glance, it certainly
makes sense: jump intensity decreasing in  may lead to one keeping the pop-
ulation at a higher level to reduce the probability of “disasters”, i.e. jumps;
on the other hand, the presence of the jump terms may lead us to harvest and
reduce X before the jumps do. This is however not a valid argument, since
jumps are compensated. The case with only annihilation risk is illustrative:

THEOREM 12 (Annihilation risk only).

Assume that § = § = 0 = 0 and 3 and ¢ continuous and piecewise differ-
entiable. Then z* is a stationary point of (8 — p)/(p + q). Furthermore,
z(p — p) is (strictly) increasing/decreasing at z* iff ¢ is. In particular, if
z(B—p)/p and z(B—p)/(p+q) have unique stationary points zf, =*, respec-
tively, their respective control problems have optimal continuation regions
Do =10,z8) and D = [0,2*) and z* < z{y (< z§) iff ¢ is (strictly) increasing
at z*.

Proof. The Hamilton-Jacobi-Bellman equation L¥ = 0 is now

z(B+4q)

0= —\Il(r)—l—WlI/'(r) (33)
Differentiation yields
0=0(z)- (m(pﬁ;qp))ﬁr m(pﬂ;qp) V(). (34)

Now z(8 — p)/(p+ q) has stationary point where
@B-p) _ &
z(B-p)  (p+9
Note that the denominators are both positive. O

Example. If 23 is concave and ¢ is convex, we can solve the problem com-
pletely if (3 — p) is increasing at 0 and has some stationary point, and that
B(0) > p and #'(0%) and ¢(07") are both finite. Then it is easy to verify that
z(B—p)/(p+ q) also is increasing at 0 and has some stationary point; let z*
be the leftmost. Then for z < z*,

L) + (")

Y= )

r
exp!
fL‘*
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It is easy to verify that the HJB equation holds, that %" < 0 and hence
that ¢’ > ¥'(z*) = 1 and that Theorem 8 point ii) applies. By (35), we can
merely check sign ¢’'(z*) to verify if the optimal trigger is higher than in the
deterministic case. As a special case, consider the logistic growth model

flz) =r(K —z) (37)

(with K > p) modified with a compensated annihilation term with (convex)
intensity ¢(z) = (qo + q12)T; 0 = ¢ = 0. Then z} = (K — p/r)/2. Assume
that g(z*) > 0, one may verify that

* P‘|‘(]0
T = —

., (—14,/1+205-2) (38)

P+ qo

We see that z* is strictly decreasing in (p + qo)/q1; therefore, increasing
both ¢p and ¢; simultaneously gives no information on whether z* increases
or decreases. We may also find the value function in terms of

+ + ) ‘
In f(z) = {r%’fgo Inz+ (J - ) In(rK + g + (1 —r)z) ifq #r

+ , ; : _
T’}{fgo Inz+ if ¢ =r.
(39)
We omit the details. A

5 Closing remarks

We have seen that even in this simple model, the optimal strategy may adapt
qualitatively differently to the introduction of a jump martingale compared
to the introduction of Brownian noise to the model. The result suggests that
one should be careful with respect to how one models uncertainty.

We will attempt to interpret Proposition 10: While a jump martingale term
may reduce the optimal trigger z*, jumps seem to have the same effect as
Brownian noise if () defined by (6a) is nondecreasing at z*. However, us-
ing the Lévy representation (27) instead of the representation (2) for X, we
have that s is nondecreasing at z* if both (—¢) and z + nz are. Note that s
nondecreasing (locally) is precisely what is needed to generalize (locally) the
well-known comparison theorems of the continuous Brownian framework. In
that case, let us compare two strategies corresponding to processes X and
X respectively, where X corresponds to an initial harvesting amount ¢ while
X does not (everything else equal): Then X > X (unless by harvesting the
former), and the loss in the former is bounded by €. z + nz nondecreasing
corresponds to state after jump being increasing with respect to state after
jump. If that fails, then X may jump to a state lower than X. We therefore
interpret Proposition 10 as a trade-off between noise level on one hand, and
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on the other exposure to risk of falling to a lower level. Speaking heuristi-
cally, the assertion that “risk leads to higher trigger level” is only modified
by adding “as long as it does not become risky to increase the trigger level”.
Speaking even more heuristically, one could interpret the behavior towards
Brownian noise as an adaptation towards irreversibility and notice that if
one waits for a higher level, one has “better” information in the sense that it
is less probable that the process will fall to a level where drift is low; however,
if waiting leads to a disaster, maybe one doesn’t really want to know.

Having established that introducing a pure jump Markov martingale to a
deterministic model may either reduce or increase the optimal trigger x*,
one may want to ask: Introducing jump intensities {{q}s>o; for what ¢ is
2* monotone with respect to £7 And introducing Brownian volatilities {lo},
for what o is 2* increasing in £? And, ultimately, for what {(¢o,{q)} is z*
monotone in £7 These are topics for future research.
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